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Abstract

In this thesis, we have considered the following problems on the existence of ion acoustic (IA)

solitary structures including double layers and supersolitons in a magnetized nonthermal

dusty plasma.

Problem-1: Here, we have used Sagdeev potential technique to investigate the arbitrary

amplitude IA solitary structures in a collisionless magnetized dusty plasma consisting of

negatively charged static dust grains, adiabatic warm ions and nonthermal electrons. The

present system supports both positive and negative potential solitary waves, coexistence of

solitary waves of both polarities, and negative potential double layers. The system does

not support any positive potential double layer. Although the system supports negative

potential double layers, but these double layer solutions cannot restrict the occurrence of

all solitary structures of same polarity. In fact, there exists a parameter regime for which

the negative potential double layer is unable to restrict the occurrence of negative potential

solitary waves, and in this region of the parameter space, there exist negative potential

solitary waves after the formation of negative potential double layer. Consequently, negative

potential supersolitons have been observed and the Mach number M corresponding to a

negative potential supersoliton is restricted by the inequality MNPDL < M < Mcr, but this

supersoliton structure reduces to a conventional solitary wave of same polarity if M ≥ Mcr,

where MNPDL is the Mach number corresponding to a negative potential double layer and

Mcr is a critical value of M . Thus, we have seen a transition process of negative potential

solitary structures, viz., soliton → double layer → supersoliton → soliton. Different solitary

structures have been investigated with the help of compositional parameter spaces and the

phase portraits of the dynamical system describing the nonlinear behaviour of IA waves.

The mechanism of transition of a negative potential supersoliton to a conventional soliton

after the formation of double layer of same polarity has been discussed with the help of

phase portraits.

Problem-2: Here, we have considered the same plasma system as mentioned in Problem-

1, but we have investigated the existence of IA solitary structures including double layers

and supersolitons at the acoustic speed. At the acoustic speed, for negative polarity, the

viii



system supports solitons, double layers, supersoliton structures after the formation of dou-

ble layer, supersoliton structures without the formation of double layer, solitons after the

formation of double layer whereas the system supports solitons and supersolitons without

the formation of double layer for the case of positive polarity. But it is not possible to

get the coexistence of solitary structures (including double layers and supersolitons) of op-

posite polarities. For negative polarity, we have observed an important transformation,

viz., soliton before the formation of double layer → double layer → supersoliton → soli-

ton after the formation of double layer whereas for both positive and negative polarities,

we have observed the transformation from solitons to supersolitons without the formation

of double layer. There does not exist any negative (positive) potential solitary structures

within 0 < µ < µc (µc < µ < 1) and the amplitude of the positive (negative) potential

solitary structure decreases for increasing (decreasing) µ and the solitary structures of both

polarities collapse at µ = µc, where µc is a critical value of µ, the ratio of unperturbed

number density of electrons to that of ions. Similarly, there exists a critical value βe2 of the

nonthermal parameter βe such that the solitons of both polarities collapse at βe = βe2.

Problem-3: This problem is an extension of Problem-1 in the following direction: (1)

Starting from one dimensional Kappa distribution for electrons, we have systematically de-

veloped the combined Kappa-Cairns distribution, (2) we have found the effective bounds of

both nonthermal parameters κ and βe for the combined Kappa-Cairns distribution. This

distribution can generate more highly energetic particles in comparison with both Kappa

and Cairns distributions. We have investigated IA solitary structures in a collisionless

magnetized plasma composed of negatively charged static dust grains, adiabatic warm ions

and a population of highly energetic electrons generated from the combined Kappa-Cairns

distribution. Sagdeev pseudo potential technique has been considered to investigate the

arbitrary amplitude steady state solitary structures including double layers and supersoli-

tons. We have developed a computational scheme to draw the existence domains showing

the nature of existence of different solitary structures. Different solitary structures of both

positive and negative polarities have been observed for different values of κ and βe . We

have seen two important transitions of solitary structures for negative polarity, viz., soliton

before the formation of double layer → double layer → supersoliton → soliton after the

formation of double layer, and soliton before the formation of supersoliton → supersoliton

ix



→ soliton. For the second case, we have a supersoliton structure without the formation of

double layer and this case is completely new one for magnetized plasma. Different solitary

structures supported by the system have been investigated with the help of compositional

parameter spaces and the phase portraits of the dynamical systems describing different

solitary structures.

Problem-4: Here, the plasma system is same as the plasma system as defined in Problem-

3, but here we have considered the Poisson equation instead of quasi-neutrality condi-

tion along with the different conservation equations to describe the nonlinear behaviour

of IA waves. In this problem, we have derived a KdV-ZK (Korteweg-de Vries-Zakharov-

Kuznetsov) equation to investigate the oblique propagation of weakly nonlinear and weakly

dispersive IA waves in a collisionless magnetized plasma consisting of warm adiabatic ions,

static negatively charged dust grains and combined Kappa-Cairns distribution of electrons.

It is found that a factor (B1) of the coefficient of the nonlinear term of the KdV-ZK equation

vanishes along different families of curves in different parameter planes. In this situation,

i.e., when B1 = 0, we have derived a modified KdV-ZK (MKdV-ZK) equation to describe

the nonlinear behaviour of IA waves. We have investigated the solitary wave solutions of

these evolution equations propagating obliquely to the direction of the magnetic field. We

have also discussed the effect of different parameters of the present plasma system on the

amplitude of these solitary wave solutions.

Problem-5: The present problem is an extension of Problem-1 in the following direction:

instead of considering three-component collisionless magnetized plasma consisting of adia-

batic warm ions, nonthermal electrons and static negatively charged dust grains, we have

considered a collisionless magnetized four-component plasma consisting of adiabatic warm

ions, nonthermal electrons, isothermal positrons and static negatively charged dust grains

immersed in a static uniform magnetic field directed along a fixed direction. Arbitrary

amplitude IA solitary structures have been investigated in the present plasma system. We

have observed that the system supports positive potential solitary waves, negative potential

solitary waves, coexistence of solitary waves of both polarities, negative potential double

layers, negative potential supersolitons, positive potential supersolitons for different values

of the parameters of the system. We have investigated the effect of different parameters of

the system on the solitary structures.
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Introduction

This thesis contains some problems on the existence of Ion Acoustic (IA) solitary

structures including double layers and supersolitons in a collisionless magnetized

multi-species plasma consisting of adiabatic warm ions, nonthermal electrons, nega-

tively charged dust grains with or without positrons. Here, we have considered two

types of nonthermal electron species. In some problems, we have considered the non-

thermal distribution of electrons as prescribed by Cairns et al. [1] whereas with the

aim of producing more energetic particles in a collisionless magnetized plasma system,

we have considered the combined effect of Kappa and Cairns distributions. In fact,

we have modified the Kappa distribution by imposing the nonthermal characteristics

of Cairns distribution thereon. We have discussed different properties of this type of

velocity distribution of energetic particles. In the introduction, we have presented the

overall scenario of the thesis by considering the key points of each chapter. To begin

the main topics of different chapters presented in this thesis, we have considered the

following points:

• A brief review of the development of solitary waves

• Kappa distribution and Cairns distribution

• Combined Kappa-Cairns distribution

• Satellite observations

• Different methods used in the present thesis

• Overview of each chapter

1



2

A Brief Review of the Development of Solitary Waves

The early history of solitary waves began in the science of hydrodynamics. J.

E. Allen [2] reported that in August 1834, while the Victorian Engineer and Naval

Architect John Scott Russell [3] was inspecting the Union Canal at the outskirts of

Edinburgh, he observed “a most beautiful and extraordinary phenomenon”. Here

we describe this discovery in his own words: “I was observing the motion of a boat

which was rapidly drawn along a narrow channel by a pair of horses, when the boat

suddenly stopped − not so the mass of water in the channel which it had put in

motion; it accumulated round the prow of the vessel in a state of violent agitation,

then suddenly leaving it behind, rolled forward with great velocity, assuming the

form of a large solitary elevation, a round, smooth and well-defined heap of water,

which continued its course along the channel apparently without change of form or

diminution of speed. I followed it on a horseback, and overtook it still rolling on at

a rate of some eight or nine miles an hour, preserving its original figure some thirty

feet long and a foot to a foot and a half in height. Its height gradually diminished,

and after a chase of one or two miles I lost it in the windings of the channel. Such,

in the month of August 1834, was my first chance interview with that singular and

beautiful phenomenon which I have called the Wave of Translation”. Allen [2] also

reported that Scott Russell had described his observations to Sir John Herschel, a

leading scientist of those days and he was not impressed. Later on, Scott Russell

carried out laboratory experiments and succeeded to reproduce the phenomenon of

solitary waves. He performed this by having a small reservoir with a movable side at

the end of a trough. On removing the partition, the water formed a solitary wave.

Later on, several authors [4, 5] have theoretically investigated the solitary wave.

Korteweg & deVries [6] gave a definite theory of solitary waves in 1895, working in

Amsterdam. These authors were successful to deduce a nonlinear equation regarding
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the solitary wave which is well-known as Korteweg-de Vries (KdV) equation. The

subject of solitary waves was reborn in Plasma Physics in 1958 by Adlam & Allen [7]

who discovered solitary waves in a collisionless magnetized plasma.

In 1949, Walter H. Munk [8] investigated and summarized the useful relation-

ships derived by means of the solitary wave theory and plotted those relations using

dimensionless parameters. Zabusky & Kruskal [9] discovered, by numerical investi-

gation, that solitary waves retain their identity after colliding and these particle-like

behaviour led the authors to introduce the term soliton replacing the term solitary

wave. Washimi & Tanuiti [10] showed the one-dimensional long-time asymptotic be-

haviour of small but finite amplitude ion acoustic waves. Sagdeev [11] elucidated that

the equations governing the dynamics of nonlinear ion acoustic waves can be written

in the form of the energy integral of a classical particle in a potential well. Shukla

& Yu [12] considered the problem of nonlinear ion acoustic waves in a magnetized

plasma and found that the waves can propagate as a soliton whose motion is oblique

to the external magnetic field. The authors found a relation between the angle of

propagation, the speed and the amplitude of the soliton. The authors also presented

an exact analytical formula for the electric field in the small amplitude limit. Bona

et al. [13] examined the interaction of solitary wave solutions of a model equation for

long waves in dispersive media numerically. They found that the waves do not emerge

from the interaction unscathed, and two new solitary waves of slightly different am-

plitudes from the original waves, together with a small dispersive tail are generated

as a result of interaction. Considering isothermal electrons, several authors [14–16]

investigated the existence and stability of solitary waves in magnetized plasmas. On

the other hand, several authors [17–24] studied the existence and stability of small

amplitude solitary waves in a magnetized plasma by considering Cairns [1] distributed

nonthermal electrons. Malfliet [25] proposed a method for obtaining traveling wave

solutions of nonlinear wave equations that are essentially of a localized nature, based
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on the fact that most solutions are functions of a hyperbolic tangent. Cairns et al.

[26] investigated obliquely propagating ion acoustic solitons in a magnetized plasma

composed of warm adiabatic ions and nonthermal electrons. The authors employed

the reductive perturbation method to derive the Kortweg-de Vries equation which

admits a solitary wave solution for small amplitude limit. They also studied the

highly nonlinear situation by the numerical solution of the fully nonlinear system of

equations. The authors reported that the presence of nonthermal electrons changes

the nature of ion acoustic solitons. The soliton may change from compressive to

rarefactive in the small amplitude limit, whereas the fully nonlinear equations may

allow rarefactive and compressive solitary waves to coexist. The effects of external

magnetic field, obliqueness and ion temperature on the amplitude and width of the

compressive and rarefactive solitons have also been discussed. Yan & Zhang [27] pre-

sented a generalized transformation based on the Riccati-equation and applied it to

solve Whitham-Broer Kaup (WBK) equation in shallow water, and as a result, they

obtained many explicit exact solutions, which contain new solitary wave solutions,

periodic wave solutions and combinations thereof. Mamun & Shukla [28] considered

the nonlinear propagation of electron acoustic waves in a plasma consisting of a cold

electron fluid, hot electrons obeying a trapped/vortex-like distribution and station-

ary ions. The authors studied the properties of small but finite amplitude electron

acoustic solitary waves by employing the reductive perturbation method and the prop-

erties of arbitrary amplitude electron acoustic solitary waves have been investigated

by means of the pseudo potential approach. Mamun & Shukla [29] investigated the

properties of cylindrical and spherical dust ion acoustic solitary waves in an unmagne-

tized dusty plasma composed of inertial ions, Boltzmann electrons and stationary dust

particles by employing the reductive perturbation technique. The authors derived the

modified Kortweg-deVries equation and also obtained its numerical solutions. The
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authors reported that the properties of dust ion acoustic solitary waves in a nonpla-

nar cylindrical or spherical geometry differ from those in a planar one-dimensional

geometry. Ghosh [30] investigated the role of negative ions on small but finite ampli-

tude dust acoustic solitary wave including the effects of high and low charging rates

of dust grains compared to the dust oscillation frequency in electronegative dusty

plasma. The author has reported that the solitary wave is governed by Korteweg-de

Vries (KdV) equation in case of high charging rate and it is governed by KdV equation

with a linear damping term in case of low charging rate. The author has also reported

that the soliton width decreases (increases) with the increase of negative ion number

density (temperature). Dubinov et al. [31] proved a possibility of stationary solitary

electrostatic waves with large amplitude in symmetric unmagnetized symmetric pair

plasmas. Bandyopadhyay et al. [32] investigated the excitation and propagation of

finite amplitude low frequency solitary waves in an argon plasma impregnated with

kaolin dust particles. El-Awady & Moslem [33] studied the generation of nonlinear

ion acoustic waves in a plasma having nonextensive electrons and positrons.

Kappa distribution and Cairns distribution

Alfvén [34] reported that the velocity distribution functions in many cosmic plasmas

are non-Maxwellian as well as highly anisotropic due to the presence of an excess of

highly energetic particles. But, there is no general mechanism to construct the veloc-

ity distribution function of energetic particles in the space plasma, consequently dif-

ferent non-Maxwellian velocity distribution functions have been constructed in phase

space to describe the behaviour of the energetic particles on the basis of the as-

sumption that the relaxation time of the energetic particles is not so small to reach

thermal equilibrium [35]. Kappa distribution and the nonthermal velocity distribu-

tion of Cairns et al. [1] are two widely used non-Maxwellian models for energetic

particles.
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There are enormous evidence for the existence of a population of highly energetic

electrons in space plasmas, resulting in a long high-energy tailed non-Maxwellian dis-

tribution [36]. Such a population of suprathermal electrons is generally modelled by

a Kappa distribution which has the property that the number of particles in phase

space far away from the point v = 0 is much greater than the number of particles in

the same region for the case of a Maxwellian - Boltzmann distribution, where v is the

velocity of the particle in phase space, and consequently the number of highly ener-

getic particles is much larger in Kappa distribution in comparison with Maxwellian

- Boltzmann distribution. Decades ago, Binsack [37] used Kappa distribution in his

Ph.D. thesis where he mentioned that actually Kappa distribution was introduced by

Prof. S. Olbert in his studies of plasmas on IMP-1 [38]. By the same time Vasyliunas

[39] also used this distribution. Later, Kappa distribution was considered by many

authors in various studies of plasma physics [40–57].

On the other hand, motivated by the observations of solitary structures with

density depletion by the Freja satellite [58], Cairns et al. [1] reported that in presence

of nonthermally distributed electrons with an excess of energetic particles, the nature

of ion sound solitary structures changes its character and it is possible to obtain

solutions with density depletion. A similar result was reported by Nishihara & Tajiri

[59] for a two-electron-temperature plasma. In fact, for Cairns distributed nonthermal

velocity distribution function of the energetic electrons [1], it can be easily checked

that for increasing values of the nonthermal parameter (βe), the distribution function

develops wings, symmetrical with respect to the vertical axis v = 0, which become

stronger as βe increases, and consequently, nonthermal velocity distribution generates

energetic particles for increasing values of βe in finite region of phase space in the

neighbourhood of v = 0. Therefore, for increasing βe, distribution function develops

wings, which become stronger as βe increases, and at the same time the center density

in phase space drops, the latter is a result of the normalization of the area under
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the integral. Consequently, one cannot take values of βe > 4/7 as that stage might

stretch the credibility of the Cairns model too far [60]. Therefore, nonthermal velocity

distribution of Cairns et al. [1] produces flattening at moderate values of v. So, Cairns

distribution of nonthermal electrons [1] can describe the flattening of the distribution

with respect to Maxwell - Boltzmann distribution as the background distribution.

Cairns distribution [1] has been used by several authors to discuss different wave

structures in various plasma systems [17, 61–78].

Combined Kappa-Cairns distribution

Kappa distribution has the property that the number of particles in phase space

far away from the point v = 0 is much greater than the number of particles in the

same region for the case of a Maxwellian - Boltzmann distribution whereas Cairns

[1] distributed nonthermal velocity distribution function can be regarded as a mod-

ified Maxwellian - Boltzmann distribution which has the property that the number

of particles in phase space in the neighbourhood of the point v = 0 is much smaller

than the number of particles in phase space in the neighbourhood of the point v = 0

for the case of Maxwellian - Boltzmann distribution of the energetic electrons. So,

Cairns distribution [1] describes the flattening of the distribution in phase space in

the neighbourhood of the point v = 0 whereas Kappa distribution describes the flat-

tening of the distribution in phase space far away from the point v = 0. Therefore,

to consider the flattening of the Kappa distribution in the neighbourhood of v = 0,

one can develop Cairns distribution with respect to Kappa distribution as the back-

ground distribution. The combined Kappa-Cairns distribution is aimed to describe

the possible deviation from Kappa distribution in the neighbourhood of v = 0. So,

in the combined Kappa-Cairns distribution, we have considered Kappa distribution

as the background electron distribution and the deviation of this background distri-

bution can be described by Cairns distribution. Therefore, our aim is to consider
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the combined Kappa-Cairns distribution in those heliospheric environments in which

flattening of the distribution can be discussed by Cairns distribution with respect to

Kappa distribution as the background distribution. Figure 3.1 of Chapter-3 shows the

flattening of the combined Kappa-Cairns distribution described by the nonthermal

Cairns distribution with respect to Kappa distribution as the background distribu-

tion. In Chapter-3, starting from one dimensional Kappa distribution for electrons,

we have systematically developed the combined Kappa-Cairns distribution. The effec-

tive bounds of both nonthermal parameters κ and βe for the combined Kappa-Cairns

distribution have been derived. This distribution can generate more highly energetic

particles in comparison with both Kappa and Cairns distributions. This combined

Kappa-Cairns distribution reduces to the one dimensional Kappa distribution when

βe = 0 whereas the combined Kappa-Cairns distribution reduces to nonthermal dis-

tribution of Cairns et al. [1] if κ → ∞. On the other hand, if βe = 0 and κ → ∞,

the combined Kappa-Cairns distribution is simplified to the isothermal Maxwellian -

Boltzmann distribution.

Numerous studies have shown that Kappa distributions (or combinations thereof)

are frequently observed in several space, geophysical and other plasmas, where the de-

viation from Maxwell is more evident in the high-energy tails of the observed distribu-

tions. Kappa distributions have been employed to describe space plasma population

in the inner heliosphere, including solar wind [79, 80], the planetary magnetospheres,

including magnetosheath [37–39], the outer heliosphere and inner heliosheath [81] etc.

which can be described by the combined Kappa-Cairns distributions for even better

accuracy.

High-energy tailed distributions (κ distributions) do not show major temperature

anisotropies but this property of high-energy tailed κ distributions is not consistent

with various space plasma observations [82]. In fact, the space plasma observations

indicate the major temperature anisotropy in astrophysical environments. Again,
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Pierrard et al. [83] reported that the electron temperatures are generally higher in

the slow solar wind than in high-speed stream. An excess of parallel temperature has

been observed to dominate the observations and it is significantly larger in high-speed

streams than in the slower solar wind, while an excess of perpendicular temperature

is more common in low-speed and high-density conditions. In both the cases, the

temperature anisotropy is high and Kappa distribution cannot describe such particle

population. The Combined Kappa-Cairns distribution is a more generalized distri-

bution which may be relevant to serve this purpose.

Satellite Observations

Magnetized dusty plasma naturally occurs in numerous astrophysical environments,

e.g., the planetary rings, asteroid zones, comets, the interstellar medium, the Earth’s

ionosphere and the Earth’s magnetosphere [84–91]. Nonthermally distributed ener-

getic particles in dusty plasmas are observed in a number of astrophysical environ-

ments [58, 92–107]. Specifically, the observations of electric field structures by the

FAST [98–100, 103, 107] satellite, Viking satellite [94, 96], Freja satellite [58], GEO-

TAIL [97] and POLAR [101, 102, 107] missions in the Earth’s magnetosphere, indicate

the presence of fast energetic electrons. The electrostatic wave structures observed by

the Freja satellite [58] can be described by Cairns [1] distributed nonthermal electrons.

The satellite observations by Vela 2 and Vela 3 [39] indicate that the plasma sheet

electrons typically have a broad quasi-thermal energy spectrum, peaked anywhere

between a few hundred electronvolt (ev) and a few kiloelectronvolt (kev), with a

non-Maxwellian high-energy tail [108]. Now, the particle distribution in the neigh-

bourhoods of the peaks can be well described by Cairns distribution whereas the

particle population along the tail can be described by Kappa distribution. Alongside,

there are many space plasma environments where the linear and nonlinear plasma

phenomena [1, 39, 54, 109, 110] cannot be precisely described by Cairns distribution
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or any such non-Maxwellian distribution.

Cairns distribution [1] can explain both positive and negative polarity structures

observed in space plasmas. In fact, Cairns et al. [1] used this one dimensional non-

thermal model to study the existence of nonlinear structures like those observed by

the Freja [58] and Viking satellite [94, 96]. It was shown that this distribution can de-

scribe the existence of both positive and negative density perturbations, which could

not be prevailed with Maxwellian electrons or κ distributed electrons. More specif-

ically, the electric field structures observed by the FAST [98–100, 103, 107] satellite

and Viking satellite [94, 96] in the auroral zone together with the Freja satellite [58]

observations in the auroral zone of the upper ionosphere and the observations by

GEOTAIL [97] and POLAR [101, 102, 107] missions in the Earth’s magnetosphere

indicate the existence of fast energetic electrons. In a number of astrophysical envi-

ronments [58, 92–107], one can use Cairns distribution for lighter species.

Different Methods Used in the Present Thesis

We have used Sagdeev Pseudo Potential technique, Reductive Perturbation method

and various methods of Applied Mathematics to solve the different problems presented

in this thesis.

Overview of Each Chapter

Chapter-1

In this chapter, we have considered a collisionless magnetized dusty plasma system

consisting of warm adiabatic ions, static negatively charged dust grains and non-

thermal electrons, immersed in a uniform static magnetic field directed along a fixed

direction. The nonlinear behaviour of IA waves can be described by the continuity

equation of ions, the equation of motion of ion fluid and the pressure equation of ions.

But instead of Poisson equation, we have used the quasi-neutrality condition to make
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a closed and consistent system of equations. The quasi-neutrality condition is consid-

ered on the basis of the assumption that the length scale of the solitary structure is

greater than the Debye length or the gyroradius [90, 111]. In this plasma system, IA

solitary structures including double layers and supersolitons have been investigated

with special emphases on the following points:

• Lifting the equation of continuity, equation of motion and the pressure equation

for ion fluid in the wave frame moving with a constant velocity M normalized

by Cs (ion acoustic speed) along a direction having direction cosines (lx, ly, lz),

using the appropriate boundary conditions for the solitary structures together

with the condition that the electrostatic potential vanishes at infinity, the energy

integral is derived. The Sagdeev pseudo potential function [11] associated with

this energy integral is analysed to find the nature of existence of different solitary

structures with respect to the basic parameters of the system and the Mach

number M .

• For the first time, in the magnetized plasma, an analytic theory is presented

to find the upper bound Mpmax (Mnmax) of M for the existence of all positive

(negative) potential solitary structures, i.e., one can get positive (negative) po-

tential solitary structures for Mc < M < Mpmax ( Mc < M < Mnmax), where

Mc is the lower bound of M for the existence of solitary structures, i.e., solitary

structures start to exist for M > Mc.

• For the first time, in the magnetized plasma, an analytic theory is presented to

find the Mach number MPPDL (MNPDL) corresponding to a positive (negative)

potential double layer [PPDL (NPDL)] solution of the energy integral, i.e.,

one can get a PPDL (NPDL) solution of the energy integral for M = MPPDL

(M = MNPDL).
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• With the help of the different bounds of M for the existence of different soli-

tary structures, we draw qualitatively different compositional parameter spaces

which show the nature of existence of different solitary structures with respect

to any parameter of the system.

• The regions of existence of different solitary structures in a compositional pa-

rameter space have been clearly indicated. The compositional parameter space

shows the existence of negative potential solitons after the formation of NPDL

and consequently formation of negative potential supersolitons (NPSSs) is con-

firmed. The description of solitary structures after the formation of double layer

of same polarity through the compositional parameter space is helpful for inves-

tigating the existence of supersoliton structures in comparison with the study of

supersoliton structures at some discrete points of the compositional parameter

spaces. But still now supersoliton structures in magnetized plasma have been

discussed at some discrete points of the compositional parameter spaces without

giving a proper reason for the existence of the supersoliton structures at those

points of the compositional parameter spaces. This is purely based on the trial

and error method. But if we can draw the existence domains for the different

solitary structures, then these existence domains clearly indicate the region of

existence of solitons after the formation of NPDL, which gives an idea regarding

the existence domain of NPSSs in the compositional parameter spaces. But of

course, this compositional parameter space cannot clearly indicate the upper

bound of M for the existence of NPSSs.

• We have analyzed the formation of supersoliton structures and their limitations

with the help of phase portraits of the dynamical system describing the nonlinear

behaviour of IA waves. This analysis determines the exact bound of M for the

existence of NPSSs.
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• For the first time, in the magnetized plasma, the mechanism of transition from

the NPSS to a negative potential conventional soliton (soliton before the for-

mation of double layer of same polarity) after the formation of double layer of

same polarity has been investigated through the phase portrait analysis.

Chapter-2

In this chapter, we have considered the same plasma system as mentioned in Chapter-

1 but here, we have investigated the existence and the nature of different ion acoustic

solitary structures including double layers and supersolitons at the acoustic speed

giving special emphases on the following points:

• Lifting the hydrodynamic equations in the wave frame moving with a constant

velocity M normalized by the ion acoustic speed Cs along the direction hav-

ing unit vector L̂ = lxx̂ + lyŷ + lz ẑ, we have derived the energy integral with

V (M,φ) being the Sagdeev pseudo potential and for M = Mc, one can analyze

V (M,φ)(= V (Mc,φ)) to investigate the existence and the nature of different

solitary structures at the acoustic speed.

• At the acoustic speed, the Mach number M is given by the equation : M =

Mc = lzMs, where Ms is a function of γ(= 5/3), σie, βe and µ, i.e., Ms =

Ms(γ, σie, βe, µ). So, one can take the variation of Ms with respect to βe

or µ because γ(= 5/3) is a fixed parameter and σie can also be taken as fixed

for specific plasma system. So, in the present work, we want to investigate

the existence and the nature of different solitary structures along the curve

M = Mc.

• For the first time, in the magnetized plasma, we have critically discussed the

criteria for the existence of different solitary structures at the acoustic speed,

i.e., at M = Mc. We have seen that the criteria for the existence of different
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solitary structures at the acoustic speed depend on V (Mc,φ) but the polarity

of different solitary structures depends on the sign of the derivative of V (Mc,φ)

with respect to φ at φ = 0.

• We have found that V (Mc, 0) = 0, V ′(Mc, 0) = 0, V ′′(Mc, 0) = 0 and in this case,

the polarity of the solitary structures depends on the sign of V ′′′(Mc, 0). In par-

ticular, V ′′′(Mc, 0) < 0 implies that the system may support positive potential

soliton structures including positive potential double layers and positive poten-

tial supersolitons at the acoustic speed whereas V ′′′(Mc, 0) > 0 implies that the

system may support negative potential soliton structures including negative po-

tential double layers and negative potential supersolitons at the acoustic speed.

If V ′′′(Mc, 0) = 0, then one can discuss the nature of the solitary structure by

considering the sign of V iv(Mc, 0).

• For the first time, in the magnetized plasma, we have investigated different ion

acoustic solitary structures at the acoustic speed. In fact, we have observed

the existence of the following solitary structures at the acoustic speed, i.e., at

M = Mc: (a) positive potential solitary waves (PPSWs), (b) negative potential

solitary waves (NPSWs), (c) negative potential double layers (NPDLs), (d)

negative potential supersoliton (NPSS) structures after the formation of NPDL,

(e) NPSS structures without the formation of NPDL, (f) NPSW structures after

the formation of NPDL, (g) positive potential supersoliton (PPSS) structures

without the formation of positive potential double layer (PPDL).

• At the acoustic speed, we have observed that it is not possible to get (a) co-

existence of both PPSW and NPSW structures, (b) coexistence of both PPDL

and NPDL structures, (c) coexistence of both PPSS and NPSS structures. In

fact, for the first time in the magnetized plasma, we have observed that there is
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no coexistence of solitary structures of opposite polarities at the acoustic speed

which supports an important result (THEOREM 5) derived by Das et al. [70].

• At the acoustic speed, we have observed that the amplitude of negative potential

soliton decreases with increasing βe whereas the amplitude of positive potential

soliton decreases with decreasing βe and both negative and positive potential

solitons collapse at the critical value βe2 of βe such that V ′′′(Mc, 0) = 0 at

βe = βe2. At this point of the compositional parameter space of V ′′′(Mc, 0) with

respect to βe, we have V iv(Mc, 0) > 0 which indicates that it is impossible to

get any solitary structure at βe = βe2.

• At the acoustic speed, we have seen that the amplitude of negative potential

soliton increases with increasing µ whereas the amplitude of positive potential

soliton decreases with increasing µ and both negative and positive potential

solitons collapse at the critical value µc of µ such that V ′′′(Mc, 0) = 0 at µ = µc.

At this point of the compositional parameter space V ′′′(Mc, 0) with respect to µ,

we have V iv(Mc, 0) > 0 which indicates that it is impossible to get any solitary

structure at µ = µc.

• For the first time, in the magnetized plasma, phase portraits corresponding

to the different solitary structures have been drawn at the acoustic speed to

make a clear difference between the conventional soliton structures, double layer

structures and supersoliton structures that we have obtained for the present

plasma system.

• For the first time, in the magnetized plasma, the transformation process of dif-

ferent negative potential solitary structures has been investigated at the acous-

tic speed, viz., NPSW (before the formation of NPDL) → NPDL → NPSS

→ NPSW (after the formation of NPDL). In fact, we have investigated the
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transformation of different negative potential solitary structures at the acoustic

speed just before and just after the formation of double layer.

• For the first time, in the magnetized plasma, the transformation process of

NPSW structures has also been considered at the acoustic speed without the

formation of double layer structure of same polarity, viz., NPSW → NPSS,

i.e., here we have investigated the transformation of different negative potential

solitary structures at the acoustic speed just before the formation of NPSS.

Similar process of transformation from PPSW structure to PPSS structure at

the acoustic speed can also be verified when there is no double layer of same

polarity.

Chapter-3

This chapter can be regarded as an extension of Chapter-1 in the following direction:

we have considered the combined Kappa-Cairns distribution of electrons instead of

taking Cairns [1] distributed nonthermal electrons. In this chapter, we have system-

atically investigated the combined Kappa-Cairns distribution to produce more ener-

getic particles in comparison with both Kappa and Cairns distributions. In fact, we

modify the Kappa distribution by imposing the nonthermal characteristics of Cairns

distribution thereon. We have discussed different important properties of this new

distribution and finally, we have investigated ion acoustic solitary structures in a col-

lisionless magnetized dusty plasma consisting of negatively charged static dust grains,

adiabatic warm ions and combined Kappa-Cairns distributed electrons giving special

emphases on the following points. This problem is completely new in literature.

• We have systematically derived combined Kappa-Cairns distribution and this

distribution reduces to the one dimensional Kappa distribution as defined by

several authors [43, 110, 112] when βe = 0. On the other hand, if κ → ∞,

the combined Kappa-Cairns distribution reduces to nonthermal distribution of
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Cairns et al. [1] whereas if βe = 0 and κ → ∞, the combined Kappa-Cairns

distribution is simplified to the isothermal distribution.

• For combined effect of Kappa and Cairns distributions, we have found the lower

bound of the parameter κ for which combined effect of Kappa and Cairns dis-

tributions is well defined as a velocity distribution in phase space.

• We have analytically studied the dependence of the upper bound (βeT ) of βe

as a function of κ, i.e., we have shown that βe is restricted by the inequality

0 ≤ βe ≤ βeT , where βeT is a function of κ.

• We have shown that as κ tends to ∞, the upper bound βeT of βe is equal to

4/7, i.e., when the combined distribution reduces to the nonthermal distribution,

the maximum value of the nonthermal parameter is 4/7 which has already been

reported by Verheest & Pillay [60].

• We have derived the expression of the number density of electron species that

follows the combined Kappa-Cairns velocty distribution in phase space.

• For the first time in magnetized plasma, we have considered the combined effect

of Kappa and Cairns distributions on the solitary structures of the ion acoustic

wave in a collisionless magnetized dusty plasma.

• For the first time in magnetized plasma, considering the number density of

electrons for combined Kappa-Cairns distribution, we have used Sagdeev pseudo

potential method to investigate the arbitrary amplitude ion acoustic solitary

structures in a collisionless magnetized dusty plasma.

• For the present plasma system, considering different bounds of Mach number,

we have presented different compositional parameter spaces with respect to the

nonthermal parameter βe. These compositional parameter spaces clearly show
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the existence domains of different types of solitary structures for different values

of κ and other parameters of the system.

• From the different compositional parameter spaces with respect to the non-

thermal parameter βe, we have seen the existence of different solitary struc-

tures, viz., negative potential solitary waves (NPSWs), positive potential soli-

tary waves (PPSWs), negative potential double layers (NPDLs), coexistence of

positive and negative potential solitary waves and negative potential solitary

waves after the formation of NPDL for different ranges of βe and κ. But the

existence of negative potential solitary waves after the formation of NPDL con-

firms the existence of negative potential supersolitons (NPSSs) also. For large

values of Kappa, the above mentioned solitary structures are qualitatively same

as observed in Chapter-1. In this connection, we would like to mention that Du-

binov & Kolotkov [113] first elaborately investigated supersoliton structures in

unmagnetized plasma. After that several authors [69, 71–77, 114–120] investi-

gated supersoliton structures in different unmagnetized and magnetized plasma

systems.

• For the first time in magnetized plasma, we have observed both types of negative

potential supersolitons, viz., negative potential supersoliton after the formation

of negative potential double layer and negative potential supersoliton without

the formation of double layer. Although in an unmagnetized plasma, Verheest

et al. [114] have shown the existence of supersoliton without the formation of

double layer of same polarity.

• For the first time in magnetized plasma, we have analyzed a new transition of

solitary structures: soliton → supersoliton → soliton. This type of transition
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was not found in Chapter-1 where we considered only Cairns distributed non-

thermal electrons. We have also found the well known transition of solitary

structures: soliton → double layer → supersoliton → soliton in the present

plasma system.

Chapter-4

In this chapter, we have considered the same plasma system as mentioned in Chapter-

3 but we have considered the Poisson equation instead of quasi-neutrality condition

along with the different conservation equations as described in Chapter-3 to inves-

tigate the nonlinear behaviour of small amplitude ion acoustic waves giving special

emphases on the following points:

• To discuss the nonlinear behaviour of the small amplitude ion acoustic waves in

a collisionless magnetized plasma consisting of warm adiabatic ions, static nega-

tively charged dust grains and combined Kappa-Cairns distribution of electrons,

we have derived the following Korteweg-de Vries-Zakharov-Kuznetsov (KdV -

ZK) equation:
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where B1, A and D are functions of the parameters of the plasma system.

• We have observed that a factor (B1) of the coefficient of the nonlinear term of

the KdV-ZK equation vanishes along a family of curves in different parameter

planes and for this case, following modified KdV-ZK (MKdV-ZK) equation can

effectively describe the nonlinear behaviour of the ion acoustic wave:

∂φ(1)

∂τ
+ AB2(φ

(1))2
∂φ(1)

∂ζ
+

1

2
A
∂3φ(1)

∂ζ3
+

1

2
AD

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0, (2)

where B2 is a function of the parameters of the plasma system.
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• We have derived the solitary wave solutions of both KdV - ZK and MKdV - ZK

equations propagating obliquely to the direction of the magnetic field. Again

it is easy to check that the MKdV-ZK equation admits the coexistence of both

negative and positive potential solitary waves because φ(1) is a solution of the

MKdV-ZK equation ⇔ −φ(1) is also a solution of the same MKdV-ZK equation.

For KdV solitons, we have observed the following points:

• The amplitude of the negative potential soliton decreases with increasing βe

whareas the amplitude of the positive potential soliton increases with increasing

βe, where βe is the nonthermal parameter associated with Cairns [1] distribution.

• The amplitude of the negative potential soliton increases with increasing κ

whareas the amplitude of the positive potential soliton decreases with increasing

κ, where κ is the parameter associated with κ distribution.

• The amplitude of the negative potential soliton decreases with increasing δ and

also the amplitude of the positive potential soliton decreases with increasing

δ, where δ is the angle between the direction of propagation of the wave and

direction of the magnetic field.

For MKdV solitons, we have observed the following points:

• The amplitude of the soliton increases with increasing βe for both positive po-

tential and negative potential solitons.

• The amplitude of the soliton decreases with increasing κ for both positive po-

tential and negative potential solitons.

• The amplitude of the soliton decreases with increasing δ for both positive po-

tential and negative potential solitons.
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Chapter-5

This chapter can be regarded as an extension of Chapter-1 in the following direction:

In this chapter, we have considered a collisionless magnetized four-component plasma

consisting of adiabatic warm ions, nonthermal electrons, isothermal positrons and

static negatively charged dust grains immersed in a static uniform magnetic field

directed along a fixed direction instead of considering three-component collisionless

magnetized plasma consisting of adiabatic warm ions, nonthermal electrons and static

negatively charged dust grains. So, in the present plasma system, we have considered

isothermal positron species along with adiabatic warm ions, nonthermal electrons,

isothermal positrons and static negatively charged dust grains.

We have used the Sagdeev pseudo potential method to determine and analyze

the nonlinear behaviour of the ion acoustic wave. We have observed that the system

supports NPSWs, NPDLs, NPSSs, NPSWs after the formation of NPDL, PPSWs,

coexistence of PPSS and NPSW, PPSS, coexistence of PPSW and NPSW. The phase

portrait of the dynamical system describing the nonlinear behaviour of ion acoustic

wave has been drawn to confirm the existence of NPSS.

The parameters of the system are µ, p, βe, lz and M . We have observed the nature

of the solitary structures with respect to each of the parameters of the system. For

NPSWs,

• the amplitude of NPSW increases with increasing p,

• the amplitude of NPSW decreases with increasing βe,

• the amplitude of NPSW increases with increasing µ,

• the amplitude of NPSW decreases with increasing lz and

• the amplitude of NPSW increases with increasing M .
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We have also examined the variations of the amplitude of negative potential su-

persolitons (NPSS) with respect to βe and µ individually. We have seen that the

amplitude of NPSS decreases with increasing βe whereas the amplitude of NPSSs

increases with increasing µ.

We have studied the variations of the amplitude of PPSWs with respect to µ, p

and lz for both isothermal electrons and isothermal positrons, i.e., we have considered

βe = 0. For PPSWs,

• the amplitude of PPSW increases for increasing µ,

• the amplitude of PPSW increases with increasing p and

• the amplitude of PPSW decreases with increasing lz.

We have also determined a critical value pc of positron concentration p such that the

system supports only positive potential solitary structures and no negative potential

solitary structures for p > pc. For µ = 0.6, βe = 0.235, lz = 0.6,M = 0.9, the value of

pc is 0.00002.



Chapter 1

Ion acoustic solitary structures in a magnetized
nonthermal dusty plasma ∗

In this chapter, we have used Sagdeev potential technique to investigate the arbi-

trary amplitude ion acoustic solitary structures in a collisionless magnetized dusty

plasma consisting of negatively charged static dust grains, adiabatic warm ions and

nonthermal electrons. The present system supports both positive and negative po-

tential solitary waves, coexistence of solitary waves of both polarities, and negative

potential double layers. The system does not support any positive potential double

layer. Although the system supports negative potential double layers, but these dou-

ble layer solutions cannot restrict the occurrence of all solitary structures of same

polarity. In fact, there exists a parameter regime for which the negative potential

double layer is unable to restrict the occurrence of negative potential solitary waves,

and in this region of the parameter space, there exist negative potential solitary waves

after the formation of negative potential double layer. Consequently, negative poten-

tial supersolitons have been observed and the Mach number M corresponding to a

negative potential supersoliton is restricted by the inequality MNPDL < M < Mcr,

but this supersoliton structure reduces to a conventional solitary wave of same po-

larity if M ≥ Mcr, where MNPDL is the Mach number corresponding to a negative

potential double layer and Mcr is a critical value of M . Thus, we have seen a tran-

sition process of negative potential solitary structures, viz., soliton → double layer

→ supersoliton → soliton. Different solitary structures have been investigated with

the help of compositional parameter spaces and the phase portraits of the dynamical

system describing the nonlinear behaviour of ion acoustic waves. The mechanism

of transition of a negative potential supersoliton to a conventional soliton after the

formation of double layer of same polarity has been discussed with the help of phase

portraits.

∗This chapter has been published in Physics of Plasmas 25, 033704 (2018);
https://doi.org/10.1063/1.5021127
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1.1 Introduction

Magnetized dusty plasma naturally occurs in a number of astrophysical environments

such as the planetary rings, asteroid zones, comets, the interstellar medium, the

Earth’s ionosphere and the Earth’s magnetosphere [84–91]. Acoustic wave modes in

unmagnetized or magnetized dusty plasma have received a great deal of attention

since the last few decades. There can exist two or more acoustic waves in a typical

dusty plasma depending on different time scales. Dust acoustic [86] (DA) and dust ion

acoustic [121] (DIA) waves are two such acoustic waves in a collisionless unmagnetized

plasma containing electrons, ions, and charged dust grains. For the first time, Shukla

& Silin [121] reported that a collisionless unmagnetized dusty plasma supports low-

frequency DIA waves with phase velocity much smaller (larger) than electron (ion)

thermal velocity. For long wavelength plane wave perturbation, the dispersion relation

of DIA wave is similar to that of ion acoustic (IA) wave for a plasma with Ti << Te

and ne0/ni0 is of moderate magnitude for dusty plasma system, where Ti (Te) is the

average ion (electron) temperature and ne0 (ni0) is the unperturbed number density

of electrons (ions). For the case of usual two-component electron - ion plasma, the

above two conditions are modified as follows: Ti << Te and ne0 = ni0. Thus, IA

waves in dusty plasmas are basically IA waves modified by the presence of heavy

dust particulates. In the present chapter, we have investigated IA solitary structures

in a collisionless magnetized dusty plasma system consisting of warm adiabatic ions,

static negatively charged dust grains and nonthermal electrons, immersed in a uniform

static magnetic field directed along a fixed direction.

Yinhua & Yu [122] have investigated ion acoustic (IA) solitary waves propagat-

ing obliquely to an external uniform static magnetic field in presence of heavy dust

particulates. They have found the existence of small amplitude IA solitary waves.

Choi et al. [90] have studied IA solitary waves obliquely propagating to an external

magnetic field in a collisionless magnetized dusty plasma. Later, Choi et al.[111] have
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studied the effect of ion temperature on the IA solitary waves by considering the

isothermal ion pressure. Maitra & Roychoudhury [123] have studied the IA solitary

waves in a collisionless magnetized dusty plasma, but they have used Poisson equa-

tion instead of taking quasi-neutrality condition. In the above mentioned papers, the

authors have used Sagdeev potential formalism. But finally, they have expanded the

Sagdeev potential in a Taylor series up to a finite order of an appropriate dependent

variable to investigate small but finite amplitude solitary structures. Several authors

[69, 124–140] have studied DIA / IA solitary structures in different unmagnetized

/ magnetized dusty plasmas. Some authors [69, 130, 136, 138–140] considered the

nonthermal electrons in different unmagnetized or magnetized dusty plasmas.

Nonthermally distributed energetic particles in dusty plasmas are observed in a

number of astrophysical environments [58, 92–107]. Specifically, the observations of

electric field structures by the FAST [98–100, 103, 107] Satellite, Viking Satellite

[94, 96], Freja Satellite [58] and GEOTAIL [97] and POLAR [101, 102, 107] missions

in the Earth’s magnetosphere, indicate the existence of fast energetic electrons. The

electrostatic wave structures observed by the Freja Satellite [58] can be described by

Cairns [1] distributed nonthermal electrons. Following Cairns et al. [1], the number

density of nonthermal energetic electrons can be written as

ne =

∫ ∞
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)
dv, (1.1.1)

where −e is the charge of an electron, me is the mass of an electron, φ is the electro-
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ne

ne0
=
(
1− βe

eφ

KBTe
+ βe

e2φ2

K2
BT

2
e

)
exp

[ eφ

KBTe

]
, (1.1.3)



26

Here βe = 4αe/(1 + 3αe) with αe ≥ 0 and for αe = 0 (αe = 0 ⇔ βe = 0), we

get the usual isothermal distribution of electrons. It is simple to check that βe is an

increasing function of αe. Here βe (or αe) is the nonthermal parameter that determines

the proportion of the fast energetic particles. Using the inequality αe ≥ 0, it is simple

to check that 0 ≤ βe < 4/3. However, we cannot take the entire region of βe (0 ≤

βe < 4/3). In fact, if we plot the nonthermal velocity distribution (fe0(v2)) against its

velocity (v) in phase space, then we see that for increasing βe, distribution function

develops wings which become stronger as βe increases. At the same time the center

density in phase space drops, consequently we should not take values of βe > 4/7,

since that stage might stretch the credibility of the Cairns model too far [60]. In fact,

for βe > 4/7, the nonthermal velocity distribution function of Cairns et al. [1] attains

three maximum values at three different points v = −vte×
√
2 +

√
7− 4(βe)−1, v = 0

and v = vte×
√
2 +

√
7− 4(βe)−1 in phase space and consequently this property of the

nonthermal velocity distribution function of Cairns et al. [1] is qualitatively different

from Maxwellian velocity distribution function because Maxwell - Boltzmann velocity

distribution function has only one maximum at v = 0. For example, for βe = 0.58 >

4/7(≈ 0.571429), the nonthermal velocity distribution function of Cairns et al. [1]

has three maxima at the points v = −1.52369 × vte, v = 0 and v = 1.52369 × vte.

But here our aim is to construct a distribution function which can produce more

energetic particles in comparison with the Maxwell - Boltzmann velocity distribution

function without changing the qualitative behaviour, i.e., the distribution function

has only one maximum. So, we see that the nonthermal distribution of Cairns et al.

[1] describes the non isothermal distribution having a deviation from the Maxwell -

Boltzmann distribution if βe is restricted by the inequality 0 ≤ βe ≤ 4/7. So, the

effective range of βe is 0 ≤ βe ≤ 4/7. As 4/7 ≈ 0.571429, in the present chapter, we

take 0 ≤ βe ≤ 0.57.

In the present chapter, we have considered a collisionless magnetized dusty plasma

system consisting of warm adiabatic ions, static negatively charged dust grains and
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nonthermal electrons , immersed in a uniform static magnetic field directed along

a fixed direction. The nonlinear behaviour of IA waves can be described by the

continuity equation of ions, the equation of motion of ion fluid and the pressure

equation of ions. But instead of Poisson equation, we have used the quasi-neutrality

condition to make a closed and consistent system of equations. The quasi-neutrality

condition is considered on the basis of the assumption that the length scale of the

solitary structure is greater than the Debye length or the gyroradius [90, 111]. In this

plasma system, IA solitary structures including double layers and supersolitons have

been investigated with special emphases on the following points:

• Lifting the equation of continuity, equation of motion and the pressure equation

for ion fluid in the wave frame moving with a constant velocity M normalized

by Cs (ion acoustic speed) along a direction having direction cosines (lx, ly, lz),

using the appropriate boundary conditions for the solitary structures together

with the condition that the electrostatic potential vanishes at infinity, an energy

integral is derived. The Sagdeev pseudo potential function [11] associated with

this energy integral is analysed to find the nature of existence of different solitary

structures with respect to the basic parameters of the system.

• For the first time, in the magnetized plasma, an analytic theory is presented

to find the upper bound Mpmax (Mnmax) of M for the existence of all positive

(negative) potential solitary structures, i.e., one can get positive (negative) po-

tential solitary structures for Mc < M < Mpmax ( Mc < M < Mnmax), where

Mc is the lower bound of M for the existence of solitary structures, i.e., solitary

structures start to exist for M > Mc.

• For the first time, in the magnetized plasma, an analytic theory is presented to

find the Mach number MPPDL (MNPDL) corresponding to a positive (negative)

potential double layer [PPDL (NPDL)] solution of the energy integral, i.e.,

one can get a PPDL (NPDL) solution of the energy integral for M = MPPDL
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(M = MNPDL).

• With the help of the different bounds of M for the existence of different soli-

tary structures, we draw qualitatively different compositional parameter spaces

which show the nature of existence of different solitary structures with respect

to any parameter of the system.

• The regions of existence of different solitary structures in a compositional pa-

rameter space have been clearly indicated. The compositional parameter space

shows the existence of negative potential solitons after the formation of NPDL

and consequently formation of negative potential supersolitons (NPSSs) is con-

firmed. The description of solitary structures after the formation of double layer

of same polarity through the compositional parameter space is helpful for inves-

tigating the existence of supersoliton structures in comparison with the study of

supersoliton structures at some discrete points of the compositional parameter

spaces. But still now supersoliton structures in magnetized plasma have been

discussed at some discrete points of the compositional parameter spaces without

giving a proper reason for the existence of the supersoliton structures at those

points of the compositional parameter spaces. This is purely based on the trial

and error method. But if we can draw the existence domains for the different

solitary structures, then these existence domains clearly indicate the region of

existence of solitons after the formation of NPDL, which gives an idea regarding

the existence domain of NPSSs in the compositional parameter spaces. But of

course, this compositional parameter space cannot clearly indicate the upper

bound of M for the existence of NPSSs.

• We have analyzed the formation of supersoliton structures and their limitations

with the help of phase portraits of the dynamical system describing the nonlinear

behaviour of IA waves. This analysis determines the exact bound of M for the

existence of NPSSs.
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• For the first time, in the magnetized plasma, the mechanism of transition from

the NPSS to a negative potential conventional soliton (soliton before the for-

mation of double layer of same polarity) after the formation of double layer of

same polarity has been investigated through the phase portrait analysis.

1.2 Basic Equations

Here we consider a dusty plasma system consisting of warm adiabatic ions, static

negatively charged dust grains and nonthermal electrons immersed in a uniform (space

independent) static (time independent) magnetic field (
−→
B = B0ẑ) directed along

z−axis. The nonlinear behaviour of IA waves can be described by the continuity

equation, the equation of motion and the pressure equation of ion fluid together with

the quasi-neutrality condition:

∂ni

∂t
+
−→∇ · (ni

−→u i) = 0, (1.2.1)

( ∂

∂t
+−→u i ·

−→∇
)−→u i +

σie

ni

−→∇pi = −−→∇φ+−→u i × ẑ, (1.2.2)

∂pi
∂t

+ (−→u i ·
−→∇)pi + γpi(

−→∇ ·−→u i) = 0, (1.2.3)

ni = ne + 1− µ, (1.2.4)

The equations (1.2.1) - (1.2.3) are supplemented by following equilibrium charge

neutrality condition:

Zdnd0

ni0
= 1− µ. (1.2.5)

Here ni, ne,
−→u i = (uix, uiy, uiz), pi, φ, (x, y, z), and t are, respectively, the ion number

density, the electron number density, the ion fluid velocity, the ion fluid pressure, the

electrostatic potential, the spatial variables and time, and they have been nomalized
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by ni0 (unperturbed ion number density), ni0, Cs (=
√

KBTe

mi
) , ni0KBTi,

KBTe

e , rg =

Cs/ωc and (ωc)−1 respectively. It is important to note that each spatial variable

is normalized by ion gyroradius (rg) and time is normalized by the inverse of ion

gyrofrequency ((ωc)−1). Here mi is the mass of an ion, nd0 and Zd are, respectively,

the unperturbed dust number density and the number of electrons residing on the

dust grain surface, γ(= 5
3) is the adiabatic index, σie =

Ti
Te
, µ = ne0

ni0
.

Under the above mentioned normalization of the field variables, the number den-

sity (ne) as given by the equation (1.1.3) of nonthermal electrons [1] can be written

as

ne = µ
(
1− βeφ+ βeφ

2
)
eφ. (1.2.6)

The linear dispersion relation for low frequency (ω << ωc) IA waves obtained from

the original system of equations (without any normalization of the independent and

dependent variables) corresponding to the equations (1.2.1) - (1.2.6) can be written

as

(ω/ωc)

rgkz
=
{
M−2

s + (rgk⊥)
2
}−1/2

, (1.2.7)

where

Ms =

√

γσie +
1

µ(1− βe)
, (1.2.8)

k2
⊥ = k2

x + k2
y, and we have assumed that all the perturbed dependent variables vary

as exp[i(kxx+ kyy + kzz − ωt)].

If we use the normalized variables, i.e., if we use the system of equations (1.2.1)

- (1.2.6), the dimensionless linear dispersion relation for low frequency (ω/ωc << 1)

IA waves can be written as

ω

kz
=
{ µ(1− βe)

1 + γσieµ(1− βe)
+ k2

⊥

}−1/2

. (1.2.9)

Here ω is normalized by ωc and kx, ky, kz are normalized by 1/rg, i.e., replacing ω/ωc

by ω, rgkz by kz and rgk⊥ by k⊥ in equation (1.2.7), we get the equation (1.2.9).
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The dimensionless linear dispersion relations (5) of Yinhua & Yu [122], (9) of Choi et

al. [90] and (10) of Choi et al. [111] can be easily obtained from the dimensionless

linear dispersion relation (1.2.9) of this chapter by considering appropriate values of

the parameters. For example, the dispersion relation (1.2.9) is exactly same as the

dispersion relation (10) of Choi et al. [111] if we take βe = 0, γ = 1, σie = σ and

ky = 0.

Using (1.2.1), the pressure equation of ion fluid (1.2.3) can be written as pi = nγ
i .

Using this expression of pi, the equation (1.2.2) can be simplified as
( ∂

∂t
+−→u i ·

−→∇
)−→u i + γσie(ni)

γ−2−→∇ni = −−→∇φ+−→u i × ẑ. (1.2.10)

Again, using (1.2.6), equation (1.2.4) can be written as

ni = µ
(
1− βeφ+ βeφ

2
)
eφ + 1− µ. (1.2.11)

We have used the equations (1.2.1), (1.2.10) and (1.2.11) to derive the energy integral.

1.3 Energy Integral

To study the arbitrary amplitude time independent IA solitary structures, we suppose

that all the dependent variables depend only on a single variable ξ = lxx+lyy+lzz−Mt

with l2x + l2y + l2z = 1, where M is independent of x, y, z and t. Therefore, lifting the

equation (1.2.1) and each component of the momentum equation (1.2.10) in the wave

frame moving with a constant velocity M normalized by Cs along a direction having

direction cosines (lx, ly, lz), we get the following equations:

d

dξ

(
niΨ

)
= 0, (1.3.1)

Ψ
duix

dξ
+ lx

dH

dξ
− uiy = 0, (1.3.2)

Ψ
duiy

dξ
+ ly

dH

dξ
+ uix = 0, (1.3.3)
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Figure 1.1: K(φ) is plotted against φ for γ = 5/3 with (a) σie = 0.01, µ = 0.5, βe = 0.18,
(b) σie = 0.01, µ = 0.5, βe = 0.2, (c) σie = 0.1, µ = 0.6, βe = 0.2, (d) σie = 0.01, µ = 0.6,
βe = 0.2, (e)σie = 0.01, µ = 0.6, βe = 0.3.

Ψ
duiz

dξ
+ lz

dH

dξ
= 0, (1.3.4)

where we have used the following notations:

Ψ = −M + lxuix + lyuiy + lzuiz, (1.3.5)

H = H(φ) =
γσie

γ − 1
(ni)

γ−1 + φ. (1.3.6)

From (1.3.1), we get the following expression of Ψ:

Ψ = −M

ni
, (1.3.7)

where we have used the following boundary conditions:

(
ni, uix, uiy, uiz,φ,

dφ

dξ

)
→
(
1, 0, 0, 0, 0, 0

)
as |ξ| → ∞. (1.3.8)
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Figure 1.2: Mc, Ms, Mpmax, Mnmax and
MNPDL are plotted against βe. The magenta
line, black line, blue line, red line and green
line correspond to the curves M = Mc, M =
Ms, M = Mpmax, M = Mnmax and M =
MNPDL respectively. This figure shows the
existence of NPSWs after the formation of
NPDL along with other solitary structures.
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Figure 1.3: Mc, Ms, Mpmax, Mnmax and
MNPDL are plotted against βe. The ma-
genta line, black line, blue line, red line and
green line correspond to the curves M = Mc,
M = Ms, M = Mpmax, M = Mnmax and
M = MNPDL respectively. This figure shows
that there does not exist any NPSW after the
formation of NPDL.

Substituting this expression of Ψ as given by (1.3.7) in the equation (1.3.4), in-

tegrating the resulting equation and finally using the boundary condition (1.3.8) to

find the integration constant, we get the following equation:

uiz =
lz
M

G(φ), (1.3.9)

where

G = G(φ) = σie{(ni)
γ − 1}+

∫ φ

0

nidφ. (1.3.10)

From equations (1.3.5), (1.3.7) and (1.3.9), we get the following expression of lxuix +

lyuiy :

lxuix + lyuiy = M − M

ni
− l2z

M
G(φ). (1.3.11)
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MNPDL are plotted against βe for different
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Substituting the expression of Ψ as given by (1.3.7) in the equations (1.3.2) and

(1.3.3), we get

−M

ni

duix

dξ
+ lx

dH

dξ
− uiy = 0, (1.3.12)

−M

ni

duiy

dξ
+ ly

dH

dξ
+ uix = 0. (1.3.13)

Multiplying (1.3.12) by lx and (1.3.13) by ly, finally, adding the resulting equations,

we get

lyuix − lxuiy = −dP

dξ
, (1.3.14)
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where we have used (1.3.11) and

P =
M2

2(ni)2
+

γσie

γ − 1
(ni)

γ−1 + φ. (1.3.15)

Solving the equations (1.3.11) and (1.3.14) for the unknowns uix and uiy, we get

uix =
lx
{
M − M

ni
− l2z

M
G(φ)

}
− ly

dP

dξ
l2x + l2y

, (1.3.16)

uiy =
ly
{
M − M

ni
− l2z

M
G(φ)

}
+ lx

dP

dξ
l2x + l2y

. (1.3.17)

Substituting these two values of uix and uiy in (1.3.12) or in (1.3.13), we get the

following equation:

d2P

dξ2
= f(φ) = ni − 1− l2z

M2
niG(φ). (1.3.18)

This equation can be written as

dQ

dφ
+

2

R

dR

dφ
Q =

2

R
f(φ), (1.3.19)
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Figure 1.9: (a) V (φ) and (b) the phase
portrait of the system have been drawn on
the same φ-axis. This figure shows that the
the curve V (φ) of the upper panel (a) corre-
sponds to the separatrix of the of the phase
portrait of the dynamical system (1.5.1) as
shown by heavy blue line. Each maximum
(minimum) point of V (φ) corresponds to a
saddle (non-saddle) fixed point of the dynam-
ical system (1.5.1). This figure confirms the
existence of PPSW.

where Q =
(dφ
dξ

)2
and R =

dP

dφ
.

The equation (1.3.19) is a first order and first degree linear differential equation

in Q and the general solution of (1.3.19) can be written as

(dφ
dξ

)2
×
(dP
dφ

)2
=

∫
2
dP

dφ
f(φ)dφ+ C1, (1.3.20)

where C1 is a integration constant. Using the boundary condition (1.3.8), we get

0 =

∫
2
dP

dφ
f(φ)dφ

∣∣∣
φ=0

+ C1. (1.3.21)

Using the equation (1.3.21), the equation (1.3.20) can be put in the following form:

1

2

(dφ
dξ

)2
+ V (φ) = 0, (1.3.22)
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Figure 1.10: (a) V (φ) and (b) the phase por-
trait of the system have been drawn on the
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the curve V (φ) of the upper panel (a) corre-
sponds to the separatrix of the of the phase
portrait of the dynamical system (1.5.1) as
shown by heavy blue line. Each maximum
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saddle (non-saddle) fixed point of the dynam-
ical system (1.5.1). This figure confirms the
existence of NPSW.
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Figure 1.11: (a) V (φ) and (b) the phase por-
trait of the system have been drawn on the
same φ-axis. This figure confirms the coexis-
tence of both PPSW and NPSW.

where

V (φ) = V (M,φ) = −

∫ φ

0

dP

dφ
f(φ)dφ

(dP
dφ

)2 . (1.3.23)

The equation (1.3.22) is the well known energy integral with Sagdeev pseudo po-

tential V (φ)(= V (M,φ)) given in (1.3.23). According to the mechanical analogy

of Sagdeev [11], the system supports a positive (negative) potential solitary wave

[PPSW] ([NPSW]) solution of (1.3.22) if (i) φ = 0 is the position of unstable equi-

librium of a particle of unit mass associated with the energy integral (1.3.22), i.e.,

V (0) = V ′(0) = 0 and V ′′(0) < 0; (ii) the condition for the oscillation of the particle

within the interval min{0,φm} < φ < max{0,φm} holds good when the particle is

slightly displaced from its unstable position of equilibrium (φ = 0), i.e., V (φm) = 0,
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Figure 1.12: (a) V (φ) and (b) the phase portrait have been drawn on the same φ for
M = MNPDL. The portion of V (φ) included within −1.94 ≤ φ ≤ 0 has been shown in
the inset. We see that the separatrix (as shown by heavy blue line) of the phase portrait
appears to pass through two saddle points corresponding to two maximum values of V (φ)
at φ = 0 and at φ = −1.94 (approximately). This figure confirms the existence of NPDL.

V ′(φm) > 0 (V ′(φm) < 0) for some φm > 0 (φm < 0); (iii) the energy integral (1.3.22)

is well defined within the interval min{0,φm} < φ < max{0,φm}, i.e., V (φ) < 0

for all min{0,φm} < φ < max{0,φm}. On the other hand, the system supports a

PPDL (NPDL) solution of (1.3.22) if the second condition is replaced by V (φm) = 0,

V ′(φm) = 0, V ′′(φm) < 0 for some φm > 0 (φm < 0), which states that the particle

cannot be reflected back from the point φ = φm to the point φ = 0. The physi-

cal interpretation for the existence of different solitary structures has been given in

details in the paper of Das et al.[141]. Using this mechanical analogy of Sagdeev

[11], we present analytical theories to determine different bounds of M for the exis-

tence of different solitary structures, and also to find the Mach numbers MPPDL and
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Figure 1.13: (a) V (φ) and (b) the phase
portrait of the system have been drawn on
the same φ-axis for M = MNPDL − 0.002.
Existence of NPSW is confirmed before the
formation of double layer.
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Figure 1.14: (a) V (φ) and (b) the phase
portrait of the system have been drawn on
the same φ-axis for M = MNPDL + 0.002.
Here we see that the separatrix of the of
the phase portrait of the dynamical system
(1.5.1) which appears to pass through the
saddle (0, 0) contains more than one non-
saddle fixed points and another separatrix
through the non-zero saddle (−1.66, 0). Con-
sequently, the separatrix that appears to pass
through the saddle (0, 0) corresponds to a
supersoliton. Therefore, this figure confirms
the existence of supersoliton after the forma-
tion of double layer.

MNPDL corresponding to a PPDL and NPDL solution respectively in the following

two subsections.

1.3.1 Different Bounds of M : Mc, Mpmax & Mnmax

Differentiating the equation (1.3.15) with respect to φ, we get

dP

dφ
= −M2

sn
−3
i

(dni

dφ

)[M2

M2
s

−K(φ)
]
, (1.3.24)
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Figure 1.16: φ is plotted against ξ for (a)
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curve), and (d) M = MNPDL − 0.01 (dashed
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where

K(φ) =
1

M2
s

[
γσien

γ+1
i + n3

i

(dni

dφ

)−1]
. (1.3.25)

Now it is simple to check that ni,
dni

dφ
and K(φ) are strictly positive functions of φ,

i.e., ni > 0,
dni

dφ
> 0 and K(φ) > 0 for any value of φ and for any set of values of the

parameters of the system. Again, one can easily check that K(0) = 1.

It is simple to check that V (0) = 0, V ′(0) = 0 and V ′′(0) < 0 gives the following

bounds for M :

Mc < M < Ms, (1.3.26)

where Mc = lzMs and we have assumed the condition dP
dφ

∣∣∣
φ=0

̸= 0.
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φ →

ε = 0.0001

ε = 0.0005

ε = 0.001

ε = 0.002

ε = 0.0025

ε = 0.0027

ε = 0.00275

M = MNPDL + ε

ε = 0.0028

0

0

0

0

0

0

0

0

Figure 1.17: Saddle points (small solid circles) and equilibrium points other than saddle
points (small solid stars) for the dynamical system (1.5.1) have been drawn on φ - axis
for different values of M = MNPDL + ϵ. This figure clearly shows the transition from
supersoliton structures to conventional soliton.

Therefore, the solitary structures start to exist for M > Mc. Although M < Ms

for the existence of the solitary structures, but Ms is not necessarily the exact upper

bound of M for the existence of the solitary structures. To find the exact upper

bound of M , we consider the equation dP
dφ = 0 along with the inequality M < Ms. In

fact, the inequality M < Ms states that dP
dφ ̸= 0 at φ = 0, but to consider the exact

bounds of M it is necessary to consider dP
dφ ̸= 0 throughout the entire possible range

of φ where V (φ) is well defined.

Instead of considering dP
dφ ̸= 0, one can consider dP

dφ = 0, and this equation gives

M2

M2
s

= K(φ). (1.3.27)

Obviously the equation (1.3.27) is well defined only when K(φ) > 0 for all φ. From

equation (1.3.25), using (1.2.4) and (1.2.6), we see that K(φ) is independent of M .
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Therefore, dP
dφ = 0 holds good only when M assumes the value Ms

√
K(φ) and conse-

quently for the existence of positive (negative) potential solitary structure, M cannot

exceed the value Ms

√
K(φm), where K(φ) attains its global minimum at φ = φm in

the positive (negative) side of φ - axis, i.e., for φm ≥ 0 (φm ≤ 0). Now we explain

the phrase ‘global minimum’ with the help of the figure 1.1. We have already stated

that K(φ) > 0 for any value of φ and for any set of physically admissible values of

the parameters. Plotting K(φ) against φ for different values of the parameters of the

system, it is simple to check that K(φ) > 0 for all φ. In figures 1.1(a) - 1.1(e), K(φ)

is plotted against φ for different values of the parameters. These figures indicate five

qualitatively different curves of K(φ) against φ. Figure 1.1(a) shows that the mini-

mum value of K(φ) in the positive side of φ - axis (φ ≥ 0) as well as in the negative

side of φ - axis (φ ≤ 0) is equal to K(0). Figure 1.1(b) shows that K(φ) has only

one minimum at φ = φm1(> 0) such that 0 < K(φm1) < 1 and the minimum value of

K(φ) in the negative side of φ - axis (φ ≤ 0) is equal to K(0). Figure 1.1(c) shows

that K(φ) has only one minimum at φ = φm2(< 0) such that 0 < K(φm2) < 1 and

the minimum value of K(φ) in the positive side of φ - axis (φ ≥ 0) is equal to K(0).

Figure 1.1(d) shows that K(φ) has two minima at φ = φm2(< 0) and at φ = φm3(< 0)

such that 0 < K(φm2), K(φm3) < 1 and the minimum value of K(φ) in the positive

side of φ - axis (φ ≥ 0) is equal to K(0). Figure 1.1(e) shows that K(φ) has two

minima at φ = φm1(> 0) and at φ = φm2(< 0) such that φm1 lies on the positive side

of φ - axis (φ ≥ 0), φm2 lies on the negative potential side of φ - axis (φ ≤ 0) and

0 < K(φm1), K(φm2) < 1. Now, our aim is to minimize K(φm1) and / or K(φm2) in

order to obtain the global minimum in the positive and / or in the negative potential

side(s). By the phrase ‘global minimum’, we would like to mean the minimum of the

minimum values of K(φ). For example, for figure 1.1(d), global minimum of K(φ) is

min{K(φm2), K(φm3)} = K(φm2) on the negative side of φ - axis (φ ≤ 0), whereas

global minimum of K(φ) is K(0) on the positive side of φ - axis (φ ≥ 0), i.e., we can

say thatK(φ) attains the global minimum value at φ = φm = φm2 on the negative side
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of φ - axis (φ ≤ 0), whereas K(φ) attains the global minimum value at φ = φm = 0

on the positive side of φ - axis (φ ≥ 0). On either side of the φ - axis including φ = 0,

there always exists a φm such that K(φ) attains the global minimum value at φ = φm.

If K+ and K− respectively, denote the global minimum of K(φ) on the positive and

on the negative potential sides, then K+ = K(φm) with φm ≥ 0 and K− = K(φm)

with φm ≤ 0. For example, K+ = K(φm) with φm = φm1 and K− = K(φm) with

φm = 0 for figure 1.1(b), whereas K+ = K(φm) with φm = 0 and K− = K(φm)

with φm = φm2 for figure 1.1(d). From the above discussions, it is clear that both

K+ and K− exist finitely, and consequently for the existence of positive (negative)

potential solitary structure, M is restricted by the inequality Mc < M < Ms ×
√
K+

(Mc < M < Ms ×
√
K−). The above analysis can be illustrated in the following

paragraphs.

Let Mpmax (Mnmax) be the upper bound of M for the existence of the positive

(negative) potential solitary structures, i.e., for the existence of the positive (negative)

potential solitary structures, we must have Mc < M < Mpmax (Mc < M < Mnmax).

Now we have the following two cases: (I) K(φ) > 1 and (II) 0 ≤ K(φ) ≤ 1.

(I) IfK(φ) > 1 for all φ ≥ 0 (φ ≤ 0) then the upper bound ofM for the existence of

the positive (negative) potential solitary structures is given byMpmax = Ms (Mnmax =

Ms). Again, there does not exist any φ(≥ 0) (φ ≤ 0) for which M assumes the value

Ms

√
K(φ) because M = Ms

√
K(φ) ⇒ M

Ms
=
√

K(φ) > 1 ⇒ M > Ms which

contradicts the fact Mc < M < Ms and consequently dP
dφ ̸= 0 for φ ̸= 0. So, V (φ) is

well defined as a real valued function of φ if it is well defined at φ = 0. Therefore,

the upper bound of M for the existence of the positive (negative) potential solitary

structures is given by the inequality (1.3.26).

(II) If 0 ≤ K(φ) ≤ 1 for some φ, then let K(φ) attain its global minimum at

φ = φm such that 0 ≤ K(φm) ≤ 1. Therefore, M = Ms

√
K(φm) is a minimum

value of M at which there is a singularity of V (φ) at φ = φm, i.e.,
dP
dφ

∣∣∣
φ=φm

= 0 when

M = Ms ×
√
K(φm).
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The above discussions guide us to take Mpmax = Ms ×
√
K+ and Mnmax = Ms ×

√
K−.

1.3.2 Mach Numbers MPPDL & MNPDL Corresponding to a

PPDL & NPDL

Let us use the notation V (M,φ) instead of V (φ). Using this notation, the conditions

for the existence of a PPDL (NPDL) solution of the energy integral (1.3.22) are (i)

V (M, 0) = 0, V ′(M, 0) = 0, V ′′(M, 0) < 0; (ii) V (M,φm) = 0, V ′(M,φm) = 0,

V ′′(M,φm) < 0 for some φm > 0 (φm < 0); (iii) V (M,φ) < 0 for all 0 < φ < φm

(φm < φ < 0). We have used condition (i) to find the lower bound and a rough idea

about the upper bound for the existence of any solitary structure including double

layers of any polarity. Condition (iii) is necessary to define the energy integral (1.3.22)

within the interval min{0,φm} < φ < max{0,φm}. Now we use condition (ii) to find

the Mach number corresponding to a PPDL and / or NPDL solution of the energy

integral (1.3.22). Let Mdl and φdl ̸= 0 be the solutions of the equations V (M,φm) = 0

and V ′(M,φm) = 0 for the unknowns M and φm. It is important to note that φ = 0

is a solution of the equations V (M,φm) = 0 and V ′(M,φm) = 0 for any value of M

in view of condition (i). Therefore, we have V (Mdl,φdl) = 0 and V ′(Mdl,φdl) = 0 for

non-zero φdl and consequently Mdl corresponds to a Mach number MPPDL (MNPDL)

for a PPDL (NPDL) solution of the energy integral (1.3.22) if φdl > 0 (φdl < 0)

and φdl is the smallest (largest) real satisfying the conditions V (Mdl,φdl) = 0 and

V ′(Mdl,φdl) = 0.

Equations V (Mdl,φdl) = 0 and V ′(Mdl,φdl) = 0 give the following expression of

Mdl:

Mdl =

√
l2zni(φdl)G(φdl)

ni(φdl)− 1
, (1.3.28)

where G(φ) is given by the equation (1.3.10). The equation V (Mdl,φdl) = 0 gives the
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following equation:

∫ φdl

0

P ′(Mdl,φ)f(Mdl,φ)dφ = 0, (1.3.29)

where P ′ = dP
dφ . Substituting (1.3.28) in (1.3.29), we get an equation for the unknown

φdl. Solving this equation for the unknown φdl at least numerically and putting this

solution in the equation (1.3.28), one can get the value of Mdl. If V ′′(Mdl,φdl) < 0,

then this Mdl corresponds to the Mach number MPPDL (MNPDL) of a PPDL (NPDL).

Now Mnmax (Mpmax) can restrict the existence of all NPSWs (PPSWs). But

if both Mnmax (Mpmax) and M = MNPDL (M = MPPDL) exist for fixed values

of the parameters, then we must have Mc < MNPDL < Mnmax (Mc < MPPDL <

Mpmax). For this case, we can split the entire range of M into two disjoint sub-

intervals Mc < M < MNPDL (Mc < M < MPPDL) and MNPDL < M < Mnmax

(MPPDL < M < Mpmax). For Mc < M < MNPDL (Mc < M < MPPDL), we

get a sequence of NPSWs (PPSWs) converging to the NPDL (PPDL) solution at

M = MNPDL (M = MPPDL). In other words, the NPDL (PPDL) solution at M =

MNPDL (M = MPPDL) can restrict the occurrence of all NPSWs (PPSWs) for all

M lying within the interval Mc < M < MNPDL (Mc < M < MPPDL), whereas for

MNPDL < M < Mnmax (MPPDL < M < Mpmax), we get NPSWs (PPSWs) after the

formation of NPDL (PPDL) at M = MNPDL (M = MPPDL) and consequently the

existence of supersolitons [142] or dias - type solitons [69] are confirmed. These type of

solitons have been recently reported by many authors [71, 74, 114–116, 118, 119, 138–

140].

1.4 Existence Domains

Here we draw different regions bounded by the curves M = Mc, M = Ms, M =

Mpmax, M = Mnmax, M = MNPDL, M = MPPDL with respect to any parameter

of the system. These regions essentially describe the existence domains of different
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solitary structures bounded by different curves. For example, the region bounded

by the curves M = Mc and M = Mpmax (M = Mnmax) represents the domain of

existence of all PPSWs (NPSWs) including all PPDLs (NPDLs). At each point along

the curve M = MNPDL (M = MPPDL), one can get an NPDL (a PPDL). The region

bounded by the curves M = Mc and M = MNPDL (M = MPPDL) represents the

domain of existence of all NPSWs (PPSWs) before the formation of NPDL (PPDL).

If Mc < MNPDL < Mnmax, then the region bounded by the curves M = MNPDL and

M = Mnmax represents the domain of existence of all NPSWs after the formation

of NPDL. We have used the following notations and terminologies: C – Region of

coexistence of both NPSWs and PPSWs, N – Region of existence of NPSWs, P –

Region of existence of PPSWs and NS – Region of existence of negative potential

solitons after the formation of NPDL. The curves M = Mc, M = Ms, M = Mpmax,

M = Mnmax and M = MNPDL have been shown in the heavy magenta line, heavy

black line, blue line, red line and heavy green line respectively.

Now we define the following three cut off values of βe which help us to study the

different existence regions. (i) β(1)
e is a cut off value of βe such that NPDL solutions

start to exist for βe ≥ β(1)
e . (ii) β(2)

e is a cut off value of βe such that M = Mpmax

coincides with Ms for 0 ≤ βe ≤ β(2)
e , i.e., for βe > β(2)

e , M = Mpmax is different from

Ms. (iii) β(3)
e is a cut off value of βe such that M = Mnmax starts to differ from Mc

for βe > β(3)
e , i.e. for 0 ≤ βe ≤ β(3)

e , M = Mnmax coincides with Mc.

Based on the above mentioned notations and terminologies, the existence domains

are self-explanatory. For example, figure 1.2 shows the existence domain or the com-

positional paramater space with respect to βe. From this figure, we have the following

observations. (i) The system supports PPSWs (NPSWs) for admissible values of βe

whenever M lies within the interval Mc < M < Mpmax (Mc < M < Mnmax). (ii)

The system supports coexistence of solitary waves of both polarities and the region

of coexistence is bounded by the curves M = Mc and M = Mnmax. This figure also

shows that the existence region of negative potential solitary structures is a subset of
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the existence region of positive potential solitary structures. (iii) The system starts

to support NPDL along the curve M = MNPDL whenever βe ≥ β(1)
e . (iv) Now, for

βe ≥ β(1)
e , we observe that MNPDL ≤ Mnmax. Consequently, for βe ≥ β(1)

e , the curve

M = MNPDL cannot bound the existence region of NPSWs and there exist two types

of NPSWs. The first type of NPSWs are restricted by Mc < M < MNPDL and the

second type of NPSWs are restricted by MNPDL < M < Mnmax and there exists a

jump type discontinuity in the amplitudes of the NPSWs just before and just after

the formation of double layer. In other words, the NPDL solution is unable to restrict

the occurence of NPSWs and there exist NPSWs after the formation of double layer

and such NPSWs are bounded by the curves M = MNPDL and M = Mnmax. There-

fore, the existence of NPSWs after the formation of NPDL confirms the existence of

a sequence of NPSSs. (v) The system does not support any PPDL and consequently

it does not support any positive potential supersoliton (PPSS).

Figures 1.3 - 1.5 are self-explanatory. From figure 1.2 and figure 1.3, we have the

following observations. (i) There is no effective change in the area of the existence

region of PPSWs for increasing µ. (ii) The existence region of NPSWs decreases as

µ increases. (iii) With the increment in µ, the value of β(1)
e increases, i.e., with the

increment in µ, the system starts to support NPDLs as well as NPSSs for higher

nonthermality of electrons. (iv) The existence region of NS decreases for increasing

values of µ and ultimately, the system does not support any NS.

Figure 1.4 shows the existence domain with respect to µ for isothermal electrons,

i.e., for βe = 0. From this figure, we have the following observations. (i) Mnmax

coincides with Ms for 0 < µ ≤ µ(1), i.e., Mnmax starts to differ from Ms for µ > µ(1).

(ii) The system supports the coexistence of both NPSWs and PPSWs. (iii) The

system does not support double layer of any polarity. (iv) This figure also shows that

the existence region of NPSWs is smaller than the existence region of PPSWs.

Figure 1.5 shows that the qualitative behaviour of IA solitary structures is very
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much sensible on the angle of propagation of the solitary structures with the uni-

form static magnetic field. In fact, figure 1.5 (a) shows the coexistence of PPSWs

and NPSWs after the formation of NPDL , whereas figure 1.5 (b) shows that the

coexistence of PPSWs and NPSWs after the formation of NPDL is impossible.

In figure 1.6, Mpmax and Mc are plotted against βe for two different values of µ.

This figure shows that there is no effective change in the area of the existence region

of PPSWs for increasing µ. In figure 1.7, Mnmax and Mc are plotted against βe for

two different values of µ. This figure shows that the region of existence of NPSWs

decreases for increasing µ. In figure 1.8, MNPDL is plotted against βe for different

values of µ. In this figure, we see that the interval of βe for the existence of NPDLs

increases for increasing values of µ if µ ≤ µ(cr), and if µ exceeds µ(cr), interval of βe for

the existence of NPDLs decreases for increasing values of µ, where µ(cr) is a critical

value of µ. On the other hand, the region of existence of NPSWs before the formation

of NPDLs increases for increasing values of µ whenever µ ≤ µ(cr), whereas the region

of existence of NPSWs before the formation of NPDLs decreases for increasing values

of µ for µ > µ(cr). For the values of the parameters as mentioned in the figure 1.8,

the value of µ(cr) is approximately equal to 0.6.

1.5 Phase Portraits

In section 1.4, we have seen that the system supports the following IA solitary struc-

tures: (i) NPSWs, (ii) PPSWs, (iii) coexistence of NPSWs and PPSWs (iv) NPDLs,

(v) coexistence of PPSWs and NPDLs, (vi) NPSWs after the formation of NPDLs,

and (vii) coexistence of PPSWs and NPSWs after the formation of NPDLs. From the

compositional parameter spaces or existence domains of different IA solitary struc-

tures, it is impossible to find the upper bound of the Mach number for the existence

of NPSSs, although it is simple to check that there is a finite jump between the

amplitudes of solitons just before and just after the formation of double layer which
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confirms the existence of NPSSs. So, it is not possible to investigate the existence of a

critical value (Mcr) of M such that the phase portraits of the solitons after the forma-

tion of double layer (M > Mcr(> MNPDL)) are qualitatively same as the conventional

solitons before the formation of double layer (Mc < M < MNPDL). Consequently, for

the existence of NPSSs, we have MNPDL < M < Mcr. So, there must be a transition

of solitary structures, viz., soliton → double layer → supersoliton → soliton after

the formation of double layer of same polarity. To discuss this transition process,

it is important to know the phase portraits of the dynamical system describing the

different IA solitary structures.

Now, differentiating the energy integral (1.3.22) with respect to φ, we can write

the resulting equation in the following two coupled differential equations:

dφ1

dξ
= φ2,

dφ2

dξ
= −V ′(φ1), where φ1 = φ. (1.5.1)

The equilibrium point of (1.5.1) is (φ∗
1, φ

∗
2), where φ∗

2 = 0 and φ∗
1 is given by

V ′(φ∗
1) = 0. The equation V ′(φ∗

1) = 0 gives the value(s) of φ∗
1 as a function of the

parameters of the system along with M , i.e., φ∗
1 = φ∗

1(M, γ, µ, βe,σie, lz). Therefore,

the values of the parameters γ, µ, βe, σie and lz are not sufficient to determine φ∗
1.

To get φ∗
1, it is necessary to know the value of M . But one can get the value of M by

considering the existence domain with respect to any parameter of the system. For

example, if the values of γ, µ, σie and lz are given, then by drawing the existence

domain with respect to βe, one can get the value of βe and the corresponding value

of M for the existence of the required solitary structure.

To describe the existence and the shape of NPSSs, and the coexistence of solitons

of both polarities, we consider figures 1.9 - 1.15, where we have used the existence

domain as shown in figure 1.2 to determine the Mach numbers for the formation of

different solitary structures including NPSSs.

Figures 1.9 (b) - 1.15 (b) are, respectively, the phase portraits of PPSW, NPSW,
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coexistence of solitary waves of both polarities, NPDL, NPSW just before the for-

mation of NPDL (NPSS), NPSW after the formation of double layer. In the upper

panel (or marked as (a)) of each figure of figures 1.9 - 1.15, V (φ) is plotted against

φ, whereas the lower panel (or marked as (b)) of each figure shows the phase portrait

of the system (1.5.1). The curve V (φ) and the phase portrait have been drawn on

the same horizontal axis φ(= φ1). The small solid circle and the small solid star

correspond to a saddle point and an equilibrium point other than saddle point of

the system (1.5.1) respectively. From figures 1.9 - 1.15, we see that each maximum

(minimum) point of V (φ) corresponds to a saddle point (an equilibrium point other

than a saddle point) of the system (1.5.1).

The one-one correspondence between the separatrix of the phase portrait (as

shown with a heavy bold line) in the lower panel with the curve V (φ) against φ

of the upper panel has been explained elaborately in the recently published paper

of Paul et al. [140] The origin (0, 0) is always a saddle point of the system (1.5.1)

and the separatrix corresponding to a solitary structure appears to start and end at

the saddle point (0,0). The separatrix corresponding to a solitary structure is shown

with a heavy bold blue line, whereas other separatrices (if any) are shown by heavy

bold green lines. The phase portrait of the dynamical system corresponding to a

conventional soliton contains only one separatrix that appears to start and end at the

origin enclosing only one non-saddle fixed point and there does not exist any other

separatrix within the first one. Again, Paul et al. [140] reported that the trajectory

corresponding to the separatrix approaches the origin as ξ → ±∞, and a separatrix

corresponding to a solitary structure does not correspond to a periodic solution be-

cause for this case, the trajectory takes forever trying to reach a saddle point which

proves an important result that a pseudo particle associated with the energy inte-

gral (1.3.22) takes an infinite long time to move away from its unstable position of

equilibrium and it continues its motion until φ takes the value φm and again, it takes

an infinite long time to come back its unstable position of equilibrium [104, 141],
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where V (φm) = 0 and V ′(φm) > 0 (V ′(φm) < 0) for φm > 0 (φm < 0). The closed

curve about an equilibrium point (other than a saddle point) contained in at least

one separatrix indicates the possibility of the periodic wave solution about that fixed

point.

Figure 1.11(b) shows the phase portrait of the dynamical system (1.5.1) corre-

sponding to the coexistence of solitary waves of both polarities and in figure 1.11(a),

V (φ) is plotted against φ which shows the coexistence of solitary waves of both po-

larities. Here from the phase portrait, we see that there is only one separatrix that

appears to start and end at the saddle point (0, 0), but it encloses two non-saddle

fixed points - one lies on the positive side of φ -axis, viz., (0.7, 0) and the other fixed

point lies on the negative side of φ -axis, viz., (−0.43, 0). As one separatrix that ap-

pears to start and end at the origin (0, 0) (saddle point) encloses two non-saddle fixed

points lying on the opposite direction of φ - axis, we have a coexistence of solitary

waves of both polarities.

Figure 1.12(b) shows the phase portrait of the dynamical system corresponding

to an NPDL and this figure shows that the separatrix corresponding to the double

layer solution appears to start and end at the saddle (0, 0) and again, it appears

to pass through the saddle point at (−1.94, 0) enclosing the non-saddle fixed point

(−0.91, 0). In figure 1.12(a), V (φ) is plotted against φ. Figure 1.12(a) and figure

1.12(b) together give a one-one correspondence between the separatrix of the phase

portrait as shown with a heavy blue line in the lower panel with the curve V (φ) against

φ of the upper panel. This mechanism holds good for the formation of PPSWs and

also for the formation of NPSWs. Therefore, figure 1.12(b) shows that the separatrix

corresponding to the double layer solution appears to pass through two saddle points

and it encloses other two fixed points. If both the saddle points exist after a small

increment of M from M = MNPDL, then the separatrix through the origin encloses

an inner separatrix through a non-zero saddle and at least two equilibrium points as

shown in figure 1.14(b) for M = MNPDL + 0.002. So, according to the definition of
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supersoliton as prescribed by Dubinov and Kolotkov [142], figure 1.14(b) corresponds

to an NPSS. But for M = MNPDL + 0.01, we get figure 1.15.

From the figures 1.10(b), 1.11(b) (part of phase portrait corresponding to NPSW),

1.13(b), and the figure 1.15(b), we observe that there is no qualitative difference

between these four phase portraits. For all four phase portraits, there exist a saddle

at the origin, a non-saddle fixed point lying on the negative φ - axis, and we have

only one separatrix which appears to start and end at the saddle point (0,0) enclosing

the non-saddle fixed point lying on the negative φ - axis. Therefore, figure 1.15

indicates the existence of an NPSW after the formation of NPDL and the phase

portrait corresponding to this NPSW looks like a phase portrait corresponding to a

conventioal NPSW. But the blue solid curve and blue dashed curve of figure 1.16 shows

that there is a finite jump between the amplitudes of solitons for M = MNPDL− 0.01

and M = MNPDL + 0.01. This is not only true for M = MNPDL − 0.01 and M =

MNPDL + 0.01, this result is also true for M = MNPDL − ϵ and M = MNPDL + ϵ,

i.e., there is a finite jump between the amplitudes of solitons for M = MNPDL − ϵ

and M = MNPDL + ϵ, and this has been shown by the black solid curve and black

dashed curve of figure 1.16 for ϵ = 0.0001. Thus, we get a sequence of supersolitons

for increasing values of M(> MNPDL), but if M exceeds a cut-off value Mcr, then the

solitons after the formation of double layer simply reduce to conventional solitons,

i.e., there exists a transition from supersoliton to soliton with the increment of M

after the formation of double layer. To understand this transition process, we draw

the saddle and other equilibrium points of the system (1.5.1) on the φ(= φ1)-axis

for increasing values of M starting from M = MNPDL + 0.0001 in figure 1.17. This

figure shows that the distance between the non-zero saddle and the non-saddle fixed

point nearest to it decreases for increasing values of M and ultimately both of them

disappear from the system. Finally, the system contains only one saddle at the origin

and a non-saddle equilibrium point. Consequently, only one separatrix enclosing the

non-saddle fixed point is possible that appears to pass through the saddle at the
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origin. So, the existence of a soliton after the formation of a double layer confirms

the existence of a sequence of supersolitons and there exists a critical value Mcr of

M such that for the existence of supersolitons, we must have MNPDL < M < Mcr,

whereas for Mcr ≤ M < Mnmax, we get soliton like structures after the formation of

a double layer. Thus, figure 1.17 clearly shows the transition from supersoliton to

soliton structures after the formation of a double layer.

1.6 Conclusions

IA solitary structures have been investigated in a collisionless magnetized dusty

plasma system consisting of warm adiabatic ions, static negatively charged dust grains

and nonthermal electrons. A complete set of equation of continuity in three dimension,

equation of motion in three dimension and the pressure equation in three dimension

for ion fluid has been considered to describe nonlinear behaviour of IA waves. Instead

of Poisson equation, the quasi-neutrality condition is assumed to close the system of

equations.

A complete analytic theory is presented to find the upper bounds Mpmax (Mnmax)

of the Mach number M for the existence of all PPSWs (NPSWs). Again, we have

also investigated an analytic theory to find the Mach numbers MPPDL (MNPDL) cor-

responding to a PPDL (NPDL) solution of the energy integral. With the help of

these two analytic theories, one can easily develop appropriate algorithms to deter-

mine Mpmax, Mnmax, MPPDL and MNPDL. These Mach numbers help us to draw

the compositional parameter space which shows the nature of existence of different

solitary structures with respect to any parameter of the system.

We have seen that the description of solitary structures after the formation of the

double layer of same polarity is helpful for investigating the existence of supersoliton

structures of same polarity in comparison with the study of supersoliton structures

at some discrete points of the compositional parameter spaces. The mechanism of
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transition from the NPSS to a negative potential soliton after the formation of double

layer of same polarity has been investigated through the phase portrait analysis of the

dynamical system describing the nonlinear behaviour of IA waves. We have analyzed

the formation of supersoliton structures and their limitations with the help of phase

portraits. This is another important aspect of this chapter. In fact, this analysis

determines the exact bound M for the existence of NPSSs.

It is observed that the system supports PPSWs, NPSWs, coexistence of solitary

waves of both polarities, NPDLs, NPSWs after the formation of NPDLs and NPSSs.

The qualitative behaviour of IA solitary structures is independent of the intensity of

the magnetic field because the Sagdeev potential V (φ) is free from the intensity of the

magnetic field. But the qualitative behaviour of IA solitary structures is very much

sensible on the angle of propagation of the solitary structures with the uniform static

magnetic field. In fact, V (φ) depends on lz = cos δ, but does not depend on lx and

ly, where δ is the angle between the direction of solitary structure and the direction

of the external uniform static magnetic field.

The region of existence of PPSWs increases for increasing values of µ, whereas

the region of existence of NPSWs decreases for increasing values of µ. The interval

of βe for the existence of NPDLs increases for increasing values of µ if µ ≤ µ(cr),

whereas if µ exceeds µ(cr), interval of βe for the existence of NPDLs decreases for

increasing values of µ, where µ(cr) is a critical value of µ. The region of existence of

NPSWs before the formation of NPDLs increases for increasing values of µ whenever

µ ≤ µ(cr), whereas the region of existence of NPSWs before the formation of NPDLs

decreases for increasing values of µ for µ > µ(cr).



Chapter 2

Ion acoustic solitary structures at the acoustic
speed in a collisionless magnetized nonthermal

dusty plasma †

In this chapter, we have investigated the existence of ion acoustic solitary structures

including double layers and supersolitons at the acoustic speed in a collisionless mag-

netized plasma consisting of negatively charged static dust grains, adiabatic warm

ions and nonthermal electrons. At the acoustic speed, for negative polarity, the sys-

tem supports solitons, double layers, supersoliton structures after the formation of

double layer, supersoliton structures without the formation of double layer, solitons

after the formation of double layer whereas the system supports solitons and super-

solitons without the formation of double layer for the case of positive polarity. But

it is not possible to get the coexistence of solitary structures (including double layers

and supersolitons) of opposite polarities. For negative polarity, we have observed

an important transformation, viz., soliton before the formation of double layer →
double layer → supersoliton → soliton after the formation of double layer whereas

for both positive and negative polarities, we have observed the transformation from

solitons to supersolitons without the formation of double layer. There does not exist

any negative (positive) potential solitary structures within 0 < µ < µc (µc < µ < 1)

and the amplitude of the positive (negative) potential solitary structure decreases

for increasing (decreasing) µ and the solitary structures of both polarities collapse at

µ = µc, where µc is a critical value of µ, the ratio of unperturbed number density of

electrons to that of ions. Similarly, there exists a critical value βe2 of the nonthermal

parameter βe such that the solitons of both polarities collapse at βe = βe2.

†This chapter has been published in Zeitschrift fr Naturforschung A, 76, pp. 985-1005,
2021; https://doi.org/10.1515/zna-2021-0120
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2.1 Introduction

Several authors [1, 12, 35, 56, 62, 67, 69, 71–73, 75, 77, 90, 111, 113, 119, 123, 127,

143–166] investigated solitary structures and/or double layers and/or supersolitons

for the supersonic speed of the waves, i.e., for M > Mc, where M is the velocity of

the wave frame normalized by linearized speed of the respective wave in the plasma

system andMc is the critical value ofM such thatM > Mc indicates supersonic speed

of the wave, M < Mc indicates subsonic speed of the wave and M = Mc indicates

that the wave is moving at the acoustic speed. Therefore, Mc is the lower bound of

the Mach number M for the existence of solitary structures including double layers

and supersolitons, and consequently solitary structures including double layers and

supersolitons begin to exist forM > Mc. For the first time, in the magnetized plasma,

we have invstigated solitary structures including double layers and supersolitons at

the acoustic speed.

For the first time, Verheest and Hellberg [167] observed the positive potential

dust acoustic solitary structure at the acoustic speed in a collisionless unmagnetized

plasma consisting of negatively charged dust paticulates and different species of ions

at different temperatures. After that Baluku et al. [49] have also observed dust

ion acoustic solitary structure at the acoustic speed in a collisionless unmagnetized

dusty plasma consisting of cold dust particles, adiabatic warm ions and κ distributed

electrons. They have also considered all the three cases, viz., M = Mc (sonic case),

M < Mc (subsonic case) and M > Mc (supersonic case) (see figures 4(c) - 4(f) in

Baluku et al. [49] ). They have shown the existence of solitary structures for both the

cases M = Mc (sonic case) and M > Mc (supersonic case). In a later paper, Baluku

et al. [168] have also observed ion acoustic solitary structure at the acoustic speed in
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a collisionless unmagnetized plasma consisting of two different species of electrons at

different temperatures. The numerical observations [49, 167, 168] of the existence of

solitary structure at the acoustic speed (M = Mc) influenced Das et al.[70] to inves-

tigate the analytical theory for the existence of solitary structures including double

layers at the acoustic speed, and finally they have proved three important results to

confirm the existence of different solitary structures in plasma systems. They have

applied these results to investigate the existence of dust acoustic solitary structures

including double layers at the acoustic speed in a nonthermal dusty plasma, where ion

species follows nonthermal Cairns distribution [1], electron species is isothermal with

negatively charged dust grains. In 2015, Verheest & Hellberg [169] have shown the

existence of double layers and supersolitons at the acoustic speed in a plasma consist-

ing of cold positive and negative ions, in presence of Cairns distributed [1] nonthermal

electrons. Recently, Paul et al. [170] have used the results of Das et al.[70] to in-

vestigate dust ion acoustic solitary structures at the acoustic speed in a collisionless

unmagnetized four component dusty plasma system consisting of nonthermal [1] elec-

trons, isothermal positrons, adiabatic warm ions and negatively charged static dust

grains. They have also considered the case when there is no positron in the system.

In this case, they have found the existence of negative potential double layer (NPDL)

and negative potential supersoliton (NPSS) at the acoustic speed. Finally, they have

also investigated the transformation of different negative potential solitary structures

at the acoustic speed just before and just after the formation of double layer.

In Chapter-1, we have investigated the arbitrary amplitude ion acoustic solitary

structures including double layers and supersolitons in a collisionless magnetized dusty

plasma consisting of adiabatic warm ions, negatively charged static dust grains and
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nonthermal [1] electrons. Although the method of construction of the distribution

function of energetic particles in astrophysical plasmas is a very difficult problem when

the particles are not in thermal equilibrium, different non-Maxwellian distributions

have been used to describe the behaviour of the energetic particles. One of the widely

used non-Maxwellian distributions is the κ distribution. Long years ago, Binsack [37]

, Olbert [38] , Vasyliunas [39] used this distribution to describe a population of fast

energetic particles along the long tail of one humped symmetrical distribution about

v = 0, where v is the velocity of electron in phase space. So, using this κ distribution,

one cannot describe a population of fast energetic electrons in a finite region of the

phase space in the neighbourhood of v = 0. However, Cairns et al. [1] modelled

the following velocity distribution to describe the effect of fast energetic electrons

together with a population of Maxwellian distributed electrons:

fce0(v
2) =

ne0√
2π

1 + αe

( v

vte

)4

(1 + 3αe)vte
exp

[
− v2

2v2te

]
, (2.1.1)

where αe(≥ 0) is a nonthermal parameter, ne0 is the unperturbed number density

of electrons and vte =
√
KBTe/me with Te is the average temperature of electrons,

KB is the Boltzmann constant and me is the mass of an electron. Instead of αe, one

can consider βe as the nonthermal parameter which determines the proportion of fast

energetic electrons, where

βe =
4αe

1 + 3αe
. (2.1.2)

As αe ≥ 0, it is simple to check the following restriction on βe: 0 ≤ βe <
4
3 . Now, this

distribution can be regarded as a modified Maxwellian having the following properties:

(a) In the neighbourhood of the point v = 0, the number of electrons is much smaller

than the number of electrons for the case of a Maxwellian distribution.
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(b) In the neighbourhood of the point v = 0, the number of electrons decreases with

increasing βe for 0 ≤ βe <
4
3 and for βe → 4

3 , the number of electrons almost vanishes

in a small neighbourhood of v = 0. For βe = 0, Cairns distribution reduces to the

Maxwellian isothermal distribution.

(c) For βe > 4/7, in Chapter-1, we have reported clearly that the distribution function

has three local maxima at three different points v = −V , v = 0 and v = V in phase

space, where

V = vte ×
√
2 +

√
7− 4(βe)−1. (2.1.3)

This property of the Cairns distribution is qualitatively different from Maxwellian

distribution or κ distibution because Maxwellian distribution and κ distibution are

both one humped symmetrical distributions about v = 0.

(d) For 0 ≤ βe ≤ 4/7, the distribution function is a one humped symmetrical dis-

tribution about v = 0 which is qualitatively similar to the Maxwell - Boltzmann

distribution or κ distribution. Consequently, βe is restricted by the following inequal-

ity: 0 ≤ βe ≤ 4/7. This restriction on βe has already been reported by Verheest &

Pillay [60].

(e) The mean speed ⟨v⟩ and the root - mean - square - velocity
√

⟨v2⟩ are respectively

given by

⟨v⟩ = 0 and
√
⟨v2⟩ =

√
1 + 3βe vte. (2.1.4)

For βe = 0, the root - mean - square - velocity is same as that for the Maxwellian

distribution.

(f) This Cairns distribution [1] includes a ring structure. This distribution can explain

both positive and negative polarity structures observed in space plasma. In fact,
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Cairns et al. [1] used this one-dimensional nonthermal model to study the existence

of nonlinear structures like those observed by the Freja [58] and Viking Satellites

[94, 96]. It was shown that this distribution can describe the existence of both positive

and negative density perturbations, which could not be prevailed with Maxwellian

electrons or κ distributed electrons. More specifically, the electric field structures

observed by the FAST [98–100, 103, 107] and Viking Satellite [94, 96] in the auroral

zone together with the Freja Satellite [58] observations in the auroral zone of the

upper ionosphere and the observations by GEOTAIL [97] and POLAR [101, 102,

107] missions in the Earth’s magnetosphere indicate the existence of fast energetic

electrons. In a number of astrophysical environments [58, 92–107], one can use Cairns

distribution for lighter species.

In Chapter-1, we have used the Sagdeev pseudo potential technique to investigate

the existence and the nature of both positive and negative potential solitary waves,

coexistence of solitary waves of both polarities, negative potential double layers and

negative potential supersolitons for the Mach number M > Mc. In the present chap-

ter, we have considered the same collisionless magnetized nonthermal dusty plasma

to study the ion acoustic solitary structures at the acoustic speed M = Mc. In gen-

eral, solitary structures including double layer and supersoliton are nonlinear wave

structures. Using the mechanical analogy of Sagdeev [11], the solitary structure can

be explained by considering one-dimensional motion of a pseudo particle of unit mass

under the action of a definite force field. Because of the particle-like behaviour of the

solitary structure, its shape and size remain unchanged during its propagation. In sev-

eral papers, Paul and his co-workers [73, 75, 77, 165] reported that the double layers

are responsible to accelerate the charged particles and the formation of double layer
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is helpful to study the possible causes of acceleration of energetic particles in several

space plasma environments. In this regard, it can be noted that the phenomenon of

acceleration of the particles in auroral zone of the atmosphere is due to double layers

which are often generated in the magnetosphere of the earth [171]. However, we have

considered the particle-like behaviour of the solitary structures at the acoustic speed

in Section 2.4 whereas we have studied different solitary structures by considering

the separatrices of a dynamical system described by a system of coupled equations in

Section 2.6.

The basic hydrodynamic equations describing these nonlinear behaviours of the

ion acoustic waves are the equation of continuity of ions, equation of motion of ions,

equation of pressure of ions. These hydrodynamic equations are supplemented by

the quasi-neutrality condition, where we have assumed that the length scale of the

solitary structure is greater than the Debye length or the ion-gyroradius [90, 111].

With the help of these equations, we want to study the existence and the nature of

the different ion acoustic solitary structures including double layers and supersolitons

at the acoustic speed giving special emphases on the following points:

• Lifting the hydrodynamic equations in the wave frame moving with a constant

velocity M normalized by the ion acoustic speed Cs along the direction hav-

ing unit vector L̂ = lxx̂ + lyŷ + lz ẑ, we have derived the energy integral with

V (M,φ) being the Sagdeev pseudo potential and for M = Mc, one can analyze

V (M,φ)(= V (Mc,φ)) to investigate the existence and the nature of different

solitary structures at the acoustic speed.

• At the acoustic speed, the Mach number M is given by the equation : M =

Mc = lzMs, where Ms is a function of γ(= 5/3), σie, βe and µ, i.e., Ms =



62

Ms(γ, σie, βe, µ). So, one can take the variation of Ms with respect to βe

or µ because γ(= 5/3) is a fixed parameter and σie can also be taken as fixed

for specific plasma system. So, in the present work, we want to investigate

the existence and the nature of different solitary structures along the curve

M = Mc.

• For the first time, in the magnetized plasma, we have critically discussed the

criteria for the existence of different solitary structures at the acoustic speed,

i.e., at M = Mc. We have seen that the criteria for the existence of different

solitary structures at the acoustic speed depend on V (Mc,φ) but the nature of

different solitary structures depends on the sign of the derivative of V (Mc,φ)

with respect to φ at φ = 0.

• We have found that V (Mc, 0) = 0, V ′(Mc, 0) = 0, V ′′(Mc, 0) = 0 and in this case,

the nature of the solitary structures depends on the sign of V ′′′(Mc, 0). In par-

ticular, V ′′′(Mc, 0) < 0 implies that the system may support positive potential

soliton structures including positive potential double layers and positive poten-

tial supersolitons at the acoustic speed whereas V ′′′(Mc, 0) > 0 implies that the

system may support negative potential soliton structures including negative po-

tential double layers and negative potential supersolitons at the acoustic speed.

If V ′′′(Mc, 0) = 0, then one can discuss the nature of the solitary structure by

considering the sign of V iv(Mc, 0).

• For the first time, in the magnetized plasma, we have investigated different ion

acoustic solitary structures at the acoustic speed. In fact, we have observed

the existence of the following solitary structures at the acoustic speed, i.e., at
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M = Mc: (a) positive potential solitons (PPSWs), (b) negative potential soli-

tons (NPSWs), (c) negative potential double layers (NPDLs), (d) negative po-

tential supersoliton (NPSS) structures after the formation of NPDL, (e) NPSS

structures without the formation of NPDL, (f) NPSW structures after the for-

mation of NPDL, (g) positive potential supersoliton (PPSS) structures without

the formation of positive potential double layer (PPDL).

• At the acoustic speed, we have observed that it is not possible to get (a) co-

existence of both PPSW and NPSW structures, (b) coexistence of both PPDL

and NPDL structures, (c) coexistence of both PPSS and NPSS structures. In

fact, for the first time in the magnetized plasma, we have observed that there is

no coexistence of solitary structures of opposite polarities at the acoustic speed

which supports an important result (THEOREM 5) derived by Das et al. [70].

• At the acoustic speed, we have seen that the amplitude of negative potential

soliton decreases with increasing βe whereas the amplitude of positive potential

soliton decreases with decreasing βe and both negative and positive potential

solitons collapse at the critical value βe2 of βe such that V ′′′(Mc, 0) = 0 at

βe = βe2. At this point of the compositional parameter space of V ′′′(Mc, 0) with

respect to βe, we have V iv(Mc, 0) > 0 which indicates that it is impossible to

get any solitary structure at βe = βe2.

• At the acoustic speed, we have seen that the amplitude of negative potential

soliton increases with increasing µ whereas the amplitude of positive potential

soliton decreases with increasing µ and both negative and positive potential

solitons collapse at the critical value µc of µ such that V ′′′(Mc, 0) = 0 at µ = µc.
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At this point of the compositional parameter space V ′′′(Mc, 0) with respect to µ,

we have V iv(Mc, 0) > 0 which indicates that it is impossible to get any solitary

structure at µ = µc.

• For the first time, in the magnetized plasma, phase portraits corresponding

to the different solitary structures have been drawn at the acoustic speed to

make a clear difference between the conventional soliton structures, double layer

structures and supersoliton structures that we have obtained in the present

plasma system.

• For the first time, in the magnetized plasma, the transformation process of dif-

ferent negative potential soliton structures has been investigated at the acous-

tic speed, viz., NPSW (before the formation of NPDL) → NPDL → NPSS

→ NPSW (after the formation of NPDL). In fact, we have investigated the

transformation of different negative potential solitary structures at the acoustic

speed just before and just after the formation of double layer.

• For the first time, in the magnetized plasma, the transformation process of

NPSW structures has also been considered at the acoustic speed without the

formation of double layer structure of same polarity, viz., NPSW → NPSS,

i.e., here we have investigated the transformation of different negative potential

solitary structures at the acoustic speed just before the formation of NPSS.

Similar process of transformation from PPSW structure to PPSS structure at

the acoustic speed can also be verified when there is no double layer of same

polarity.
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In this chapter, we have used the same set of hydrodynamic equations (1.2.1) - (1.2.3)

of Chapter-1 consisting of the continuity equation, the equation of motion and the

pressure equation of ion fluid along with the same quasi-neutrality condition (1.2.4)

of Chapter-1, but for easy readability of this chapter the complete set of basic

equations has been given in the next section of this chapter also.

2.2 Basic Equations

The present plasma system is collisionless, magnetized and nonthermal one, which

contains negatively charged static dust particulates, nonthermal electrons and adia-

batic warm ions. The system is under the action of constant magnetic field directed

along z−axis. We have considered the same basic hydrodynamic equations as given

in Chapter-1, although for the convenience of the reader, we restate those equations:

dni

dt
+ ni(

−→∇ ·−→u i) = 0, (2.2.1)

d−→u i

dt
+

σie

ni

−→∇pi = −−→∇φ+−→u i × ẑ, (2.2.2)

dpi
dt

+ γpi(
−→∇ ·−→u i) = 0, (2.2.3)

where (2.2.1) is the continuity equation of ion fluid, (2.2.2) describes the conservation

of momentum for ions, (2.2.3) is the pressure equation of ion fluid. These hydrody-

namic equations are supplemented by the following quasi-neutrality condition on the

basis of the assumption that the length scale of the solitary structure is greater than

the Debye length or the gyroradius [90, 111]:

ni = ne + 1− µ. (2.2.4)

Here

d

dt
=

∂

∂t
+−→u i ·

−→∇ , (2.2.5)
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Zdnd0

ni0
= 1− µ, (2.2.6)

ne = µ
(
1− βeφ+ βeφ

2
)
eφ, (2.2.7)

where we have used the equilibrium charge neutrality condition (2.2.6) to get (2.2.4),

the equation (2.2.7) describes the number density of Cairns distributed [1] nonthermal

electrons, µ = ne0/ni0 with ne0, ni0 and nd0 are, respectively, the unperturbed elec-

tron, ion and dust number densities, Zd is the number of electrons residing on a dust

grain surface, each spatial variable is normalized by ion gyroradius rg(= Cs/ωc) and

time is normalized by the inverse of ion gyrofrequency (ωc)
−1, where Cs =

√
KBTe/mi

and ωc is the ion gyrofrequency. Again, the quantities ni, ne,
−→u i = (uix, uiy, uiz), pi

and φ are, respectively, the ion number density, the electron number density, the ion

fluid velocity vector, the ion fluid pressure and the electrostatic potential, and these

quantities have been nomalized by ni0, ni0, Cs, ni0KBTi, KBTe/e respectively. Here

γ(= 5/3) is the adiabatic index, mi is the mass of an ion, and σie = Ti/Te.

Again, using (2.2.7), equation (2.2.4) can be written as

ni = µ
(
1− βeφ+ βeφ

2
)
eφ + 1− µ. (2.2.8)

In Chapter-1, we have already analyzed the linear dispersion relation for low

frequency IA waves obtained from the system of equations (2.2.1) - (2.2.3) and (2.2.8).

Lifting the equations (2.2.1) - (2.2.3) in the wave frame moving with a constant

dimensionless velocity M normalized by Cs (ion acoustic speed) along a direction

having direction cosines (lx, ly, lz), in Chapter-1, we have already investigated the

existence of different solitary structures for M > Mc, where M is the normalized

velocity or dimensionless velocity of the wave frame and Mc is the lower bound of

M for the existence of solitary structures, i.e., solitary structures begin to exist for
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M > Mc. The Mach number M or the constant velocity M normalized by Cs can

also be defined as follows:

M =
U

Cs
, (2.2.9)

where U is the actual velocity of the wave frame.

Specifically, in Chapter-1, we have presented an analytic theory to find the upper

bound Mpmax (Mnmax) of M for the existence of all positive (negative) potential

solitary structures, i.e., one can get positive (negative) potential solitary structures

for Mc < M < Mpmax ( Mc < M < Mnmax). But they have not investigated the ion

acoustic solitary structures when M = Mc or U = McCs. This is the first problem

in magnetized plasma where we have investigated the existence of different solitary

structures at M = Mc, i.e., at the lower bound of the Mach number. In this chapter,

we have used the equations (2.2.1) - (2.2.3) and (2.2.8) to study the existence of

different solitary structures at M = Mc.

2.3 Energy Integral

Assuming that all the dependent variables depend only on a single variable ξ =

lxx + lyy + lzz − Mt with l2x + l2y + l2z = 1, where M is independent of x, y, z and

t, in order to study the arbitrary amplitude time independent IA solitary structures,

and lifting the equations (2.2.1) - (2.2.3) in the wave frame moving with a constant

velocity M normalized by Cs along the direction L̂ = lxx̂ + lyŷ + lz ẑ, we get the

following equations:

(
−M + u

)dni

dξ
+ ni

du

dξ
= 0, (2.3.1)

(
−M + u

)d−→u i

dξ
+
(σie

ni

dpi
dξ

+
dφ

dξ

)
L̂ = −→u i × ẑ, (2.3.2)



68

0 0.57
−0.7

0

0.8

βe →

V
’’’

(M
c,0

) →

γ = 5/3, µ = 0.6, σie = 0.01, lz = 0.6, M = Mc

0

βe
(1) βe2

βe
(1) βe2

Figure 2.1: V ′′′(Mc, 0) is plotted against βe.
This figure shows the sign of V ′′′(Mc, 0) with
respect to βe.
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Figure 2.2: V (φ) is plotted against φ for dif-
ferent values of βe at M = Mc. Here red
curve corresponds to a conventioal NPSW
structure before the formation of NPDL
structure for βe = 0.228, teal curve cor-
responds to a NPDL structure for βe =
0.22751, magenta curve corresponds to a
NPSS structure for βe = 0.227 and green
curve corresponds to a conventioal NPSW
structure after the formation of NPDL struc-
ture for βe = 0.225.

(
−M + u

)dpi
dξ

+ γpi
du

dξ
= 0, (2.3.3)

where we have used the following notations:

u = lxuix + lyuiy + lzuiz. (2.3.4)

Eliminating
du

dξ
from the equations (2.3.1) and (2.3.3), we get the following equation:

ni
dpi
dξ

− γpi
dni

dξ
= 0. (2.3.5)

This equation can be simplified as follows:

d

dξ

[
pin

−γ
i

]
= 0. (2.3.6)
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Figure 2.3: V (φ) is plotted against φ in
the positive direction of φ - axis for differ-
ent values of βe at M = Mc. Here black
curve (βe = 0.3), red curve (βe = 0.35),
green curve (βe = 0.4) and magenta curve
(βe = 0.45) correspond four different PPSWs
with increasing amplitude.
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−0.3
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γ = 5/3, βe = 0.2, σie = 0.01, lz = 0.6

µ →

V
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Figure 2.4: V ′′′(Mc, 0) is plotted against µ
for fixed values of the other parameters as
mentioned in the figure. This figure shows
that V ′′′(Mc, 0) < 0 for µ < µc(≈ 0.5175),
V ′′′(Mc, 0) = 0 for µ = µc and V ′′′(Mc, 0) >
0 for µ > µc.

Integrating the above equation with respect to ξ and using the boundary conditions:

(
ni, pi, uix, uiy, uiz,φ,

dφ

dξ

)
→
(
1, 1, 0, 0, 0, 0, 0

)
as |ξ| → ∞, (2.3.7)

we get the following adiabatic law for ion pressure pi:

pi = nγ
i . (2.3.8)

Using equation (2.3.8), the coefficient of L̂ as given in the second term of left hand

side of (2.3.2) can be simplified as follows

σie

ni

dpi
dξ

+
dφ

dξ
=

dH

dξ
(2.3.9)

where

H = H(φ) =
γσie

γ − 1
(ni)

γ−1 + φ, (2.3.10)
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Figure 2.5: V (φ) is plotted against φ for dif-
ferent values of µ at M = Mc. Here red curve
(µ = 0.6), magenta curve (µ = 0.625), green
curve (µ = 0.65) all correspond to conven-
tional NPSW structures whereas pink curve
(µ = 0.675) and black curve (µ = 0.7) indi-
cate the formation of NPSS structures with-
out the formation of NPDL structure.
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Figure 2.6: V (φ) is plotted against φ for
different values of µ at M = Mc. Here green
curve (µ = 0.45), red curve (µ = 0.4), ma-
genta curve (µ = 0.35) and blue curve (µ =
0.3) all correspond to conventional PPSW
structures.

and consequently x-component, y-component and z-component of (2.3.2) can be writ-

ten in the following form:

(
−M + u

)duix

dξ
+ lx

dH

dξ
− uiy = 0, (2.3.11)

(
−M + u

)duiy

dξ
+ ly

dH

dξ
+ uix = 0, (2.3.12)

(
−M + u

)duiz

dξ
+ lz

dH

dξ
= 0. (2.3.13)

Writing the equation (2.3.1) in the form

d

dξ

[(
−M + u

)
ni

]
= 0, (2.3.14)

and integrating this equation with respect to ξ, we get the following expression of u:

u = M
(
1− 1

ni

)
, (2.3.15)
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Figure 2.7: V (φ) is plotted against φ for dif-
ferent values of µ at M = Mc. Here magenta
curve (µ = 0.34), red curve (µ = 0.3), green
curve (µ = 0.26) indicate the existence of PP-
SWs and blue curve (µ = 0.21) indicates the
PPSS without the formation of PPDL struc-
ture.
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Figure 2.8: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same
φ-axis for µ = 0.6, βe = 0.35, lz = 0.6 and
at the corresponding Mc. The separatrix of
lower panel of this figure as shown in blue
curve corresponds to a PPSW.

where the condition (2.3.7) has been used to find the integration constant.

Using (2.3.15), the equation (2.3.13) can be written as follows:

d

dξ

[
uiz −

lz
M

(
σien

γ
i +

∫
nidφ

)]
= 0. (2.3.16)

The derivation of (2.3.16) is given in Appendix - A.

Integrating the equation (2.3.16) with respect to ξ and using the boundary con-

dition (2.3.7) to obtain the constant of integration, we get the following equation:

uiz =
lz
M

G(φ), (2.3.17)

where

G = G(φ) = σie{(ni)
γ − 1}+

∫ φ

0

nidφ. (2.3.18)
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Figure 2.9: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same
φ-axis for µ = 0.6, βe = 0.228, lz = 0.6,
M = Mc. The separatrix of lower panel of
this figure as shown in blue curve corresponds
to an NPSW.
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Figure 2.10: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same
φ-axis for µ = 0.6, βe = 0.22751, lz = 0.6,
M = Mc. The separatrix of lower panel of
this figure as shown in blue curve corresponds
to an NPDL.

From equation (2.3.4), we get the following expression of lxuix + lyuiy :

lxuix + lyuiy = M − M

ni
− l2z

M
G(φ), (2.3.19)

where we have used the equations (2.3.15) and (2.3.17) to eliminate u and uiz from

the resulting equation.

Multiplying (2.3.11) by lx and (2.3.12) by ly, finally, adding these equations, we

get

(
−M + u

) d

dξ

(
lxuix + lyuiy

)
+
(
l2x + l2y

)dH
dξ

+ lyuix − lxuiy = 0. (2.3.20)

Using the expression of u as given in equation (2.3.15) and the expression of lxuix +

lyuiy as given in equation (2.3.19), the equation (2.3.20) can be written in the following
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Figure 2.11: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same
φ-axis for µ = 0.6, βe = 0.227, lz = 0.6,
M = Mc. The separatrix of lower panel of
this figure as shown in blue curve contains
another separatrix as shown in green curve
and this separatrix (shown in blue curve) cor-
responds to a NPSS.
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Figure 2.12: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same φ-
axis for µ = 0.6, βe = 0.2, lz = 0.6, M = Mc.
The separatrix of lower panel of this figure
corresponds to a conventional NPSW after
the formation of NPDL.

form:

lyuix − lxuiy = −dP

dξ
, (2.3.21)

where

P =
M2

2(ni)2
+H, (2.3.22)

and we have used the condition l2x + l2y + l2z = 1.

Solving the linear equations (2.3.19) and (2.3.21) for the unknown variables uix
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 βe = 0.22751 − ε

−4.2 0
φ →
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Figure 2.13: Point of inflexion (small solid
square), unstable fixed point (small solid cir-
cle) and stable fixed point (small solid star)
for the dynamical system (2.6.2) are drawn
on the φ−axis for different values of βe =
0.22751−ϵ where ϵ = 0 corresponds to NPDL.
This figure shows the smooth transformation
process in different negative potential soliton
structures, viz., NPSW (before the formation
of NPDL) → to NPDL → to NPSS → to
conventional NPSW (after the formation of
NPDL).
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Figure 2.14: (a) V (φ) and (b) the phase
portrait of the system are drawn on the
same φ-axis at M = Mc. The separatrix of
lower panel of this figure as shown in blue
curve contains another separatrix as shown
in green curve and this separatrix (shown in
blue curve) corresponds to a NPSS.

and uiy, we get

uix =
lx
{
M − M

ni
− l2z

M
G(φ)

}
− ly

dP

dξ
l2x + l2y

, (2.3.23)

uiy =
ly
{
M − M

ni
− l2z

M
G(φ)

}
+ lx

dP

dξ
l2x + l2y

. (2.3.24)

Substituting these two values of uix and uiy in (2.3.11) or in (2.3.12), we get the
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Figure 2.15: Point of inflexion (small solid
square), unstable fixed point (small solid cir-
cle) and stable fixed point (small solid star)
for the dynamical system (2.6.2) are drawn
on the φ−axis for different values of µ. This
figure shows the transformation from conven-
tional NPSW structures to NPSS structures
without the formation of NPDL structure.
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Figure 2.16: (a) V (φ) and (b) the phase
portrait of the system are drawn on the
same φ-axis at M = Mc. The separatrix of
lower panel of this figure as shown in blue
curve contains another separatrix as shown
in green curve and this separatrix (shown in
blue curve) corresponds to a PPSS.

following equation:

d2P

dξ2
= F (φ) = ni − 1− l2z

M2
niG(φ). (2.3.25)

From the expression ni as given in (2.2.8), we see that ni is a function of φ. Again,

from the expression H as given in (2.3.10), we can conclude that H is a function of

φ. So, from equation (2.3.22), one can conclude that P is a function of φ and φ is a

function of ξ. Therefore, from the chain rule of composite function, one can write

d2P

dξ2
=

d2φ

dξ2
dP

dφ
+

d2P

dφ2

(dφ
dξ

)2
. (2.3.26)
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Figure 2.17: φ is plotted against ξ for γ = 5/3, µ = 0.6,σie = 0.01, lz = 0.6 for different values
of βe at the corresponding acoustic speed Mc. (a) The magenta curve corresponds to βe = 0.228
which is an NPSW whereas the red curve corresponds to βe = 0.227 which is a negative potential
supersoliton. (b) The cyan curve corresponds to βe = 0.22751 which is an NPDL.

Using (2.3.26), the equation (2.3.25) can be written in the following form:

dQ

dφ
+

2

R

dR

dφ
Q =

2

R
F (φ), (2.3.27)

where Q =
(dφ
dξ

)2
and R =

dP

dφ
and we have used the following identity

d2φ

dξ2
=

1

2

d

dφ

[(dφ
dξ

)2]
.

Considering (2.3.27) as a first order and first degree linear ordinary differential

equation in Q with integrating factor R2, the general solution of the equation (2.3.27)
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can be put in the following form:

1

2

(dφ
dξ

)2
×
(dP
dφ

)2
=

∫
dP

dφ
F (φ)dφ+ C1, (2.3.28)

where C1 is a constant of integration. Using the boundary condition (2.3.7), we get

0 =

∫
dP

dφ
F (φ)dφ

∣∣∣
φ=0

+ C1. (2.3.29)

Using the equation (2.3.29), the equation (2.3.28) can be written as

1

2

(dφ
dξ

)2
+ V (φ) = 0, (2.3.30)

where

V (φ) = V (M,φ) = −

∫ φ

0

dP

dφ
F (φ)dφ

(dP
dφ

)2 . (2.3.31)

2.4 Criteria for the Existence of Solitary Struc-
tures at the Acoustic Speed

The mechanical analogy of Sagdeev [11] suggests that the energy integral (2.3.30)

may support positive or negative potential ion acoustic solitary structures including

double layers and supersolitons at the supersonic speed if φ = 0 is the position of

unstable equilibrium of a pseudo particle of unit mass associated with the energy

integral (2.3.30), i.e., if V (M, 0) = 0, V ′(M, 0) = 0 and V ′′(M, 0) < 0.

Now, differentiating (2.3.31) with respect to φ, we get

V ′(M,φ) = − F (φ)

dP/dφ
− 2V (M,φ)

d2P/dφ2

dP/dφ
. (2.4.1)

Again, differentiating (2.4.1) with respect to φ, we get

V ′′(M,φ) = − F ′(φ)

dP/dφ
+ 3F (φ)

d2P/dφ2

(dP/dφ)2
+ 2V (M,φ)

[
3
(d2P/dφ2)2

(dP/dφ)2
− d3P/dφ3

dP/dφ

]
.

(2.4.2)
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Now using equations (2.3.31) and (2.4.1), it is simple to check that V (M, 0) = 0 and

V ′(M, 0) = 0 for all M , and using equation (2.4.2), we get the following equation:

V ′′(M, 0) = −
µ(1− βe)−

l2z
M2

{
γσieµ(1− βe) + 1

}

(−M 2 + γσie)µ(1− βe) + 1
, (2.4.3)

where the derivation of (2.4.1), (2.4.2) and (2.4.3) are, respectively, given in Appendix

- B, Appendix - C and Appendix - D.

Now the equation (2.4.3) can be put in the following form:

V ′′(M, 0) =
M2 − l2zM

2
s

M2 −M2
s

, (2.4.4)

where

Ms =

√

γσie +
1

µ(1− βe)
. (2.4.5)

Using the inequality V ′′(M, 0) < 0, we get the following bounds for M :

Mc < M < Ms, (2.4.6)

where

Mc = lzMs. (2.4.7)

Therefore, positive or negative potential ion acoustic solitary structures start to exist

when M > Mc and it is not possible to get any solitary structures for M ≥ Ms.

In this chapter, our aim is to investigate the solitary structures at M = Mc, i.e.,

at the acoustic speed. Before going to discuss the existence of solitary structures at

M = Mc, we want to discuss the following points with respect to a pseudo particle of

unit mass associated with the energy integral (2.3.30):

• V (M,φ) can be regarded as the potential energy of a pseudo particle of unit

mass associated with the energy integral (2.3.30).
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• The first term of the energy integral (2.3.30) can be regarded as the kinetic

energy of a pseudo particle of unit mass associated with the energy integral

(2.3.30) with φ as the position of the particle at an instant of time ξ.

• It is simple to check that the magnitude of the velocity of the pseudo particle is
√
−2V (M,φ) and consequently the velocity of the pseudo particle vanishes if

V (M,φ) = 0. (2.4.8)

• The particle is under the action of the force field −2V ′(M,φ) and the force is

directed towards the origin φ = 0 if

V ′(M,φ) > 0 for φ > 0 (2.4.9)

and

V ′(M,φ) < 0 for φ < 0. (2.4.10)

• The force acting on the pseudo particle vanishes if

V ′(M,φ) = 0. (2.4.11)

• Using the equations (2.3.31), (2.4.1) and (2.4.4), it is simple to check that

V (Mc, 0) = 0, V ′(Mc, 0) = 0 and V ′′(Mc, 0) = 0. Consequently at the acoustic

speed, we cannot conclude that φ = 0 is the position of unstable equilibrium of

a pseudo particle of unit mass associated with the energy integral (2.3.30). For

this case, i.e., when V ′′(Mc, 0) = 0, according to THEOREM 2 of Das et al.[70],

it is instructive to find the sign of V ′′′(Mc, 0). As the THEOREM 2 of Das et
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al.[70] plays the key role regarding the existence of any solitary structures at

the acoustic speed, we want to state the THEOREM 2 of Das et al.[70].

• THEOREM 2 of Das et al.[70]: If V (Mc, 0) = 0, V ′(Mc, 0) = 0, V ′′(Mc, 0) = 0

and V ′′′(Mc, 0) ̸= 0, then there exists a strictly positive real number φϵ(> 0) such

that V ′′′(Mc, 0)V ′′(Mc,φ) > 0 for all 0 < φ < φϵ and V ′′′(Mc, 0)V ′′(Mc,φ) < 0

for all −φϵ < φ < 0.

From this theorem one can conclude the following interesting points:

(a) For V ′′′(Mc, 0) < 0, V (Mc,φ) is locally convex in a right neighbourhood of

the point φ = 0 (0 < φ < φϵ) whereas V (Mc,φ) is locally concave in a left

neighbourhood of the point φ = 0 (−φϵ < φ < 0).

(b) For V ′′′(Mc, 0) > 0, V (Mc,φ) is locally concave in a right neighbourhood

of the point φ = 0 (0 < φ < φϵ) whereas V (Mc,φ) is locally convex in a left

neighbourhood of the point φ = 0 (−φϵ < φ < 0).

With respect to the sign of V ′′′(Mc, 0), one can consider the following three cases.

Case - I (V ′′′(Mc, 0) < 0) : For this case, Das et al. [70] have proved in THEOREM

3 of their paper [70] that there may exist either a solitary wave or a double layer in

the positive potential side but there does not exist any solitary wave or double layer

in the negative potential side. In fact, for this case, we have seen that V (Mc,φ) is

locally convex in a right neighbourhood of the point φ = 0. Consequently if a pseudo

particle associated with the energy integral (2.3.30) is slightly displaced along the

positive direction of φ axis from the position φ = 0, then the particle immediately

falls into the small right neighbourhood of the point φ = 0 and due to convexity of

V (Mc,φ) in this region, the particle will be moving away from φ = 0 and it will be
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continuing its motion until its velocity vanishes, i.e., until φ assumes the value φm,

where φm(> 0) is the least strictly positive real number such that V (Mc,φm) = 0.

Now, in this situation, i.e., for V (Mc,φm) = 0, we have the following two possibilities

for the formation of PPSW structures at M = Mc:

(a) The force acting on the particle at φ = φm is directed towards the point φ = 0.

Consequently, we have an oscillation of the particle within the interval (0, φm) and

this nonlinear oscillation generates positive potential solitary waves.

(b)The force acting on the particle at φ = φm vanishes, i.e., the velocity and

the force acting on the particle are simultaneously equal to zero at φ = φm and

consequently the particle cannot be reflected back at the origin. In this case, one can

get a positive potential double layer solution of (2.3.30).

Therefore, for V ′′′(Mc, 0) < 0, one can get a positive potential solitary wave or pos-

itive potential double layer at M = Mc according to whether the following conditions

hold good:

V (Mc,φm) = 0 & V ′(Mc,φm) > 0 for φm > 0, (2.4.12)

or

V (Mc,φm) = 0 & V ′(Mc,φm) = 0 for φm > 0, (2.4.13)

where we have used (2.4.8) and (2.4.9) to get (2.4.12), and also we have used (2.4.8)

and (2.4.11) to get (2.4.13).

These conditions as given in (2.4.12) or (2.4.13) are supplemented by the condition

V (Mc,φm) < 0 for 0 < φ < φm, (2.4.14)

where the inequality (2.4.14) has been added to define the energy integral (2.3.30)

within 0 < φ < φm at M = Mc.
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On the other hand, for this case, we have also seen that V (Mc,φ) is locally con-

cave in a left neighbourhood of the point φ = 0. Consequently if a pseudo particle

associated with the energy integral (2.3.30) is slightly displaced along the negative

direction of φ axis from the position φ = 0, then the particle immediately falls into

the small left neighbourhood of the point φ = 0 and due to concavity of V (Mc,φ) in

this region, the particle will come back again at φ = 0. Therefore, it is not possible

to get any solitary structure on the negative potential side.

Case - II (V ′′′(Mc, 0) > 0) : For this case, using THEOREM 4 of Das et al. [70], it

is possible to get a negative potential solitary wave if there exists a φm < 0 such that

following conditions hold good

V (Mc,φm) = 0 & V ′(Mc,φm) < 0 for φm < 0, (2.4.15)

whereas one can get a negative potential double layer at M = Mc if there exists a

φm < 0 such that

V (Mc,φm) = 0 & V ′(Mc,φm) = 0 for φm < 0, (2.4.16)

where we have used (2.4.8) and (2.4.10) to get (2.4.15), and also we have used (2.4.8)

and (2.4.11) to get (2.4.16).

Now, to define the energy integral (2.3.30) within φm < φ < 0 at M = Mc, the

conditions (2.4.15) or (2.4.16) must be supplemented by the condition

V (Mc,φm) < 0 for φm < φ < 0. (2.4.17)

On the other hand, from THEOREM 4 of Das et al. [70], it can be concluded that it

is not possible to get any solitary structure in the positive potential side.

Case - III (V ′′′(Mc, 0) = 0) : For this case, we have the following three sub cases

depending on the sign of V iv(Mc, 0).
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• (A) V iv(Mc, 0) < 0 : Here V (Mc,φ) is maximum at φ = 0 and consequently

the pseudo particle associated with the energy integral (2.3.30) is in a position

of unstable equilibrium at φ = 0. Consequently, one can get a PPSW, PPDL,

NPSW, NPDL at M = Mc according to whether the following pair of conditions

are simultaneously true: (2.4.12) and (2.4.14), (2.4.13) and (2.4.14), (2.4.15) and

(2.4.17), (2.4.16) and (2.4.17).

• (B) V iv(Mc, 0) > 0 : Here V (Mc,φ) is minimum at φ = 0 and consequently the

pseudo particle associated with the energy integral (2.3.30) is in a position of

stable equilibrium at φ = 0. Therefore, it is not possible to get any solitary

structures at M = Mc.

• (C) V iv(Mc, 0) = 0 : In this case, the general prescription is to consider the sign

of the next order derivative of V (M, φ) at (M, φ) = (Mc, 0). Considering the

sign of V v(Mc, 0), one can study the existence of solitons at M = Mc. In the

present chapter, we are restricted upto the fourth order derivative of V (M, φ)

with respect to φ at the point (M, φ) = (Mc, 0).

We have used the criteria discussed in this section to investigate the existence of soli-

tary structures at the acoustic speed. Here, we have used THEOREM 1 - THEOREM

5 of Das et al. [70] to establish the criteria discussed in this section.

2.5 Existence Domains

Now Mc is a function of γ(= 5/3), lz, σie, βe and µ, i.e., Mc = Mc(γ, σie, βe, µ, lz).

One can take the variation of Mc with respect to βe or µ because γ(= 5/3) is a fixed

parameter and σie can also be taken as fixed for specific plasma system. Here our aim
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is to find the existence and the nature of solitary structures along the curve M = Mc

with respect to the parameter βe or µ.

To discuss the existence and the nature of the solitary structure at M = Mc, the

general prescription is to consider the variation of V ′′′(Mc, 0) with respect to some

parameter of the system. In figure 2.1 of the present chapter, we have considered the

variation of V ′′′(Mc, 0) against βe. From figure 2.1, we see that a part of the graph

is above the βe-axis, i.e., V ′′′(Mc, 0) > 0 for 0 ≤ βe < βe2(≈ 0.255), the other part is

below the βe-axis, i.e., V ′′′(Mc, 0) < 0 for βe2 < βe ≤ 0.57, V ′′′(Mc, 0) = 0 for βe = βe2

and consequently we have considered the following three cases depending on the sign

of V ′′′(Mc, 0).

Case - I (V ′′′(Mc, 0) > 0) : As V ′′′(Mc, 0) > 0 for 0 ≤ βe < βe2, from the discussion

as given in Section 2.4, it is expected that the system supports negative potential

solitary structures and different types solitary structures at M = Mc have been

confirmed from figure 2.2. In this figure (figure 2.2), V (φ) is plotted against φ for

different values of βe, where 0 ≤ βe < βe2, i.e., V ′′′(Mc, 0) > 0. This figure shows

the existence of NPSW before the formation of NPDL at M = Mc, the existence of

NPDL at M = Mc, the existence of NPSS after the formation of NPDL at M = Mc

and the existence of NPSW structure after the formation of NPDL at M = Mc.

Again from this figure, we see that the numerical value of the amplitude of different

negative potential solitary structures increases with decreasing βe within the interval

0 ≤ βe < βe2. On the other hand, as βe → βe2 with βe < βe2, the amplitude of negative

potential solitary stuctures (including negative potential double layer and negative

potential supersolitons) approaches to zero. To make a clear difference between the

topology of different solitary structures, we have considered the phase portraits of the



Chapter 2: IA solitary structures at acoustic speed 85

dynamical system corresponding to the different solitary structures in Section 2.6.

Case - II (V ′′′(Mc, 0) < 0) : As V ′′′(Mc, 0) < 0 for βe2 < βe ≤ 0.57, from the

discussion as given in Section 2.4, it is expected that the system supports positive

potential solitary structures and different types solitary structures at M = Mc have

been confirmed from figure 2.3. In this figure (figure 2.3), V (φ) is plotted against

φ for different values of βe, where βe2 < βe ≤ 0.57, i.e., V ′′′(Mc, 0) < 0. This

figure shows the existence of positive potential soliton at M = Mc. Again from this

figure, we see that the numerical value of the amplitude of different positive potential

solitary structures decreases with decreasing βe within the interval βe2 < βe ≤ 0.57,

consequently, the amplitude of positive potential solitary stuctures approaches to zero

as βe → βe2 with βe > βe2.

Case - III (V ′′′(Mc, 0) = 0) : At βe = βe2, V ′′′(Mc, 0) = 0, so at this point the

general prescription is to find V iv(Mc, 0). If V iv(Mc, 0) > 0, then φ = 0 is a position

of stable equilibrium at M = Mc and consequently it is not possible to get any

solitary structures. If V iv(Mc, 0) < 0, then φ = 0 is a position of unstable equilibrium

at M = Mc and consequently one can get a solitary structure if other conditions for

the existence of solitary structure hold good. If V iv(Mc, 0) = 0 then we go to the

next higher order derivative of Sagdeev potential and consider the cases as given for

the third order derivative of Sagdeev potential. For the present case, we have seen

V iv(Mc, 0) > 0 and consequently the system does not support any solitary structure

at βe = βe2.

All the three cases, viz., V ′′′(Mc, 0) > 0, V ′′′(Mc, 0) < 0 and V ′′′(Mc, 0) = 0 can

also be investigated by considering variation of V ′′′(Mc, 0) with respect to µ. For

example, in figure 2.4, we have plotted V ′′′(Mc, 0) against µ. This figure shows the
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sign of V ′′′(Mc, 0) with respect to µ. Specifically, this figure shows that V ′′′(Mc, 0) < 0

for µ < µc(≈ 0.5175), V ′′′(Mc, 0) = 0 for µ = µc and V ′′′(Mc, 0) > 0 for µ > µc. So,

according to the criteria, it is expected to obtain negative potential solitary structures

at M = Mc or positive potential solitary structures at M = Mc according to whether

µ > µc or µ < µc. To confirm the above mentioned facts, we draw figure 2.5 and

figure 2.6.

In figure 2.5, V (φ) is plotted against φ for different values of µ at M = Mc and the

values of µ are taken from figure 2.4 for which V ′′′(Mc, 0) > 0. This figure has been

drawn to make a correspondence with the figure 2.4 for V ′′′(Mc, 0) > 0. Here red

curve (µ = 0.6), magenta curve (µ = 0.625), green curve (µ = 0.65) all correspond

to conventional NPSW structures whereas pink curve (µ = 0.675) and black curve

(µ = 0.7) indicate the formation of NPSS structures without the formation of NPDL

structure. It is also observed that NPSS structure collapse for µ > 0.77 without

the formation of NPSW structure. From this figure, we observe that the amplitude

of NPSW including NPSS increases for increasing µ, i.e., amplitude of the NPSW

including NPSS decreases for decreasing µ and ultimately it collapses at µ = µc.

In figure 2.6, V (φ) is plotted against φ for different values of µ at M = Mc and

the values of µ are taken from figure 2.4 for which V ′′′(Mc, 0) < 0. This figure has

been drawn to make a correspondence with the figure 2.4 for V ′′′(Mc, 0) < 0. Here

green curve (µ = 0.45), red curve (µ = 0.4), magenta curve (µ = 0.35) and blue curve

(µ = 0.3) all correspond to conventional PPSW structures. It is simple to check that

V ′′′(Mc, 0) < 0 for all PPSW structures as drawn in this figure. From this figure, we

observe that the amplitude of the PPSW increases for decreasing µ, i.e., amplitude

of the PPSW decreases for increasing µ and ultimately it collapses at µ = µc.
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Again figure 2.7 shows the existence of PPSS structure without the formation

of PPDL structure. In fact, in figure 2.7, V (φ) is plotted against φ for different

values of µ with σie = 0.01, βe = 0.35, lz = 0.6 and M = Mc. Here magenta

curve (µ = 0.34), red curve (µ = 0.3), green curve (µ = 0.26) and blue curve (µ =

0.21) indicate the existence of PPSW structures (µ = 0.34, 0.3, 0.26) including PPSS

structure (µ = 0.21) without the formation of PPDL structure. One can easily

check that the amplitude of the PPSW decreases with increasing µ and ultimately

it collapses at µ = µc ≈ 0.783 where V ′′′(Mc, 0) = 0 whereas amplitude of PPSS

structure increases with decreasing µ and ultimately it breaks for µ < 0.18. From

this figure, we observe that the amplitude of PPSW including PPSS increases for

decreasing µ. For definiteness, for the occurrence of PPSW structures, one can draw

V ′′′(Mc, 0) with respect to µ for σie = 0.01, βe = 0.35, lz = 0.6. From this figure,

it is simple to observe that V ′′′(Mc, 0) < 0 or V ′′′(Mc, 0) > 0 according to whether

µ < µc ≈ 0.783 or µ > µc and at µ = µc, V ′′′(Mc, 0) = 0. So, it is possible to get

PPSW structures within 0 < µ < µc. Here, actual graphical analysis shows that the

range of µ for the existence of PPSW structures is 0.18 ≤ µ < µc.

Now, we see that V ′′′(Mc, 0) = 0 at µ = µc whereas V iv(Mc, 0) > 0 at µ = µc.

Therefore, the potential energy V (Mc,φ) is minimum at µ = µc and φ = 0, and

consequently there is no question of existence of any solitary structures at M = Mc,

i.e., the system does not support any solitary structure at µ = µc.

In Section 2.6, we have considered the phase portraits of the dynamical system

corresponding to the different solitary structures to distinguish between the topology

of different solitary structures at M = Mc.
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2.6 Phase Portraits

From figures 2.2, 2.3, 2.5, 2.6 and 2.7, one can conclude that the system supports

NPSWs, PPSWs, NPDLs, NPSSs and PPSSs. But there are two groups of NPSSs:

(a) formation of NPSS after the formation of NPDL (see figure 2.2), (b) formation of

NPSS without the formation of NPDL(see figure 2.5). To draw the phase portraits

of the different solitary structures, we differentiate the energy integral (2.3.30) with

respect to φ to get the following equation:

d2φ

dξ2
= −V ′(Mc,φ). (2.6.1)

This equation can be resolved into the following two coupled first-order first degree

differential equations:

dφ1

dξ
= φ2,

dφ2

dξ
= −V ′(Mc,φ1), (2.6.2)

where φ1 = φ.

With the help of the equations as given in (2.6.2), we have studied the phase por-

traits of different solitary structures. We have already defined the solitary structure

including double layer and supersoliton with the help of the mechanical analogy of

Sagdeev [11] as considered in Section 2.4 for the case of sonic solitary structures. In

phase portraits, any solitary structure including double layer and supersoliton can

be represented by a separatrix that appears to start and end at the origin (0, 0).

More specifically, with respect to the separatrix, one can describe different solitary

structures as follows:

(a) The separatrix corresponding to a soliton appears to pass through the origin

(0, 0) and it encloses only one stable fixed point but it does not enclose any other

separatrix.
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(b) The separatrix corresponding to a double layer appears to start and end at the

origin (0, 0). It also appears to pass through a non-zero saddle but it does not enclose

any other separatrix.

(c) The separatrix corresponding to a supersoliton appears to start and end at the

origin (0, 0). It also appears to pass through a non-zero saddle and it encloses at least

two stable fixed points and another separatrix not passing through the origin (0, 0).

(d) Moreover, according to Dubinov & Kolotkov [113, 161–163] , the definition of a

supersoliton can be structured if we consider the derivative of the electric potential

φ, i.e., the signature of the electric field. They have shown that the derivative of φ

always has at least two maxima (minima).

To describe the existence and the shape of different solitary structures, we draw

figures 2.8 - 2.12, figure 2.14 and figure 2.16. Again, we have used figure 2.13 to

describe the transformation of the supersoliton structures after the formation of dou-

ble layer whereas the figure 2.15 has been used to describe the transformation of the

supersoliton structures without the formation of double layer.

Figures 2.8 (b) - 2.12 (b) are, respectively, the phase portraits of PPSW, NPSW,

NPDL, NPSS and NPSW after the formation of NPDL. Figure 2.14 (b) is the phase

portrait of NPSS without the formation of NPDL whereas Figure 2.16 (b) is the phase

portrait of PPSS without the formation of PPDL. In the upper panel (or marked as

(a)) of each of these figures, V (φ) is plotted against φ, whereas the lower panel (or

marked as (b)) of each figure shows the phase portrait of the system (2.6.2). The curve

V (φ) and the phase portrait have been drawn on the same horizontal axis φ(= φ1).

The small solid square at the origin indicates the point of inflexion which separates

the convex and concave portion of the curve V (φ) against φ. On the other hand,
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the small solid circle and the small solid star correspond to an unstable equilibrium

point and a stable equilibrium point of the system (2.6.2) respectively. An unstable

equilibrium point corresponds to a saddle point whereas a stable equilibrium point

corresponds to a non-saddle fixed point. From figures 2.8 - 2.12, 2.14, 2.16, we see that

each maximum (minimum) point of V (φ) indicates to a saddle point (an equilibrium

point other than a saddle point) of the system (2.6.2).

In figure 2.8(b), the phase portrait of a PPSW has been drawn whereas the curve

V (φ) is drawn against φ in figure 2.8(a), which shows the formation of a PPSW. Here

from the phase portrait, we see that there is only one separatrix that appears to pass

through the point of inflexion (0, 0), and encloses a stable equilibrium point, viz.,

(0.79457, 0) on the positive potential side of the φ−axis. This separatrix corresponds

to a PPSW.

In figure 2.9(b), the phase portrait of an NPSW has been drawn whereas the curve

V (φ) is drawn against φ in figure 2.9(a), which shows the formation of an NPSW.

Here from the phase portrait, we see that there is only one separatrix that appears

to pass through the point of inflexion (0, 0), and encloses a stable equilibrium point,

viz., (−0.88328, 0) on the negative potential side of the φ−axis. This separatrix

corresponds to an NPSW.

In figure 2.10(b), the phase portrait of an NPDL has been drawn and from this

figure, we see that the separatrix corresponding to an NPDL appears to pass through

the point of inflexion (0, 0) and again, it appears to pass through the non-zero saddle

point (unstable fixed point) at (−1.8089, 0). The separatrix corresponding to an

NPDL also encloses the two stable equilibrium points (−0.9214, 0) and (−4.0122, 0).

In figure 2.10(a), the curve V (φ) is drawn against φ. Figure 2.10(a) and the separatrix
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of figure 2.10(b) together give a one-one correspondence as shown with a heavy blue

line in both the lower panel and the upper panel.

In figure 2.11(b), the phase portrait of a negative potential supersoliton has been

drawn. From this figure, we have the following observations:

• There are two separatrices as shown in blue curve and green curve.

• The blue separatrix appears to pass through the point of inflexion (0, 0).

• The green separatrix appears to pass through the non-zero saddle point (unsta-

ble equilibrium point) (−1.75, 0).

• The blue separatrix envelopes the green separatrix.

• The blue separatrix encloses two non-saddle fixed points (stable equilibrium

points), viz., (−0.9685, 0) and (−4, 0).

Therefore, according to Dubinov & Kolotkov [161–163], the blue separatrix confirms

the existence of an NPSS after the formation of NPDL. On the other hand, in the

upper panel, the curve V (φ) is drawn against φ and this curve corresponds with the

blue separatrix in the phase portrait of the lower panel.

In figure 2.12(b), we have plotted the phase portrait of an NPSW after the for-

mation of NPDL and NPSS structures and in figure 2.12(a), V (φ) is plotted against

φ which shows the formation of an NPSW. Here from the phase portrait, we see that

there is only one separatrix that appears to pass through the point of inflexion (0, 0),

and encloses a non-saddle fixed point (stable equlibrium point), viz., (−3.7686, 0)

on the negative φ - axis. Consequently this separatrix confirms the existence of a

conventional NPSW after NPDL.
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In figure 2.13, we have plotted the point of inflexion (small solid square) at (0, 0),

the unstable fixed point (small solid circle) and the stable fixed points (small solid

stars) for µ = 0.6, lz = 0.6 and βe = 0.22751−ϵ at the acoustic speed Mc. Here, ϵ = 0

indicates an NPDL. We see that as the value of ϵ increases, equivalently the value of

βe decreases, the distance between the unstable fixed point (small solid circle) and the

stable fixed point (small solid star) nearest to it decreases and eventually these two

points overlap on each other and disappear from the system. This transformation

shows a complete cycle of solitary structures of negative polarity, viz., NPSW →

NPDL → NPSS → NPSW.

In figure 2.14(b), phase portrait of a NPSS has been drawn. This supersoliton is

formed after the formation of an NPSW without the formation of a double layer. In

this figure, we see that the dynamical system defined by the coupled equations as given

in (2.6.2) contains two separatrices: blue separatrix appears to pass through the point

of inflexion (0, 0) and it encloses the green separatrix and two stable fixed points, viz.,

(−9.8035, 0) and (−3.864, 0) on the negative φ - axis. The green separatrix appears

to pass through the unstable fixed point (−6.2646, 0). In the upper panel, V (φ) is

drawn against φ which is in a one-one correspondence with the blue separatrix in the

phase portrait of the lower panel.

In figure 2.15, the transformation from NPSW structures to NPSS structures

without the formation of NPDL is shown. Here, we have plotted the point of inflexion

at (0, 0) (small solid square), the unstable fixed point (small solid circle) and the

stable fixed point (small solid star) for βe = 0.2, lz = 0.6 at the acoustic speed Mc for

increasing values of µ starting from µ = 0.6 and ending at µ = 0.7 as shown in the

figure. Here, µ = 0.6, µ = 0.625 and µ = 0.65 indicate NPSWs where the dynamical
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system (2.6.2) contains only one stable fixed point (small solid star). Again, µ = 0.675

and µ = 0.7 correspond to NPSS structures where we see the existence of one unstable

fixed point (small solid circle) apart from the point of inflexion (small solid square)

at the origin and two stable fixed points (small solid stars).

In figure 2.16(b), the phase portrait of a PPSS has been drawn. This supersoliton

is formed after the formation of a PPSW without the formation of PPDL. In this

figure, we see that the dynamical system defined by (2.6.2) contains two separatrices:

one appears to start and end at the point of inflexion (0, 0). This blue separatrix

encloses the second separatrix shown in green curve and it also encloses more than

one stable fixed points, viz., (1.2106, 0) and (2.4829, 0) on the positive potential side.

In the upper panel, V (φ) is plotted against φ which shows a correspondence with the

blue separatrix in the phase portrait of the lower panel.

Finally, in figure 2.17 (a), we have plotted the φ versus ξ graph for a negative

potential soliton just before the formation of double layer (magenta curve) for βe =

0.228 and for a negative potential supersoliton just after the formation of double layer

(red curve) for βe = 0.227 whereas in figure 2.17 (b), we have plotted the φ versus

ξ graph for a negative potential double layer (cyan curve) for βe = 0.22751. From

figure 2.17 (a), we see that there is a jump-type discontinuity between the amplitudes

of the solitons just before and just after the formation of double layer. From figure

2.17 (a), we also notice the formation of dias or platform in the profile of supersoliton

symmetrical about ξ = 0. Both the points have already been reported by Das et al.

[69] for dust acoustic waves in a collisionless unmagnetized dusty plasma (figure 4 of

Das et al. [69]).
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2.7 Conclusions

Considering a collisionless magnetized nonthermal dusty plasma system consisting of

nonthermal electrons, static negatively charged dust grains and warm adiabatic ions

immersed in a constant magnetic field directed along z-axis, IA solitary structures

have been investigated at the acoustic speed.

In Chapter-1, we have investigated the existence of different solitary structures

including double layers and supersolitons for M > Mc (⇔ U > McCs) whereas in

the present chapter, we have investigated the existence of different solitary structures

at M = Mc (⇔ U = McCs), where M is the normalized velocity or dimensionless

velocity of the wave frame, U (= MCs) is the actual velocity of the wave frame and

Mc (McCs) is the lower bound of M (U) for the existence of solitary structures, i.e.,

solitary structures begin to exist for M > Mc (U > McCs). This is the first problem

in magnetized plasma where we have investigated the existence of different solitary

structures at M = Mc (U = McCs), i.e., at the lower bound of the Mach number

(wave frame).

In Chapter-1, we have observed the coexistence of supersonic (M > Mc) solitary

structures of positive and negative polarities, but in the present chapter, we have

seen that the coexistence of sonic (M = Mc) solitary structures of opposite polarities

is impossible. In Chapter-1, we did not observe the existence of positive potential

supersolitons whereas we have found the existence of positive potential supersolitons

in the present chapter. In the present chapter, we have observed the transition of

solitary structures from solitons to supersolitons without the formation of double

layer but we did not find any such transition of solitary structures in Chapter-1

In the case of sonic solitary structures (M = Mc), the origin (0, 0) of the φ−V (φ)
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plane is a point of inflexion for the curve V (φ) against φ whereas for the case of

supersonic solitary structures (M > Mc), the origin (0, 0) of the φ− V (φ) plane is a

point of maximum for the same curve. More specifically, for the case of supersonic

solitary structures (M > Mc), V (φ) is locally convex at φ = 0 or V (φ) attains a

maximum value at φ = 0.

In the case of supersonic solitary structures (M > Mc), the origin (0, 0) is a saddle

point of the phase portrait of the dynamical system defined by the coupled equation as

given in (2.6.2) whereas for the case of sonic solitary structures (M = Mc), the origin

(0, 0) is not a saddle point. But in any case, a solitary structure can be represented by

the separatrix of the phase portrait of the dynamical system defined by the coupled

equation as given in (2.6.2), where the separatrix appears to pass through the origin

(0, 0).

For the present sonic solitary structures, we have the following important obser-

vations on the solitary structures:

• The system supports PPSWs, NPSWs, NPDLs, NPSSs after the formation of

NPDL, NPSSs without the formation of NPDL, PPSSs without the formation

of PPDL at the acoustic speed for feasible values of the parameters. But the

system does not support PPDL at the acoustic speed.

• The system does not support coexistence of solitary waves of opposite polarities.

• There exists a critical value βe2 of βe such that the system may support negative

potential solitary structures for 0 ≤ βe < βe2 whereas the system may support

positive potential solitary structures for βe2 < βe ≤ βeT ≈ 0.57. For βe = βe2,

there does not exist any solitary structure.
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For 0 ≤ βe < βe2, negative potential solitary structure transforms from negative

potential conventional soliton to negative potential double layer to negative

potential supersoliton to negative potential conventional soliton again as the

parameter βe decreases from βe2.

For 0 ≤ βe < βe2, the amplitude of the negative potential solitary structure in-

cluding double layer and supersoliton of same polarity decreases with increasing

βe and as βe → βe2 with βe < βe2, the NPSW structure collapses.

For βe2 < βe ≤ βeT , we have only positive potential soliton and if βe decreases

from βe = βeT within the interval βe2 < βe ≤ βeT then the amplitude of the

PPSW decreases and as βe → βe2 with βe > βe2, the positive potential soliton

collapses.

So, the solitons of both polarities collapse at βe = βe2.

• There exists a critical value µc of µ such that the system may support positive

potential solitary structures for 0 < µ < µc whereas the system may support

negative potential solitary structures for µc < µ ≤ µ(1)
c . For µ = µc, there does

not exist any solitary structure and µ(1)
c is another critical value of µ such that

the negative potential supersoliton disappears from the system if µ > µ(1)
c .

For 0 < µ < µc, we have only positive potential soliton and if µ increases

from µ > 0 within the interval 0 < µ < µc then the amplitude of the positive

potential soliton decreases and as µ → µc with µ < µc, the positive potential

soliton collapses.

For µc < µ ≤ µ(1)
c , negative potential solitary structure changes from negative

potential conventional soliton to negative potential supersoliton without the
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formation of NPDL as the parameter µ increases within the interval µc < µ ≤

µ(1)
c .

For µc < µ ≤ µ(1)
c , the amplitude of the negative potential solitary structures

including supersoliton of same polarity decreases if µ decreases from µ = µ(1)
c

within the interval µc < µ ≤ µ(1)
c and as µ → µc with µ > µc, the negative

potential solitary structure collapses.

So, the solitons of both polarities collapse at µ = µc.

• Regarding the amplitude of the solitary structures, we have the following ob-

servations:

The amplitude of the negative potential soliton increases for increasing µ whereas

the amplitude of the negative potential soliton decreases for increasing βe.

The amplitude of the negative potential supersoliton increases for increasing

µ whereas the amplitude of the negative potential supersoliton decreases for

increasing βe.

The amplitude of the positive potential soliton decreases for increasing µ whereas

the amplitude of the positive potential soliton increases for increasing βe.

• We have drawn the phase portraits of different solitary structures to know the

topology of the structure at the acoustic speed. Regarding these structures, we

have the following observations:

A conventional soliton in phase portrait is represented by a separatrix that

appears to pass through the origin enclosing only one stable equilibrium point

but this separatrix does not enclose any other separatrix.
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A supersoliton in phase portrait is represented by a separatrix that appears

to pass through the origin enclosing more than one stable equilibrium points

and this separatrix encloses at least one other separatrix. This makes a clear

difference between a conventional soliton and a supersoliton.

There is no qualitative difference between soliton before the formation of NPDL

and soliton after the formation of NPDL (Figure 2.9 and Figure 2.12).

With the help of phase portrait, we have shown the smooth transition of the

different solitary structures: NPSW (prior to the formation of NPDL) → NPDL

→ NPSS → NPSW (after the formation of NPDL) (Figure 2.13)

We have also shown the smooth transition from NPSW to NPSS without the

formation of NPDL (Figure 2.15). This type of transformation can also be

verified for positive polarity. For the first time, in magnetized plasma, we have

seen this type of transformation of solitary structures for supersonic wave in

Chapter-3.

In astrophysical and laboratory plasmas, the concept of supersolitons was intro-

duced by Dubinov and Kolotkov [161–163] in multi-species plasmas. Dubinov and

Kolotkov [161] have investigated the ion acoustic NPSWs and positive potential su-

persolitons (PPSSs) in an unmagnetized plasma consisting of electrons, positrons,

negatively charged dust particles and two species of positively and negatively charged

ions. Dubinov and Kolotkov [163] have experimentally observed the ion acoustic nega-

tive potential supersolitons (NPSSs) in multi-species plasmas. Dubinov and Kolotkov

[162] investigated the IA solitary waves (PPSW and NPSS) in a collisionless unmag-

netized plasma consisting of electrons, positrons, and two species of positively and

negatively charged ions.
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Dubinov and Kolotkov [120] have reported that space plasma observations often

show intensive bursts of the electric field, occurring in the form of electrostatic super-

solitons. They have given example of the space missions S3−3 [172], Viking [94], Polar

[173], and FAST [174] which were used for the registration of electrostatic solitary

structures in the magnetospheric plasma, such as ion-acoustic solitons, double layers

and phase holes. Dubinov and Kolotkov [120] have also reported that the records of

the mentioned missions are widely available in the literature and often contain certain

patterns which can be interpreted as supersolitons. Dubinov and Kolotkov [120] also

reported the existence of supersolitons in the auroral regions and lower layers of the

Earth’s magnetosphere.

Finally, we look forward to future satellite observations, advanced enough to dis-

tinguish the signature of different solitary structures at the acoustic speed.

Appendix A : Derivation of Equation (2.3.16):

From equation (2.3.15), we get

−M + u = −M

ni
. (2.7.1)

Substituting this expression of −M + u in equation (2.3.13), we get the following

equation

−M

ni

duiz

dξ
+ lz

dH

dξ
= 0 (2.7.2)

The equation (2.7.2) can be written as

duiz

dξ
− lz

M
ni
dH

dξ
= 0 (2.7.3)

Substituting the expression of H as given by (2.3.10) into the equation (2.7.3), we

get the following equation

duiz

dξ
− lz

M

(
γσien

γ−1
i

dni

dξ
+ ni

dφ

dξ

)
= 0 (2.7.4)
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From equation (2.2.8), we see that ni is a function of φ and consequently we have the

following results:

(A)

∫
nidφ is a function of φ,

(B)
d

dφ

(∫
nidφ

)
= ni,

(C)
d

dξ

(∫
nidφ

)
=

d

dφ

(∫
nidφ

)dφ
dξ

= ni
dφ

dξ
,

(D)
dnγ

i

dξ
= γnγ−1

i

dni

dξ
.

Using the above results, the equation (2.7.4) can be written in the following form:

duiz

dξ
− lz

M

[
σie

dnγ
i

dξ
+

d

dξ

(∫
nidφ

)]
= 0. (2.7.5)

From this equation, one can easily get the following equation:

d

dξ

[
uiz −

lz
M

(
σien

γ
i +

∫
nidφ

)]
= 0. (2.7.6)

The above equation is the equation (2.3.16).

Appendix B : Derivation of Equation (2.4.1):

Differentiating equation (2.3.31) with respect to φ, we get:

V ′(M,φ) = − d

dφ

[
∫ φ

0

P ′(φ)F (φ)dφ

(
P ′(φ)

)2

]

= −P ′(φ)F (φ)
(
P ′(φ)

)2 −
[{∫ φ

0

P ′(φ)F (φ)dφ

}
(−2)P ′′(φ)
(
P ′(φ)

)3

]

= − F (φ)

P ′(φ)
+ 2

P ′′(φ)

P ′(φ)

∫ φ

0

P ′(φ)F (φ)dφ

(
P ′(φ)

)2

= − F (φ)

P ′(φ)
− 2V (M,φ)

P ′′(φ)

P ′(φ)
, (2.7.7)
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where we have used the identity
d

dφ

(∫ φ

0

P ′(φ)F (φ)dφ
)

= P ′(φ)F (φ) to simplify

(2.7.7). The above equation is the equation (2.4.1).

Appendix C : Derivation of Equation (2.4.2):

Differentiating equation (2.7.7) with respect to φ, we get:

V ′′(M,φ) =
d

dφ

[
− F (φ)

P ′(φ)
− 2V (M,φ)

P ′′(φ)

P ′(φ)

]

= −F ′(φ)

P ′(φ)
+

F (φ)P ′′(φ)
(
P ′(φ)

)2 − 2V (M,φ)
P ′′′(φ)

P ′(φ)

+2V (M,φ)

(
P ′′(φ)

)2

(
P ′(φ)

)2 − 2V ′(M,φ)
P ′′(φ)

P ′(φ)
. (2.7.8)

Substituting the expression of V ′(M,φ) as given by (2.7.7) into the equation (2.7.8),

we get the following equation

V ′′(M,φ) = −F ′(φ)

P ′(φ)
+ 3

F (φ)P ′′(φ)
(
P ′(φ)

)2 + 2V (M,φ)

{
3

(
P ′′(φ)

)2

(
P ′(φ)

)2 − P ′′′(φ)

P ′(φ)

}
.

The above equation is the equation (2.4.2).

Appendix D : Derivation of Equation (2.4.3):

From the equations (2.2.8), (2.3.10), (2.3.18), (2.3.22) and (2.3.25), we get the fol-

lowing results:

ni(0) = 1, (2.7.9)

n′
i(0) = µ(1− βe), (2.7.10)

H(0) =
γ

γ − 1
σie, (2.7.11)

H ′(0) = γσieµ(1− βe) + 1, (2.7.12)
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G(0) = 0, (2.7.13)

G′(0) = 1 + γσieµ(1− βe), (2.7.14)

P (0) =
M2

2
+

γ

γ − 1
σie, (2.7.15)

P ′(0) = −M 2 + γσieµ(1− βe) + 1, (2.7.16)

F (0) = 0, (2.7.17)

F ′(0) = µ(1− βe)−
l2z
M2

[
1 + γσieµ(1− βe)

]
. (2.7.18)

Using the above results, from equations (2.3.31), (2.4.1), (2.4.2), we get the following

results:

V (M, 0) = 0,

V ′(M, 0) = 0,

V ′′(M, 0) = −
µ(1− βe)−

l2z
M2

{
γσieµ(1− βe) + 1

}

(−M 2 + γσie)µ(1− βe) + 1
.

The last equation is the equation (2.4.3).



Chapter 3

Combined effect of Kappa and Cairns distributed
electrons on ion acoustic solitary structures in a

collisionless magnetized dusty plasma ∗

Starting from one dimensional Kappa distribution for electrons, we have systemati-

cally developed the combined Kappa-Cairns distribution. We have found the effective

bounds of both nonthermal parameters κ and βe for the combined Kappa-Cairns dis-

tribution. This distribution can generate more highly energetic particles in compari-

son with both Kappa and Cairns distributions. We have investigated ion acoustic soli-

tary structures in a collisionless magnetized plasma composed of negatively charged

static dust grains, adiabatic warm ions and a population of highly energetic electrons

generated from the combined Kappa-Cairns distribution. Sagdeev pseudo potential

technique has been considered to investigate the arbitrary amplitude steady state

solitary structures including double layers and supersolitons. We have developed a

computational scheme to draw the existence domains showing the nature of existence

of different solitary structures. Different solitary structures of both positive and neg-

ative polarities have been observed for different values of κ and βe . We have seen two

important transitions of solitary structures for negative polarity, viz., soliton before

the formation of double layer → double layer → supersoliton → soliton after the

formation of double layer, and soliton before the formation of supersoliton → super-

soliton → soliton. For the second case, we have a supersoliton structure without the

formation of double layer and this case is completely new one for magnetized plasma.

Different solitary structures supported by the system have been investigated with

the help of compositional parameter spaces and the phase portraits of the dynamical

systems describing different solitary structures.

∗This chapter has been published in Astrophysics and Space Science 365, 72 (2020);
https://doi.org/10.1007/s10509-020-03786-6
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3.1 Introduction

Alfvén [34] reported that the velocity distribution functions in many cosmic plasmas

are non-Maxwellian as well as highly anisotropic due to the presence of an excess of

highly energetic particles, for example, double stars, novae, supernovae, pulsars etc.

have been regarded to possess an excess of high-energy particle population. There

is no general mechanism to construct the velocity distribution function of energetic

particles in the space plasma, consequently different non-Maxwellian velocity distribu-

tions have been constructed in phase space to describe the behaviour of the energetic

particles on the basis of the assumption that the relaxation time of the energetic

particles is not so small to reach thermal equilibrium [35]. Kappa distribution and

the nonthermal velocity distribution function of Cairns et al. [1] are two widely used

non-Maxwellian models for energetic particles.

There are enormous evidence for the existence of a population of highly energetic

electrons in space plasmas, resulting in a long high-energy tailed non-Maxwellian dis-

tribution [36]. Such a population of suprathermal electrons is generally modelled by

a Kappa distribution which has the property that the number of particles in phase

space far away from the point v = 0 is much greater than the number of particles in

the same region for the case of a Maxwellian - Boltzmann distribution, where v is the

velocity of the particle in phase space, and consequently the number of highly ener-

getic particles is much larger in Kappa distribution in comparison with Maxwellian

- Boltzmann distribution. Decades ago, Binsack [37] used Kappa distribution in his

Ph.D. thesis where he mentioned that actually it (Kappa distribution) was introduced

by Prof. S. Olbert in his studies of plasmas on IMP-1 [38]. By the same time Vasyli-

unas [39] also used this distribution. Later, this Kappa distribution was considered
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by many authors in various studies of plasma physics [40–57].

On the other hand, for Cairns distributed nonthermal velocity distribution func-

tion of the energetic electrons [1], it can be easily shown that for increasing values of

the nonthermal parameter (βe), the distribution function develops wings, symmetrical

with respect to the vertical axis v = 0, which become stronger as βe increases, and con-

sequently, nonthermal velocity distribution generates energetic particles for increasing

values of βe in finite region of phase space in the neighbourhood of v = 0. Therefore,

for increasing βe, distribution function develops wings, which become stronger as βe

increases, and at the same time the center density in phase space drops, the latter as

a result of the normalization of the area under the integral. Consequently, we should

not take values of βe > 4/7 as that stage might stretch the credibility of the Cairns

model too far [60]. Therefore, nonthermal velocity distribution of Cairns et al. [1]

produces flattening at moderate values of v. So, Cairns distribution of nonthermal

electrons [1] can describe the flattening of the distribution with respect to Maxwell

- Boltzmann distribution as the background distribution. Cairns distribution has

been used by several authors to discuss different wave structures in different plasma

systems [17, 61, 64–71, 73–77].

To consider the flattening of the Kappa distribution in the neighbourhood of v = 0,

one can consider Cairns distribution with respect to Kappa distribution as the back-

ground distribution. The combined Kappa-Cairns distribution is aimed to describe

the possible deviation from Kappa distribution in the neighbourhood of v = 0. So,

in the combined Kappa-Cairns distribution, we have considered Kappa distribution

as the background electron distribution and the deviation of this background distri-

bution can be described by Cairns distribution. Therefore, our aim is to consider

the combined Kappa-Cairns distribution in those heliospheric environments in which
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 →
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Figure 3.1: This figure shows flattening of the combined Kappa-Cairns distribution de-
scribed by the nonthermal Cairns distribution with respect to Kappa distribution as the
background distribution. Here, the green curve, red curve, black curve, magenta curve and
orange curve correspond to the nonthermal parameter βe = 0, βe = 0.2, βe = 0.4, βe = 0.6
and βe = 0.8 respectively with κ=10.

flattening of the distribution can be discussed by Cairns distribution with respect to

Kappa distribution as the background distribution. Figure 3.1 shows the flattening of

the combined Kappa-Cairns distribution described by the nonthermal Cairns distri-

bution with respect to Kappa distribution as the background distribution. We have

explained this figure in the next section (Section 3.2).

Numerous studies have shown that Kappa distributions (or combinations thereof)

are frequently observed in several space, geophysical and other plasmas, where the de-

viation from Maxwell is more evident in the high-energy tails of the observed distribu-

tions. Kappa distributions have been employed to describe space plasma population

in the inner heliosphere, including solar wind [79, 80], the planetary magnetospheres,
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including magnetosheath [37–39], the outer heliosphere and inner heliosheath [81]

etc., which can be described by the combined Kappa-Cairns distributions for even

better accuracy.

High-energy tail distributions (κ distributions) do not show major temperature

anisotropies but this property of high-energy tail κ distributions is not consistent with

various space plasma observations [82]. In fact, the space plasma observations indicate

the major temperature anisotropy in astrophysical environments. Again, Pierrard et

al. [83] reported that the electron temperatures are generally higher in the slow solar

wind than in high-speed stream. An excess of parallel temperature has been observed

to dominate the observations and it is significantly larger in high-speed streams than

in the slower solar wind, while an excess of perpendicular temperature is more com-

mon in low-speed and high-density conditions. In both the cases, the temperature

anisotropy is high and Kappa distribution cannot describe such particle population.

The Combined Kappa-Cairns distribution is a more generalized distribution which

may be relevant to serve this purpose.

The satellite observations by Vela 2 and Vela 3 [39] reports that the plasma sheet

electrons typically have a broad quasi-thermal energy spectrum, peaked anywhere

between a few hundred ev and a few kev, with a non-Maxwellian high-energy tail

[108]. Now, the particle distribution in the neighbourhoods of the peaks can be

well described by Cairns distribution whereas the particle population along the tail

can be described by Kappa distribution. Alongside, there are many space plasma

environments where the linear and nonlinear plasma phenomena [1, 39, 54, 109, 110]

cannot be precisely described by Cairns distribution or any such non-Maxwellian

distribution.
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To consider the combined effect of Kappa and Cairns distributed nonthermal elec-

trons, Aoutou et al. [175] modelled a non-Maxwellian velocity distribution function

which can describe the joint effect of Kappa distribution as well as Cairns distri-

bution. Younsi & Tribeche [176] used this distribution to study the nonlinear dust

acoustic waves. Abid et al. [109] have numerically analyzed some basic properties

of the combined Kappa-Cairns velocity distribution of the lighter species (electrons,

ions, positrons) and they call this distribution as Vasyliunas Cairns distribution. But

neither Aoutou et al. [175] nor Abid et al. [109] have considered exact bounds of

the parameters κ and βe when these parameters are considered as parameters of the

combined Kappa-Cairns distribution.

With the aim of producing more energetic particles in a collisionless magnetized

plasma system, we have considered the combined effect of Kappa and Cairns dis-

tribution. In fact, we modify the Kappa distribution by imposing the nonthermal

characteristics of Cairns distribution thereon. We have discussed different important

properties of this new distribution and finally, we have investigated ion acoustic soli-

tary structures in a collisionless magnetized dusty plasma consisting of negatively

charged static dust grains, adiabatic warm ions and combined Kappa-Cairns dis-

tributed electrons giving special emphases on the following points. This problem is

completely new in literature.

• We have systematically derived combined Kappa-Cairns distribution and this

distribution reduces to the one dimensional Kappa distribution as defined by

several authors [43, 110, 112] when βe = 0. On the other hand, if κ → ∞,

the combined Kappa-Cairns distribution reduces to nonthermal distribution of

Cairns et al. [1] whereas if βe = 0 and κ → ∞, the combined Kappa-Cairns



Chapter 3: Effect of Kappa - Cairns distribution on IA solitary structures 109

distribution is simplified to the isothermal distribution.

• For combined effect of Kappa and Cairns distribution, we have found the lower

bound of the parameter κ for which combined effect of Kappa and Cairns dis-

tribution is well defined as a velocity distribution in phase space.

• We have analytically studied the dependence of the upper bound (βeT ) of βe

as a function of κ, i.e., we have shown that βe is restricted by the inequality

0 ≤ βe ≤ βeT , where βeT is a function of κ.

• We have shown that as κ tends to ∞, the upper bound βeT of βe is equal to

4/7, i.e., when the combined distribution reduces to the nonthermal distribution,

the maximum value of the nonthermal parameter is 4/7 which has already been

reported by Verheest & Pillay [60].

• We have derived the expression of the number density of electrons that follow

the combined Kappa-Cairns velocity distribution in phase space.

• For the first time in magnetized plasma, we have considered the combined effect

of Kappa and Cairns distribution on the solitary structures of the ion acoustic

wave in a collisionless magnetized dusty plasma.

• For the first time in magnetized plasma, considering the number density of

electrons for combined Kappa-Cairns distribution, we have used Sagdeev pseudo

potential method to investigate the arbitrary amplitude ion acoustic solitary

structures in a collisionless magnetized dusty plasma.

• For the present plasma system, considering different bounds of Mach number,

we have drawn different compositional parameter spaces with respect to the
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nonthermal parameter βe. These compositional parameter spaces clearly show

the existence domains of different types of solitary structures for different values

of κ and other parameters of the system.

• From the different compositional parameter spaces with respect to the non-

thermal parameter βe, we have seen the existence of different solitary struc-

tures, viz., negative potential solitary waves (NPSWs), positive potential soli-

tary waves (PPSWs), negative potential double layers (NPDLs), coexistence

of positive and negative potential solitary waves and negative potential soli-

tary waves after the formation of NPDL for different ranges of βe and κ. But

the existence of negative potential solitary waves after the formation of NPDL

confirms the existence of negative potential supersolitons (NPSSs) also. For

large value of Kappa, the above mentioned solitary structures are qualitatively

same as discussed in Chapter-1. In this connection, we would like to mention

that Dubinov & Kolotkov [113] first elaborately investigated supersoliton struc-

tures in unmagnetized plasma. After that several authors [69, 71–77, 114–120]

investigated supersoliton structures in different unmagnetized and magnetized

plasma systems.

• For the first time in magnetized plasma, we have observed both types of negative

potential supersolitons, viz., negative potential supersoliton after the formation

of negative potential double layer of same polarity and negative potential su-

persoliton without the formation of double layer. Although in an unmagnetized

plasma, Verheest et al. [114] have shown the existence of supersoliton without

the formation of double layer of same polarity.

• For the first time in magnetized plasma, we have analyzed a new transition
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of solitary structures: soliton → supersoliton → soliton. This type of transi-

tion was not found in Chapter-1, where we considered only Cairns distributed

nonthermal electrons. We have also found the well-known transition of solitary

structures: soliton → double layer → supersoliton → soliton in the present

plasma system.

In this chapter, we have used the same set of hydrodynamic equations (1.2.1) -

(1.2.3) of Chapter-1 consisting of the continuity equation, the equation of motion

and the pressure equation of ion fluid along with the same quasi-neutrality condition

(1.2.4) of Chapter-1, but we have considered the combined effect of Kappa-Cairns

distribution on the density function of nonthermal electrons instead of nonthermal

electrons as prescribed in the paper of Cairns et al. [1]. Again for easy readability

of this chapter, the complete set of basic equations has been given in section 3.3 of

this chapter also.

3.2 Combined Kappa-Cairns Distribution

The one dimensional Kappa distribution function for electrons can be written in the

following form [43, 110, 112]:

fκe(v
2
z) =

ne0

(πκθ2)1/2
Γ(κ)

(κ− 1
2)

(
1 +

v2z
κθ2

)−κ

, (3.2.1)

where the effective thermal velocity θ is given by

θ =

√
2κ− 3

κ

KBTe

me
. (3.2.2)

Here KB is the Boltzmann constant, me is the mass of an electron, ne0 is the un-

perturbed or equilibrium number density of electrons, Te is the average temperature

of electrons, vz is the velocity of electrons in phase space and Γ(x) is the Gamma

function.
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When we compare between the Kappa and the Maxwell - Boltzmann velocity

distribution of electrons, then we observe that the Kappa distribution describes the

existence of highly energetic particles along the long-tailed one humped symmetrical

velocity distribution about the origin vz = 0 but this distribution is unable to describe

a population of fast energetic electrons in a finite region of the phase space in the

neighbourhood of vz = 0. The observations of electric field structures by the Freja

Satellite [58] in the auroral zone influenced Cairns and others [1] to model a veloc-

ity distribution of non-Maxwellian electrons which can describe the presence of fast

energetic electrons together with a population of Maxwellian distributed electrons.

In fact, Cairns [1] distribution describes the fast energetic electrons in a finite region

of the phase space in the neighbourhood of vz = 0. Specifically, in the Maxwellian

distribution, the number of electrons in the neighbourhood of vz = 0 is maximum

whereas in the Cairns [1] distribution, the number of electrons in the neighbourhood

of vz = 0 decreases with increasing values of the nonthermal parameter. The Cairns

[1] distribution can be written as follows:

fC(v
2
z) =

ne0

[
1 + αe

(
vz
vte

)4]

(1 + 3αe)
√
2πvte

exp[− v2z
2v2te

], (3.2.3)

where vte =

√
KBTe

me
and αe ≥ 0.

Therefore, the combined Kappa-Cairns velocity distribution function can be writ-

ten in the following form:

fκC(v
2
z) = Ane0

[
1 + αe

( vz
vte

)4](
1 +

v2z
κθ2

)−κ

, (3.2.4)

where

A =
1√
πκθ2

Γ
(
κ
)

Γ
(
κ− 5

2

) 1

κ1κ2 + 3αeκ2
1

(3.2.5)



Chapter 3: Effect of Kappa - Cairns distribution on IA solitary structures 113

with

κ1 = κ− 3

2
, κ2 = κ− 5

2
. (3.2.6)

Plotting the combined Kappa-Cairns distribution (fκC(v2z)) as given in the equa-

tion (3.2.4) against velocity (vz) in phase space for different values of αe or βe

[
=

4αe/(1 + 3αe)
]
, one can analyze the different characteristics of combined Kappa-

Cairns distribution. Here αe or βe is the nonthermal parameter that determines the

proportion of the fast energetic particles in a finite region of phase space in the neigh-

bourhood of vz = 0. For αe = 0 (αe = 0 ⇔ βe = 0), the equation (3.2.4) becomes

the usual Kappa distribution in one dimension whereas for κ → ∞, the distribution

function (3.2.4) reduces to the nonthermal distribution of Cairns et al. [1]. It is sim-

ple to check that βe is an increasing function of αe. Using the inequality αe ≥ 0, it is

simple to check that 0 ≤ βe < 4/3. However, we cannot take the entire region of βe

(0 ≤ βe < 4/3). In fact, for any fixed value of κ, if we plot fκC(v2z) against vz, then we

see that for increasing βe, distribution function fκC(v2z) develops wings which become

stronger as βe increases but as

∫ ∞

−∞
fκC(v

2
z)dvz = 1, the center density in phase space

drops, and for βe > βeT , the combined Kappa-Cairns velocity distribution function

fκC(v2z) attains three maximum values at three different points vz = −V , vz = 0 and

vz = V in phase space and consequently this property of the combined Kappa-Cairns

distribution function is qualitatively different from Kappa velocity distribution func-

tion as Kappa velocity distribution function has only one maximum at v = 0, where

βeT and V are given by the following equations:

βeT =
4

3 +
4(κ1/κ)2

1− (2/κ)

, (3.2.7)
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V

vte
=

√√√√√√√

2κ1

κ
+ 2

√
1− 2

κ

√
1

βeT
− 1

βe

1− 2

κ

. (3.2.8)

Here our aim is to construct a distribution function which can produce more energetic

particles in comparison with the Maxwell - Boltzmann velocity distribution function

or the Kappa distribution without changing the qualitative behaviour, i.e., the new

distribution function has only one maximum. So, we see that the combined Kappa-

Cairns distribution describes the non-isothermal distribution having a deviation from

the Kappa distribution if βe is restricted by the following inequality:

0 ≤ β ≤ βeT . (3.2.9)

If κ → ∞, then the above inequality reduces to the following inequality: 0 ≤ βe ≤ 4/7,

i.e., the effective range of βe is 0 ≤ βe ≤ 4/7. Verheest & Pillay [60] have already

reported that for nonthermal velocity distribution function of Cairns et al. [1], the

effective range of βe is 0 ≤ βe ≤ 4/7. Again, for κ → ∞, the value of V is equal

to vte ×
√

2 +
√
7− 4(βe)−1 which has already been reported in Chapter-1 for the

nonthermal distribution of electrons as prescribed by Cairns et al. [1]. So, the value

of the nonthermal parameter βe for combined Kappa-Cairns distribution function is

restricted by the inequality (3.2.9). For κ = 10, the nonthermal parameter βe is

restricted by the inequality: 0 ≤ βe ≤ 320
529 ≈ 0.6049, but in figure 3.1, we have

plotted FKC

(
=

vtefκC(v2z)

ne0

)
against Vz

(
=

vz
vte

)
for βe = 0, βe = 0.2, βe = 0.4,

βe = 0.6 and βe = 0.8. We see that βe = 0, βe = 0.2, βe = 0.4 and βe = 0.6

lie within the admissible range of βe whereas the curve for βe = 0.8 shows that

the combined Kappa-Cairns velocity distribution function fκC(v2z) attains maximum

values at three different points in phase space. So, this property of the combined
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Kappa-Cairns distribution function for βe = 0.8 is qualitatively different from that

of the Kappa distribution. So, it is instructive to consider only that range of βe for

which combined Kappa-Cairns distribution function has a global maximum at vz = 0.

Again, from the figure 3.1, we note that the flattening of the combined Kappa-Cairns

distribution function increases with increasing values of βe lying within the interval

0 ≤ β ≤ βeT .

The steady state solution of the Vlasov - Boltzmann equation for electrons follow-

ing the combined Kappa-Cairns distribution (3.2.4) is given by

fe(vz,φ) = fκC
(
v2z −

2eφ

me

)
. (3.2.10)

Consequently the density of electrons following the combined Kappa-Cairns distribu-

tion (3.2.4) is given by

ne =

∫ ∞

−∞
fe(vz,φ)dvz. (3.2.11)

Substituting the expression of fe(vz,φ) as given in equation (3.2.10) into the right

hand side of the equation (3.2.11), we get the following expression of ne:

ne

ne0
=
[
1− β(κ)

e1

( eφ

KBTe

)
+ β(κ)

e2

( eφ

KBTe

)2](
1− 1

κ1

eφ

KBTe

)−κ+ 1
2
, (3.2.12)

where

β(κ)
e1 = β(κ)

e

(
1 +

3

2κ2

)
, (3.2.13)

β(κ)
e2 = β(κ)

e

(
1 +

1

κ1
+

3

4κ1κ2

)
, (3.2.14)

β(κ)
e =

4αeκ1κ2

κ1κ2 + 3αeκ2
1

=
4αe

1 + 3αe
κ1
κ2

. (3.2.15)



116

Again it is simple to check the following limiting values of β(κ)
e , β(κ)

e1 and β(κ)
e2 for

κ → ∞.

lim
κ→∞

β(κ)
e =

4αe

1 + 3αe
= βe, (3.2.16)

lim
κ→∞

β(κ)
e1 = lim

κ→∞
β(κ)
e = βe, (3.2.17)

lim
κ→∞

β(κ)
e2 = lim

κ→∞
β(κ)
e = βe, (3.2.18)

lim
κ→∞

(
1− 1

κ1

eφ

KBTe

)(−κ+ 1
2 )

= exp
( eφ

KBTe

)
. (3.2.19)

Therefore, making limit as κ → ∞ in equation (3.2.12), we get the following expres-

sion of ne:

ne

ne0
=
[
1− βe

( eφ

KBTe

)
+ βe

( eφ

KBTe

)2]
exp

( eφ

KBTe

)
. (3.2.20)

The above equation gives the density of nonthermal electrons as prescribed by Cairns

et al. [1]. Again, making limit as βe → 0, the expression of ne as given in equation

(3.2.20) is further simplified into the following form:

ne = ne0 exp
( eφ

KBTe

)
. (3.2.21)

The equation (3.2.21) expresses the density of isothermal electrons.

In the present chapter, we have used equation (3.2.12) to express the density of the

combined Kappa-Cairns distributed electrons, which describes the highly energetic

particles in a long-tailed non-Maxwellian distribution along with the fast energetic

electrons in a finite region of the phase space in the neighbourhood of vz = 0. It

is also important to note that for combined Kappa-Cairns distributed nonthermal

electrons, the value of the nonthermal parameter βe is resticted by the inequality
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Figure 3.2: Mc, Mpmax, Mnmax, Ms are
plotted against βe. The magenta curve, blue
curve, red curve and black curve correspond
to the curves, M = Mc, M = Mpmax,
M = Mnmax and M = Ms, respectively.
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Figure 3.3: Mc, Mpmax, Mnmax, Ms are
plotted against βe. The magenta curve, blue
curve, red curve and black curve correspond
to the curves, M = Mc, M = Mpmax,
M = Mnmax and M = Ms, respectively.

(3.2.9) for any fixed value of κ. Again, from the expression of A as given in equation

(3.2.5), we can conclude that the parameter κ is restricted by the inquality κ > 5
2 .

Therefore, for any fixed κ > 5
2 , one can use the combined Kappa-Cairns distribution if

the nonthermal parameter βe is resticted by the inequality (3.2.9). This distribution

has already been considered by several authors [109, 175, 176]. But they have not

considered the actual bounds of the nonthermal parameters κ and βe for combined

Kappa-Cairns distribution.

3.3 Basic Equations

In the present chapter, we have considered the nonlinear behaviour of IA waves in a

plasma consisting of negatively charged static dust grains, warm adiabatic ions and
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Figure 3.4: Mc, Mpmax, Mnmax, MNPDL,
Ms are plotted against βe. The magenta
curve, blue curve, red curve, green curve
and black curve correspond to the curves,
M = Mc, M = Mpmax, M = Mnmax,
M = MNPDL and M = Ms, respectively.
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and black curve correspond to the curves,
M = Mc, M = Mnmax and M = Ms re-
spectively.

combined Kappa-Cairns distributed nonthermal electrons, and the plasma is under

the action of a uniform static magnetic field (
−→
B = B0ẑ) directed along z−axis. Now,

normalizing number density of electrons (ne) by ni0 (unperturbed ion number density)

and electrostatic potential φ by KBTe

e , equation (3.2.12) can be written in the following

form:

ne = µ
(
1− β(κ)

e1 φ+ β(κ)
e2 φ2

)(
1− φ

κ1

)−κ+ 1
2
, (3.3.1)

where µ =
ne0

ni0
.

Now, equations (1.2.1) - (1.2.4) of Chapter-1 along with the equilibrium charge

neutrality condition (1.2.5) of Chapter-1 can describe the nonlinear behaviour of IA

waves in the present plasma system if the number density of electrons (ne) of equation
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Figure 3.6: (a) V (φ) is plotted against φ for different values of M, for µ = 0.6, βe = 0.52, lz = 0.6,
γ = 5/3, σie = 0.01 and κ = 5. The dark magenta, dark green, brown, red, blue, magenta, sea green
and orange curves correspond to M = 1.48, M = 1.49, M = 1.495, M = 1.5, M = 1.51, M = 1.52,
M = 1.53, and M = 1.54 respectively. Amongst these, the red, blue and magenta curves indicate
supersolitons and the rest are solitons. The red curve and the blue curve showing supersoliton
structures are elucidated in (b) and (c) respectively.

(1.2.6) of Chapter-1 is replaced by equation (3.3.1) of the present chapter. Again,

using continuity equation (1.2.1) of ion fluid as given in Chapter-1, the pressure

equation (1.2.3) of ion fluid as given in Chapter-1 can be simplified into the following

form:

pi = nγ
i . (3.3.2)

Using the equations (3.3.1) and (3.3.2), the continuity equation of ions, the equation

of motion of ion fluid and the quasi-neutrality condition can be expressed as follows:

∂ni

∂t
+
−→∇ · (ni

−→u i) = 0, (3.3.3)
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Figure 3.7: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same
φ-axis for M = 1.49 and for κ = 5. This fig-
ure confirms the existence of NPSW before
the formation of supersolitons.
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Figure 3.8: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same φ-
axis for M = 1.5 and for κ = 5. We see that
there are two unstable equilibrium points cor-
responding to two maximum values of V (φ)
at φ = 0 and at φ = −5.76. This figure con-
firms the existence of supersoliton.

( ∂

∂t
+−→u i ·

−→∇
)−→u i +

−→∇H = −→u i × ẑ, (3.3.4)

ni = µ
(
1− β(κ)

e1 φ+ β(κ)
e2 φ2

)(
1− φ

κ1

)−κ+ 1
2
+ 1− µ, (3.3.5)

where

H = H(φ) =
γσie

γ − 1
(ni)

γ−1 + φ. (3.3.6)

Here, x, y and z are the spatial variables each of which is normalized by the ion

gyroradius rg = Cs/ωc; t is the time normalized by the inverse of ion gyrofrequency

(ωc)−1, where Cs =
√

KBTe

mi
and ωc =

eB0
mic

. The ion fluid velocity components are uix,

uiy and uiz along x, y and z axes respectively, each of which is normalized by Cs; pi

is the ion pressure normalized by ni0KBTi; φ is the electrostatic potential normalized
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Figure 3.9: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same
φ-axis for M = 1.53 and for κ = 5. This fig-
ure confirms the existence of NPSW after the
formation of supersoliton.
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Figure 3.10: φ is plotted against ξ for M =
1.49 (NPSW before the formation of NPSS)
(blue dash-dot curve) M = 1.5 (red solid
curve) (NPSS) and M = 1.53 (blue solid
curve) (NPSW after the formation of NPSS)
for κ = 5, γ = 5/3, σie = 0.01 and other
mentioned parameter values.

by KBTe

e . Here, KB is the Boltzmann constant; −e is the charge of an electron; mi

is the ion mass; nd0 is the unperturbed number density of dust particulates; Zd is

the number of electrons residing on a dust grain surface; γ(= 5
3) is the adiabatic

index; σie =
Ti

Te
, µ =

ne0

ni0
, where Ti is the average temperature of ions and ne0 (ni0) is

the unperturbed number density of electrons (ions) respectively. We have used same

assumption of Choi et al. [90] to consider the quasi-neutrality condition (3.3.5) instead

of Poisson equation. Several authors [111, 127] have considered the same assumption

to study the nonlinear behaviour of IA / DIA waves in magnetized plasma. Using the

equations (3.3.3) - (3.3.5), the dimensionless linear dispersion relation for IA wave

can be written as

k2
z

ω2
+

k2
⊥

ω2 − 1
= M−2

s , (3.3.7)
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Figure 3.11: Unstable equilibrium points
(small solid circles) and stable equilibrium
points (small solid stars) for the dynamical
system are drawn on the φ-axis for different
values of M = 1.49 + ϵ. This figure clearly
shows the transition from soliton to super-
soliton to soliton again.
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Figure 3.12: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same φ-
axis for M = MNPDL and for κ = 10. We
see that there are two unstable equilibrium
points corresponding to two maximum val-
ues of V (φ) at φ = 0 and at φ = −2.54. This
figure confirms the existence of NPDL.

where

Ms =

√

γσie +
1

µ

{
κ− 1

2

κ− 3
2

− β(κ)
e1

}−1

. (3.3.8)

For low frequency IA wave, we have ω << ωc ⇔ ω
ωc

<< 1 ⇔ ω << 1 as ω is

normalized by ωc, i.e.,
ω
ωc

is replaced by ω, and consequently the equation (3.3.7)

assumes the following form:

ω

kz
=
(
M−2

s + k2
⊥

)−1/2

. (3.3.9)

The equation (3.3.9) is exactly same as equation (1.2.9) of Chapter-1 if κ → ∞.
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Figure 3.13: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same φ-
axis for M = MNPDL−0.005 and for κ = 10.
This figure confirms the existence of NPSW
just before the formation of NPDL.
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Figure 3.14: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same φ-
axis for M = MNPDL+0.005 and for κ = 10.
We see that there are two unstable equilib-
rium points corresponding to two maximum
values of V (φ) at φ = 0 and at φ = −2.39.
This figure confirms the existence of super-
soliton.

3.4 Energy Integral

To investigate the time independent nonlinear IA waves propagating along a direction

having direction cosines (lx, ly, lz), we consider a wave frame moving with a constant

velocity M normalized by Cs along a direction having direction cosines (lx, ly, lz).

Therefore, here we consider the following transformation:

ξ = lxx+ lyy + lzz −Mt with l2x + l2y + l2z = 1. (3.4.1)
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Figure 3.15: (a) V (φ) and (b) the phase por-
trait of the system are drawn on the same φ-
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This figure confirms the existence of NPSW
after the formation of NPDL and NPSS.
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Figure 3.16: φ is plotted against ξ for
M = MNPDL +0.005 (solid curve) and M =
MNPDL − 0.005 (dashed curve) for κ = 10
and other indicated parameter values. The
jump discontinuity between the amplitudes
of NPSWs immediately before and after the
formation of NPDL is evident in this figure.

Consequently all the dependent variables depend only on the single variable ξ. Now,

lifting the continuity equation (3.3.3) in the wave frame and using the boundary

conditions

(
ni, uix, uiy, uiz,φ,

dφ

dξ

)
→
(
1, 0, 0, 0, 0, 0

)
as |ξ| → ∞, (3.4.2)

we get the following equation:

lxuix + lyuiy + lzuiz = M
(
1− 1

ni

)
. (3.4.3)

Now, lifting the z component of equation of motion (3.3.4) in the wave frame and

using the boundary conditions (3.4.2), the solution of the z component of the equation

of motion (3.3.4) for the unknown uiz can be simplified as follows:

uiz =
lz
M

[
σie

{
(ni)

γ − 1
}
+

∫ φ

0

nidφ
]
, (3.4.4)
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Figure 3.17: Unstable equilibrium points (small solid circles) and stable equilibrium points (small
solid stars) for the dynamical system are drawn on the φ-axis for different values of M = MNPDL+ϵ
for κ = 10. This figure clearly shows the transition from double layer to supersoliton to conventional
soliton again for negative polarity.

where we have used equation (3.4.3) to simplify the equation (3.4.4) and ni is given

by the equation (3.3.5).

Using the transformation (3.4.1), we get the following solutions for the unknowns

uix and uiy from the x and y components of the equation of motion (3.3.4):

(
uix

uiy

)
=

(
G1(φ) −dP

dξ

dP
dξ G1(φ)

)
⎛

⎜⎜⎝

lx
l2x + l2y
ly

l2x + l2y

⎞

⎟⎟⎠ , (3.4.5)

where

G1(φ) ≡ G1(M,φ) = M − M

ni
− l2z

M
G(φ), (3.4.6)
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G(φ) = σie

(
nγ
i − 1

)
+

∫ φ

0

nidφ, (3.4.7)

P ≡ P (M,φ) =
M2

2(ni)2
+

γσie

γ − 1
(ni)

γ−1 + φ, (3.4.8)

and we have used equation (3.4.6) to simplify the equation (3.4.5) and ni is given by

the equation (3.3.5).

Differentiaing the first equation of (3.4.5) with respect to ξ and using this expres-

sion of
duix

dξ
in the x component of the equation of motion (3.3.4), we get the following

equation:

d2P

dξ2
=

niG1(φ)

M
. (3.4.9)

Using the identity

d2P

dξ2
=

1

2

dP

dφ

d

dφ

(dφ
dξ

)2
+

d2P

dφ2

(dφ
dξ

)2
, (3.4.10)

the equation (3.4.9) can be written in the following form:

dΓ

dφ
+

2

χ

dχ

dφ
Γ =

2

χ
f(φ), (3.4.11)

where

Γ =
(dφ
dξ

)2
,χ ≡ χ(M,φ) =

dP

dφ
, (3.4.12)

f(φ) ≡ f(M,φ) =
niG1(φ)

M
. (3.4.13)

The equation (3.4.11) is a linear differential equation in Γ having integrating factor

χ2 and consequently the general solution of (3.4.11) can be put in the following form:

1

2

(dφ
dξ

)2
+ V (φ) = 0, (3.4.14)
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where

V (φ) = V (M,φ) = −

∫ φ

0

χf(φ)dφ

χ2 , (3.4.15)

and we have used (3.4.2) to simplify (3.4.14) and the equation (3.4.14) is known as

the energy integral with Sagdeev pseudo potential V (φ)(= V (M,φ)).

3.5 Different Bounds of Mach Number M

The mechanical analogy of (3.4.14) has been extensively discussed in the paper of

Das et al. [65]. According to the mechanical analogy of Sagdeev [11], the equation

(3.4.14) describes a PPSW (NPSW) if the following conditions hold simultaneously:

• (a) V (M, 0) = 0, V ′(M, 0) = 0 and V ′′(M, 0) < 0,

• (b) V (M,φm) = 0, V ′(M,φm) > 0 (V ′(M,φm) < 0) for some M with φm > 0

for the existence of a PPSW (φm < 0 for the existence of a NPSW),

• (c) V (M,φ) < 0 for min{0,φm} < φ < max{0,φm}.

Again, for a PPDL (NPDL) solution of (3.4.14), the second condition (b) is replaced

by the following condition:

• (b1) V (M,φm) = 0, V ′(M,φm) = 0, V ′′(M,φm) < 0 for some M with φm > 0

for the existence of a PPDL (φm < 0 for the existence of a NPDL).

Using the conditions (a), (b) or (b1), (c), we have discussed the different bounds of

Mach number M for the existence of different solitary structures:

• Mc & Ms: Mc is the Lower bound of the Mach number for the existence of

the solitary structures of any polarity, i.e., solitary structure of any polarity
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starts to exist for M > Mc. In fact the condition M > Mc is the necessary

condition for the existence of solitary structures and the expression of Mc can

be obtained from the condition (a). It is simple to check that the conditions

V (M, 0) = 0 and V ′(M, 0) = 0 are trivially satisfied for any M whereas the

condition V ′′(M, 0) < 0 imposses the following restriction on M :

Mc < M < Ms, (3.5.1)

where

Mc = lzMs, (3.5.2)

and Ms is given by the equation (3.3.8). Therefore, for the existence of solitary

structures of any polarity, we must have Mc < M < Ms and consequently, Ms is

the upper bound of the Mach number for the existence of the solitary structure

of any polarity.

• MPPDL & MNPDL: The Mach number MPPDL (MNPDL) corresponds to a posi-

tive (negative) potential double layer solution of the energy integral (3.4.14). To

find the double layer solution, one can use condition (b1). The other two condi-

tions are same for all solitary structures. Let M = Md and φm = φd ̸= 0 be the

solutions of the equations V (M,φm) = 0 and V ′(M,φm) = 0, i.e., V (Md,φd) = 0

and V ′(Md,φd) = 0 for non-zero φd. Using the equations V (Md,φd) = 0 and

V ′(Md,φd) = 0, we get the following expression of Md:

Md =

√
l2zni(φd)G(φd)

ni(φd)− 1
, (3.5.3)

where G(φ) is given by the equation (3.4.7). The equation V (Md,φd) = 0 gives



Chapter 3: Effect of Kappa - Cairns distribution on IA solitary structures 129

the following equation:

∫ φd

0

χ(Md,φ)f(Md,φ)dφ = 0, (3.5.4)

Solving equations (3.5.3) and (3.5.4) numerically for φd and Md, we can proceed

our investigation for finding MPPDL and MNPDL. If V ′′(Md,φd) < 0, then this

Md corresponds to MPPDL (MNPDL) of a PPDL (NPDL) if φd > 0 (φd < 0)

and φd is the smallest (largest) real satisfying the conditions V (Md,φd) = 0

and V ′(Md,φd) = 0. In fact, we have followed the same analysis as given in

Chapter-1 to get φd and Md.

• Mpmax & Mnmax: Here Mpmax (Mnmax) is the upper bound of the Mach number

for the existence of all positive (negative) potential solitary structures includ-

ing positive (negative) potential double layers and positive (negative) potential

supersolitons. This upper bound can be determined by considering the theory

as discussed in Chapter-1. In fact, to derive the inequality (3.5.1), we have

assumed the condition χ(M, 0) ̸= 0, otherwise V (M,φ) is not well defined at

φ = 0. But to make V (φ) well defined, we must consider χ(M,φ) ̸= 0 through-

out the entire possible range of φ. So, we can consider the equation χ(M,φ) = 0

instead of considering χ(M,φ) ̸= 0 and the equation χ(M,φ) = 0 gives

M2

M2
s

= K(φ), (3.5.5)

where

K(φ) =
1

M2
s

[
γσien

γ+1
i + n3

i

(dni

dφ

)−1]
. (3.5.6)

Obviously the equation (3.5.5) is well defined only when K(φ) > 0 for all φ.

From equation (3.5.6), we see thatK(φ) is independent ofM . Therefore, dP
dφ = 0
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holds good only when M assumes the value Ms

√
K(φ) and consequently for the

existence of positive [negative] potential solitary structure, M cannot exceed the

value Ms

√
K(φpmin) [Ms

√
K(φnmin)], where K(φ) attains its global minimum

at φ = φpmin [φ = φnmin] in the positive [negative] side of φ - axis, i.e., for

φpmin ≥ 0 [φnmin ≤ 0]. Now, if φpmin = 0 [φnmin = 0], then M cannot exceed

the value Ms because
√
K(φpmin) =

√
K(0) = 1 [

√
K(φnmin) =

√
K(0) = 1],

i.e., M < Ms and consequently Mpmax = Ms [Mnmax = Ms]. So, we consider the

case φpmin > 0 for positive potential side and the case φnmin < 0 for negative

potential side. For simplicity, let us consider the positive side only, then we have

the following two cases: Case I - K(φpmin) > 1 and Case II - 0 ≤ K(φpmin) ≤ 1.

Case I : If K(φpmin) > 1, then the upper bound of M for the existence of the

positive potential solitary structures is given byMpmax = Ms. In fact, there does

not exist any φpmin for which M can assume the value Ms

√
K(φpmin) because

M = Ms

√
K(φpmin) ⇒ M

Ms
=
√
K(φpmin) > 1 ⇒ M > Ms which contradicts

the fact Mc < M < Ms and consequently dP
dφ ̸= 0 for φ = φpmin. So, V (φ) is well

defined as a real valued function of φ if it is well defined at φ = 0. Therefore,

for this case, we have Mpmax = Ms.

Case II : If 0 ≤ K(φpmin) ≤ 1, then M = Ms

√
K(φpmin) is the mini-

mum value of M at which there is a singularity of V (φ) at φ = φpmin, i.e.,

dP
dφ

∣∣∣
φ=φpmin

= 0 when M = Ms

√
K(φpmin). Therefore, M cannot exceed the

value Ms

√
K(φpmin), i.e., M < Ms

√
K(φpmin). So, for this case, we have

Mpmax = Ms

√
K(φpmin).

Combining Case (I), Case (II) and the earlier discussions, we get the following
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formula for Mpmax:

Mpmax = Ms min
{
1,
√

K(φpmin)
}
. (3.5.7)

Similarly, considering the negative side of φ axis, one can derive the following

formula for Mnmax:

Mnmax = Ms min
{
1,
√

K(φnmin)
}
. (3.5.8)

3.6 Existence Domains

With the help of the formulas ofMc, Ms, Mpmax, Mnmax and the numerical analogy for

MPPDL and MNPDL as described by the equations (3.5.2), (3.3.8), (3.5.7), (3.5.8) and

the equations (3.5.3) and (3.5.4) respectively, one can draw the compositional param-

eter spaces or the existence domain with respect to any parameter of the system and

this existence domain clearly shows the occurrence of different solitary structures in-

cluding double layers. Also, if a compositional parameter space shows the existence of

solitary waves after the formation of double layers, then the existence of supersoliton

is implied but if the system supports supersolitons without the formation of double

layer then it is not possible to predict the existence of supersoliton from the compo-

sitional parameter spaces. In fact, to confirm the existence of supersoliton structures

in either cases, it is essential to consider the phase portraits of the dynamical system

describing different solitary structures. In this section, we have considered different

compositional parameter spaces with respect to the nonthermal parameter βe.

In figures 3.2 - 3.5, the magenta curve, the blue curve, the red curve, the black

curve and the green curve represent the curves M = Mc, M = Mpmax, M = Mnmax,

M = Ms and M = MNPDL, i.e., the curve along which NPDLs exist, respectively.
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Here, P, N, C and NS are, respectively, the regions of existence of PPSWs, existence

of NPSWs, coexistence of PPSWs and NPSWs and existence of NPSWs after the

formation of NPDLs. Based on these notations and terminologies, the figures of the

compositional parameter spaces are self-explanatory if we define the following cut-off

values of the nonthermal parameter βe : (a) β(1)
e : The curve M = Mnmax coincides

with the curve M = Ms for βe ≥ β(1)
e . (b) β(2)

e : The curve M = Mpmax exists for

all βe ≥ β(2)
e . (c) β(3)

e : The curve M = Mpmax differs from the curve M = Ms for

all βe > β(3)
e , i.e., the curve M = Mpmax coincides with the curve M = Ms for all

β(2)
e ≤ βe ≤ β(3)

e . (d) β(4)
e : The curve M = MNPDL exists for all βe ≥ β(4)

e . (e) β(5)
e :

The curve M = Mnmax differs from the curve M = Ms for all βe > β(5)
e , i.e., The

curve M = Mnmax coincides with the curve M = Ms for all β
(1)
e ≤ βe ≤ β(5)

e .

Again it is important to note that the upper bound of βe is βeT , where the expres-

sion of βeT is given by the equation (3.2.7). For κ = 3, κ = 5, κ = 10 and κ = 100,

the values βeT are approximately 0.67, 0.64, 0.60 and 0.57 respectively. Figures 3.2 -

3.5 are the qualitatively different compositional parameter spaces showing the nature

of existence of different solitary structures.

Figure 3.2 is the existence domain with respect to βe for κ = 3 along with the

values of the other parameters as mentioned in the figure concerned. We have the

following observations from this figure: (i) The system supports NPSWs throughout

the range of βe, i.e., for all 0 ≤ βe ≤ βeT but for the clearness of the figure, the figure

3.2 has been drawn for 0 ≤ βe ≤ 0.44. (ii) The system starts to support PPSWs

at βe = β(2)
e = 0.142, i.e., PPSWs exist for all β(2)

e ≤ βe ≤ βeT . (iii) The system

supports coexistence of PPSWs and NPSWs for all β(2)
e ≤ βe ≤ βeT . (iv) The curve

M = Mnmax coincides with the curve M = Ms for β
(1)
e ≤ βe ≤ βeT where β(1)

e = 0.065,

and differs from M = Ms for 0 ≤ βe < β(1)
e . (iv) The system does not support double
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layers or supersolitons of any polarity.

Figure 3.3 exhibits the existence regions of different solitary structures the system

supports for κ = 5 along with the values of the other parameters indicated in the

figure concerned. This existence domain seems to look similar to figure 3.2, but we

have found an interesting property of this existence domain as well as of the system.

(i) The system supports NPSWs for all 0 ≤ βe ≤ βeT but here the figure 3.3 has

been drawn for 0 ≤ βe ≤ 0.52. (ii) The system supports coexistence of PPSWs and

NPSWs for all β(2)
e ≤ βe ≤ βeT where β(2)

e = 0.167. (iii) The curve M = Mnmax (red)

starts to coincide with the curve M = Ms (black) at βe = β(1)
e = 0.166. (iv) The

curve M = Mpmax (blue) coincides with M = Ms (black) for β
(2)
e ≤ βe ≤ β(3)

e = 0.23.

The curve M = Mpmax differs from M = Ms for β
(3)
e < βe ≤ βeT . (v) The system does

not support positive potential double layers or positive potential supersolitons. (vi)

Although the system does not support negative potential double layers, but in this

existence domain, we have observed the existence of negative potential supersolitons,

i.e., the system supports NPSSs without the formation of NPDLs. This characteristic

of the system has been confirmed and precisely described through the phase portraits

of the corresponding dynamical systems in the next Section 3.7.

Figure 3.4 shows the existence domain with respect to βe for κ = 10 along with

the values of the other parameters as mentioned in the figure concerned. From this

figure, we have the following observations: (i) The system supports NPSWs for all

admissible values of βe, i.e., for all 0 ≤ βe ≤ βeT but here the figure 3.3 has been drawn

for 0 ≤ βe ≤ 0.55. (ii) For this existence domain, β(2)
e = 0, i.e., the system supports

PPSWs for all 0 ≤ βe ≤ βeT . (iii) The system supports coexistence of PPSWs and

NPSWs for all 0 ≤ βe ≤ βeT . The region of this coexistence is bounded by the curve

M = Mc (magenta) and the curve M = Mnmax (red) for 0 ≤ βe ≤ β(3)
e = 0.25.
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For β(3)
e < βe ≤ βeT , the coexistence region is bounded by M = Mc and M = Mpmax

(blue). (iv) The system starts to support NPDLs along the curveM = MNPDL (green)

whenever βe ≥ β(4)
e = 0.39, i.e., NPDLs exist for all β(4)

e ≤ βe ≤ βeT along the curve

M = MNPDL. (v) The system supports NPSSs after the formation of NPDLs. (vi)

The system exhibits the existence of NPSWs after the formation of NPDLs. (vii) The

curve M = Mnmax (red) coincides with the curve M = Ms (black) for β
(1)
e ≤ βe ≤ β(5)

e

where β(1)
e = 0.22 and β(5)

e = 0.502. The curve M = Mnmax differs from M = Ms

for 0 ≤ βe < β(1)
e and for β(5)

e < βe ≤ βeT . In fact, we have observed that as κ

increases, the value of β(5)
e decreases. In other words, β(5)

e gradually tends to β(1)
e ,

where M = Mnmax starts to coincide with M = Ms, and eventually, both of these two

cut-off marks of βe disappear from the existence domain, i.e., M = Mnmax does not

coincide with M = Ms for any value of βe and consequently, the curve M = Mnmax

lies completely below the curve M = Ms. In fact, with the increasing value of κ, this

existence domain (figure 3.4) tends to match the existence domain as shown in FIG.

1.2 of Chapter-1, where we have considered the Cairns nonthermal distribution for the

electrons. This fact is clear from figure 3.5, where we have drawn the curves M = Mc,

M = Ms and M = Mnmax only for κ = 100, keeping the other parameter values same

as in figure 3.4. This figure is not the complete existence domain for κ = 100. The

qualitative behaviour of the curves M = Mpmax and M = MNPDL remain unchanged.

So, the figure along with the figure 3.4 indicates that the compositional parameter

space (figure 3.4) tends to the compositional parameter space as shown in FIG. 1.2

of Chapter-1. Again, it is also important to note that β(2)
e decreases with increasing

κ and finally, it assumes the lower bound of βe, which is equal to 0.
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3.7 Phase Portraits

Supersoliton structure was first introduced by Dubinov & Kolotkov [113]. At the

same time, Das et al. [69] observed the dias-type solitary structures whose properties

are same as the supersolition structure of Dubinov & Kolotkov [113]. Actually, to

distinguish between a supersoliton and a conventional soliton, it is important to draw

the phase portraits of the dynamical system describing different nonlinear waves.

Specifically, according to Dubinov & Kolotkov [113], the separatrix corresponding to

a supersoliton encloses one or more inner separatrices and several stable and unsta-

ble equilibrium points whereas the separatrix corresponding to a conventional soliton

encloses only one stable equilibrium point and consequently there is no other sepa-

ratrix within the separatrix corresponding to the conventional soliton. Subsequently,

several authors [71–77, 114–119, 177] investigated supersoliton structures in different

unmagnetized and magnetized plasma system. Recently, Dubinov & Kolotkov [120]

have clearly discussed the supersoliton structures in their review works on super-

nonlinear waves in astrophysical and laboratory plasmas.

From the existence domains or the compositional parameter spaces, this is con-

venient to confirm the existence of solitary structures including double layers also.

But the existence of supersolitons cannot be confirmed from the existence domains.

If we consider the existence domain shown in figure 3.3, we can only say that the

system supports solitary waves of both polarities but no other solitary structures of

the negative polarity. Particularly, from the existence domain as shown in figure 3.3,

it is not possible to predict the occurrence of the negative potential supersoliton. But,

for this existence domain, if we plot V (φ) against φ for a sequence of values of the

Mach number M then we get figure 3.6. This figure shows that the Mach number
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M = 1.48 corresponds to a negative potential soliton (shown is violet curve), and

as we increase the value of M , the shape of the solitary structure gradually changes

from a soliton to a supersoliton. In figure 3.6(a), the first three V (φ)-curves (violet,

green and brown) correspond to negative potential solitons wheareas the next three

curves (red, blue and magenta) correspond to negative potential supersolitons, and

the last two curves (sky-blue and yellow) correspond to negative potential solitons

again. Specifically, figue 3.6(b) and figure 3.6(c) respectively show the same red and

blue curves in 3.6(a) which clearly show up to be supersolitons. But to distinguish

between a soliton and supersoliton, it is instructive to draw the phase portraits, i.e.,

the structure of supersoliton can be established even more firmly if we draw the phase

portraits of the dynamical systems of the solitary structures concerned. Again, if we

consider the existence domain shown in figure 3.4, we see that the system supports

NPDLs, and also the existence of solitary structures beyond the existence of NPDLs

can be surmised from this existence domain. Now, if solitary waves exist after the

formation of a double layer, we can be sure about the existence of supersolitons be-

tween the double layer and the solitary waves after the formation of double layers.

But, existence domains cannot indicate the range of the Mach number M which cor-

responds to the existence of supersoliton as well as the range of M which corresponds

to solitary waves after the occurrence of double layers. Plotting φ− V (φ) curves can

give an idea in this regard but to confirm the existence of a supersoliton and a soli-

ton after the occurrence of supersolitons, we need to follow the mechanism of phase

portraits.

Moreover, if we consider the transition of solitary structures: soliton → double

layer → supersoliton → soliton (e.g., fig.3.4), there is a finite jump between the

amplitudes of solitons just before and just after the formation of the double layer.
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Likewise, if we consider the transition of solitary structures: soliton → supersoliton

→ soliton without the formation of a double layer (e.g., fig.3.3), we observe that

there is a finite jump between the amplitudes of solitons just before and just after the

formation of supersolitons. We have also observed that there is a finite jump between

the amplitudes of a supersoliton and a soliton before the formation of supersolitons.

This phenomenon cannot be explained by the existence domains or φ− V (φ) graphs

only, but the phase portraits of the dynamical systems corresponding to the concerned

solitary structures can describe this well. So, to know the topology of the different

nonlinear structure of IA waves, it is necessary to consider the phase portraits of the

dynamical system describing the nonlinear waves. Now, to get first order and first

degree coupled differential equations describing the nonlinear behaviour of IA waves,

we differentiate the energy integral (3.4.14) with respect to φ and finally we get the

following equations:

dφ1

dξ
= φ2,

dφ2

dξ
= −V ′(φ1), where φ1 = φ. (3.7.1)

With the help of the existence domain as shown in figure 3.3, we have plotted

V (φ) aganist φ and the phase portraits of the corresponding dynamical system in the

upper panel (marked (a)) and lower panel (marked (b)) respectively of each of the

figures 3.7 - 3.9, to describe the shapes of the solitary structures. We see that there

is a one-one correspondence between the curve V (φ) against φ in the upper panel

and the separatrix (shown in bold blue line) in the lower panel in each case. Each

solid circle in the lower panel corresponds to an unstable equilibrium point where the

potential energy V (φ) of a pseudo particle under the action of a force field −V ′(φ)

is maximum and each solid star corresponds to a stable equilibrium point where the

potential energy V (φ) of the pseudo particle is minimum. Therefore, in each of the
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figures 3.7 - 3.9, each maximum point of V (φ) corresponds to an unstable equilibrium

point and each minimum point of V (φ) corresponds to a stable equilibrium point of

the dynamical system corresponding to different solitary structures.

Figure 3.7(b) shows the phase portrait of the dynamical system corresponding

to an NPSW which appears before the formation of NPSSs. In this figure, we see

that there is only one separatrix which appears to start and end at the unstable

equilibrium point at the origin (0, 0) and this separatrix encloses only one stable

equilibrium point on the negative potential side, viz., (−5.14, 0). In figure 3.7 (a),

V (φ) is plotted against φ which corresponds to the separatrix. This confirms the

existence of an NPSW for κ = 5 before the formation of NPSSs.

Figure 3.8(b) shows the phase portrait of the dynamical system corresponding to a

negative potential supersoliton. In this figure, we see that there are two separatrices:

one seems to begin and end at the unstable equilibrium point at the origin (shown

in bold blue curve) which encloses another separatrix that appears to pass through

a non-zero unstable fixed point (−5.76, 0) and encloses two stable equilibrium points

(−6.9, 0) and (−2.27, 0). In figure 3.8(a), V (φ) is plotted against φ which corresponds

to the separatrix of 3.8(b). This confirms the existence of NPSS for κ = 5 without

the formation of NPDL whereas in Chapter-1, we have observed existence of NPSS

after the formation of NPDL for κ → ∞.

Figure 3.9 shows the phase portrait of the dynamical system corresponding to an

NPSW which appears after the formation of NPSSs. In this figure, we see that there

is only one separatrix which seems to begin and end at the unstable equilibrium point

at the origin (0, 0) and this separatrix encloses only one stable equilibrium point on

the negative potential side, viz., (−9.05, 0). In figure 3.9 (a), V (φ) is plotted against

φ which corresponds to this mentioned separatrix. This shows the existence of an
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NPSW after the formation of supersolitons for κ = 5.

We have mentioned earlier in this section that figure 3.6 shows the occurrence

of solitons, supersolitons and solitons again after the formation of supersolitons, of

negative polarity, sequentially, for the increasing values of M , for κ = 5 and the

other parameter values as mentioned in the same figure. So, we observe the following

transition of solitary structures: NPSW → NPSS → NPSW after the formation of

NPSSs and here we get NPSSs without the formation of NPDL. Figure 3.10 and

3.11 help us to understand this transition better. In figure 3.10, φ is plotted against

ξ for three distinct values of the Mach number M . M = 1.49 corresponds to the

blue curve which represents a negative potential soliton. M = 1.5 corresponds to

the red curve which exhibits a dias-type solitary structure that follows the definition

of a supersoliton given by Dubinov & Kolotkov [113]. M = 1.53 corresponds to

a negative potential soliton after the occurrence of negative potential supersolitons

which is the green curve in figure 3.10. In figure 3.11, we have drawn the stable

and unstable equilibrium points of the dynamical system for increasing values of M

starting from M = 1.49. We see that there are two equilibrium points for first two

values of M which corresponds to only one separatrix that seems to pass through

the unstable equilibrium point at the origin and encloses only one stable equilibrium

point. Then there are four fixed points for the next seven values of M , each of which

corresponds to a supersoliton, i.e., the system contains one separatrix that appears

to pass through the unstable equilibrium point at the origin and encloses another

separatrix. We see that the distance between the non-zero unstable equilibrium point

and the stable equilibrium point nearest to the origin decreases for increasing values

of M , and finally both of them disappear from the system. In other words, the system

is left with only one separatrix passing through the unstable equilibrium point at the
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origin and enclosing a single stable equilibrium point which corresponds to a soliton

(after the formation of supersolitons). We have numerically observed that our system

exhibits this transition: NPSW → NPSS → NPSW after the formation of NPSSs

without the formation of an NPDL in the range 4.9 ≤ κ ≤ 5.05.

Figure 3.12(b) shows the phase portrait of the dynamical system corresponding

to an NPDL for κ = 10 and other indicated values of parameters. Here we see only

one separatrix that seems to begin and end at the unstable equilibrium point at the

origin (0, 0) and again seems to pass through another non-zero equilibrium point, viz.,

(−2.5, 0), and encloses two stable equilibrium points, viz., (−11.03, 0) and (−1.1, 0).

In figure 3.12(a), V (φ) is plotted against φ which corresponds to the blue separatrix

in figure 3.14(b). This confirms the existence of an NPSS for κ = 10.

Figure 3.13(b) shows the phase portrait of the dynamical system corresponding

to an NPSW for κ = 10 which appears just before the double layer for the same

parameter values. Here we see only one separatrix that seems to begin and end at

the unstable equilibrium point at the origin and encloses only one stable equilibrium

point, viz., (−1.04, 0), on the negative potential side. In figure 3.13(a), V (φ) is

plotted against φ which corresponds to the mentioned separatrix in the lower panel.

This confirms the existence of NPSW just before the formation of NPDL for κ = 10

and other indicated parameter values.

Figure 3.14(b) shows the phase portrait of the dynamical system corresponding to

a negative potential supersoliton for κ = 10 and other indicated values of parameters.

Here we see there are two separatrices: one seems to begin and end at the unstable

equilibrium point at the origin (0, 0) (shown in bold blue curve) and the other one is

enclosed in the first one (shown in bold green curve). This second separatrix seems

to pass through a non-zero unstable equilibrium point, viz., (-2.39,0), and encloses
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two stable equilibrium points, viz., (−11.18, 0) and (−1.17, 0). In figure 3.14(a), V (φ)

is plotted against φ which corresponds to the blue separatrix in figure 3.14(b). This

confirms the structure of an NPDL for κ = 10.

Figure 3.15(b) shows the phase portrait of the dynamical system corresponding

to a solitary structure which is qualitatively the same (shown in figure 3.13) as an

NPSW, for κ = 10 and other indicated values of parameters. Here we see only one

separatrix that appears to pass through the unstable equilibrium point at the origin

(0, 0) and encloses only one stable equilibrium point, viz., (−12, 0). In figure 3.15(a),

V (φ) is plotted against φ which corresponds to the separatrix in figure 3.15(b). This

confirms the structure of an NPSW after the formation of NPDL for κ = 10 as an

NPSW, for κ = 10 and other indicated values of parameters. Here we see only one

separatrix that seems to pass through the unstable equilibrium point at the origin

(0, 0) and encloses only one stable equilibrium point, viz., (−12, 0). In figure 3.15(a),

V (φ) is plotted against φ which corresponds to the separatrix in figure 3.15(b). This

confirms the structure of an NPSW after the formation of NPDL for κ = 10.

In figure 3.16, φ is plotted against ξ for M = MNPDL − 0.005 and M = MNPDL +

0.005 for κ = 10. In figure 3.17, we draw the unstable and stable equilibrium points

of the dynamical system for increasing values of M starting from M = MNPDL,

for κ = 10. Here, we see that the pair of two patricular equilibrium points, one, the

stable equilibrium point nearest to the origin and the other one, the non-zero unstable

equilibrium point, appear closer with increasing values of M , and eventually both of

them vanish from the system. Thus, the system contains only one separatrix passing

through the origin and enclosing only one stable equilibrium point which corresponds

to a conventional soliton. The transition from double layer to supersoliton to soliton

for negative polarity is evident from this figure.
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3.8 Conclusions

We have developed a distribution function from Kappa and Cairns distribution func-

tions and we call this distribution as combined Kappa-Cairns distribution. But, for

the first time, this combined distribution was introduced by Aoutou et al. [175].

We have studied IA solitary structures in a collisionless magnetized plasma con-

sisting of warm adiabatic ions, static negatively charged dust grains and combined

Kappa-Cairns distributed electrons, immersed in a static uniform magnetic field di-

rected along the z− axis. This combined Kappa-Cairns distribution is well defined for

κ > 2.5 for non-zero βe. But for βe = 0, the combined distribution reduces to Kappa

distribution and consequently the restriction on κ becomes κ > 1.5. We have also

shown that this combined distribution reduces to (i) Cairns nonthermal distribution

if κ → ∞, and (ii) the isothermal distribution if κ → ∞ and βe = 0.

We have seen that there is a restriction on the nonthermal parameter βe that

makes the combined Kappa-Cairns distribution well-defined. We have analytically

studied the dependence of the upper bound βeT of βe on κ. For a given value of

κ(> 2.5), one can easily get the corresponding βeT as we have formulated βeT as a

function of κ only. As κ → ∞, βeT takes the value 4/7, i.e., when the combined

distribution reduces to Cairns nonthermal distribution, the upper bound βe is 4/7

which follows the result reported by Verheest & Pillay [60].

Following the theory and mechanism given in Section 3.5, we have determined dif-

ferent bounds of the Mach numberM . Considering these bounds ofM , we have drawn

a number of compositional parameter spaces with respect to the nonthermal parame-

ter βe. The existence of different solitary structures is evident and specified from these

compositional parameter spaces. (i) For 2.5 < κ < 4.9, the system supports PPSWs,
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NPSWs and coexistence of them. In this range, the system does not support double

layers or supersolitons of any polarity for any set of values of the other parameters

of the system. (ii) For 4.9 ≤ κ ≤ 5.05, the system supports PPSWs, NPSWs, coexis-

tence of PPSWs and NPSWs and negative potential supersolitons (NPSSs) without

the formation of double layer of negative polarity. In this range of κ, we have also

observed the following transition of solitary structures: NPSW → NPSS → NPSW

after the formation of NPSSs. The system does not support NPDLs, PPDLs or posi-

tive potential supersolitons in this range of κ. (iii) For κ > 5.05, the system supports

PPSWs, NPSWs, coexistence of solitary waves of both polarities, NPDLs, NPSSs,

NPSWs after the formation of NPDL and NPSSs. We see a conventional transition

of solitary structures: NPSW → NPDL → NPSS → NPSW after the formation of

NPDL. (iv) For the case of κ distribution, i.e., when βe = 0, the system does not

support double layer or supersoliton of any polarity.

In the compositional parameter spaces, the existence of solitary waves after a

double layer (wherever exists) implies the existence of supersolitons, but the range of

the Mach number M for the existence of supersolitons cannot be determined from the

compositional parameter spaces. Moreover, for the case where the system supports

supersolitons without the formation of a double layer, the compositional parameter

space fails to indicate the existence of supersolitons. In this situation, the phase

portrait of the dynamical system of the solitary structure concerned has been the

best scheme to confirm and describe the existence and topology of a supersoliton. In

our present work, we have drawn several phase portraits of the dynamical system of

different solitary structures to meet the same purpose. This has also been helpful to

understand the two types of transitions of solitary structures we have observed in our

sytem.
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In conformity with the construction of the combined Kappa-Cairns distribution

function, we expect that this combined distribution can generate much more highly

energetic particles in the neighbourhood of v = 0 as well as in the tail of the distri-

bution curve in the phase space. For the same reason, the combined Kappa-Cairns

distribution can be regarded more effective and useful than the Kappa and Cairns

distribution functions, keeping in mind the fact that both Kappa and Cairns distribu-

tion functions can be derived from the combined Kappa-Cairns distribution function.

We hope that this distribution function will be accepted and useful in various fields

of plasma studies and beyond. Also, the formation of ion acoustic supersolitons with-

out the formation of an ion acoustic double layer is a new observation in magnetized

plasma which adds a new result to the study of IA waves in magneized dusty plasma.

So, our present work is hoped to make some significant contributions to the theory

of nonlinear wave propagation in a magnetized dusty plasma.

Finally, we hope that next generation satellite observations may be able to distin-

guish the signature of the existence of different solitary structures in space plasma as

described in our present chapter.



Chapter 4

Small amplitude ion acoustic solitary waves in a
collisionless magnetized dusty plasma §

In this chapter, we have derived a KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov)

equation to investigate the oblique propagation of weakly nonlinear and weakly dis-

persive ion acoustic (IA) waves in a collisionless magnetized plasma consisting of

warm adiabatic ions, static negatively charged dust grains and combined Kappa-

Cairns distribution of electrons. The plasma system is same as the plasma system

as defined in Chapter-3 but here we have considered the Poisson equation instead of

quasi-neutrality condition along with the different conservation equations to describe

the nonlinear behaviour of IA waves. It is found that a factor (B1) of the coefficient

of the nonlinear term of the KdV-ZK equation vanishes along different families of

curves in different parameter planes. In this situation, i.e., when B1 = 0, we have de-

rived a modified KdV-ZK (MKdV-ZK) equation to describe the nonlinear behaviour

of ion acoustic waves. We have investigated the solitary wave solutions of these evolu-

tion equations propagating obliquely to the direction of the magnetic field. We have

also discussed the effect of different parameters of the present plasma system on the

amplitude of these solitary wave solutions defined by the KdV-ZK and MKdV-ZK

equations.

§To be communicated.
145
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4.1 Introduction

Nonthermally distributed energetic particles are observed in a number of astrophysi-

cal environments [58, 92–107]. Specifically, the observations of electric field structures

by the FAST [98–100, 103, 107] Satellite, Viking Satellite [94, 96], Freja Satellite [58]

and GEOTAIL [97] and POLAR [101, 102, 107] missions in the Earth magnetosphere,

indicate the existence of fast energetic electrons. The electrostatic wave structures

observed by the Freja Satellite [58] can be described by Cairns [1] distributed nonther-

mal electrons. Several authors [1, 17, 18, 20, 22, 24, 64, 65, 67–71, 73–77, 178–180]

have investigated ion acoustic (IA) / dust acoustic (DA) / dust ion acoustic (DIA)

waves in various plasmas considering nonthermal Cairns [1] distributed electrons.

On the other hand, Kappa distributions have been used to describe space plasma

population in the inner heliosphere, including solar wind [79, 80], the planetary mag-

netospheres, including magnetosheath [37–39], the outer heliosphere and inner he-

liosheath [81]. Several authors [37–57] have used Kappa distribution in various stud-

ies of plasma physics. Although there are many space plasma environments where

the linear and nonlinear plasma phenomena [1, 39, 54, 109, 110] cannot be precisely

described by Cairns distribution or any such non-Maxwellian distribution.

To consider the combined effect of Kappa and Cairns distributed nonthermal elec-

trons, Aoutou et al. [175] modelled a non-Maxwellian velocity distribution function

which can describe the joint effect of Kappa distribution as well as Cairns distribu-

tion. Younsi and Tribeche [176] used this distribution to study the nonlinear dust

acoustic waves. Abid et al. [109] have numerically analyzed some basic properties

of the combined Kappa-Cairns velocity distribution of the lighter species (electrons,
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ions, positrons) and they call this distribution as Vasyliunas Cairns distribution. In

Chapter-3, we have systematically developed the combined Kappa-Cairns distribu-

tion and we have obtained the effective bounds of both nonthermal parameters κ and

βe for the combined Kappa-Cairns distribution. This distribution can generate more

highly energetic particles in comparison with both Kappa and Cairns distributions.

The existence of dusty plasma is very common in various astrophysical environ-

ments such as the planetary rings, asteroid zones, comets, the interstellar medium,

Earth’s ionosphere and Earth’s magnetosphere [84–90, 92] as well as laboratory ex-

periments [181, 182]. Several authors [69, 124–140] have studied DIA / IA solitary

structures in different unmagnetized / magnetized dusty plasmas. Some authors

[69, 130, 136, 138–140] considered the nonthermal electrons in different unmagne-

tized or magnetized dusty plasmas.

Considering electrons as isothermal, several authors [14–16] investigated the ex-

istence and stability of solitary waves in magnetized plasmas. On the other hand,

several authors [17–24] studied the existence and stability of small amplitude solitary

waves in a magnetized plasma by considering Cairns distributed nonthermal elec-

trons. In the present chapter, we have investigated the existence of small amplititude

ion acoustic solitary structures in a collisionless magnetized dusty plasma consisting

of negatively charged static dust grains, adiabatic warm ions and combined Kappa-

Cairns distributed electrons. The present chapter is different from Chapter-3 in the

following directions :

• In Chapter-3, we have considered quasi-neutrality condition instead of Poisson

equation to describe the nonlinear behaviour of IA waves whereas in the present

chapter, we have considered the Poisson equation instead of quasi-neutrality
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condition.

• In Chapter-3, we have investigated arbitrary amplitude IA solitary structures

by considering the Sagdeev pseudo potential method whereas in the present

chapter, we have used reductive perturbation method to investigate the small

amplitude IA solitary structures.

In this chapter, we have used the same set of hydrodynamic equations (1.2.1) - (1.2.3)

of Chapter-1, but we have used the combined effect of Kappa-Cairns distribution on

the density function of nonthermal electrons as given in equation (3.3.1) of Chapter-

3 instead of nonthermal electrons as prescribed in the paper of Cairns et al. [1] and

we have also used the Poisson equation instead of quasi-neutrality condition. For

easy readability of this chapter, the complete set of basic equations has been given

in section 4.2 of this chapter also.

4.2 Basic Equations

We consider the following governing equations to describe the nonlinear behaviour of

ion acoustic (IA) waves in a collisionless magnetized dusty plasma consisting of warm

adiabatic ions, static negatively charged dust grains and combined Kappa-Cairns

distributed electrons. We have assumed that the direction of the constant magnetic

field is along z-axis. We have also assumed that the characteristic frequency is much

less than the ion cyclotron frequency and the particle pressure is much less than the

magnetic pressure.

∂ni

∂t
+
−→∇ .(ni

−→ui ) = 0, (4.2.1)

(
∂

∂t
+−→ui .

−→∇
)
−→ui + γσien

γ−2
i

−→∇ni +
−→∇φ− ωc(

−→ui × ẑ) =
−→
0 , (4.2.2)
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∇2φ = 1− ni + ne − µ, (4.2.3)

ne = µ
(
1− β(κ)

e1 φ+ β(κ)
e2 φ2

)(
1− φ

κ1

)−κ3

, (4.2.4)

where we have used the following symbols / notations / terminologies:

−→∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

−→ui = (uix , uiy, uiz) , σie =
Ti

Te
, ωc =

eB0

mic
,

β(κ)
e1 = β(κ)

e

(
1 +

3

2κ2

)
, β(κ)

e2 = β(κ)
e

(
1 +

1

κ1
+

3

4κ1κ2

)
,

β(κ)
e =

4βe

4− 3βe

(
1− κ1

κ2

) ,

κ1 = κ− 3

2
, κ2 = κ− 5

2
, κ3 = κ− 1

2
.

The equations (4.2.1), (4.2.2), (4.2.3) and (4.2.4) are, respectively, the equation

of continuity of ions, the equation of motion of ion fluid, the Poisson equation and

the number density of combined Kappa-Cairns distributed electron. Here ni, ne,

−→ui = (uix, uiy, uiz), φ, (x, y, z) and t are, respectively, the ion number density, the

combined Kappa-Cairns distributed electron number density, the ion fluid velocity,

the electrostatic potential, the spatial variables, and time. These are normalized by

ni0, ni0, cs,
KBTe

e , λD and ω−1
pi respectively. Here ni0 is the unperturbed ion number

density, cs
(
=

√
KBTe

mi

)
is the ion acoustic speed, λD

(
=
√

KBTe

4πni0e2

)
is Debye length

of the present plasma system and ω−1
pi

(
=

√
mi

4πni0e2

)
is the ion plasma period with

KB is the Boltzmann constant, Ti(Te) is the average temperature of ion (electron), mi



150

is the mass of an ion, −e is the charge of an electron and γ
(
=

5

3

)
is the ratio of two

specific heats. We have already discussed the origin of the nonthermal parameters

β(κ)
e1 , β(κ)

e2 , β(κ)
e and βe and their restrictions in Chapter-3, and µ =

ne0

ni0
.

To derive the equation (4.2.3), we have used the following unperturbed charge

neutrality condition

Zdnd0

ni0
= 1− µ, (4.2.5)

where Zd is the number of electrons residing on a dust grain surface and nd0 is the

unperturbed dust number density.

Using the equation (4.2.4), the Poisson equation (4.2.3) can be expressed as

∇2φ = 1− ni +
∞∑

r=1

a(κ)r φr, (4.2.6)

where the expression of a(κ)r is given the following equation:

a(κ)r = µ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1
κ1

− β(κ)
e1 for r = 1,

br
κr
1

− β(κ)
e1

br−1

κr−1
1

+ β(κ)
e2

br−2

κr−2
1

for r = 2, 3, 4, ...

(4.2.7)

with

br =
Γ(κ− 1

2 + r)

Γ(κ− 1
2)Γ(r + 1)

for r = 1, 2, 3, ... (4.2.8)

So, the equations (4.2.1), (4.2.2), and (4.2.6) can be taken as the basic equations

describing the nonlinear behaviour of ion acoustic waves propagating obliquely to the

direction of the magnetic field. To derive the different evolution equations, we have

used the equations (4.2.1), (4.2.2), and (4.2.6).
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Figure 4.1: µ is plotted against βe for dif-
ferent values of κ when B1 = 0.
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Figure 4.2: µ is plotted against κ for differ-
ent values of βe when B1 = 0.

4.3 Evolution Equations

We have used the following stretchings of space coordinates and time to derive dif-

ferent evolution equations :

(ξ, η, ζ) = ϵ
1
2 (x, y, z − V t), τ = ϵ

3
2 t, (4.3.1)

where ϵ is a small parameter measuring the weakness of the dispersion and V is a

constant.

Using above-mentioned stretchings (4.3.1), the equation of continuity of ions

(4.2.1), parallel component of equation of motion of ion fluid (4.2.2), perpendicu-

lar component of equation of motion of ion fluid (4.2.2) and the Poisson equation

(4.2.6) can be written in the following forms:
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Figure 4.3: Amplitude (a) of the KdV solitary wave is plotted against µ for different values
of βe and fixed values of the other parameters.

• Equation of continuity of ions:

−V ϵ
1
2
∂ni

∂ζ
+ ϵ

3
2
∂ni

∂τ
+ ϵ

1
2
−→∇⊥ξ.(ni

−→ui⊥) + ϵ
1
2
∂

∂ζ
(niuiz) = 0, (4.3.2)

• Parallel component of equation of motion of ion fluid:

(
−V ϵ

1
2
∂

∂ζ
+ ϵ

3
2
∂

∂τ
+ ϵ

1
2
−→ui⊥.

−→∇⊥ξ + ϵ
1
2uiz

∂

∂ζ

)
uiz + ϵ

1
2γσien

γ−2
i

∂ni

∂ζ
+ ϵ

1
2
∂φ

∂ζ
= 0,

(4.3.3)

• Perpendicular component of equation of motion of ion fluid:

(
− V ϵ

1
2
∂

∂ζ
+ ϵ

3
2
∂

∂τ
+ ϵ

1
2
−→ui⊥.

−→∇⊥ξ + ϵ
1
2uiz

∂

∂ζ

)
−→ui⊥

+ϵ
1
2γσien

γ−2
i

−→∇⊥ξni + ϵ
1
2
−→∇⊥ξφ− ωc

−→ui⊥ × ẑ =
−→
0 , (4.3.4)
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Figure 4.4: Profile of negative potential soli-
tary wave defined by the KdV - ZK equation
is plotted for different values of βe.
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Figure 4.5: Profile of positive potential soli-
tary wave defined by the KdV - ZK equation
is plotted for different values of βe.

• Poisson equation:

ϵ∇2
ξφ = 1− ni +

∞∑

r=1

a(κ)r φr, (4.3.5)

where
−→∇⊥ξ = x̂ ∂

∂ξ + ŷ ∂
∂η , ∇

2
ξ =

∂2

∂ξ2 +
∂2

∂η2 +
∂2

∂ζ2 and −→ui⊥ = x̂uix + ŷuiy.

4.3.1 KdV-ZK Equation

We have applied the following perturbation expansions of the dependent variables to

derive the KdV-ZK equation :

P = P (0) +
∞∑

i=1

ϵiP (i), Q = Q(0) +
∞∑

i=1

ϵ
i
2+1Q(i), (4.3.6)

where P = ni, φ, uiz with n(0)
i = 1, φ(0) = 0, u(0)

iz = 0 and Q = uix, uiy with u(0)
ix = 0,

u(0)
iy = 0. Substituing perturbation expansions (4.3.6) in the equations (4.3.2) - (4.3.5)

and equating the coefficients of different powers of ϵ on both sides of each equation,
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Figure 4.6: Profile of negative potential soli-
tary wave defined by the KdV - ZK equation
is plotted for different values of κ.
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Figure 4.7: Profile of positive potential soli-
tary wave defined by the KdV - ZK equation
is plotted for different values of κ.

we obtain a set of equations. From the equation of continuity of ions, we get the

following equations at the order ϵ
3
2 , ϵ2 and ϵ

5
2 respectively.

−V
∂n(1)

i

∂ζ
+

∂u(1)
iz

∂ζ
= 0, (4.3.7)

−→∇⊥ξ.
−→ui

(1)
⊥ = 0, (4.3.8)

−V
∂n(2)

i

∂ζ
+

∂u(2)
iz

∂ζ
+
−→∇⊥ξ.

−→ui
(2)
⊥ +

∂n(1)
i

∂τ
+

∂

∂ζ
(n(1)

i u(1)
iz ) = 0. (4.3.9)

From the parallel component of equation of motion of ion fluid, we get the following

equations at the order ϵ
3
2 and ϵ

5
2 respectively.

−V
∂u(1)

iz

∂ζ
+ γσie

∂n(1)
i

∂ζ
+

∂φ(1)

∂ζ
= 0, (4.3.10)

−V
∂u(2)

iz

∂ζ
+γσie

∂n(2)
i

∂ζ
+
∂φ(2)

∂ζ
+
∂u(1)

iz

∂τ
+u(1)

iz

∂u(1)
iz

∂ζ
+γ(γ−2)σien

(1)
i

∂n(1)
i

∂ζ
= 0. (4.3.11)
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Figure 4.8: Profile of negative potential soli-
tary wave defined by the KdV - ZK equation
is plotted for different values of δ.
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Figure 4.9: Profile of positive potential soli-
tary wave defined by the KdV - ZK equation
is plotted for different values of δ.

In fact, there is no equation at the order ϵ2 for the parallel component of equation of

motion of ion fluid.

From the perpendicular component of equation of motion of ion fluid, we get the

following equations at the order ϵ
3
2 and ϵ2 respectively.

γσie
−→∇⊥ξn

(1)
i +

−→∇⊥ξφ
(1) − ωc

−→ui
(1)
⊥ × ẑ =

−→
0 , (4.3.12)

−ωc
−→ui

(2)
⊥ × ẑ − V

∂−→ui
(1)
⊥

∂ζ
=

−→
0 . (4.3.13)

From the Poisson equation, we get the following equations at the order ϵ and ϵ2

respectively.

−n(1)
i + a(κ)1 φ(1) = 0, (4.3.14)

∇2
ξφ

(1) = −n(2)
i + a(κ)1 φ(2) + a(κ)2 (φ(1))2. (4.3.15)
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Figure 4.10: Amplitude of the MKdV solitary wave is plotted against βe when B1 = 0.

At the lowest order (i.e., o(ϵ) = 3
2), we get the following two equations from the

continuity equation and the parallel component of equation of motion of ion fluid:

n(1)
i =

1

(V 2 − γσie)
φ(1) and u(1)

iz =
V

(V 2 − γσie)
φ(1). (4.3.16)

At the lowest order (i.e., o(ϵ) = 3
2), from the perpendicular components of the equation

of motion of ion fluid, we get the following expressions of u(1)
ix and u(1)

iy :

u(1)
ix = − V 2

ωc(V 2 − γσie)

∂φ(1)

∂η
and u(1)

iy =
V 2

ωc(V 2 − γσie)

∂φ(1)

∂ξ
. (4.3.17)

Now, it is simple to check that the continuity equations (4.3.8) at the order o(ϵ) = 2

is identically satisfied, whereas the perpendicular component (4.3.13) at the order

o(ϵ) = 2 gives the following expressions of u(2)
ix and u(2)

iy :

u(2)
ix =

V 3

ω2
c (V

2 − γσie)

∂2φ(1)

∂ζ∂ξ
, (4.3.18)

u(2)
iy =

V 3

ω2
c (V

2 − γσie)

∂2φ(1)

∂ζ∂η
. (4.3.19)
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Figure 4.11: Profile of negative potential
solitary wave defined by the MKdV - ZK
equation is plotted for different values of βe

when B1 = 0.
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Figure 4.12: Profile of positive potential
solitary wave defined by the MKdV - ZK
equation is plotted for different values of βe

when B1 = 0.

From equations (4.3.18) and (4.3.19), we get the following expression of
−→∇⊥ξ.

−→ui
(2)
⊥ :

−→∇⊥ξ.
−→ui

(2)
⊥ =

V 3

ω2
c (V

2 − γσie)

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
. (4.3.20)

Now eliminating
∂u(2)

iz

∂ζ
from the equation of continuity and the parallel component

of the equation of motion at the order o(ϵ) = 5
2 , we get the following expression of

∂n(2)
i

∂ζ
:

∂n(2)
i

∂ζ
=

1

V 2 − γσie

∂φ(2)

∂ζ
+

2V

(V 2 − γσie)2
∂φ(1)

∂τ
+

3V 2 + γ(γ − 2)σie

(V 2 − γσie)3
φ(1)∂φ

(1)

∂ζ

+
V 4

ω2
c (V

2 − γσie)2
∂

∂ζ

(
∇2

⊥ξφ
(1)

)
, (4.3.21)

where we have used the equations (4.3.16) and (4.3.20) to simplify the expression.

Now we shall use the Poisson equations at different orders to get the dispersion

relation and the evolution equation:
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Figure 4.13: Profile of negative potential
solitary wave defined by the MKdV - ZK
equation is plotted for different values of κ.
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Figure 4.14: Profile of positive potential
solitary wave defined by the MKdV - ZK
equation is plotted for different values of κ.

• Poisson equation at the order ϵ: Eliminating n(1)
i from the lowest order

Poisson equation (4.3.14) and the first equation of (4.3.16), we get the following

equation:

(V 2 − γσie)a
(κ)
1 = 1. (4.3.22)

This equation determines the unknown V . This equation is also known as

dispersion relation.

• Poisson equation at the order ϵ2: Differentiating the Poisson equation

(4.3.15) with respect to ζ and eliminating
∂n(2)

i

∂ζ
from this equation and the
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Figure 4.15: Profile of negative potential
solitary wave defined by the MKdV - ZK
equation is plotted for different values of δ.
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Figure 4.16: Profile of positive potential
solitary wave defined by the MKdV - ZK
equation is plotted for different values of δ.

equation (4.3.21), we obtain the following equation:

2V

(V 2 − γσie)2
∂φ(1)

∂τ
+

{
3V 2 + γ(γ − 2)σie

(V 2 − γσie)3
− 2a(κ)2

}
φ(1)∂φ

(1)

∂ζ
+

∂3φ(1)

∂ζ3

+

{
1 +

V 4

ω2
c (V

2 − γσie)2

}
∂

∂ζ

(
∇2

⊥ξφ
(1)

)
+

{
1

V 2 − γσie
− a(κ)1

}
∂φ(2)

∂ζ
= 0.

(4.3.23)

• KdV - ZK: Due to the dispersion relation (4.3.22), one can remove the last

term of the above equation (4.3.23) and consequently the resulting equation

becomes

2V

(V 2 − γσie)2
∂φ(1)

∂τ
+

{
3V 2 + γ(γ − 2)σie

(V 2 − γσie)3
− 2a(κ)2

}
φ(1)∂φ

(1)

∂ζ
+

∂3φ(1)

∂ζ3

+

{
1 +

V 4

ω2
c (V

2 − γσie)2

}
∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0. (4.3.24)
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Simplifying the equation (4.3.24), we have derived the following KdV-ZK equa-

tion:

∂φ(1)

∂τ
+ AB1φ

(1)∂φ
(1)

∂ζ
+

1

2
A
∂3φ(1)

∂ζ3
+

1

2
AD

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0, (4.3.25)

where

A =
1

V
(V 2 − γσie)

2, (4.3.26)

B1 =
3V 2 + γ(γ − 2)σie

2(V 2 − γσie)3
− a(κ)2 , (4.3.27)

D = 1 +
V 4

ω2
c (V

2 − γσie)2
(4.3.28)

and the constant V is given by the equation (4.3.22).

Using the equation (4.3.22), the expression of B1 can be written as

B1 =
1

2
µγ(γ + 1)σie

(
c(k)1

)3
(µ+ µc1)(µ− µc2), (4.3.29)

where

µc1 =

√√√√ 9
{
2γ(γ + 1)σiec

(k)
1

}2 +
2c(k)2

γ(γ + 1)σie

(
c(k)1

)3 +
3

2γ(γ + 1)σiec
(k)
1

, (4.3.30)

µc2 =

√√√√ 9
{
2γ(γ + 1)σiec

(k)
1

}2 +
2c(k)2

γ(γ + 1)σie

(
c(k)1

)3 − 3

2γ(γ + 1)σiec
(k)
1

, (4.3.31)

c(k)1 =
a(k)1

µ
and c(k)2 =

a(k)2

µ
. (4.3.32)

The nonlinear behaviour of IA waves can be described by the KdV-ZK equation

(4.3.25) only when the factor (B1) of the coefficient of the nonlinear term of the KdV-

ZK equation does not vanish i.e., when B1 ̸= 0 because A ̸= 0. But when B1 = 0,
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the coefficient of the nonlinear term of the KdV-ZK equation (4.3.25) vanishes along

different family of curves in the compositional parameter planes. Then the nonlinear

behaviour of IA waves cannot be described by the KdV-ZK equation. In this situation,

we have derived the MKdV-ZK equation to describe the nonlinear behaviour of IA

waves. From the expression of B1 as given in (4.3.29), it is clear that when B1 = 0, µ

takes the value µc2 (−µc1) if c
(k)
1 > 0 and c(k)1 c(k)2 > 0 (c(k)1 < 0 and c(k)1 c(k)2 < 0). But

it can be easily checked that c(k)1 c(k)2 > 0 along with c(k)1 > 0 and consequently µ takes

the value µc2 when B1 = 0. In fact, there are different families of curves in different

parameter planes along which B1 = 0. Here we consider two different families of

curves along which B1 = 0. In figure 4.1, µ is plotted against βe for different values

of κ when B1 = 0 whereas in figure 4.2, µ is plotted against κ for different values of

βe when B1 = 0. Therefore, at each point on each curve of both figures 4.1 and figure

4.2, the value of B1 is equal to zero. Therefore, when the values of the parameters lie

on the curves as indicated in figure 4.1 and figure 4.2, it is not possible to describe

the nonlinear behaviour of IA waves through the KdV - ZK equation. In the next

section, we have derived a modified KdV - ZK equation, which effectively describes

the nonlinear behaviour of IA waves when B1 = 0.

4.3.2 MKdV-ZK Equation

We have applied the following perturbation expansions of the dependent variables to

derive the MKdV-ZK equation when B1 = 0 :

P = P (0) + ϵ
i
2F (i), Q = Q(0) + ϵ

i+1
2 Q(i), (4.3.33)
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where repeated index means summation over that index, P = ni,φ, uiz with n(0)
i = 1,

φ(0) = 0, u(0)
iz = 0 and Q = uix, uiy with u(0)

ix = 0, u(0)
iy = 0. Substituing perturbation

expansions (4.3.33) in the equations (4.3.2) - (4.3.5) and equating the coefficients of

the different power of ϵ on both sides of each equation, we obtain a set of equations.

From the equation of continuity of ions, we get the following equations at the order

ϵ, ϵ
3
2 and ϵ2 respectively.

−V
∂n(1)

i

∂ζ
+

∂u(1)
iz

∂ζ
= 0, (4.3.34)

−V
∂n(2)

i

∂ζ
+

∂u(2)
iz

∂ζ
+
−→∇⊥ξ.

−→ui
(1)
⊥ +

∂

∂ζ

(
n(1)
i u(1)

iz

)
= 0, (4.3.35)

−V
∂n(3)

i

∂ζ
+

∂u(3)
iz

∂ζ
+
−→∇⊥ξ.

−→ui
(2)
⊥ +

∂n(1)
i

∂τ
+

∂

∂ζ

(
n(1)
i u(2)

iz + n(2)
i u(1)

iz

)

+
−→∇⊥ξ.

(
n(1)
i
−→ui

(1)
⊥

)
= 0. (4.3.36)

From the parallel component of equation of motion of ion fluid, we get the following

equations at the order ϵ, ϵ
3
2 and ϵ2 respectively.

−V
∂u(1)

iz

∂ζ
+ γσie

∂n(1)
i

∂ζ
+

∂φ(1)

∂ζ
= 0, (4.3.37)

−V
∂u(2)

iz

∂ζ
+ γσie

∂n(2)
i

∂ζ
+

∂φ(2)

∂ζ
+ u(1)

iz

∂u(1)
iz

∂ζ
+ γ(γ − 2)σien

(1)
i

∂n(1)
i

∂ζ
= 0, (4.3.38)

−V
∂u(3)

iz

∂ζ
+ γσie

∂n(3)
i

∂ζ
+

∂φ(3)

∂ζ
+

∂u(1)
iz

∂τ
+

(
−→ui

(1)
⊥ .

−→∇⊥ξ

)
u(1)
iz

+
∂

∂ζ

{
u(1)
iz u

(2)
iz + γ(γ − 2)σien

(1)
i n(2)

i

}

+
γ(γ − 2)(γ − 3)

2
σie

(
n(1)
i

)2∂n(1)
i

∂ζ
= 0. (4.3.39)
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From the perpendicular component of equation of motion of ion fluid, we get the

following equations at the order ϵ and ϵ
3
2 respectively.

−→∇⊥ξ

(
φ(1) + γσien

(1)
i

)
− ωc

−→ui
(1)
⊥ × ẑ =

−→
0 , (4.3.40)

−→∇⊥ξ

(
φ(2)+γσien

(2)
i

)
−ωc

−→ui
(2)
⊥ ×ẑ−V

∂−→ui
(1)
⊥

∂ζ
−γ(γ−2)σien

(1)
i

−→∇⊥ξn
(1)
i =

−→
0 . (4.3.41)

From the Poisson equation, we get the following equations at the order ϵ
1
2 , ϵ and ϵ

3
2

respectively.

−n(1)
i + a(κ)1 φ(1) = 0, (4.3.42)

−n(2)
i + a(κ)1 φ(2) + a(κ)2

(
φ(1)
)2

= 0, (4.3.43)

∇2
ξφ

(1) = −n(3)
i + a(κ)1 φ(3) + 2a(κ)2 φ(1)φ(2) + a(κ)3 (φ(1))3. (4.3.44)

From the equation of continuity of ions and the parallel component of the equation

of motion of ion fluid both at the order ϵ, we get

n(1)
i =

1

(V 2 − γσie)
φ(1) and u(1)

iz =
V

(V 2 − γσie)
φ(1). (4.3.45)

From the perpendicular component of the equation of motion of ion fluid at order ϵ,

we get the following expressions of u(1)
ix and u(1)

iy :

u(1)
ix = − V 2

ωc(V 2 − γσie)

∂φ(1)

∂η
and u(1)

iy =
V 2

ωc(V 2 − γσie)

∂φ(1)

∂ξ
(4.3.46)

From the above two equations, we get the following equation:

−→∇⊥ξ.
−→ui

(1)
⊥ = 0. (4.3.47)
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From the equation of continuity of ions and the parallel component of the equation

of motion of ion fluid both at the order ϵ, we get

n(2)
i =

1

V 2 − γσie
φ(2) +

3V 2 + γ(γ − 2)σie

2(V 2 − γσie)3
(
φ(1)
)2
, (4.3.48)

u(2)
iz =

V

V 2 − γσie
φ(2) +

V

2

V 2 + γ2σie

(V 2 − γσie)3
(
φ(1)
)2
. (4.3.49)

From the perpendicular component of the equation of motion of ion fluid at order ϵ
3
2 ,

we get the following expressions of u(2)
ix and u(2)

iy :

u(2)
ix = − 1

ωc

∂χ(2)

∂η
+

V 3

ω2
c (V

2 − γσie)

∂2φ(1)

∂ζ∂ξ
, (4.3.50)

u(2)
iy =

1

ωc

∂χ(2)

∂ξ
+

V 3

ω2
c (V

2 − γσie)

∂2φ(1)

∂ζ∂η
, (4.3.51)

where

χ(2) = φ(2) + γσien
(2) − 1

2
γ(γ − 2)σie

(
n(1)
)2
. (4.3.52)

From the equations (4.3.50) and (4.3.51), we get the following equation:

−→∇⊥ξ.
−→ui

(2)
⊥ =

V 3

ω2
c (V

2 − γσie)

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
. (4.3.53)

Now eliminating the term
∂u(3)

iz

∂ζ
from equation of continuity of ions and parallel

component of the equation of motion of ion fluid at the order o(ϵ) = 5
2 , we get the

following expression of
∂n(3)

i

∂ζ
:

∂n(3)
i

∂ζ
=

1

V 2 − γσie

∂φ(2)

∂ζ
+

2V

(V 2 − γσie)2
∂φ(2)

∂τ
+

V 4

ω2
c (V

2 − γσie)2
∂

∂ζ

(
∇2

⊥ξφ
(1)

)

+
15V 4 + (γ2 + 13γ − 18)γσieV 2 + (γ − 2)(2γ − 3)γ2σ2

ie

2(V 2 − γσie)5
(
φ(1)
)2∂φ(1)

∂ζ

+
3V 2 + γ(γ − 2)σie

(V 2 − γσie)3
∂

∂ζ

(
φ(1)φ(2)

)
. (4.3.54)
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Now we shall use the Poisson equations at different orders to get the dispersion

relation and the evolution equation:

• Poisson equation at the order ϵ1/2: Eliminating n(1)
i from the Poisson equa-

tion (4.3.42) at the order o(ϵ) = 1
2 and the first equation of (4.3.45), we get the

following equation:

(V 2 − γσie)a
(k)
1 = 1. (4.3.55)

This equation is same as the equation (4.3.22).

• Poisson equation at the order ϵ: Replacing the value of n(2)
i as given by the

equation (4.3.48) into the left-hand side of the Poisson equation (4.3.43) at the

order o(ϵ) = 1, we get

− 1

V 2 − γσie

{
1− (V 2 − γσie)a

(k)
1

}
φ(2) −B1

(
φ(1)
)2
. (4.3.56)

The first term of the above expression vanishes due to the dispersion relation

(4.3.22) whereas the second term of the above expression is equal to zero due

to the critical condition B1 = 0 and consequently the Poisson equation at the

order ϵ is identically satisfied.

• Poisson equation at the order ϵ3/2: Differentiating the Poisson equation

(4.3.44) with respect to ζ and removing ∂n
(3)
i

∂ζ from this equation and the equation

(4.3.54), we obtain the following equation:

1

2
A

{
1

V 2 − γσie
− a(k)1

}
∂φ(3)

∂ζ
+ AB1

∂

∂ζ

(
φ(1)φ(2)

)
+

∂φ(1)

∂τ

+AB2(φ
(1))2

∂φ(1)

∂ζ
+

1

2
A
∂3φ(1)

∂ζ3
+

1

2
AD

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0, (4.3.57)
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where

B2 =
15V 4 + (γ2 + 13γ − 18)γσieV 2 + (σie − 2)(2σie − 3)γσie

2

4(V 2 − γσie)3

−3

2
a(k)3 (4.3.58)

and the expressions of A and D are same as given in equations (4.3.26) and

(4.3.28) respectively.

Due to the dispersion relation (4.3.22), one can remove the first term of the

above equation (4.3.57). Again one can remove the second term of the above

equation with the help of the critical condition B1 = 0. Simplifying the above

equation (4.3.57), we have derived the following MKdV-ZK equation :

∂φ(1)

∂τ
+ AB2(φ

(1))2
∂φ(1)

∂ζ
+

1

2
A
∂3φ(1)

∂ζ3
+

1

2
AD

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0. (4.3.59)

4.4 Solitary Wave Solutions

The evolution equations (4.3.25) and (4.3.59) can be written in more compact form

as follows:

∂φ(1)

∂τ
+ ABr(φ

(1))r
∂φ(1)

∂ζ
+

1

2
A
∂3φ(1)

∂ζ3
+

1

2
AD

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0, (4.4.1)

where r = 1 and 2. We shall consider the following change of the independent

variables for a solitary wave solution of the equation (4.4.1) propagating at an angle

δ with the external uniform static magnetic field directed along the z-axis:

Z = ξ sin δ + ζ cos δ − Uτ, (4.4.2)
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and for travelling wave solutions of (4.4.1), we take φ(1) = Ψ(Z) in the equation

(4.4.1). Under the above mentioned change of coordinates and using the equation

(4.4.2), the equation (4.4.1) transforms to the following equation:

−U
dΨ

dZ
+ arΨ

r dΨ

dZ
+ E

d3Ψ

dZ3
= 0. (4.4.3)

The expressions of ar and E are given by the following equations:

ar = ABr cos δ, E =
1

2
A cos δ(cos2 δ +D sin2 δ). (4.4.4)

Using the boundary conditions: Ψ,
dΨ

dZ
,
d2Ψ

dZ2
→ 0 as |Z| → ∞, the solitary wave

solution of (4.4.3) can be written as follows:

Ψ = asech
2
r

(
Z

χ

)
, (4.4.5)

where a and χ are given by the following equations:

ar =
(r + 1)(r + 2)U

2ar
,χ2 =

4E

r2U
, (4.4.6)

for r = 1 and 2.

4.5 KdV - Solitons

KdV soliton is defined by equation (4.4.5) for r = 1, where the amplitude (a) and

width (χ) of the KdV soliton are, respectively, given by the first equation and second

equation of (4.4.6) for r = 1. In this section, we shall analyse the effect of different

parameters of the present plasma system on the amplitude of the solitary wave defined

by the KdV - ZK equation.

In figure 4.3, amplitde (a) of the solitary wave is plotted against µ for fixed values

of the other parameters of the system. From this figure, we observe the following

points:
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• At µ = µ1 (for red curve) the amplitude of the soliton is equal to zero, and KdV

- ZK equation defines positive potential solitary wave for µ > µ1, whereas this

equation defines negative potential solitary wave for µ < µ1

• The amplitude of positive potential solitary wave increases with increasing µ

whenever µ lies within the interval µ1 < µ < 1

• The amplitude of negative potential solitary wave decreases with increasing µ

whenever µ lies within the interval 0 < µ < µ1

• The blue curve of this figure (figure 4.3) shows that the point µ1 disappears

from the system for βe > βec(= 0.423), i.e., there exists critical value βec of βe

such that KdV - ZK equation defines negative potential solitary wave only for

the entier range of µ lying within 0 < µ < 1 whenever βe > βec.

In figures 4.4 - 4.9, profiles of different KdV solitary waves have been drawn to

investigate the effects of different parameters of the system on the KdV solitary

structures.

• In figure 4.4, profile of negative potential solitary wave defined by KdV - ZK

equation is plotted for different values of βe. This figure shows that the am-

plitude of the negative potential KdV solitary wave decreases with increasing

values of βe whereas figure 4.5 shows that the amplitude of the positive potential

KdV solitary wave increases with increasing values of βe.

• In figure 4.6, profile of negative potential solitary wave defined by KdV - ZK

equation is plotted for different values of κ. Figure 4.6 shows that the amplitude

of the negative potential KdV solitary wave increases with increasing values of
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κ whereas figure 4.7 describes that the amplitude of the positive potential KdV

solitary wave decreases with increasing values of κ.

• Figure 4.8 shows that the amplitude of the negative potential KdV solitary

wave decreases with increasing values of δ whereas figure 4.9 describes that the

amplitude of the positive potential KdV solitary wave decreases with increasing

values of δ.

4.6 MKdV - Solitons

MKdV soliton is defined by equation (4.4.5) for r = 2, where the amplitude (a) and

width (χ) of the MKdV soliton are, respectively, given by the first equation and the

second equation of (4.4.6) for r = 2. In this section, we shall analyse the effect of

different parameters of the present plasma system on the amplitude of the solitary

wave defined by the MKdV - ZK equation.

• In figure 4.10, amplitde (a) of the MKdV solitary wave is plotted against βe for

fixed values of the other parameters of the system. This figure shows that the

amplitde (a) of the MKdV solitary wave increases with increasing values of βe

lying within the inteval 0 ≤ βe ≤ βe1. For the given values of the parameters as

indicated in the figure 4.10, the value of βe1 is equal to 0.42 (approximately).

The interval 0 ≤ βe ≤ βe1 actually gives the entire range of βe for the validity

of the MKdV solitons. In fact it can be proved taht if βe > βe1 then the value

of µ is greater or equal to one which contradicts the fact that µ is restricted in

the interval 0 < µ < 1.
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In figures 4.11 - 4.16, profiles of different MKdV solitons have been drawn to investi-

gate the effects of different parameters of the system on the MKdV solitary structures.

• Figure 4.11 shows that the amplitude of the negative potential MKdV solitary

wave increases with increasing values of βe and the same result holds good for

the case of positive potential also, i.e., figure 4.12 shows that the amplitude of

positive potential MKdV solitary wave increases with increasing values of βe.

• In figure 4.13, profile of negative potential solitary wave defined by MKdV - ZK

equation is plotted for different values of κ. Figure 4.13 shows that the ampli-

tude of the negative potential MKdV solitary wave decreases with increasing

values of κ and the smae result is true for the case of positive potential solitary

wave. In fact, figure 4.14 describes that the amplitude of the positive potential

MKdV solitary wave decreases with increasing values of κ.

• Figure 4.15 shows that the amplitude of the negative potential MKdV solitary

wave decreases with increasing values of δ and also figure 4.16 describes that

the amplitude of the positive potential MKdV solitary wave decreases with

increasing values of δ.

4.7 Conclusions

• To discuss the nonlinear behaviour of the small amplitude ion acoustic wave in

a collisionless magnetized plasma consisting of warm adiabatic ions, static nega-

tively charged dust grains and combined Kappa-Cairns distribution of electrons,
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we have derived the following KdV - ZK equation:

∂φ(1)

∂τ
+ AB1φ

(1)∂φ
(1)

∂ζ
+

1

2
A
∂3φ(1)

∂ζ3
+

1

2
AD

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0 (4.7.1)

• We have observed that a factor (B1) of the coefficient of the nonlinear term of

the KdV-ZK equation vanishes along a family of curves in different parameter

planes and for this case, following MKdV-ZK equation can effectively describe

the nonlinear behaviour of the ion acoustic wave:

∂φ(1)

∂τ
+ AB2(φ

(1))2
∂φ(1)

∂ζ
+

1

2
A
∂3φ(1)

∂ζ3
+

1

2
AD

∂

∂ζ

(
∇2

⊥ξφ
(1)

)
= 0. (4.7.2)

• We have derived the solitary wave solutions of both KdV - ZK and MKdV

- ZK equations propagating obliquely to the direction of the magnetic field.

Again it is easy to check that the MKdV-ZK equation admits the coexistence

of both negative and positive potential solitary waves because φ(1) is solution

of the MKdV-ZK equation ⇔ −φ(1) is also a solution of the same MKdV-ZK

equation.

Numerically we have observed the following points:

1. For KdV solitons

• the amplitude of the negative potential soliton decreases with increasing

βe whareas the amplitude of the positive potential soliton increases with

increasing βe,

• the amplitude of the negative potential soliton increases with increasing

κ whareas the amplitude of the positive potential soliton decreases with

increasing κ,
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• the amplitude of the negative potential soliton decreases with increasing

δ and also the amplitude of the positive potential soliton decreases with

increasing δ.

2. For MKdV solitons

• the amplitude of the soliton increases with increasing βe for both positive

potential and negative potential solitons,

• the amplitude of the soliton decreases with increasing κ for both positive

potential and negative potential solitons,

• the amplitude of the soliton decreases with increasing δ for both positive

potential and negative potential solitons.



Chapter 5

Arbitrary amplitude ion acoustic solitary
structures in a collisionless magnetized dusty
plasma consisting of nonthermal electrons and

isothermal positrons ‡

The present chapter is an extension of Chapter-1 in the following direction: instead of

considering three-component collisionless magnetized plasma consisting of adiabatic

warm ions, nonthermal electrons and static negatively charged dust grains, we have

considered a collisionless magnetized four-component plasma consisting of adiabatic

warm ions, nonthermal electrons, isothermal positrons and static negatively charged

dust grains immersed in a static uniform magnetic field directed along a fixed direc-

tion. Arbitrary amplitude ion acoustic solitary structures have been investigated in

the present plasma system. We have observed that the system supports positive po-

tential solitary waves, negative potential solitary waves, coexistence of solitary waves

of both polarities, negative potential double layers, negative potential supersolitons,

positive potential supersolitons for different values of the parameters of the system.

We have investigated the effect of different parameters of the system on the solitary

structures.

‡To be communicated.
173
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5.1 Introduction

Paul and Bandyopadhyay [138] studied dust ion acoustic solitary structures in an

unmagnetized collisionless dusty plasma consisting of warm adiabatic ions, static

negatively charged dust grains, nonthermally distributed electrons and isothermally

distributed positrons. In this chapter, we have considered the plasma system of Paul

and Bandyopadhyay [138] by considering a static uniform magnetic field directed

along a fixed direction. Paul and his co-workers [75, 77, 138, 140] have extensively

reported the existence of this plasma system in different astrophysical plasmas. Paul

and Bandyopadhyay [138] employed Sagdeev pseudo potential method to investigate

the existence of various solitary structures including double layers and supersolitons.

The nonlinear behaviour of the ion acoustic (IA) waves in the present magnetized

plasma system has been investigated by considering variations of the different pa-

rameters of the system. We have observed different solitary structures in the present

magnetized plasma system in comparison with the observations of the solitary struc-

tures as given in the paper of Paul and Bandyopadhyay [138]. There are several works

[183–194] on multi-component magnetized plasmas consisting of positrons. There are

several works [195–199] where isothermal distribution has been considered for the

lighter species of the plasma system but the plasma system has been considered to

be unmagnetized in each case.

Following the same analysis as given in Chapter-1 and Chapter-3, we have derived

the energy integral for the ion acoustic wave propagating obliquely to the direction

of the magnetic field and using the energy integral, we have anlyzed the solitary

structures of the present plasma system by considering the φ − V (φ) curve and the

phase portrait of the dynamical system describing the nonlinear behaviour of the

ion acoustic wave, where φ is the normalized eletrostatic potential and V (φ) is the
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Figure 5.1: V (φ) is plotted against φ for γ =
5/3,σie = 0.01, µ = 0.6, p = 0.000001, lz =
0.6,M = 0.9 for three different values of βe.
(a) βe = 0.2417 corresponds to an NPSW;
(b) βe = 0.2415 corresponds to an NPDL;
(c) βe = 0.24 corresponds to an NPSS.
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Figure 5.2: This figure shows the phase
portrait corresponding to a NPSS for γ =
5/3,σie = 0.01, µ = 0.6, p = 0.000001,βe =
0.24, lz = 0.6,M = 0.9. Each small solid cir-
cle corresponds to an unstable equilibrium
point whereas each small solid star corre-
sponds to a stable equilibrium point. The
blue separatrix appears to pass through the
origin and encloses another separatrix shown
in green curve and two stable equilibrium
points. This phase portrait confirms the for-
mation of an NPSS.

Sagdeev pseudo potential associated with the energy integral for the present plasma

system.

5.2 Basic Equations

In the present paper, we have considered a collisionless magnetized dusty plasma con-

sisting of adiabatic warm ions, Cairns [1] distributed nonthermal electrons, isother-

mal positrons and static negatively charged dust particulates, immersed in a uniform
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Figure 5.3: V (φ) is plotted against φ for γ =
5/3,σie = 0.01, µ = 0.6, p = 0.000001,βe =
0.235, lz = 0.6,M = 0.9. This curve exhibits
the formation of an NPSW after the forma-
tion of an NPDL.
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Figure 5.4: V (φ) is plotted against φ for
different values of βe for γ = 5/3,σie =
0.01, µ = 0.6, p = 0.000001, lz = 0.6,M =
0.9. The cyan curve corresponds to βe =
0.2417 and shows the formation of an NPSW;
the red curve corresponds to βe = 0.2415 and
shows the formation of an NPDL; the green
curve corresponds to βe = 0.24 and shows
the formation of an NPSS; the magenta curve
corresponds to βe = 0.235 and shows the for-
mation of an NPSW after the formation of
an NPDL.

static magnetic field directed along z−axis. The the basic equations can be written

as follows:

∂ni

∂t
+
−→∇ · (ni

−→u i) = 0, (5.2.1)

( ∂

∂t
+−→u i ·

−→∇
)−→u i +

σie

ni

−→∇pi = −−→∇φ+−→u i × ẑ, (5.2.2)

∂pi
∂t

+ (−→u i ·
−→∇)pi + γpi(

−→∇ ·−→u i) = 0, (5.2.3)

ni = ne + 1 + p− µ− np. (5.2.4)

Equations (5.2.1), (5.2.2) and (5.2.3) are, respectively, the equation of continuity,

equation of motion and the pressure equation for ion fluid. We have considered the
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Figure 5.5: V (φ) is plotted against φ for dif-
ferent values of µ for γ = 5/3,σie = 0.01, p =
0.000001,βe = 0.1, lz = 0.6,M = 0.9. The
red curve corresponds to µ = 0.6 and shows
the formation of an NPSW; the cyan curve
corresponds to µ = 0.60017 and shows the
formation of an NPDL; the green curve corre-
sponds to µ = 0.601 and shows the formation
of an NPSS; the magenta curve corresponds
to µ = 0.605 and shows the formation of an
NPSW after the formation of an NPDL.
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Figure 5.6: V (φ) is plotted against φ for
different values of M for γ = 5/3,σie =
0.01, µ = 0.6, p = 0.000001,βe = 0.2417, lz =
0.6. The red curve corresponds to M = 0.9
and shows the formation of an NPSW; the
cyan curve corresponds to M = 0.90021 and
shows the formation of an NPDL; the green
curve corresponds to M = 0.901 and shows
the formation of an NPSS; the magenta curve
corresponds to M = 0.91 and shows the for-
mation of an NPSW after the formation of
an NPDL.

quasi-neutral condition (5.2.4) to get a consistent system of equations, i.e., instead of

Poisson equation, we have used the quasi-neutrality condition to make a closed and

consistent system of equations. The quasi-neutrality condition is considered on the

basis of the assumption that the length scale of the solitary structure is greater than

the Debye length or the gyroradius [90, 111].

The equilibrium charge neutrality condition is given by

Zdnd0

ni0
= 1 + p− µ, (5.2.5)

where

p =
np0

ni0
and µ =

ne0

ni0
. (5.2.6)
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Figure 5.7: V (φ) is plotted against φ for
γ = 5/3,σie = 0.01, µ = 0.3, p = 0.0001, lz =
0.6,M = 1.5 for three different values of βe.
(a) βe = 0.2 corresponds to a PPSW; (b)
βe = 0.4 corresponds to the coexistence of
a PPSS and an NPSW; (c) βe = 0.5 corre-
sponds to a PPSS.
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Figure 5.8: V (φ) is plotted against φ for γ =
5/3,σie = 0.01, µ = 0.6, p = 0.00002,βe =
0.235, lz = 0.6,M = 0.9. This curve exhibits
the formation of the coexistence of a PPSW
and an NPSW.

Here, ni0, ne0, np0 and nd0 are, respectively, the unperturbed number densities of

ions, nonthermal electrons, isothermal positrons and dust grains, Zd is the number

of electrons residing on a dust grain surface. In the basic equations, ni, ne, np,

−→u i = (uix, uiy, uiz), pi, φ, (x, y, z), and t are, respectively, the ion number density,

the electron number density, the positron number density, the ion fluid velocity, the

ion fluid pressure, the electrostatic potential, the spatial variables and time, and they

have been nomalized by ni0, ni0, ni0, Cs (=
√

KBTe

mi
), ni0KBTi,

KBTe

e , Cs/ωc and (ωc)−1

respectively, where ωc is the ion gyrofrequency. Here, mi is the mass of an ion, γ is

the adiabatic index and σie =
Ti
Te
.
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Figure 5.9: V (φ) is plotted against φ for
different values of p for γ = 5/3,σie =
0.01, µ = 0.6,βe = 0.235, lz = 0.6,M = 0.9.
The red curve corresponds to an NPSW for
p = 0.000001, the cyan curve corresponds to
an NPSW for p = 0.000005, the green curve
corresponds to an NPSW for p = 0.00001.
The amplitude of the NPSWs increases with
increasing p.
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Figure 5.10: V (φ) is plotted against φ for
different values of βe for γ = 5/3,σie =
0.01, µ = 0.6, p = 0.000001, lz = 0.6,M =
0.9. The green curve corresponds to an
NPSW for βe = 0.235, the red curve corre-
sponds to an NPSW for βe = 0.2, the teal
curve corresponds to an NPSW for βe = 0.15,
and the magenta curve corresponds to an
NPSW for βe = 0.1. The amplitude of the
NPSWs decreases with increasing βe.

Under the above mentioned normalization of the field variables, the number den-

sity of nonthermal electrons (ne) and the number density of isothermal positrons (np)

can be written as

ne = µ(1− βeφ+ βeφ
2)eφ, (5.2.7)

and

np = pe−φ. (5.2.8)

The linear dispersion relation for IA waves is given by

k2
⊥

ω2 − ω2
c

+
k2
z

ω2
= C−2

s M−2
s , (5.2.9)
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Figure 5.11: V (φ) is plotted against φ for
different values of µ for γ = 5/3,σie =
0.01, p = 0.000001,βe = 0.2, lz = 0.6,M =
0.9. The teal curve corresponds to an NPSW
for µ = 0.57, the green curve corresponds to
an NPSW for µ = 0.585, the red curve cor-
responds to an NPSW for µ = 0.61, and the
magenta curve corresponds to an NPSW for
µ = 0.61. The amplitude of the NPSWs in-
creases with increasing µ.
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Figure 5.12: V (φ) is plotted against φ for
different values of lz for γ = 5/3,σie =
0.01, µ = 0.6, p = 0.000001,βe = 0.2,M =
0.9. The teal curve corresponds to an NPSW
for lz = 0.625, the green curve corresponds
to an NPSW for lz = 0.615, the red curve
corresponds to an NPSW for lz = 0.6, and
the magenta curve corresponds to an NPSW
for lz = 0.58. The amplitude of the NPSWs
decreases with increasing lz.

where

Ms =

√

γσie +
1− p

p+ µ(1− βe)
, (5.2.10)

k2
⊥ = k2

x + k2
y, (5.2.11)

k2
⊥ + k2

z = k2, (5.2.12)

k is the wave number and ω is the wave frequency.
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Figure 5.13: V (φ) is plotted against φ for
different values of M for γ = 5/3,σie =
0.01, µ = 0.6, p = 0.000001,βe = 0.2, lz =
0.6. The red curve corresponds to an NPSW
for M = 0.9, the green curve corresponds to
an NPSW for M = 0.925, the magenta curve
corresponds to an NPSW for M = 0.95. The
amplitude of the NPSWs increases with in-
creasing M .
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Figure 5.14: V (φ) is plotted against φ for
different values of βe for γ = 5/3,σie =
0.01, µ = 0.6, p = 0.000001, lz = 0.6,M =
0.9. The cyan curve corresponds to an NPSS
for βe = 0.241, the magenta curve corre-
sponds to an NPSS for βe = 0.24, the yellow
curve corresponds to an NPSS for βe = 0.239.
The amplitude of the negative potential su-
persolitons decreases with increasing βe.

5.3 Energy Integral

Assuming that all the dependent variables depend only on a single variable ξ =

lxx + lyy + lzz −Mt, where M is independent of the spatial variables and time, we

study the obliquely propagating arbitrary amplitude time independent IA solitary

structures by lifting the basic equations (5.2.1), (5.2.2), (5.2.3) and (5.2.4) in the

wave frame moving with a constant velocity M normalized by Cs.

Solving the above mentioned set of equations for the velocity components uix, uiy and

uiz, we get:

uix = Lx

{
M − M

ni
− l2z

M
G(φ)

}
− Ly

dS

dξ
, (5.3.1)

uiy = Ly

{
M − M

ni
− l2z

M
G(φ)

}
+ Lx

dS

dξ
, (5.3.2)

uiz =
lz
M

G(φ), (5.3.3)
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Figure 5.15: V (φ) is plotted against φ for
different values of µ for γ = 5/3,σie =
0.01, p = 0.000001,βe = 0.24, lz = 0.6,M =
0.9. The magenta curve corresponds to an
NPSS for µ = 0.6, the cyan curve corresponds
to an NPSS for µ = 0.6025, the red curve
corresponds to an NPSS for µ = 0.605. The
amplitude of the negative potential supersoli-
tons increases with increasing µ.
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Figure 5.16: V (φ) curves are drawn against
φ for different values of µ. µ = 0.4 corre-
sponds to the green curve, µ = 0.5 corre-
sponds to the magenta curve, µ = 0.6 cor-
responds to the cyan curve, µ = 0.7 corre-
sponds to the sky-blue curve, and µ = 0.8
corresponds to the red curve. This figure
shows that the amplitude of PPSW increases
with increasing µ.

where

Lx =
lx

l2x + l2y
, Ly =

ly
l2x + l2y

, (5.3.4)

G = G(φ) = σie{nγ
i − 1}+

∫ φ

0

nidφ, (5.3.5)

S = S(M,φ) =
M2

2n2
i

+
γσie

γ − 1
nγ−1
i + φ (5.3.6)

and we have used the following boundary conditions:

(
ni, uix, uiy, uiz,φ,

dφ

dξ

)
→
(
1, 0, 0, 0, 0, 0

)
as |ξ| → ∞. (5.3.7)

Following the same analysis as given in Chapter-1 and Chapter-3, we get

d2S

dξ2
= f(φ) = ni − 1− l2z

M2
niG(φ). (5.3.8)
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Figure 5.17: V (φ) curves are drawn against
φ for different values of p. p = 0.000001 cor-
responds to the green curve, p = 0.0001 cor-
responds to the magenta curve, p = 0.001
corresponds to the cyan curve, p = 0.01 cor-
responds to the yellow curve, and p = 0.15
corresponds to the red curve. This figure
shows that the amplitude of PPSW increases
for increasing p.
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Figure 5.18: V (φ) curves are drawn against
φ for different values of lz. This figure shows
that the amplitude of PPSW decreases for
increasing lz.

Using the identity

d2S

dξ2
=

1

2

dS

dφ

d

dφ

(dφ
dξ

)2
+

d2S

dφ2

(dφ
dξ

)2
(5.3.9)

in equation (5.3.8) and we obtain

dΓ

dφ
+

2

R

dR

dφ
Γ =

2

R
f(φ), (5.3.10)

where Γ =
(dφ
dξ

)2
and R =

dS

dφ
.

Equation (5.3.10) is a linear differential equation in Γ and the general solution is

given by

(dφ
dξ

)2
×
(dS
dφ

)2
=

∫
2
dS

dφ
f(φ)dφ+ C, (5.3.11)

where C is a constant of integration.
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Using the boundary condition (5.3.7), we obtain the following energy integral:

1

2

(dφ
dξ

)2
+ V (φ) = 0, (5.3.12)

where

V (φ) = V (M,φ) = −

∫ φ

0

dP

dφ
f(φ)dφ

(dP
dφ

)2 . (5.3.13)

5.4 Graphical Analysis of Solitary Structures

In this section, we have consideded the existence of different solitary structures with

the help of the analysis of the Sagdeev pseudo potential V (φ) by considering the well-

known theory of Sagdeev pseudo potential [11] for the existence of solitary structures.

In fact, according to this theory, the system supports positive (negative) potential

solitary wave if

(i) φ = 0 is the position of unstable equilibrium, i.e., V (0) = V ′(0) = 0 and V ′′(0) <

0,

(ii) there exists some φm > 0 (φm < 0) such that V (φm) = 0, V ′(φm) > 0 (V ′(φm) <

0),

(iii) V (φ) < 0 for all min{0,φm} < φ < max{0,φm}.

For the existence of positive (negative) potential double layer, the condition (ii) is

replaced by the following condition:

(ii) V (φm) = 0, V ′(φm) = 0 (V ′′(φm) < 0).
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We have also considered the effect of different parameters of the system on the solitary

stucture given different values to the parameters of the system and observed the

variations of the wave structure.

In figure 5.1(a), we have plotted V (φ) against φ for µ = 0.6, p = 0.000001, βe =

0.2417, lz = 0.6,M = 0.9. This figure shows the formation of an NPSW. In figure

5.1(b), we have plotted V (φ) against φ for µ = 0.6, p = 0.000001, βe = 0.2415, lz =

0.6,M = 0.9. This figure shows the formation of an NPDL. In figure 5.1(c), we have

plotted V (φ) against φ for µ = 0.6, p = 0.000001, βe = 0.24, lz = 0.6,M = 0.9. This

figure shows the formation of an NPSS, but to confirm the supersoliton structure,

in figure 5.2, we draw the phase portrait of the dynamical system described by the

coupled differential equations:

dφ1

dξ
= φ2,

dφ2

dξ
= −V ′(φ1), where φ1 = φ. (5.4.1)

These coupled differential equations can be easily obtained by differentiating the

energy integral (5.3.12) with respect to φ. In figure 5.2, each small solid circle

corresponds to an unstable equilibrium point whereas each small solid star corre-

sponds to a stable equilibrium point. The blue separatrix appears to pass through

the origin and encloses another separatrix shown in green curve and two stable equi-

librium points. So, following the definition of supersoliton given by Dubinov and

Kolotkov [142], this phase portrait confirms the formation of an NPSS. In figure 5.3,

we have drawn the φ− V (φ) curve for an NPSW after the formation of an NPDL for

µ = 0.6, p = 0.000001, βe = 0.235, lz = 0.6,M = 0.9. From the figures 5.1 and 5.3, we

see that for fixed values of µ, p, lz and M , as we gradually decrease the value of βe, we

see the formation of NPSW, NPDL, NPSS and NPSW after the formation of NPDL.

This particular transition of negative potential solitary structures can be described

by considering the figure 5.4. In this figure (figure 5.4), we see that for βe = 0.2417,
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βe = 0.2415, βe = 0.24 and βe = 0.235, the system respectively generates an NPSW

(cyan curve), an NPDL (red curve), an NPSS (green curve) and an NPSW (magenta

curve) after the formation of an NPDL.

In figure 5.5, for p = 0.000001, βe = 0.1, lz = 0.6,M = 0.9, we see that for µ = 0.6,

µ = 0.60017, µ = 0.601 and µ = 0.605, the system respectively generates an NPSW

(red curve), an NPDL (cyan curve), an NPSS (green curve) and an NPSW (magenta

curve) after the formation of an NPDL.

In figure 5.6, for µ = 0.6, p = 0.000001, βe = 0.1, lz = 0.6, we see that for M = 0.9,

M = 0.90021, M = 0.901 and M = 0.91, the system respectively generates an NPSW

(red curve), an NPDL (cyan curve), an NPSS (green curve) and an NPSW (magenta

curve) after the formation of an NPDL.

In figure 5.7(a), V (φ) is plotted against φ for µ = 0.3, p = 0.0001, βe = 0.2, lz =

0.6,M = 1.5. This figure shows the formation of a PPSW. In figure 5.7(b), V (φ) is

plotted against φ for µ = 0.3, p = 0.0001, βe = 0.4, lz = 0.6,M = 1.5. This figure

shows the formation of the coexistence of a PPSS and an NPSW. In figure 5.7(c),

V (φ) is plotted against φ for µ = 0.3, p = 0.0001, βe = 0.5, lz = 0.6,M = 1.5. This

figure shows the formation of a PPSS.

In figure 5.8, V (φ) is plotted against φ for µ = 0.6, p = 0.00002, βe = 0.235, lz =

0.6,M = 0.9. This figure shows the formation of the coexistence of an NPSW and a

PPSW. In fact, we have observed that for the fixed values of the parametes as given

in figure 5.8, the system does not support any negative potential solitary structure for

p > 0.00002, rather the system supports only positive potential solitary structures.

So, p = 0.00002 can be considered as a critical value of p for the existence of negative

potential solitary structures for µ = 0.6, βe = 0.235, lz = 0.6,M = 0.9.
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In figure 5.9, V (φ) is plotted against φ for different values of p with µ = 0.6, βe =

0.235, lz = 0.6,M = 0.9. Here, p = 0.000001, p = 0.000005 and p = 0.00001

correspond to the red curve, the teal curve and the green curve, respectively. All

the three curves exhibit three distinct NPSWs. From this figure, we see that the

amplitude of the NPSWs increases with increasing p.

In figure 5.10, V (φ) is plotted against φ for different values of βe with µ = 0.6, p =

0.000001, lz = 0.6,M = 0.9. Here, βe = 0.235, βe = 0.2, βe = 0.15 and βe = 0.1

correspond to the green curve, the red curve, the teal curve and the magenta curve,

respectively. All the four curves exhibit four distinct NPSWs. From this figure, we

see that the amplitude of the NPSWs decreases with increasing βe.

In figure 5.11, V (φ) is plotted against φ for different values of µ with p =

0.000001, βe = 0.235, lz = 0.6,M = 0.9. Here, µ = 0.57, µ = 0.585, µ = 0.6 and

µ = 0.61 correspond to the teal curve, the green curve, the red curve and the ma-

genta curve, respectively. All the four curves exhibit four distinct NPSWs. From this

figure, we see that the amplitude of the NPSWs increases with increasing µ.

In figure 5.12, V (φ) is plotted against φ for different values of lz with µ = 0.6, p =

0.000001, βe = 0.235,M = 0.9. Here, lz = 0.625, lz = 0.615, lz = 0.6 and lz = 0.58

correspond to the teal curve, the green curve, the red curve and the magenta curve,

respectively. All the four curves exhibit four distinct NPSWs. From this figure, we

see that the amplitude of the NPSWs decreases with increasing lz.

In figure 5.13, V (φ) is plotted against φ for different values of M with µ = 0.6, p =

0.000001, βe = 0.235, lz = 0.6. Here, M = 0.9, M = 0.925 and M = 0.95 correspond

to the red curve, the green curve and the magenta curve, respectively. All the three

curves exhibit three distinct NPSWs. From this figure, we see that the amplitude of

the NPSWs decreases with increasing M .
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In figure 5.14, V (φ) is plotted against φ for different values of βe with µ = 0.6, p =

0.000001, lz = 0.6,M = 0.9. Here, βe = 0.241, βe = 0.24 and βe = 0.239 correspond

to the cyan curve, the magenta curve and the yellow curve, respectively. All the three

curves exhibit three distinct negative potential supersolitons. From this figure, we

see that the amplitude of the NPSSs decreases with increasing βe.

In figure 5.15, V (φ) is plotted against φ for different values of µ with p =

0.000001, βe = 0.24, lz = 0.6,M = 0.9. Here, µ = 0.6, µ = 0.6025 and µ = 0.605

correspond to the magenta curve, the cyan curve and the red curve, respectively.

All the three curves exhibit three distinct NPSSs. From this figure, we see that the

amplitude of the NPSSs increases with increasing µ.

To examine the effect of the nonthermal electron density on the present plasma

system, we draw figure 5.16, where we have plotted V (φ) against φ for different values

of µ, with the fixed values of the other parameters as shown in the figure. Particularly,

this figure is drawn for isothermal electrons, i.e., βe = 0. The green curve in this figure

is the PPSW for µ = 0.4. For increasing values of µ, we observe that the amplitude of

the soliton monotonically increases. The magenta curve, cyan curve, sky-blue curve

and the red curve correspond to µ = 0.5, µ = 0.6, µ = 0.7 and µ = 0.8, respectively.

Such formation of PPSWs along with the nature that the amplitude of the soliton

increases with increasing value of µ is found in the left neighbourhood of µ = 0.4 as

well as in the right neighbourhood of µ = 0.8.

Again, the amplitude of the soliton is found to increase as the isothermal positron

density increases. This is shown in figure 5.17. This figure is also drawn for isothermal

electrons. In this figure, we have plotted V (φ) against φ for different values of p.

Here, p = 0.000001 corresponds to the green curve, p = 0.0001 corresponds to the

magenta curve, p = 0.001 corresponds to the cyan curve, p = 0.01 corresponds to the
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yellow curve, and p = 0.15 corresponds to the red curve. This figure shows that the

amplitude of PPSW increases with increasing p.

Figure 5.18 shows the existence of PPSWs for different values of lz. This figure

shows that the amplitude of PPSW decreases with increasing lz.

5.5 Conclusions

We have studied the nonlinear behaviour of ion acoustic solitary structures in a col-

lisionless magnetized dusty plasma system which is immersed in a static magnetic

field directed along z-axis. Electron species is nonthermal whereas positron species

is isothermal. The system also contains adiabatic warm ions and negatively charged

static dust particulates. We have used the Sagdeev pseudo potential method to de-

termine and analyze the nonlinear behaviour of the ion acoustic wave. We have

observed that the system supports NPSWs, NPDLs, NPSSs, NPSWs after the for-

mation of NPDL, PPSWs, coexistence of PPSS and NPSW, PPSS, coexistence of

PPSW and NPSW. The phase portrait of the dynamical system describing the non-

linear behaviour of ion acoustic wave has been drawn to confirm the existence of

NPSS.

The parameters of the system are µ, p, βe, lz and M . We have observed the nature

of the solitary structures with respect to each of the parameters of the system. For

NPSWs,

• the amplitude of NPSW increases with increasing p,

• the amplitude of NPSW decreases with increasing βe,

• the amplitude of NPSW increases with increasing µ,
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• the amplitude of NPSW decreases with increasing lz and

• the amplitude of NPSW increases with increasing M .

We have also examined the variations of the amplitude of negative potential su-

persolitons (NPSS) with respect to βe and µ individually. We have seen that the

amplitude of NPSS decreases with increasing βe whereas the amplitude of NPSSs

increases with increasing µ.

We have studied the variations of the amplitude of PPSWs with respect to µ, p

and lz for both isothermal electrons and isothermal positrons, i.e., we have considered

βe = 0. For PPSWs,

• the amplitude of PPSW increases for increasing µ,

• the amplitude of PPSW increases with increasing p and

• the amplitude of PPSW decreases with increasing lz.

We have also determined a critical value pc of positron concentration p such that the

system supports only positive potential solitary structures and no negative potential

solitary structures for p > pc. For µ = 0.6, βe = 0.235, lz = 0.6,M = 0.9, the value of

pc is 0.00002.
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[44] A F Viñas, Richard L Mace, and Robert F Benson. J. Geophys. Res. Space
Phys., 110:A06202, 2005.

[45] T K Baluku and M A Hellberg. Phys. Plasmas, 15:123705, 2008.

[46] N S Saini, I Kourakis, and M A Hellberg. Phys. Plasmas, 16:062903, 2009.

[47] A Berbri and M Tribeche. Phys. Plasmas, 16:053703, 2009.

[48] A Berbri and M Tribeche. Phys. Plasmas, 16:053701, 2009.

[49] T K Baluku, M A Hellberg, I Kourakis, and N S Saini. Phys. Plasmas,
17:053702, 2010.

[50] G Livadiotis and D J McComas. Astrophys. J., 741:88, 2011.

[51] S A El-Tantawy, N A El-Bedwehy, andWMMoslem. Phys. Plasmas, 18:052113,
2011.

[52] A Danehkar, N S Saini, M A Hellberg, and I Kourakis. Phys. Plasmas,
18:072902, 2011.

[53] T K Baluku and M A Hellberg. Phys. Plasmas, 19:012106, 2012.

[54] I Kourakis, S Sultana, and M A Hellberg. Plasma Phys. Control. Fusion,
54:124001, 2012.

[55] S Sultana, I Kourakis, and M A Hellberg. Plasma Physics and Control. Fusion,
54:105016, 2012.

[56] M A Hellberg, T K Baluku, F Verheest, and I Kourakis. J. Plasma Phys.,
79:1039, 2013.

[57] G Williams, F Verheest, M A Hellberg, M G M Anowar, and I Kourakis. Phys.
Plasmas, 21:092103, 2014.

[58] P O Dovner, A I Eriksson, R Boström, and B Holback. Geophys. Res. Lett.,
21:1827, 1994.

[59] K Nishihara and M Tajiri. J. Phys. Soc. Japan, 50:4047, 1981.

[60] F Verheest and S R Pillay. Phys. Plasmas, 15:013703, 2008.



194

[61] A A Mamun, R A Cairns, and P K Shukla. Phys. Plasmas, 3:2610, 1996.

[62] T S Gill, P Bala, H Kaur, N S Saini, S Bansal, and J Kaur. Eur. Phys. J. D,
31:91, 2004.

[63] S V Singh and G S Lakhina. Nonlinear Process. Geophys., 11:275, 2004.

[64] S R Pillay and F Verheest. J. Plasma Phys., 71:177, 2005.

[65] A Das, A Bandyopadhyay, and K P Das. Phys. Plasmas, 16:073703, 2009.

[66] R Sabry, W M Moslem, and Padma Kant Shukla. Phys. Plasmas, 16:032302,
2009.

[67] H R Pakzad. Phys. Lett. A, 373:847–850, 2009.

[68] F Verheest, M A Hellberg, and T K Baluku. Phys. Plasmas, 19:032305, 2012.

[69] A Das, A Bandyopadhyay, and K P Das. J. Plasma Phys., 78:149, 2012.

[70] A Das, A Bandyopadhyay, and K P Das. J. Plasma Phys., 78:565, 2012.

[71] O R Rufai, R Bharuthram, S V Singh, and G S Lakhina. Phys. Plasmas,
21:082304, 2014.

[72] S V Singh and G S Lakhina. Commun. Nonlinear Sci. Numer. Simul., 23:274,
2015.

[73] A Paul and A Bandyopadhyay. Astrophys. Space Sci., 361:172, 2016.

[74] F Verheest and Manfred A Hellberg. Phys. Plasmas, 24:022306, 2017.

[75] A Paul, A Das, and A Bandyopadhyay. Plasma Phys. Rep., 43:218, 2017.

[76] A Paul, A Das, and A Bandyopadhyay. Plasma Phys. Rep., 43:218, 2017.

[77] A Paul and A Bandyopadhyay. Indian J. Phys., 92:1187, 2018.

[78] Y Ghai, N S Saini, and B Eliasson. Phys. Plasmas, 25:013704, 2018.

[79] M R Collier, D C Hamilton, G Gloeckler, P Bochsler, and R B Sheldon. Geo-
phys. Res. Lett., 23:1191, 1996.

[80] M Maksimovic, V Pierrard, and J F Lemaire. Astron. Astrophys., 324:725,
1997.

[81] R B Decker and S M Krimigis. Adv. Space Res., 32:597, 2003.



References 195

[82] M P Leubner. J. Geophys. Res. Space Phys., 88:469, 1983.
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