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Abstract

The present work is a study of congruences on different classes of seminearrings which,
among others, comprises various characterization theorems. Firstly, near-ring congru-
ences on additively regular seminearrings have been studied. In this study a lattice
isomorphism has been obtained between the set of all normal full k-ideals and that of
all near-ring congruences in distributively generated additively regular seminearrings.
The lattice of near-ring congruences has subsequently been studied. Since the sem-
inearring M (S), one of the most naturally arising seminearrings, of self maps of an
additive semigroup S is an additively regular seminearring if and only if S is a regular
semigroup, a large class of seminearrings arises naturally to be non-additively regular.
Propelled by this fact, near-ring and zero-symmetric near-ring congruences on semin-
earrings which need not be either additively regular or distributively generated have
been studied by obtaining inclusion preserving bijective correspondences between the
set of all zero-symmetric near-ring congruences (near-ring congruences) and the set
of all generalised strong dense reflexive k-ideals (resp., right k-ideals). Further some
sufficient conditions (viz., existence of left local units, being ET-inversive) have been
obtained imposition of which on the seminearrings under consideration ensures that the
set of all zero-symmetric near-ring congruences (near-ring congruences) form lattices
so that the above correspondences turn out to be lattice isomorphisms. A detailed
study of these lattices has been accomplished alongside. Since E-inversive semigroup
generalizes regular semigroup and the theory of seminearrings is greatly influenced by
the development of semigroup theory, the structure theorem of full subdirect product
of a semilattice and a group in terms of F-inversive semigroups motivates us to char-
acterize full subdirect product of a bi-semilattice and a (zero-symmetric) near-ring and
subdirect product of a distributive lattice and a (zero-symmetric) near-ring in terms
of E*-inversive seminearrings. To conclude the work, the relationships among various

classes of E-inversive seminearrings have been discussed.
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Introduction

¢

A ring (R, +, ) consists of an abelian group (R,+) and a semigroup (R,-) where
distributes over ‘+’ from both sides i.e., a-(b+c¢) = a-b+a-c and (a+b)-¢ = a-c+b-c for
all a, b, ¢ € R. For a commutative group (U, +), the set of all endomorphisms of U under
point-wise addition and composition becomes a natural example of a ring. Now if we
take a group (G, +) (not necessarily abelian), then the set M (G) of all maps from G to
G under point-wise addition and composition gives a different algebraic structure where
M (G) under addition is a group (not necessarily abelian), M (G) under composition is
a semigroup and composition distributes over addition only from the right side. Even
if the group (G, +) is abelian, in M (G) composition will distribute over addition only
from the right side. This algebraic structure is known as a near-ring. According to G.

Pilz [91], near-ring (N, +,-) is an algebraic structure where
(i) (N,+) is a group (not necessarily abelian),
(#4) (N,-) is a semigroup and
(731) for all ny,ng,n3 € N, (ng +n2) -n3g = ny-nz +ny - ns, i.e., -’ distributes over ‘+’
from the right side (“right distributive law”).

Since ‘" distributes over ‘+’ from the right side, more precisely it is called a ‘right

near-ring’. If (4i7) is replaced by

(791") for all ny,n9,ng € N, ny - (ny+ns) = ny - ng +ny - ng, i.e., -’ distributes over ‘4’
from the left side (“left distributive law”),

then one gets ‘left near-ring. The theory runs completely parallel in both cases.

Throughout our work ‘near-ring’ stands for ‘right near-ring’ First step towards near-

ring was an axiomatic research done by Dickson [25] in 1905 by showing the existence
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of fields with only one distributive law. Since then near-ring is drawing the attention of
many researchers from both theoretical and practical point of views. Among the other
mathematicians J. R. Clay, W. M. L. Holcombe, C. J. Maxson, S. D. Scott made some
significant contributions to the theory of near-rings (cf. [20, 21, 40, 41, 74, 75, 100]).

Now in the natural example of a near-ring, if we replace a group (G, +) (not neces-
sarily abelian) by a semigroup (.5, +) (not necessarily commutative), then the set M (.S)
of all self maps from S to S under point-wise addition and composition gives a new
algebraic structure which is different from a near-ring since M (.S) under addition is no
longer a group. This algebraic structure is known as a ‘seminearring’ To be specific a
seminearring (S, +,-) is an algebraic structure where (S, +), (S, -) are semigroups and
‘.7 distributes over ‘4’ from the right side i.e., (a+b)-c=a-c+ b-cforall a,b,c € S.
Since ‘" distributes over ‘+’ from the right side, the above structure is more particularly
a ‘right distributive seminearring’. Similarly in the algebraic structure (S, +,-) where
(S, +), (S,-) are semigroups, if ‘-’ distributes over ‘+’ from the left side, i.e., a-(b+c) =
a-b+a-cforall a,b,c € S, then one gets ‘left distributive seminearring’. Like the theory
of near-rings, here also the seminearring theory runs completely parallel in both cases.
A seminearring (S, +, -) is a near-ring if (S, +) is a group. In our work, ‘seminearring’
stands for ‘right distributive seminearring’. Again an algebraic structure (5,4, -) is
said to be a ‘semiring’ if (S,4+), (S, ) are semigroups and ‘-’ distributes over ‘+’ from
both sides. A seminearring (S, +, -) is a semiring if *-” distributes over ‘+’ from the left
side as well. Therefore seminearrings generalize semirings as well as near-rings. So the
development of seminearring theory takes impetus from the theory of semirings as well
as the theory of near-rings.

In 1967, van Hoorn et al. introduced the notion of seminearrings in [44]. In [43],
van Hoorn studied the radicals of a seminearring and found 14 radicals in a seminear-
ring. In 1976, Hoogewijs Studied Z-congruences in [42]. Since 70’s, Weinert studied
related representation theorems, seminearfields, partially and fully ordered seminear-
rings (cf. [39, 105, 106, 108]). In 1981, he investigated interrelationships between
seminearrings and different types of semigroups of right quotients in [107]. In 90’s, the
theory of seminearrings has been developed in many directions. J. Ahsan generalised
the notion of ‘semiring ideals’ in the setting of seminearrings and called it ‘S-ideals’.
He characterized seminearrings in terms of S-ideals in [2, 3]. Ahsan and Zhongkui
encountered the notion of ‘strongly idempotent seminearring” which is an analogue of
‘fully idempotent ring’ (a ring in which each ideal I of that ring is idempotent, i.e.,

I? = I) and characterized these seminearrings (cf. [4]). In [6], Ayaragarnchanakul and



Mitchell established that any finite division seminearring is uniquely determined by
the Zappa-Szép product of two multiplicative subgroups. Blackett showed in [11] that
under the operations ‘pseudosum’ and ‘pseudoproduct’, the set of probability generat-
ing functions forms a seminearring with commutative addition and an additive identity
and observed that how the algebra of seminearrings of probability generating functions
helps to understand the probability theory of non-negative integer-valued random vari-
ables. Boykett extended the results of [11] and studied seminearrings of all polynomials
over a commutative semifield with zero in [13] under the operations of multiplication
and composition.

‘Distributively generated seminearring’ is an important tool in the study of semin-
earrings. In 1997, Meldrum and Samman defined the notion of distributively generated
seminearrings in [76] in an analogous way to the notion of ‘distributively generated near-
rings’ [91]. Then in [32, 33, 76, 94, 95, 96, 97], the theory of distributively generated
seminearrings and seminearrings of endomorphisms has been enriched. Krishna and
Chatterjee investigated the algebraic structure of seminearrings in different aspects.
They called a seminearring (S, +, -) as a ‘near-semiring’ where (.S, +) is a monoid with
identity ‘0’ satisfying 0-s = 0 for all s € S. They studied categorical representations
of seminearrings, extended the result of Holcombe of near-rings to seminearrings (cf.
[58, 59, 60]). In 2005 Neuerburg studied seminearrings of bivariate polynomials in
[84]. Shabir and Ahmed [104] characterized weakly regular seminearrings and studied
the topology of the space of irreducible ideals of those seminearrings, Zulfiqar [110]
discussed the radicals of seminearrings and generalised several results of ring theory,
Changphas and Denecke [18, 19] gave a full characterization of Green’s relation on a
sub-seminearring of the seminearring Hyp (n) of all hypersubstitutions of type (n) and
used seminearrings to study complexity of hypersubstitutions and lattices of varieties,
Kornthorng et al. [57] introduced the notions of ‘k-ideal’, ‘full k-ideal’ and explored
the lattice stricture of right full k-ideals in an additively inverse seminearring. Kumar
and Krishna [62, 63, 64, 65, 66] studied affine near-semirings over Brandt semigroups.
They classified the elements, cardinality of an affine near-semiring over a Brandt semi-
group, characterized the Green’s relations on both of its semigroup reducts. Mukherjee
et al. studied various kinds of regularity in seminearrings and established analogues
of some structure theorems of semigroup theory in the setting of seminearrings (cf.
[80, 81, 82, 83, 98, 99]). In these papers congruences, near-ring congruences, additively
commutative near-ring congruences on different type of seminearrings have also been
studied.



Hussain et al. [48] discussed isomorphism theorems of seminearrings. Perumal, Bal-
akrishnan, Manikandan, Senthil, Arulprakasam generalised several results of the theory
of near-rings in seminearrings. In [9], Balakrishnan et al. studied left duo seminear-
rings, in [71, 72, 73] Manikandan et al. defined the notions of mate and mutual mate
functions, mid units in duo seminearrings, strong (k, r)-seminearrings and characterized
these seminearrings, in [85, 86, 87, 88] Perumal et al. studied left bipotent seminear-
rings, normal seminearrings, medial left bipotent seminearrings. Perumal, Senthhil et
al. also studied prime ideals, minimal prime ideals in seminearrings, noetherian sem-
inearrings, right duo seminearrings (cf. [102, 103]). In 2020, Khachorncharoenkul et
al. [51] introduced the notion of left almost seminearrings which generalizes left almost
semirings, near left almost rings and left almost rings and investigated some related
properties of these seminearrings. Koppula et al. introduced the notions of prime
strong ideals, perfect ideals, perfect homomorphisms in a seminearring and established
some relations between them (cf. [55, 56]). Khan et al. [53, 54] introduced the no-
tions of soft near-semirings, soft int-nearsemirings, soft subnear-semirings, soft ideals,
soft int-ideals, idealistic soft near-semirings based on soft set theory, discussed related
properties of nearsemirings and SI-nearsemirings. Then in 2022, Khan, Arif and Taouti
[52] introduced the notion of group seminearrings, studied ideals and homomorphisms
there.

The theory of seminearrings is not only drawing the attention of many researchers
from the theoretical point of view but also from the practical point of view. We know
that process algebra is an active area of research in computer science. From last cen-
tury, many process algebras have been formulated, extended with data, time, mobility,
probability and stochastic (see [7, 8]). A process algebra is based upon seminearring
where ‘+’ is idempotent and commutative. Seminearring is also a useful tool in the
study of reversible computation [14]. It also appears in generalized linear sequential
machines. In [61], the authors obtained a necessary condition to test the minimal-
ity of the machines using a-radicals. Desharnais and Struth [24], Droste et al. [26],
Armstrong et al. [5], Rivas et al. [92], Jenila et al. [49] have utilized the concept of
seminearring in various applications.

It is well known that the study of universal algebras in general, and that of semi-
groups, semirings, seminearrings etc in particular, is heavily dependent on the study of
congruences. In this direction group congruences on semigroups, ring congruences on
semirings play important roles. Likewise it is natural to study near-ring congruences

on seminearrings. Sardar and Mukherjee initiated this study in [98] where they charac-
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terized near-ring congruences on a restricted type of additively inverse seminearrings.
As a continuation of this work, we first study near-ring congruences on additively
regular seminearrings. Then we characterize near-ring congruences on an arbitrary
seminearring. Consequently, this study generalizes the study of additively commuta-
tive near-ring congruences on distributively generated seminearrings done in [83]. We
also study the lattice structures of the set of all near-ring congruences of a seminearring.
With the help of the notion of near-ring congruences, we then characterize and study
seminearrings which can be decomposed as a full subdirect product of a bi-semilattice
and a near-ring. We present the main work of the thesis in five chapters. We give a
brief description of each chapter below:

e Chapter 1: Here we mainly recall some preliminary notions and results of semi-
groups, semirings, near-rings, seminearrings and lattices.

e Chapter 2: In [98, 99], Sardar and Mukherjee studied additively regular semin-
earrings. Among other results, they obtained in a distributively generated additively
inverse seminearring S with property D, (i) an inclusion preserving bijective corre-
spondence between the set of all near-ring congruences on S and the set of all normal
full k-ideals of S (¢f. Theorem 3.20 of [98, 99]) and (i) the least near-ring congru-
ence on S ( ¢f. Theorem 3.22 of [98]). In the Concluding remark of [98], the authors
raised a question as to whether Theorems 3.20, 3.22 can be obtained by removing
the restriction wviz., ‘property D’ or ‘distributively generated’ In order to address the
question we found some important ideas in [67] which helped us to obtain some results
on additively regular seminearring such as Theorems 2.2.1, 2.2.2, 2.2.3, 2.2.7. Using
these results, we obtain an inclusion preserving bijective correspondence between the
set of all normal full k-ideals and the set of all near-ring congruences in a distributively
generated additively regular seminearring (cf. Theorem 2.2.10). The counterpart (cf.
Corollary 2.2.12) of the above mentioned result in the setting of additively inverse
seminearrings answers the question raised in [98] to a good extent because ‘property
D’ is removed here. Then we describe the least near-ring congruence on distributively
generated additively regular and additively inverse seminearrings. Theorem 2.2.17 de-
scribing the least near-ring congruence on a distributively generated additively inverse
seminearring (not necessarily with property D) refines Theorem 3.22 of [98]. Then
we establish that the correspondence obtained in Theorem 2.2.10 turns out to be a
lattice isomorphism (cf. Theorem 2.3.15). This chapter concludes with the study of
modularity (¢f. Theorems 2.3.17 and 2.3.18), distributivity (c¢f. Theorem 2.3.22) and
completeness (c¢f. Theorems 2.3.23 and 2.3.24) of the lattices of Theorem 2.3.15.



e Chapter 3: So far our knowledge goes, the study of near-ring congruences on
seminearrings was accomplished in [17, 83, 99]. Results obtained in [17, 83, 99] mainly
connect, via inclusion preserving bijective correspondence, (7) near-ring congruences
with normal full k-ideals in a distributively generated additively inverse seminearring
with property D (c¢f. Theorem 3.20 [99]), (i) near-ring congruences with normal full
k-ideals in a distributively generated additively regular seminearring (¢f. Theorem
2.2.10), (¢i7) additively commutative near-ring congruences with normal subseminear-
rings in a zero-symmetric distributively generated seminearring (c¢f. Theorem 1.5.24
(i.e., Theorem 3.6 [83])). In each of these results, seminearrings, under consideration,
are assumed to be distributively generated. Our goal in this chapter is to make simi-
lar study without putting any restriction on the seminearring under consideration. In
this chapter we consider a seminearring S without any restriction (i.e., neither dis-
tributively generated nor additively regular) and establish that the set of all near-ring
congruences on S and the set {I C S|I is a strong, dense, reflexive and closed additive
subsemigroup of S with .S C I} are in an inclusion preserving bijective correspon-
dence (¢f. Theorem 3.1.8). We also show that in a seminearring S, the set of all
zero-symmetric near-ring congruences on S and the set {I C S|I is a strong, dense,
reflexive and closed additive subsemigroup of S with SI, IS C I} are in an inclusion
preserving bijective correspondence (cf. Theorem 3.1.10). We then obtain the analogue
of Theorems 3.1.8 and 3.1.10 in the setting of distributively generated seminearrings
(cf. Theorem 3.2.3).

e Chapter 4: As a continuation of the work done in Chapter 3, in this chapter,
we aim to extend the bijections, established in the previous chapter (¢f. Theorems
3.1.8 and 3.1.10), to lattice isomorphisms. In this chapter, we first call a subset I of
a seminearring S a ‘generalised strong dense reflexive (right) k-ideal’ if I is a strong,
dense, reflexive and closed additive subsemigroup of S such that (respectively, IS C
I) I15,SI C I and explain the motivation behind considering a ‘generalised strong
dense reflexive (right) k-ideal’ to be a suitable structure to get connected (via inclusion
preserving bijections) with the near-ring congruences. Then we establish that in a
seminearring with left local units, the set of all generalised strong dense reflexive k-
ideals and the set of all zero-symmetric near-ring congruences become lattices under
set inclusions (c¢f. Theorems 4.2.15 and 4.2.17) and these lattices become isomorphic
(¢f. Theorem 4.2.18). Thereafter with the help of this lattice isomorphism, we study
the modularity and distributivity of these lattices in a seminearring with left local
units (¢f. Theorems 4.2.19, 4.2.22 and 4.2.26). Then in Theorem 4.3.9 we establish



that in an ET-inversive seminearring, the bijections between (i) the set of all near-
ring congruences and the set of all generalised strong dense reflexive right k-ideals and
(77) the set of all zero-symmetric near-ring congruences and the set of all generalised
strong dense reflexive k-ideals turn out to be lattice isomorphisms. We also study
the modularity, distributivity and completeness of the above-mentioned lattices in an
E*-inversive seminearring (c¢f. Theorem 4.3.10 and Theorem 4.3.12).

e Chapter 5: After studying near-ring congruences in various types of seminear-
rings, in this chapter we mainly aim to find some sort of analogues of some important
structure theorems for F-inversive semigroups in the setting of seminearrings using
the notion of near-ring congruences. This idea was motivated by the fact that one
nice aspect of studying seminearrings is to obtain semigroup theoretic analogues in the
setting of seminearrings. Major part of this study is devoted to obtain analogues of
some structure theorems of semigroups, in general for regular semigroups, in particular
for completely regular and for clifford semigroups ([80, 81, 82, 98]). This trend of de-
velopment of seminearring theory together with a structure theorem and the fact that
E-inversive semigroup occupy an important part in the semigroup theory motivate the
outcome of this chapter. In order to find an analogue of the famous structure theo-
rem,“a semigroup is a full subdirect product of a semilattice and a group if and only if
it is an E-inversive sturdy semilattice of cancellative monoids” (Theorem 14 [78] i.e.,
Theorem 1.1.33), in the setting of seminearrings, here we characterize the seminearrings
which are full subdirect products of a bi-semilattice and a near-ring as the E*-inversive
seminearrings which are strong bi-semilattice of additively cancellative seminearrings
(¢f. Theorem 5.1.12). Then we obtain some variants of Theorem 5.1.12 viz., Theorems
5.1.16, 5.1.17 and 5.1.18 (this variation occurs due to the replacement of bi-semilattice
by distributive lattice and near-ring by zero-symmetric near-ring). Each of these four
theorems is not only an analogue of Mitsch’s Theorem 14 [78] (¢f. Theorem 1.1.33) in
our setting, but also an analogue of Ghosh’s Theorem 2.3 [29] (¢f. Theorem 1.3.14) on
semirings. On the other hand, Ghosh obtained a different characterization in Theorem
2.10 [29] (¢f. Theorem 1.3.15) of the class of semirings characterized in Theorem 2.3 [29]
(¢f. Theorem 1.3.14). This motivates us to make an attempt for obtaining an analogue
of Ghosh’s Theorem 2.10 [29] (¢f. Theorem 1.3.15) in our setting. In this attempt we
have been able to obtain Theorem 5.1.27 and Theorem 5.1.29 which respectively pro-
vide different characterizations of the classes of seminearrings determined in Theorem
5.1.16 and Theorem 5.1.18. We conclude this chapter with the sketch (¢f. Theorem

5.2.1, Theorem 5.2.6) of the relationships of the classes of ET-inversive seminearrings



characterized here with the classes of additively regular seminearrings characterized in
[81, 82, 98].

To conclude the introduction it is relevant to mention that in the process of ac-
complishing the whole work of this thesis we mainly take impetus from ideal theory
of semigroups, congruences on semigroups, regularity of semigroups, ideal theory of
semirings, congruences on semirings and theory of lattices for which, among others, we
have consulted [1, 22, 23, 35, 37, 38, 45, 46, 77, 90].



CHAPTER 1

PRELIMINARIES




Preliminaries

In this chapter certain basic definitions and results are presented for their use in the

sequel or for some historical connections.

1.1 Semigroups

We recall some preliminary notions of semigroup theory from [22, 45, 46, 68, 77, 89, 90].

Definition 1.1.1.  (¢) A non-empty set S together with a binary operation is called

a groupoid.

(74) A groupoid S satisfying the associative law is a semigroup. A semigroup having

only one element is trivial.

(27i) If a semigroup S contains an element 1 with the property that, for all x in S,
rl =1z = x,

we say that 1 is an identity element of S, and that S is a semigroup with identity
or (more usually) a monoid. A semigroup S has at most one identity element.
If S has no identity element then we can adjoin an element 1 to S to form a

monoid. We define
ls =sl =sforall se Sand 11 =1,

then S U {1} becomes a monoid. Now we define

10



Chapter 1. Preliminaries

St = S if S has an identity element and S U {1} otherwise.

We refer to St as the monoid obtained from S by adjoining an identity if neces-

sary.

(7v) A non-empty subset A of a semigroup (5,-) is called a subsemigroup of S if
A2 C A

In the rest of this section, for our convenience we will consider the binary operation
of a semigroup as ‘addition’ and denote a semigroup by (S5,4). Now we recall the
following definitions from [31, 36, 46] .

Definition 1.1.2. (i) A subsemigroup A of a semigroup (5, +) is called a dense sub-
semagroup of S if for each s € S there exist x,y € S such that s +x, y + s € A.

(77) In a semigroup (S,+), let us define the closure operator w : P(S) — P(S) by
A — Aw, where P(S) denotes the power set of S and Aw = {s € S : there exists
a € A such that a +s € A}. Then a subsemigroup I of S is said to be a closed
subsemigroup if Tw = I.

(¢73) A subsemigroup I of a semigroup (.5, +) is said to be a reflexive subsemigroup if

for a,b € S, a+b e I implies b+ a € I.

Remark 1.1.3. If T is a subsemigroup of (S, +), T C Tw. If (T,+) and (Tw, +) are

subsemigroups of a semigroup (.S, +) then Tw is a closed subsemigroup of S.

Now we recall the definitions of congruence, homomorphism and results related
with them.

Definition 1.1.4. In a semigroup (5, +), an equivalence relation o on S is said to be

a congruence if (a,b) € o implies (a +¢,b+¢), (c+a,c+b) € o for all a,b,c € S.
Definition 1.1.5. Let p be a congruence on a semigroup (S, +). Then
S/p:={]s] : [s] is the congruence class of s under p where s € S}
forms a semigroup with respect to ‘+’ defined by
[z] + [y] =[x+ y] for all z,y € S.

A congruence p on a semigroup (.5, +) is said to be a group congruence on S if (S/p, +)

becomes a group.

11
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Definition 1.1.6. Let (S, +) and (S;, ®) be two semigroups. Then a function f : S —

S is said to be a semigroup homomorphism if

flx+y) = fz)® f(y) forall z,y € 5.

If (S,4) is a monoid, i.e., a semigroup with zero (0) (where 0 is the identity element
of (S,+)) then for a semigroup morphism f of S, kernel of fis the set {s € S: f(s) =
f(0)} and is denoted by ker f.

Remark 1.1.7. Let (S,+) be a semigroup.

(i) Let T be a semigroup and ¢ : S — T be a semigroup homomorphism. Then the

relation

ps = {(a,b) € S x5 : ¢(a) = $(b)}
is a congruence on S.

(74) Let p be a congruence on (S,+). Then S/p is a semigroup with respect to the
operation defined in Definition 1.1.5 and A, : S — S/p, defined by A(a) = [a],,

is a semigroup homomorphism.
Definition 1.1.8. For any two binary relations p, o on a non-empty set S
poo:={(xr,y) €S xS|(x,2) €pand (z,y) € o for some z € S}
is again a binary relation on S.

Definition 1.1.9. Let p be a relation on a non-empty set S. Then the transitive

closure of p, denoted by p>, is defined as follows
p> = Up".
n=1
Result 1.1.10. If p is a relation on a non-empty set S then p*> is the smallest transitive

relation on S containing p.

Theorem 1.1.11. Let p and o be two equivalence relations on a non-empty set S
(congruences on a semigroup (S,+)) and pV o denote the smallest equivalence relation
on S (the smallest congruence on (S,+)) containing both p and o. If a,b € S, then
(a,b) € pV o if and only if for some n € N there exist elements 1, xg, ..., Toy 1 in S
such that

12
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(a,71) € p, (T1,72) € 0, (T2, 73) € p,...,(T2n-1,b) € 0.

Remark 1.1.12. Theorem 1.1.11 says effectively that

pVo=(poa)>.

Corollary 1.1.13. Let p and o be two equivalence relations on a non-empty set S

(congruences on a semigroup (S,+)) such that poo = oo p. Then

pVo=poo.

Definition 1.1.14. Let (S, +) be a semigroup. Then a € S is said to be an idempotent

elementof S if a+a = a.

Definition 1.1.15. If a is an element of a semigroup (S, +), we say that a’ is an inverse

of a if

a+d +a=aandad +a+d =d.

Definition 1.1.16. Let (S5, +) be a semigroup. Then S is said to be

(vid)

an E-inversive semigroup if for each a € S, there exists x € S such that a +
€ E(S), the set of all idempotents of S,

a reqular semigroup if for each a € S, there exists x € S such that a = a+ = + a,
a band if every element of S is idempotent,

a left (right) normal band if S is a band in which a + b+ ¢ = a + ¢+ b (resp.,
a+b+c=b+a+c)forall ab,ces,

a normal band if S is a band in which a+b+c+a =a+c+b+aforalla,b,c € 9,
a semilattice if S is a commutative band,

an inverse semigroup if every a in S possesses a unique inverse i.e., if for every

a € S there exists a unique element ¢* in S such that

a+a +a=aa +a+a =a",

an E-semigroup if E(S) is a subsemigroup of S where E(S) denotes the set of all
idempotents of S,

13
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(vii) an E-unitary semigroup if e +a, b+ f € E(S) imply a,b € E(S) for every
e, f € E(S)and a,b € S where E(S) denotes the set of all idempotents of S.

Observation 1.1.17. [78] Let S be a semigroup. If S is E-inversive, then it can be
shown that for each a € S, there exists x € S such that a + x, x + a € E(S), the set
of all idempotents of S. Consequently, it can be said that S is E-inversive if and only
if I(a) ={x €S :a+x,x+ac E(S)} #0 for every a € S. A regular semigroup

(whence an inverse semigroup) is E-inversive.

Theorem 1.1.18. The following statements about a semigroup S are equivalent:
(a) S is an inverse semigroup;
(b) S is regular and idempotent elements commute.

Notation 1.1.19. Throughout this thesis, in a semigroup (S, +),
(1) E(S) denotes the set of all idempotents of S,

(77) V(a) denotes the set of all inverses of a, i.e., V(a) ={z € S:a+z+a=a and
r+a+x=ux},

(7i7) if S is an inverse semigroup, for each a € S, a* denotes the unique element of S
satisfying

a+a" +a=a,a" +a+a =a.

Definition 1.1.20. (i) A subsemigroup I of a semigroup (S, +) is said to be a full
subsemigroup if E(S) C I.

(77) In a regular semigroup (S, +), a subsemigroup 7" of S is called self-conjugate if
v+t+a €T forallt €T, forall z € S and for all z° € V(z) (cf. Notation 1.1.19).

Theorem 1.1.21 (Theorem 1 [67]). Let (S,+) be a regular semigroup and H be a full,
self-conjugate subsemigroup of (S,+). Then the relation

B, ={(a,b) € SxS:z+a=b+y for somex,y € H}

is a group congruence on (S, +).
The least group congruence on S is given by o = 3, where U is the intersection of all

full, self-conjugate subsemigroups of S.

14
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Theorem 1.1.22 (Theorem 3 [67]). In a regular semigroup (S,+), the mapping H —
(H) :=={(a,b) € Sx S:a+ € H for someb € V(b)} is a one-to-one, inclusion-
preserving mapping of the set of all self-conjugate, full and closed subsemigroups onto

the set of all group congruences on S.

Theorem 1.1.23 (Theorem 4 [67]). For any group congruence T on a reqular semigroup
(S.+), say T = [8,, where H is a self-conjugate, full subsemigroup of S, the following

are equivalent.
(i) atb,
(it) a+x+b € H for some x € H and some (all) ' € V (D),
(iti) o' +x+ b€ H for some x € H and some (all) o’ € V(a),
(iv) b+x+ad € H for some x € H and some (all) o' € V(a),
(W) V' +x+a€ H for some x € H and some (all) V' € V(b),
(i) a+x =y+b for some x,y € H,
(vii) x +a =b+y for some x,y € H,
(iii) H+a+HNH+b+ H # 0.

Corollary 1.1.24 (Corollary 1 [67]). Let o denote the least group congruence on a

reqular semigroup (S,+). Then the following are equivalent.
(i) aob,
(it) a+u+b €U for someuw € U and some (all) b' € V(b),
(iii) o' +u+be U for someu € U and some (all) a' € V(a),
(iv) b+u—+a €U for someu € U and some (all) ' € V(a),
() V+u+aecU for someu e U and some (all) V' € V(b),
(vi) a+u =v+b for some u,v € U,
(vii) u+a = b+ v for some u,v € U,

witi) U+a+UNU+b+U #0

15
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where U 1is the least member of the set of all self-conjugate, full subsemigroups of S,

i.e., the intersection of all self-conjugate, full subsemigroups of S.

Theorem 1.1.25. [77] If (S, +) is an inverse semigroup with semilattice of idempotents
E(S), then the relation

o:={(r,y) € SxS:x+e=y+e for someeec E(S)}
is the minimum group congruence on S.

Now we recall some results from [31] related with group congruences on an arbitrary

semigroup which guide us to study near-ring congruences on seminearrings.

Lemma 1.1.26 (Lemma 2.2 [31]). Let py, pa be two group congruences on a semigroup

(S.+). Then py C pyif and only if {x € S: (v,x+x) € p1} C{r € S: (x,x+x) € pa}.

Lemma 1.1.27 (Lemma 2.3 [31]). Let B be a non-empty subset of a semigroup (S, +).

Consider four relations on S :
(i) p,, ={(a,b) € S xS : there exists v € S such that a +x, b+ x € B},
(ii) p,5 = {(a,b) € S x S : there exist x,y € B such that a + x =y + b},
(iii) p,, = {(a,b) € S xS : there exists x € S such that v +a, x +b € B},
(iv) p,, ={(a,b) € S xS : there exist v,y € B such that x +a = b+ y}.

If B is a dense and reflexive subsemigroup of S, then

P = Pop = P3p = Pap-

If B is a dense, reflexive subsemigroup of S, then we denote the above four relations

by py.

Remark 1.1.28. In a semigroup (S,+), a closed and dense subsemigroup (I, +) is
always a full subsemigroup since for any e € F(S), there exists € S such that

e+x €l whencee+ (e+x),e+x € 1.

So in view of the above Remark, we rewrite Theorem 2.4 [31] with a slight modifi-

cation.

Theorem 1.1.29. Let B be a dense and reflexive subsemigroup of a semigroup (S, +).
Then the relation

16



Chapter 1. Preliminaries

pp =1{(a,b) € S xS : there exists v € S such that a +x, b+ x € B}

is a group congruence on S. Moreover, BC Bw = {x € S: (x,x+z) € p,}. If B is
closed, then B ={x € S: (z,v+x) € p,}.
Conversely, if o is a group congruence on S, then there exists a dense, reflerive and

closed subsemigroup N of S such that the relation p, coincides with o where
pn ={(a,b) € S xS : there exists x € S such that a +x, b+x € N},

In fact, N = {x € S : (z,x + x) € o}. Thus there exists an inclusion preserving
bijection between the set of all dense, reflexive and closed subsemigroups of S and the

set of all group congruences on S.

Definition 1.1.30. Let p be a congruence on a semigroup S. If S/p is a semilattice then
p is called a semilattice congruence on S. In such a case S is a semilattice Y = S/p of
semigroups S, a € Y, where S, are the p-classes, or briefly a semilattice of semigroups
Sa-

Definition 1.1.31. Let Y be a semilattice. Suppose for each a € Y there is a semi-
group S, such that S, N Sz = 0 if a # . For each pair a,8 € Y, a > 3, let
®a,p 1 Sa — Sp be a homomorphism satisfying the following conditions:

(1) Pa.a =1ts, where a € Y and ig, denotes the identity morphism of S,,

(19) Pa,p © Ppry = Pa if > > (here functions are written from right).

On the set U S,, a multiplication is defined by
acY

axb= (a¢a,aﬁ)(b¢ﬁ,aﬁ)

for a € S,,b € Sz. This multiplication ‘*’ is associative and the new multiplication
coincides with the given one on each S,. The semigroup so defined is denoted by
[Y; Sa, da] = S and is a strong semilattice Y of semigroups S, determined by the
homomorphisms ¢, g or briefly a strong semilattice of semigroups S,.

A strong semilattice of semigroups S = [Y';S,. ¢a,5] is said to be a sturdy semilat-

tices of semigroups if each ¢, s is an injective morphism.

Definition 1.1.32. A semigroup isomorphic with a subsemigroup H of the direct
product of two semigroups S and T is called a subdirect product of S and T if the two
projections my : H — S, m1(s,t) = s and mo : H — T, ma(s,t) =t are surjective.

A subdirect product H of a semigroup S and a group G is called full if (e,1) € H
for every e € E(S) and 1 is the identity of the group G.

17
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Theorem 1.1.33 (Theorem 14 [78]). For a semigroup S the following are equivalent:
(i) S is a full subdirect product of a semilattice and a group,

(it) S is an E-inversive sturdy semilattice (cf. Definition 1.1.81) of cancellative

monoids,

(iii) S is an E-inversive sturdy semilattice of monoids with a single idempotent.

1.2 Lattices and related structures

For the following preliminaries on lattices, mainly [23, 37| are consulted.

Definition 1.2.1. Let P be a set. An order (or partially order) on P is a binary
relation < on P such that, for all x,y, z € P,

(1) = < x (known as reflexivity)
(#) v <y and y <z imply z = y (known as antisymmetry)
(7i1) © <y and y < z imply < z (known as transitivity).

A set P equipped with an order relation < is said to be an ordered set (or partially

ordered set or poset).

Definition 1.2.2. Let P be an ordered set. We say that P has a bottom element if
there exists L€ P (called bottom) with the property that L < x for all x € P.

Dually P has a top element if there exists y € P (called top) with the property
that xy > x for all z € P.

Definition 1.2.3. [23] Let P and @ be two ordered sets. Then a map ¢ : P — @ is
said to be

(7) an order preserving if v <y in P = ¢(x) < ¢(y) in Q,
(#4) an order-embedding if x <y in P if and only if ¢(z) < ¢(y) in Q,

(¢ii) an order-isomorphism if it is an order-embedding which maps P onto () and P

and () are called order-isomorphic.
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Definition 1.2.4. [23] Let L be an ordered set and S C L. An element « € L is an
upper bound of S if s < x for all s € S. A lower bound is defined dually. x is called the
least upper bound of S (supremum of S) and denoted by sup S if = is an upper bound
of S and x < y for all upper bounds y of S. Dually, x is called the greatest lower bound
of S (infimum of S) and denoted by inf S if z is a lower bound of S and z > y for all

lower bounds y of S.

Definition 1.2.5. [23] Let L be a non-empty ordered set. Then L is called a lattice if

sup{z,y} and inf{z,y} exist for any two elements x,y in L.

Notation 1.2.6. We often write a A b or meet of a, b instead of inf{a, b} and a V b or
join of a, b instead of sup{a, b}.

Definition 1.2.7. Let L be a lattice and () # M C L. Then M is called a sublattice
of L if a,b € M impliesa Vb, aANbe M.

Theorem 1.2.8. [37] (a) Let (V,<) be a lattice. Considering a V b = sup{a, b} and

a Ab=inf{a,b} as binary operations on V', we obtain the following:
(1) (V,V) and (V,\) are semilattices (cf. Definition 1.1.16).
(2) avVb=b< aANb=a foralla,beV.

(b) Conversely, let (V,V,A) be a non-empty set with binary operations \/ and N\ which
satisfy (1) and (2). Then

a<bsaVb=">bforallabeV
or equivalently
a<b&salAb=a foralla,beV

defines a relation ‘<’ on 'V for which (V, <) is a lattice satisfying sup{a,b} = aVb and
inf{a,b} =aAb foralla,be V.

Definition 1.2.9. [23] Let L and K be two lattices. A mapping f: L — K is said to
be a lattice homomorphism if f is both join-preserving and meet-preserving i.e., for all
a,be L,

flavb) = fla)V f(b) and f(a Ab) = f(a) A f(b).

A bijective lattice homomorphism is called a lattice isomorphism.
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Proposition 1.2.10. /23] Let L and K be two lattices and f : L — K be a map.
(i) Then the following are equivalent.

(a) f is order preserving.
(b) flavb)> f(a)V f(b) for all a,b € L.
(c) flanb) < f(a)ANf(b) foralla,b € L. In particular, if f is a homomorphism,

then f is order preserving.
(it) f is a lattice isomorphism if and only if it is an order-isomorphism.
Lemma 1.2.11. /23] Let L be a lattice and a,b,c € L. Then
(i) aN(bVec)>(anb)V(aNc), and dually,
(ii) a>c=aN(bVec)>(aAb)Vec, and dually.
Definition 1.2.12. [23] A lattice L is said to be a modular lattice if
a>c=aNbVe)=(aNb)Vc
for all a,b,c € L.
Definition 1.2.13. [23] A lattice L is said to be a distributive lattice if
aN(bVe)=(aNb)V(aNc)
or equivalently
aV(bAec)=(aVb)A(aVc)
for all a,b,c € L.

Definition 1.2.14. [23] A lattice L is said to be a complete lattice if the join (supre-
mum), \/ S, and the meet (infimum), A .S, exist for every subset S of L.

Remark 1.2.15. Every finite lattice is complete.

Theorem 1.2.16. [23] Let P be a non-empty ordered set. Then the following are

equivalent.
(i) P is a complete lattice.
(it) NS exists in P for every subset S of P.

(iii) P has a top element and \ S exists in P for every non-empty subset S of P.
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1.3 Semirings

Semiring is a generalization of both rings and distributive lattices. The first mathe-
matical structure we encounter ‘the set of all natural numbers’ under usual addition
and multiplication is a semiring. Other semirings arise naturally in diverse areas of
mathematics such as combinatorics, functional analysis, topology, graph theory, opti-
mization theory. In the literature of semiring theory, various definitions of semirings
followed by several authors are found. Glazek [34], Hebisch and Weinert [38] consider

the definition of ‘semiring’ in the following form.

Definition 1.3.1. [38] An algebraic structure (R, +,-) is said to be a semiring if it

satisfies the following axioms:
(1) (R,+) is a semigroup (not necessarily commutative),
(2) (R,-) is a semigroup (not necessarily commutative),

(3) multiplication distributes over addition from each side, i.e., for all a,b,c € R

a-(b+c)=a-b+a-cand (a+b)-c=a-c+b-ec

(R,+,-) is said to be an additively commutative semiring if (R, +) is commutative and
a multiplicatively commutative semiring if (R, -) is commutative. (R, +,-) is said to be
a commutative semiring if both (R, +) and (R, ) are commutative.

A subset A of a semiring R is said to be a subsemiring if A is closed under ‘+’ and

“7 e, (A +), (A,-) are subsemigroups.

We present below two other definitions of semirings from Golan [35], Hebisch and
Weinert [37].

Definition 1.3.2. [35] A semiring is a non-empty set R on which two binary oper-
ations, say ‘+ and ‘-’ are defined such that (R,+) is a commutative semigroup with
identity element 0, (R, -) is a semigroup with identity element 1, ‘-’ distributes over ‘+’

from each sideand 0-r=0=17-0 for all » € R.

Definition 1.3.3. [37] A non-empty set R along with two binary operations, say
‘+7 and ‘-’ is said to be a semiring if (R,+) is a commutative semigroup, (R,-) is a

semigroup and ‘-’ distributes over ‘+’ from each side.
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Remark 1.3.4. A semiring in the sense of [35] and [37] are additively commutative
in the sense of [38]. In the present thesis, unless otherwise mentioned, a semiring is

assumed to be in the sense of [38] i.e., Definition 1.3.1.

Definition 1.3.5. An additively commutative semiring (5, +, -) is said to be a hemiring
if (S,+) is a monoid with identity element 0 and a-0 =0-a = 0 for alla € S. An

additively cancellative hemiring is called a halfring.

Definition 1.3.6. Let (S, +,-) be a semiring. An element e of S is called an additive
idempotent if e +e = e.

An element a of S is called an idempotent if a + a = aa = a.

Definition 1.3.7. [38] In a semiring (S, +,-), a subset I C S is said to be a left ideal
(right ideal) of S if

(7) (I,+) is a subsemigroup of (S5, +) and
(17) s-ael (resp.,a-sel)forall se Sandael.
If I is a left as well as a right ideal of S then I is called an ideal of S.

Definition 1.3.8. [38] Let A be an ideal of an additively commutative semiring
(S,+,-). Then
A:={ae S|a+aec Afor some a € A}

defines an ideal of (S, +,-) satisfying A C A and A= A, called the k-closure of A. In
particular, if A = A holds, then A is called a k-ideal of S. Therefore an ideal I of an
additively commutative semiring S is a k-ideal if fora € I, x € S,a+zx €l < x € [.

Definition 1.3.9. [10] A semiring S is called a distributive lattice D of rings R,(ca € D)
if S admits a congruence 0 such that D = S/ is a distributive lattice and each 0-class
R, is a subring of S. More generally a semiring S is called a distributive lattice D of
semirings S, (a € D) if S admits a congruence d such that D = S/¢ is a distributive

lattice and each d-class S, is a subsemiring of S.

Definition 1.3.10. [29]Let D be a distributive lattice and {S, : @ € D} be a family of
pair wise disjoined semirings which are indexed by the elements of D. For each (o < 3)
in D, we now define a semiring monomorphism ¢, 5 : S, — Sz satisfying the following

conditions: (1) ¢o.o = Is,, where I, denotes the identity mapping on S,, (2) ¢5.,Pa s
= ¢a,’y> if a < 6 <7 (3) ¢a,7(Sa)¢B,’y(S,B) - ¢aﬁ,'y(saﬁ)> ita+p8 < -
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On S = US, (the disjoint union of S,’s) we define & and © as follows: (4) a @b

= ¢aatp(a) + p.a+p(b) and (5) a © b = ¢ € S,p such that ¢upais(c) = Paarpla) -
®g.a+5(b) where a € S,, b € Sz. We denote the above system by (D, S,, ¢n5). This is

a semiring and we call it a strong distributive lattice D of semirings S,, o € D.

Example 1.3 [29] shows that a distributive lattice of rings may not be a strong dis-
tributive lattice of rings but a strong distributive lattice of rings is always a distributive

lattice of rings.

Definition 1.3.11. [29] An additively commutative semiring (.S, +,-) is said to be
an E-inversive semiring if its additive reduct (S,+) is an E-inversive semigroup (cf.
Definition 1.1.16).

Definition 1.3.12. A semiring isomorphic with a subsemiring H of the direct product
of two semirings S and T is called a subdirect product of S and T if the two projections
m:H— S, m(s,t) =sand mo: H— T, m(s,t) =t are surjective.

A subdirect product H of a semiring S and a ring R is called full if (e,0) € H for
every additive idempotent e € S and 0 is the identity of (R, +).

Remark 1.3.13. A subdirect product of a distributive lattice and a ring is always a
full subdirect product (¢f. Lemma 2.2 [29]).

Theorem 1.3.14 (Theorem 2.3 [29]). The following conditions on a semiring (S, +,-)

are equivalent.
(1) S is a subdirect product of a distributive lattice and a ring.
(2) S is an E-inversive strong distributive lattice of halfrings.

(3) S is an E-inversive strong distributive lattice of hemirings, each of which contains

a single additive idempotent.

Theorem 1.3.15 (Theorem 2.10 [29]). A semiring S is a subdirect product of a dis-
tributive lattice and a ring if and only if S is an E-inversive semiring satisfying the

following properties:
(i) ef = fe foralle, f € ET(S) where EY(S) ={e€ S:e+e=c¢c},
(it) € =e¢ for alle € ET(S),

(i1i) a+ae =a for alla € S, for all e € ET(S),
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(iv) if a € S be such that a +b ="b for some b € S, then a +a = a,
(v) if a,b € S be such that a® = b and I(a) = 1(b) then a = b where I(a) ={z € S :

a+xe ET(S)} and a® = {a(a+x) :x € I(a)}.

1.4 Near-rings

We recall some preliminary notions of near-rings mainly from [91].

Definition 1.4.1. [91] An algebraic structure (N, +,-) is said to be a near-ring if it

satisfies the following conditions :
(1) (N,+) is a group (not necessarily abelian),
(2) (N,-) is a semigroup (not necessarily commutative) and
(3) for all a,b,c € N, (a+b)-c=a-c+b-c (‘right distributive law’).

Since in (3), ‘-’ distributes over ‘+’ from the right side, it can be called as a ‘right
near-ring’. Similarly, if 7 distributes over ‘+’ from the left side, then we get a left
near-ring. To be specific, an algebraic structure (N, +, -) is said to be a left near-ring if

N satisfies (1) and (2) of Definition 1.4.1 and a-(b+¢) =a-b+a-cforall a,b,c € N.
Remark 1.4.2. Throughout the present thesis ‘near-ring’ stands for ‘right near-ring.

Example 1.4.3. [91] Let G be an additively written (but not necessarily abelian)
group. Then the following sets of mappings are near-rings under point wise addition

and composition of functions:
(i) M(G):={f:G— G},
(ii) Mo(G) :=={f: G — G|f(0) =0},
(iii) M.(G) :={f: G — G|f is constant}.

Definition 1.4.4. [91] A near-ring (N, +, -) is called a zero-symmetric near-ring if a-0
=0 forallae N.

It can be noted that from the definition of near-ring 0-a = 0 for all @ € N. In
Example 1.4.3, My(G) is a zero-symmetric near-ring but M (G) is not a zero-symmetric

near-ring.
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Definition 1.4.5. [91] Let (N, +,-) be a near-ring. Then a subgroup M of (N,+) is

called a subnear-ring of N if mymgy € M for all mq,my € M.

Definition 1.4.6. [91] Let (N, +,-) be a near-ring and I € N. Then [ is called an
ideal of N if

(¢) (I,+) is a normal subgroup of (N, +),
(i) IN C1,ie,in €l forallie [ and for alln € N,
(2ii) for all n,n’ € N and for all i € I, n(n' +1i) —nn’ € I.

Normal subgroups R of (N, +) satisfying condition (i¢) are called right ideals of N
while normal subgroups L of (IV, +) satisfying condition (iii) are called left ideals.

Definition 1.4.7. [91] In a near-ring (N, +, -) an element d is said to be a distributive
elementif d-(a+b)=d-a+d-bforall a,b € N.

Let (N, +,-) be a near-ring and N, := {d € N|d is distributive}. Then N is called
a distributively generated near-ring if Ng generates the group (N, +).

Example 1.4.8. [91] Let (G, +) be a group (not necessarily abelian). Consider the
set of all endomorphisms on G, denoted by End(G). Then

(End(G)) := {ioieim eN,o; € {-1,1},¢; € End(G)}

i=1

is a subnear-ring of M(G), distributively generated by (End(G),-) and called the en-
domorphism near-ring on G. It can be verified that if G' is not an abelian group then
(End(Q)) is not a ring.

Remark 1.4.9. Let (N, +, ) be a distributively generated near-ring. Then
(1) N is a zero-symmetric near-ring and

(#4) N is a ring if and only if (N, +) is abelian.

1.5 Seminearrings

Various versions of the definitions of seminearrings are prevalent in the literature. We
present below three versions, one from Hoorn et al. [44], one from Krishna [58] and
one from Weinert [108].
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Definition 1.5.1. An algebraic structure (S, +, ) is said to be a (right distributive)

seminearring if it satisfies the following axioms:
(1) (S,+) is a semigroup (not necessarily commutative),
(2) (S,-) is a semigroup (not necessarily commutative),
(3) (a+b)-c=a-c+b-cforall a,b,ce S (“right distributive law”).
Remark 1.5.2. If we replace (3) by (3'), where
3): a-(b+c)=a-b+a-cforallabceS,

then one gets left distributive seminearring. In [108], Weinert mention this definition.
The theory of left distributive seminearrings runs parallel to that of right distributive

seminearrings.

Notation 1.5.3. Throughout our work, unless mentioned otherwise, the term ‘sem-
inearring will stand for ‘(right distributive) seminearring’. In a seminearring (S, +, -),

for a,b € S, ‘ab’ will stand for ‘a - b’.

A seminearring (S, +, -) is a near-ring if (S, +) is a group. Again a seminearring is
semiring if it satisfies (3') as well. Therefore seminearrings generalize semirings as well

as near-rings.

Definition 1.5.4. A seminearring (S, +,-) is said to be with zero (0) if (S,+) is a
monoid with identity element 0 and 0s = 0 for all s € S.

A seminearring S with zero is said to be zero-symmetric if sO = 0 for all s € S.

A subset M of a seminearring (S, +, -) is called a subseminearring of S if (M, +) is

a subsemigroup of (5, +) and mymy € M for all my, my € M.

Remark 1.5.5. The notion of seminearring was first introduced by Hoorn et al. in [44].
In [44], the authors mainly considered zero-symmetric left distributive seminearring.
In [58], the author considered right distributive seminearring with zero and called it

near-semiring.

Example 1.5.6. [58, 91] Let S be an additively written (but not necessarily commu-
tative) semigroup. Then the following sets of mappings are seminearrings under point

wise addition ‘4’ and composition ‘o’ of functions:
(i) M(S) == {f : S = S},
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(ii) M.(S):={f:S — S|f is constant},

(i) Mo(S) :={f:S — S|f(0) =0} where (S, +) is a monoid with identity element
0.

If (S,+) is a monoid, (My(S), +, o) is a zero-symmetric seminearring but (M (.S), +, o)
is a seminearring with zero but not a zero-symmetric seminearring. If (S,4) is a

semigroup without identity element, (M(S),+,0) is a seminearring without zero.

Definition 1.5.7. [76, 108] In a seminearring (S, +,-), an element d is said to be a
distributive element if d(a +b) = da + db for all a,b € S.
A seminearring (S, +,-) is said to be a distributively generated seminearring if S

contains a multiplicative subsemigroup (D, ) of distributive elements which generates
(S, +).

Remark 1.5.8. In a distributively generated seminearring (.5, +, ) any element can
be expressed as a finite sum of distributive elements of S, i.e., for each a € S, a =

>, d; where d; is a distributive element for 1 <i < n.

Example 1.5.9. [96] For a semigroup (S,+), let End(S) denote the set of all endo-
morphisms of S. Since (S,+) is not commutative, End(S) need not be closed with
respect to the point wise addition of functions. But End(S) forms a semigroup with

respect to the composition of functions. Then
(End(S)) = {S i € N, f € End(S))
i=1

is a subseminearring of M (S), the seminearring of all self maps of S. Clearly each
element of End(S) is a distributive element in M (.S) and so from the construction it is
clear that (End(S)) is distributively generated by End(S). So (End(S)) forms a dis-
tributively generated seminearring with respect to point wise addition and composition

of functions.

Remark 1.5.10. In view of (¢i) of Remark 1.4.9, a distributively generated seminear-
ring (S, +,-) is a semiring if and only if .S is an additively commutative seminearring

(i.e., (S,+) is commutative).

Definition 1.5.11. [2] A subset [ of a seminearring (S, +, -) is said to be a right (left)
S-ideal if

(i) foral z,y € I, v +y € 1,
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(i) for all x € I and for all s € S, xs € I (resp., sz € I).
I is said to be an S-ideal if it is both a left and a right S-ideal.

Definition 1.5.12. In a seminearring (S, +, -), a right (left) k-ideal I is a right (left)
S-ideal of S such that whenever a +b € I, a,b € S, then a € I if and only if b e . I
is said to be a k-ideal if it is both right and left k-ideal.

Definition 1.5.13. In a seminearring (S, +, ), an element z is said to be an additive

idempotent if x + x = x and a multiplicative idempotent if x? = .

Notation 1.5.14. The set of all additive idempotents in a seminearring S is denoted
by ET(S) and the set of all multiplicative idempotents in S is denoted by E*(.S).

Definition 1.5.15. [42] A seminearring (S, +, ) is called
(i) an additively regular seminearring if (S, +) is a regular semigroup,
(ii) an additively inverse seminearring if (S,+) is an inverse semigroup,
(iii) a multiplicatively reqular seminearring if (S, -) is a regular semigroup.
Proposition 1.5.16. [98] Let (S,+) be a semigroup. Then

(i) M(S) is an additively reqular seminearring if and only if (S,+) is a regular

Semigroup.

(it) M(S) is an additively inverse seminearring if and only if (S,+) is an inverse

Semigroup.
(iii) (M(S),+,0) is always a multiplicatively reqular seminearring.

Definition 1.5.17. [98] An additively inverse seminearring (.S, +, -) is said to satisfy
property D if a(b + b*) = (a + a*)b for all a,b € S where a*, b* denote the unique

additive inverse of a, b, respectively.

Definition 1.5.18. [98] Let (S, +,:) be a seminearring. An equivalence relation p
is said to be a right congruence (left congruence) on S if it satisfies the following

conditions:
(i) apb = (a+c)p(b+¢), (c+a)p(c+0b) for all c € S,
(ii) apb = (ac)p(be) (respectively, (ca)p(ch)) for all ¢ € S.
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An equivalence relation p is said to be a congruence on S if it is both right and left

congruence on S.

Remark 1.5.19. The right (left) attribute in the above definition corresponds to right
(left) compatibility with respect to multiplication.

Definition 1.5.20. [98] Let p be a congruence on a seminearring (S, +, ). Then
S/p :={[s] : [s] is the congruence class of s € Sunder p}
forms a seminearring with respect to ‘+’, ‘', defined by
[x] + [y] = [z + y] and [z] - [y] = [zy] for all z,y € S.

Definition 1.5.21. A congruence p on a seminearring (S, +, -) is said to be a near-ring
congruence on S if the seminearring S/p becomes a near-ring.
A congruence p on a seminearring (S, +,-) is said to be a zero-symmetric near-ring

congruence on S if the seminearring S/p becomes a zero-symmetric near-ring.

Remark 1.5.22. A congruence p on a seminearring (S, +, -) is a near-ring congruence

on S if and only if p is a group congruence on (S, +).

Definition 1.5.23. [83] A subseminearring N of a seminearring (.S, +, -) is said to be

a normal subseminearring if
(1) for a,b,c,d € S,a+b+c+dée N impliesa+c+b+de N,
(7) N is a k-ideal,

(27i) for each s € S there exists « € S such that s +x € N.

Theorem 1.5.24 (Theorem 3.6 [83]). Let S be a zero-symmetric and distributively
generated seminearring. Then there exists an inclusion preserving bijection between the
set of all additively commutative near-ring congruences on S and the set of all normal

subseminearrings of S via the map ¢ : p+— N,, where N, = {a € S : (a,0) € p}.

Definition 1.5.25. [44, 58, 95] Let S and S be two seminearrings. Then a mapping
f from S to S’ is said to be a homomorphism of seminearrings or a seminearring

homomorphism if it satisfies the following properties
(i) f(z+y)=f(x)+ f(y) and
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(i) fzy) = f(2)f(y)

for all =,y € S.
A seminearring homomorphism g of .S is said to be an isomorphism of seminearrings

or a seminearring isomorphism if g is both surjective and injective.

Remark 1.5.26. If S is a seminearring with zero and f is a seminearring homomor-
phism, then f(S) is also a seminearring with f(0) as zero. If S is a zero-symmetric
seminearring then f(9) is also a zero-symmetric seminearring. If S, S’ both contain

zero, then f(0) may be different from the zero of S’

Definition 1.5.27. [44] Let S,S" be two seminearrings with zero and f : S — S’ be
a seminearring homomorphism. Then Kernel of f is the set {s € S: f(s) = f(0)} and
is denoted by kerf.

In a seminearring with zero, I(C S) is said to be an ideal of S if I is a kernel of

some seminearring homomorphism of S.

Definition 1.5.28. [44] Let S be a seminearring and D C S. Then SD = {sd € S :
se€Sandde€ D} and DS ={ds€ S:se€ Sand de€ D}. Asubset D of S is said to
be left (right) invariant in the seminearring S if SD (DS) C D.
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CHAPTER 2




Near-ring Congruences on Additively Regular

Seminearrings

A natural example of a seminearring is the set of all self maps of any additive semi-
group under point wise addition and composition i.e., (M(S),+,0) where (S,+) is a
semigroup and M (S) is the set of all self maps on S. It is observed that for any addi-
tive semigroup (S, +), (M(S), +, o) is always a multiplicatively regular semigroup (cf.
Proposition 1.5.16). But in view of Example 2.3 of [98], it is evident that (M(S), +,0)
is not always an additively regular seminearring. In fact, (M(S),+, o) is an additively
regular seminearring if and only if (S, +) is a regular semigroup (¢f. Proposition 1.5.16).
This motivates us to investigate as to how the theory of semigroups, more precisely
regular semigroups, can be made into work in the study of seminearrings and additively
regular seminearrings. Group congruences on regular semigroups play an important
role in the study of regular semigroups. In [67] LaTorre studied group congruences,
least group congruence on regular semigroups and established inclusion preserving bi-
jection between the set of all group congruences and the set of all full, self-conjugate and
closed subsemigroups (¢f. Theorem 1.1.22). It leads us to study near-ring congruences
on additively regular seminearrings. We deduce that for a distributively generated ad-
ditively regular seminearring .S, there exists an inclusion preserving bijection between
the set of all near-ring congruences on S and the set of all normal full k-ideals of S.
This study not only gives rise to refinements of some important results viz. Propo-
sitions 3.16, 3.17, Theorems 3.20 of [99] and Theorem 3.22 of [98] (involving mainly

near-ring congruences) but also answers partially a question raised in [98]. In [98, 99],

This chapter is mainly based on the work published in the following paper:
Kamalika Chakraborty et al., Near-ring congruences on additively regular seminear-
rings, Semigroup Forum, 101 (2020) 285-302.
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while studying congruences on additively inverse seminearrings, Sardar and Mukherjee
obtained for a distributively generated additively inverse seminearring S with property
D (cf. Definition 1.5.17) (i) an inclusion preserving bijective correspondence (Theorem
3.20 of [98, 99]) between the set of all near-ring congruences i.e., normal congruences'
on S and the set of all normal full k-ideals of S and (i7) the least near-ring congruence
(Theorem 3.22 of [98]) on S. In the Concluding remark of [98], the authors raised a
question as to whether Theorem 3.20 [98, 99] and Theorem 3.22 [98] can be obtained by
removing the restriction(s) viz., (a) ‘property D’ or (and) (b) ‘distributively generated’.
Some of our results viz., Corollary 2.2.12 and Theorem 2.2.17 establish that Theo-
rem 3.20 [98, 99] and Theorem 3.22 [98] can be obtained by removing the restriction
of ‘property D’ To conclude the chapter, we study the lattice structures of near-ring
congruences and normal full k-ideals in a distributively generated additively regular
seminearrings.

In Section 1, we define ‘normal full k-ideal’ (cf. Definition 2.1.6) in an additively
regular seminearring and study some of its properties (¢f. Proposition 2.1.11). Then we
define ‘normal congruence’ (¢f. Definition 2.1.13) in an additively regular seminearring
and find its connection with near-ring congruences (cf. Theorem 2.1.16).

In Section 2, we first obtain the right sided analogue (¢f. Theorem 2.2.1) and
then the two sided analogue (c¢f. Theorem 2.2.2) of Theorem 1.1.21 in the setting of
additively regular seminearrings. Then we show that for a distributively generated
additively regular seminearring S, a normal full k-ideal of S corresponds to a near-
ring congruence on S (¢f. Theorem 2.2.3) and conversely a near-ring congruence on S
corresponds to a normal full k-ideal of S (¢f. Theorem 2.2.7). Combining these two
results we obtain in Theorem 2.2.10 an inclusion preserving bijective correspondence
between the set of all normal full k-ideals and the set of all near-ring congruences in a
distributively generated additively regular seminearring. To conclude this section, we
study least near-ring congruences on distributively generated additively regular and
additively inverse seminearrings (cf. Theorems 2.2.15 and 2.2.17, Corollary 2.2.16).

In Section 3, we check that whether this correspondence (stated in Theorem
2.2.10) turns out to be a lattice isomorphism or not. In Theorem 2.3.15, we estab-
lish that in a distributively generated additively regular seminearring, the set of all
near-ring congruences and the set of all normal full k-ideals are lattice isomorphic. In
Theorems 2.3.17 and 2.3.18, we show that both the lattices mentioned in Theorem

I In an additively regular seminearring, the notions of near-ring congruences and normal congru-

ences coincide (¢f. Theorem 2.1.16) and they have been used here interchangeably.
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2.3.15 are modular. In the study of distributivity of these lattices, we find that in
a distributively generated additively regular seminearring, the lattice of normal full
k-ideals may not be a distributive lattice (¢f. Example 2.3.19) but imposition of some
conditions ensures the distributivity (¢f. Theorem 2.3.22). To conclude this section,
in Theorems 2.3.23 and 2.3.24, we show that in a distributively generated additively

regular seminearring, these latices are complete.

2.1 Normal full k-ideals of additively regular seminearrings

We start this section with examples of distributively generated additively regular and

additively inverse seminearrings (c¢f. Definition 1.5.15).

Example 2.1.1. Let (S, +) be a band. Let End(S) denote the set of all endomorphisms
of S. Consider the seminearring (End(S)) generated by End(S). Let f € (End(S)).
Since (S,+) is a band, f(m) is an idempotent of S for all m € S. Therefore (f +
f+ m) = flm)+ f(m)+ f(m) = f(m) for all m € S whence f+ f+ f = f.
Hence (End(S)) is an additively regular seminearring. Now in view of Example 1.5.9,

(End(S)) is a distributively generated additively regular seminearring.

Example 2.1.2. Let (S, +) be an inverse semigroup. Let T := {f € End(S) : f* €
End(S)} where for all s € S, f*(s) := (f(s))* and a* denotes the unique inverse of
a € S. Clearly if f € T then f* € T since (f*)* = f. Let hy,hy € T. Now for

mq, Mo € S,

(hiohg)*(m1+ma) = ((hyohg)(my+ mg))*
= (hi(ha(my) + ha(ms)))* (since hy is an endomorphism of )
= (h1)*(ha(ma) 4 ha(m2))
= hi(ha(my)) + hi(he(ms)) (since b € End(S) as hy € T)
= (ha(ha(ma)))” + (ha(ha(m2)))®
= (b1 0 h2)"(ma) + (A1 0 ho)*(m2)

Therefore T is closed under composition. Hence (7', o) is a semigroup. Now consider the
seminearring (7") generated by T'. Let f = >, f; where f; € T for each ¢, 1 <i < n.
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Now let g = S21_, (f;)*. Then g € (T) as (f;)* € T for each i, 1 <i < n. Now

gt Hm) = O £)m) + () m) + (O £)m)

i=1 i=n 1=1

=anfb +ZfL )+§jf,-(m
= ifz +Z fz +ifz(m

=1 i=n

= f(m) for all m € S.

Again (g4 f + g)(m) = g(m) for all m € S. Therefore for each f € (T), there exists
g € (T) such that f+¢g+ f = fand g = g+ f+¢g. Hence (T) is an additively regular
seminearring. If f,g € ET((T)), then it can be easily verified that f +g = g + f.
Then in view of Theorem 1.1.18, ((T'), +) is an inverse semigroup. Therefore (T') is an
additively inverse seminearring (cf. Definition 1.5.15). Now let f € T and g,h € (T)).
Then f(g+h)(m) = f(g(m)+h(m)) = f(g(m))+ f(h(m)) for all m € S since f € T and
T C End(S). Therefore f is a distributive element of the seminearring (7'). Then in
view Definition 1.5.7, the seminearring (T') generated by T is a distributively generated

additively inverse seminearring which is not a semiring.

Remark 2.1.3. S can be so chosen that T becomes non-empty, e.g., we can take S

to be the direct product of a semilattice and Dy, (n > 3).

Notation 2.1.4. Let (S,+,-) be an additively regular seminearring. Throughout this
thesis for each element a € S, V*(a) always stands for the set of all additive inverses
ofaie, theset {reS:a=a+zx+a,2=x+a+z}. Forae S, ifa+x+a=afor
some x € S, then x +a+x € V*T(a). Therefore for an additively regular seminearring
V*(a) is always non-empty for each a € S. In additively inverse seminearrings, for

each a € S, VT (a) is singleton and a* denotes the unique additive inverse of a.
Definitions 2.1.5. In a seminearring (S, +, -),

(7) [98] a (left, right) S-ideal I of S is said to be a full (left, right) ideal if (I,+) is
a full subsemigroup of (S,+), i.e., ET(S) C I,

(7i) a (left, right) S-ideal I of S is said to be a reflexive (left, right) ideal if (I,+) is
a reflexive subsemigroup of (S, +), i.e.,if a+b € [ then b+ a € I,
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(z7i) if S is an additively regular seminearring then a normal (left, right) ideal I is
defined to be a (left, right) S-ideal such that (I,+) is a self-conjugate subsemi-
group (cf. Definition 1.1.20) of (S,+), d.e., x +i+a € I for all i € I, for all
r € S and for all ' € V*(x).

Definitions 2.1.6. In a seminearring (S, +, ),

(i) a (left,right) S-ideal I is said to be a full (left, right) k-ideal [98] if I is a full
(left, right) ideal as well as a (left, right) k-ideal,

(i) a reflexive full (left, right) k-ideal is defined to be a full (left, right) k-ideal which

is also a reflexive (left, right) ideal,

(iii) if S is an additively regular seminearring then a normal full (left, right) ideal is
defined to be a full (left, right) ideal which is also a normal (left, right) ideal and
a normal full (left, right) k-ideal is defined to be a full (left, right) k-ideal which

is also a normal (left, right) ideal.

Remark 2.1.7. Our definition of normal full k-ideal in additively regular seminearring

coincides with that given in [99] for additively inverse seminearring.

Remark 2.1.8. For a (left, right) k-ideal T of a seminearring (S, +,-), (T, +) is always
a closed subsemigroup of (S,+). As regards the converse we have ‘for a normal full
(left, right) ideal T of an additively regular seminearring (S, +,-), (T,+) is a closed
subsemigroup of (S, +) (¢f. Definition 1.1.2) if and only if 7" is a (left, right) k-ideal’.

The following result shows that normal full ideals exist in any distributively gener-

ated additively inverse seminearring.

Proposition 2.1.9. Let (S,+,-) be a distributively generated additively inverse sem-
inearring. Then ET(S) is a normal full ideal of S.

Proof. In view of Proposition 3.2 [98], ET(S) is a right S-ideal. Let e € E*(S) and
s € S. Now s = ' | t; where each ¢; is a distributive element of S. Clearly t;e €
E*(S) for all ¢; where 1 < i < n. Therefore se (= (X1, t:)e = S (tie)) € ET(S)
whence E*(S) is a left S-ideal. Since x + e + 2* € ET(S) for all x € S and for all
e € ET(S), ET(S) is a normal full ideal of S. O

Remark 2.1.10. (i) In an additively regular seminearring (S, +,-), E7(S) is not
closed with respect to addition and hence not an S-ideal though E*(S) is right
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absorbing (i.e., es € ET(S) for all e € ET(S) and s € S) and left absorbing for
distributive element (i.e., if ¢t is a distributive element of S, te € E*(S)).

(77) Proposition 2.1.9 is actually a refinement of Proposition 3.2 [98] in the setting of

distributively generated additively inverse seminearrings.

In the following result we obtain some properties of normal full k-ideals in additively

regular seminearring for its use in the sequel.

Proposition 2.1.11. Let S be an additively reqular seminearring and H be a full (left,
right) k-ideal of S. Then the following conditions are equivalent.

(1) H is a normal full (left,right) ideal.
(16) H is a reflezive ideal ((H,+) is reflexive i.e., a +b € H impliesb+a € H).
(7i1) a+h+0b€ H foralla+0b, h € H.

Proof. (i) = (i1) : Let a+b € H. Then b+ (a+b)+b € H forallb € V*(b). As H
is a full ideal, b+ b € H (cf. Definitions 2.1.5 (). Hence H being a k-ideal, b+ a €
H (cf. Definition 1.5.12).

(73) = (vit) : Let a+b, h € H. Then (b+a)+ h € H. Again using (i) we obtain
a+h+be H.

(4ii) = (i) : Let a € Sand h € H. Then a+da € H foralla € V*(a) as a +d
is an additive idempotent and H is a full ideal. So by (iii), a +h +a € H. So (i)
follows. O

The following example shows that Proposition 2.1.11 may not hold in absence of

k-property of ideals.

1 1 2
Example 2.1.12. Let S = {f; : 1 < i < 6} where f; = (1), fo = (1 2>7

; L2 3) AN AN 1 3 .
= N — , fs = fe = are partial maps
’ 123/ 137 13/ 7° 1 2 P P

on the set {1,2,3}. Let (f; + f;)(s) = fi(f;(s)) for all s € f; '[Domf; N Imf;] and
fifi = f3 where 1 < 4,5 < 6. Then (S,+,-) is an additively regular semiring, in
fact, an additively inverse semiring [109]. Let (D, +,-) be a distributively generated
near-ring. Then S; = S x D is a distributively generated additively regular, in fact,

an additively inverse seminearring with pointwise addition and multiplication. Now
ET(S1) = {(fi,0) : 1 < i <4} is a normal full ideal (¢f. Proposition 2.1.9) but not

37



Chapter 2. Near-ring Congruences on Additively Regular Seminearrings

a k-ideal as (f2,0) + (f5,0) (= (f1,0)) € ET(S1) and (f2,0) € E*(Sy) but (f5,0) ¢
E*(S1). Now (f2,0)+(f5,0) € ET(S1) but (f5,0)+(f2,0) (= (f5,0)) ¢ ET(S;) whence
(E*(S1),+) is not reflexive.

Definition 2.1.13. Let (S, +, ) be an additively regular seminearring. A congruence
(right congruence, left congruence) p on S is said to be a normal congruence (right

normal congruence, left normal congruence) on S if any two additive idempotents are
p-related i.e., epf for all e, f € ET(S).

Remark 2.1.14. The normal congruence defined above is the same as that defined in
Definition 3.5 [98] for additively inverse seminearring. In an additively inverse semin-
earring S, the condition that two additive idempotents are p-related for a congruence
pon S is equivalent to two more conditions viz., (i) a p (a+e) and (i) a p (e + a) for
all e € ET(S) and for all @ € S (Lemma 3.4 [98]). But in an additively regular sem-
inearring these three conditions may not be equivalent which is illustrated in Example
2.1.15. But in an additively regular seminearring S, if a congruence p on S satisfies
(7) and (é7) simultaneously then two additive idempotents are p-related and hence by

Definition 2.1.13, p becomes a normal congruence on S.

The following example illustrates that for an additively regular seminearring Lemma
3.4 [98] may not be true, to be specific defining condition of Definition 2.1.13 and (7)

and (ii) of the above remark are not equivalent.

Example 2.1.15. Let (S, +) be a left-zero semigroup i.e., a+b = a for all a, b € S with
more than one element and M (S) denote the set of all self-maps of (S, +). Then M(S)
forms an additively regular seminearring with point wise addition ‘+’ and composition
of maps. If we consider the identity relation Iy; sy on M(S) then f In;s) (f +e) for
all f € M(S) and for all e € ET(M(S)). Since S has more than one element and
E*T(M(S)) = M(S), any two additive idempotents are not I(s)-related.

Theorem 2.1.16. Let (S,+,-) be an additively reqular seminearring. Then p is a

near-ring congruence on S if and only if p is a normal congruence on S.

Proof. We omit the proof as it is same as the proof of Theorem 3.8 [98]. 0
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2.2 Near-ring congruences on seminearrings

We obtain below firstly the right sided analogue (¢f. Theorem 2.2.1) and then the two
sided analogue (c¢f. Theorem 2.2.2) of Theorem 1.1.21 ( i.e., the first part? of Theorem

1 of [67]) in the setting of additively regular seminearrings.

Theorem 2.2.1. Let H be a normal full right ideal of an additively reqular seminear-

ring (S,+,-). Then the relation
B, ={(a,b) € SxS:x+a=b+y for somex,y € H}

is a right normal congruence on S. Moreover H is contained in {a € S : af,e for some e €
ET(S)} = Hw and Hw is a normal full right k-ideal of S 3.

Proof. Since H is a normal full right ideal of S, (H,+) is a full and self-conjugate
subsemigroup of (S, +) (¢f. Definitions 2.1.5). In view of Theorem 1 of [67], 3,
group congruence on (S,+). Then ef, f for all e, f € ET(S). Let af3,b and s € S.
Then there exist x,y € H such that z + a = b+ y. Therefore (z +a)s = (b+y)s i.e.,

is a

s+ as = bs+ys where xs,ys € H as H is a right S-ideal. Then as 3,, bs. Hence 3,
is a right normal congruence on S (c¢f. Definition 2.1.13).

In view of 1st paragraph of the discussion below Theorem 2 of [67], Hw = {a € S :
af,e for some e € E1(S)} and it contains H (c¢f. Remark 1.1.3). By definition of 3,
any two elements of H are 3, related. Again H is a full ideal. Therefore Hw = [e]s
for any e € E*(S) = [h]s,, for any h € H. Since H is a normal full right ideal and 3,
is a congruence on S, we deduce that Hw is a normal full right ideal. Then in view of
Remark 1.1.3, (Hw, +) is a closed subsemigroup of (S, +). Therefore Hw is a normal
full right k-ideal (¢f. Remark 2.1.8). O

Theorem 2.2.2. Let H be a normal full ideal of an additively reqular distributively

generated seminearring (S,+,-). Then the relation
B, ={(a,;b) € SxS:x+a=b+y for somex,y € H}

is a normal congruence on S and hence a near-ring congruence (cf. Theorem 2.1.16).
Moreover, Hw={a € S : af e for some e € ET(S)} and Hw is a normal full k-ideal
of S.

2 The analogue of the second part is proved in Theorem 2.2.15.
3 For definition of Hw we refer to Definitions 1.1.2.
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Proof. In view of Theorem 2.2.1, it remains to prove that 3, is a left congruence
and Hw is a left S-ideal. Let af,b and s € S. Then there exist x,y € H such
that * +a = b+y. Now s = Y7, t; where each t; is a distributive element of S.
ti(r +a)=t;(b+vy) ie., tix+t;a = t;b + t;y where t;x, t;y € H for all i, 1 <7 <mn as
H is an S-ideal. Therefore t;a 8, t;b and Y7 (t;a) B, Soi,(t:b) i.e., sa B, sb. This
shows that (,, is a normal congruence and hence a near-ring congruence (cf. Theorem
2.1.16).

In view of Theorem 2.2.1, Hw={a € S : a3, e for some e € E¥(S)} = [h]g, for
any h € H and Hw is a normal full right k-ideal of S. Since 3, is a congruence on S
and H is an S-ideal, we deduce that Hw is a left S-ideal. Hence Hw is a normal full
k-ideal of S. O

The above result takes the following form if we consider k-ideal instead of S-ideal.

Theorem 2.2.3. Let (S, +,-) be a distributively generated additively reqular seminear-
ring. Let H be a normal full k-ideal of S. Then the relation o,,, defined by

ac b if and only if a +b € H for some b’ € V*(b)

is a normal congruence and hence a near-ring congruence on S. Moreover, H = {a €
. -
S :ao,e for somee € ET(9)}.

Proof. Since H is a normal full k-ideal of S, (H,+) is a full, self-conjugate and closed
subsemigroup of (S,+) (¢f. Definitions 2.1.5 and Remark 2.1.8). So, Hw = H (cf.
Definition 1.1.2). Then by Theorem 2 [67], 0, = 5,,. Therefore in view of Theorem
2.2.2, 0,, is a near-ring congruence on S.

Since o,, = B, {a € S : ao,e for some e € ET(S)} = Hw (c¢f. Theorem 2.2.2).
This together with the fact that Hw = H implies H = {a € S : a0, e for some e €
ET(S)}. O

As a simple consequence of the above result we obtain the following result which

can be considered to be a refinement of Proposition 3.16 of [99].

Corollary 2.2.4. Let (S,+,-) be a distributively generated additively inverse semin-
earring. Let H be a normal full k-ideal of S. Then the relation o, , defined by

ac,b if and only if a +b* € H

is a near-ring congruence on S. Moreover, H ={a € S : ac, e for some e € ET(S)}.
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Remark 2.2.5. The relation o of Proposition 3.16 [99] is denoted by o,, in Corollary
2.2.4.

The following example shows that Theorem 2.2.3 may not be true in absence of

k-property of an S-ideal.

Example 2.2.6. In Example 2.1.12, E7(S) is a normal full ideal but not a normal
full k-ideal. Let H = E*(S1). Now (f1,0) + (f1,0) (= (f1,0)) € ET(S1) and (f1,0)* =
(f1,0). Therefore in view of Definition of o,,, (f4,0) o, (f1,0). Now (f1,0)+ (f5,0) (=
(f1,0)) € E*(S;) and (fs,0)* = (f5,0). In view of Definition of o, (f1,0) o, (fs,0).
But (f1,0) + (f6,0)" (= (f5,0)) ¢ E*(S1) implies that ((fs,0),(fs,0)) ¢ o, This
shows that o, is not an equivalence relation hence not a near-ring congruence on 5.

The following result may be considered to be the converse of Theorem 2.2.3.

Theorem 2.2.7. Let (S, +, ) be a distributively generated additively reqular seminear-
ring. Let p be a near-ring congruence on S. Then H, := {a € S : ape for some e €
E*(S)} is a normal full k-ideal of S. Moreover, the relation o, on S defined by

ao, b if and only if a + b € H, for some b € V*(b)
coincides with p.

Proof. Since p is a near-ring, p is a congruence on S, p is a group congruence on (.5, +).
Then in view of Theorem 3 [67], H, := {a € S : ape for some e € E*(S)} is a self-
conjugate, full, closed subsemigroup of (S, +) and p = {(a,b) € S x S : a+b € H, for
some b € V*(b)}. Therefore p coincides with 0y, Let s € S and a € H,. Then ape
for some e € ET(S) and as p es. Now es € ET(S) (¢f. Remark 2.1.10 (i)). Therefore
as € H, and H), is a right S-ideal. Again s = >I" | t; where each ¢; is a distributive
element. Therefore t;a p t;e and t;e € ET(S) (¢f. Remark 2.1.10 (i)) for all ¢, 1 <1 < n.
Then t;a € H, for all i, 1 <1 <n. Since (H,, +) is a subsemigroup of (S, +), >, t;a
€ H,i.e., sa € H, Then H, is a left S-ideal as well and hence a normal full k-ideal
(¢f. Definitions 2.1.6 and Remark 2.1.8). O

As a simple consequence of the above result we obtain the following result which

can be considered to be a refinement of Propositions 3.17 of [99].

Corollary 2.2.8. Let (S,+,) be a distributively generated additively inverse semin-
earring. Let p be a near-ring congruence on S. Then H, = {a € S : ape for some e €
ET(8)} is a normal full k-ideal of S. Moreover, the relation 0y, ON S defined by
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ao, b if and only if a +b* € H,
coincides with p.

Remark 2.2.9. The relation o of Proposition 3.17 [99] is denoted by 0,, in Corollary
2.2.8.

The following result is the analogue of Theorem 1.1.22 (i.e., Theorem 3 of [67]) in

the setting of distributively generated additively regular seminearrings.

Theorem 2.2.10. Let (S,+,-) be an additively reqular distributively generated semin-
earring. Let Z(S) denote the poset of all normal full k-ideals of S and C(S) denote the
poset of all near-ring congruences on S (both under set inclusion). Then there exists
an order-isomorphism between the two posets Z(S) and C(S) wvia the map H — o,

where
ac,b if and only if a + b € H for someb € V*(b).

Proof. Theorem 2.2.3 shows the mapping is injective and Theorem 2.2.7 shows the
mapping is surjective. Let H, K € Z(S). Then by definition of ¢,,, H C K implies
o, € o,. Conversely, let 0, C 0,. Since H = {a € S : ao,e for some e € E*(S5)}
and K = {a € S : ao, e for some e € ET(S)} (¢f. Theorem 2.2.3), H C K. Hence in
view of Definition 1.2.3 the result follows. O

Remark 2.2.11. Let p be a near-ring congruence on a distributively generated addi-
tively regular seminearring S. Then S/p becomes a distributively generated near-ring.
In view of (i) of Remark 1.4.9, S/p becomes a zero-symmetric near-ring. Therefore a
near-ring congruence on a distributively generated additively regular seminearring S
becomes a zero-symmetric near-ring congruence on S. Then in a distributively gen-
erated additively regular seminearring S, we get an order-isomorphism between the
poset of all normal full k-ideals of S and the poset of all zero-symmetric near-ring

congruences on S (both under set inclusion).

As a simple consequence of the above result we obtain the following result which

can be considered to be a refinement of Theorem 3.20 of [99].

Corollary 2.2.12. Let (S,+,-) be a distributively generated additively inverse semin-
earring. Let Z(S) denote the poset of all normal full k-ideals of S and C(S) denote the
poset of all near-ring congruences on S (both under set inclusion). Then there exists
an order-isomorphism between the two posets Z(S) and C(S) via the map H — o,
where ao b if and only if a +b* € H.
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Remark 2.2.13. Example 3.21 of [98] shows that we cannot do away with the restric-
tion that S is distributively generated for obtaining the order-isomorphism between
Z(S) and C(S) as stated in Theorem 2.2.10.

The following result is a rephrased seminearring version of Theorem 1.1.23 (i.e.,
Theorem 4 [67]).

Theorem 2.2.14. Let (S,+,+) be an additively reqular distributively generated semin-
earring and T be a near-ring congruence on S. Then there exists a normal full k-ideal

H of S such that the following are equivalent.
(i) aTb,
(ii) a+x+b € H for some x € H and for some (all) b € V*(b),
(iii)  +x+b € H for some x € H and for some (all) a' € V*(a),
(iv) b+x+ad € H for some x € H and for some (all) ' € V*(a),
() b +x+a€ H for somex € H and for some (all) b € V*(b),
(i) a+x =y+b for some x,y € H,
(vii) H+a+ H N H+b+ H is non-empty,
(viii) a 5, b,
(ix) a o, b.

Proof. In view of Theorem 2.2.10, for a near-ring congruence 7, there exists a normal
full k-ideal H of S such that 7 = o,,. Since (H,+) is a self-conjugate, full and closed
semigroup, 3, = o, (¢f. Theorem 2[67]). Rest of the proof follows immediately from
Theorem 1.1.23. O

In view of Theorem 2.2.2 and equivalence of (i) and (viii) of Theorem 2.2.14, we
deduce the following result which is the analogue of the last part of Theorem 1.1.21 in

our setting.

Theorem 2.2.15. Let S be a distributively generated additively reqular seminearring.
Then the relation By = {(a,b) € S xS :x+a =0b+y for some x,y € U} is the
least mear-ring congruence on S where U is the least normal full ideal of S i.e., the

intersection of all normal full ideals of S.
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The following result is a seminearring version of Corollary 1.1.24.

Corollary 2.2.16. Let o denote the least near-ring congruence on a distributively
generated additively reqular seminearring (S,4+,-) and U is the least normal full ideal

of S. Then the following are equivalent.
(i) a ob,
(ii) a+z+b € U for some x € U and for some (all) b € V*(b),
(i1i) a +x+b € U for some x € U and for some (all) ' € V*(a),
(iv) b+x+a €U for somex €U and for some (all) ' € V*(a),
(W) b +z+a €U for somex €U and for some (all) b € V*(b),
(vi) a+x =y+0b for some x,y € U,
(vit) U+a+UNU+b+U is non-empty,
(viii) a 3, b.

Proof. In view of Theorem 2.2.15, (¢) and (viii) are equivalent. Again (U, +) is a self-
conjugate, full subsemigroup of semigroup (S, +) (¢f. Definitions 2.1.5). This together
with Theorem 1.1.23 implies that (i7)-(viii) are equivalent O

The following result gives another description for the least near-ring congruence on

a distributively generated additively inverse seminearring which refines Theorem 3.22

of [98].

Theorem 2.2.17. Let (S, +, ) be an additively inverse distributively generated semin-
earring. Then the relation o, defined on S, by a o b if and only if a+ f = b+ f for

some f € ET(S) is the least near-ring congruence on S.

Proof. By Theorem 1.1.25, o is the least group congruence on (S,+). Let a o b and
s € S. Then there exists f € ET(S) such that a + f = b+ f. In view of Proposition
3.2 [98], it follows that as o bs. Hence o is a right congruence on (S, +,-). Since S is
distributively generated, s = >I" ; t; where each ¢; is a distributive element for 1 <17 <
n. Now t;(a+ f) = t;(b+ f) i.e., tia+t;f = t;b+t;f for 1 <i <n. This together with
the fact that ¢;f € ET(S) (¢f. Proposition 2.1.9) shows that ¢;a o ¢;b for 1 < i < n.
Again o is a congruence on (S,+). Therefore Y% | t;a o Y1 | t;b i.e., sa o sb whence

o is a congruence on (S, +,-). This completes the proof. O
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The following example illustrates that the relation ¢ defined in Theorem 2.2.17 may
not even be a congruence if we remove the property of being ‘additively inverse’ from

the hypothesis.

Example 2.2.18. Let S be the set of all maps from X into X where X = {1,2,3}. Let

1 2 3
where a,b € S. Then (S, +,)
1 2 3

is an additively regular semiring. Let (53, +,:) be the seminearring direct product

(a+0b)(s) = a(b(s)) for all s € X and ab = (

of (S,+,-) and (D, +,-) where (D, +,-) is a distributively generated near-ring. Then
(Sa,+,-) is a distributively generated additively regular seminearring and E*(S3) =
{(e,0) € Sy : e is an additive idempotent of S}. Now let (a,0), (b,0), (¢,0) € Sy where

1 2 3 1 2 3 1 2 3
a= b= and ¢ = and let (e, 0), (f,0) € E*(Ss)
211 3 21 3 3 2

3 3 11
(f,0) and (b,0)+(f,0) = (¢,0)+(f,0) = (e,0). Now let (g,0) € ET(S3) such that g(1)
=1. Thena+g #c+gas(a+g)(1) =2 and (c+g¢)(1) = 3. Similarly, if we consider

1 2 3 1 2 3
where e = ( ; ) and f = ( ) ) Clearly, (a,0)+(e,0) = (b,0)+(e,0) =

g(1) = 2 or g(1) = 3, we can easily see that a + g # ¢+ g. Therefore there does not
exist any (g,0) € ET(S;) such that (a,0)+(g,0) = (¢,0)+(g,0) . This shows that the
relation 0 = {(z,y) € S2 X S :x+ s = y+ s for some s € ET(S2)} on S, is not a

congruence.

2.3 Lattice of near-ring congruences on seminearrings

Definition 2.3.1. [83] Let A, B be two subsets of a seminearring (S, +,-). Then we
define the sum of A and B to be the set {}>-7 ;2; : n € Nand z; € A or B} and we
denote it by A + B.

The following result on the sum of two normal full (right) k-ideals will be used

frequently in what follows.

Proposition 2.3.2. Let A, B be two normal full (right) k-ideals of an additively reqular
seminearring (S, +,-). Then for each v € A+ B,

(i) there exists z; € A such that zy + x, v+ 2 € B.

(ii) there exists zo € B such that zo + x, T + 29 € A.
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Proof. Let x € A+ B where A, B are two normal full (right) k-ideals of an additively
regular seminearring (5, +, ). Then x = 37" | x; where ; € AUB. Then there exists a
subset {ry, 7o, ...... ey of {1,2,.....,n} such that r; <ry < ... <1k, k <nand x,, for
all 7 where 1 < j < k are the only members of A. Now .7?;1 + (r1+ a2+ +x.,1) +
x,, € Bforall z, € V*(x,,) as B is a normal (right) ideal and (z1 + 22+ ....... +x0 1)
€ B. In a similar way we get 17;2 + (:r;l +x+T2 . + T 1+ T F T 1t Ty 1)
+2,, € Bforallz,, € V*(z,,), z, € V¥ (x,) as (Ty41+ ... + Tr,—1) € B . Following
this manner we finally get T;k + m;k_l ot m, AT + z,, € B for all T;Z
€ V*(x,) where 1 <i < k. Again @y, 11+ ... +a, € B. Let 2 = x, +x,  +...+,
where z, € V*(x,,) for 1 < i < k. Therefore z + z € B. Again A being full, for
1<j<k +33;j € A for all a:;j € V*(x,,). Since A is a (right) k-ideal and ,, € A,
T;] € Afor 1 < j <k. Therefore z; € A. So by Proposition 2.1.11, x + 2; € B. This

proves (7).

!

(1) follows similarly due to symmetry of A and B in the sum A + B. O

Remark 2.3.3. It is well known that [83] the sum of two right S-ideals is a right S-
ideal in any seminearring S and the sum of two S-ideals is an S-ideal in a distributively
generated seminearring S. But the sum of two k-ideals need not be a k-ideal even in a
distributively generated seminearring (see Example 3 [83]). Also the sum of two normal
subseminearrings (see Definition 1.5.23) in a distributively generated seminearring is
not a normal subseminearring which is evident from Example 4 [83]. In order to obtain
a positive result in this direction in [83], the authors took the help of closure (Definition
2.6 and Proposition 2.8 [83]). In our setting i.e., for an additively regular seminearring
or for a distributively generated additively regular seminearring we are interested to
see what happens to the sum of two normal full k-ideals. In this regard we provide
the following example illustrating that the sum of two normal full right k-ideals of an
additively regular seminearring is not a normal full right k-ideal. In Lemma 2.3.10 and
Theorem 2.3.11 we obtain some restricted result in the desired direction with the help

of k-closure (c¢f. Definition 2.3.5 and Remark 2.3.6).
1 2 3 4
) Cc = Y
214 3

4)
4f_123456
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are six partial maps on the set {1,2,3,4,5,6}. Let (x + y)(¢) = x(y(i)) for all i €
y~[Domx N Imy] where z,y € S. Then (S, +) is a commutative regular semigroup in

particular an inverse semigroup where

+la b ¢ d e f
ale ¢ b b a a
blc e a a b b
cl|lb a e e ¢ c
d|lb a e f ¢ d
ela b ¢ c e e
fla b ¢ d e f

Let us define xy = x for all z,y € S. Then (S,+,-) is an additively regular semin-
earring in particular an additively inverse seminearring where E7(S) = {e, f}. Now
A = {a,e, f} and B = {b,e, f} are two normal full right k-ideals. Clearly, A+ B =
{a,b,c,e, f}. Nowa+d (=b) and a € A+ B but d ¢ A+ B. This shows that A+ B
is a right S-ideal but not a right k-ideal. Therefore A + B is not a normal full right
k-ideal.

Definition 2.3.5. Let A be a (left, right) S-ideal of a seminearring (S, +,-). The
closure [83] of A is defined to be the set {s € S : for some z,y € A, x +s+y € A}

and is denoted by A.

Remark 2.3.6. Let A be a (left, right) S-ideal of a seminearring (S, +, ). Then it is
easy to observe that A C A and A is a k-ideal if and only if A = A. So the closure of
A defined above can be called k-closure of A.

In this connection the following remark is in order.

Remark 2.3.7. If H is a normal full ideal in a distributively generated additively
regular seminearring S then Hw is a normal full k-ideal of S and H C Hw (¢f. Theorem
2.2.2). Letx € H. Then there exist hy, hy € H such that hy +2+hy € H C Hw. Then
in view of Proposition 2.1.11, hy + hy + 2 € Hw whence € Hw. Therefore H C Hw.
If z € Hw, then there exists hy € H such that hs + z € H whence hy + z+ h € H for
all h € H. Then z € H whence Hw C H. Therefore H = Hw and this is the smallest

normal full k-ideal containing H.

Definition 2.3.8. Let (S, +,+) be a seminearring and A, B be two (right) S-ideals of

S. Then we define four subsets of S as follows :
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(1) Xiarp:={s€S: forsomez € B, z+s¢e A},
(17) Xoarp :={s€ S : forsomex € B, s+x € A},
(11) X341p :={s€ S : for some x € A, x + s € B},
(iv) Xyarp :={s€ S : forsomex € A, s+ x € B}.

Proposition 2.3.9. Let (S,+,-) be an additively reqular seminearring and A, B be
two normal full (right) k-ideals of S. Then A+ B = Xy a5 = Xoarp = Xz arp =

X4.4+B-

Proof. Let x € A+ B. Then there exist s,t € A+ B such that s+ 2+t € A+ B. In
view of Proposition 2.3.2 there exist s1,t; € A such that s; + s, t +1t; € B. Therefore
by Definition 2.3.1, sy +s+x+t+t; € A+ Bi.e., b+x+b € A+ B where b (= s1+35),
by (=t+t) € B. Henceb+x+by+2 +z € A+ Bforallz € V¥ (z)asa +x €
A, Bie., (b+by)+x € A+ B where by (=x+b, +12) € Bas B is a normal (right)
ideal. Again using Proposition 2.3.2 we get b3 € B such that b3 + (b+ by + x) € A.
Hence x € X a4 5.

Now let s € Xj 4+p. There exists b € B such that b+ s € A. Then b+ s+ a €
A+ B for any a € A. So by Definitions 2.3.1, 2.3.5, s € A+ B whence X144+ C
A+ B. Hence X; 4,5 = A+ B. Using similar type of arguments as above we deduce

the other equalities. O

Lemma 2.3.10. Let (S,+,-) be an additively reqular seminearring and A, B be two
normal full right k-ideals of S. Then A + B is the smallest normal full right k-ideal of
S containing A and B.

Proof. In view of Definition 2.3.1 and Remark 2.3.6, A, B C A+ B. Let x,y € A + B.
Then in view of Definition 2.3.8 (7ii), (iv) and Proposition 2.3.9, there exist a,a; € A
such that a +x, y +a; € B ...(i). Therefore (a +x) + (y +a,) € B C A+ B. Then
in view of Definition 2.3.5, # +y € A+ B. Now let s € S. Then using (i) we get
(a+x)s € B as B is a right S-ideal. Again (a + z)s = as+ xs and as € A. Therefore
s € A+ B (c¢f. Definition 2.3.8 (iii) and Proposition 2.3.9) and A + B is a right
S-ideal of S containing A and B.

Now let s +¢,s € A+ B. Then there exist b,b; € B such that b+ s, s+t + by
€ A (cf. Definition 2.3.8 (i), (i) and Proposition 2.3.9). Therefore b+ (s +t+b;) €
A+ B where b+ s,b; € A+ B. Then in view of Definition 2.3.5, t € A + B. Similarly
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we deduce that if s +¢,t € A+ B then s € A+ B. Therefore A + B is a right k-ideal.
Since A, B are full, A + B is a full right k-ideal. Again let s € A+ B. So there exists
v € B such that s +v € A (¢f. Definition 2.3.8 (i7) and Proposition 2.3.9). Then for
any v € S, s+a +x+v € Aforall 2 € V¥ (z) (¢f Proposition 2.1.11). Again
v+ (s+2 +x+0v)+2 € Aforallz’ € VF(x) as A is a normal right ideal. Now
(x+s+2)+(r+v+1) € Awhere v +v+1 € Bforallz' € V*(z). Then z+s+a’
€ A+ B forall 2 € V*(x) (¢f Definition 2.3.8 (1) and Proposition 2.3.9). Therefore
A + B is a normal full right k-ideal of S containing A and B. It is a routine verification
to check that A + B is the smallest normal full right k-ideal of S containing A and
B. O

Theorem 2.3.11. Let (S, +,-) be an additively reqular distributively generated semin-
earring. Let A, B be two normal full k-ideals of S. Then A + B is the smallest normal
full k-ideal containing A and B.

Proof. By Lemma 2.3.10, A + B is the smallest normal full right k-ideal of S containing
Aand B. Let € A+ Band s € S. Then s = o, t; where t; is a distributive element
for each 4, 1 < i < n. In view of Definition 2.3.8 (4i7) and Proposition 2.3.9, there
exists a € A such that a + 2z € B. Then t;(a + ) = t;a + t;z € B and t;a € A for
each i where 1 < ¢ < n. Therefore by Definition 2.3.8 (iii) and Proposition 2.3.9, t;x
€ A+ B for each i. So st € A+ B. Hence A + B is a left S-ideal. This completes the
proof. U

It is a matter of routine verification to prove the following result.

Proposition 2.3.12. Let (S,+,-) be an additively reqular seminearring. Then inter-

section of two normal full k-ideals is a normal full k-ideal.
Theorem 2.3.11 and Proposition 2.3.12 together imply the following result.

Theorem 2.3.13. Let (S,+,-) be a distributively generated additively reqular semin-
earring. Then the set Z(S) of all normal full k-ideals of S under set inclusion forms a
lattice where INJ =1NJ and IV J =1+ J forall I,J € Z(95).

Theorem 2.3.14. Let (S,+,:) be an additively reqular seminearring. Then the set
C(S) of all near-ring congruences on S under set inclusion forms a lattice where p A\ o

=pNaoandpVo =poac forall p,o € C(S).
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Proof. Tt is easy to observe that the intersection of two near-ring congruences on an
additively regular seminearring S is a near-ring congruence on S.

Let p,o € C(S). Then since pNo € C(S), pNo is a group congruence on (S, +).
Hence by Corollary 3 [27], p o o is the least group congruence on the semigroup (S, +)
containing p and o. Let a poo b. Then there exists z € S such that apz and zob. Now
forall s € S, as p zs and zs o bs. Therefore as po o bs for all s € S. Similarly we can
show that sa poo sb for all s € S. Then in view of Definitions 1.5.18 and 1.5.21, poo
is a near-ring congruence on (S, +, ). Hence C(S) is a lattice with p A 0 = pN o and

pV o = poo where p,o € C(5). O

Proposition 1.2.10 together with Theorems 2.2.10, 2.3.13 and 2.3.14 gives rise to

the following result.

Theorem 2.3.15. Let (S,+,-) be a distributively generated additively reqular semin-
earring. Then the lattice C(S) of all near-ring congruences on S and the lattice Z(S)

of all normal full k-ideals of S are isomorphic.

Remark 2.3.16. Since a near-ring congruence on a distributively generated semin-
earring becomes a zero-symmetric near-ring congruence, in a distributively generated
additively regular seminearring S, the lattice of all normal full k-ideals of S and the

lattice of all zero-symmetric near-ring congruences on S are isomorphic.

Theorem 2.3.17. Let (S,+,) be a distributively generated additively reqular semin-
earring. Then the set Z(S) of all normal full k-ideals of S is a modular lattice.

Proof. By Theorem 2.3.13, Z(S) is a lattice. Let I,J, K € Z(S) and K C I. Then
INH+KCIn(J+K) (¢f Lemma 1.2.11). Let z € I N (J+K). Then z € I
and there exists y € J such that (r+y) € K (¢f. Definition 2.3.8 (iv) and Proposition
2.3.9). Therefore (x+y) € I whence y € I. Hencey € I N J whence in view of the fact
that (z4y) € K we obtain « € (INJ) + K (c¢f Definition 2.3.8 (iv) and Proposition

2.3.9). This completes the proof. O
Combining Theorems 2.3.15 and 2.3.17 we obtain the following result.

Theorem 2.3.18. Let (S, +,) be a distributively generated additively reqular semin-

earring. Then the set C(S) of all near-ring congruences on S is a modular lattice.

The following example shows that the lattice of all normal full k-ideals of a dis-

tributively generated additively regular seminearring may not be distributive.
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Example 2.3.19. Let (K4, +) be the Klein-4-group. Let us define zy = e for all
x,y € Ky. Then Ky is a ring. Let (Si,+,-) be the seminearring direct product of K,
and a distributively generated additively regular seminearring (D, +, ). Then (Sy, +, )
is a distributively generated additively regular seminearring. Let I} = {e,a} x D, I, =
{e,b} x D and I3 = {e, ¢} x D be three normal full k-ideals of S;. Then (I;AIy)V (1 Al3)
={e} xDbut 1 A(I;VI3) = 1.

Now we want to obtain some sufficient conditions imposition of which ensures the
distributivity of the lattice Z(S) (¢f. Theorem 2.3.22) of all normal full k-ideals of a
distributively generated additively regular seminearring S. It is relevant to mention
here that this condition is a modified version of its counterpart for the lattice of ideals
of ring [12].

Definition 2.3.20. [2] Let A, B be two subsets of a seminearring (.S, +,-). Then we
define the product of A and B to be the set {37, a;b; : n € N,a; € A and b; € B}
and we denote it by AB.

Remark 2.3.21. According to [2], the product of two right S-ideals is a right S-ideal
but the product of two S-ideals (not necessarily an S-ideal) becomes an S-ideal if the

seminearring is distributively generated.

Theorem 2.3.22. Let (S,+,-) be a distributively generated additively reqular semin-
earring. If IJ =10 J for all normal full k-ideals I,J of S, then the set (Z(S),C) of

all normal full k-ideals of S becomes a distributive lattice.

Proof. By Theorem 2.3.13, Z(S) is a lattice. Let I, J, K € Z(S). Then (JNI)+ (K NI)

C(J+ K)NI (¢f Lemma 1.2.11) i.e., JI + KI C (J+ K)I as JI = JNI. Now let a €
(J 4+ K)I. Clearly, a=>""_, a;y; where forall 1 <i <n, z; € (J+ K) and y; € I. Then
by Definition 2.3.8 (¢v) and Proposition 2.3.9, for each x;, 1 < i < n there exists z; € J
such that z; + 2 € K. Now z;u; + 2zy; € KI C K1 for all 1 < i < n. By hypothesise

KI = KnNI. So K1 is a normal full k-ideal. Then x,,_1y,_1+ (TnYn~+2nYn)+ 2n-1Yn_1 €

KT (cf. Proposition 2.1.11). Proceeding in this way we obtain 37, z;y; + i, 21Uk €
KI. Therefore a+b € KI where b= Y;_, 2xyr € JI C JI. Then in view of Definition
2.3.8 (iv) and Proposition 2.3.9, a € JI + KI whence (J+ K)I C JI + KI. Thus

(J+ K)I C JI + KI. Therefore (J + K)I=JI + KI. As JI = JN I, we deduce from

the last relation that (J + K)NI = JNI+ KNI This completes the proof. O

Theorem 2.3.23. Suppose (S, +,-) is a distributively generated additively reqular sem-
inearring. Then the set Z(S) of all normal full k-ideals of S is a complete lattice.
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Proof. By Theorem 2.3.13, Z(S) is a lattice. Let A C Z(S). Then IQAI is a k-ideal.
Again E*(S) C I (c¢f Definitions 2.1.5 (¢)) for all I € A whence ET(S) C IQAI.
Therefore IQAI is a full k-ideal. Now for any a € IQA[ ,s+a+s e€lforallIe A, for
all s € S and for all s € V*(s). Then s +a+s € IQAI for all a € IQAI, for all s € S
and for all s" € V*(s). Hence IQAI is a normal full k-ideal i.e., IQAI € Z(S). Also S is
the greatest normal full k-ideal of Z(S). So in view of Theorem 1.2.16, Z(.S) becomes

a complete lattice. O
Combination of Theorems 2.3.15 and 2.3.23 gives rise to the following result.

Theorem 2.3.24. Suppose (S, +,-) is a distributively generated additively reqular sem-

inearring. Then the set C(S) of all near-ring congruences on S is a complete lattice.

Remark 2.3.25. All of the results of this section are also true for distributively gener-
ated additively inverse seminearrings. The proofs will be similar except that " € V*(a)

will be replaced by unique additive inverse a*.
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Near-ring Congruences on Arbitrary

Seminearrings

In the study of near-ring congruences on a seminearring, results obtained in [83, 99
and our previous chapter mainly establish inclusion preserving bijective correspon-
dences between near-ring congruences and various types of ideals of seminearrings. In
[83], the authors showed that there exists an inclusion preserving bijection between
the set of all additively commutative near-ring congruences and the set of all nor-
mal subseminearrings of a distributively generated zero-symmetric seminearring S (cf.
Theorem 1.5.24). In [99], the authors established an inclusion preserving bijection
between the set of all near-ring congruences and the set of all normal full k-ideals
of a distributively generated additively inverse seminearring S with property D (cf.
Theorem 3.20 [99]). In our previous chapter, we established that in a distributively
generated additively regular seminearring, the set of all near-ring congruences and the
set of all normal full k-ideals are in an inclusion preserving bijective correspondence (cf.
Theorem 2.2.10). While establishing these bijections, we observe that different kinds
of restrictions were imposed either on the seminearring under consideration or on the
near-ring congruence. The main purpose of this chapter is to obtain similar result
connecting near-ring congruences on a seminearring with some new structures of that

seminearring where the seminearring is neither distributively generated nor additively

This chapter is mainly based on the work published in the following paper:
Kamalika Chakraborty et al., Near-ring Congruences on Seminearrings, Semigroup Fo-
rum, doi.org/10.1007/s00233-021-10249-z
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regular and the near-ring congruence is not additively commutative. Papers of Gomes
[36] and Gigon [31] have guided us to achieve our desired results in this chapter.

The flow of the content of Section 1 is as follows. In [36], G. M. S. Gomes
established that there is an inclusion preserving bijection between the set of all full,
dense, reflexive and unitary subsemigroups of an arbitrary semigroup S and the set of
all group congruences on S (¢f. Theorem 7 and Lemma 8 [36]). In Theorem 1.1.29 (i.e.,
Theorem 2.4 [31]), R. S. Gigon simplified the proof of this statement and established
an inclusion preserving bijection between the set of all dense, reflexive and closed
subsemigroups of a semigroup (S, +) and the set of all group congruences on S via the

map I — p, where for a dense, reflexive and closed subsemigroup I of S,
(a,b) € p, if and only if there exists € S such that a +z, b+ z € I.

Since a near-ring congruence on a seminearring (S, +,-) means a congruence on the
additive reduct (S,+) as well as on the multiplicative reduct (.S,-) such that it is a
group congruence on (S, +), our task reduces to find conditions on dense, reflexive and
closed subsemigroup (I,+) of (S,+) to make p, (as defined by Gigon [31]) a right as
well as left congruence on (S,-). In this regard, in a seminearring S, we see that p,,
corresponding to a dense, reflexive subsemigroup (I,+) of (S,+4) with the property
IS C I, becomes a right congruence on (S, -) as well as a group congruence on (.5, +)
(¢f. Proposition 3.1.1). So to make this p, a left congruence on (5, -), too, we then
introduce the notion of strong additive subsemigroup in a seminearring (c¢f. Definition
3.1.2). Then in a seminearring S, we establish that p,, corresponding to a strong, dense,
reflexive and closed additive subsemigroup I of S with the property IS C I becomes a
near-ring congruence on S (c¢f. Theorem 3.1.6) and conversely a near-ring congruence
o on S corresponds a strong, dense, reflexive and closed additive subsemigroup H_ of S
such that H_S C I (¢f. Theorem 3.1.7). Combining these two results, in a seminearring
S we obtain our desired inclusion preserving bijective correspondence between the set
of all near-ring congruences on S and the set {I C S|I is a strong, dense, reflexive
and closed additive subsemigroup of S with IS C I} (¢f. Theorem 3.1.8). Then we
establish in Theorem 3.1.10 that in a seminearring S, the set of all zero-symmetric
near-ring congruences on S and the set {I C S|I is a strong, dense, reflexive and
closed additive subsemigroup of S with SI, IS C I} are in an inclusion preserving
bijective correspondence.

In Section 2, we mainly study near-ring congruences (hence zero-symmetric near-

ring congruences) on distributively generated seminearrings. We first characterize
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strong, dense, reflexive and closed additive subsemigroups in a distributively generated
seminearring (c¢f. Proposition 3.2.1). Then in a distributively generated seminearring
S, we obtain an inclusion preserving bijective correspondence between the set of all
near-ring congruences on S (hence the set of all zero-symmetric near-ring congruences
on S) and the set {I C S|I is a dense, reflexive and closed additive subsemigroup of
S with SI, IS C I} (¢f. Theorem 3.2.3). To conclude this section, in a seminearring
S, we relate the notions (viz., (7) normal full k-ideal (¢f. Definition 2.1.6), (#¢) normal
subseminearring (c¢f. Definition 1.5.23) and (7i7) strong, dense, reflexive and closed ad-
ditive subsemigroup I of S such that I.S C I') which correspond near-ring congruences

on different kinds of seminearrings (¢f. Observation 3.2.4).

3.1 Near-ring and zero-symmetric near-ring congruences on

seminearrings

Proposition 3.1.1. Suppose S is a seminearring and (I,+) is a dense and reflez-
ive subsemigroup of (S,+) such that 1S C I. Then the relation p, on S is a right

congruence on (S,-) and a group congruence on (S,+) where
(a,b) € p, if and only if there exists v € S such that a +x, b+x € 1.

Proof. In view of Theorem 1.1.29, p, is a group congruence on (S,+). Let (a,b) € p,
and s € S. Then there exists x € S such that a+x, b+x € I. Since IS C I, (a + x)s,
(b + x)s € I. Therefore as + xs, bs + xs € I whence (as, bs) € p,. Then p, is a right

congruence on the semigroup (9, ). O

Definition 3.1.2. Let S be a seminearring. A subsemigroup (I, +) of (S, +) is said
to be strong in S if for given s, a € S and w € [ there exist 71, is, i3, 14 € [ such that

s(a+w) + iy =iy + sa and s(w + a) + i3 = i4 + sa.

The following example shows that there are plenty of instances of strong additive

subsemigroup of a seminearring (not necessarily with zero).

Example 3.1.3. Let (M, +) be a semigroup and N be a dense, reflexive and closed
subsemigroup of M. Let us define a relation p, on M by p, = {(a,b) € M x M:
there exists x € M such that a + x,b+x € N }. Suppose S ={f: M — M :ap, b

= f(a) py, f(b)}. Let f,g € S. Then for a p, b, f(a) p, f(b) and g(a) p, g(b).
Now in view of Theorem 1.1.29, p, is a congruence on (M,+). Therefore (f(a) +
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9(a)) py (f(0)+9(b)), i.e., (f+g)(a) py (f+9)(b) whence f+g € S. Again g(a) py g(b),
f € S show that f(g(a)) p, f(g(b)) whence fg € S. In view of Example 1.5.6, M (M)

is a seminearring under point wise addition and composition and S C M (M) where S
is closed under addition and composition. Therefore S is a seminearring.

Now I = {f e S: f(M)C N}. Let f1, fo € I. Then (f; + fo)(M) € N. Therefore
(I,+) is a subsemigroup of (S,+). Now let f € I and g,h € S. Then for each
s € M, h(g+ f)(s) = h(g(s) +n) where f(s) =n € N. Clearly, (g(s) +n) p, g(s).
Therefore for h € S, h(g(s) +n) py h(g(s)) whence there exists z € M such that
h(g(s)+n)+2, h(g(s)) +2 € N. Let ny = z+h(g(s)) and n, = h(g(s)+n)+z. Then
h(g(s)+n)+n, = n,+h(g(s)) where n,, n, € N. Let us define f, : M — M by fi(s) =
ng and fo : M — M by fo(s) = n.. Clearly fi,fo € I and h(g+ f)+ fi = fo + hg.
Similarly we can show that there exist f3, f4 € I such that h(f + g) + f3 = fi + hg.

Therefore I is strong in S.

In the following proposition we simplify the defining conditions (¢f. Definition 3.1.2)

of a strong additive subsemigroup in a seminearring with zero.

Proposition 3.1.4. Let S be a seminearring with zero and (I,+) be a dense, reflexive

and closed subsemigroup of (S,+). Then the following are equivalent.
(i) I is strong in S.

(ii) For each a, b, s € S and i € I there exist i1, 1o € I satisfying s(a+i+b) +1i; =
ig + S(CL + b)

Proof. Let (I,4) be a dense, reflexive and closed subsemigroup of (S, +) such that I
is strong in S. Let s,a,b € S and 6 € I. Since (I,+) is a dense subsemigroup of
(S, +), there exist V/,a’ € S such that b+ b0',a + a’ € I. Then (a +b) + (V' + o),
(a+0+b)+ (b +a') €I (since (I,+) is a reflexive subsemigroup of (S,+)). Now there

exist 71, 149,13, %4 € I such that

s(a+b+z+(a+d+0b))+i =iy + s(a+b) and
sfa+b+z+(a+d+0b)+izg=i4+s(a++0b)

where z = b + d/. Let w € S such that s(a +3d +b) +w € I as (I,+) is a dense
subsemigroup of (S, +). Now s(a+b+2+4+(a+6+b))+is+w=1is+s(a+0+b)+w
shows that w+s(a+b+z+4(a+0+b)) € I as (I, +) is a reflexive and closed subsemigroup
of (S, +). This together with the fact s(a+b+z2+(a+d+b)) +i1 +w = is+s(a+b)+w
shows that s(a +b) +w € I (since (I,+) is a closed subsemigroup of (S, +)). Hence
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s(a+04+0b) +(w+s(a+d) =(s(a+d+0b) +w)+ s(a+b) where (w + s(a + b)),
(s(a+d+0b)+w) el
Let I satisfy condition (77). Since S contains zero, we can easily obtain that [

satisfies condition (7). O

The following example shows that the above proposition does not hold if we remove

zero from the seminearring under consideration.

Example 3.1.5. Let S = N x N where N denotes the set of all natural numbers. Let

us define ‘@’ and ‘®” on S x S as follows :
(i) (a,0) ® (. d) = (a+c.d) and
(ii) (a,b) ® (¢,d) = (a(c+d),b(c+ d)) where (a,b), (¢,d) € S.

Now (S, @) is a semigroup as it is a direct product of two semigroups, viz., N under
usual addition and N as right zero semigroup. For (a,b), (¢,d), (m,n) € S, ((a,b) ®
(e,d))®(m,n) = (a(c+d)(m+n),blc+d)(m+n)) = (a,b) ®((¢,d) ®(m,n)). Therefore
(S, ®) is a semigroup. Now ((a,b)® (¢, d)) ©(m,n) = ((a+c)(m+n),d(m+n)). Again
((a,b) ® (m,n)) ® ((¢,d)) ® (m,n)) = (a(m+n),b(m +n)) ® (c(m +n),d(m +n)) =
((a+c)(m-+n),d(m+n)). Therefore ((a,b)D(c,d))®(m,n) = ((a,b)®(m,n))S((c,d)®
(m,n)) for all (a,b), (¢,d), (m,n) € S. Hence (S, D, ®) is a seminearring. But S is not
with zero as (S, +) is not a monoid. S is not a semiring since (1,1) ® ((2,2) @ (3,3))
=(8,8) # ((1,1) ®(2,2)) ® ((1,1) ® (3, 3)).
Let I = {(2n,m) € S :n,m € N},

(a) For (2ny,mq), (2ne,me) € I, (2ny;,my) & (2n2,ma) = (2(n1 + ng),ma) € 1.
Therefore (I, ®) is a subsemigroup of (S, ®).

(b) Now let (a,b) € S. Then (a,b) & (a,b) = (2a,b) € I. Therefore (I, ®) is a dense
subsemigroup of (S, @).

(c) Let (a,b),(c,d) € S such that (a,b) @ (c,d) € I. Therefore (a + ¢,d) € I whence
a + ¢ is a multiple of 2. Hence (¢,d) @ (a,b) = (¢ + a,b) € I whence (I, ®) is a

reflexive subsemigroup of (S, ®).

(d) Let (a,b),(c,d) € S such that (a,b) ® (¢,d) € I and (a,b) € I. Then (a +
¢, d), (a,b) € I. Therefore 2|(a + ¢) and 2|a whence 2|c whence (¢, d) € I. Hence
(I,®) is a closed subsemigroup of (S, ®).
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(e) Let (s1,82), (a1,az), (b1, b) € Sand (2n,m) € I. Now (s1, s2)®((a1, a2) P (b1, b2))
= (s1,52) © (a1 + by, b2) = (s1(ay + by + ba), s2(ay + by + b2)). Again (s, 82) ©
((a1,a2) ® (2n,m) @ (b1, b2)) = (51,52) ® (a1 + 2n 4 by, be) = (s1(a1 + 2n + by +
ba), s2(a1 +2n+ by +b2)). Let (2nsy, so(ay + by +b2)), (4nsy, s2(a; +b1 +by)) € 1.
Then

(s1,82) © ((a1,a2) © (2n,m) @ (b1, b2)) @ (2ns1, s2(ar + by + by)) =
(81(&1 + 27’L + bl + bg), 82(@1 + 2n + bl + bg)) e, (27’1,81, 82(&1 + bl + bg)) =
(s1(ar +4n 4 by + by), s5(ar + by + by)) and

(4nsy, sa(ay + b1+ b)) © ((s1,82) © ((a1,a2) © (b1, b2))) =
(4%81, 82((11 + bl + bz)) ) (31(a1 + bl + bg), SQ(CLl + bl + bg)) =
(sl(al + 4n + bl + bg), 82(@1 + bl + bg))

Therefore (I,®) is a dense, reflexive, closed subsemigroup of (S,®) and I satisfies
condition (i¢) of Proposition 3.1.4. But for (1,1), (1,2) € S and (2,1) € I there
do not exist any pair of elements 7y, 45 in I so that (1,1) ® ((1,2) ® (2,1)) ® iy =
ip© ((1,1) ©(1,2)).

Theorem 3.1.6. Suppose S is a seminearring and I is a strong, dense, reflevive and
closed additive subsemigroup of S such that IS C I. Then the relation

p, ={(a,b) € S xS : there exists x € S such that a+ x,b+x € I}
is a near-ring congruence on S and I ={x € S: (z,x+x) € p,}.

Proof. Since (I,+) is a dense, reflexive and closed subsemigroup of (S, +), in view of
Theorem 1.1.29, p, is a group congruence on (S,+) and [ = {z € S: (z,z+x) € p, }.
Again p, is a right congruence on (5, -) (¢f. Proposition 3.1.1). Now let (a,b) € p, and
s € S. Then there exists x € S such that a +x,b0+x € I. Since I is strong in S, x + b,
a+z € I show that there exist iy, iy, 43,74 € I such that s(a+ x4 b) +i; = is + sa and
s(a+x+b)+is =1i4+sb....(1). Let z € S such that s(a+x+b)+z € I. This together
with (1) and the fact that [ is a reflexive and closed subsemigroup of (S, 4) shows that
sa + z, sb+ z € I. Therefore (sa,sb) € p, whence p, is a near-ring congruence on
S. O

Theorem 3.1.7. Let S be a seminearring and o be a near-ring congruence on S.
Then H, = {x € S : (x,x + x) € o} is a strong, dense, reflexive and closed additive
subsemigroup of S satisfying H,S C H_. Moreover, the relation Py, ON S defined by
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apy, b if and only if there exists x € S such that a +z, b+x € H,
coincides with o.

Proof. Since o is a near-ring congruence on the seminearring S, o is a group congruence
on (S,+). Now H, = {z € S: (z,x 4+ ) € o} is the zero of the near-ring S/o. In
view of Theorem 1.1.29, Pu, =0 and H_ is a dense, reflexive and closed subsemigroup
of (S,4). Let h € H, and s,a € S. Then (h,h + h) € o whence (hs,hs + hs) € o
(since o is a congruence on the seminearring S). Therefore hs € H, andso H .S C H_.
Now (a + h,a) € o (since h € H_, and H_ is the zero of the near-ring S/o). Then
(s(a+ h),sa) € o (as o is a congruence on the seminearring S). This together with
the fact p, = o shows that there exists w € S such that s(a + %) +w, sa +w € H,.
Therefore s(a+ h) + (w + sa) = (s(a + h) +w) 4+ sa where w + sa, s(a+h) +w € H,.
Similarly we can show that there exist hy, hy € H_ such that s(h + a) + hy = ha + sa.
Thus H, is a strong, dense, reflexive and closed additive subsemigroup of S satisfying
HSCH,. O

Theorem 3.1.8. Suppose S is a seminearring. Then the set {I C S|I is a strong,
dense, reflexive and closed additive subsemigroup of S with IS C I} and the set of all
near-ring congruences on S are in an inclusion preserving bijective correspondence via

I — p, where
a p, bif and only if there exists v € S such that a +x,b+x € I.

Proof. Theorem 3.1.6 shows that the mapping is injective and Theorem 3.1.7 shows
that the map is surjective. Again in view of definition of p, and Theorem 3.1.6, I C J
if and only if p, € p,. This completes our proof. O

The following example shows that there are plenty of instances of strong, dense,

reflexive and closed additive subsemigroup I of a seminearring S satisfying .5 C I.

Example 3.1.9. Consider the seminearring S of Example 3.1.3 and [ = {f € S :
f(M) C N}. Then in view of Example 3.1.3, [ is a strong additive subsemigroup of S.

(i) Let f € Sand h € I. Then h(M) € N. Now (hf)(M) = h(f(M)) C h(M) C N.
Therefore hf € I whence I.S C I.

(i) Let f1 + fo € I. Then f1(m)+ fo(m) € N for all m € M. Since N is a reflexive
subsemigroup of M, fo(m) + fi(m) € N for all m € M. Therefore fo + f; € [

whence [ is a reflexive additive subsemigroup of S.
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(iii) Let f+g,f € I. Then f(m)+ g(m), f(m) € N for all m € M. Since N is a
closed subsemigroup of M, g(m) € N for all m € M. Then g € I. Therefore I is

a closed additive subsemigroup of S.

(iv) Now let M = Ujea[wn],, where {wy : A € A} be the representatives of the
distinct p,-classes. We fix these representatives and for each w,, we fix w) € M
such that wy +w) € N. Let f € S and define g : M — M by g(m) = w) where
F(m) € [t - Let apy b. Then (@) p, F0)- Let fwr],, = [F(0)]s, = [FB)],
for some \; € A. Then by definition of g, g(a) = g(b) = w),. Hence g(a) p, g(b),
i, g €S. Let m € M and f(m) € [w,], . Then there exists z € M such
that f(m) 4+ 2z, wy + 2z € N. Again wy + w) € N. Since (N,+) is a reflexive
subsemigroup, w + (f(m) + z) + wy € N. This together with the fact (N, +) is
a reflexive and closed subsemigroup and z +wy € N shows that f(m)+w) € N
whence f(m)+ g(m) € N. Therefore f + g € I whence I becomes a dense
subsemigroup of (S, +), too.

Therefore I is a strong, dense, reflexive and closed additive subsemigroup of S and
IS C 1.

Theorem 3.1.10. Suppose S is a seminearring. Then the set {I C S|I is a strong,
dense, reflexive and closed additive subsemigroup of S with IS, ST C I} and the set of
all zero-symmetric near-ring congruences on S are in an inclusion preserving bijective

correspondence via I — p, where
a p, b if and only if there exists x € S such that a +x,b+x € I.

Proof. Let I be a strong, dense, reflexive and closed additive subsemigroup of S and
IS, SI C 1. Then in view of Theorem 3.1.6, the relation p, is a near-ring congruence
on Sand I ={r € S: (v,vr+x) € p,} = li],, is the zero of the near-ring S/p, for
any i € I. Let s € S and i € I. Then si € I (as ST C I). Hence [s], [i],, = [i],, and
consequently, S/p, becomes a zero-symmetric near-ring.

Let o be a zero-symmetric near-ring congruence on S. Let H, = {x € S: (z,x+x) €
o}. Then in view of Theorem 3.1.7, H_ is the zero of the zero-symmetric near-ring
S/o and H_ is a strong, dense, reflexive and closed additive subsemigroup of S and
H_S C S. Clearly, [h], = H, for any hy € H,. Let h € H and s € S. Since S/o is a
zero-symmetric near-ring, [s],|h|, = H, whence sh € H_ and thus SH, C H_. O
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3.2 Near-ring congruences on distributively generated semin-

earrings

Proposition 3.2.1. Let S be a distributively generated seminearring and I be a dense,
reflexive and closed additive subsemigroup of S. Then I is strong in S if and only if
SIC1.

Proof. Let I be strong in S. Let t be a distributive element of S, a € S and § € I.
Then there exist i1,is € I such that t(a + 9) + i1 = iy + ta, i.e., ta +td + i1 = iz + ta.
Since (I, +) is a dense subsemigroup of (.S, +), there exists w € S such that ta+w € I.
Therefore ta + td + i1 + w = i3 + ta + w € I. This together with the fact that [ is a
closed and reflexive subsemigroup of (S, +), shows that t0 € I. Now let s € S. Then
s = Y, t; where for each ¢, 1 < ¢ < n, t; is a distributive element of S. Therefore
t;6 € I for each @ with 1 <7 <n. So séd =31 ,(t;0) € I. Thus ST C I.

Conversely, let SI C I. Now let s,a € S and 0 € I. Then s = >_"' ; t; where for
each i, 1 <i <mn, t; is a distributive element of S. Since (I, +) is a dense and reflexive
subsemigroup of (S,+) and ¢;0 € I, for each i, there exists w; € S such that w; + t;a,
tia+w;, t;0 +t;a+w;, w;+t;0+t;a € I. Then using the fact that (I, +) is reflexive, we
obtain wy+ (wy +t1a)+tea € I and (t10+1t1a)+ (tod+taa+wy)+w; € I. Consequently,
S wi+Y tael ie, Y, wi+sael ... (1) and S0, (86 +tia) + X1, w; € 1,
i.e., s(0+a)+3_, w; € Loooee... (2). Using (1) and (2) we get s(d+a)+ (X}, wit+sa) =
(s(8+a)+ X1, w;) + sa where Y1 w; + sa, s(0 +a) + S, w; € I. Similarly we can
show that s(a + &) + (X1, wi + sa) = (s(a + ) + Xi_, w;) + sa where 1, w; + sa,
s(a+98) + X}, w; € I. Therefore I becomes strong in S. O

The following example shows that if a seminearring is not distributively generated

then the above proposition may not hold.

Example 3.2.2. Let (M, +) be a commutative monoid satisfying the following con-
ditions (z) M is a regular semigroup, (i¢) E(M) is a closed subsemigroup of M where
E(M) denotes the set of all idempotents of M and (iii) there exists at least one pair
(a,b) € M x M such that there exist no ey, e; € E(M) for which e; +a = b + eq,
i.e., e +a # b+ e for all ej,eo € E(M). Let w € M\ E(M), e € E(M) such
that w # w + e (see (5, +) of Example 2.3.4 for such a commutative monoid). Let
S={f: M — M: f(E(M)) C E(M) and f(0) = 0}. Let g1,92 € S. Then
(g1 + g2)(e) = g1(e) + g2(e) € E(M) for all e € E(M) as E(M) is a subsemigroup of

62



Chapter 3. Near-ring Congruences on Arbitrary Seminearrings

M and g¢i(e), g2(e) € E(M) for all e € E(M). Again (g1 + g2)(0) = ¢1(0) + ¢g2(0) = 0.
Therefore g1 + g2 € S. Now ¢1(g2(e)) € E(M) for all e € E(M) and g1(g2(0)) = 0.
Therefore g1go € S. Now {f : M — M} is a seminearring under point wise addition
and composition of functions and S C {f : M — M} is closed under addition and

composition. Therefore S is a seminearring.
Now let I ={feS: f(M)C EM)}.

(i) Since E(M) is a closed subsemigroup of M, it can be easily verified that [ is a

closed additive subsemigroup of S.

(ii) Since M is a commutative semigroup, S is an additively commutative seminear-
ring and every additive subsemigroup of S is reflexive. Therefore [ is a reflexive

additive subsemigroup of S.

(iii) Let f € S. Let us define g : M — M such that g(0) = 0 and g(m) = f(m)’
for some f(m) € V(f(m)). Let e € E(M). Then f(e) € E(M). Since E(M) is
a closed subsemigroup of M, V(f(e)) € E(M). Therefore g(e) € E(M). Hence
g € S. Now in view of Definition of g, (f+g¢)(m) = f(m)+g(m) = f(m)+ f(m)’
(for some f(m) € V(f(m))) € E(M) for all m € M. Therefore f +¢g € I and [

is a dense additive subsemigroup of .S.

(iv) Let f € Sand g € I. Then f(g(M))
(as f(E(M) € E(M)) and g(f(M))
Therefore fg,gf € I whence SI, IS C I.

f(E(M)) (as g(M) € E(M)) € E(M)
9

C )
C g(M) € E(M) (as g(M) € E(M)).

Thus (I, +) is a dense, reflexive and closed subsemigroup of (.S, +) such that SI, IS C I.

Let f € I such that f(0) = 0 and f(m) = e for all m € M \ {0}. Again let
g € S such that g(w) = a and g(w + e) = b. Then there exist no 4,7’ € I such that
go(id+ f)+i =i+ goid where id(m) = m for all m € M (since for all e, eo € E(M),
glid+ f(w) + e =glw+e)+e =b+e #er+a=e+gw) = e+ g(idw))).

Therefore in view of Definition 3.1.2, I fails to be strong in S.

Now we obtain the analogue of Theorem 3.1.8 in the setting of distributively gen-

erated seminearrings.

Theorem 3.2.3. In a distributively generated seminearring S, the set {I C S|I is
a dense, reflexive and closed additive subsemigroup of S with 1S, SI C I} and the

set of all near-ring congruences (and hence the set of all zero-symmetric near-ring
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congruences) on S are in an inclusion preserving bijective correspondence via I — p,

where
ap,b if and only if there exists x € S such that a +x,b+x € I.

Proof. Tt follows from Theorem 3.1.8, Proposition 3.2.1 and the fact that a distribu-

tively generated near-ring is always zero-symmetric (cf. (i) of Remark 1.4.9). O

Before we conclude, we highlight (¢f. Observation 3.2.4) the connection of our main
result viz., Theorem 3.1.8 with its counter parts Theorem 1.5.24 (i.e., Theorem 3.6 [83])
and Theorem 2.2.10. In order to accomplish this we recall that there exist inclusion

preserving bijective correspondences between

(7) the set of all normal subseminearrings and the set of all additively commutative

near-ring congruences in a distributively generated zero-symmetric seminearring
(cf. Theorem 1.5.24),

(7i) the set of all normal full k-ideals and the set of all near-ring congruences in a

distributively generated additively regular seminearring (c¢f. Theorem 2.2.10),

(79) the set {I C S|I is a strong, dense, reflexive and closed additive subsemigroup of
S with IS C I'} and the set of all near-ring congruences in a seminearring S (cf.
Theorem 3.1.8).

So we make the following observation which relates the above notions in a seminearring
S wviz., (1) normal subseminearring, (i7) normal full k-ideal, (7ii) strong, dense, reflexive
and closed additive subsemigroup I of S with I.S C I.

Observation 3.2.4. (i) Let S be a distributively generated zero-symmetric semin-
earring and I be a normal subseminearring (see Definition 1.5.23) of S. Then in
view of Definitions 1.1.2, 1.5.11 and 1.5.23, [ is a dense, closed additive subsemi-
group of S such that IS, ST C I. Since S is zero-symmetric, in view of Note 1
[83] I is a reflexive additive subsemigroup. Then in view of Proposition 3.2.1, [

is a strong, dense, reflexive and closed additive subsemigroup of S with I.S C I.

But the converse is not true which is evident from the fact that in a distributively
generated zero-symmetric near-ring N whose addition is not abelian, {0} is a
strong, dense, reflexive and closed additive subsemigroup of N with {0} N = {0}

but not a normal subseminearring of N (¢f. Theorem 2.3 [83]).
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(i)

(i)

If S is not a distributively generated seminearring, then a normal subseminearring
I of S may not be a strong, dense, reflexive and closed additive subsemigroup of
S with IS C I. Consider I of the seminearring S of Example 3.2.2. Then [ is a
normal subseminearring (since (.5, +) is commutative, I satisfies condition (i) of
Definition 1.5.23, (i7) and (éi¢) of Definition 1.5.23 follow from Definitions 1.1.2,
1.5.12 and Example 3.2.2). But [ is not a strong additive subsemigroup whence
I is not a strong, dense, reflexive and closed additive subsemigroup of S with
IS C 1.

If S is a distributively generated additively regular seminearring, then for any
normal full k-ideal (see Definition 2.1.6) I of S there exists a near-ring congruence
o, such that I = {a € S : ao,e for some e € E*(S)} (¢f. Theorem 2.2.3) where
E*(S) denotes the set of all additive idempotents of S. As o, is a near-ring
congruence, {a € S : ao,e for somee € ET(S)} ={a € S : (a +a,a) € 0,}
and hence in view of Theorem 3.1.7, I is a strong, dense, reflexive and closed
additive subsemigroup of S with IS C I. Following a similar kind of argument
as previous and Theorem 3.1.6, we see that if I is a strong, dense, reflexive and
closed additive subsemigroup of S with IS C [ then I must be a normal full
k-ideal of S, too.

If S is an additively regular seminearring but not distributively generated, then
a normal full £-ideal I may not be a strong, dense, reflexive and closed additive
subsemigroup of S with 1S C [. In Example 3.2.2, S is an additively regular
seminearring (since for any f € S, if we define g : M — M such that g(m) =
f(m) for some f(m) € V(f(m)), g(0) =0 then f+¢g+ f=fand g € 5). Let
I={fe€eS: f(M)C E(M)}. Then in view of Example 3.2.2, I is a dense,
reflexive and closed additive subsemigroup of S and IS, SI C I. Then in view of
Definition 1.5.12, I is a k-ideal such that [ is a reflexive additive subsemigroup
of S. Again in view of Remark 1.1.28, I is a full additive subsemigroup of S too.
Therefore I is a full k-ideal such that I is a reflexive additive subsemigroup of S
whence in view of Proposition 2.1.11, I is a normal full k-ideal of S. Since [ is
not a strong additive subsemigroup, [ is not a strong, dense, reflexive and closed
additive subsemigroup of S with I.S C I.

If S is an additively regular seminearring but not distributively generated, then a

strong, dense, reflexive and closed additive subsemigroup [ of S with I.S C I may
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not be a normal full k-ideal. For example, consider E*(S’) of the seminearring
S" of Example 3.21 [98] and the near-ring congruence n on S’ as mentioned in
Example 3.21 [98]. Then E*(S") = {x € S : (z,z + x) € n}. Therefore in
view of Theorem 3.1.7, ET(S’) is a strong, dense, reflexive and closed additive
subsemigroup of S" with E*(S5)S" C E*(S’). But in Example 3.21 [98], it has
been proved that E7(S’) is not a normal full k-ideal of S’.
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CHAPTER 4

LAT
CONGRUE




Lattice of Near-ring Congruences on

Seminearrings

As a continuation of our study in Chapter 3, in this chapter, our goal is to extend
the bijections established in Theorem 3.1.8 and Theorem 3.1.10 to lattice isomorphisms.
We also study the lattice structures of the set of all near-ring congruences and the set
of all zero-symmetric near-ring congruences of a seminearring, in detail. We organize
this chapter as follows.

In the study of near-ring congruences on a seminearring, accomplished in [83, 99
and Chapter 2, inclusion preserving bijections between near-ring congruences and var-
ious types of ideals have been established in seminearrings with different kinds of re-
strictions. In order to upgrade these studies, in Chapter 3, we consider a seminearring
S without any restriction and establish inclusion preserving bijective correspondences
between (i) the set of all near-ring congruences on S and the set {I C S|I is a strong,
dense, reflexive and closed additive subsemigroup of S with I.S C I'} and (i7) the set of
all zero-symmetric near-ring congruences on S and the set {I C S|I is a strong, dense,
reflexive and closed additive subsemigroup of S with IS, SI C I} (¢f. Theorems 3.1.8
and 3.1.10). In Section 1 of this chapter, we describe explicitly the motivation behind
considering a strong, dense, reflexive and closed additive subsemigroup I of a semin-
earring S with (IS C I) 1.S,S1 C I to be a suitable structure to get the bijections

This chapter is mainly based on the work of the following paper:
Kamalika Chakraborty et al., Lattice of Near-ring Congruences on Seminearrings, Com-

municated.
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established in Theorem 3.1.8 and Theorem 3.1.10. In this direction we first adapt the
notion of strong ideal' in the setting of seminearring with zero (which need not be
zero-symmetric) and redefine it in Definition 4.1.8. Then we define strong dense ideal
and characterize it in a seminearring with zero (cf. Definition 4.1.11, Theorem 4.1.12).
Thereafter in view of Remark 4.1.14, to get a suitable substructure which corresponds
to a near-ring congruence on a seminearring, we generalise the notion of strong dense
ideal in the setting of a seminearring which need not contain zero and call it a ‘gen-
eralised strong dense reflexive (right) k-ideal’ (¢f. Definition 4.1.15). We observe that
in a seminearring S, I is a generalised strong dense reflexive (right) k-ideal if and only
if I is a strong, dense, reflexive and closed additive subsemigroup of S with (IS C I)
IS, SI C I (c¢f Remark 4.1.17). Then in Theorem 4.1.18, we rewrite Theorem 3.1.8
and Theorem 3.1.10 in terms of generalised strong dense reflexive (right) k-ideals.

In Section 2, we focuss on the study of various aspects of lattice structures of
generalised strong dense reflexive k-ideals and zero-symmetric near-ring congruences
on a seminearring. As a first step to that, in Example 4.2.3, we show that in an arbitrary
seminearring, both the set of all generalised strong dense reflexive k-ideals and the set
of all zero-symmetric near-ring congruences need not form lattices under set inclusion.
This makes us quest after a sufficient condition to form these sets lattices. With the
help of Proposition 4.2.6, Proposition 4.2.13 and Theorem 4.2.14, we establish that in a
seminearring with left local units (¢f. Definition 4.2.4) the set of all generalised strong
dense reflexive k-ideals forms a lattice with respect to the set inclusion (¢f. Theorem
4.2.15). Then in view of Proposition 4.2.16, we obtain that the set of all zero-symmetric
near-ring congruences on a seminearring with left local units forms a lattice, too (cf.
Theorem 4.2.17). Finally in Theorem 4.2.18, it has been made possible to extend the
bijection between the set of all generalised strong dense reflexive k-ideals and that of
all zero-symmetric near-ring congruences in a seminearring with left local units to a
lattice isomorphism. Thereafter with the help of this lattice isomorphism, in Theorem
4.2.19, the modularity of both the lattices of Theorem 4.2.18 in a seminearring with
left local units has been established. Then in Example 4.2.20, we exhibit that the
lattice of all generalised strong dense reflexive k-ideals (and hence the lattice of zero-
symmetric near-ring congruences) need not be distributive even if the seminearring
under consideration is with left local units. To conclude this section, we obtain some

sufficient conditions imposition of which ensures the distributivity of the lattice of

1 The notion of strong ideal was defined in [44] in the setting of zero-symmetric left distributive

seminearring.
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generalised strong dense reflexive k-ideals (and hence the lattice of zero-symmetric
near-ring congruences) of a seminearring (c¢f. Theorems 4.2.22 and 4.2.26).

In Section 3, in order to check the extendibility of the bijection connecting near-
ring congruences and generalised strong dense reflexive right k-ideals (stated in (7) of
Theorem 4.1.18) to a lattice isomorphism, we first see that in a seminearring, even
with left local units, both the set of all generalised strong dense reflexive right k-ideals
and the set of all near-ring congruences need not form lattices under set inclusion (cf.
Example 4.3.1). But in an E*-inversive seminearring, each of them becomes lattice
(cf. Theorem 4.3.7). It is also evident from Theorem 4.3.7 that Theorems 4.2.15
and 4.2.17 are also true in the setting of E*-inversive seminearrings (which need not
contain left local units). Then in Theorem 4.3.9, we are able to extend the bijective
correspondences, stated in Theorem 4.1.18, to lattice isomorphisms. We conclude this
section with the study of modularity, distributivity and completeness of the above-
mentioned lattices in an ET-inversive seminearring (¢f. Theorem 4.3.10, Example
4.3.11 and Theorem 4.3.12).

4.1 Generalised strong dense reflexive (right) k-ideals

In this section we mainly describe explicitly the motivation behind considering a strong,
dense, reflexive and closed additive subsemigroup I of a seminearring S with IS C I
(1S,SI C I) as a suitable structure such that p, (see Theorems 3.1.8 and 3.1.10) be-
comes a near-ring (zero-symmetric near-ring) congruence. To accomplish this, we first
recall some preliminary notions, results and deduce some relevant results of semigroup

and seminearring theories for their use in the sequel.

Definition 4.1.1. [68] A non-empty subset I of a semigroup (S, +) is said to be a
normal subsemigroup® if for any x and y which are elements of S or empty symbols
and for any k and k; lying in I or being empty symbols (given only that x, ki, y are
not all empty symbols),

r+k+y € I always implies v + k) +y € [.

Remark 4.1.2. (i) A normal subsemigroup of a monoid always contains 0, the iden-
tity of the monoid (consider x = y = 0, an empty symbol k; and k being an

element of T).

2 This is different from [31].
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(77) In view of Theorem 4.11 of chapter VI [68], a subset I of a monoid (M, +) is a

kernel of some morphism of M if and only if I is a normal subsemigroup.

Remark 4.1.3. [68] Now let I be a normal subsemigroup of a monoid (M, +). Let us

define the relation ‘r;’ by,
a ry bifand only if a,b € x4+ I + y for some z,y € M.

Now aryaasa€a+1+0and0 €l (¢f Remark 4.1.2). Therefore r; is reflexive.
In view of Definition of r;, it is symmetric and compatible with respect to addition.
Let 7} be the transitive closure (¢f. Definition 1.1.9) of r;. Since r; is compatible with
respect to addition, r; is also compatible with respect to addition. Therefore 7 is a
semigroup congruence on (M, +).

If z,y € I then x,y € 0+ I + 0. Therefore any two elements of I are r;-related
and I C [O]r’[’- Let z r; y and 2 € I. Then in view of Definition of r;, x = a + i1 + b,
Yy =a+1is+ b for some a,b € M and iy,iy € [ and a+i; +b € I. Again [ is a normal
subsemigroup. Then y (i.e., a + iy +b) € I. Therefore

ifrrjyandozelthenyel. ... (1)

Now let = € [O]T’I’- Then (1) shows that x € I. Therefore I = [O]TII/ and [ is the identity
of the monoid (M/r}, +).

Let A; be the corresponding semigroup homomorphism, i.e.,
Ao (M, 4) — (M/r],+),s — [S]T/I/.

Clearly, I is the kernel of \;. Let ¢ be a semigroup morphism of M such that kernel of
¢ is I and ry be the corresponding congruence (i.e., a 7, b if and only if ¢(a) = ¢(b)).
Let ar; b. Thena =+ & +yand b=x+ & +y for some z,y € M and &,& €
I. Therefore ¢(a) = ¢(b) = ¢(x) + ¢(y). Then r; C rg4 whence r; C r4. Thus for a
congruence p on (M, +) such that [0], = I, ] C p.

Notation 4.1.4. Let (I, +) be a normal subsemigroup of a monoid (M, 4). Through-
out this thesis, unless mentioned otherwise, r, , 7"; and A, stand for what we have
stated in Remark 4.1.3.

Remark 4.1.5. Let S be a seminearring with zero and I be an ideal of S. Then in
view of Definition 1.5.27 and Remark 4.1.2, (I, +) is a normal subsemigroup of (S, +)
and I is a right invariant subset (cf. Definition 1.5.28) of S.
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Now we rewrite the definitions of property ) and strong ideal (c¢f. [44]) in the

setting of seminearring with zero (which need not be zero-symmetric always).
Definition 4.1.6. Let S be a seminearring with zero.

(i) A normal subsemigroup (,+) of (S, +) is said to have property @ if the condition
Q(I): foralla,b,s€ Sandd €I, s(a+d+0b)r s(a+b)

holds.

(ii) An ideal (¢f. Definition 1.5.27) I of S is said to be a strong ideal if I satisfies
property Q).
Remark 4.1.7. Let (S, +,-) be a seminearring with zero.
(¢) Let (I,+) be a normal subsemigroup of (S, +). Then from Theorem 3 and Theo-

rem 5 of [44] we obtain that I has property @ if and only if 17 is a left congruence

on S and I is right invariant if and only if 7} is a right congruence on S.

(74) In view of Remark 4.1.5, a strong ideal I of S satisfies the following conditions:
(1) (I,+) is a normal subsemigroup of (S,+), (2) [ is a right invariant subset of
the seminearring S, (3) I satisfies property ). On the other hand let us consider
a subset J of S which satisfies the above-mentioned three properties. Then in
view of () of this remark, 7 is a congruence on S. Then J becomes an ideal
of S since kerA; = [0]7-’; = J, where \; is the corresponding homomorphism (cf.
Remark 4.1.3). Hence J is a strong ideal. So we can rewrite the notion of strong
ideal (cf. Definition 4.1.6) as follows.

Definition 4.1.8. In a seminearring (.S, +, -) with zero, a subset I of S is said to be a

strong ideal if I satisfies the following conditions:
(1) (I,+) is a normal subsemigroup of (S, +),
(2) I is a right invariant subset of the seminearring S, i.e., .S C I and
(3) I satisfies property Q.

The following result viz., Proposition 4.1.9 related with a monoid plays an important

role in the sequel.

Proposition 4.1.9. Let (M, +) be a monoid. Then
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(i) a dense normal subsemigroup of M is same as a dense, reflexive and closed

subsemigroup of M,

(ii) if I is a dense normal subsemigroup of M,
r; = {(a,b) € M x M: there exist v,y € I such thata+z =y+b}.

Proof. (i) Let (I,4) be a dense normal subsemigroup (i.e., a subsemigroup which is
normal as well as dense) of (M, +). (I,4) is a closed subsemigroup of M since if =+,
x € Itheny € I. Let a+b € I. There exists @ € M such that a' + a € I since T
is a dense subsemigroup of M. Now @' +0+a € I and a +b € I. Then in view of
Definition 4.1.1, @' 4 (a + b) + a € I. Therefore (¢’ +a) + (b+a),a +a € I and I is a
closed subsemigroup. Then b+a € I whence [ is a reflexive subsemigroup. Thus [ is a
dense, reflexive and closed subsemigroup of M. On the other hand, suppose (I, +) is a
dense, reflexive and closed subsemigroup of a monoid (M, +). Let x +i +y € I where
r,y€ Mandiel. Let iy € I. Now y+ 2+ € [ since [ is a reflexive subsemigroup.
Then y + o € I since I is a closed subsemigroup. Therefore y + x4+ i, € [ as [ is a
subsemigroup of M whence  + iy, +y € I (" (I, +) is reflexive). Thus I is a dense
normal subsemigroup of M.

(77) Let I be a dense normal subsemigroup of (M, +) and 7; = {(a,b) € M x M:
there exist x,y € I such that a + x = y+ b }. Clearly, (I,+) is a dense, reflexive and
closed subsemigroup of M and 7; is a group congruence on M (cf. Theorem 1.1.29).
Let (a,b) € r;. Then there exist i1,y € [ and z,y € M such that a = x+4; +y and b
= r+1is+y. Since [ is dense and reflexive, there exist ¢’ and z’ such that v/ +vy, y+ v/,
r+2' and 2’ +x € . Let wy =y + (' +2)+i2) +yand wy =+ (i1 + (y+¢)) + 2.
Then wy,wy € I as I is a normal subsemigroup of (M,+). Then a + w; = ws + b
whence r; C ;. Therefore r’I’ C m; since 7 is a congruence and r}/ is the transitive
closure of r;. Conversely, suppose (a,b) € ;. Then there exist i1,i € I such that
a+ 1, =iy + b. Clearly, (a,a +4y), (ia + b,b) € r7. Therefore (a,b) € /. Hence m; C
7. O

The following example shows that a normal subsemigroup may not be a reflexive

subsemigroup.

Example 4.1.10. Let M(N) be the set of all functions from the set of all natural
numbers N to N. Then (M(N), o) is a monoid where o denotes the composition of

functions. Clearly idy, the identity mapping of N (i.e., idy(x)= z for all z € N) is the
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identity of the monoid M(N) and {idy} is a normal subsemigroup of M(N). Let us
define f, g : N — N by the following ways:

f(z) =z if x is odd and f(x) = x/2 if = is even and
g(x) = 2z for all x € N,

Then fog € {idy} but go f ¢ {idn}.

Definition 4.1.11. A subset [ of a seminearring S with zero is said to be a strong

dense ideal if I is a strong ideal of S and (I, +) is a dense subsemigroup of (S, +).

In view of Definitions 4.1.8 and 4.1.11 and Proposition 4.1.9, we obtain the following

characterization of strong dense ideals of a seminearring with zero.

Theorem 4.1.12. Let S be a seminearring with zero and I C S. Then I is a strong

dense ideal of S if and only if I satisfies the following three conditions :
(1) (I,+) is a dense, reflexive and closed subsemigroup of (S,+),
(2) I is a right invariant subset of the seminearring S (i.e., IS C I),

(3) for any a,b,s € S and i € I there exist i1,iy € I such that
s(a+i+b)+ip =i+ s(a+b).

Now we rewrite Proposition 3.1.4 in the following manner.

Proposition 4.1.13. Let S be a seminearring with zero and I be a dense, reflerive

and closed additive subsemigroup of S. Then the following conditions are equivalent.

(i) For any a,b,s € S and i € I there exist i1,io € I such that s(a+i+b) +i; =
io+s(a+b).

(ii) For any s,a € S and w € I there exist i1, i, i3, 14 € I such that s(a +w) +i; =

io+ sa and s(w + a) + i3 = iy + sa.

But if the seminearring is without zero, then the above Proposition may not be

true which is evident from Example 3.1.5.
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Remark 4.1.14. Let I be a strong dense ideal in a seminearring S with zero. Then 7}
is a congruence on the seminearring S (¢f. Remark 4.1.7 and Definition 4.1.8). Since
I is a dense, reflexive and closed additive subsemigroup of S (¢f. Theorem 4.1.12),
Theorem 1.1.29 together with Proposition 4.1.9 shows that r}' is a group congruence
on the semigroup (S,+). Then in view of Remark 1.5.22, r; becomes a near-ring
congruence on the seminearring S. Therefore in a seminearring with zero, a strong

dense ideal corresponds a near-ring congruence.

Now in order to get a substructure which corresponds a near-ring congruence in
a seminearring (which need not contain zero), we aim to generalize the structure of
‘strong dense ideal’ in the setting of seminearrings which need not contain zero. But
in a seminearring without zero, definitions of ideal, strong ideal and strong dense ideal
(¢f. Definitions 1.5.27, 4.1.6 and 4.1.11), in terms of kernels of some morphisms, are
no longer tenable. So, in what follows, in view of Theorem 4.1.12 and Proposition
4.1.13, we choose right invariant subset whose additive reduct is a dense, reflexive,
closed subsemigroup satisfying condition (77) of Proposition 4.1.13 as a suitable one

(¢f. Definition 4.1.15) for generalizing the notion of strong dense ideal.

Definition 4.1.15. A non-empty subset I of a seminearring S is said to be a generalised

strong dense reflexive (left, right) k-ideal if I satisfies the following conditions :
(1) (I,4) is a dense, reflexive subsemigroup of (.5, +),
(i) I is a (left, right) k-ideal,

(7i1) for s,a € S and w € [ there exist 1, is, i3, 14 € I such that s(a+w)+1i; = iz +sa

and s(w + a) + i3 = iy + sa.

Remark 4.1.16. In a seminearring S with zero, I is a strong dense ideal of S if and

only if I is a generalised strong dense reflexive right k-ideal.
Remark 4.1.17. In a seminearring S,

(7) I is a generalised strong dense reflexive right k-ideal if and only if [ is a strong,

dense, reflexive and closed additive subsemigroup of S with I.S C I,

(7) I is a generalised strong dense reflexive k-ideal if and only if I is a strong, dense,

reflexive and closed additive subsemigroup of S with IS, SI C I.

We now rewrite Theorem 3.1.8 and Theorem 3.1.10 in the following way.
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Theorem 4.1.18. Suppose S is a seminearring. Then there exist inclusion preserving

bijective correspondences between

(i) the set of all generalised strong dense reflexive right k-ideals of S and the set of

all near-ring congruences on S,

(ii) the set of all generalised strong dense reflexive k-ideals of S and the set of all

zero-symmetric near-ring congruences on S
via I — p, where a p, b if and only if there exists x € S such that a +x,b+x € I.

Remark 4.1.19. In a seminearring .S, the inverse of the bijection mentioned in The-
orem 4.1.18 is p +— kerp which is evident from its proof (¢f. Proof of Theorems 3.1.8
and 3.1.10) where kerp = {x € S : (x+x,x) € p}. Clearly, kerp is a generalised strong
dense reflexive right k-ideal and kerp = Og/,. It is obvious that (a,b) € p if and only
if there exists « € S such that a + z, b + x € kerp where p is a near-ring congruence

on the seminearring S.

4.2 Lattice of zero-symmetric near-ring congruences

Now want to investigate whether the bijection between the set of all zero-symmetric
near-ring congruences and the set of all generalised strong dense reflexive k-ideals in an
arbitrary seminearring (stated in (77) of Theorem 4.1.18) can be extended to a lattice

isomorphism. In order to accomplish this we first obtain following two propositions.

Proposition 4.2.1. Let I be a reflexive closed subsemigroup of a semigroup (S,+). If
for a,b € S, there exists x € S such that a + x,b+x € I then fory e S, a+y € [
implies b+y € 1.

Proof. Since b+z,a+y €I, (b+x)+ (a+y) € I. Therefore y+b+x+a € I as (I,+)
is a reflexive subsemigroup of (S, +). This together with the facts that = + a € I and
I is a closed subsemigroup of (S, +) shows that y +b € I. Hence b+ y € I. O

Proposition 4.2.2. Let S be a seminearring and I be a (right) k-ideal of S such that
I is a dense and reflexive additive subsemigroup of S. Then I is a generalised strong
dense reflexive (right) k-ideal if and only if for s,a € S and i € I there exists z € S
such that s(a+1) + z, s(i+a)+ z, sa+z € 1.
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Proof. Let I be a generalised strong dense reflexive (right) k-ideal of S and s,a €
S, i € I. Then in view of Definition 4.1.15, there exist iy,45,43,74 € I such that
s(a+1) 41 =iy + sa and s(i +a) + i3 = i4 + sa. Since (I, +) is a dense subsemigroup
of (S,+), there exists z € S such that sa + z € I. This together with the facts
s(i+a)+iz+2 =i+ sa+zand s(a+17) +i1 + 2 = iy + sa+ z shows that s(i+a) + 2,
s(a +1i) + z € I. Conversely, suppose for s,a € S and i € I there exists z € S such
that s(a +14) + 2, s(i +a) + 2, sa+ z € I. Since (I,+) is a reflexive subsemigroup of
(S,+), z+sa € I. Now s(a+1i)+ (z+sa) = (s(a+1i)+z)+ sa and s(i +a) + (2 + sa)
= (s(i + a) + 2) + sa where z + sa, s(a+1i) + z, s(i + a) + z € I. Therefore I is a
generalised strong dense reflexive (right) k-ideal of S. O

In an arbitrary seminearring, the set of all generalised strong dense reflexive k-ideals
need not form a lattice which is evident from the following example. So as a first step
towards achieving our desired lattice isomorphism (as stated at the very beginning of
this section), we would like to search for a sufficient condition to make the set of all

generalised strong dense reflexive k-ideals form a lattice.

Example 4.2.3. Consider the semigroup (R{,+) where Ry denotes the set of all
non-negative real numbers and ‘+’ is the usual addition of real numbers. Let [ =
{2n : n € N} U {0} and J = {v/2n : n € N} U {0}. Clearly, (I,+) and (J,+) are
dense, closed and reflexive subsemigroups of (Rd, +). Then in view of Definition 1.1.2,
(I+ J)w = {2a+ b2 € R{|a,b € Z}. Clearly, (I + J)w is a closed subsemigroup of
(Ry, +) containing both I and J. Let A =R{ \ (I + J)w. Let

a ifbeA
a-Ab:
0 ifb¢A.

Then in view of Example 1.4 (b)[91], (R{, +, -a) becomes a seminearring. Using Propo-
sitions 4.2.1 and 4.2.2, it can be checked that both I and J are generalised strong dense
reflexive k-ideals but INJ = {0} fails to be a generalised strong dense reflexive k-ideal.

Again in view of Theorem 4.1.18 (i), p;, p; are zero-symmetric near-ring congru-
ences on the seminearring RJ. Let a € Rf. Now there does not exist any x € R such
that a + z € I N J. Again in view of Theorem 3.1.6, I = {z € R{ : (z + z,z) € p;}
and J = {z € R} : (x + x,2) € p;}. Therefore there does not exist any x € R§ such
that (a+z,a+x+a+z) € p;Npy. This shows that p; N p, is not a group congruence
on the semigroup (R¢, +). Hence p; N py is not a zero-symmetric near-ring congruence

on the seminearring Ry .
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It is evident from the above example that the intersection of two generalised strong
dene reflexive k-ideals is not necessarily a generalised strong dene reflexive k-ideal. To
overcome this we take impetus from [83] since normal subseminearring is a generalised
strong dense reflexive k-ideal in a distributively generated zero-symmetric seminearring
(cf. Remark 4.1.17 and Observation 3.2.4). In [83], the authors considered seminear-
rings with multiplicative identity to make the intersection of two normal subseminear-
rings a normal subseminearring again (cf. Proposition 2.4 [83]). This motivates us to
consider seminearring with left local units (¢f. Definition 4.2.4) as the notion of left

local units generalizes the notion of multiplicative identity.

Definition 4.2.4. A seminearring (S, +, -) is said to be a seminearring with left (right)
local units if for each a € S, there exists I, € S (resp., r, € S) such that l,a = a (resp.,
ar, = a). A seminearring (5, +,-) is said to be a seminearring with local units if for

each a € S, there exists e, € S such that e,a = a = ae,.

Example 4.2.5. Let (S, +) be a semigroup. Let us define ® on S by a ©® b = a for all
a,b € S. Then (5,4, ®) is a seminearring with left local units since a ® a = a for all

a€s.

Proposition 4.2.6. Let S be a seminearring with left local units. Then intersection of

any two generalised strong dense reflexive k-ideals is a generalised strong dense reflexive

k-ideal.

Proof. Let I, J be two generalised strong dense reflexive k-ideals of S. Clearly INJ is a
k-ideal of S such that (I N .J,+) is a reflexive subsemigroup of (S,+). Let s € S. Then
there exists x € S such that s + x € I. Since S is with left local units, for s + = € S,
there exists [, € S such that [, (s + ) = s+ x. Again there exists z € S such that
l,,,+z¢€ Jas (J,+) is a dense subsemigroup of (S, +). Hence (I, +2)(s+x) € INJ
i.e., s+ (r+2(s+x)) € INJ. Therefore I N J is a dense subsemigroup of (S, +).
Let s,a € Sand w € INJ. Since I, J are generalised strong dense reflexive k-ideals,
in view of Proposition 4.2.2, there exist z,y € S such that s(a + w) + z, s(w + a) + z,
sa+x € I and s(a +w) +vy, s(w+a)+y, sa+y € J. Now there exists z € S such
that sa +2z € I'NJ as (INJ,+) is dense in (S,+). Proposition 4.2.1 together with
sa+z,s(a+w)+z, s(w+a)+x, sa+x € I shows that s(a+w)+z, s(w+a)+z € 1.
Similarly it can be shown that s(a +w) + z, s(w+ a) + z € J. Therefore s(a + w) + z,
s(w+a)+z sa+ 2z € INJ. Soin view of Proposition 4.2.2, I N J is a generalised

strong dense reflexive k-ideal. O
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It is evident from the above Proposition that in a seminearring S with left local
units, for any two members I, J of the set of all generalised strong dense reflexive k-
ideals of .S, I N J becomes the meet of I and J. Now we are going to construct the join
of I and J. The following result on the sum (see Definition 2.3.1) of two generalised

strong dense reflexive k-ideals will be used frequently in what follows.

Proposition 4.2.7. Let A, B be two generalised strong dense reflexive k-ideals of a

seminearring (S, 4+, ) with left local units. Then for each x € A+ B,
(i) there exists z1 € A such that z1 +x, v+ z; € B,
(ii) there exists zo € B such that zo + x, x + 25 € A.

Proof. Let x € A+ B. Then x = 7' | x, where x, € AU B. Now there exists a subset
{ry,ry, . .} of {1,2,....,n} such that r, <r, < ... <r., k <nand {Sﬂrj 1<
j <k} C A. Since AN B is a generalised strong dense reflexive k-ideal (¢f. Proposition
4.2.6), for each j where 1 < j < k, there exists Y., € S such that Y, tz, € ANB. Now
Y, t (x, + 2, + e + %171) +x, €B (as B is a generalised strong dense reflexive
k-ideal and (z, + z, + ....... +,.,),Y, +z, € B). Ina similar way we get y, +
(Y, +2, 42,4 +z, . tw, +z, +..tw, ) +wx, €Bas(r, , +..+x, )€ B
Following this manner we finally get Yo T Y, Tty Tt +x € B.

r+1 ry—1
"k

Again T, o+ otz €B Letz =y +y +..+y, . Therefore z, + = € B.
Now for each j where 1 < 57 <k, y, + T, T, € A. This together with the fact A is
a generalised strong dense reflexive ]k—ideal shows that y € A foreach j, 1 <7 <k.
Therefore z, € A. This proves (). ]

() follows similarly due to symmetry of A and B in the sum A + B. O

Remark 4.2.8. It is well known that the sum of two right S-ideals is a right S-ideal
in any seminearring S and the sum of two S-ideals is an S-ideal in a distributively
generated seminearring S [83]. But the sum of two k-ideals need not be a k-ideal even in
a distributively generated seminearring (see Example 3 [83]). It is here noteworthy that
since the sum of two normal subseminearrings (see Definition 1.5.23) in a distributively
generated seminearring need not be a normal subseminearring (c¢f. Example 4 [83]),
the authors took the help of the notion of closure (Definition 2.6 and Proposition 2.8
[83]) in order to obtain a positive result in this direction in [83]. As a consequence,
in our setting, i.e., for a seminearring with left local units, we are also interested to

see what happens to the sum of two generalised strong dense reflexive k-ideals. In this
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regard we provide the following example illustrating that the sum of two generalised
strong dense reflexive k-ideals of a seminearring with left local units is not always a
generalised strong dense reflexive k-ideal. In Theorem 4.2.14 we obtain the join of two
generalised strong dense reflexive k-ideals in the form of k-closure (cf. Definition 2.3.5)

of the sum of two generalised strong dense reflexive k-ideals.

Example 4.2.9. Let Ny = NU{0}. Then (Ny, +, -) is a semiring under usual addition
and multiplication. Ny is also a seminearring with left local units (here [, = 1 for each
a € Np). Now 2Ny = {2n : n € Ny} and 3Ny = {3n : n € Ny} are generalised strong
dense reflexive k-ideals of Ny. But 2Ny +3Nj is not a k-ideal of N as 1+2,2 € 2Ny+3Nj
but 1 ¢ 2Ny + 3Ny. Therefore 2Ny + 3Ny is not a generalised strong dense reflexive
k-ideal of Ny.

For our ready references, we recall Definitions 2.3.5 and 2.3.8 of Chapter 2.

Definition 4.2.10. Let A be a (left, right) S-ideal of a seminearring (S, +, ). The
closure [83] of A is defined to be the set {s € S : for some =,y € A, x +s+y € A}
and is denoted by A.

Definition 4.2.11. Let (S, +, -) be a seminearring and A, B be two (right) S-ideals of

S. Then we define four subsets of S as follows :

(i) X144 :={s€ S :forsomebe B, b+sec A},
(17) Xoarp :={s€ S : forsomebe B, s+be A},
(11i) X3 41p = {s€ S : for some a € A, a + s € B},
(iv) Xyarp :={s€S: forsomea € A, s+a € B}.

Observation 4.2.12. (1) In a seminearring S, if A is a reflexive subsemigroup of
(S,+), then X 415 = X5 41 and if B is a reflexive subsemigroup of (S, +), then

X3 a4+ = X4 a+B-

(2) In view of Proposition 4.2.7, in a seminearring S with left local units, if A, B are

generalised strong dense reflexive k-ideals of S, A+ B C X, 4.p for 1 <i <4.

Proposition 4.2.13. Let (S,+,-) be a seminearring with left local units and A, B be
two generalised strong dense reflexive k-ideals of S. Then A+ B = X1 a1 = Xoarn

= X3,A+B = X4,A+B-
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Proof. Let © € A+ B. Then there exist s,t € A+ B such that s+ 2+t € A+ B. In
view of Proposition 4.2.7, there exist s;,t; € A such that s; + s, t +¢; € B. Therefore
s1+s+ax+t+t; € A+ B, ie,b+x+b € A+ B where b(=s1+ ), bi(=t+ 1)
€ B. Again there exists y € S such that y+z,x+y € AN B as AN B is a generalised
strong dense reflexive k-ideal of S (¢f. Proposition 4.2.6). Hence b+ xz +b; +y+x €
A+ B, e, (b+by)+x € A+ B where by(= x4+ by +y) € B as B is a generalised
strong dense reflexive k-ideal. Again using Proposition 4.2.7 we get b3 € B such that
bs+ (b+ by +x) € A. Hence x € X; a1 5.

Now let s € X 4+p. There exists b € B such that b+ s € A. Then b+ s+ a €
A+ Bforanya € A. Sos € A+ B whence X; 4,5 C A+ B. Hence X, 4.5 = A+ B.
Using similar type of arguments as above and in view of (7) of Observation 4.2.12, we

deduce the other equalities. O

Theorem 4.2.14. Let (S, +,-) be a seminearring with left local units and A, B be two
generalised strong dense reflexive k-ideals of S. Then A+ B is the smallest generalised

strong dense reflexive k-ideal containing A and B.

Proof. It follows from the definition of closure that A, B C A+ B. Let z,y € A+ B.
Then in view of Definition 4.2.11 (i), (iv) and Proposition 4.2.13, there exist a,a,
€ A such that a + x, y + a; € B. Therefore (a + ) + (y + a1) € B C A+ B. Then
r+y € A+B. Nowlet s+t s € A+ B. Then there exist b,b; € B such that
b+ s, s+t+b € A (c¢f Definition 4.2.11 (¢), (i) and Proposition 4.2.13). Therefore
b+ (s+t+b)) € A+ B where b+s,b; € A+ B. Thent € A+ B whence (A+ B, +) is
a closed subsemigroup of (S, +). Now for s +t € A+ B, there exists b; € B such that
s+t+b; € A (cf Definition 4.2.11 (i) and Proposition 4.2.13). Now for ¢t € S, there
exists w € S such that t+w € AN B since AN B is a generalised strong dense reflexive
k-ideal (cf. Proposition 4.2.6). Then t + (s+t+b;)+w € Aand t + b +w € B.
Therefore (t+s)+z € A where z = t+b;+w € B whence t+s € A+ B (c¢f. Definition
4.2.11 (41) and Proposition 4.2.13). Since A + B contains both A, B and (A, +), (B, +)
are dense subsemigroups of (S, +), (A + B, +) is also a dense subsemigroup of (S, +)
whence A + B becomes a dense, reflexive and closed subsemigroup of (S, +).

Now let # € A+ B and s € S. Then there exists a € A such that z +a € B (cf.
Definition 4.2.11 (2v) and Proposition 4.2.13). Therefore xs + as € B where as € A.
Hence xs € A+ B and A 4+ B becomes a dense reflexive right k-ideal of S.

Let s,z € S and w € A + B. Then there exists a € A such that ¢ +w, w+a € B
(cf. Definition 4.2.11 (¢3¢) and Proposition 4.2.13). Since AN B is a generalised strong
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dense reflexive k-ideal, there exists z € S such that s(z +w+a)+ 2 € AN B. Now for
w+ a € B, there exists z; € S such that s(z+w+a)+ 21, st + 2, € B and for a € A,
there exists 2, € S such that s(x+w+a)+ 29, s(r+w)+22 € A (¢f. Proposition 4.2.2).
Proposition 4.2.1 together with s(z+w+a)+z2, s(x+w+a)+2, st+2; € B shows that
sr+2z € B C A+ B. Similarly, Proposition 4.2.1 together with the fact s(z+w+a)+z,
s(x 4w+ a) + 2y, s(x +w) + 2z € A shows that s(z +w)+2 € A C A+ B. Therefore
s(x+w)+z sr+2 € A+ B. In asimilar way we can show that there exists y € S such
that s(w +x) +vy, st +y € A+ B. Therefore (s(w+x)+vy) + (sv+2) € A+ B. This
together with the facts that (A + B, +) is a reflexive, closed subsemigroup of (S, +)
and sz +y € A+ B shows that s(w+ z) + 2 € A+ B. Hence in view of Proposition
4.2.2, A+ B is a generalised strong dense reflexive right k-ideal.

Let w € A+ B and s € S. Then there exists @ € A such that w +a € B.
Since A is a generalised strong dense reflexive k-ideal, there exist a;,as € A such
that s(w + a) + a; = as + sw. Since B is a generalised strong dense reflexive k-ideal,
s(w+a) € BC A+B C A+ B. Therefore s(w+a)+a, € A+ Bi.e., ay+sw €A+ B
and as € A C A+ B C A+ B. This together with the fact A + B is a generalised
strong dense reflexive right k-ideal shows that sw € A+ B. Therefore A+ B is a

generalised strong dense reflexive k-ideal. O
Now Proposition 4.2.6 and Theorem 4.2.14 together imply the following result.

Theorem 4.2.15. Let (S,+,-) be a seminearring with left local units. Then the set of
all generalised strong dense reflexive k-ideals of S under set inclusion forms a lattice

where for any two generalised strong dense reflevive k-ideals I, J of S, INJ =1NJ
and IV J =1+ J.

Now we are going to study the lattice structure of the set of all zero-symmetric
near-ring congruences on a seminearring with left local units, in which (¢7) of Theorem

4.1.18 plays an important role.

Proposition 4.2.16. In a seminearring S with left local units, for any two zero-

symmetric near-ring congruences p, y on S
(i) ker(pN~y) = kerpn kery,
(it) ker(po~y) = kerp+ ker~,

(iti) pN~y ={(x,y) € S xS : there exists z € S such that v+ z,y + z € ker(pN )},
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(iv) poy ={(x,y) € S xS : there exists z € S such that x4 z,y + z € kerp + ker~}

where kerp = {x € S : (x +x,x) € p}.

Proof. (i) We omit the proof of (7) as it is a matter of routine verification.

(i)

(iii)

Let © € ker(p o). Then there exists z € S such that (x 4+ z,2) € p and
(z,x) € «y. Since kerp N kery is a generalised strong dense reflexive k-ideal (cf.
Proposition 4.2.6), there exists ¢ € S such that z + ¢ € kerp N kery. Now
(z+t,x+t) € yand (z +1t) € kery show that [(x +t)], = [(z + )], = Og/,.
Again (z + (z+1t),(2+1t)) € pand (2 +t) € ker p show that x + (z +t) € kerp
where (2 +1t) € kervy. Then in view of Proposition 4.2.13, z € kerp + kery. Now
let w € kerp + kery. Then in view of Proposition 4.2.13, there exists y € kerp
such that w + y € kerv. Since y € kerp and p is a zero-symmetric near-ring
congruence on S, (w + w,w + y + w) € p. Again since w + y € kery and 7
is a zero-symmetric near-ring congruence on S, (w + y + w,w) € 7. Therefore

(w+ w,w) € po~y whence w € ker(po-).

Let (z,y) € pN~y. Then there exist z1,2, € S such that = + 21,y + 21 € kerp
and © + 29,y + 22 € kery (¢f. Remark 4.1.19). Again in view of Proposition
4.2.6, there exists w € S such that z +w € kerp N kerv. This together with
Proposition 4.2.1 shows that = + w,y + w € ker(p N ~) since ker(p N ~) is a
reflexive closed subsemigroup of (S,+) (¢f. Proposition 4.2.6). Again if there
exists z € S such that a + 2,0+ z € ker(p N y)=kerp N kery, then in view of
Remark 4.1.19, (a,b) € (pN 7).

Let (z,y) € poy. Then there exists z € S such that (z, z) € pand (2,y) € v. Now
in view of Remark 4.1.19, there exist x1, x5 € S such that x + x1, 2 + 11 € kerp
and z + x9,y + x2 € kery. Again in view of Proposition 4.2.6, there exists
w € S such that z + w € kerp N ker~. This together with Proposition 4.2.1
shows that = +w € kerp C kerp + kery and y + w € kery C kerp + kery since
kerp, ker~ are reflexive closed subsemigroups of (S, +). Therefore x + w, y + w
€ kerp + ker~y. Again let there exist z € S such that a + z,b + 2 € kerp + kerv.
Then there exist wy; € kerp, wy € kery such that w; + a + 2z € kery and
b+ z+ws € kerp (cf. Proposition 4.2.13). Therefore (a,b+ z+wy +wy +a) € p.
Again wy + a + z,wy € kery shows that z + wy + wy + a € kery (as kery is
a reflexive subsemigroup of (S,+)). Hence (b+ z + wy + wy 4+ a,b) € . Thus
(a,b) € por.
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O

Theorem 4.2.17. Suppose (S,+,-) is a seminearring with left local units. Then the
set of all zero-symmetric near-ring congruences on S is a lattice under set inclusion
where for any two zero-symmetric near-ring congruences o, v on S, c Ay = o N~y and

oVy=00".

Proof. Let S be a seminearring with left local units and o, v be two zero-symmetric
near-ring congruences S. Then in view of Remark 4.1.19, kerco, ker~y are generalised
strong dense reflexive k-ideals of S. Again in view of Theorem 4.2.15, kero N ker-,
kero + kery are generalised strong dense reflexive k-ideals of S. This together with
(44) of Theorem 4.1.18 shows that p, ... . P ATC zero-symmetric near-ring

congruences on S. Now in view of (i77) and (iv) of Proposition 4.2.16, p, . ... = oN7y

and Prrris = 70 This completes our proof. O

In view of (¢i) of Theorem 4.1.18, combination of Theorem 4.2.15 and Theorem

4.2.17 gives our desired lattice isomorphism which is stated below.

Theorem 4.2.18. Suppose (S, +,-) is a seminearring with left local units. Then the
lattice of all generalised strong dense reflexive k-ideals of S and the lattice of all zero-

symmetric near-ring congruences on S are isomorphic.

Theorem 4.2.19. In a seminearring S with left local units, (i) the set of all generalised
strong dense reflexive k-ideals of S and (it) the set of all zero-symmetric near-ring

congruences on S are modular lattices.
Proof. The proof can be done in a similar manner to the proof of Theorem 2.3.17. [

In a seminearring .S, the lattice of all generalised strong dense reflexive k-ideals of
S may not be distributive even if S satisfies the hypothesis of Theorem 4.2.18 which

is evident from the following example?.

Example 4.2.20. Let Q[z, y] be the polynomial ring in two variables over the rational
numbers Q. Then (Q[z,yl,+,-) is a seminearring with left local units under usual
addition and multiplication of polynomials. It can be easily shown that every ideal of
Q|z, y] is a generalised strong dense reflexive k-ideal. Now let I = (x), I = (2, x +)
and I3 = (2%, 7 —y). Now I, N (I, + I3) = (x) but (I, N L) + (I, N I3) = (2%, xy).

3 This example is inspired from [28].
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It is well known that the set of all ideals of a ring R becomes a distributive lattice
if IJ = 1N J for all ideals I, J of R [12]. Now inspired by this concept, we want to
obtain some sufficient conditions imposition of which on the lattice of all generalised
strong dense reflexive k-ideals ensures the distributivity of the same. To accomplish
this, our first step is to investigate whether the product (see Definition 2.3.20) of two
generalised strong dense reflexive k-ideals becomes a generalised strong dense reflexive

k-ideal or not.

Example 4.2.21. Let S be the seminearring of Example 3.18 [98]. Then S’ = S x Z
is clearly a seminearring where (Zs, +,-) has the usual meaning. It is easy to verify
that the set of all additive idempotents E*(S") = {(0,0), (a,0), (b,0), (¢,0),(d,0)} is a

generalised strong dense reflexive k-ideal of S’. Now
E*(S)E*(S") = {(0,0),(a,0),(b,0),(d,0)}.

Now (¢,0)+ (a,0) = (d,0) and (a,0), (d,0) € ET(S")ET(S") but (¢,0) ¢ ET(S")ET(S").
Therefore ET(S")E™(S") is not a closed subsemigroup of (S, +) whence E*(S")E*(S")

is not a generalised strong dense reflexive k-ideal of the seminearring S’

As the above example exhibits that the product of two generalised strong dense
reflexive k-ideals in a seminearring S usually lacks the property of being a closed
subsemigroup of (S,+), we focus on dealing with the closure of the product of two

generalised strong dense reflexive k-ideals in what follows.

Theorem 4.2.22. Let (S, +,-) be a seminearring with left local units. If IJ = IN.J for
all generalised strong dense reflexive k-ideals I, J of S, then (i) the set of all generalised
strong dense reflexive k-ideals of S and (it) the set of all zero-symmetric near-ring

congruences on S become distributive lattices.

Proof. (i) Let I, J, K be three generalised strong dense reflexive k-ideals. Then

(JNI)+(KNI)C(J+K)NI (¢f. Lemma 1.2.11). Now let a € (J + K)I. Clearly,

a=y_", x,y, whereforall 1 <i<mn,z, € (J+ K)andy, € I. Then by Definition 4.2.11
(7v) and Proposition 4.2.13, for each x,, 1 <i < n there exists z, € J such that x, + 2, €
K. Now z,y,+2,y, € KI C KI forall 1 <i <n. By hypothesise KI = KNI. So Kl isa

generalised strong dense reflexive k-ideal. Thenz, |y _ +(z, vy, +2,9,)+2, vy, , € KI

since (K1, +) is a reflexive subsemigroup of (S, +) and z, ,y. , +2z,_ Y. ., T, ¥, +2,Y,
€ KI. Proceeding in this way we obtain Y0, x,y, + Sp_, 2.y, € KI. Therefore
a+be€ KI where b=Y,_, 2y, € JI C JI. Then in view of Definition 4.2.11 (iv)
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and Proposition 4.2.13, a € JI + K1 whence (J+K)I C JI+ KI. Thus (J+K)I
CJI+KI, ie,(J+K)NIC(JNI)+ (KNI). Thercfore (J + K)I=JI + KI. As
JI = J NI, we deduce from the last relation that (J + K)NI = JNI+ K N1. This
completes the proof of (7).

Consequently (i) holds in view of Theorem 4.2.18. O

Now we are going to find a suitable class of seminearrings where I.J = I N J for all

generalised strong dense reflexive k-ideals I, J.

Definition 4.2.23. A seminearring (S, +,-) is said to be a multiplicatively regular
seminearring [42] if (S,-) is a regular semigroup i.e., for each a € S there exists b € S
such that a = aba.

A seminearring S is said to be a k-reqular seminearring [83] if for each a € S there

exist x,y € S such that a + ara = aya.

Remark 4.2.24. Though a multiplicatively regular seminearring is not necessarily a
k-regular seminearring (see Example 9 [83]), a zero-symmetric multiplicatively regular
seminearring is always a k-regular seminearring, whereas a k-regular seminearring need
not be either multiplicatively regular or additively regular seminearring which is evident
from Example 10 [83].

Proposition 4.2.25. If S is a multiplicatively reqular seminearring or a k-reqular

seminearring, then IJ = I N J for any two generalised strong dense reflexive k-ideals
I, J ofS.

Proof. Let I,J be two generalised strong dense reflexive k-ideals of a seminearring S.
Then IJ C INJ whence IJ C INJ as INJ is a k-ideal. Now it is a matter of routine
verification to show that if S is multiplicatively regular then I.J = I N J. Again let
S be a k-regular seminearring and a € I N J. Then there exist x,y € S such that
a + azxa = aya. Now (ax)a, (ay)a € I.J. Then in view of Definition 2.3.5, a € I.J. O

Consequently, we obtain the following theorem in view of Theorem 4.2.22.

Theorem 4.2.26. Let S be a k-reqular seminearring with left local units or a multi-
plicatively reqular seminearring. Then (i) the set of all generalised strong dense reflex-
ive k-ideals of S and (ii) the set of all zero-symmetric near-ring congruences on S are

distributive lattices.
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4.3 Lattice of near-ring congruences

In (7) of Theorem 4.1.18, we have seen that the set of all near-ring congruences and the
set of all generalised strong dense reflexive right k-ideals are in a bijective correspon-
dence in an arbitrary seminearring. In this connection, we now want to investigate
whether this bijection can be extended to a lattice isomorphism as in the previous
section we have managed to extend the bijection between the set of all zero-symmetric
near-ring congruences and the set of all generalised strong dense reflexive k-ideals (as
stated in (¢7) of Theorem 4.1.18) to a lattice isomorphism (c¢f. Theorem 4.2.18) in a
seminearring with left local units.

In order to accomplish this, we now exhibit in the following example that the set
of all generalised strong dense reflexive right k-ideals need not form a lattice even in a

seminearring containing left local units and zero.

Example 4.3.1. Consider the seminearring (R, +, ®) where Ry denotes the set of
all non-negative real numbers, ‘+’ is the usual addition on real numbers and a © b = a
for all a,b € RJ. Clearly, this is a seminearring with left local units. Let I = {2n :
n € N}U{0} and J = {v/2n : n € N} U {0} where N denotes the set of all natural
numbers. It can be easily verified that (I,+), (J,+) are dense, reflexive and closed
subsemigroups of (Rg,+) and I,.J are right invariant subsets of the seminearring Ry
Since s® (a+x) =s®(r+a) =sGa=sforall s,a,z € Ry, sO(r+i)+i=i+sOux,
sO+r)+i=i+sOr,sO(x+j)+j=7+s0x,sO(+r)+j=7+sOx
for all s,z € RY, for all i € I and for all j € J. Then in view of Definition 4.1.15, I
and J are generalised strong dense reflexive right k-ideals. Now I N J = {0} which is
not a dense subsemigroup of (Ry, +). Therefore I N.J is not a generalised strong dense
reflexive right k-ideal of Ry .

Again in view of Theorem 4.1.18 (i), p;, ps are near-ring congruences on the sem-
inearring (R, +,®). Let a € Rf. Now there does not exist any z € Ry such that
a+x € INJ. Again in view of Theorem 3.1.6, I = {x € S : (x + z,x) € p;} and
J={x€S: (x+ux1z)€ ps}t Therefore there does not exist any r € R} such that
(a+z,a+x+a+x) € prNpy. This shows that p; N p; is not a group congruence on

(Ry,+). Hence p; N py is not a near-ring congruence on the seminearring Ry .

It is evident from the above example that the intersection of two generalised strong
dene reflexive right k-ideals may not be a generalised strong dene reflexive right k-ideal.

To overcome this we take impetus from Chapter 2 since in a distributively generated
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additively regular seminearring, a normal full £-ideal coincides with a generalised strong
dense reflexive right k-ideal (¢f. Remark 4.1.16 and Observation 3.2.4). In Proposition
2.3.12, we showed that in a distributively generated additively regular seminearring,
intersection of two normal full k-ideals is a normal full k-ideal. This motivates us
to consider E*-inversive seminearrings* as the notion of E*-inversive seminearring

generalizes the notion of additively regular seminearring.

Definition 4.3.2. A seminearring (S, +, -) is said to be an E*-inversive or additively
E-inversive seminearring if (S, +) is an E-inversive semigroup i.e., for any s € S there
exists ¢ € S such that s + x € ET(S) where E*(S) denotes the set of all additive
idempotents of S.

Notation 4.3.3. Let (S,+,-) be a seminearring. Throughout the thesis, for each
element a € S, W (a) always stands for the set of all additive weak inverses of a i.e.,

theset {r € S:x=x+a+zx}.

Remark 4.3.4. Tt is easy to see that a seminearring (S, +,-) is ET-inversive if and
only if W*(a) (¢f. Notation 4.3.3) is non-empty for all @ € S (¢f. [31]).

Proposition 4.3.5. For a semigroup (S,+), the seminearring M(S) of all self maps
under point-wise addition and composition is an E1-inversive seminearring if and only

if (S,4) is an E-inversive semigroup.

Proof. Let (S,+) be an E-inversive semigroup and f € M(S). As (S,+) is an E-
inversive semigroup, for each s € S, there exists x; € S such that f(s) + z; is an
idempotent of S, i.e., f(s)+ x5+ f(s) + x5 = f(s) + zs. By invoking axiom of choice
we define a function g : S — S by ¢g(s) = z, for all s € S. Then for all s € S,
(f+9)(s)+ (f+9)(s) = f(s) +as+ f(s) +as = f(s) + x5 = f(s) +9(s) = (f+9)(s).
whence f + ¢ is an additive idempotent of the seminearring M (S). So M(S) is an
E*-inversive seminearring.

Conversely, suppose M (S) is an ET-inversive seminearring. Then for each s € S,
let us define fs : S — S by fs(x) = s for all z € S. Clearly f; € M(S). So there
exists fI € M(S) such that fs+ f! is an additive idempotent of the seminearring M (.S)

4 We have defined E*-inversive seminearring i.e., additively E-inversive seminearring adapting the
technique applied in [80, 81, 82, 98] where the authors have replaced regular, inverse, completely reg-
ular, Clifford semigroups respectively by additively regular, additively inverse, additively completely

regular, additively Clifford seminearrings.
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(as M(S) is an Et-inversive seminearring). Let x € S and f!(z) = z. Then

(fs + @)+ (fs + f)@) = (fs + f)(2)
(s + fi(@) + (s + fi(x)) = (s+ filx))
(s+2)+(s+2) = (s+2)

Therefore s + z is an idempotent of the semigroup (S, +). Consequently, (S,+) is an

E-inversive semigroup. ]

The following result related with an F-inversive semigroup plays an important role

in the sequel.

Proposition 4.3.6. In an E-inverse semigroup S, a closed subsemigroup N is a full

subsemigroup if and only if it is a dense subsemigroup.

Proof. Let N be a full, closed subsemigroup of an E-inversive semigroup (S, +). Then
for each s € S, there exists t € S such that s +¢ € E(S), the set of all idempotents
of S. Again E(S) C N (since N is a full subsemigroup of S (¢f. Definition 1.1.20)).
Therefore N is a dense subsemigroup of S. Let N be a dense, closed subsemigroup
of S and e € E(S). Then there exists x € S such that e + 2 € N. Now e + (e + ),
e+ x € N and N is a closed subsemigroup of S show that e € N whence N is a full
subsemigroup of S. O

Now we are going to establish in Theorem 4.3.7 that in the setting of an E™-
inversive seminearring, Propositions 4.2.6, 4.2.7, 4.2.13 and Theorems 4.2.14, 4.2.15
hold for both generalised strong dense reflexive right k-ideals and generalised strong
dense reflexive k-ideals and Proposition 4.2.16 and Theorem 4.2.17 hold for both near-
ring and zero-symmetric near-ring congruences even if we remove the existence of left

local units from the seminearring under consideration.

Theorem 4.3.7. Let (S,+,-) be an ET-inversive seminearring. Then the following

are true.

(i) Intersection of any two generalised strong dense reflexive (right) k-ideals is a

generalised strong dense reflexive (right) k-ideal.

(it) If A, B are two generalised strong dense reflexive (right) k-ideals of S, then for
each x € A+ B, there exist zy € A and z5 € B such that z1 +x, v+ 21 € B and
Zo+x, T+ 20 € A.
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(iii) If A, B are two generalised strong dense reflexive (right) k-ideals of S, A+ B =

Xl,A+B = Xz,A+B = X3,A+B = X4,A+B-

(iv) For two generalised strong dense reflexive (right) k-ideals A, B of S, A+ B is
the smallest generalised strong dense reflexive (right) k-ideal containing A and
B.

(v) The set of all generalised strong dense reflexive (right) k-ideals of S under set
inclusion forms a lattice where for any two generalised strong dense reflexive
(right) k-ideals I, J of S, INJ =1INJ and IV J =1+ J.

(vi) For any two (zero-symmetric) near-ring congruences p, v on S, (1) ker(pN~) =
kerp N kery, (2) ker(po~y) = kerp+kery, (3) pN~y = {(z,y) € S x S : there
exists z € S such that x4+ z,y+ 2z € ker(pNv)}, and (4) poy = {(x,y) € SxS:
there exists z € S such that v + z,y + z € kerp + kervy}.

(vii) The set of all (zero-symmetric) near-ring congruences on S becomes a lattice
under set inclusion where for any two (zero-symmetric) near-ring congruences
p,yonS, pAy=pNyandpVy=por.

Proof. In an ET-inversive seminearring S, for a generalised strong dense reflexive

(right) k-ideal I of S, (I,+) is always a full subsemigroup of (S,+) (¢f. Proposi-

tion 4.3.6). Since intersection of two generalised strong dense reflexive (right) k-ideals

is a closed, full subsemigroup of (S, +), it becomes a dense subsemigroup of (S, +), too.

Then following the manner of the proof of Proposition 4.2.6, it can be proved that (7)

holds.

Using result (i) of this Theorem instead of Proposition 4.2.6 in the proof of Propo-
sition 4.2.7, (4i) can be proved.

If we use results () and (77) of this Theorem instead of Proposition 4.2.6 and
Proposition 4.2.7 in the proof of Proposition 4.2.13, (4i7) is obtained.

If we use results (¢) and (éi7) of this Theorem instead of Proposition 4.2.6 and
Proposition 4.2.13 in the proof of Theorem 4.2.14, (iv) is obtained.

(7) and (7v) of this Theorem together imply (v).

In the proof of Proposition 4.2.16, if we use result (i) of this Theorem instead of
Proposition 4.2.6, result (i) of this Theorem instead of Proposition 4.2.13, (vi) can
be proved.

Proof of (vii) follows in view of results (v) and (vi) of this Theorem, Theorem 4.1.18
and Remark 4.1.19. O
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Remark 4.3.8. If a seminearring S is with left local units, the set of all generalised
strong dense reflexive k-ideals of S (and hence the set of all zero-symmetric near-
ring congruences on S) forms a lattice. (c¢f. Theorems 4.2.15 and 4.2.17). But in a
seminearring with left local units, neither the set of all generalised strong dense reflexive
right k-ideals nor the set of all near-ring congruences need to form lattice which is
evident from Example 4.3.1. Again if we consider an ET-inversive seminearring S
(which need not be with left local units), then both the set of all generalised strong
dense reflexive right k-ideals of S (and hence the set of all near-ring congruences on S)
and the set of all generalised strong dense reflexive k-ideals of S (and hence the set of

all zero-symmetric near-ring congruences on S) become lattices (¢f. Theorem 4.3.7).

In view of Theorem 4.1.18, combination of (v) and (vii) of Theorem 4.3.7 gives our

desired lattice isomorphism which is stated below.
Theorem 4.3.9. Suppose (S,+, ) is an ET-inversive seminearring. Then

(i) the lattice of all generalised strong dense reflexive right k-ideals of S and the

lattice of all near-ring congruences on S are isomorphic,

(ii) the lattice of all generalised strong dense reflexive k-ideals of S and the lattice of

all zero-symmetric near-ring congruences on S are isomorphic.

In the following result we study the modularity, distributivity of the lattices of
near-ring congruences and zero-symmetric near-ring congruences on an ET-inversive

seminearring.

Theorem 4.3.10. Suppose (S,+,-) is an E*-inversive seminearring. Then the fol-

lowing are true.

(i) The set of all generalised strong dense reflexive right k-ideals of S and the set of

all near-ring congruences on S become modular lattices.

(it) The set of all generalised strong dense reflexive k-ideals of S and the set of all

zero-symmetric near-ring congruences on S become modular lattices.

(iii) If IJ = I N J for all generalised strong dense reflexive right k-ideals I,.J of S,
then the set of all generalised strong dense reflexive right k-ideals and the set of

all near-ring congruences on S become distributive lattices.
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(iv) If IJ = I N J for all generalised strong dense reflexive k-ideals I, J of S, then
the set of all generalised strong dense reflexive k-ideals and the set of all zero-

symmetric near-ring congruences on S become distributive lattices.

Proof. We omit the proof since () and (i) follow in a similar manner to the proof
of Theorem 2.3.17 and (¢ii), (¢v) hold in a similar manner to the proof of Theorem
2.3.22. ]

To conclude this section we establish (¢f. Theorem 4.3.12) the completeness of four
lattices obtained above for Et-inversive seminearrings. But two of these lattices that
occur in the setting of seminearrings with left local units are not necessarily complete

which is evident from the following example.

Example 4.3.11. Ny, the set of all non-negative integers, is a semiring with 1 under
usual addition and multiplication whence a seminearring with left local units. Now for
eachn € N, I, = {nx : v € Ny} is a generalised strong dense reflexive k-ideal of Np.

But QNI” = {0} is not a generalised strong dense reflexive k-ideal.
Theorem 4.3.12. In an ET -inversive seminearring S,

(i) the set of all generalised strong dense reflexive right k-ideals of S and the set of

all near-ring congruences on S are complete lattices,

(it) the set of all generalised strong dense reflexive k-ideals of S and the set of all

zero-symmetric near-ring congruences on S are complete lattices.

Proof. (i) By (v) of Theorem 4.3.7, the set of all generalised strong dense reflexive right
k-ideals of S is a lattice. Let A be a subset of the set of all generalised strong dense
reflexive right k-ideals. Then (IQAI ,+) is a closed, reflexive subsemigroup of (S, +).
Since I is a dense, closed subsemigroup, E*(S) C I for all I € A where E7(S) denotes
the set of all additive idempotents of S. Therefore E7(S) C IQAI . Then in view of
Proposition 4.3.6, (IQAI, +) is a dense subsemigroup of (S, 4). Therefore (IQAI, +)is a
dense, reflexive and closed subsemigroup of (S, +). It can be easily verified that IQAI
is a right invariant subset of the seminearring S. Now let s,a € S and w € IQA[ . Then
for each I € A, there exists u; € S such that s(a + w) + uy, sa +ur, s(w+a) +u; € I
(¢f. Proposition 4.2.2). Again there exists z € S such that sa + 2z € ET(S) C I for
each I € A as (S,+) is an E-inversive semigroup. Since s(a + w) + uy, sa + uy, s(w +

a)+ur,sa+z € I and (I,+) is a reflexive, closed subsemigroup of (S, +), in view of
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Proposition 4.2.1 s(w + a) + z,sa + z,s(a + w) + z € I for each I € A. Therefore
s(w+a)+ z,sa+ z,s(a+w) + 2 € [QAI. Then in view of Proposition 4.2.2, IQAI is
a generalised strong dense reflexive right k-ideal whence in view of Theorem 1.2.16,
the set of all generalised strong dense reflexive right k-ideals of S becomes a complete
lattice. Then in view of Theorem 4.3.9 (i), the set of all near-ring congruences on S
becomes a complete lattice.

(i7) follows similarly. O
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CHAPTER 5




Full Subdirect products of a Bi-semilattice and

a Zero-symmetric Near-ring

Seminearrings find their natural home in the set of all self maps of any additive
semigroup (not necessarily commutative). So it is natural to investigate as to how
the theory of semigroups can be made into work in the study of seminearrings. This
study has been accomplished in a good many number of papers such as [80, 81, 82, 98].
Major part of this study is devoted to obtain analogues of some structure theorems of
semigroups such as “a semigroup is completely regular if and only if it is a semilattice
of completely simple semigroups if and only if it is a union of groups”, “a semigroup is
Clifford if and only if it is a semilattice of groups if and only if it is a strong semilattice
of groups”. This trend of development of seminearring theory together with a structure
theorem of semigroups, viz., “a semigroup is a full subdirect product of a semilattice and
a group if and only if it is an E-inversive sturdy semilattice of cancellative monoids”
obtained by Mitsch in Theorem 14 [78] (¢f. Theorem 1.1.33), has motivated us to
characterize full subdirect products of a bi-semilattice and a (zero-symmetric) near-
ring and subdirect products of a distributive lattice and a (zero-symmetric) near-ring
in the class of ‘E*-inversive seminearring’.

In Section 1, we first recall the notions of ‘bi-semilattice’ (¢f. Definition 5.1.1) and

‘strong bi-semilattice of seminearrings’ (c¢f. Definition 5.1.9). Then with the help of

This chapter is mainly based on the work of the following paper:
Rajlaxmi Mukherjee et al., On full subdirect products of a bi-semilattice and a zero-

symmetric near-ring, Communicated.
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Proposition 5.1.11, in Theorem 5.1.12 and Theorem 5.1.16, we characterize the semin-
earrings which are full subdirect products of a bi-semilattice and a (zero-symmetric)
near-ring as the ET-inversive seminearrings which are strong bi-semilattice of addi-
tively cancellative (zero-symmetric) seminearrings. Then we obtain some variants of
the above results viz., Theorem 5.1.17 and Theorem 5.1.18 which characterize sub-
direct products of a distributive lattice and a (zero-symmetric) near-ring as the E7-
inversive seminearrings which are strong distributive lattice of additively cancellative
(zero-symmetric) seminearrings. Each of these four theorems is not only an analogue
of Mitsch’s Theorem 14 [78] (¢f. Theorem 1.1.33) in our setting, but also an analogue
of Ghosh’s Theorem 2.3 [29] (¢f. Theorem 1.3.14) on semirings. In Theorem 2.3 [29]
(¢f. Theorem 1.3.14), Ghosh characterized the class of semirings which are subdirect
products of a distributive lattice and a ring. In Theorem 2.10 [29] (¢f. Theorem 1.3.15),
Ghosh obtained a different element-wise characterization of this class of semirings. This
motivates us to make an attempt to obtain an analogue of Ghosh’s Theorem 2.10 [29]
(¢f. Theorem 1.3.15) in our setting. In this direction, with the help of Proposition
5.1.25 and Proposition 5.1.26, we obtain Theorem 5.1.27 and Theorem 5.1.29 which
respectively provide different characterizations of the classes of seminearrings which are
full subdirect products of a bi-semilattice and a zero-symmetric near-ring and which
are subdirect products of a distributive lattice and a zero-symmetric near-ring. In fact
Ghosh’s [29] Theorem 2.3 and Theorem 2.10 (¢f. Theorems 1.3.14 and 1.3.15) become
particular cases of Theorem 5.1.18 and Theorem 5.1.29, respectively. The present study
has also answered (¢f. Theorem 5.1.29) the question’ “how to characterize a semin-
earring which is a subdirect product of a distributive lattice and a zero-symmetric
near-ring but not necessarily additively regular with 0 and 17"

In [81, 82, 98], the authors mainly characterized the classes of seminearrings which
are (i) bi-semilattice (distributive lattice) of zero-symmetric near-rings (c¢f. Corollary
3.12 and Theorem 3.14 [82]), (#i) strong bi-semilattice (distributive lattice) of zero-
symmetric near-rings (c¢f. Theorem 2.28 and Theorem 2.35 [81]), (iii) additively regu-
lar zero-symmetric seminearring with 1 and subdirect product of a distributive lattice
and a zero-symmetric near-ring (c¢f. Theorem 4.14 [98]). All of these classes belong

to the class of additively regular seminearrings. In Section 2, we mainly explore the

! This question is a natural one based on the characterization of “a subdirect product of a
distributive lattice and a zero-symmetric near-ring in the class of additively regular seminearrings
containing 0 and 1" obtained in Theorem 4.14 [98]. It should be mentioned here that the bi-semilattice
version of this result (¢f. Theorem 4.14 [98]) was not addressed in [98].
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relationships of these classes of additively regular (and hence E*-inversive) seminear-
rings with the classes of seminearrings which are characterized in Theorem 5.1.16 and
Theorem 5.1.18 (¢f. Theorem 5.2.1). To conclude this section we obtain the analogue
of Theorem 5.2.1 replacing zero-symmetric near-ring by near-ring (¢f. Theorem 5.2.6).

In Section 3, we mainly discuss the validity of some results obtained in Chapter 4
for the classes of seminearrings obtained in this chapter. In this direction, we obtain lat-
tice isomorphisms (cf. Theorem 5.3.5) between the lattice of near-ring (zero-symmetric
near-ring) congruences and the lattice of generalised strong full reflexive right k-ideals
(k-ideals) in the classes of seminearrings obtained in Theorems 5.1.12, 5.1.16, 5.1.17
and 5.1.18. Then we study the modularity, distributivity and completeness of theses
lattices and obtain the least near-ring (zero-symmetric near-ring) congruence and the
smallest generalised strong full reflexive right k-ideal (k-ideal) of a full subdirect prod-
uct of a bi-semilattice and a (zero-symmetric) near-ring and of a subdirect product of
a distributive lattice and a (zero-symmetric) near-ring (¢f. Theorems 5.3.6, 5.3.7 and
5.3.8).

5.1 Characterization

Definition 5.1.1. [93] A non-empty set S with two semilattice operations ‘-’, ‘+ is
called a bi-semilattice. One regards (S, ) as a meet-semilattice and (S, +) as a join-
semilattice.

A bi-semilattice is called a meet-distributive bi-semilattice if the meet operation ‘-’

distributes over the join operation ‘+’.

Remark 5.1.2. Throughout this thesis ‘bi-semilattice’ stands for ‘meet-distributive

bi-semilattice’

Example 5.1.3. [93] For a given semilattice (V) let us consider the set of all finite

non-empty subsemilattices of (V,-), denoted by S(V,-). If we define the following
ST = {st|]se S,t € T}

and
S+T=SUTUS-T

then S(V,-) forms a bi-semilattice.
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Example 5.1.4. [50] B = {0,«,1} is a bi-semilattice with respect to the following

operations :
+10 o 1 0 a 1
0]0 o 1 0 a 0
ala a « ala o «
171 a 1 110 a 1

~—~

Clearly, the join semilattice (B, +) is the chain 0 < 1 < « and the meet semilattice

(B, ) is the chain o < 0 < 1. This bi-semilattice is not a lattice since 1 + lav = av.

Observation 5.1.5. Every bi-semilattice is a semiring with join as addition and meet
as multiplication. If in a semiring (S, +,-), (S,+) and (S,-) are commutative bands

then (S, +,-) is a bi-semilattice.

Remark 5.1.6. Let (B, +,-) be a bi-semilattice.

(7) Though there are two partial orders in the bi-semilattice B (see Definition 5.1.1),
one with respect to the join semilattice (B, +) and another with respect to the meet
semilattice (B, ), following [81], throughout this thesis, unless mentioned otherwise,
a < Bin B stands for « < S in (B, +) i.e., a+ 3 = 3.

(73) For any aw and f € B, (1) if « < S then o < 3; (2) a+ S+ af = a+ 3, ie.,
af < a+ 3 [81].

Definition 5.1.7. [82] A congruence o on a seminearring (S, +,-) is said to be a

bi-semilattice congruence on S if the seminearring S/o becomes a bi-semilattice.

Definition 5.1.8. [82] A seminearring (S, +,-) is called a bi-semilattice I of semin-
earrings S;(i € I) if S admits of a bi-semilattice congruence [ such that I = S/ with

each S; a (-class.

Definition 5.1.9. [81] Let B be a bi-semilattice (distributive lattice) and {S, : « € B}
be a family of seminearrings which are indexed by the elements of B. For each (o < f3)
in B, we now define a seminearring monomorphism ¢,5 : S, — Sp satisfying the

following conditions:
(1) ¢o.a = Is,, where Ig, denotes the identity mapping on S,
(2) ¢B,7¢a,,@ = Q5a;y, if < ﬁ <,

(3) ¢a,w(‘sa)¢/3,'y(sﬁ) - ¢aﬁ,’y(5’aﬁ)> ifa+p<1.
On S = US, (the disjoint union S,’s) we define & and ® as follows:
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(4) a® b= ¢aarp(a) + ¢pa+p(b) and
(5) a®b=c € Sus such that ¢ns.a15(¢) = da.ars(a) Ppa+p(b) where a € S,, b € Sp.

We denote the above system by (B, S, ¢a.5). This is a seminearring and we call it a

strong bi-semilattice (distributive lattice) B of seminearrings Sy, o € B.

Definition 5.1.10. A seminearring isomorphic with a subseminearring H of the direct
product of two seminearrings S and T is called a subdirect product of S and T if the
two projections my : H — S, m1(s,t) = s and mo : H — T, ma(s,t) = t are surjective.

A subdirect product S of two seminearrings S; and Ss is said to be a full subdirect
product if ET(S)=FE*(S1) x ET(S3).

For its immediate use in Theorem 5.1.12, an analogue of Mitsch’s result, we obtain

the following result which is also an analogue of Proposition 1.6 [29] in our setting.

Proposition 5.1.11. Let S = (B, S,, ¢ap) be a strong bi-semilattice (distributive
lattice) B of seminearrings {Sy : € B}. Let 6 be a binary relation on S defined by

afbs qﬁa,(ﬁ-ﬁ(a) = Qbﬂ,a-l—ﬁ(b)

where a € S, and b € Sg. Then 0 is a congruence on S and S is a subdirect product of
B and S/0.

Proof. If a € Sa, ¢anla) = Ig, (a) = a. Therefore a § a for all @ € S whence 6 is
reflexive. 0 is symmetric by its construction. Let a 6 b and b 0 ¢ where a € S,, b € Sp
and ¢ € S,. Then

Paat+8(a) = dparp(b) and g sy (b) = by g44(c).
Therefore a4p.a+p+(Paars(@) = datpa+siy(Ppars(b)) and
Gpty.atpty(08,644(0)) = Ppiratpiy(Pr,544())-

Hence ¢aa+p4v(a) = dpa+sry(b) = Ora+py(0)-

Then ¢otv,a+6+7(Paa++(@) = Patry,atpir(Dy,a+4(C))-

Since Qaty.atpy 18 ONE-0NE, Doty (@) = Py iy (C).

Therefore a € ¢ whence 6 is transitive. Hence 6 is an equivalence relation.
Let a 6 b and c € S where a € Sy, b € Sz and c € §,. Then ¢q o1p(a) = @pais(b).
Then operating both sides by ¢q48.a+5++, We get
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Patp.046+7(Paats(@) = Porpatpiy(Ps.ars(d)), i€,
Pa,at6++(a) = O atpiqy(D)-
Now ¢ a151+(¢) + Paats44(a) = Dy a4644(¢) + Dpatsiy(b).
Therefore ¢o1r.a+p4+(cD @) = Gpiry,a+p+~(cDb) Where c@ a € Sqqy and c® b € Spyy.

Then (¢ @ a) 6 (¢ @ b). Similarly we can show that (a © ¢) 6 (b @ ¢). Again from
Gaat+p(a) = Ppa+p(b) We can write
Dyat5+7(€) Paatsiy(a) = Dy atpiq(C) Dpatpry(D).
Let s=c®aand t =c®b. Then
Pr(a+8),0+8+7(Pran(a+8)(5) = Praatstr(8) = Patyatsry(Praary(s)) =
Patysat iy (D047 (0) Pasasy (@) = (Iy.048+7(C) Paatpn (@)

Similarly, we can show that

Py(at8),04 84+ (P18t (1) = (Dy,a1814(6) P80t 51+ (D))-
Since ¢y a4 511(€) Pa,a+84~4(a) = Py atpiry(€) Ppa+p4~(b) holds we can write
¢7(a+ﬁ),a+ﬁ+v(¢vaﬁ(a+ﬁ) (5)) = ¢7(a+ﬁ)7a+ﬁ+w(¢7ﬁﬁ(a+ﬁ) (t))
whence ¢a.4(at5)(5) = Grpr(ars)(t)-

Thus (¢ ® a) 6 (¢ ®b). Similarly, we can show that (a ® ¢) 6 (b ® ¢). Therefore 6 is a
congruence on the seminearring S. Hence S/ becomes a seminearring.

Now following Proposition 1.6 of [29], we define a mapping ¢ : S — B x S/ by
a — (a, [a]g) where a € S,. Tt is a matter of routine verification to check that ¢ is a

monomorphism and (.S) is a subdirect product of B and S/6. O
Theorem 5.1.12. The following conditions on a seminearring (S, +,-) are equivalent.
(1) (S,+,-) is a full subdirect product of a bi-semilattice and a near-ring.

(2) S is an Et-inversive strong bi-semilattice of additively cancellative seminearrings

with zero.

(3) S is an ET-inversive strong bi-semilattice of seminearrings with zero, each of

which contains a single additive idempotent.

Proof. (1) = (2) Let S be a full subdirect product of a bi-semilattice B and a near-
ring N. Then (S,+) is a full subdirect product of the semilattice (B,+) and the
group (N,+). Hence by Theorem 1.1.33, (S,+) is an E-inversive strong semilattice
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B of cancellative monoids (S,,+) (a € B) with injective linking homomorphisms ¢, s
: (Sa+) = (Sg,+) (a < B,a,B € B) where S, = ({a} x N) NS and ¢, (e, n) =
(a,n) + (8,0n5) = (B,n), n € N (¢f. Remark 5.1.6(7)). Let (o, a), (a,b) € S,. Then
(o, a)(a,b) = (a,ab) € S, whence (S,,+, ) is an additively cancellative seminearring
with zero where Og, = (a,0x). Let a < 8. Then ¢, 5((a, a)(c, b)) = ¢os((c,ab)) =
(B,ab) = (¢a,p(c, a))(Pa,p(c,b)). Therefore o5 (o < 5,0, € B) is a seminearring
monomorphism. Thus it is sufficient to verify the conditions (3) and (5) of Definition
5.1.9. Let a+ 8 <7, (a,a) € S, and (B,b) € Sz where a, 5,7 € B and a,b € N. Then
in view of Remark 5.1.6 (ii), o < a+ <. Now

Pan(@,a) 9p4(5,0) = (7,0)(7,0) = (7, ab) = dapy(af; ab) ..... (i).

Therefore ¢o (Sa)p~(S8) C dap~(Sap), if a+ <. Now (a,a) ©(5,b) = (af, ab) €
Sap- Let ¢ = (af, ab). Then in view of (i),

Gopatp(C) = Paars(@,a) dparp(B,h).

Hence S is an Et-inversive strong bi-semilattice B of additively cancellative seminear-
rings S, (a € B) with zero.

(2) = (3) It follows from the additive cancellative property of each S, and the fact
that each S, contains zero.

(3) = (1) Let S be an ET-inversive strong bi-semilattice B of seminearrings S, (o € B)
with zero element 0, such that each S, contains a single additive idempotent i.e.,
E*(S,) = {04}. Now in view of Proposition 5.1.11, S is a subdirect product of the
bi-semilattice B and the seminearring S/ via the seminearring monomorphism t):
S — BxS5/0,a— (a,|a]y), where a € S, and 0 is defined on S by b 6 ¢ if and only
if pa,a+8(b) = @pars(c) for b € S, and ¢ € Si. Since, each S, contains a single additive
idempotent On, ¢n,a+8(0a) = ¢s,0+5(08) = 0aqp for all a, 5 € B. Hence 0, 6 0g for
all a, 5 € B. Again a + 0, = a whence [a]g + [0a]o = [a]g for all @ € S, and for all
a € B. Therefore (S5/60,+) is a monoid where 0g/g = [0,]y for any o € B. Let a € S,,.
Since S is an Ef-inversive strong bi-semilattice B of seminearrings S, (a € B), there
exists b € S for some [ € B such that a ® b is an additive idempotent of S. Therefore
a®b = P a+p(a)+ Psa+s(b) = 0445, since S, contains a single additive idempotent.
Then [a]p + [blo = [0a+s]o = 0s/9. Hence (S/6,+) is a group where 0g/9 = [04]¢ for any
a € B. Therefore (S/6,+,-) is a near-ring. Now for each a € B, ¥(0,) = (o, [04]s)-
Hence S is a full subdirect product of the bi-semilattice B and the near-ring S/0. O

101



Chapter 5. Full Subdirect products of a Bi-semilattice and a Zero-symmetric Near-ring

The following example illustrates that the inclusion (that comes from (1) = (2), (1) =
(3) of Theorem 5.1.12) of the class of seminearrings which are full subdirect products

of a bi-semilattice and a near-ring in the class of Et-inversive seminearrings is strict.

Example 5.1.13. Let (7,+) be a semilattice containing at least two distinct ele-
ments a and b. Hence (T, +) is an E-inversive semigroup. Then by Proposition 4.3.5,
(M(T),+,-) is an ET-inversive seminearring. Now let f € ET(M(T)) = M(T) such
that f(a) = b and f(b) = a. Then clearly f? # f. Therefore (M(T),+,-) is not a
full subdirect product of a bi-semilattice and a near-ring since in a full subdirect prod-
uct of a bi-semilattice and a near-ring, each additive idempotent is a multiplicative

idempotent.

The following example shows that not every subdirect product of a bi-semilattice

and a near-ring is full.

Example 5.1.14. Let B = {0, a, 1} be the bi-semilattice of Example 5.1.4. Then the
join semilattice (B,+) is the chain 0 < 1 < « and the meet semilattice (B, ) is the
chain @ < 0 < 1 (see Definition 5.1.1 and Remark 5.1.6). Let (Z,+,-) be a near-ring
where ‘+’ is the usual addition of integers and ab = alb| for all a,b € Z. Let S =
{(0,—2n)|0 € B, ne N} U{(1l,—n)|1 € B, ne N} U{(,a)la € B, a € Z} C BXZ.
Since for all m,n € N and for all a,b € Z,

(0, —2n)4(0, —2m) = (0, —2(n+m)), (0, —2n)(0, —2m) = (0, —2n|—2m|) = (0, —4nm),

(17 —Tl) + (17 _m) = (1 —(TZ + m))v (17 _n)(17 _m> = (17 —Tl’ o m|) = (17 —nm),
(a,a) + (o, b) = (o, a +b), (@, a) (e, b) = (a, ab),
{(0,—2n)|0 € B, n € N}, {(1,-n)|]1 € B, n € N}, {(o,a)la € B, a € Z} are
seminearrings. Again for all z € Z and m,n € N

(0, —2n)+(1,—m)(= (1,—2n—m)), (1,—m)+(0,—2n) € {(1,—n)|1 € B, n e N} C S,

(0, =2n) + (o, 2)
(1, =n) + (o, 2)(= (o, =n + 2)), (o, 2) + (1, —n) € {(o,a)la € B, a € Z} C S,

(o, =2n + 2)), (a, 2) + (0, —2n) € {(a,a)la € B, a € Z} C S,

(= )

) )
(0,—2n)(1, —m)(= (0, —2nm)), (1, —m)(0, —2n) € {(0,—2n)[0 € B, n € N} C S,
(0,—2n)(av, 2)(= (a, —2n]2])), (@, 2)(0, =2n) € {(a,a)|a € B, a € Z} C 8,
(

(1, =n)(a, 2)(= (@, =nlz])), (@, 2)(1, =n)(= (@, 2| = n])) € {(a. a)la € B, a € Z} C 5.
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Therefore S is closed under ‘+’ and ‘-’ whence S is a seminearring. Since for any z € Z,
(a, z) € S'and (0,—-2), (1, —1),(a,0) € S, S is a subdirect product of the bi-semilattice
B and the near-ring (Z, +, -), but it is not a full subdirect product of B and Z as (0, 0)

isnotin S.

The above situation differs as follows when the bi-semilattice is replaced by a dis-

tributive lattice.

Proposition 5.1.15. A seminearring S is a subdirect product of a distributive lattice
D and a near-ring N if and only if S is a full subdirect product of D and N.

Proof. Let S be a subdirect product of a distributive lattice D and a near-ring N.
Clearly, E*(S) = (D x {Ox}) NS where Oy is the zero of the near-ring N. Let
a € D. Then (a,n) € S for some n € N. Since S is a subdirect product of D and
N, (8,—n) € S for some 3 € D. Therefore (a,n) + (8,—n) = (a + 3,05) € S.
Hence (a+ 8,0x)(ca,n) € S, ie., ((a+ P)a,0y) € S. Since D is a distributive lattice,
(o + B)a = a. Therefore (o,0y) € S whence (D x {Ox}) € S. Then in view of
Definition 5.1.10, S is a full subdirect product of the distributive lattice D and the
near-ring V. O

While obtaining the analogues of the results of semigroups in the setting of semin-
earrings, the semilattice is replaced either by bi-semilattice or distributive lattice and
the group is replaced by near-ring or zero symmetric near-ring. So Mitsch’s analogue
obtained in Theorem 5.1.12 has the following three variants viz., Theorems 5.1.16,
5.1.17 and 5.1.18.

The zero-symmetric version of Theorem 5.1.12 is the following.

Theorem 5.1.16. The following conditions on a seminearring (S, +,-) are equivalent.

(1) (S,+,-) is a full subdirect product of a bi-semilattice and a zero-symmetric near-

Ting.

(2) S is an Et-inversive strong bi-semilattice of additively cancellative zero-symmetric

Seminearrings.

(3) S is an ET-inversive strong bi-semilattice of zero-symmetric seminearrings, each

of which contains a single additive idempotent.
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Proof. The proof follows by a slight modification of the argument of the proof of
Theorem 5.1.12. O

The following is the distributive lattice version of Theorem 5.1.12 which follows in

view of Theorem 5.1.12 and Proposition 5.1.15.
Theorem 5.1.17. The following conditions on a seminearring (S, +,-) are equivalent.

(1) (S,+,-) is a subdirect product of a distributive lattice and a near-ring.

(2) S is an ET-inversive strong distributive lattice of additively cancellative semin-

earrings with zero.

(3) S is an ET-inversive strong distributive lattice of seminearrings with zero, each

of which contains a single additive idempotent.
The zero-symmetric version of Theorem 5.1.17 is the following.
Theorem 5.1.18. The following conditions on a seminearring (S, +,-) are equivalent.

(1) (S,4+,-) is a subdirect product of a distributive lattice and a zero-symmetric near-

Ting.

(2) S is an Et-inversive strong distributive lattice of additively cancellative zero-

symmetric seminearrings.

(3) S is an ET-inversive strong distributive lattice of zero-symmetric seminearrings,

each of which contains a single additive idempotent.

Having obtained four analogues, viz., Theorems 5.1.12, 5.1.16, 5.1.17 and 5.1.18,
of Mitsch’s result (i.e., Theorem 1.1.33) in our setting our task now reduces (see the
Introduction) to obtain the analogue of Ghosh’s Theorem 1.3.15 in our setting. We
accomplish this in Theorem 5.1.27 and Theorem 5.1.29, which respectively provide dif-
ferent characterizations of the class of ET-inversive seminearrings obtained in Theorems
5.1.16 and 5.1.18. In the deduction of these results Proposition 5.1.25 and Proposition
5.1.26 play the key role. The necessary prerequisites for these propositions are built
up in Propositions 5.1.19, 5.1.20, 5.1.21 and 5.1.22.

Proposition 5.1.19. Let S be a seminearring with non-empty E*(S) and ef = fe,
e* =e foralle, f € ET(S). Then (i) e+ f = f+e, foralle, f € ET(S) implies
E*(S) is a bi-semilattice and (ii) for a € S, D, :={e € ET(S):a+e=a and ag =
eg for all g € E1(S)} is non-empty implies it is singleton.
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Proof. (i) It follows by the Definition 5.1.1.

(27) Let a € S and e, f € E*(S) such that e, f € D,. Then a+e =a+ f = a and ag
=eg = fgforall g€ ET(S). Now for g =¢, ae = e = feand for g = f, af = ef =
f. Again ef = fe. Therefore e = f whence D, is a singleton set. O

Proposition 5.1.20. Let S be an ET-inversive seminearring in which for all e €
E*(S) and for alla € S

(1) e+a =a+e,
(2) ea = ae and
(3) € =e.

Then & = {a € S : D, is non-empty} forms an ET-inversive, full right ideal of S.
Moreover, if s(a+e) = sa+ se for all e € ET(S) and for all s,a € S, then & becomes

an ET -inversive, full ideal of S, too.

Proof. Since S is E*-inversive, E*(S) is non-empty. Let e € E*(S). Then by Proposi-
tion 5.1.19 (i), D, = {e}. So e € & whence & # () as well as ET(S) C &. Let a,b € &
and s € S. Then in view of Proposition 5.1.19 (i7), there exist e, f € ET(S) such that
D, = {e} and D, = {f}. Now (a+0) + (e+ f) = (a+e€) + (b+ f) (using condition
(1)) =a+b (sincee € D, and f € Dy), (a+b)g = ag+bg = eg+ fg (since e € D, and
f € D) forall g € ET(S). Therefore Doy = {e+ f}. Again (as)+(es) = (a+e€)s = as
(since e € D,) and (as)g = (ag)s (using condition (2)) = (eg)s (since e € D,) = (es)g
(using condition (2)) for all g € E*(S). Therefore D,s = {es} whence a + b,as € &.
Now for a € &, there exist x,y € S for which a4z, x+y € ET(S). Let z =z +x+vy.
Then in view of Proposition 5.1.19 (i) we obtain a + z = (a + ) + (r + y) € E*(S5).
Again Proposition 5.1.19 (44) together with condition (2) shows that D, = {z + y}
whence 2z € &. Therefore & is an Et-inversive, full right ideal of S.

Moreover, if s(x + f) = sz + sf for all f € ET(S) and for all s,z € S, then for
a € G andt e S, in view of Proposition 5.1.19 (i7) we deduce that Dy, = {te} where

D, = {e}, whence & becomes an ET-inversive, full ideal of S. O

Proposition 5.1.21. Suppose S is an ET-inversive seminearring such that e* = e for
alle € ET(S) and D, :={e € E*(S) : a4+ e =a and ag = eg for all g € ET(S)} is
non-empty for all a € S. Then ef = fe if and only if ea = ae for all e, f € ET(S)
and for all a € S.
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Proof. Let ef = feforalle, f € ET(S). Leta € Sand e € ET(S). Then by hypothesis
that D, is non-empty and Proposition 5.1.19 (i7), D, = {f} for some f € E*(S) and
ag = fg for all g € E*(S). Now fg(= (f + f)g) € E*(S) for all g € E*(S) whence
ag € ET(S) for all g € ET(S). Also ga (= (g + g)a) € ET(S) for all ¢ € ET(S).
These together with the repeated use of the hypothesis that each additive idempotent
is a multiplicative idempotent and they commute with each other, lead to the following
deduction: ea = e(ea) = (ea)e = e(ae) = (ae)e = ae.

The other implication is obvious. O

In view of Proposition 5.1.19 (i) and (i), the following result easily follows from

the proof of Proposition 5.1.21.

Proposition 5.1.22. Suppose S is an ET-inversive seminearring satisfying the fol-
lowing conditions: e+ f = f+e foralle, f € EY(S), ef = fe foralle, f € ET(S), 2
=e foralle € ET(S) and D, is non-empty for all a € S. Then ET(S) is an S-ideal
of S.

Notations 5.1.23. In many places, that follow, we will refer to the following conditions
on an ET-inversive seminearring S without their explicit descriptions. (1) e+a =a-+e
for all a € S and for all e € E¥(S), (2) ef = feforalle, f € ET(S), (3) €2 = ¢ for all
e € ET(S) and (4) D, is non-empty for all a € S.

Remark 5.1.24. Under the hypothesis of Proposition 5.1.20, an E*-inversive semin-
earring has an ET-inversive subseminearring (an E*t-inversive, full right ideal, to be
precise) such that for each of its element a, D, is non-empty. So in view of Proposi-
tion 5.1.21, the restriction on an ET-inversive seminearring S given by (4) is not quite
unjustified when S satisfies (1), (2) and (3) (¢f. Notations 5.1.23).

Proposition 5.1.25. Let S be an E-inversive seminearring satisfying the conditions
(1) to (4) (c¢f. Notations 5.1.23). Then the relation p on S, defined by

apb if and only if D, = Dy,

is a congruence on S such that S/p is isomorphic to E*(S). Hence p is a bi-semilattice

congruence on S.

Proof. Clearly, p is an equivalence relation. Let apb and ¢ € S. Then in view of
Proposition 5.1.19 (i), there exist f,h € ET(S) such that D, = D, = {f}........ (7) and
D. = {h} ...... (22). This together with the condition (1) and Proposition 5.1.19 (i)
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shows that Do = Dy = {f +h} and D,y = Doy = {h + f}. Therefore (a + c)
p (b+c)and (c+a) p (c+b). Now in view of (ii), hf = c¢f. Also by condition (2)
and Proposition 5.1.21, ¢g = gc for all g € E*(S). Hence fh = fc. This together with
(7) and (i7) shows that D,. = Dy. = {fh} whence ac p be. In a similar manner we
can show that hf = ha = hb and D., = Dy = {hf} whence ca p ¢b. Hence p is a
congruence on S. Now it is easy to see that ¢ : S/p — E*(S), defined by ¢([a],) =e
where D, = {e} for all [a], € S/p, is a seminearring isomorphism. Hence (S/p, +, ) is
isomorphic to (E*(S), +,-) which is a bi-semilattice (¢f. Proposition 5.1.19(4)) and so

in view of Definition 5.1.7, p becomes a bi-semilattice congruence on S. O

Proposition 5.1.26. Let S be an E*-inversive seminearring satisfying (1) to (4) (cf.
Notations 5.1.23) and the following condition: (5) if Dy = Dy and I(a) N I(b) is non-
empty then a = b where I(a) :={x € S:a+x € ET(S)}. Then ET(S) is a reflexive
full k-ideal of S and the following are equivalent.

(i) The relation o on S defined by,
a o b if and only if for somex € S, a+x, b+x € ET(5),

s a near-ring congruence on S.
(17) cla+e) = ca+ ce for alle € EY(S) and for all c,a € S.

Proof. By Proposition 5.1.22, ET(S) is an S-ideal. Let e,z € S such that x + e, e
€ ET(S). Then in view of Proposition 5.1.19 (iz), D, = {f} for some f € ET(S).
Again in view of Proposition 5.1.19 (ii), D; = {f}. Therefore D, = D; and x+e, f+e
€ ET(S) whence e € I(z) N I(f). Hence by condition (5), x = f whence x € ET(S).
In view of condition (1), the above argument shows that if e + x,e € ET(S) then
r € ET(S). Thus ET(S) is a full k-ideal. Let a +b € E*(S). Then in view of
condition (1), b+ (a +b) +0 € ET(S) for all o € WT(b) (cf. Notation 4.3.3). Again
b+ € EY(S). Hence ET(S) being a k-ideal, b + a € E*(S). Hence by Definition
2.1.6, E7(9) is a reflexive full k-ideal.

(i) = (i) Let ¢, a € S and e € ET(S). Then ce € ET(S) as E*(S) is an S-ideal.
Since ¢ is a near-ring congruence on S, it is a group congruence on (S,+). Hence
(a + €) 0 a whence c(a + €) o ca. So there exists z € S such that c(a + e) + x,
ca+x € ET(S). Since ce € ET(S), ce + ca +x € ET(S) whence by condition
(1), ca + ce +x € ET(S). This together with ¢(a + €) + = € E*(S) implies that
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x € I(c(a+e))NI(ca+ ce). By invoking Proposition 5.1.19 (i), let D, = {¢o} and
D, = {ap} where ¢y, a9 € ET(S). Then ¢ p o, € p e and a p ag where p is as defined in
Proposition 5.1.25. Since p is a bi-semilattice congruence on S, we deduce that c(a+¢)
p colag + €) and (ca + ce) p (coap + coe). Again in view of Proposition 5.1.19 (i),
co(ap +e) = coag+ coe. Therefore c(a+e) p (ca+ce). Hence by definition of p, De(gqe)
= D(catee). This together with the fact 2 € I(c(a + e)) N I(ca + ce) and condition (5)
implies that c(a + €) = ca + ce.

(#4) = (7) By condition (1), the additive idempotents are additively central in the E*-
inversive seminearring S. So (S,+) is an E-inversive as well as an E-semigroup (cf.
Definition 1.1.16 (viz)). Then in view of Theorem 4.5 of [31], o is a group congruence
on (S,+). Let asb and s € S. Then there exists € S such that a +xz, b+x € E*(S).
Hence ET(S) being an S-ideal, (a+x)s, (b+x)s € ET(S), i.e., as+xs, bs+xs € ET(S).
Therefore (as) o (bs). Since E1(S) is reflexive, x + a,x + b € E*(S). Since S is E*-
inversive, there exists s’ € S such that s+ € E*(S). Hence E*(S) being an S-ideal,
(s+8)a+x+Db), (s+5)(b+a+z)e ET(S). This together with the fact a +x, 2 +b
€ ET(S) and the hypothesis given by (ii) implies that sa + s(x 4+ b) + §'(a + 2 + b),
sb+s(a+x)+s'(b+a+z) € ET(S). Now by condition (1), b+(a+x) = (a+x)+b. Hence
using the fact s(x+0b), s(a+x) € E(S) (. ET(S) is an S-ideal) and condition (1), we
deduce that sa+(s(z+b)+s' (a+x+b)+s(a+x)), sb+(s(z+b)+5'(a+x+b)+s(a+x))

€ E1(S). Consequently, (sa) o (sb). Hence o is a near-ring congruence on S. O

Theorem 5.1.27. A seminearring S is a full subdirect product of a bi-semilattice and
a zero-symmetric near-ring if and only if S is an E1-inversive seminearring satisfying

the following -
(1) e+ a =a+e foralla €S and for all e € ET(S),
(2) ef = fe for alle, f € EX(S),
(3) € =e for alle € E*(S),

(4) D, :={e€ ET(S):a+e=a and ag = eg for all g € ET(S)} is non-empty for
each a € S,

(5) if Do = Dy and I(a) N I(b) is non-empty then a = b where I(a) := {x € S :
a+x e ET(S)},

(6) s(a+e) =sa+se forall s,a €S and for all e € E*(S).
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Proof. Let S be an ET-inversive seminearring satisfying (1)-(6). Then in view of
Propositions 5.1.25 and 5.1.26, p and o are two congruences on S such that S/p is
a bi-semilattice and S/o is a near-ring where apb if and only if D, = Dy, and aocb if
and only if I(a) NI(b) is non-empty. We define ¢ : S — S/p x S/o by a — ([a],, [a],)
where a € S. Tt is easy to verify that ¢ is a seminearring morphism. Now v (a) =
y(b) implies that ([a],, [a],) = ([b],, [b]») Whence apb and acb. Therefore D, = D, and
I(a)NI(b) is non-empty whence by condition (5), a = b. Hence v is a monomorphism.
Clearly, S is a subdirect product of the bi-semilattice S/p and the near-ring S/o via
the monomorphism . Let x € E*(S/p) x E*(S/0). Then = = ([al,,0s/,) where
a € S. Now let D, = {e} for some e € ET(S) (cf. Proposition 5.1.19 (¢7)). Then a p
e. Since S/o is a near-ring, [e], = 0g/,. So ¥(e) = ([€l,, [e]o) = ([a]y, 0s/0)= x. Hence
x € Y(ET(S)). Therefore (ET(S)) = ET(S/p)x ET(S/0). Hence S is a full subdirect
product of the bi-semilattice S/p and the near-ring S/o. Now in view of Proposition
5.1.21, af = fa for all f € E*(S) and for all a € S. This together with the fact that
[flo = 0g/o for all f € E*(S) shows that the near-ring S/o is zero-symmetric.
Conversely, let S be a full subdirect product of a bi-semilattice B and a zero-
symmetric near-ring N. Then by Theorem 5.1.16, S is an E*-inversive seminearring.
Also by the fullness of the subdirect product we obtain E*(S) = E*(B) x ET(N) =
B x {Oy}. Let a € Sand e, f € ET(S). Then a = (a,n), e = (5,0n), f = (v,0n)
for some «, 3,7 € B and n € N. Therefore a + e = (a,n) + (6,0n) = (a + B,n) =
e+a. Now e = (3,05)(8,0n) = (8,0n) = e. Again ef = (8,0x5)(7,0x) = (87,0x)
= (7B,0n) = fe. Therefore S satisfies conditions (1) — (3). Now a + (a,0x) =
(a,n)+(a,0n) = (a,n) = a and ae = (o, n)(5,0n5) = (aB,0x) = (o, 0x)(5,0x) (since
N is zero-symmetric). Therefore D, = D(ny = {(o,0n)}. Let b € S such that D, =
Dy and I(a) N I(b) is non-empty. Since D, = Dy, b = (o, m) for some m € N. Again
since I(a) N I(b) is non-empty, there exists z(= (4,t) for some § € Bandt € N) € S
such that a + z, b+ 2 € E*(S). Therefore a + 2z = (a« +,n+t) = (o + 9,0y) and
b+z=(a+dm+t) = (a+0,0y). Then m +¢t = Oy = n +t whence m = n.
Hence a = b. Now for s(= (A, w) for some A € B and w € N) € S and e(= (5,0x)
for some 3 € B), s(a+e) = (A w)(a+ B,n) =AMa + B),wn) = (Aa + A3, wn) =
(Ao, wn) + (AB,0x) = sa + se. Therefore S satisfies conditions (5) and (6). O

In order to obtain our final result viz., Theorem 5.1.29, we need, among others, the

following result.

Proposition 5.1.28. Let S be an E*-inversive seminearring satisfying the conditions
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(2), (3), (6) (Notations are the same as those in Theorem 5.1.27) and the following
condition: (4') a = a+ae for all e € ET(S) and for alla € S. Then for any a € S, D,
is singleton and D, = {a(a+ )} for any x € I(a) :={s€ S:a+s € ET(S)}.

Proof. Let a € S and e € ET(S). Then ea(= (e 4+ e)a) € E*(S). Again by condition
(6), ae(= a(e +¢)) € ET(S). Hence ae = (ae)(ae) (by condition (3)) = a(ae)e (by
condition (2)) = a’e....... (). Since S is Ef-inversive, I(a) is non-empty. Let = € I(a).
Then (a + x) € E*(S). So by condition (4'), a + a(a + x) = a. This implies, for each
g€ ET(S), a9 = (a+ala+z))g =ag+ala+x)g = ag+alag+xg) = ag+ (a*g+axg)
(using condition (6) as zg € ET(S)) = a?g+azg (using (i) and ag € ET(S)) = a(a+x)g
(using condition (6) and right distributive property of .S). Therefore by definition of D,
(cf. Proposition 5.1.19(i4)), a(a+x) € D,. So D, is non-empty. Hence by Proposition
5.1.19(74), D, is singleton. Hence for any a € S, D, = {a(a + x)} where x € I(a). O

Theorem 5.1.29. A seminearring S is a subdirect product of a distributive lattice and
a zero-symmetric near-ring if and only if S is an E1-inversive seminearring satisfying

the following conditions :

(1) et+a =a+e foralle € ET(S) and for alla € S,

(2) ef = fe foralle, f € EY(S),
(3) €* =e foralle € ET(S),

(4) a = a+ ae for all e € ET(S) and for all a € S (Same as (4') of Proposition
5.1.28),

(5) if D, = Dy and I(a) N I(b) is non-empty then a = b where I(a) := {x € S :
at+x € ET(S)},

(6) s(a+e) =sa+se foralle € ET(S) and for all a,s € S.

Proof. Let S be an E*-inversive seminearring satisfying conditions (1)-(3), (4’), (5) and
(6). Then in view of Proposition 5.1.28, S satisfies condition (4) of Theorem 5.1.27 and
hence all the conditions of Theorem 5.1.27. So S is a full subdirect product of the bi-
semilattice S/p and the zero-symmetric near-ring S/o where apb if and only if D, = D,
and aob if and only if there exists @ € S such that a +x, b+x € ET(S). Again in view
of Proposition 5.1.25 and Proposition 5.1.28, S/p is isomorphic to E7(S) and in view

of condition (4’), E*(S) is a distributive lattice. Hence in view of Proposition 5.1.15,
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S becomes a subdirect product of the distributive lattice S/p and the zero-symmetric
near-ring S/o.

The other implication follows easily. O
The following remark is in order.

Remark 5.1.30. Theorem 5.1.29 is not only an analogue of, but also includes, Ghosh’s
Theorem 2.10 [29] (¢f. Theorem 1.3.15). Because if the seminearring is replaced by a
semiring then Theorem 5.1.29 reduces to Ghosh’s Theorem 1.3.15. In fact, in that case
the conditions (1) and (6) of Theorem 5.1.29 respectively come from commutativity
of addition (In [29], the author has considered additively commutative semiring) and
left distributive property of multiplication over addition and the other conditions viz.,
(2), (3), (4"), (5) are respectively the same? as the conditions (2.1), (2.2), (2.3) and the
combination of (2.4) and (2.5) of Theorem 1.3.15.

Theorem 5.1.27, being the bi-semilattice version of Theorem 5.1.29, is also an analogue
of Theorem 1.3.15. Since commutativity of addition and left distributive property of
semiring are absent in a seminearring (cf. Definition 1.5.1), in the comparison of our
results with Ghosh’s Theorem 1.3.15, we see that there are two additional conditions
viz., (1) and (6) in Theorems 5.1.27 and 5.1.29. That these conditions are essential as
well as independent of the other conditions is evident from Example 5.1.31, Example
5.1.32(7) and Example 5.1.32(¢7). In this connection, it is relevant to examine the
independence of the other conditions of our results viz., Theorems 5.1.27 and 5.1.29,

which we accomplish in Example 5.1.33.

The following example illustrates that without the condition (1) the conclusions of
the Theorems 5.1.27, 5.1.29 need not follow. This example also illustrates the inde-

pendence of (1) from the other conditions.

Example 5.1.31. Let (S,-) be a semilattice containing at least two elements. We
define a + b := a for all a,b € S. Then (S,+) is a band but not a semilattice and
(S, +,-) is a semiring. Let (Z,+,-) be the zero-symmetric near-ring of Example 5.1.14.
Let T be the direct product of S and Z. Then E*(T) = S x {0}. Clearly, T satisfies
(2) and (3) of Theorems 5.1.27 and 5.1.29.

Let @ € T and w € ET(T). Then a = (f,z) for some f € S and z € Z and
w = (e,0) for some e € S. Then a + (f,0) = (f,x) + (f,0) = (f,z) = a and
aw = (f,z)(e,0) = (fe,0) = (f,0)w. Therefore (f,0) € Dy = D). Then T satisfies

2 The detailed explanation is not included in order to avoid possible digression.
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(4) of Theorem 5.1.27. In view of Proposition 5.1.19 (i), D, = D = {(f,0)}.
Let b € I(a) and so a +b € EY(T). Clearly, b = (g, —x) for some g € S. Then
ala+b) = (f,2)((f,2) + (9, —)) = (f,2)(f + 9,0) = (f,2)(f,0) = (f,0). Therefore
D, = {ala+Db) : b € I(a)}. Now for a € T and w € E*(T), where a = (f,z) for
some f € S and x € Z and w = (e,0) for some e € S, a +aw = (f,z) + (f,z)(e,0) =
(f, )+ (fe,0) = (f+ fe,x) = (f,z) = a. Therefore T satisfies (4') of Theorem 5.1.29.

Let a,b € T such that D, = Dy and I(a) N I(b) is non-empty where a = (f,x),b =
(g9,y) for some f,g € S and x,y € Z. Now we have already shown that D, = {(f,0)}
and D, = {(g,0)}. Since D, = Dy, f = g. Let ¢ = (h,z) € I(a) N I(b). Then
(fox)+ (h,2) =(f+hx+2)=(f,xr+2) € EY(T) and hence x = —z. Similarly, we
can show that y = —z. Therefore z = y. Hence a = b whence T satisfies condition (5)
of Theorems 5.1.27 and 5.1.29. It can be easily shown that T" satisfies condition (6) of
Theorems 5.1.27 and 5.1.29. But 7" does not satisfy condition (1) of Theorems 5.1.27
and 5.1.29.

Now we provide below two examples to illustrate that the condition (6) in both the
theorems (Theorem 5.1.27 and Theorem 5.1.29) is essential as well as independent of

other conditions.

Example 5.1.32. Let (S, +) be the semigroup described in the Exercise 21 of pp-43,
[45] where S = {e, a, f,b} and ‘+’ is defined as follows.

+le a f b
ele a f b
ala e b f
flr b fb
b|b f b f

(¢) Suppose T' = {fo, f1, f2, f3} € M(S) where

€lﬂ>6 a|—> f f,b

= f
Ao fa s ff fb > f;
= f;

elﬁna a|—> f fb

AN bff3 RN NI

Then (T, 4+, 0) is an ET-inversive seminearring (under point wise addition and compo-

sition) with ET(T") = {fo, f1} where + and o are as follows.
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+ 1o i o J3 ol fo fi fo [f3
folfo i fa f3 Jolfo 1 fo N
Llh Hh s fs Hlh [ [ [
f2| fo fs fo fi L2l fo i o S
fs|fs s i f Bl h [ fs S

It is a matter of routine verification to show that 7" satisfies conditions (1), (2) and (3)
of Theorem 5.1.27. T also satisfies condition (4) of Theorem 5.1.27 as Dy, = Dy, =
{fo} and Dy, = Dy, = {f1}. This together with the facts that I(fy) = I(f1) = {fo. f1},
I(fs) = I(fs) = {f2, fs} shows that T satisfies condition (5) of Theorem 5.1.27. But
T does not satisfy condition (6) of Theorem 5.1.27 as fz o (fo + f1) # fso fo+ fzo f1.
Consequently, in view of the proof of Theorem 5.1.27 T' is not a full subdirect product
of a bi-semilattice and a zero-symmetric near-ring.

(27) Let P = {g0, 91, 92, 93} € M(S) where

e e ar e, fr e, b s e
e e a e, fH25 fb f

el e, a s e, f|—>e b+—
erse, a e, £V 5 F b5

Then (P, +,0) is an E*-inversive seminearring (under point wise addition and compo-

sition) with E(P) = {go, 91} where + and o are as follows.

+ 1% 91 92 93 °© |19 91 92 93
0|90 g1 G2 Gs3 9o |90 9JGo Go Ygo
g1 |91 91 g3 93 91 {90 91 Go G1
9292 g3 Go G1 92 {90 Go 9Go 92
g3 195 93 91 G g3 19 91 9o g3

It is a matter of routine verification to show that P satisfies conditions (1), (2), (3)
and (4') of Theorem 5.1.29. Now I(go) = {90, 91} = I(g1) and 1(g2) = {92, 93} = I(g3).
This together with Dy, = Dy, = {go} and D,, = D,, = {¢:1} shows that P satisfies
condition (5). But gs 0 (g2 + g1) # g2 © g2 + g2 © g1 shows that P does not satisfy
condition (6) of Theorem 5.1.29. Consequently, in view of the proof of Theorem 5.1.29

T is not a subdirect product of a distributive lattice and a zero-symmetric near-ring.

The following examples respectively prove the independence of each of the remaining
conditions of both the Theorems 5.1.27 and 5.1.29.

113



Chapter 5. Full Subdirect products of a Bi-semilattice and a Zero-symmetric Near-ring

Example 5.1.33. (i) All but the condition (2) of Theorems 5.1.27 and 5.1.29 are

(iii)

(iv)

(v)

5.2

satisfied by the ET-inversive seminearring (U, +, ), where (U, +) is a join semi-

lattice and (U, -) is left zero semigroup.

All except condition (3) of Theorems 5.1.27 and 5.1.29 are satisfied by the E*-
inversive seminearring (L, +, ), where L = {1,2} and + is the supremum with

respect to the usual ordering of natural numbers and ab =1 for all a,b € L.

All the conditions of Theorem 5.1.27 except (4) are satisfied by the ET-inversive
subseminearring S = {(0,n)[0 € B, n € N} U {(o,a)la € B, a € Z} of the
E*-inversive seminearring B X Z where B is the bi-semilattice and (Z, +, -) is the

zero-syminetric near-ring as defined in Example 5.1.14.

All the conditions of Theorem 5.1.29 except (4’) are satisfied by the E*-inversive

seminearring (B, +, ), which is a bi-semilattice but not a distributive lattice.

All except condition (5) of Theorems 5.1.27 and 5.1.29 are satisfied by the E*-
inversive seminearring S = {0, a, b} (see Example 1 [10]) with zero 0 where a? =
2a = ab =0 and b* = 2b = a + b = b (we note that it is a distributive lattice of
rings but not a strong distributive lattice of rings (cf. [29])).

Relationships among different classes of seminearrings

Any additively regular (c¢f. Definition 1.5.15) seminearring is clearly additively FE-

inversive, i.e., Et-inversive (¢f. Definition 4.3.2). Hence any seminearring belonging

to each of the classes characterized in [81, 82, 98] is ET-inversive. The relationships,

of these classes of additively regular (and hence E*-inversive) seminearrings with the

classes of Et-inversive seminearrings characterized in Theorems 5.1.16, 5.1.27 and The-

orems 5.1.18, 5.1.29, are explored in the following result.

Theorem 5.2.1. (i) The class of strong bi-semilattices of zero-symmetric near-rings

(i)

(abbreviated as SBSLZSNR) [81] is a subclass of the class of full subdirect
products of a bi-semilattice and a zero-symmetric near-ring (FSDPBSLZSNR)
(cf. Theorems 5.1.16, 5.1.27) i.e., SBSLZSNR C FSDPBSLZSNR.

The class of strong distributive lattices of zero-symmetric near-rings (SDLZSNR)

[81] is a subclass of the class of subdirect products of a distributive lattice and a
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zero-symmetric near-ring (SDPDLZSNR) (cf. Theorems 5.1.18, 5.1.29) i.e.,
SDLZSNR C SDPDLZSNR.

(1ii) SBSLZSNR = FSDPBSLZSNR N AR = FSDPBSLZSNR N BSLZSNR
where the class of bi-semilattices of zero-symmetric near-rings is abbreviated as
BSLZSNR [82] and the class of additively regular seminearrings is abbreviated
as AR.

(twv) SDLZSNR = SDPDLZSNR N AR = SDPDLZSNR N DLZSNR =
SDPDLZSNR N SBSLZSNR where the class of distributive lattices of zero-
symmetric near-rings is abbreviated as DLZSNR [82].

(v) SDPDLZSNR1 C SDLZSNR where the class of additively reqular zero-symmetric
seminearrings with 1 which are subdirect product of a distributive lattice and a
zero-symmetric near-ring is abbreviated as SDPDLZSNR1 (cf. Theorem 4.14

[98]).

Proof. (i) follows from Theorem 2.28 [81] and Theorem 5.1.16.

Theorem 2.35 [81] together with Theorem 5.1.18 implies (7).

Now a strong bi-semilattice of zero-symmetric near-rings is additively regular (cf.
Theorem 2.28 [81]) as well as an E*-inversive strong bi-semilattice of additively can-
cellative zero-symmetric seminearrings. So in view of Theorem 5.1.16 we obtain SB-
SLZSNR C FSDPBSLZSNR N AR. Again in presence of additive regularity, an
ET-inversive strong bi-semilattice of additively cancellative zero-symmetric seminear-
rings becomes a strong bi-semilattice of zero-symmetric near-rings whence the 15 equal-
ity of (zit) follows. By Corollary 3.12 [82], BSLZSNR C AR. Clearly, SBSLZSNR C
BSLZSNR (¢f. Corollary 3.12 [82] and Theorem 2.28 [81]). From (i) of this theorem,
SBSLZSNR C FSDPBSLZSNR. These relations together with the 1%¢ equality of
(iii) imply the 2" equality of (i44).

The 1% equality and the 2" equality of (iv) can be proved in an analogous way to
those of (#4¢) by using Theorem 5.1.18 instead of Theorem 5.1.16, property (ii) instead
of property (7) of this theorem, Theorem 3.14 [82] instead of Corollary 3.12 [82] and
Theorem 2.35 [81] instead of Theorem 2.28 [81]. The 3" equality of (iv) follows from
the 1% equality of (iv) and the fact that SDLZSNR C SBSLZSNR C AR (cf.
Theorem 2.28 [81]).

(v) is an easy consequence of (v). O
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What Theorem 5.2.1 says can be expressed with the help of the following (possibly

not so nice looking) diagram .

Strong distributive lattice of zero-symmetric near-rings(SDLZSNR)

Full sub-direct
A

Additively 4 product of bi-

E-inversive semilattice & zero-
«— symmetric near-
ring(FSDPBSLZSNR)
Additively 00000000000000000
regular(AR) + Sub-direct
* product of

+ Distributive lattice

Bi-semilattice of : Szero-symmetric
zero-symmetric » ¢ NEar-
near- : ring(SDPDLZSNR)
rings(BSLZSNR)
Additively regular
Strong bi- zero-symmetric
semilattice of zero- seminearrings
symmetric near- containing 1 which
rings(SBSLZSNR) are subdirect
product of
pEmm=m=m===- -1 distributive lattice
I Distributive lattice of f 8 zero-symmetri
I zero-symmetric near- | near-fng
| rings(DLISNR) | (SDPDLZSNR1)

Remark 5.2.2. The result given by the 1 equality in (ii7) of Theorem 5.2.1 is the

analogue of a result implicit in Theorem 2.7 [101].
The following example illustrates that the inclusion in () of Theorem 5.2.1 is strict.

Example 5.2.3. Let B = {0, «, 1} be the bi-semilattice and let (Z, 4+, ) be the zero-
symmetric near-ring as described in Example 5.1.14. Let T' = Ty U T} U T, where Tj
={(0,-2n) e BxZ|0e€ B, ne NU{0}}, A ={(1,-n) e BXZ|1€ B, n¢€
NU{0}} and T, = {(o,a) € BXZ | a € B, a € Z}. Then T is a full subdirect
product of the bi-semilattice B and the zero-symmetric near-ring (Z, +, -) with E*(T')
= {(0,0),(1,0), («,0)}. But T is not additively regular as (0, —2n) where n € N is
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not a regular element in (7, +). So in view of Theorem 5.2.1 (éii), T is not a strong

bi-semilattice of zero-symmetric near-rings.
The following example illustrates that the inclusion in (éi) of Theorem 5.2.1 is strict.

Example 5.2.4. In view of Example 1.4 (b) (pp. 8, [91]), (Z,+, -») is a zero-symmetric
near-ring with ‘+’ as the usual addition of integers and a o b = a if b € A and
a-pb = 0ifb¢ Awherel ={2n:n e NU{0}}and A ={2€Z : 2 ¢ I}. Let Dbe
the Boolean algebra {0,1}. Let S = {(0,a) |0 € D, a € I} U {(1,a) |1 € D, a € Z}.
Then S is a subdirect product of the distributive lattice D and the zero-symmetric
near-ring (Z,+,-»). But it is not additively regular as (0,2n) € S where n € N is not
a regular element in (S,4). Hence in view of Theorem 5.2.1 (iv), S is not a strong

distributive lattice of zero-symmetric near-rings.

Remark 5.2.5. Existence of zero-symmetric near-ring without multiplicative identity

1 proves that the inclusion in (v) of Theorem 5.2.1 is strict.

Theorem 5.2.6. (i) The class of strong bi-semilattices of near-rings (abbreviated
as SBSLNR) [81] is a subclass of the class of full subdirect products of a bi-
semilattice and a near-ring (FSDPBSLNR) (c¢f. Theorem 5.1.12) i.e., SB-
SLNR C FSDPBSLNR.

(17) The class of strong distributive lattices of near-rings (SDLNR) [81] is a sub-
class of the class of subdirect products of a distributive lattice and a near-ring
(SDPDLNR) (cf. Theorem 5.1.17) i.e., SDLNR C SDPDLNR.

(1ii) SBSLNR = FSDPBSLNR N AR = FSDPBSLNR N BSLNR where the
class of bi-semilattices of near-rings is abbreviated as BSLNR [82] and the class

of additively reqular seminearrings is abbreviated as AR.

(wv) SDLNR = SDPDLNR N AR = SDPDLNR N DLNR = SDPDLNR N
SBSLNR where the class of distributive lattices of near-rings is abbreviated as
DLNR [82].

Proof. (i) follows from Theorem 2.23 [81] and Theorem 5.1.12.
Theorem 2.35 [81] together with Theorem 5.1.17 implies (47).
Now a strong bi-semilattice of near-rings is additively regular (¢f. Theorem 2.23

[81]) as well as an E"-inversive strong bi-semilattice of additively cancellative semin-
earrings. So in view of Theorem 5.1.12 we obtain SBSLNR C FSDPBSLNR N AR.

117



Chapter 5. Full Subdirect products of a Bi-semilattice and a Zero-symmetric Near-ring

Again in presence of additive regularity, an ET-inversive strong bi-semilattice of addi-
tively cancellative seminearrings becomes a strong bi-semilattice of near-rings whence
the 1°¢ equality of (4ii) follows. By Corollary 3.10 [82], BSLNR C AR. Clearly, SB-
SLNR C BSLNR (c¢f. Corollary 3.10 [82] and Theorem 2.23 [81]). From (i) of this
theorem, SBSLNR C FSDPBSLNR. These relations together with the 1%¢ equality
of (#74) imply the 2" equality of (iii).

The 1% equality and the 2" equality of (iv) can be proved in an analogous way to
those of (#4i) by using Theorem 5.1.17 instead of Theorem 5.1.12; property (i) instead
of property (i) of this theorem, Theorem 3.13 [82] instead of Corollary 3.10 [82] and
Theorem 2.35 [81] instead of Theorem 2.23 [81]. The 3" equality of (iv) follows from
the 1% equality of (iv) and the fact that SDLNR C SBSLNR C AR (¢f. Theorem
2.23 [81)). O

5.3 Near-ring congruences

Definition 5.3.1. A non-empty subset I of a seminearring S is said to be a generalised

strong full reflexive (left, right) k-ideal if I satisfies the following conditions :
(7) (I,4) is a full, reflexive subsemigroup of (.S, +),
(79) I is a (left, right) k-ideal,

(71) for s,a € S and w € I there exist i1, 9, i3, i4 € I such that s(a+w)+1i; = ix+sa

and s(w + a) + i3 = i4 + sa.

Remark 5.3.2. Let S be a full subdirect product of a bi-semilattice and (zero-
symmetric) near-ring or a subdirect product of a distributive lattice and a (zero-
symmetric) near-ring. Then in view of Theorems 5.1.12, 5.1.16, 5.1.17 and 5.1.18,
S is an E'-inversive seminearring. Let I C S. Then in view of Definition 4.1.15, Def-
inition 5.3.1 and Proposition 4.3.6, I is a generalised strong full reflexive (left, right)
k-ideal if and only if I is a generalised strong dense reflexive (left, right) k-ideal.

Theorem 5.3.3. Suppose S is a full subdirect product of a bi-semilattice and a (zero-
symmetric) near-ring or a subdirect product of a distributive lattice and a (zero-symmetric)

near-ring. Then there exist inclusion preserving bijective correspondences between

(i) the set of all generalised strong full reflexive right k-ideals of S and the set of all

near-ring congruences on .S,
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(ii) the set of all generalised strong full reflexive k-ideals of S and the set of all

zero-symmetric near-ring congruences on S
via I — p, where a p, b if and only if there exists x € S such that a +x,b+x € I.
Proof. Tt follows from Theorem 4.1.18 and Remark 5.3.2. O

Remark 5.3.4. Let S be a full subdirect product of a bi-semilattice and a zero-
symmetric near-ring or a subdirect product of a distributive lattice and a zero-symmetric
near-ring. Now let p be a near-ring congruence on S. Then S/p becomes a zero-
symmetric near-ring. Therefore a near-ring congruence on S is a zero-symmetric near-
ring congruence on S. Again if I is a generalised strong full reflexive right k-ideal of S,
then p, is a near-ring congruence on S whence a zero-symmetric near-ring congruence
onS. Then I = {x € S: (r,x+ x) € p,} becomes a generalised strong full reflexive
k-ideal of S. Therefore I is a generalised strong full reflexive right k-ideal of S if and

only if I is a generalised strong full reflexive k-ideal of S.

The following result is the counter part of Theorem 4.3.9 for the seminearrings
which are full subdirect products of a bi-semilattice and a (zero-symmetric) near-ring

or subdirect products of a distributive lattice and a (zero-symmetric) near-ring.

Theorem 5.3.5. Suppose (S, +,-) is a full subdirect product of a bi-semilattice and a
(zero-symmetric) near-ring or a subdirect product of a distributive lattice and a (zero-

symmetric) near-ring. Then

(i) the lattice of all generalised strong full reflexive right k-ideals of S and the lattice

of all near-ring congruences on S are isomorphic,

(ii) the lattice of all generalised strong full reflexive k-ideals of S and the lattice of

all zero-symmetric near-ring congruences on S are isomorphic.

Proof. In view of (v) of Theorem 4.3.7 and Remark 5.3.2, the set of all generalised
strong full reflexive (right) k-ideals of S under set inclusion forms a lattice where for
any two generalised strong full reflexive (right) k-ideals I, J of S, IANJ =1NJ
and IV J =T+ J. Since S is an E*-inversive seminearring, (vii) of Theorem 4.3.7
shows that the set of all (zero-symmetric) near-ring congruences on S becomes a lattice
under set inclusion where for any two (zero-symmetric) near-ring congruences p,y on
S, pANy=pN~yand pV~y=po~y. The rest of the proof follows in view of Proposition
1.2.10 and Theorem 5.3.3. ]
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The following result is the counter part of Theorems 4.3.10 and 4.3.12 for the sem-
inearrings which are full subdirect products of a bi-semilattice and a (zero-symmetric)
near-ring or subdirect products of a distributive lattice and a (zero-symmetric) near-
ring. In this result we mainly study the modularity, distributivity and completeness of
the lattices obtained in Theorem 5.3.5.

Theorem 5.3.6. Suppose (S, +,-) is a full subdirect product of a bi-semilattice and a
(zero-symmetric) near-ring or a subdirect product of a distributive lattice and a (zero-

symmetric) near-ring. Then the following are true.

(i) The set of all generalised strong full reflexive right k-ideals of S and the set of

all near-ring congruences on S become modular lattices.

(it) The set of all generalised strong full reflexive k-ideals of S and the set of all

zero-symmetric near-ring congruences on S become modular lattices.

(iii) If IJ = INJ for all generalised strong full reflexive right k-ideals I, J of S, then
the set of all generalised strong full reflexive right k-ideals of S and the set of all

near-ring congruences on S become distributive lattices.

(iv) If IJ =10J for all generalised strong full reflexive k-ideals I, J of S, then the
set of all generalised strong full reflexive k-ideals of S and the set of all zero-

symmetric near-ring congruences on S become distributive lattices.

(v) The lattice of all generalised strong full reflexive right k-ideals of S and the lattice

of all near-ring congruences on S are complete.

(vi) The lattice of all generalised strong full reflexive k-ideals of S and the lattice of

all zero-symmetric near-ring congruences on S are complete.

Proof. We omit the proof since (7) and (é¢) follow in a similar manner to the proof of
Theorem 2.3.17, (4i7), (iv) hold in a similar manner to the proof of Theorem 2.3.22 and

(v), (vi) hold in a similar manner to the proof of Theorem 4.3.12. O

Theorem 5.3.7. Suppose (S, +,) is a full subdirect product of a bi-semilattice and a

near-ring or a subdirect product of a distributive lattice and a near-ring. Then

(i) ET(S) is the smallest generalised strong full reflexive right k-ideal of S and

(it) o = {(a,b) € Sx S :a+b € ET(S) for some (all) b € WT(b)} is the least

near-ring congruence on S.
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Proof. (i) Let S be a full subdirect product of a bi-semilattice B and a near-ring N.
Then E*(S) = {(e,0) € Bx N : e € B}. Clearly, ET(S5) is a full subsemigroup of
(S,+). Let &,y € S such that x +y € ET(S). Then x = (e1,a), y = (€3, —a) for some
e, € Band a € N. Now y+x = x4y = (e; + e2,0). Therefore y + 2 € E*(S5)
whence E*(S) is a reflexive subsemigroup of (S, +).

Let w € ET(S) and s € S. Then w = (e,0) and s = (f,c) for some e, f € B and
¢ € N. Now ws = (e,0)(f,c) = (ef,0). Therefore ws € ET(S) whence E*(S) is a
right S-ideal.

Let g € ET(S) and t € S such that g+t € ET(S). Then g = (e,0) and ¢t = (f, n)
for some e, f € Band n € N. Now g+t = (e+ f,n). Since g+t € E*(S), n = 0.
Therefore t € E*(S) whence ET(S) is a right k-ideal.

Now let g € ET(S) and s,z € S. Then g = (e,0), s = (f1,b) and x = (fs, 2) for
some e, f1, fo € Band b,z € N. Now

s(g+ ) = s(x+9) = (f1,0)(e + fo, 2) = (fle + f2),b2)
and sx = (f1f2,bz). Then
s(g+ )+ (fie,0) = (fie,0) + sz = s(z + g) + (f1€,0)

where (fie,0) € ET(S). Therefore E*(S) is the smallest generalised strong full reflex-
ive right k-ideal of S.

(77) Since ET(S) is a generalised strong full reflexive right k-ideal of S, in view
of () of Theorem 5.3.3, Pt s) B )
if and only if there exists © € S such that a + x, b+ 2+ € ET(S). Again E*(S) a

is a near-ring congruence on S where (a,b) € p

reflexive and closed subsemigroup of (S, 4). Then in view of Definitions 1.1.16 and
1.1.2, (S,+) is an F-unitary E-inversive semigroup. Now in view of Proposition 5.3
[31], 0 = {(a,b) € S x S:a+V € ET(S) for some (all) b € W*(b)} is the least group

congruence on (S,4) and o = Therefore o is the least near-ring congruence on

Pe+isy
the seminearring S.

Now a subdirect product of a distributive lattice D and a near-ring N is again a full
subdirect product of the bi-semilattice D and the near-ring N. Then for a subdirect

product of a distributive lattice and a near-ring, (i) and (i¢) follow similarly. O

Theorem 5.3.8. Suppose (S,+,-) is a full subdirect product of a bi-semilattice and
a zero-symmetric near-ring or a subdirect product of a distributive lattice and a zero-

symmetric near-ring. Then
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(i) ET(S) is the smallest generalised strong full reflexive k-ideal of S and

(it) o = {(a,b) € Sx S :a+b € ET(S) for some (all) ¥ € WT(b)} is the least

zero-symmetric near-ring congruence on S.

Proof. We omit the proof since it follows from Remark 5.3.4 and Theorem 5.3.7. [J
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Some Remarks and Scope of Further Study

We list below some remarks and observations which are mainly related with some

possible extension of the research work undertaken in this thesis.

1. In almost all results of Chapter 4, we have considered some restricted type of
seminearrings, viz., ‘seminearring with left local units’, ‘E*-inversive seminear-
ring’ so that the set of all generalised strong dense reflexive right k-ideals (k-
ideals) and the set of all near-ring (zero-symmetric near-ring) congruences form
lattices (c¢f. Remark 4.3.8). It will be nice if one can find some wider class of
seminearrings where the above sets always form lattices and consequently the

correspondences of Theorem 4.1.18 become lattice isomorphisms.

2. In Chapter 5, as analogues of Mitsch’s Theorem 14 [78] (¢f. Theorem 1.1.33)
as well as of Ghosh’s Theorem 2.3 [29] (¢f. Theorem 1.3.14), Theorems 5.1.12,
5.1.16, 5.1.17 and 5.1.18 characterize four classes of seminearrings. But, only for
the two classes of seminearrings, i.e., full subdirect products of a bi-semilattice
and a zero-symmetric near-ring (obtained in Theorems 5.1.16) and subdirect
products of a distributive lattice and a zero-symmetric near-ring (obtained in
5.1.18), we have been able to obtain analogue of Ghosh’s Theorem 2.10 [29]
(c¢f. Theorem 1.3.15) viz., Theorems 5.1.27, 5.1.29. A possible future work is to
obtain analogue of Ghosh’s Theorem 1.3.15 for the classes of seminearrings which
are full subdirect products of a bi-semilattice and a near-ring (characterized in
Theorem 5.1.12) and which are subdirect products of a distributive lattice a
near-ring (characterized in Theorem 5.1.17). It would also be nice to investigate
about the forms of the Theorems 5.1.12, 5.1.16, 5.1.17, 5.1.18, 5.1.27, 5.1.29 if

the seminearrings are replaced by distributively generated seminearrings.
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3. In view of Observation 5.1.5, a bi-semilattice (B, +, -) is a semiring where (B, +)
and (B,-) are semilattices. So in Chapter 5, we mainly characterize different
classes of seminearrings which are subdirect products of a semiring and a sem-
inearring. Replacing a bi-semilattice by an idempotent seminearring I (i.e., a
seminearring (I, +,-) where (I, +) is a semilattice and (7,-) is a band) or by a
band seminearring B (i.e., a seminearring (B, +,) where (B, +) and (B, ") are

both bands), one can characterize the classes of seminearrings which are

(i) full subdirect product of an idempotent seminearring and a (zero-symmetric)

near-ring and

(ii) full subdirect product of a band seminearring and a (zero-symmetric) near-

ring.

4. It is well known that for two topological spaces X and G, T(X, G), the family of
all continuous functions from X into GG can be given an algebraic structure by
defining point-wise operations, provided G has an algebraic structure compatible
with the topological structure. However, even in the absence of any algebraic
structure on G one can, in a natural way, equip T'(X, G) with an algebraic struc-
ture as follows. For each continuous function « from G into X there corresponds
an associative binary operation on T'(X,G) defined by fg = f o a o g for any
f,9 € T(X,G) where f o aog denotes the usual composition of functions. The
resulting semigroup is denoted by T'(X, G, «) [70]. Moreover, if G is an additive
topological group and X = G then the semigroup 7T(X, G, @) becomes the near-
ring of all continuous self-maps of G, denoted by N (G, G, «), where the addition
is defined point-wise [70]. Analogue of Magill’s [70] problem can be formulated
in our setting by replacing the additive topological group GG by an additive topo-
logical semigroup S which in turn makes N (S, S, «) a seminearring. The study
of algebraic as well as of topological aspects of this type of seminearrings may be

a possible future work.

5. Following the formulation of minimum group congruence on inverse semigroup
and regular semigroup, we have obtained least near-ring congruence (¢f. Theorem
2.2.15, Corollary 2.2.16 and Theorem 2.2.17) on additively regular seminearrings
and additively inverse seminearrings. In a similar manner adopting the formu-
lation of maximum idempotent separating congruence on inverse semigroup one

can formulate maximum additive idempotent separating congruence in a class of
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additively regular seminearrings.

. We have studied the lattice of near-ring congruences and that of zero-symmetric
near-ring congruences on £ -inversive seminearrings (c¢f. Theorems 4.3.9, 4.3.10).
A possible future work is to study additively regular congruences and additively
completely simple congruences on ET-inversive seminearrings in order to obtain
analogues of some results connecting regular and completely simple congruences

with its kernel and trace on E-inversive semigroups (cf. [30, 69]).
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A

I

Index of Symbols

A (M, +) = (M/r],4),s — [s],#, page 71

(End(S)) Distributively generated subseminearring generated by End(S) in M(S) for an

aVb
alb

a

E(5)

additively written semigroup S, page 27

The set of all positive integers, page 12

The set of all positive integers with 0, page 80

The set of all non-negative real numbers, page 77

Transitive closure of a relation p on a non-empty set, page 12
sup{a, b} (cf. Definition 1.2.4) in a poset, page 19

inf{a, b} (cf. Definition 1.2.4) in a poset, page 19

For a € S the unique element satisfying a + a* + a = a and a* + a + a* = a™ where

(S,+) is an inverse semigroup, page 14

For a € S, the unique additive inverse where S is an additively inverse seminearring ,

page 35

{e € EY(S) :a+e =aandag = egforall g € E*(S)} for an element a of a

seminearring S, page 104

The set of all idempotents of a semigroup, page 14

ET(S) The set of all additive idempotents of a seminearring or a semiring S, page 28

E*(S) The set of all multiplicative idempotents of a seminearring or a semiring S, page 28
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End(S) The set of all endomorphisms of an additively written semigroup S, page 27
M(S) The seminearring of all self maps of an additively written semigroup S, page 26
My(S) The seminearring of zero fixing self maps of an additively written semigroup S, page 26

M.(S) The seminearring of all constant self maps of an additively written semigroup S,

page 27
T, a ry bif and only if a,b € x + I 4+ y for some x,y € M, page 71
r Transitive closure of the relation r,, page 71
V(a) The set of all inverses of an element a of a semigroup, page 14

V*(a) The set of all additive inverses of an element a of a seminearring S i.e., the set

{reS:a=a+x+a,x=x+a+ z}, page 35

W (a) The set of all additive weak inverses of an element a of a seminearring S i.e., the set

{reS:x=x+a+x}, page 88
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S-ideal, 28
k-closure
of seminearring ideal , 47
of semiring ideal, 22
k-ideal
of seminearring, 28

of semiring, 22

band, 13

left normal, 13

normal, 13

right normal, 13
bi-semilattice, 97

meet-distributive, 97
bi-semilattice congruence, 98
bi-semilattice of seminearrings, 98

bottom element, 18

closed subsemigroup, 11
closure

of right S-ideal, 47, 80

of S-ideal, 47, 80
congruence

on semigroup, 11

on seminearring, 29

dense subsemigroup, 11

137

Subject Index

distributive element, 25, 27

distributive lattice of rings, 22

E-inversive semigroup, 13
E-semigroup, 13
E-unitary semigroup, 14

endomorphism near-ring, 25

full k-ideal, 36

full ideal, 35

full left k-ideal, 36

full left ideal, 35

full right k-ideal, 36

full right ideal, 35

full subdirect product
semigroup, 17
seminearring, 99

semiring, 23

generalised strong dense reflexive
k-ideal, 75
left k-ideal, 75
right k-ideal, 75

generalised strong full reflexive
k-ideal, 118
left k-ideal, 118
right k-ideal, 118



greatest lower bound, 19
group congruence, 11, 16

groupoid, 10

halfring, 22
hemiring, 22

idempotent element, 13
additive, 28
multiplicative, 28

infimum, 19

inverse, 13

join, 19
join-preserving map, 19

join-semilattice, 97
kernel, 30

lattice, 19
complete, 20
distributive, 20
homomorphism, 19
isomorphism, 19
modular, 20

least upper bound, 19

left S-ideal, 27

left k-ideal, 28

left congruence, 28

left ideal of semiring, 22

left normal congruence, 38

lower bound, 19

meet, 19
meet-preserving map, 19
meet-semilattice, 97

monoid, 10

near-ring, 24

distributively generated, 25

ideal, 25

left, 24

right, 24

zero-symmetric, 24
near-ring congruence, 29
near-semiring, 26
normal congruence, 38
normal full k-ideal, 36
normal full left k-ideal, 36
normal full right k-ideal, 36
normal ideal, 36
normal left ideal, 36
normal right ideal, 36
normal subsemigroup, 70

normal subseminearring, 29

order embedding map, 18
order isomorphism, 18

order preserving map, 18

partial order, 18
poset, 18
property D, 28
property Q, 72

reflexive full k-ideal, 36
reflexive full left k-ideal, 36
reflexive full right k-ideal, 36
reflexive ideal, 35

reflexive left ideal, 35
reflexive right ideal, 35
reflexive subsemigroup, 11
right S-ideal, 27

right k-ideal, 28

right congruence, 28

right ideal of semiring, 22
right invariant, 30

right normal congruence, 38



semigroup, 10 ideal, 22

closure operator, 11 idempotent element, 22

homomorphism, 12 multiplicatively commutative, 21

inverse, 13 strong, 56

regular, 13 strong
semilattice, 13 bi-semilattice of seminearrings, 99
semilattice congruence, 17 distributive lattice of seminearrings, 99
semilattice of semigroups, 17 distributive lattice of semirings, 23
seminearring, 26 semilattice of semigroups, 17

ET-inversive, 88 strong dense ideal, 74

isomorphism, 30 strong ideal, 72

left distributive, 26 sturdy semilattice of semigroups, 17

zero-symmetric, 26 subdirect product

additively E-inversive, 88 semigroup, 17

additively inverse, 28 seminearring, 99

additively regular, 28 semiring, 23

distributively generated, 27 sublattice, 19

homomorphism, 29 subnear-ring, 25

ideal, 30 subsemigroup, 11

k-regular, 86 full, 14

multiplicatively regular, 28, 86 self conjugate, 14

rightt distributive, 26 subseminearring, 26

with left local units, 78 subsemiring, 21

with local units, 78 supremum, 19

with right local units, 78

with zero, 26 top element, 18

semiring, 21 transitive closure, 12
additively commutative, 21 upper bound, 19
commutative, 21

E-inversive, 23 zero-symmetric near-ring congruence, 29
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