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Preface

The present thesis entitled, “Characterization of some solitons within the

framework of various differentiable manifolds” consists of five chapters. The

first chapter provides an introduction to different types of smooth manifolds

and solitons.

In chapter two, first we study conformal Ricci soliton on generalized Sasakian

space form and characterize the soliton in terms of shrinking steady and ex-

panding. We consider the cases when the potential vector field is, pointwise

collinear with the Reeb vector field and when it is of gradient type.

Next, we characterize almost coKähler manifolds admitting conformal Ricci

soliton. We also investigate conformal Ricci soliton on a (k, µ)-almost coKähler

manifold and prove the non-existence of conformal gradient Ricci soliton in

this setup.

Then, we give some characterization of conformal Ricci soliton on (LCS)n-

manifolds and also consider the cases when the manifold is ξ-projectively flat,

ξ-conharmonically flat and ξ-concircularly flat. After that, conformal Ricci

soliton on (LCS)n-manifolds satisfying certain curvature conditions are stud-

ied.

Next, we prove that if an warped product of two Riemannian manifolds

admits a conformal Ricci soliton, then the base and the fiber both admit

conformal Ricci soliton. Then, the converse of this result is discussed when the

potential function is of gradient type. Also, we show that an warped product
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admitting conformal Ricci soliton is an Einstein one provided the potential

vector field is Killing or concurrent. Finally, some applications of conformal

Ricci soliton on generalized Robertson Walker spacetime are discussed.

In chapter three, we consider ϵ-Kenmotsu manifold admitting conformal

η-Ricci soliton. Then, conformal η-Ricci solitons are characterized on ϵ-

Kenmotsu manifold with Codazzi type, cyclic parallel and cyclic η-recurrent

Ricci tensor and satisfying certain curvature conditions. After that, we study

ϵ-Kenmotsu manifold admitting conformal η-Ricci soliton with torse-forming

and gradient type potential vector field.

Next, we study conformal η-Ricci soliton on almost pseudo symmetric

Kählerian spacetime manifold and characterize the nature of the soliton when

the manifold is projectively flat and conharmonically flat. Finally, we study

gradient conformal η-Ricci soliton on Kählerian spacetime manifold.

In chapter four, first we study some curvature properties of 3-dimensional

quasi-Sasakian manifold with respect to Zamkovoy connection and then, the

nature of Ricci soliton on 3-dimensional quasi-Sasakian manifold with respect

to Zamkovoy connection is characterized.

Next, we study the nature of η-Ricci-Yamabe soliton on almost pseudo

symmetric Kählerian spacetime manifold. Finally, it is shown that on a gen-

eralized Sasakian space form, a quasi-Yamabe soliton, with potential vector

field pointwise collinear to the Reeb vector field, reduces to a Yamabe soliton.

In chapter five, we characterize η-Einstein soliton on a 3-dimensional trans-

Sasakian manifold. Then, η-Einstein solitons are studied on 3-dimensional

trans-Sasakian manifold with Codazzi type and cyclic parallel Ricci tensor

and satisfying some curvature conditions. Finally, η-Einstein solitons with

torse forming vector field are characterized on 3-dimensional trans-Sasakian

manifold.
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1
Introduction

1.1 Introduction to manifolds

In the study of geometry, a manifold is a topological space that mimics Euclidean space

locally around each point. Each point on a n-dimensional manifold has a neighbour-

hood that is homeomorphic to the n-dimensional Euclidean space. Lines and circles are

examples of one-dimensional manifolds. Surfaces are another name for two-dimensional

manifolds. The plane, sphere, and torus are all examples of objects that can be embedded

(made without self-intersections) in three-dimensional real space. While a manifold may

resemble Euclidean space locally, it may not do so globally. The sphere’s surface, for

example, is not an Euclidean space. As solution sets of systems of equations and graphs

of functions, manifolds emerge spontaneously. Since it permits more sophisticated struc-

tures to be represented and understood in terms of the relatively well-known features of

Euclidean space, the concept of a manifold is important to many sections of geometry

and current mathematical physics.

Additional features may be present in manifolds. Differentiable manifolds are an

important subclass of manifolds. Calculus on manifolds is possible thanks to this differ-

entiable structure. Distances and angles can be measured using a Riemannian metric on

a manifold. In the Hamiltonian formalism of classical mechanics, symplectic manifolds

serve as phase spaces, whereas four-dimensional Lorentzian manifolds model spacetime in

general relativity.

A differentiable manifold is a type of manifold that is comparable enough to an

Euclidean space to allow calculus to be performed on it. A collection of charts, usually
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called as an atlas, can be used to describe any manifold. Since each chart sits within an

Euclidean space to which the standard principles of calculus apply, ideas from calculus can

therefore be applied while working within the various charts. Calculations performed in

one chart are valid in any other differentiable chart if the charts are adequately compatible

(that is, the transition from one chart to another is differentiable or smooth).

A topological manifold with a globally defined differential structure is called a differ-

entiable manifold. Any topological manifold can be equipped with a differential structure

locally with the help of the homeomorphisms in its atlas and the standard differentiable

structure on an Euclidean space. From the local coordinate systems induced by the

homeomorphisms, a global differentiable structure can be induced by taking their compo-

sition on chart intersections in the atlas as differentiable functions on the corresponding

Euclidean space.

We start with, some curvature tensors which play an important role in the study of

differential geometry and are used frequently throughout this thesis.

The projective curvature has an one-to-one correspondence between each coordinate

neighbourhood of an n-dimensional Riemannian manifold and a domain of Euclidean

space such that there is a one-to-one correspondence between geodesics of the Riemannian

manifold with the straight lines in the Euclidean space. A transformation of a Riemannian

manifold M of dimension n, which transforms every geodesic circle of M into a geodesic

circle, is called a concircular transformation.

Definition 1.1.1. On an n-dimensional Riemannian (or, pseudo-Riemannian) manifold

(M, g) the projective curvature tensor P [100], the concircular curvature tensor C [97],

the conharmonic curvature tensor H [99], the W2-curvature tensor [74], are defined by

P (X, Y )Z = R(X, Y )Z − 1

(n− 1)
[g(QY,Z)X − g(QX,Z)Y ], (1.1.1)

C(X, Y )Z = R(X, Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ], (1.1.2)

H(X, Y )Z = R(X, Y )Z − 1

n− 2
[g(Y, Z)QX − g(X,Z)QY

+S(Y, Z)X − S(X,Z)Y ] (1.1.3)

W2(X, Y )Z = R(X, Y )Z +
1

n− 1
[g(X,Z)QY − g(Y, Z)QX], (1.1.4)

where r is the scalar curvature, Q is the Ricci operator given by g(QX, Y ) = S(X, Y ),
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S denotes the Ricci tensor and R is the Riemannian curvature tensor defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (1.1.5)

for all vector fields X, Y, Z ∈ χ(M), where χ(M) denotes the set of all smooth vector

fields on the manifold M .

In differential geometry and mathematical physics, an Einstein manifold is a Rieman-

nian (or pseudo-Riemannian) differentiable manifold whose Ricci tensor is proportional

to the metric. M. C. Chaki and R. K. Maity [23] introduced the concept of η-Einstein

(or, quasi-Einstein) manifold as a natural generalization of Einstein manifolds.

Definition 1.1.2. A Riemannian (or, pseudo-Riemannian) manifold (M, g) of dimension

n is said to be an η-Einstein manifold if its Ricci tensor S satisfies

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (1.1.6)

for all X, Y ∈ χ(M) and smooth functions a, b on the manifold (M, g) and η is a 1-form

given by g(X, ξ) = η(X), where ξ is a unit vector field.

Definition 1.1.3. A Riemannian (or, pseudo-Riemannian) manifold (M, g) of dimension

n with non-zero Ricci tensor S is said to have,

i) Codazzi type [44] Ricci tensor if,

(∇XS)(Y, Z) = (∇Y S)(X,Z), (1.1.7)

ii) cyclic parallel [44] Ricci tensor if,

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0, (1.1.8)

for all vector fields X, Y, Z ∈ χ(M).

Definition 1.1.4. A smooth vector field V on a Riemannian (or, pseudo-Riemannian)

manifold (M, g) of dimension n is said to be a conformal vector field [99, 100] if

LV g = 2ρg, (1.1.9)

for some smooth function ρ on M and LV g denotes the Lie derivative of the metric g

along the direction of the vector field V .
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In particular, if the smooth function ρ vanishes, i.e., if, LV g = 0, then the vector field

V is called a Killing vector field. In this case, V is also called an infinitesimal isometry,

as the local 1-parameter group of transformations generated by V in a neighbourhood of

each point of M consists of local isometries.

K. Yano [97] investigated concircular vector fields to study concircular mappings,

which are basically conformal mappings that preserve geodesic circles. In Mathematical

Physics and General Relativity concircular vector fields have many applications. B.Y.

Chen in [24] proved that a Lorentzian manifold is a generalised Robertson-Walker space-

time if and only if it admits a timellike concircular vector field.

Definition 1.1.5. [24] A vector field V on a Riemannian (or, pseudo-Riemannian) man-

ifold M is called a concircular vector field, if the vector field V satisfies

∇XV = αX, (1.1.10)

for all vector fields X ∈ χ(M) and where α is a non-trivial smooth function on M .

Furthermore, the vector field V is called a concurrent vector field [25], if the smooth

function α is constant function one, i.e., if

∇XV = X. (1.1.11)

for all vector fields X ∈ χ(M).

Definition 1.1.6. A smooth vector field V on a Riemannian (or, pseudo-Riemannian)

manifold (M, g) of dimension n is said to be a torse-forming vector field [99] if

∇XV = fX + γ(X)V, (1.1.12)

where f is a smooth function and γ is a 1-form.

We start with the definition of contact manifold. D. E. Blair [15] introduced the

notion of an almost contact manifold, given by the following definition:

Definition 1.1.7. Let M be a (2n+1)-dimensional diffferentiable manifold and ϕ, ξ, η be

a field of endomorphisms of the tangent spaces TM as a (1, 1)-tensor field, a vector field

and a 1-form on M respectively. If this triplet (ϕ, ξ, η) satisfies

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (1.1.13)
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for all vector fields X, Y ∈ χ(M) and I is the identity endomorphism, then (ϕ, ξ, η) is

called an almost contact structure and M is called an almost contact manifold. Further-

more, if the manifold M is equipped with a Riemmanian metric g, then the almost contact

manifold is called an almost contact metric manifold or an almost contact Riemannian

manifold with almost contact metric structure (ϕ, ξ, η, g).

Theorem 1.1.1. For an almost contact metric manifold the following relations hold:

η(X) = g(X, ξ), ϕ(ξ) = 0, η(ϕX) = 0, (1.1.14)

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ), (1.1.15)

g(X,ϕY ) + g(Y, ϕX) = 0, (1.1.16)

for all vector fields X, Y ∈ χ(M).

Definition 1.1.8. A smooth differentiable manifold M2n+1 with 1−form η is said to be a

contact manifold if η∧ (dη)n ̸= 0. In particular, η∧ (dη)n ̸= 0 is a volume element on M .

The structure (ϕ, ξ, η, g) on M2n+1 is called contact metric structure or contact Rieman-

nian structure and the manifold M2n+1 with a contact metric structure (ϕ, ξ, η, g) is said

to be a contact metric manifold or contact Riemannian manifold.

The fundamental 2-form Φ on an almost contact metric manifold is defined as:

Φ(X, Y ) = g(X,ϕY ) = dη(X, Y ), (1.1.17)

for all vector fields X, Y ∈ χ(M).

Definition 1.1.9. A smooth vector field V on a contact metric manifold is said to be an

infinitesimal contact transformation [90] if LV η = hη for some smooth function h. In

particular, if h = 0, then V is said to be a strict infinitesimal contact transformation.

Now we mention some of the important contact manifolds which forms the basis of

this thesis. These manifolds have been used extensively throughout the thesis.

Definition 1.1.10. Let M be a (2n+1) dimensional contact metric manifold with contact

metric structure (ϕ, ξ, η, g). If the contact metric structure of M is normal, then M is

said to have Sasakian structure or normal contact metric structure. The manifold M is

called the Sasakian manifold or normal contact metric manifold.

5



We recall the following theorems on almost contact metric structure:

Theorem 1.1.2. An almost contact metric structure (ϕ, ξ, η, g) in M is called a Sasakian

structure if

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X.

for all vector fields X, Y ∈ χ(M) and ∇ is the Levi-Civita connection.

K. Kenmotsu [55] introduced a special class of contact Riemannian manifolds, satis-

fying certain conditions, which was later named as Kenmotsu manifold. Kenmotsu proved

that a locally Kenmotsu manifold is a warped product I×fN of an interval I and a Kähler

manifold N with warping function f(t) = ket, where k is a non-zero constant.

Definition 1.1.11. If the Levi-Civita connection ∇ of an almost contact metric manifold

(M, g, ϕ, ξ, η) satisfies

(∇Xϕ)Y = g(ϕX, Y )− η(Y )ϕX,

for all X, Y ∈ χ(M), then the manifold (M, g, ϕ, ξ, η) is said to be a Kenmotsu manifold.

In differential geometry, the sectional curvature of a Riemannian manifold plays a

very important role. A Sasakian manifold with constant ϕ-sectional curvature c is called

a Sasakian space form. Similarly, a Kenmotsu space form is a Kenmotsu manifold with

constant ϕ-sectional curvature c. As a natural generalization of these spaces, P. Alegre,

D. E. Blair and A. Carriazo [3] introduced the concept of generalized Sasakian space form.

Definition 1.1.12. An almost contact metric manifold (M, g, ϕ, ξ, η) is called a general-

ized Sasakian space form if there exist three smooth functions f1, f2, f3 on M such that

the curvature tensor R satisfies

R(X, Y )Z = f1[g(Y, Z)X − g(X,Z)Y ]

+f2[g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ]

+f3[g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

+η(X)η(Z)Y − η(Y )η(Z)X], (1.1.18)

for all vector fields X, Y, Z ∈ χ(M).

In particular, for f1 = c+3
4
, f2 = f3 = c−1

4
M becomes a Sasakian space form. Again, if

f1 = c−3
4
, f2 = f3 = c+1

4
then M is a Kenmotsu space form. M is a cosymplectic space

form if f1 = f2 = f3 =
c
4
.
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In [4] the authors constructed various examples of generalized Sasakian space forms

and showed that any three dimensional trans-Sasakian manifold under certain conditions

is a generalized Sasakian space form. Also in [35], it has been proved that a conformally

flat generalized Sasakian space form is locally ϕ-symmetric if and only if f1 is constant.

The notion of trans-Sasakian manifold was introduced by J. A. Oubina [70] as a

generalization of Sasakian and Kenmotsu manifolds. Later J. C. Marrero [60] completely

characterized the local structures of trans-Sasakian manifolds of dimension n ≥ 5 and

showed that, a trans-Sasakian manifold of dim ≥ 5 is either cosymplectic or α-Sasakian

or β-Kenmotsu. So, proper trans-Sasakian manifold exists only for dimension 3. The

geometry of the almost Hermitian manifold (M × R, G, J) gives rise to the geometry

of the almost contact metric manifold (M, g, ϕ, ξ, η), where G is product metric of the

product manifold M × R with the complex structure J defined by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
),

for all X ∈ χ(M) and smooth function f on the product manifold M × R.

Definition 1.1.13. An almost contact metric manifold (M, g, ϕ, ξ, η) is called a trans-

Sasakian manifold if the product manifold (M × R, G, J) belongs to the class W4 [45].

Equivalently, the expression for which an almost contact metric manifold (M, g, ϕ, ξ, η)

becomes a trans-Sasakian manifold is given by

(∇Xϕ)(Y ) = α[g(X, Y )ξ − η(Y )X] + β[g(ϕX, Y )ξ − η(Y )ϕX], (1.1.19)

for all X, Y ∈ χ(M) and for some smooth functions α, β on the manifold M . Then such

kind of manifold is called a trans-Sasakian manifold of type (α, β). In particular trans-

Sasakian manifolds of type (0, 0), (α, 0) and (0, β) are called cosymplectic, α-Sasakian and

β-Kenmotsu manifolds respectively.

In 1967, D. E. Blair [14] introduced the notion of quasi-Sasakian manifold as a normal

almost contact metric manifold with closed fundamental 2-form ϕ, with an intention to

unify the concepts of Sasakian and cosymplectic structures. He also proved that a quasi-

Sasakian structure is locally the product of a Sasakian manifold and a Kähler manifold.

Later, S. Tanno [92], S. Kanemaki [54], J. A. Oubina [70] and many other mathematicians

studied quasi-Sasakian manifolds and developed some very important properties of these

structures.
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Definition 1.1.14. An almost contact metric manifold M is said to be a quasi-Sasakian

manifold if the almost contact structure (ϕ, ξ, η) is normal and the fundamental 2-form Φ

is closed (i.e., dΦ = 0).

Z. Olszak [67] proved that, in a conformally flat three-dimensional Quasi-Sasakian

manifold if the structure function β is constant, then (a) the manifold is a cosymplectic

manifold, which is locally a product of the real line R and a two-dimensional Kähler

space of constant Gauss curvature, or, (b) the manifold is of constant positive curvature

and its structure can be obtained by a homothetic deformation of a Sasakian structure.

Lately, Quasi-Sasakian manifolds have become a subject of great interest not only to

mathematicians but also to theoretical physicists as it has wide applications in super

gravity and string theory [1, 42].

The notion of Zamkovoy connection was introduced by S. Zamkovoy [101] in 2009,

as a canonical paracontact connection whose torsion is the obstruction of paracontact

manifold to be a para-Sasakian manifold. He further showed that the torsion of this

connection vanishes exactly when the structure is para-Sasakian and also computed the

gauze transformation of its scalar curvature. Later, this connection was studied by various

researchers, within the framework of para-Kenmotsu manifold [9], Sasakian manifold [58]

and LP-Sasakian manifold [59] etc.

Definition 1.1.15. On an n-dimensional almost contact metric manifold (M, g, ϕ, ξ, η)

equipped with a (1, 1) tensor field ϕ, a vector field ξ, a 1-form η and a Riemannian metric

g, the Zamkovoy connection ∇∗ is given by

∇∗
XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ + η(X)ϕY, (1.1.20)

for all X, Y ∈ χ(M), where ∇ is the Levi-Civita connection on M .

The geometry of coKähler manifolds as a special case of almost contact manifolds

was studied primarily as an odd-dimensional analogy of the Kähler manifolds in complex

geometry. Now, it is known that the product manifold M2n+1 × R equipped with the

structure J , as defined earlier, becomes an almost complex structure and if this almost

complex structure J is integrable we say that the almost contact structure (M2n+1, ϕ, ξ, η)

is normal. Now we are in a position to define the concept of coKähler manifold [15, 22]

and almost coKähler manifold.
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Definition 1.1.16. An almost contact metric manifold is called an almost coKähler man-

ifold if both the 1-form η and the fundamental 2-form Φ are closed.

In particular, if the associated almost contact structure is normal or equivalently

∇ϕ = 0 or ∇Φ = 0: then the almost coKähler manifold is called a coKähler manifold.

Also, it is to be noted that, examples [27, 70] of almost coKähler manifolds exist, which

are not globally the product of a almost Kähler manifold and the real line.

Definition 1.1.17. An almost coKähler manifold is said to be a (k, µ)-almost coKähler

manifold if the characteristic vector field ξ belongs to the generalised (k, µ)-nullity distri-

bution i.e; if the Riemannian curvature tensor R satisfies

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (1.1.21)

for all X, Y ∈ χ(M) and for some smooth functions (k, µ).

Here, we call a (k, µ)-almost coKähler manifold with k < 0, a proper (k, µ)-almost

coKähler manifold. Proper almost coKähler manifolds with k and µ being constants

were introduced by H. Endo [39] and later Dacko and Olszak [30] further studied it

in generalised cases. According to Dacko and Olszak [30] a (k, µ, ν)-almost coKähler

manifold with k < 0 becomes a (−1, µ√
−k

)-almost coKähler manifold, under some D-

homothetic deformation.

We now give the definition of Lorentzian manifolds.

Definition 1.1.18. [69] A smooth connected paracompact Hausdorff n dimensional man-

ifold (M, g) is said to be a Lorentzian manifold if the metric g is Lorentzian metric,

i.e; M admits a smooth symmetric tensor field g of type (0, 2) such that for each point

p ∈ M , the tensor gp : TpM × TpM → R is a non-degenerate inner product of signature

(−,+,+, ...,+), where TpM denotes the tangent space of the manifold M at point p and

R is the real line.

A non-zero vector v ∈ TpM is said to be timelike(respectively; non-spacelike, null, space-

like) if it satisfies gp(v, v) < 0 (respectively;≤ 0,= 0, > 0).
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Definition 1.1.19. [61] Let M be an n-dimensional differentiable manifold equipped with

a triple (ϕ, ξ, η), where ϕ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form on M

such that,

ϕ2 = I + η ⊗ ξ, η(ξ) = −1, (1.1.22)

where I denotes the identity map on TpM . Then M admits a Loretzian metric g such

that,

g(ϕX, ϕY ) = g(X, Y ) + η(X)η(Y ), (1.1.23)

and M is said to admit a Lorentzian almost paracontact structure (g, ϕ, ξ, η). The manifold

M equipped with a Lorentzian almost paracontact structure (g, ϕ, ξ, η) is said to be a

Lorentzian almost paracontact manifold.

Definition 1.1.20. A Lorentzian almost paracontact manifold M equipped with the struc-

ture (g, ϕ, ξ, η) is said to be Lorentzian para Sasakian (in brief, LP-Sasakian) manifold, if

for all vector fields X, Y ∈ χ(M), the following relation holds,

(∇Xϕ)Y = g(ϕX, ϕY )ξ + η(Y )ϕ2X.

In 2003, A. A. Shaikh [78] introduced the notion of Lorentzian concircular structure

manifolds (or, briefly, (LCS)n-manifolds) which generalizes the notion of LP-Sasakian

manifolds introduced by Matsumoto [61]. After that, a lot of study has been carried out

on locally ϕ-symmetric (LCS)n-manifolds [80] and applications of (LCS)n-manifolds to

the general theory of relativity and cosmology [79].

Next, we give the definition of a concircular vector field in a Lorentzian manifold,

which is essential for the study of (LCS)n-manifolds.

Definition 1.1.21. Let (M, g) be a Lorentzian manifold and P is a vector field in M

defined by g(U, P ) = B(U), for any vector field U in M . Then the vector field P is said

to be a concircular vector field if

(∇UB)(Y ) = α[g(U, Y ) + ω(U)B(Y )],

where α is a non-zero scalar and ω is closed 1-form and ∇ denotes the covariant differ-

entiation operator of the manifold M with respect to the Lorentzian metric g.
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Let (M, g) be a Lorentzian manifold of dimension n and let M admits a unit timelike

concircular vector field ξ satisfying g(ξ, ξ) = −1. The vector field ξ is called the char-

acteristic vector field of the manifold (M, g). Then ξ being unit concircular vector field,

there exists a non-zero 1-form η such that

g(X, ξ) = η(X) and (∇Xη)(Y ) = α[g(X, Y ) + η(X)η(Y )], α ̸= 0. (1.1.24)

Also the non-zero scalar α satisfies the equation

(∇Xα) = (Xα) = dα(X) = ρη(X), (1.1.25)

where ρ is a scalar function given by ρ = −(ξα) and∇ denotes the covariant differentiation

operator of the manifold M with respect to the Lorentzian metric g. Now we consider a

(1, 1) tensor field ϕ given by, ϕX = 1
α
∇Xξ. Note that the tensor field ϕ is a symmetric

(1, 1) tensor field, called the structure tensor of the manifold.

Definition 1.1.22. Let (M, g) be an n-dimensional Lorentzian manifold. Then the man-

ifold (M, g) together with the unit timelike concircular vector field ξ, associated 1-form

η, an (1, 1) tensor field ϕ and the non-zero scalar function α is said to be a Lorentzian

concircular structure manifold (M, g, ξ, η, ϕ, α)(briefly, (LCS)n-manifold).

It is to be noted that, if we consider the scalar function α = 1, then we can obtain the

LP-Sasakian structure introduced by Matsumoto [61]. So, in that sense (LCS)n-manifolds

are a generalization of LP-Sasakian manifolds.

In 1915, Albert Einstein introduced the theory of general relativity which realizes

the gravitational field as the spacetime curvature and views the energy-momentum tensor

as its source. In fact the Einstein field equations forms the basis of astrophysics, plasma

physics and many other branches of the modern physics. Differential geometry plays an

important role to understand general relativity in the mathematical language with the

help of relativistic fluid models. In the study of general relativity the spacetimes can be

modeled as a special subclass of pseudo-Riemannian manifolds namely the 4-dimensional

Lorentzian manifolds. Einstein’s gravitational equation can describe the characteristics of

a perfect fluid inside spherical object which in turn helps us to understand the evolution

of the universe.
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A perfect fluid behaves isotropic in its rest frame and has no viscosity, shear stress

and because of that it is used to model an isotropic universe. The form of the energy-

momentum tensor [68] in a perfect fluid is given by

T (X, Y ) = ρg(X, Y ) + (σ + ρ)η(X)η(Y ), (1.1.26)

for all X, Y ∈ χ(M), where ρ denotes the isotropic pressure, g is the metric tensor of

the Minkowski spacetime, σ denotes the energy density and η is the g-dual 1-form of g

given by η(X) = g(X, ξ with ξ being the velocity vector of the perfect fluid satisfying

g(ξ, ξ) = −1. In particular, if σ = 3ρ, the medium is a radiation fluid and if σ = −ρ, it

is the vacuum case where the energy-momentum tensor becomes Lorentz-invariant.

The Einstein’s gravitational field equation [68] that governs the motion of the perfect

fluid is

κT (X, Y ) = S(X, Y ) +
(
ω − r

2

)
g(X, Y ), (1.1.27)

where κ is the gravitational constant and ω is the cosmological constant.

Definition 1.1.23. Let (M, g) be a four-dimensional smooth Riemannian manifold having

the structure of a general relativistic perfect fluid spacetime. Then (M, g) is said to be a

Kählerian spacetime manifold if it admits a (1, 1) tensor field J satisfying

J2(X) = −X, (1.1.28)

g(JX, JY ) = g(X, Y ), (1.1.29)

(∇XJ)(Y ) = 0, (1.1.30)

for all smooth vector fields X, Y ∈ χ(M).

Now, we define warped product of two Riemannian manifolds. The concept of warped

product was introduced by Bishop and O’Neill [8] to construct examples of complete

Riemannian manifolds of negative sectional curvature. Also note that, the notion of

warped product generalizes the concept of surface of revolution.

Definition 1.1.24. Let (B, gB) and (F, gF ) be two Riemannian manifolds and f > 0 be

a smooth function on B. The warped product B×f F is the product manifold M = B×F

with the Riemannian structure such that ||X||2 = ||π∗(X)||2 + f 2(π(p))||σ∗(X)||2, for any
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vector field X on M and π : B × F → B and σ : B × F → F are natural projections on

M . Thus we have that

gM = gB + f 2gF , (1.1.31)

holds on M . Here B is called the base of M and F is called the fiber. The function f is

called the warping function of the warped product.

An example of a very well-known warped product space is a generalized Robertson-

Walker spacetime which is an extension of the classical Robertson-Walker spacetime. It is

to be noted that, generalized Robertson-Walker spacetime also obeys the Weyl hypothesis,

i.e; the world lines should be everywhere orthogonal to a family of spacelike slices. M.

Sánchez [76] characterized generalized Robertson-Walker spacetimes in terms of timelike

and spatially conformal conformal vector fields. Also, a characterization of generalized

Robertson-Walker spacetimes in terms of timelike concircular vector field has been studied

by B.Y. Chen [24].

Definition 1.1.25. A generalized Robertson-Walker spacetime is a warped product man-

ifold M = I ×f F endowed with the Lorentzian metric

g = −dt2 ⊕ f 2gF , (1.1.32)

where the base is an open interval I of R with its usual metric reversed (I,−dt2), the

fiber is an n-dimensional Riemannian manifold (F, gF ) and the warping function is any

positive function f > 0 on I.

Next, we discuss about indefinite structures on manifolds which are used in our study.

A. Bejancu et.al. [7] in 1993, introduced the concept of an idefinite manifold namely ϵ-

Sasakian manifold and after that, X. Xufeng et.al. [96] established that the class of

ϵ-Sasakian manifolds are real hypersurfaces of indefinite Kaehlerian manifolds. On the

other hand K. Kenmotsu [55] introduced a special class of contact Riemannian manifolds,

satisfying certain conditions, which was later named as Kenmotsu manifold. U. C. De

et.al. [32] introduced the concept of ϵ-Kenmotsu manifolds and further proved that the

existence of the new indefinite structure on the manifold influences the curvatures of the

manifold. After that several authors [50, 51, 87] studied ϵ-Kenmotsu manifolds and many

interesting results have been obtained on this indefinite structure.
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An n-dimensional smooth manifold (M, g) is said to be an ϵ-almost contact metric

manifold [7] if it admits a (1, 1) tensor field ϕ, a characteristic vector field ξ, a global

1-form η and an indefinite metric g on M satisfying the following relations

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (1.1.33)

η(X) = ϵg(X, ξ), g(ξ, ξ) = ϵ, (1.1.34)

g(ϕX, ϕY ) = g(X, Y )− ϵη(X)η(Y ), (1.1.35)

for all X, Y ∈ χ(M). Here the value of the quantity ϵ is either +1 or −1 according as the

characteristic vector field ξ is spacelike or timelike vector field. Also it can be easily seen

that rank of ϕ is (n− 1) and ϕ(ξ) = 0, η ◦ ϕ = 0. Now if we define

dη(X, Y ) = g(X,ϕY ), (1.1.36)

for all X, Y ∈ χ(M), then the manifold (M, g) is called an ϵ-contact metric manifold.

If the Levi-Civita connection ∇ of an ϵ-contact metric manifold satisfies

(∇Xϕ)(Y ) = −g(X,ϕY )− ϵη(Y )ϕX, (1.1.37)

for all X, Y ∈ χ(M), then the manifold (M, g) is called an ϵ-Kenmotsu manifold [32].

Again an ϵ-almost contact metric manifold is an ϵ-Kenmotsu manifold if and only if,

for all X ∈ χ(M) the manofold satisfies

∇Xξ = ϵ(X − η(X)ξ). (1.1.38)

1.2 Introduction to solitons

In 1982, R. S. Hamilton [47] introduced the Ricci soliton as a self similar solution to the

Ricci flow equation given by:

∂

∂t
(g(t)) = −2S(g(t)),

where S denotes the Ricci tensor and g(t) is an one parameter family of metrics on the

manifold.
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Definition 1.2.1. A Riemannian (or, pseudo-Riemannian) metric g defined on a smooth

manifold M , of dimension n, is said to be a Ricci soliton, if for some real constant λ there

exists a smooth vector field V on M satisfying the equation

S +
1

2
LV g = λg, (1.2.1)

where LV denotes the Lie derivative along the direction of V .

The Ricci soliton is called shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0.

Ricci solitons can also be viewed as natural generalizations of Einstein metrics which

moves only by an one-parameter group of diffeomorphisms and scaling [49].

A. E. Fischer [41] in 2005, introduced conformal Ricci flow equation which is a mod-

ified version of the Hamilton’s Ricci flow equation that modifies the volume constraint of

that equation to a scalar curvature constraint. The conformal Ricci flow equations on a

smooth closed connected oriented n-dimensional manifold M are given by

∂g

∂t
+ 2(S +

g

n
) = −pg, (1.2.2)

r(g) = −1,

where p is a non-dynamical (time dependent) scalar field and r(g) is the scalar curva-

ture of the manifold. The term −pg acts as the constraint force to maintain the scalar

curvature constraint. Thus these evolution equations are analogous to famous Navier-

Stokes equations in fluid mechanics where the constraint is divergence free. That is why

sometimes p is also called the conformal pressure.

Recently, in 2015, N. Basu et.al. [6] introduced the concept of conformal Ricci soliton

as a generalization of the classical Ricci soliton.

Definition 1.2.2. A Riemannian (or, pseudo-Riemannian) metric g on an n-dimensional

smooth manifold M , is called a conformal Ricci soliton, if there exists a real constant λ

and a vector field V such that

LV g + 2S = [2λ− (p+
2

n
)]g, (1.2.3)

where p is the conformal pressure.
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It can be easily checked that the foregoing soliton equation satisfies the conformal

Ricci flow equation (1.2.2). Conformal Ricci solitons have been studied by many authors

on Lorentzian α-Sasakian manifold [38], f -Kenmotsu manifold [52], Lagrangian subman-

ifold in a complex space form [84]. M. D. Siddiqi et al. [85], established that a conformal

Ricci soliton, on a perfect fluid spacetime with torse-forming vector field and without

cosmological constant, is expanding.

Furthermore, if the soliton vector field is gradient of some smooth function on the

manifold, that is if, V = grad f = Df , for some smooth function f , then the soliton is

called conformal gradient Ricci soliton. In that case the soliton equation (1.2.2) becomes

S +∇∇f = [λ− (
p

2
+

1

n
)]g, (1.2.4)

where ∇ is the Riemannian connection on the manifold.

J. T. Cho and M. Kimura [28] introduced the concept of η-Ricci soliton and later C.

Calin and M. Crasmareanu [18] studied it on Hopf hypersufaces in complex space forms.

A Riemannian manifold (M, g) is said to admit an η-Ricci soliton if for a smooth vector

field V , the metric g satisfies the following equation

LV g + 2S + 2λg + 2µη ⊗ η = 0,

where λ, µ ∈ R. Note that, for µ = 0 the η-Ricci soliton becomes a Ricci soliton.

Very recently M. D. Siddiqi [83] introduced the notion of conformal η-Ricci soliton.

Definition 1.2.3. A Riemannian (or, pseudo-Riemannian) metric g on an n-dimensional

smooth manifold M , is called a conformal η-Ricci soliton, if there exists a smooth vector

field V such that

LV g + 2S + [2λ− (p+
2

n
)]g + 2µη ⊗ η = 0, (1.2.5)

where n is the dimension of the manifold, p is the non-dynamical scalar field, η is the

g-dual of V and λ, µ are real constants.

It is easy to see that, for µ = 0 the conformal η-Ricci soliton (g, V, λ, µ) reduces to

the conformal Ricci soliton (g, V, λ).

The notion of Yamabe flow was introduced by R. S. Hamilton [49] as a tool for

constructing metrics of constant scalar curvature in a given conformal class of Riemannian
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metrics on a Riemannian manifold of dimension greater than or equal to three. The

Yamabe flow on a smooth Riemannian manifold (M, g) is defined as the evolution equation

of the Riemannian metric g = g(t) as follows

∂

∂t
(g(t)) = −r(g(t)), (1.2.6)

where r denotes the scalar curvature of the manifold. It is to be noted that, in dimension

two the Yamabe flow is equivalent to the Ricci flow, but in dimension greater than two the

Yamabe flow and the Ricci flow do not agree in general, as the Yamabe flow preserves the

conformal class of the metric whereas the Ricci flow does not. In mathematical physics,

the Yamabe flow corresponds to the fast diffusion case of the plasma equation.

Definition 1.2.4. [49] Let (M, g) be an n-dimensional complete Riemannian manifold.

If the Riemannian metric g satisfies

1

2
LV g = (r − σ)g, (1.2.7)

for some smooth vector field V and some σ ∈ R, then it is known as a Yamabe soliton.

The Yamabe soliton is said to be shrinking, steady or expanding according to σ < 0,

σ = 0 or σ > 0 respectively. Just like Ricci solitons are self similar solutions of the Ricci

flow, Yamabe solitons are also self similar solutions to the Yamabe flow which moves by

an one parameter family of diffeomorphisms and scaling. Over the years many authors

have studied Yamabe solitons [20, 26, 74].

As a generalization of Yamabe soliton, recently, B. Y. Chen and S. Deshmukh [26]

introduced the notion of quasi-Yamabe soliton.

Definition 1.2.5. A Riemannian metric (M, g) is said to be a quasi-yamabe soliton if

1

2
LV g = (r − σ)g + µV ∗ ⊗ V ∗, (1.2.8)

for some smooth function µ, real constant σ and V ∗ is the dual 1-form of V .

In particular, if µ = 0 then the quasi-Yamabe soliton (g, V, σ, µ) reduces to the

Yamabe soliton (g, V, σ). Quasi-yamabe solitons are studied on contact metric manifolds

in [37] and on warped product manifolds in [15].
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In 2016, G. Catino and L. Mazzieri [22] introduced the notion of Einstein soliton

which can be viewed as a self-similar solution to the Einstein flow

∂g

∂t
= −2(S − r

2
g), (1.2.9)

where g denotes the Riemannian metric. It is evident that, the Einstein soliton is analo-

gous to the Ricci soliton. Since the study of Ricci soliton has tremendous contribution in

solving the longstanding Thurston’s geometric conjecture, so, it is interesting to study the

Einstein soliton from various directions to solve many physical and geometrical problems.

Here, we consider a slight perturbation of the Einstein soliton by the term η ⊗ η, called

the η-Einstein soliton [10].

Definition 1.2.6. A Riemannian (or, pseudo-Riemannian) metric g on an n-dimensional

smooth manifold M , is said to admit an η-Einstein soliton, if there exists a smooth vector

field V such that

Lξg + 2S + (2λ− r)g + 2µη ⊗ η = 0, (1.2.10)

where Lξ denotes the Lie derivative along direction of ξ and λ, µ ∈ R.

The η-Einstein soliton is called shrinking if λ < 0, steady if λ = 0 and expanding

if λ > 0. In particular, if µ = 0, the η-Einstein soliton reduces to the Einstein soliton

(g, ξ, λ).

Very recently, in 2019, S. Güler and M. Crasmareanu [46] introduced the geometric

flow Ricci-Yamabe map, which is a scalar combination of Ricci flow and Yamabe flow.

The Ricci-Yamabe map is also called the Ricci-Yamabe flow of type (α, β) and on a

Riemannian or semi-Riemannian manifold (M,g) it is defined by

∂

∂t
g(t) = −2αS(t) + βr(t)g(t),

where S is the Ricci tensor, r is the scalar curvature and α, β ∈ R. According to the

choice of the scalars α, β the Ricci-Yamabe flow can be a Riemannian or semi-Riemannian

or singular Riemannian flow and for this reason it is very useful in various geometrical

and general relativistic models. A self-similar solution to this Ricci-Yamabe flow of type

(α, β) is called a Ricci-Yamabe soliton of type (α, β).
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Definition 1.2.7. A Riemannian (or, pseudo-Riemannian) manifold (M,g) is said to

admit a Ricci-Yamabe soliton of type (α, β), if for some smooth vector field V , the metric

g satisfies

LV g + 2αS + [2λ− βr]g = 0, (1.2.11)

where λ, α, β ∈ R.

In particular, a Ricci-Yamabe soliton of type

• (1, 0) is called a Ricci soliton.

• (0, 1) is called a Yamabe soliton.

• (1,−1) is called an Einstein soliton.

M. D. Siddiqi [86] extended this notion of Ricci-Yamabe soliton to η-Ricci-Yamabe

soliton. On a Riemannian manifold (M,g) the data (g, V, λ, µ, α, β) is said to be an η-

Ricci-Yamabe soliton of type (α, β) (or, simply an η-Ricci-Yamabe soliton) if the metric

g satisfies

LV g + 2αS + [2λ− βr]g + 2µη ⊗ η = 0, (1.2.12)

where λ, µ, α, β are real constants.

Among the five chapters of this thesis, this first chapter consists an introduction to

different types of smooth manifolds and solitons.

In chapter two, first we study conformal Ricci soliton on generalized Sasakian space

forms and characterize the soliton in terms of shrinking steady and expanding. It is

proved that a generalized Sasakian space form admitting a conformal Ricci soliton having,

potential vector field pointwise collinear with the Reeb vector field, is an Einstein one.

Then we find the condition which makes the potential function of a conformal gradient

Ricci soliton constant.

Next, we investigate almost coKähler manifolds admitting conformal Ricci soliton

and we show that conformal Ricci soliton on a (k, µ)-almost coKähler manifold the soliton

becomes expanding, depending on the conformal pressure p. After that, it is proved that

a (k, µ)-almost coKähler manifold, with the potential vector field V pointwise collinear

with the Reeb vector field ξ, does not admit conformal gradient Ricci soliton.
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Then, we give some characterization of conformal Ricci soliton on (LCS)n-manifolds

and we show that the manifold becomes an η-Einstein manifold. Also it is proved that, an

(LCS)n-manifold admitting a conformal Ricci soliton is ξ-projectively flat. Next, we find

necessary and sufficient conditions for an (LCS)n-manifold admitting a conformal Ricci

soliton, to be ξ-conharmonically flat and ξ-concircularly flat. After that, conformal Ricci

soliton on (LCS)n-manifolds satisfying certain curvature conditions like R(ξ,X) · P̃ = 0

and R(ξ,X) · M̃ = 0; are studied.

Next, we prove that if an warped product of two Riemannian manifolds admits a

conformal Ricci soliton, then the base and the fiber both admit conformal Ricci soliton.

Then, the converse of this result is discussed when the potential function is of gradient

type. After that, we show that, an warped product admitting conformal Ricci soliton is

an Einstein one provided the potential vector field is Killing or concurrent. Finally, some

applications of conformal Ricci soliton on generalized Robertson Walker spacetime are

discussed.

In chapter three, first we study ϵ-Kenmotsu manifolds admitting conformal η-Ricci

solitons and establish the relation between the soliton constants λ and µ. Then, conformal

η-Ricci solitons are characterized on ϵ-Kenmotsu manifolds with Codazzi type, cyclic

parallel and cyclic η-recurrent Ricci tensor. Moving further, we investigate conformal η-

Ricci solitons on ϵ-Kenmotsu manifolds satisfying curvature conditions R·S = 0, C ·S = 0,

Q · C = 0. After that, we consider torse-forming vector field on ϵ-Kenmotsu manifolds

admitting conformal η-Ricci solitons. Then we characterize gradient conformal η-Ricci

soliton on ϵ-Kenmotsu manifold.

Next, we consider conformal η-Ricci soliton on almost pseudo symmetric Kählerian

spacetime manifolds and characterize the nature of the soliton when the manifolds are

projectively flat and conharmonically flat. Finally, we study gradient conformal η-Ricci

soliton on Kählerian spacetime manifolds.

In chapter four, first we study some curvature properties of 3-dimensional quasi-

Sasakian manifolds with respect to Zamkovoy connection. Then, the nature of Ricci

soliton on 3-dimensional quasi-Sasakian manifolds with respect to Zamkovoy connection

is characterized. It is proved that, if a quasi-Sasakian 3-manifold with respect to Zamkovoy

connection admits a Ricci soliton, with the Reeb vector field as the potential vector field,

then it is a steady Ricci soliton.
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Next, we characterize the nature of η-Ricci-Yamabe soliton on almost pseudo sym-

metric Kählerian spacetime manifolds. Finally, it is shown that, if a generalized Sasakian

spaceform admits a quasi-Yamabe soliton, with potential vector field pointwise collinear

to the Reeb vector field, then it becomes a manifold of constant scalar curvature and the

soliton reduces to a Yamabe soliton.

In chapter five, we prove that, a 3-dimensional trans-Sasakian manifold admitting an

η-Einstein soliton becomes an eta-Einstein manifold of constant scalar curvature and we

also characterize the soliton in terms of shrinking, steady and expanding. Then, η-Einstein

solitons are characterized on 3-dimensional trans-Sasakian manifolds with Codazzi type

and cyclic parallel Ricci tensor. Moving further, we study some curvature conditions

R · S = 0, W2 · S = 0, R · E = 0, B · S = 0, S · R = 0 admitting η-Einstein solitons

on 3-dimensional trans-Sasakian manifold. Finally, η-Einstein solitons with torse forming

vector field are characterized on 3-dimensional trans-Sasakian manifolds.
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2
On conformal Ricci solitons

2.1 Introduction

In this chapter we study conformal Ricci soliton on generalized Sasakian space form,

almost coKähler manifold, (LCS)n-manifold and warped product space. This chapter

is divided into thirteen sections. The first and second section contain introduction and

preliminaries respectively.

In section three, we study conformal Ricci soliton and conformal gradient Ricci soliton

on generalized Sasakian space forms and we characterize the soliton in terms of shrinking

steady and expanding. Then in section four, some illustrative examples of generalized

Sasakian space forms are given and some of our results for conformal Ricci soliton are

verified within this framework.

In section five, we investigate almost coKähler manifolds admitting the conformal

Ricci soliton. Section six is devoted to the study of conformal Ricci soliton on a (k, µ)-

almost coKähler manifold and we show that in this case, depending on the conformal

pressure p, the soliton becomes expanding. After that in section seven, it is proved that

a (k, µ)-almost coKähler manifold, with the potential vector field V pointwise collinear

with the Reeb vector field ξ, does not admit conformal gradient Ricci soliton.

In section eight, we study (LCS)n-manifolds admitting conformal Ricci soliton and

we give some characterization of the soliton. After that, conformal Ricci soliton on ξ-

projectively flat, ξ-conharmonically flat and ξ-concircularly flat (LCS)n-manifolds are

taken into consideration. Section nine deals with conformal Ricci soliton on (LCS)n-
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manifolds satisfying curvature conditions like R(ξ,X) · P̃ = 0 and R(ξ,X) · M̃ = 0; where

R is the Riemann curvature tensor, P̃ is the pseudo-projective curvature tensor and M̃ is

the M -projective curvature tensor.

In section ten, we study conformal Ricci soliton on warped product spaces and try

to see its impact on the base and the fiber spaces. Sections eleven and twelve deal with

warped product spaces admitting conformal Ricci soliton whose potential vector fields

are Killing and concurrent respectively. Finally in section thirteen, we present some

applications of conformal Ricci soliton on generalized Robertson Walker spacetime.

2.2 Preliminaries

Definitions of generalized Sasakian spaceforms, almost coKähler manifolds, (LCS)n-manifolds

and warped product spaces are given in the introductory chapter one. Now we discuss

some basic results on these spaces.

From hereon, the notation M(f1, f2, f3) denotes a (2n + 1)-dimensional generalized

Sasakian space form with f1 ̸= f3 in general. According to [3], in a (2n+ 1)-dimensional

generalized Sasakian space form M(f1, f2, f3), the following relations hold:

∇Xξ = (f3 − f1)ϕ(X), (2.2.1)

(∇Xη)(Y ) = (f3 − f1)g(ϕ(X), Y ), (2.2.2)

(∇Xϕ)(Y ) = (f3 − f1)[η(Y )X − g(X, Y )ξ], (2.2.3)

R(X, Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ], (2.2.4)

R(ξ,X)Y = (f3 − f1)[η(Y )X − g(X, Y )ξ], (2.2.5)

S(X, Y ) = (2nf1 + 3f2 − f3)g(X, Y )− (3f2 + (2n− 1)f3)η(X)η(Y ), (2.2.6)

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ, (2.2.7)

S(X, ξ) = 2n(f1 − f3)η(X), (2.2.8)

Qξ = 2n(f1 − f3)ξ, (2.2.9)

for all vector fields X, Y ∈ χ(M) and where R is the curvature tensor, S is the Ricci

tensor and Q is the Ricci operator respectively.

Next, we set two symmetric operators h and h′ given by, h = 1
2
Lξϕ and h′ = h ◦ϕ on

the almost coKähler manifold (M2n+1, g, ϕ, ξ, η). Then setting l := R( . , ξ)ξ, the following
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relations can be obtained on an almost coKähler manifold [see [70],[30]]

hξ = 0, hϕ+ ϕh = 0, tr(h) = tr(h′) = 0, (2.2.10)

∇ξϕ = 0, ∇ξ = h′, divξ = 0, (2.2.11)

S(ξ, ξ) + ∥h∥2 = 0, (2.2.12)

ϕlϕ− l = 2h2, (2.2.13)

∇ξh = −h2ϕ− ϕl. (2.2.14)

Again, on an n-dimensional (LCS)n-manifold the following relations hold [78, 79, 80]

ϕ2X = X + η(X)ξ , η(ξ) = −1, (2.2.15)

ϕ(ξ) = 0 , η ◦ ϕ = 0, (2.2.16)

g(ϕX, ϕY ) = g(X, Y ) + η(X)η(Y ), (2.2.17)

R(X, Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ], (2.2.18)

R(ξ,X)Y = (α2 − ρ)[g(X, Y )ξ − η(Y )X], (2.2.19)

η(R(X, Y )Z) = (α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.2.20)

S(X, ξ) = (n− 1)(α2 − ρ)η(X), (2.2.21)

for all vector fields X, Y, Z ∈ χ(M).

Next, we recall a very important result (for details see [8]) on warped products, which

is used in later sections of this chapter.

Lemma 2.2.1. Let (M, g) = (B×fF, gB⊕f 2gF ) be an warped product of two Riemannian

manifolds (B, gB) and (F, gF ) with dimB = m and dimF = n. Then for all X, Y ∈ X(B)

and U, V ∈ X(F )

i) DXU = DUX = X(f)
f

U ,

ii) S(X,U) = 0,

iii) S(X, Y ) = SB(X, Y )− n
f
Hf (X, Y ),

iv) S(U, V ) = SF (U, V )− (∆f
f

+ (n− 1)∥∇f∥2
f2 )g(U, V ),

where DXY is the lift of ∇XY on B and SB, SF are the lifts of the Ricci tensors on the

base B and the fiber F respectively.
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2.3 Conformal Ricci soliton on generalized Sasakian

space form

In this section we characterize generalized Sasakian space form admitting conformal Ricci

soliton with various conditions on the potential vector field. Then we study conformal

gradient Ricci soliton on generalized Sasakian space form. First we prove the following:

Theorem 2.3.1. If a (2n+1)-dimensional generalized Sasakian space form M(f1, f2, f3)

admits a conformal Ricci soliton (g, V, λ) then the soliton is

i) shrinking if p < [4n(f3 − f1)− 2
2n+1

],

ii) steady if p = [4n(f3 − f1)− 2
2n+1

] and

iii) expanding if p > [4n(f3 − f1)− 2
2n+1

].

Proof. Let (g, V, λ) be a conformal Ricci soliton on a (2n + 1)-dimensional generalized

Sasakian space form M(f1, f2, f3). Then for all vector fields X, Y ∈ χ(M), from (1.2.3)

we have

(LV g)(X, Y ) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ). (2.3.1)

Now consider a (0, 2) tensor field defined by

T = LV g + 2S. (2.3.2)

It can be easily seen that the tensor field T is a symmetric tensor field. Again since g is a

metric connection, we have ∇g = 0 and hence from (2.3.1) note that LV g+2S is parallel

with the Levi-Civita connection. Therefore (2.3.2) implies that T is a parallel, symmetric

(0, 2) tensor field. Thus we have ∇T = 0, which can be written as

T(R(X, Y )Z,W ) + T(Z,R(X, Y )W ) = 0.

Putting X = W = Z = ξ in the above equation and using (2.2.5) we get

T(Y, ξ) = T(ξ, ξ)η(Y ). (2.3.3)

Taking covariant differentiation of (2.3.3) along arbitrary vector field X, then recalling

(2.2.1) and (2.2.2) we obtain

T(∇XY, ξ) + (f3 − f1)T(Y, ϕX) = T(ξ, ξ)[(f3 − f1)g(ϕX, Y ) + η(∇XY )].
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In view of (2.3.3) the above equation reduces to

T(Y, ϕX) = T(ξ, ξ)g(ϕX, Y ).

Replacing X by ϕX in the foregoing equation and then using (2.3.3) we arrive at

T(X, Y ) = T(ξ, ξ)g(X, Y ). (2.3.4)

Again fron (2.3.2) we can write

T(X, Y ) = (LV g)(X, Y ) + 2S(X, Y ).

Taking X = Y = ξ in above, the using (2.2.2) and (2.2.8) yields

T(ξ, ξ) = 4n(f1 − f3).

Using the above value in (2.3.4) and then recalling (2.3.2) we get

(LV g)(X, Y ) + 2S(X, Y ) = 4n(f1 − f3)g(X, Y ). (2.3.5)

Finally equating (2.3.1) and (2.3.5) we obtain

λ = 2n(f1 − f3) + (
p

2
+

1

2n+ 1
). (2.3.6)

Hence the soliton is shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0. This

completes the proof.

Again for a Sasakian space form f1 = c+3
4

and f3 = c−1
4
, then from (2.3.6) we get

λ = 2n+ (p
2
+ 1

2n+1
). Thus we have the following

Corollary 2.3.1. A conformal Ricci soliton in a (2n + 1)-dimensional Sasakian space

form is shrinking if (p + 4n + 2
2n+1

) < 0, steady if (p + 4n + 2
2n+1

) = 0 and expanding if

(p+ 4n+ 2
2n+1

) > 0.

Similarly in a Kenmotsu space form f1 = c−3
4

and f3 = c+1
4
, then from (3.6) we

deduce λ = −2n+ (p
2
+ 1

2n+1
). Thus we have the following

Corollary 2.3.2. A conformal Ricci soliton in a (2n + 1)-dimensional Kenmotsu space

form is shrinking if (p − 4n + 2
2n+1

) < 0, steady if (p − 4n + 2
2n+1

) = 0 and expanding if

(p− 4n+ 2
2n+1

) > 0.
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Now we consider a conformal Ricci soliton (g, V, λ) with V pointwise collinear with

the Reeb vector field ξ. In this regard our next theorem is

Theorem 2.3.2. Let M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian space

form admiting a conformal Ricci soliton (g, V, λ), whose potential vector field V is point-

wise collinear with the Reeb vector field ξ. Then V is a constant multiple of ξ and the

manifold M is an Einstein manifold of scalar curvature r = 2n(2n+ 1)(f1 − f3).

Proof. Let us assume that V = bξ for some smooth function b, then from the definition

of the conformal Ricci soliton equation (1.2.3) we can write

bg(∇Xξ, Y ) +X(b)η(Y ) + bg(X,∇Y ξ) + Y (b)η(X)

= [2λ− (p+
2

2n+ 1
)]g(X, Y )− 2S(X, Y ).

Using (2.2.1) the foregoing equation reduces to

X(b)η(Y ) + Y (b)η(X) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ). (2.3.7)

Replacing Y by ξ in (2.3.7) and recalling (2.2.8) we have

X(b) = [2λ− (p+
2

2n+ 1
)− 4n(f1 − f3)− ξ(b)]η(X). (2.3.8)

Taking X = ξ in the previous equation yields

ξ(b) = [λ− (
p

2
+

1

2n+ 1
)− 2n(f1 − f3)]. (2.3.9)

In view of (2.3.9), the equation (2.3.8) becomes

db = [λ− (
p

2
+

1

2n+ 1
)− 2n(f1 − f3)]η. (2.3.10)

Operating d on both sides of (2.3.10) and using Poincare lemma d2 = 0 we get

[λ− (
p

2
+

1

2n+ 1
)− 2n(f1 − f3)]dη = 0.

But as dη ̸= 0, the foregoing equation gives us

λ = 2n(f1 − f3) + (
p

2
+

1

2n+ 1
). (2.3.11)

Now using (2.3.11) in (2.3.10) we obtain db = 0, which eventually implies that

b = constant. (2.3.12)
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Therefore V is a constant multiple of ξ. This proves first part of the theorem.

Again considering an orthonormal basis {ei : 1 ≤ i ≤ (2n+ 1)} of the tangent space

at each point of the manifold and then putting X = Y = ei in (2.3.7) and summing over

1 ≤ i ≤ (2n+ 1) we get

ξ(b) + r = (2n+ 1)[λ− (
p

2
+

1

2n+ 1
)].

Using (2.3.12) in the previous equation infers that

r = (2n+ 1)[λ− (
p

2
+

1

2n+ 1
)]. (2.3.13)

Combining (2.3.11) and (2.3.13) we obtain

r = 2n(2n+ 1)(f1 − f3). (2.3.14)

Also recalling (2.3.7) and then using (2.3.12) we get

S(X, Y ) = [λ− (
p

2
+

1

2n+ 1
)]g(X, Y ). (2.3.15)

Thus in view of (2.3.14) and (2.3.15) we can conclude that the manifold M is an Einstein

manifold of scalar curvature r = 2n(2n+1)(f1 − f3), which proves the second part of the

theorem. Hence completes the proof.

Corollary 2.3.3. Let M(f1, f2, f3) be a (2n+1)-dimensional Sasakian space form admit-

ing a conformal Ricci soliton (g, V, λ), whose potential vector field V is pointwise collinear

with the Reeb vector field ξ. Then V is a constant multiple of ξ and the manifold M is

an Einstein manifold of constant scalar curvature r = 2n(2n+ 1).

Corollary 2.3.4. Let M(f1, f2, f3) be a (2n+1)-dimensional Kenmotsu space form admit-

ing a conformal Ricci soliton (g, V, λ), whose potential vector field V is pointwise collinear

with the Reeb vector field ξ. Then V is a constant multiple of ξ and the manifold M is

an Einstein manifold of constant scalar curvature r = −2n(2n+ 1).

Next we characterize the potential vector field V of a conformal Ricci soliton (g, V, λ)

on a (2n + 1)-dimensional generalized Sasakian space form M(f1, f2, f3) which satisfies

the curvature condition Ricci semi-symmetry. Regarding this we prove the following:
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Theorem 2.3.3. If a (2n + 1)-dimensional Ricci semi-symmetric generalized Sasakian

space form M(f1, f2, f3) admits a conformal Ricci soliton (g, V, λ), then M is an Einstein

manifold and the potential vector field V is a conformal vector field.

Proof. Let us assume that M(f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian

space form admitting a conformal Ricci soliton (g, V, λ), and the manifold is Ricci semi-

symmetric. Then we have R(X, Y ) · S = 0, which can be written as

S(R(X, Y )Z,U) + S(Z,R(X, Y )U) = 0.

Replacing U by ξ in above yields

S(R(X, Y )Z, ξ) + S(Z,R(X, Y )ξ) = 0.

Using (2.2.4) and (2.2.9) in the previous equation we obtain

2n(f1 − f3)η(R(X, Y )Z) + (f1 − f3)η(Y )S(X,Z)− (f1 − f3)η(X)S(Y, Z) = 0.

Taking X = ξ in the foregoing equation, then recalling (2.2.5) and (2.2.8) infers that

S(Y, Z) = 2n(f1 − f3)g(Y, Z), (2.3.16)

which implies that the manifold is an Einstein manifold and this proves the first part of

the theorem.

Again, as (g, V, λ) is a conformal Ricci soliton on the (2n+1)-dimensional generalized

Sasakian space form M(f1, f2, f3), equation (1.2.3) holds and using (2.3.16) in it we have

(LV g)(X, Y ) = [2λ− 4n(f1 − f3)− (p+
2

2n+ 1
)]g(X, Y ), (2.3.17)

for all vector fields X, Y ∈ χ(M). Thus from it can be written that

LV g = 2ρg,

where ρ = [λ − 2n(f1 − f3) − (p
2
+ 1

2n+1
)]. Thus in view of the equation (1.1.9), we can

conclude that V is a conformal vector field. This completes the proof.

Finally, we concentrate on the generalized Sasakian space form M(f1, f2, f3) admit-

ting conformal Ricci soliton whose potential vector field V is gradient of some smooth

function f , i.e; we characterize conformal gradient Ricci soliton on M(f1, f2, f3). But

before proving our main theorem, let us first prove the following:
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Lemma 2.3.1. If a (2n + 1)-dimensional generalized Sasakian space form M(f1, f2, f3)

admits a conformal gradient Ricci soliton (g,Df, λ), then the curvature tensor R satisfies

R(X, Y )Df = (2ndf1 + 3df2 − df3)(Y )X − (3df2 + (2n− 1)df3)(Y )η(X)ξ

+(3df2 + (2n− 1)df3)(X)η(Y )ξ − (2ndf1 + 3df2 − df3)(X)Y

+(f1 − f3)(3f2 + (2n− 1)f3)[g(X,ϕY )ξ − g(ϕX, Y )ξ

+η(X)ϕY − η(Y )ϕX], (2.3.18)

for all vector fields X, Y ∈ χ(M).

Proof. Let us assume that (g,Df, λ) be a conformal gradient Ricci soliton onM(f1, f2, f3).

Then from the conformal gradient Ricci soliton equation (1.2.4) we can write

∇XDf = [λ− 2n(f1 − f3)− (
p

2
+

1

2n+ 1
)]X −QX, (2.3.19)

for any vector field X on M and Q is the Ricci operator.

Taking covariant differentiation of (2.3.19) along an arbitrary vector field Y we obtain

∇Y∇XDf = [λ− 2n(f1 − f3)− (
p

2
+

1

2n+ 1
)]∇YX −∇YQX. (2.3.20)

Interchanging X and Y in the foregoing equation infers that

∇X∇YDf = [λ− 2n(f1 − f3)− (
p

2
+

1

2n+ 1
)]∇XY −∇XQY. (2.3.21)

Also from (2.3.19) it can be written that

∇[X,Y ]Df = [λ−2n(f1−f3)− (
p

2
+

1

2n+ 1
)](∇XY −∇YX)−Q(∇XY −∇YX). (2.3.22)

Using (2.3.20)-(2.3.22) in Riemannian curvature tensor expression (1.1.5) we obtain

R(X, Y )Df = (∇YQ)X − (∇XQ)Y. (2.3.23)

Again recalling (2.2.7) and covariantly differentiating it along Y yields

∇YQX = (2nf1 + 3f2 − f3)∇YX + (2ndf1 + 3df2 − df3)(Y )X

−(3f2 + (2n− 1)f3)[∇Y η(X)ξ + η(X)∇Y ξ]

−(3df2 + (2n− 1)df3)(Y )η(X)ξ. (2.3.24)
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Also from (2.2.7) we can write

Q(∇YX) = (2nf1 + 3f2 − f3)∇YX − (3f2 + (2n− 1)f3)η(∇YX)ξ. (2.3.25)

Using (2.3.24) and (2.3.25) in (∇YQ)X = ∇YQX −Q(∇YX), then recalling (2.2.1) and

(2.2.2) we obtain

(∇YQ)X = (2ndf1 + 3df2 − df3)(Y )X

−(3df2 + (2n− 1)df3)(Y )η(X)ξ

+(f1 − f3)(3f2 + (2n− 1)f3)[g(X,ϕY )ξ + η(X)ϕY ]. (2.3.26)

Interchanging X and Y in (2.3.26) yields

(∇XQ)Y = (2ndf1 + 3df2 − df3)(X)Y

−(3df2 + (2n− 1)df3)(X)η(Y )ξ

+(f1 − f3)(3f2 + (2n− 1)f3)[g(ϕX, Y )ξ + η(Y )ϕX]. (2.3.27)

Finally making use of (2.3.26) and (2.3.27) in (2.3.23) completes the proof.

Now we conclude this section with our main result on conformal gradient Ricci soliton

which is the following:

Theorem 2.3.4. If a (2n+1)-dimensional generalized Sasakian space form M(f1, f2, f3)

admits a conformal gradient Ricci soliton (g,Df, λ) then the potential function f is con-

stant, provided f1 and f3 are both constants. Furthermore, the soliton is shrinking if

p < [2f3 − 6f2 − 2nf1 − 2
2n+1

], steady if p = [2f3 − 6f2 − 2nf1 − 2
2n+1

] or, expanding if

p > [2f3 − 6f2 − 2nf1 − 2
2n+1

].

Proof. Let us assume that (g,Df, λ) is a conformal gradient Ricci soliton on the gener-

alized Sasakian space form M(f1, f2, f3). Now putting X = ξ in (2.3.18) and then taking

inner product with arbitrary vector field Z we obtain

g(R(ξ, Y )Df,Z) = 2n(df1 − df3)(Y )η(Z)

−2n(df1 − df3)(ξ)[g(Y, Z)− η(Y )η(Z)]

+(f1 − f3)(3f2 + (2n− 1)f3)g(ϕY, Z), (2.3.28)
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for all vector fields Y, Z on the manifold.

Again in view of (2.2.5) and making use of the curvature property g(R(ξ, Y )Df,Z) =

−g(R(ξ, Y )Z,Df), we can write

g(R(ξ, Y )Df,Z) = (f3 − f1)[g(Y, Z)(ξf)− η(Z)(Y f)]. (2.3.29)

Equating (2.3.28) and (2.3.29) we deduce

(f3 − f1)[g(Y, Z)(ξf)− η(Z)(Y f)] = 2n(df1 − df3)(Y )η(Z)

−2n(df1 − df3)(ξ)[g(Y, Z)− η(Y )η(Z)]

+(f1 − f3)(3f2 + (2n− 1)f3)g(ϕY, Z).

Now replacing Z by ξ, the foregoing equation infers that

2n(df1 − df3)(Y ) = (f3 − f1)[η(Y )(ξf)− (Y f)],

which reduces to

[η(Y )(ξf)− (Y f)] = 0,

provided f1 and f3 are both constants. Also this can be rewritten as

g(Y, (ξf)ξ) = g(Y,Df).

Since the above holds for all vector field Y on the manifold, we obtain

Df = (ξf)ξ. (2.3.30)

Differentiating (2.3.30) covariantly along arbitrary vector field X and then using 2.6 yields

∇XDf = (X(ξf))ξ + (f3 − f1)(ξf)ϕX. (2.3.31)

Equating (2.3.31) with (2.3.19) we deduce

QX = [λ− (
p

2
+

1

2n+ 1
)]X − (X(ξf))ξ − (f3 − f1)(ξf)ϕX. (2.3.32)

Comparing the coefficients of ϕX from (2.3.32) and (2.2.7) we get (ξf) = 0. Using this in

(2.3.30) infers that Df = grad f = 0, which eventually implies that f is constant. This

proves first part of the theorem.

Again comparing the coefficients of X from (2.3.32) and (2.2.7) we obtain

λ = [(
p

2
+

1

2n+ 1
) + (2nf1 − 3f2 − f3)]. (2.3.33)

Hence the soliton is shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0. This

completes the proof.
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2.4 Examples of generalized Sasakian space form ad-

mitting conformal Ricci soliton

In this section we discuss examples of generalized Sasakian space form admitting conformal

Ricci soliton and Yamabe soliton.

P. Alegre, D. E. Blair and A. Carriazo in their seminal work [3] constructed an

example of generalized Sasakian space form as follows:

Example 2.4.1. Consider the manifold R × Cm endowed with three smooth functions

given by

f1 = −(f ′)2

f 2
, f2 = 0, f3 = −(f ′)2

f 2
+

f ′′

f ′ , (2.4.1)

for some smooth real valued function f = f(t) and f ′ denotes the derivative of f with

respect to t.

Now if we consider f(t) = eαt, for some real number α, then from (2.3.6) we can

compute λ = −mα+ p
2
+ 1

2m+1
. Therefore we can comment that the generalized Sasakian

space form (R×Cm, f1, f2, f3) admits a conformal Ricci soliton with the soliton constant

λ as computed above. Furthermore the conformal Ricci soliton is shrinking if p < [2mα−
2

m+1
], steady if p = [2mα− 2

m+1
] and expanding if p > [2mα− 2

m+1
].

Next, we give a non-trivial example of a conformal Ricci soliton on a three dimensional

generalized Sasakian space form as constructed in [77].

Example 2.4.2. Let us consider the 3-dimensional manifold M = {(u, v, w) ∈ R3 \
{(0, 0, 0)}}. Define a linearly independent set of vector fields {Ei : 1 ≤ i ≤ 3} on the

manifold M given by

E1 =
∂

∂u
− v

∂

∂w
, E2 =

∂

∂v
, E3 =

∂

∂w
.

Let us define the Riemannian metric g on M by

g(Ei, Ej) =

 1, for i = j

0, for i ̸= j

for all i, j = 1, 2, 3. Now considering E3 = ξ, let us take the 1-form η, on the manifold

M , defined by

η(U) = g(U,E3), ∀U ∈ χ(M).

33



Then it can be observed that η(ξ) = 1. Let us define the (1, 1) tensor field ϕ on M as

ϕ(E1) = −E2, ϕ(E2) = E1, ϕ(E3) = 0.

Using the linearity of g and ϕ it can be easily checked that

ϕ2(U) = −U + η(U)ξ, g(ϕU, ϕV ) = g(U, V )− η(U)η(V ), ∀U, V ∈ χ(M).

Hence the structure (g, ϕ, ξ, η) defines an almost contact metric structure on the manifold

M . Now, using the definitions of Lie bracket, after some direct computations we get

[E1, E2] = E3 and [E1, E3] = [E2, E3] = 0. Again the Riemannian connection ∇ of the

metric g is defined by the well-known Koszul’s formula which is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]).

Using the above formula one can easily calculate that

∇E1E1 = 0, ∇E1E2 =
1

2
E3, ∇E1E3 = −1

2
E2,

∇E2E1 = −1

2
E3, ∇E2E2 = 0, ∇E2E3 =

1

2
E1,

∇E3E1 = −1

2
E2, ∇E3E2 =

1

2
E1, ∇E3E3 = 0.

Thus from the above relations and using (1.1.5), the non-vanishing components of the

Riemannian curvature tensor R can easily be computed as

R(E1, E2)E1 =
3

4
E2, R(E1, E3)E1 = −1

4
E3, R(E2, E2)E3 =

1

4
E2,

R(E1, E2)E2 = −3

4
E1, R(E2, E3)E2 = −1

4
E3, R(E1, E3)E3 =

1

4
E1.

Hence we can calculate the non-vanishing components of the Ricci tensor as follows

S(E1, E1) = −1

2
, S(E2, E2) = −1

2
, S(E3, E3) =

1

2
.

Therefore in view of the above values of the Ricci tensor, we can say that the manifold M

is a generalized Sasakian space form with the functions f1 = −1
4
, f2 = 0 and f3 = −1

3
.

Now if we take the soliton vector field V = ξ = E3, then from the equation (1.2.3)

we obtain λ = (p
2
− 1

6
). Hence for this value of λ the data (g, ξ, λ) defines a conformal
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Ricci soliton on the generalized Sasakian space form M(f1, f2, f3). Moreover we can see

that (M, g) is a manifold of constant scalar curvature r = −1
2
= 2 × 3 × (f1 − f3) and

hence the theorem (2.3.4) is verified.

Again on this generalized Sasakian space form M(f1, f2, f3), considering V = ξ in

the equation (1.2.8), we compute that σ = −1
2
and µ = 0. Therefore for this values of σ

and µ the data (g, ξ, σ, µ) defines a quasi-Yamabe soliton, which eventually reduces to a

Yamabe soliton as µ = 0 and hence the theorem (4.6.1) is verified.

2.5 Conformal Ricci soliton on almost coKähler man-

ifold

Let us consider (M2n+1, g, ϕ, ξ, η) be a (2n + 1)-dimensional almost coKähler manifold

that admits a conformal Ricci soliton (g, V, λ), then equation (1.2.3) holds. In view of the

definition of Lie derivative, it follows from (1.2.3) that, for all Y, Z ∈ χ(M)

g(∇Y βξ, Z) + g(Y,∇Zβξ) + 2S(Y, Z) = [2λ− (p+
2

2n+ 1
)]g(Y, Z). (2.5.1)

Now, let the vector field V be pointwise collinear with the Reeb vector field ξ, i.e; V =

βξ, where βis a non-zero smooth function on the corresponding manifold. Then taking

covariant differentiation of both sides of V = βξ, along the direction of X we get

∇XV = X(β)ξ + β∇Xξ,

and using ∇ξ = h′ from equation (2.2.11) the above equation eventually becomes

∇XV = X(β)ξ + βh′X. (2.5.2)

Then using (2.5.2) in the equation (2.5.1) we get

g(Y βξ + βh′Y, Z) + g(Y, Zβξ + βh′Z) + 2S(Y, Z) = [2λ− (p+
2

2n+ 1
)]g(Y, Z).

Again using from the fact that h′ is symmetric and after simplification the above equation

finally becomes

Y (β)η(Z) + Z(β)η(Y ) + 2βg(h′Y, Z) + 2S(Y, Z) = [2λ− (p+
2

2n+ 1
)]g(Y, Z). (2.5.3)
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Next, we consider a local ϕ-basis {ej : 1 ≤ j ≤ 2n+1} on the tangent space TpM for

each point p ∈ M2n+1. Then putting Y = Z = ej in (2.5.3) and taking summation over

1 ≤ j ≤ 2n+ 1 and also using tr(h′) = 0 from (2.2.10) we get

ξ(β) + r = [λ− (
p

2
+

1

2n+ 1
)](2n+ 1). (2.5.4)

Again putting Z = ξ in the equation (2.5.3) and using symmetry of h′ we have

Y (β) + ξ(β)η(Y ) + 2S(Y, ξ) = [2λ− (p+
2

2n+ 1
)]η(Y ). (2.5.5)

Now, combining equations (2.5.4) and (2.5.5) and after some calculations we get

Y (β) + 2S(Y, ξ) = [[λ− (
p

2
+

1

2n+ 1
)](1− 2n) + r]η(Y ).

Thus, from the above it is easily seen that

ξ(β) + 2S(ξ, ξ) = [λ− (
p

2
+

1

2n+ 1
)](1− 2n) + r. (2.5.6)

Eliminating ξ(β) from equations (2.5.4) and (2.5.6) and after simplification we arrive at

2n[λ− (
p

2
+

1

2n+ 1
)]− r + S(ξ, ξ) = 0.

Using equation (2.2.12) in the above equation and using the fact that for conformal Ricci

flow the scalar curvature r = −1, and then simplifying we get the value of the soliton

constant as

λ =
∥h∥2 − 1

2n
+ (

p

2
+

1

2n+ 1
). (2.5.7)

Therefore in view of the fact that the soliton is shrinking, steady or expanding according

as λ > 0, λ = 0 or, λ < 0; from the above equation (3.8) we can state the following

theorem

Theorem 2.5.1. Let (M2n+1, g, ϕ, ξ, η) be an almost coKähler manifold such that the

metric g is a conformal Ricci soliton. If the potential vector field V be non-zero pointwise

collinear with the Reeb vector field ξ, then

i) the soliton is shrinking if, p > 1−(2n+1)∥h∥2
(2n2+n)

,

ii) the soliton is steady if, p = 1−(2n+1)∥h∥2
(2n2+n)

,

iii) the soliton is expanding if, p < 1−(2n+1)∥h∥2
(2n2+n)

.
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Again, if we have S = [∥h∥
2−1
2n

]g, then from conformal Ricci soliton equation (1.2.3)

and using value of the soliton constant λ from (2.5.7) we have LV g = 0. Therefore we

can see that V = βξ is a Killing vector field and hence the soliton becomes trivial. Hence

we can state the following corollary.

Corollary 2.5.1. Let (M2n+1, g, ϕ, ξ, η) be an almost coKähler manifold such that the

metric g is a conformal Ricci soliton. If the potential vector field V be non-zero pointwise

collinear with the Reeb vector field ξ and the Ricci tensor S be a constant multiple of the

metric g, with the constant ∥h∥2−1
2n

, (i.e; if S = [∥h∥
2−1
2n

]g), then the soliton is trivial.

2.6 Conformal Ricci soliton on (k, µ)-almost coKähler

manifold

This section is devoted to the study of (k, µ)-almost coKähler manifold which admits a

conformal Ricci soliton. Then equation (1.1.21) holds.

Now, putting Y = ξ in (1.1.21) we get

R(X, ξ)ξ = k[X − η(X)ξ] + µ[hX − η(X)hξ].

Then using the definition of l := R(., ξ)ξ and from equation (2.2.10) using the fact

that hξ = 0, we can write

l = −kϕ2 + µh.

Combining the previous equation with (2.2.13) and after a brief calculation we get

h2 = kϕ2. Thus, it is clear that the manifold M2n+1 is K-almost coKähler if and ony if,

k = 0.

Now, we state a lemma (for proof see lemma 4.1 of [95]) which is used later in this

section and in the next section of this chapter.

Lemma 2.6.1. Let (M2n+1, g, ϕ, ξ, η) be a (k, µ)-almost coKähler manifold of dimension

greater than 3 with k < 0. Then the Ricci operator is given by

Q = µh+ 2nkη ⊗ ξ, (2.6.1)

where k is a non-zero constant and µ is a smooth function satisfying dµ ∧ η = 0.
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Now let us consider the metric g of the (k, µ)-almost coKähler manifold admits a

conformal Ricci soliton. Then from the soliton equation (1.2.3) and using the definition

of the Lie derivative we can write

g(∇XV, Y ) + g(X,∇Y V ) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ). (2.6.2)

Then, substituting V = ξ in the above equation (2.6.2) and using the result ∇ξ = h′ from

(2.2.11) we get

g(h′X, Y ) + g(X, h′Y ) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ).

Again as h′ is symmetric the above equation implies

g(h′X, Y ) + g(QX, Y ) = [λ− (
p

2
+

1

2n+ 1
)]g(X, Y ). (2.6.3)

Now, in view of the lemma(4.1) putting value of the Ricci operator Q, from equation

(2.6.1), in the above equation (2.6.3) we get

g(h′X, Y ) + g(µhX, Y ) + 2nkη(X)η(Y ) = [λ− (
p

2
+

1

2n+ 1
)]g(X, Y ). (2.6.4)

Thus putting Y = ξ in the above (2.6.4) and using hϕ + ϕh = 0 from (2.2.10) we finally

get

2nk = [λ− (
p

2
+

1

2n+ 1
)]. (2.6.5)

Now, as it is mentioned in the lemma(4.1) that k < 0, so from the above relation

(2.6.5) we can conclude that [λ − (p
2
+ 1

2n+1
)] < 0 that is; λ < (p

2
+ 1

2n+1
). Thus if

(p
2
+ 1

2n+1
) ≤ 0, i.e; if, p ≤ −2

2n+1
then λ < 0 and therefore the soliton is expanding. So, in

view of the above we have the following theorem.

Theorem 2.6.1. Let (M2n+1, g, ϕ, ξ, η) be a (k, µ)-almost coKähler manifold of dimension

greater than 3 with k < 0 and the metric g admits a conformal Ricci soliton. Then the

soliton is expanding if the conformal pressure p satisfy the inequality p ≤ −2
2n+1

.

2.7 Conformal gradient Ricci soliton on (k, µ)-almost

coKähler manifold

This section is devoted to the study of conformal gradient Ricci soliton on (k, µ)-almost

coKähler manifold. So, let us first give the statement of our main theorem of this section.
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Theorem 2.7.1. Let (M2n+1, g, ϕ, ξ, η) be a (k, µ)-almost coKähler manifold of dimension

greater than 3 with k < 0. Then there exist no conformal gradient Ricci soliton on the

manifold, with the potential vector field V pointwise collinear with the Reeb vector field ξ.

Proof. Let us assume that the manifold admits a conformal gradient Ricci soliton (g, V, λ).

Then equation (1.2.4) holds. Now as the soliton is of gradient type, i.e; V = Df , for some

smooth function f and D is the gradient operator. Thus for any vector field X ∈ χ(M),

the equation (1.2.4) can be rewritten as

∇XDf +QX = [λ− (
p

2
+

1

2n+ 1
)]X. (2.7.1)

Replacing X by Y in the above equation (2.7.1) we get

∇YDf +QY = [λ− (
p

2
+

1

2n+ 1
)]Y. (2.7.2)

Similarly replacing X by [X, Y ] in (2.7.1) we get

∇[X,Y ]Df +Q[X, Y ] = [λ− (
p

2
+

1

2n+ 1
)][X, Y ]. (2.7.3)

Using equations (2.7.1)-(2.7.3) in the Riemannian curvature formula (1.1.5) and after

some simple calculations we get

R(X, Y )Df = (∇YQ)X − (∇XQ)Y. (2.7.4)

Again for any vector fields X, Y ∈ χ(M), using equation (2.6.1) we obtain

(∇YQ)X − (∇XQ)Y = µ((∇Y h)X − (∇Xh)Y )

+ 2nk(η(X)h′Y − η(Y )h′X) + Y (µ)hX −X(µ)hY. (2.7.5)

Now we recall an equation from Proposition 9 of the paper [71]. The result is, for any

vector fields X, Y ∈ χ(M),

(∇Xh)Y − (∇Y h)X = k(η(Y )ϕX − η(X)ϕY + 2g(ϕX, Y )ξ) + µ(η(X)h′Y − η(Y )h′X).

(2.7.6)

Then using (2.7.5) in (2.7.4) and then using (2.7.6), a simple computation gives that

R(X, Y )Df = kµ(η(X)ϕY − η(Y )ϕX + 2g(X,ϕY )ξ)− µ2(η(X)h′Y − η(Y )h′X)

+ Y (µ)hX −X(µ)hY + 2nk(η(X)h′Y − η(Y )h′X), (2.7.7)
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for any vector fields X, Y ∈ χ(M). Putting X = ξ in the above equation (2.7.7) we get

R(ξ, Y )Df = kµ(ϕY )− ξ(µ)hY − µ2(h′Y ) + 2nk(h′Y ).

Replacing Y by X in the above equation and then taking inner product with respect to

arbitrary vector Y gives us

g(R(ξ,X)Df, Y ) = kµg(ϕX, Y )− ξ(µ)g(hX, Y )− µ2g(h′X, Y ) + 2nkg(h′X, Y ). (2.7.8)

Again for a (k, µ)-almost coKähler manifold, using equation (1.1.21) we can write

R(ξ,X)Y = k[g(X, Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX].

Taking inner-product of the equation with respect to the vector field Df and using the

fact that g(X,Df) = (Xf) we get

g(R(ξ,X)Y,Df) = k[g(X, Y )(ξf)−η(Y )(Xf)]+µ[g(hX, Y )(ξf)−η(Y )((hX)f)]. (2.7.9)

Now combining (2.7.8) and (2.7.9) and using g(R(X, Y )Z,U) = −g(R(X, Y )U,Z), for

any vector fields X, Y, Z, U ∈ χ(M), yields

kµg(ϕX, Y )− ξ(µ)g(hX, Y )− µ2g(h′X, Y ) + 2nkg(h′X, Y )

= kη(Y )(Xf)− kg(X, Y )(ξf)− µg(hX, Y )(ξf) + µη(Y )((hX)f). (2.7.10)

Antisymmetrizing the above equation we get

kµ[g(ϕX, Y )− g(X,ϕY )] = k[η(Y )(Xf)− η(X)(Y f)]

+µ[η(Y )((hX)f)]− η(X)((hY )f). (2.7.11)

Now as per our assumption V = bξ, it is easy to see that h′(Df) = 0. This again implies,

(h′X)f = g(h′X,Df) = g(X, h′(Df)) = 0. Similarly (h′Y )f = 0. Thus

(h(ϕX))f = 0, (h(ϕY ))f = 0. (2.7.12)

Using antisymmetry of ϕ and then puttingX = ϕX in equation (2.7.10) and using (2.7.11)

we get

−2µg(X, Y ) + µη(X)η(Y ) = η(Y )((ϕX)f). (2.7.13)

Putting Y = ξ in the above (2.7.12) yields

−µg(X, ξ) = g(ϕX,Df). (2.7.14)
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Then again using X = ϕX in the above equation (2.7.13) we get g(X,Df) = g(X, ξ(ξf)).

This gives us

Df = (ξf)ξ. (2.7.15)

Covariant differentiation of equation (2.7.14) along the direction of X we get

∇XDf = (X(ξf))ξ + (ξf)(h′X). (2.7.16)

Again from the equation (2.7.1) we have

∇XDf = [λ− (
p

2
+

1

2n+ 1
)]X −QX. (2.7.17)

Thus combining equations (2.7.15) and (2.7.16) we get

QX = [λ− (
p

2
+

1

2n+ 1
)]X − (X(ξf))ξ − (ξf)(h′X). (2.7.18)

Again, the value of Q from lemma(4.1) gives us

QX = µhX + 2nkη(X)ξ. (2.7.19)

Now, comparing right hand sides of (2.7.17) and (2.7.18) we get, d2f = −2nk, where d

is the exterior derivative of f . Again from the well-known Poincare lemma of exterior

differentiation we know that, d2 = 0 and this implies, −2nk = 0, which is a contradiction

to our assumption that k < 0. This completes the proof.

2.8 Conformal Ricci soliton on (LCS)n-manifolds

Let us consider (M, g, ξ, η, ϕ, α) be an n-dimensional (LCS)n-manifold. Again we know

that, for all vector fields X, Y ∈ χ(M), the 1-form η satisfies the equation

(∇Xη)(Y ) = ∇Xη(Y )− η(∇XY ). (2.8.1)

Using the equation (1.1.24) in the above equation (2.8.1), after a simple calculation, we

get

(Lξg)(X, Y ) = 2α[g(X, Y ) + η(X)η(Y )]. (2.8.2)

Now applying the conformal Ricci soliton equation (1.2.3) in the above equation (2.8.2)

we have

S(X, Y ) = [(λ− α)− (
p

2
+

1

n
)]g(X, Y )− αη(X)η(Y ). (2.8.3)
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Let us take σ = [(λ− α)− (p
2
+ 1

n
)]. Then we can rewrite the above equation (2.8.3) as

S(X, Y ) = σg(X, Y )− αη(X)η(Y ). (2.8.4)

which shows that the manifold is an η-Einstein manifold.

Now since the above is true for all vector fieldsX and Y , using the relation S(X, Y ) =

g(QX, Y ) in the above equation (2.8.4) we have

QX = σX − αη(X)ξ. (2.8.5)

Again taking Y = ξ in the equation (2.8.4) we get

S(X, ξ) = (σ + α)η(X). (2.8.6)

Let us consider an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold (M, g). Then

putting X = Y = ei in the equation (2.8.4) and summing over 1 ≤ i ≤ n, we have

r(g) = nσ + α. But we know that for conformal Ricci flow, r(g) = −1, which leads us to

get σ = −(α+1
n
). Again we have σ = [(λ− α)− (p

2
+ 1

n
)], using this in the previous result

we get

λ =
p

2
+ (1− 1

n
)α. (2.8.7)

So, from the above discussions, using equations (2.8.4) and (2.8.7), we can state the

following theorem

Theorem 2.8.1. Let (M, g, ξ, η, ϕ, α) be an n-dimensional (LCS)n-manifold admitting a

conformal Ricci soliton. Then

i) The manifold becomes an η-Einstein manifold.

ii) The value of the soliton scalar λ is equal to λ = p
2
+ (1− 1

n
)α.

iii) The soliton is shrinking, steady or expanding according as the conformal pressure

p < 2(1−n
n
)α, p = 2(1−n

n
)α or p > 2(1−n

n
)α.

Next, we present some results regarding various curvature tensors. Let us first con-

sider the projective curvature tensor on an n-dimensional (LCS)n-manifold. Now for an

(LCS)n-manifold of dimension n, putting Z = ξ in (1.1.1) we get

P (X, Y )ξ = R(X, Y )ξ − 1

(n− 1)
[S(Y, ξ)X − S(X, ξ)Y ].
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Using (2.2.18) and (2.8.6) the above equation becomes

P (X, Y )ξ = [(α2 − ρ)− σ + α

(n− 1)
][η(Y )X − η(X)Y ]. (2.8.8)

Again combining equations (2.2.21) and (2.8.6) we have

[(α2 − ρ)(n− 1)− σ − α]η(X) = 0, (2.8.9)

which essentially gives us

[(α2 − ρ)(n− 1)] = (σ + α). (2.8.10)

Now in view of (2.8.10), the equation (2.8.8) yields us P (X, Y )ξ = 0 for any vector fields

X, Y ∈ χ(M). Thus we have the following

Theorem 2.8.2. If (M, g, ξ, η, ϕ, α) is an n-dimensional (LCS)n-manifold admitting a

conformal Ricci soliton, then the manifold becomes ξ-projectively flat, ξ being the charac-

teristic vector field of the manifold.

Now we consider the concircular curvature tensor on an n-dimensional (LCS)n-

manifold. So, for an (LCS)n-manifold of dimension n, putting Z = ξ in (1.1.2) we

get

C(X, Y )ξ = R(X, Y )ξ − r

n(n− 1)
[η(Y )X − η(X)Y ].

Using (2.2.18) the above equation becomes

C(X, Y )ξ = [(α2 − ρ)− r

n(n− 1)
][η(Y )X − η(X)Y ]. (2.8.11)

Again in view of equation (2.8.10), the above equation (2.8.11) becomes

C(X, Y )ξ = [
(σ + α)

(n− 1)
− r

n(n− 1)
][η(Y )X − η(X)Y ]. (2.8.12)

Now in view of equation (2.8.12), we can say that C(X, Y )ξ = 0 iff r = n(σ + α). Again

using the fact that for conformal Ricci flow r = −1 and using σ = [(λ− α)− (p
2
+ 1

n
)] we

eventually get C(X, Y )ξ = 0 iff λ = p
2
. This leads to the following theorem

Theorem 2.8.3. If (M, g, ξ, η, ϕ, α) is an n-dimensional (LCS)n-manifold admitting a

conformal Ricci soliton, then the manifold becomes ξ-concircularly flat iff λ = p
2
, ξ being

the characteristic vector field of the manifold and p is the conformal pressure.
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Let us now consider the conharmonic curvature tensor on an (LCS)n-manifold of

dimension n. Then, putting Z = ξ in (1.1.3) we have

H(X, Y )ξ = R(X, Y )ξ − 1

(n− 2)
[η(Y )QX − η(X)QY + S(Y, ξ)X − S(X, ξ)Y ].

Using (2.2.18), (2.8.5) and (2.8.6) the above equation yields

H(X, Y )ξ = [(α2 − ρ)− (2σ + α)

(n− 2)
][η(Y )X − η(X)Y ]. (2.8.13)

Again in view of equation (2.8.10), the above equation (2.8.13) becomes

H(X, Y )ξ = [
(−nσ − α)

(n− 1)(n− 2)
][η(Y )X − η(X)Y ]. (2.8.14)

Thus from the above (2.8.14) we can conclude that H(X, Y )ξ = 0 iff nσ = −α. Moreover,

using the value σ = [(λ − α) − (p
2
+ 1

n
)] and after few steps of calculations we have

H(X, Y )ξ = 0 iff λ = p
2
+ 1

n
+ (1− 1

n
)α. Thus we can state the following:

Theorem 2.8.4. If (M, g, ξ, η, ϕ, α) is an n-dimensional (LCS)n-manifold admitting a

conformal Ricci soliton, then the manifold becomes ξ-conharmonically flat iff λ = p
2
+ 1

n
+

(1 − 1
n
)α, ξ being the characteristic vector field of the manifold and p is the conformal

pressure.

Next, let us consider a conformal Ricci soliton (g, V, λ) on an n-dimensional (LCS)n-

manifold M and hence equation (1.2.3) holds. Now assume that, the potential vector field

V is pointwise collinear with the Reeb vector field ξ, that is, V = bξ, where b is a smooth

function on M . Then for any vector fields X, Y ∈ χ(M), from equation (1.2.3) we can

write

Lbξg(X, Y ) + 2S(X, Y ) = [2λ− (p+
2

n
)]g(X, Y ). (2.8.15)

Again from the property of the Lie derivative of the Levi-Civita connection we know that

LZg(X, Y ) = g(∇XZ, Y ) + g(∇YZ,X). Applying this formula in the above equation

(2.8.15) and then using ϕX = 1
α
∇Xξ we get

bαg(ϕX, Y ) + (Xb)η(Y ) + bαg(ϕY,X) + (Y b)η(X) + 2S(X, Y ) = [2λ− (p+
2

n
)]g(X, Y ).

(2.8.16)

Putting Y = ξ in (2.8.16) and using the equations (2.2.16) we obtain

2S(X, ξ)− (Xb) + (ξb)η(X) = [2λ− (p+
2

n
)]η(X). (2.8.17)
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Using equation (2.8.6) in the above (2.8.17) and then putting the value σ = [(λ − α) −
(p
2
+ 1

n
)] gives us

(Xb) = (ξb)ηX. (2.8.18)

Again putting X = ξ in the equation (2.8.17) we have

S(ξ, ξ)− (ξb) + [λ− (
p

2
+

1

n
)] = 0. (2.8.19)

Now, in view of equation (2.8.6) and σ = [(λ−α)− (p
2
+ 1

n
)], the above equation (2.8.19)

yields (ξb) = 0. Furthermore, using (ξb) = 0 in equation (2.8.18) we can conclude that

(Xb)=0, for any vector field X ∈ χ(M). And this implies that the function b is constant

and hence V is a constant multiple of ξ. Therefore we have the following theorem

Theorem 2.8.5. Let (M, g, ξ, η, ϕ, α) be an n-dimensional (LCS)n-manifold which admits

a conformal Ricci soliton (g, V, λ), V being the potential vector field of the manifold. If

the potential vector field V is pointwise collinear with the characteristic vector field ξ, i.e;

if V = bξ, then b is constant, i.e; V becomes constant multiple of ξ.

Next, we study an important curvature property called ξ-Ricci semi symmetry.

Let (M, g, ξ, η, ϕ, α) be an n-dimensional (LCS)n-manifold. Then we say that the

manifoldM is ξ-Ricci semi symmetric if, R(ξ,X)·S = 0 inM , where ξ is the characteristic

vector field, R is the Riemannian curvature tensor, S is the Ricci tensor.

Let us start with the known formula that for any vector fields X, Y, Z on M ,

R(ξ,X) · S = S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z). (2.8.20)

Now, using (2.2.19) the above equation (2.8.20) yields

R(ξ,X) · S = (α2 − ρ)[g(X, Y )S(ξ, Z)− η(Y )S(X,Z) + S(Y, ξ)g(X,Z)− η(Z)S(Y,X)].

Using (2.2.21) in the above equation and after few steps we get

R(ξ,X) · S = α(α2 − ρ)[g(X, Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z)]. (2.8.21)

Now note that (α2 − ρ) = 0 implies λ = p
2
+ 1

n
, which is the trivial case. Thus for non-

triviality we assume (α2 − ρ) ̸= 0. Again as α is a non-zero scalar, from (2.8.21) we can

state the following:
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Theorem 2.8.6. If (M, g, ξ, η, ϕ, α) is an n-dimensional (LCS)n-manifold admitting a

conformal Ricci soliton, then the manifold becomes ξ-Ricci semi symmetric, i.e; R(ξ,X) ·
S = 0 iff the Lorentzian metric g satisfies the relation

g(X, Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z) = 0,

for any vector fields X, Y, Z ∈ χ(M), ξ being the characteristic vector field.

2.9 Conformal Ricci soliton on (LCS)n-manifolds sat-

isfying certain curvature conditions

In this section we characterize conformal Ricci soliton on (LCS)n-manifolds satisfying

certain types of curvature conditions.

First let (M, g) be an n-dimensional (LCS)n-manifold and then the conharmonic

curvature tensor on M is given by equation (1.1.3). Interchanging Z and X and then

putting Z = ξ in (1.1.3) we get

H(ξ,X)Y = R(ξ,X)Y − 1

n− 2
[S(X, Y )ξ − S(ξ, Y )X + g(X, Y )Qξ − g(ξ, Y )QX].

Using (2.2.19), (2.8.4), (2.8.5) and (2.8.6) in the previous equation yields

H(ξ,X)Y = [(α2 − ρ)− (2σ + α)

(n− 2)
][g(X, Y )ξ − η(Y )X]. (2.9.1)

Also from (2.9.1) we can write

η(H(ξ,X)Y ) = −[(α2 − ρ)− (2σ + α)

(n− 2)
][g(X, Y ) + η(X)η(Y )]. (2.9.2)

Now we assume that H(ξ,X) · S = 0 holds. Then we have

S(H(ξ,X)Y, Z) + S(Y,H(ξ,X)Z) = 0. (2.9.3)

In view of (2.8.4) the above (2.9.3) yields

σ[g(H(ξ,X)Y, Z) + g(Y,H(ξ,X)Z)]− α[η(H(ξ,X)Z)η(Y ) + η(H(ξ,X)Y )η(Z)] = 0.

Using (2.9.1) and (2.9.2) in the above equation we get

α[(α2 − ρ)− (2σ + α)

(n− 2)
][g(X, Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z)] = 0. (2.9.4)
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Finally taking Z = ξ in equation (2.9.4) and then using (2.2.17) we arrive at

α[(α2 − ρ)− (2σ + α)

(n− 2)
]g(ϕX, ϕY ) = 0. (2.9.5)

Since α is non-zero and g(ϕX, ϕY ) ̸= 0 always; then [(α2 − ρ) − (2σ+α)
(n−2)

] = 0 i.e; λ =

p
2
+ 1

n
+ (1− 1

n
)α. Therefore we can state the following theorem:

Theorem 2.9.1. If (M, g, ξ, η, ϕ, α) is an n-dimensional (LCS)n-manifold which admits

a conformal Ricci soliton, and satisfies the condition H(ξ,X) · S = 0 i.e; the manifold is

ξ-Ricci conharomnically symmetric. Then the soliton constant is given by λ = p
2
+ 1

n
+

(1− 1
n
)α; where H is the conharmonic curvature tensor and S is the Ricci tensor of the

manifold and ξ is the characteristic vector field.

Next we study another important curvature tensor called M̃ -projective curvature

tensor [5]. The M̃ -projective curvature tensor on an (LCS)n-manifold is given by

M̃(X, Y )Z = R(X, Y )Z − 1

2(n− 1)
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ].

(2.9.6)

Taking inner product with respect to the vector field ξ, the above (2.9.5) yields

η(M̃(X, Y )Z) = η(R(X, Y )Z)− 1

2(n− 1)
[S(Y, Z)η(X)− S(X,Z)η(Y ) (2.9.7)

+g(Y, Z)S(X, ξ)− g(X,Z)S(Y, ξ)].

Using (2.2.20), (2.8.4) and (2.8.5) in the above equation we get

η(M̃(X, Y )Z) = [(α2 − ρ)− (2σ + α)

2(n− 1)
][g(Y, Z)η(X)− g(X,Z)η(Y )]. (2.9.8)

Now we assume the condition that R(ξ,X) · M̃ = 0. Then we have

R(ξ,X)M̃(Y, Z)W − M̃(R(ξ,X)Y, Z)W

− M̃(Y,R(ξ,X)Z)W − M̃(Y, Z)R(ξ,X)W = 0. (2.9.9)

Using (2.2.19) in (2.9.8) and then taking an inner product with respect to ξ we get

− g(X, M̃(Y, Z)W )− η(X)η(M̃(Y, Z)W )− g(X, Y )η(M̃(ξ, Z)W )

+ η(Y )η(M̃(X,Z)W )− g(X,Z)η(M̃(Y, ξ)W ) + η(Z)η(M̃(Y,X)W )

− g(X,W )η(M̃(Y, Z)ξ) + η(W )η(M̃(Y, Z)X) = 0. (2.9.10)
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Then in view of (2.9.7) the above (2.9.9) becomes

[(α2−ρ)− (2σ + α)

2(n− 1)
][g(Y,W )g(X,Z)−g(X, Y )g(Z,W )]+g(X, M̃(Y, Z)W ) = 0. (2.9.11)

From (2.9.5) and (2.9.10) we get

[(α2 − ρ)− (2σ + α)

2(n− 1)
][g(Y,W )g(X,Z)− g(X, Y )g(Z,W )] + g(X,R(Y, Z)W )

− 1

2(n− 1)
[S(Z,W )g(X, Y )−S(Y,W )g(X,Z)+g(Z,W )S(Y,X)−g(Y,W )S(Z,X)] = 0.

(2.9.12)

Let us consider an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold (M, g). Then

putting X = Y = ei in the equation (2.9.11) and summing over 1 ≤ i ≤ n, we get

2nS(Z,W ) = [2(n− 1)2(α2 − ρ)− (n− 1)(2σ + α)− r]g(Z,W ). (2.9.13)

Again putting Z = W = ξ in above and using equation (2.8.6) we get

2(n− 1)2(α2 − ρ)− (5n− 2)[λ− (
p

2
+

1

n
)] + 2nα = 0. (2.9.14)

Now using (2.8.10) in the above equation (2.9.13) and after a simple calculation we arrive

at

λ = (
p

2
+

1

n
)− 2α. (2.9.15)

Thus we have the following theorem

Theorem 2.9.2. Let (M, g, ξ, η, ϕ, α) be an n-dimensional (LCS)n-manifold admitting

a conformal Ricci soliton and the manifold is ξ-M̃-projectively semi symmetric i.e; it

satisfies the condition R(ξ,X) · M̃ = 0; ξ being the characteristic vector field, M̃ is the

M-projective curvature tensor of the manifold. Then the soliton is shrinking, steady or

expanding according as p > (4α− 2
n
), p = (4α− 2

n
) or p < (4α− 2

n
).

Next we prove an interesting result on (LCS)n-manifold admitting a conformal Ricci

soliton and satisfying the condition R(ξ,X) · P̃ = 0, where P̃ denotes the well-known

Pseudo-projective curvature tensor. But before that let us recall some well-known results

that will be used later in this section:

Theorem 2.9.3. [69] If S : g(x, y, z) = c is a surface in R3 then the gradient vector field

∇g (connected only at a point of S) is a non-vanishing normal vector field on the entire

surface S.
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S.R. Ashoka et.al. in their paper [5] have given the higher dimensional version of the

above theorem as follows:

Corollary 2.9.1. [5] If S : g(x, y, z) = c is a surface (abstract surface or manifold) in

Rn then the gradient vector field ∇g (connected only at points of S) is a non-vanishing

normal vector field on the entire surface (abstract surface or manifold) S.

Then the above mentioned authors in [5] also gave the following remark from the

above corollary as:

Remark 2.9.1. [5] Taking a real valued scalar function α associated with an (LCS)n-

manifold with M = R3 and g = α in the above corollary we have, ∇α as a non-vanishing

normal vector field on S ⊂ M and directional derivative of α with respect to ξ, ξα = ξ,

∇α = |ξ||∇α|cos(ξ̂,∇α)

i) If ξ is tangent to S then ξα = 0.

ii) If ξ is tangent to M but not to S then ξα ̸= 0.

iii) If the angle between ξ and ∇α is acute then 0 < cos(ξ̂,∇α) < 1, then ξα = k|∇α|,
0 < k < 1 and ξα > 0.

iv) If the angle between ξ and ∇α is obtuse then −1 < cos(ξ̂,∇α) < 0, then ξα = k|∇α|,
−1 < k < 0 and ξα < 0.

Now we see the dependance of the conformal Ricci soliton on ξα for (LCS)n-manifolds

satisfying R(ξ,X) · P̃ = 0. The Pseudo projective curvature tensor P̃ is defined by

P̃ (X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

− r

n
(

a

n− 1
+ b)[g(Y, Z)X − g(X,Z)Y ], (2.9.16)

where a, b ̸= 0 are constants. Taking Z = ξ in (2.9.15) we get

P̃ (X, Y )ξ = aR(X, Y )ξ + b[S(Y, ξ)X − S(X, ξ)Y ]

− r

n
(

a

n− 1
+ b)[η(Y )X − η(X)Y ]. (2.9.17)

Using (2.2.18) and (2.8.6) the above equation (2.9.16) yields

P̃ (X, Y )ξ = [a(α2 − ρ) + b(σ + α)− r

n
(

a

n− 1
+ b)][η(Y )X − η(X)Y ], (2.9.18)

49



where σ is as described in the previous section. Again from (2.9.15) we can write

η(P̃ (X, Y )Z) = aη(R(X, Y )Z) + b[S(Y, Z)η(X)− S(X,Z)η(Y )]

− r

n
(

a

n− 1
+ b)[g(Y, Z)η(X)− g(X,Z)η(Y )].

Using (2.2.20) and (2.8.4) the above equation becomes

η(P̃ (X, Y )Z) = [a(α2 − ρ) + bσ − r

n
(

a

n− 1
+ b)][g(Y, Z)η(X)− g(X,Z)η(Y )]. (2.9.19)

Now we assume the condition that R(ξ,X) · P̃ = 0. Then we have

R(ξ,X)P̃ (U, V )W − P̃ (R(ξ,X)U, V )W

− P̃ (U,R(ξ,X)V )W − P̃ (U, V )R(ξ,X)W = 0, (2.9.20)

for any vector fields X,U, V,W ∈ χ(M). Using (2.2.19) in the above equation and then

taking an inner product with respect to ξ we get

− g(X, P̃ (U, V )W )− η(X)η(P̃ (U, V )W )− g(X,U)η(P̃ (ξ, V )W )

+ η(U)η(P̃ (X, V )W )− g(X,U)η(P̃ (U, ξ)W ) + η(V )η(P̃ (U,X)W )

− g(X,W )η(P̃ (U, V )ξ) + η(W )η(P̃ (U, V )X) = 0.

Then using (2.9.17) and (2.9.18) the above equation becomes

[a(α2 − ρ) + bσ − r

n
(

a

n− 1
+ b)][g(X, V )g(U,W )− g(X,U)g(V,W )]

+ g(X, P̃ (U, V )W ) = 0. (2.9.21)

Now in view of (2.9.15) and then using (2.8.4) in the equation (2.9.20) we get

ag(X,R(U, V )W )− bα[η(V )η(W )g(X,U)− η(U)η(W )g(X, V )]

+ a(α2 − ρ)[g(X, V )g(U,W )− g(X,U)g(V,W )] = 0. (2.9.22)

Let us consider an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold (M, g). Then

putting X = U = ei in the equation (2.9.21) and summing over 1 ≤ i ≤ n, we get

aS(V,W )− b(n− 1)αη(V )η(W )− a(n− 1)(α2 − ρ)g(V,W ) = 0. (2.9.23)

Again setting V = W = ξ in (2.9.22) and after a few steps of simple calculations we get

λ = (n− 1)[(α2 − ρ)− b

a
α] + (

p

2
+

1

n
). (2.9.24)

Therefore in view of (2.9.24) and Remark 2.9.1 we can state the following:
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Theorem 2.9.4. Let (M, g, ξ, η, ϕ, α) be an n-dimensional (LCS)n-manifold which admits

a conformal Ricci soliton and the manifold is ξ-pseudo-projectively semi symmetric i.e; if

it satisfies the condition R(ξ,X) · P̃ = 0; ξ being the characteristic vector field, P̃ is the

pseudo-projective curvature tensor of the manifold and α is a positive function, then

i) If ξ is orthogonal to ∇α; the soliton is expanding if α > b
a
, p > − 2

n
; steady if α = b

a
,

p = − 2
n
and shrinking if α < b

a
, p < − 2

n
.

ii) If the angle between ξ and ∇α is acute; the soliton is expanding if α2 + k|∇α| > b
a
α,

p > − 2
n
; steady if α2 + k|∇α| = b

a
α, p = − 2

n
and shrinking if α2 + k|∇α| < b

a
α,

p < − 2
n
.

iii) If the angle between ξ and ∇α is obtuse; the soliton is expanding if α2 > k|∇α|+ b
a
α,

p > − 2
n
; steady if α2 = k|∇α| + b

a
α, p = − 2

n
and shrinking if α2 < k|∇α| + b

a
α,

p < − 2
n
.

2.10 Conformal Ricci soliton on warped product man-

ifolds

This section deals with the study of conformal Ricci soliton on warped product manifolds.

Basically here we want to see if a warped product manifold admits a conformal Ricci

soliton then how its effect is on the base and the fiber i.e; we try to find out under which

conditions they become conformal Ricci soliton.

So, let us assume that (M, g) = (B ×f F, gB ⊕ f 2gF ) be an warped product of two

Riemannian manifolds (B, gB) and (F, gF ) with dimB = m and dimF = n. Now let

(M, g, µ, ξ) be a conformal Ricci soliton, where µ = [2λ − (p + 2
n
)]. Then from equation

(1.2.3) we get

Lξg + 2S = [2λ− (p+
2

n
)]g = µg. (2.10.1)

Again note that from the lemma 2.2.1 (for details see [8]) following two well-known

formulas for warped product manifolds can easily be deduced

Lξg = LB
ξB
gB + f 2LF

ξF
gF + 2fξB(f)gF , (2.10.2)

S = SB − n

f
Hf + SF − f̃ gF , (2.10.3)
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where f̃ = f∆f + (n − 1)∥∇f∥2B. Now in equation (2.10.1) using the definition of the

warped metric from equation (1.1.31) and then applying the values from the above two

equations (2.10.2) and (2.10.3) we have

µ(gB + f 2gF ) = µg

= Lξg + 2S

= LB
ξB
gB + f 2LF

ξF
gF + 2fξB(f)gF + 2SB

−2
n

f
Hf + 2SF − 2f̃ gF , (2.10.4)

Again for all U, V ∈ χ(B), using the definition of Lie derivation we can write

(LB
ξB
gB)(U, V ) = gB(D

B
U ξB, V ) + gB(U,D

B
V ξB). (2.10.5)

Now from the definition of Hessian and the above equation (2.10.5) we have

(LB
ξB
gB − 2

n

f
Hf )(U, V ) = gB(D

B
U ξB, V ) + gB(U,D

B
V ξB)− 2

n

f
gB(D

B
U∇Bf, V ).

The above equation can be rewritten as

(LB
ξB
gB − 2

n

f
Hf )(U, V ) = (gB(D

B
U ξB, V )− n

f
gB(D

B
U∇Bf, V ))

+(gB(U,D
B
V ξB)−

n

f
gB(D

B
U∇Bf, V ))

= gB(D
B
U (ξB − n∇B ln f), V )

+gB(U,D
B
V (ξB − n∇B ln f)). (2.10.6)

Using the definition of Lie derivative again equation (2.10.6) becomes

(LB
ξB
gB − 2

n

f
Hf )(U, V ) = (LB

ξB−n∇B ln fgB)(U, V ),∀U, V ∈ χ(B).

Since the above equation is true for all U, V ∈ χ(B), in operator notation we can write

LB
ξB
gB − 2

n

f
Hf = LB

ξB−n∇B ln fgB. (2.10.7)

Now using the value from equation (2.10.7), the equation (2.10.4) finally yields

(LB
ξB−n∇B ln fgB + 2SB) + (f 2LF

ξF
gF + 2SF )

= µgB + (µf 2 − 2fξB(f) + 2f̃)gF ). (2.10.8)

Hence from the above discussion and equation (2.10.8) we have the following theorem
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Theorem 2.10.1. Let us consider that (M, g) = (B×fF, gB⊕f 2gF ) be an warped product

of two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m

and dimF = n. If (M, g, µ, ξ) be a conformal Ricci soliton, then the base (B, gB, µ, ξB −
n∇B ln f) and the fiber (F, gF , µf

2−2fξB(f)+2f̃ , f 2ξF ) are both conformal Ricci solitons;

where f̃ = f∆f + (n − 1)∥∇f∥2B, µ = [2λ − (p + 2
n
)], λ is the soliton constant and p is

the conformal pressure.

Now we study a special case when the soliton vector field ξ of the conformal Ricci

soliton (M, g, µ, ξ) becomes gradient of some smooth function ϕ i.e; when ξ = gradϕ =

∇ϕ. In this case we call the soliton a conformal gradient Ricci soliton and the function ϕ

is then called the potential function of the soliton. Also for notational purpose without

any confusion we denote a conformal gradient Ricci soliton as (M, g, µ, ϕ), where the last

term specifies the potential function of the soliton.

Let us assume that (M, g) = (B ×f F, gB ⊕ f 2gF ) be an warped product of two

Riemannian manifolds (B, gB) and (F, gF ) with dimB = m and dimF = n. Then if

(M, g, µ, ϕ) be a conformal gradient Ricci soliton, for any vector fields X, Y ∈ χ(M),

equation (1.2.4) implies

2Hϕ(X, Y ) + 2S(X, Y ) = [2λ− (p+
2

n
)]g(X, Y ) = µg(X, Y ). (2.10.9)

Now if we take X = XB and Y = YB, where XB, YB are the lifts of the vector fields

X, Y ∈ χ(B), then the equation (2.10.9) gives us

2Hϕ(XB, YB) + 2S(XB, YB) = µg(XB, YB).

Using the value of the Ricci tensor for the base manifold from lemma 1.1, the above

equation becomes

2HϕB

B (XB, YB) + 2SB(XB, YB)− 2
n

f
Hf

B(XB, YB) = µgB(XB, YB),

where ϕB = ϕ at a fixed point of the fiber F . Finally using the properties of Hessian in

the above equation we get

2HϕB−n ln f
B (XB, YB) + 2SB(XB, YB) = µgB(XB, YB). (2.10.10)

This shows that (B, gB, µ, ϕB − n ln f) is a conformal gradient Ricci soliton.
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Again taking X = XF and Y = YF , where XF , YF are the lifts of the vector fields

X, Y ∈ χ(F ), then the equation (2.10.9) gives us

2Hϕ(XF , YF ) + 2S(XF , YF ) = µg(XF , YF ).

Using equation (2.10.3) and lemma 1.1 the above equation becomes

2HϕF

F (XF , YF ) + 2SF (XF , YF )− f̃ gF (XF , YF ) = µf 2gF (XF , YF ),

where ϕF = ϕ at a fixed point of the base B and f̃ = f∆f + (n− 1)∥∇f∥2B. Thus finally
we get from the above equation

2HϕF

F (XF , YF ) + 2SF (XF , YF ) = (µf 2 + f̃)gF (XF , YF ).

Therefore if the warping function f is constant, the term f̃ = f∆f + (n − 1)∥∇f∥2B
vanishes from the right hand side of the above equation and we get the following

2HϕF

F (XF , YF ) + 2SF (XF , YF ) = µf 2gF (XF , YF ). (2.10.11)

Thus (F, gF , µf
2, ϕF ) is a conformal gradient Ricci soliton. Hence from the above obser-

vations and equations (2.10.10) and (2.10.11) we can state the following

Theorem 2.10.2. Let (M, g) = (B×f F, gB⊕f 2gF ) be an warped product of two Rieman-

nian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and dimF = n.

If (M, g, µ, ϕ) be a conformal gradient Ricci soliton, then

i) the base (B, gB, µ, ϕB − n ln f) is a conformal gradient Ricci soliton with ϕB = ϕ at

a fixed point of the fiber F .

ii) the fiber (F, gF , µf
2, ϕF ) is a conformal gradient Ricci soliton with ϕF = ϕ at a fixed

point of the base B, provided the warping function f is constant.

2.11 Effect of certain special types of vector fields

on conformal Ricci soliton on warped product

manifolds

The main purpose of this section is to study the effects of some special types of smooth

vector fields on conformal Ricci solitons on warped product spaces. In particular, we focus

on Killing vector fileds, conformal vector fields and concurrent vector fields.
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Proposition 2.11.1. Let (M, g) = (B ×f F, gB ⊕ f 2gF ) be an warped product of two

Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and

dimF = n. If (M, g, µ, ξ) is a conformal Ricci soliton and any one of the following

conditions holds

i) ξ = ξB and ξB is a Killing vector field on the base B.

ii) ξ = ξF and ξF is a Killing vector field on the fiber F .

Then the manifold (M, g) becomes an Einstein manifold.

Proof. As per our assumption (M, g, µ, ξ) being a conformal Ricci soliton, it satisfies

equation (1.2.3) and we get

Lξg + 2S = µg, (2.11.1)

Now let, ξ = ξB, and ξB is Killing on B, we get LB
ξB
gB = 0. Then using it in equation

(2.10.2) we have Lξg = 0. Therefore equation (2.11.1) gives us S = µ
2
g and this implies

(M, g) is Einstein manifold.

Again if ξ = ξF and ξF is a Killing vector field on the fiber F , LF
ξF
gF = 0. Then using

equations (2.10.2) and (2.11.1) and proceeding similarly as the first part of the proof, it

can be easily shown that in this case also (M, g) is Einstein.

Theorem 2.11.1. Let (M, g) = (B×f F, gB⊕f 2gF ) be an warped product of two Rieman-

nian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and dimF = n.

If (M, g, µ, ξ) is a conformal Ricci soliton and ξB is Killing vector field on the base B;

then the base (B, gB, µ,−n ln f) is a conformal gradient Ricci soliton; where ξB is the lift

of the vector field ξ to χ(B).

Proof. Since it is given that (M, g, µ, ξ) is a conformal Ricci soliton from theorem 2.1 it

follows that the base (B, gB, µ, ξB −n∇B ln f) is also a conformal Ricci soliton and hence

it satisfies equation (1.2.3). Thus we can write

LB
ξB−n∇B ln fgB + 2SB = µgB. (2.11.2)

Again using equation (2.10.7) the above equation (2.11.2) becomes

LB
ξB
gB − 2

n

f
Hf + 2SB = µgB.
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Now, as ξB is Killing vector field on the base B, we have LB
ξB
gB = 0. Thus with the help

of this, the above equation gives us

−2
n

f
Hf + 2SB = µgB.

Thus using the properties of Hessian, the above equation finally yields

2H−n ln f + 2SB = µgB. (2.11.3)

Hence compairing the above equation (2.11.3) with the conformal gradient Ricci soliton

equation (2.10.9) completes the proof.

We conclude this portion of study of Killing vector fields on conformal Ricci soliton

warped product manifolds with the following result

Theorem 2.11.2. Assume that (M, g) = (B ×f F, gB ⊕ f 2gF ) be an warped product of

two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and

dimF = n. Let (M, g, µ, ξ) be a conformal Ricci soliton and both the lifts ξB and ξF are

Killing on the base B and the fiber F respectively. Then the manifold (M, g) is Einstein

if ξB(f) = 0.

Proof. Since it is given that both ξB and ξF are Killing, we have LB
ξB
gB = 0 and LF

ξF
gF = 0.

Then using these values in equation (2.10.2) we get

Lξg = 2fξB(f)gF . (2.11.4)

Again as per our hypothesis (M, g, µ, ξ) being a conformal Ricci soliton, from equation

(1.2.3) we get

Lξg + 2S = µg.

Now using equation (2.11.4) in the above equation, gives us

2fξB(f)gF + 2S = µg. (2.11.5)

Thus if ξB(f) = 0, the above equation (2.11.5) yields S = µ
2
g, which implies the manifold

(M, g) is Einstein and this completes the proof.

Now we shall focus on the effect of conformal vector fields on warped product mani-

folds admitting conformal Ricci solitons. In this direction a very immediate result is the

following
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Proposition 2.11.2. Let (M, g) = (B ×f F, gB ⊕ f 2gF ) be an warped product of two

Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and

dimF = n. Let (M, g, µ, ξ) is a conformal Ricci soliton. Then the manifold (M, g) becomes

an Einstein manifold with factor (µ
2
− ρ) if and only if the vector field ξ is conformal with

factor 2ρ.

Proof. (M, g, µ, ξ) being a conformal Ricci soliton, from (1.2.3) we can write

Lξg + 2S = µg. (2.11.6)

Since the vector field ξ is conformal with factor 2ρ, by definition we have Lξg = 2ρg,

where ρ is a smooth function. Thus using this value in equation (2.11.6) finally we get

S = (
µ

2
− ρ)g. (2.11.7)

This implies (M, g) is an Einstein manifold. Similarly by reverse calculation process it

can be shown that if (M, g) is an Einstein manifold with factor (µ
2
− ρ) then ξ becomes

conformal with factor 2ρ. This completes the proof.

It is to be noted that in the above result we have discussed on conformal Ricci solitons

with the vector field ξ is taken conformal. So it is natural to ask whether it is necessary to

consider ξ conformal as a whole, or is there a weaker condition than this. The following

theorem could put some light on it.

Theorem 2.11.3. Assume that (M, g) = (B ×f F, gB ⊕ f 2gF ) be an warped product of

two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and

dimF = n. Let (M, g, µ, ξ) be a conformal Ricci soliton and both the lifts ξB and ξF are

conformal on the base B and the fiber F with factors 2ρB and 2ρF respectively; where

ρB and ρF are two smooth functions. Then the manifold (M, g) is Einstein provided

ρB = ρF + ξB(ln f).

Proof. Since ξB is conformal on the base B with factor 2ρB, we have LB
ξB
gB = 2ρBgB.

Also ξF being conformal with factor 2ρF , we get LF
ξF
gF = 2ρFgF . Then using these two

values in equation (2.10.2) we get

Lξg = 2(ρBgB + f 2ρFgF + fξB(f)gF ). (2.11.8)

57



Again (M, g, µ, ξ) being a conformal Ricci soliton, from equation (1.2.3) and the previous

equation (2.11.8) we have

2(ρBgB + f 2ρFgF + fξB(f)gF + S) = µg.

The above equation can be rewritten as

S =
µ

2
g − ρBgB − f 2(ρF + ξB(ln f))gF . (2.11.9)

Hence if ρB = ρF + ξB(ln f), and using equation (1.1.31), the above equation (2.11.9)

finally gives us S = (µ
2
− ρB)g. This implies (M, g) is Einstein and thus completes the

proof.

We end this section with our last theorem, which actually gives the converse part

of the previous theorem. In the previous result we characterised the conformal Ricci

soliton (M, g, µ, ξ) whereas our next result gives conditions under which a warped product

manifold (M, g) admits a conformal Ricci soliton.

Theorem 2.11.4. Let (B, gB, µ, ξB) be a conformal Ricci soliton and (F, gF ) be an Ein-

stein manifold with factor β, where dimB = m and dimF = n. Let (M, g) = (B ×f

F, gB ⊕ f 2gF ) be an warped product of (B, gB) and (F, gF ) with warping function f and

ξF is conformal vector field with factor 2ρ. Then (M, g, µ, ξ) is a conformal Ricci soliton

if Hf = 0 and the warping function f satisfies the quadratic equation

(2ρ− µ)f 2 + 2fξB(f) + 2β + 2(1− n)k2 = 0,

where k2 = ∥∇f∥2B = gB(∇f,∇f) for some real number k.

Proof. (B, gB, µ, ξB) being a conformal Ricci soliton, from equation (1.2.3) we get

LB
ξB
gB + 2SB = µgB. (2.11.10)

Again as (F, gF ) is an Einstein manifold with factor β, the Ricci tensor is given by RicF =

βgF . Using this value in equation (2.10.3) gives us

S = SB − n

f
Hf + βgF − f̃ gF , (2.11.11)

where f̃ = f∆f + (n− 1)∥∇f∥2B. Now, using equation (2.11.10) in the equation (2.10.2)

we get

Lξg = µgB − 2SB + f 2LF
ξF
gF + 2fξB(f)gF . (2.11.12)
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Multiplying both sides of the equation (2.11.11) by 2 and then adding it with equation

(2.11.12) yields

Lξg + 2S = µgB + f 2LF
ξF
gF + 2fξB(f)gF + 2(−n

f
Hf + βgF − f̃ gF ).

Now since the vector field ξF is conformal with factor 2ρ i.e; LF
ξF
gF = 2ρgF , the above

equation becomes

Lξg + 2S = µgB + 2f 2ρgF + 2fξB(f)gF + 2(−n

f
Hf + βgF − f̃ gF ). (2.11.13)

As it is given thatHf = 0, then it implies that ∆f = 0 and hence f̃ = f∆f+(n−1)∥∇f∥2B
becomes f̃ = (n− 1)∥∇f∥2B = (n− 1)k2, where k2 = ∥∇f∥2B = gB(∇f,∇f) for some real

number k. Therefore using these results in the above equation (2.11.13) we get

Lξg + 2S = µgB + 2f 2ρgF + 2fξB(f)gF + 2(βgF − (n− 1)k2gF )

= µ(gB + f 2gF ) + (2f 2ρ− µf+2fξB(f) + 2(β − (n− 1)k2))gF .

Thus if (2f 2ρ − µf 2 + 2fξB(f) + 2(β − (n − 1)k2)) = 0 i.e; if f satisfies the quadratic

equation (2ρ−µ)f 2 +2fξB(f)+ 2β+2(1−n)k2 = 0; the above equation finally becomes

Lξg + 2S = µ(gB + f 2gF ) = µg. (2.11.14)

Therefore from equation (2.11.14) we can conclude that (M, g, µ, ξ) is a conformal Ricci

soliton and this completes the proof.

2.12 Warped product manifolds admitting conformal

Ricci soliton with concurrent vector field

In this section we study conformal Ricci solitons with the soliton vector field ξ being

concircular (also, concurrent) vector field. Definitions of concircular and concurrent vector

fields are discussed in chapter one. So in this direction our first result is as follows

Theorem 2.12.1. Let (M, g, µ, ξ) be a conformal Ricci soliton on an n-dimensional Rie-

mannian manifold (M, g) and the soliton vector field ξ is concircular with factor α, then

i) the manifold (M, g) is an Einstein manifold with factor (µ− 2α) and
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ii) the soliton is expanding, steady or shrinking according as (p+2α+ 1
n
) < 0, (p+2α+

1
n
) = 0 or (p+ 2α + 1

n
) > 0 respectively.

Proof. As per our assumption the soliton vector field ξ is concircular with factor α, then

from equation (1.1.10) we get ∇Xξ = αX. Then using it in the definition of Lie differen-

tiation we get

(Lξg)(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)

= g(αX, Y ) + g(X,αY )

= 2αg(X, Y ), (2.12.1)

for all vector fields X, Y ∈ χ(M). Again, (M, g, µ, ξ) being a conformal Ricci soliton,

using the value from (2.12.1) in the equation (1.2.3) we get

S(X, Y ) = (µ− 2α)g(X, Y ), (2.12.2)

for all vector fields X, Y ∈ χ(M), and µ = [2λ− (p+ 2
n
)]. Thus equation (2.12.2) proves

that (M, g) Einstein with factor (µ−2α) and this completes the first part of the theorem.

Again we know that for conformal Ricci flow, the scalar curvature r(g) = −1. So

taking an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold M and summing over

1 ≤ i ≤ n in both sides of the equation (2.12.2) gives us

−1 = r(g) = n(µ− 2α).

Finally using the value µ = [2λ− (p+ 2
n
)] in the above equation and after simplification

we get

λ = α +
p

2
+

1

2n
. (2.12.3)

We know that the soliton is expanding steady or shrinking if λ < 0, λ = 0 or λ > 0, thus

applying it in equation (2.12.3) completes the proof.

Next, we have a result on concurrent vector field which immediately follows from the

above theorem.

Corollary 2.12.1. (M, g, µ, ξ) be a conformal Ricci soliton with the soliton vector field ξ

is concurrent, then

i) the manifold (M, g) is an Einstein manifold with factor (µ− 2) and
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ii) the soliton is expanding, steady or shrinking according as (p+2+ 1
n
) < 0, (p+2+ 1

n
) = 0

or (p+ 2 + 1
n
) > 0 respectively.

Proof. Proceeding similarly as theorem 4.1 and then putting α = 1 in the equations

(2.12.2) and (2.12.3) completes the proof.

We conclude this section with the following theorem on concurrent vector field:

Theorem 2.12.2. Assume that (M, g) = (B ×f F, gB ⊕ f 2gF ) be an warped product of

two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and

dimF = n. Let (M, g, µ, ξ) be a conformal Ricci soliton with concurrent vector field ξ. If

f is constant and both the lifts ξB and ξF are concurrent on the base B and the fiber F

then

i) the soliton (M, g, µ, ξ) is expanding, steady or shrinking according as (p
2
+ 1

n
+1) < 0,

(p
2
+ 1

n
+ 1) = 0 or (p

2
+ 1

n
+ 1) > 0 respectively,

ii) all the three manifolds M,B and F are Ricci flat manifolds and

iii) all the three manifolds M,B and F admit conformal gradient Ricci solitons.

Proof. Since (M, g, µ, ξ) is a conformal Ricci soliton on M with concurrent vector field ξ,

from first part of the corollary 2.12.1 we can write

S(X, Y ) = (µ− 2)g(X, Y ), (2.12.4)

for all vector fields X, Y ∈ χ(M).

Now if we set X = XF and Y = YF , then from lemma 1.1 and equation (2.10.3) we get

S(XF , YF ) = SF (XF , YF )− f̃ gF (XF , YF ), (2.12.5)

where f̃ = f∆f + (n− 1)∥∇f∥2B. Now using equation (2.12.4) and (1.1.31), in the above

equation (2.12.5) yields

SF (XF , YF ) = f̃ gF (XF , YF ) + (µ− 2)f 2gF (XF , YF ),

where f̃ = f∆f + (n− 1)∥∇f∥2B. Since it is given that f is constant, say f = c for some

constant c, then it implies that f̃ = 0 and thus the above equation becomes

SF (XF , YF ) = c2(µ− 2)gF (XF , YF ), (2.12.6)
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for all vector fields XF , YF ∈ χ(F ). Thus from the above equation (2.12.6) we can say

that F is Einstein. Now as the equation (2.12.6) is true for any vector field in χ(F ), by

putting XF = YF = ξF in above we get

SF (ξF , ξF ) = c2(µ− 2)gF (ξF , ξF )

= c2(µ− 2)∥ξF∥2F . (2.12.7)

Let {ξF , e1, e2, e3, ...., en−1} be an orthonormal basis of χ(F ). Then the curvature tensor

of the manifold F is given by

RF (ξF , ei, ξF , ei) = gF (R
F (ξF , ei)ξF , ei).

Using the well-known formula for curvature, the above equation can be rewritten as

RF (ξF , ei, ξF , ei) = gF (∇F
ξF
∇F

ei
ξF −∇F

ei
∇F

ξF
ξF −∇F

[ξF ,ei]
ξF , ei). (2.12.8)

Also since ξF is concurrent vector field, from equation (1.1.11) we have ∇XξF = X, for

all X ∈ χ(F ) and using this in equation (2.12.8) we get

RF (ξF , ei, ξF , ei) = gF (∇F
ξF
ei −∇F

ei
ξF − [ξF , ei], ei) = 0.

This implies RicF (ξF , ξF ) = 0 and then from equation (2.12.7) we get µ = 2, i.e; µ =

[2λ − (p + 2
n
)] = 2. After simplification this gives λ = (p

2
+ 1

n
+ 1) and the soliton is

shrinking, steady or expanding according as λ > 0, λ = 0 or λ < 0. This proves the first

part of the theorem.

Now, using this value µ = 2 in equations (2.12.6) and (2.12.4) we have S = SF = 0.

This proves that both the manifolds M and F are Ricci flat.

Again if we set X = XB and Y = YB, then from lemma 1.1 we can write

S(XB, YB) = SB(XB, YB)−
n

f
Hf (XB, YB),

for all XB, YB ∈ χ(B). Now since we just proved S = 0, the above equation becomes

SB(XB, YB) =
n

f
Hf (XB, YB). (2.12.9)

Since we assumed that f is constant, it implies Hf = 0 and thus the above equation

(2.12.9) finally gives us SB(XB, YB) = 0, for all XB, YB ∈ χ(B). Therefore we get SB = 0
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and this proves that the manifold B is Ricci flat. This completes the proof of the second

part of the theorem.

To prove the last part of the theorem, let us assume that ϕ = 1
2
g(ξ, ξ). Then

g(X, gradϕ) = X(ϕ) = g(∇Xξ, ξ), (2.12.10)

for all X ∈ χ(M). Again ξ being concurrent, from equation (1.1.11) we have ∇Xξ = X

and using this value in equation (2.12.10) we get

g(X, gradϕ) = g(X, ξ),

for all X ∈ χ(M). Since the above equation is true for any vector field X ∈ χ(M), we

can conclude that ξ = gradϕ. Hence (M, g) admits a conformal gradient Ricci soliton.

Again taking ϕB = 1
2
g(ξB, ξB) and ϕF = 1

2
g(ξF , ξF ) and proceeding similarly we can show

that ξB = gradϕB and ξF = gradϕF . Also from theorem 2.1 we know that since (M, g) is

conformal Ricci soliton, B and F both are conformal Ricci soliton. Hence can conclude

that both the manifolds B and F admit conformal gradient Ricci soliton.

2.13 Application of conformal Ricci soliton on gen-

eralized Robertson-Walker spacetimes

This section deals with the study of conformal Ricci solitons on generalized Robertson-

Walker spacetimes. The definition of a generalized Robertson-Walker spacetime is given

in chapter one. Based on that definiton we consider a generalized Robertson-Walker

spacetime and study the effect of conformal Ricci soliton on it. Our main result of this

section is the following

Theorem 2.13.1. Let M = I×f F be a generalized Robertson-Walker spacetime endowed

with the metric g = −dt2 ⊕ f 2gF and let ϕ =
∫ t

c
f(z)dz, for some constant c ∈ I. If

(M, g, µ, ϕ) admits a conformal gradient Ricci soliton, then

i) the generalized Robertson-Walker spacetime (M, g) becomes Ricci flat if the soliton

constant λ satisfies the relation λ = ḟ + p
2
+ 1

n
and

ii) the generalized Robertson-Walker spacetime (M, g) is an Einstein manifold if the

warping function f is of the form f(t) = at+ b, where a, b are constants.
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Proof. As per our assumption, (M, g, µ, ϕ) being a conformal gradient Ricci soliton, set-

ting ξ = gradϕ, from equation (1.2.3) we can write

(Lξg)(X, Y ) + 2S(X, Y ) = µg(X, Y ) = [2λ− (p+
2

n
)]g(X, Y ), (2.13.1)

for all X, Y ∈ χ(M).

Again since ϕ =
∫ t

c
f(z)dz, then ξ = gradϕ implies that ξ = f(t) ∂

∂t
and it can be seen

that the vector field ξ is orthogonal to the manifold F .

Let us assume that { ∂
∂t
, ∂
∂x1

, ∂
∂x2

, ...., ∂
∂xn

} be an orthonormal basis of χ(M). Then the

Hessian of the function ϕ is given by

Hϕ(X, Y ) = g(∇Xgradϕ, Y ). (2.13.2)

Now, we consider the following three cases.

Case 1: First let us consider X = Y = ∂
∂t
.

Then from equation (2.13.2) we get

Hϕ(
∂

∂t
,
∂

∂t
) = g(∇ ∂

∂t
gradϕ,

∂

∂t
)

= ḟ g(
∂

∂t
,
∂

∂t
). (2.13.3)

Case 2: Next we consider X = ∂
∂t

and Y = ∂
∂xi

for i = 1, 2, ...., n.

Then in this case equation (2.13.2) implies

Hϕ(
∂

∂t
,
∂

∂xi

) = g(∇ ∂
∂t
gradϕ,

∂

∂xi

)

= ḟ g(
∂

∂t
,
∂

∂xi

). (2.13.4)

Case 3: Finally we consider X = ∂
∂xi

and Y = ∂
∂xj

for 1 ≤ i, j ≤ n.

Then from equation (2.13.2) we have

Hϕ(
∂

∂xi

,
∂

∂xj

) = g(∇ ∂
∂xi

gradϕ,
∂

∂xj

)

= fg(∇ ∂
∂xi

∂

∂t
,

∂

∂xj

)

= fg(
ḟ

f

∂

∂xi

,
∂

∂xj

)

= ḟ g(
∂

∂xi

,
∂

∂xj

). (2.13.5)
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Therefore combining equations (2.13.3), (2.13.4) and (2.13.5) and using it in (2.13.2)

we get

Hϕ(X, Y ) = ḟ g(X, Y ). (2.13.6)

Now, since ξ = gradϕ, using the definition of Lie differentiation we can write

(Lξg)(X, Y ) = g(∇Xgradϕ, Y ) + g(X,∇Y gradϕ)

= 2Hϕ(X, Y ).

Thus using equation (2.13.6), the above equation becomes

(Lξg)(X, Y ) = 2ḟ g(X, Y ). (2.13.7)

Using the value of equation (2.13.7) in the equation (2.13.1) and after simplification we

get

S(X, Y ) = [λ− ḟ − p

2
− 1

n
]g(X, Y ). (2.13.8)

Thus if λ = ḟ + p
2
+ 1

n
, from equation (2.13.8), it implies that (M, g) is Ricci flat. This

completes the first part of the theorem.

Again if ḟ is a constant, say ḟ = a, i.e; if df = adt, i.e; if f = at + b for some

arbitrary constant b, then from equation (2.13.8) we can conclude that (M, g) is Einstein.

This completes the proof.
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3
On conformal η-Ricci solitons

3.1 Introduction

In this chapter we study conformal η-Ricci solitons on ϵ-Kenmotsu manifold and Kählerian

spacetime manifold. This chapter is divided into ten sections. In sections one and two we

give introduction and preliminaries respectively.

In section three, we study ϵ-Kenmotsu manifold admitting conformal η-Ricci soliton

and establish the relation between the soliton constants λ and µ. Section four deals

with conformal η-Ricci soliton on ϵ-Kenmotsu manifold in terms of Codazzi type Ricci

tensor, cyclic parallel Ricci tensor and cyclic η-recurrent Ricci tensor. Then Section five

is devoted to the study of conformal η-Ricci soliton on ϵ-Kenmotsu manifold satisfying

curvature conditions R · S = 0, C · S = 0, Q · C = 0. In section six, we consider torse-

forming vector field on ϵ-Kenmotsu manifold admitting conformal η-Ricci soliton. Section

seven characterizes gradient conformal η-Ricci soliton on ϵ-Kenmotsu manifold. In section

eight, we construct an example to illustrate the existence of conformal η-Ricci soliton on

ϵ-Kenmotsu manifold.

In section nine, we characterize the nature of conformal η-Ricci soliton on projectively

flat and conharmonically flat almost pseudo symmetric Kählerian spacetime manifold. Fi-

nally section ten is devoted to the study of gradient conformal η-Ricci soliton on Kählerian

spacetime manifold.
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3.2 Preliminaries

Here, we discuss some preliminaries of ϵ-Kenmotsu manifold and almost pseudo symmetric

Kählerian spacetime manifold.

The defintion of ϵ-Kenmotsu manifold is given in chapter one. Furthermore, in an

ϵ-Kenmotsu manifold (M, g) the following relations hold,

(∇Xη)(Y ) = g(X, Y )− ϵη(X)η(Y ), (3.2.1)

R(X, Y )ξ = η(X)Y − η(Y )X, (3.2.2)

R(ξ,X)Y = η(Y )X − ϵg(X, Y )ξ, (3.2.3)

R(ξ,X)ξ = −R(X, ξ)ξ = X − η(X)ξ, (3.2.4)

η(R(X, Y )Z) = ϵ(g(X,Z)η(Y )− g(Y, Z)η(X)), (3.2.5)

S(X, ξ) = −(n− 1)η(X), (3.2.6)

Qξ = −ϵ(n− 1)ξ, (3.2.7)

where R is the curvature tensor, S is the Ricci tensor and Q is the Ricci operator given

by g(QX, Y ) = S(X, Y ), for all X, Y ∈ χ(M).

Moreover, It is to be noted that for spacelike structure vector field ξ and ϵ = 1, an

ϵ-Kenmotsu manifold reduces to an usual Kenmotsu manifold.

The definition of Kählerian spacetime manifold is given in the introductory chapter

one. So, combining equations (1.2.11) and (1.2.12) we can see that the Ricci tensor S

becomes a functional combination of the metric tensor g and η ⊗ η satisfying

S(X, Y ) = −
(
ω − r

2
− κρ

)
g(X, Y ) + κ(σ + ρ)η(X)η(Y ), (3.2.8)

for all smooth vector fields X, Y ∈ χ(M). Recall that, manifold having such type of Ricci

tensor is called quasi-Einstein manifold [23] and they arose during the study of exact

solutions of Einstein field equations.

Furthermore, in a Kählerian spacetime manifold the Riemannian curvature tensor R

and the Ricci tensor S satisfy the following

R̃(X, Y, U,W ) = R̃(JX, JY, U,W ), (3.2.9)

S(X, Y ) = S(JX, JY ), (3.2.10)

S(X, JY ) + S(JX, Y ) = 0, (3.2.11)
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for all X, Y, U,W ∈ χ(M) and R̃(X, Y, U,W ) = g(R(X, Y )U,W ).

Let us consider an orthonormal frame field {Ei : 1 ≤ i ≤ 4} such that

g(Ei, Ej) = ϵijδij for all 1 ≤ i, j ≤ 4; with ϵii = −1 and ϵij = 0 for i ̸= j.

Then assuming ξ =
∑4

i=1 ξ
iEi we can write

−1 = g(ξ, ξ) =
∑

1≤i,j≤4

ξiξjg(Ei, Ei) = ϵii(ξ
i)2. (3.2.12)

Also we can deduce the following

η(Ei) = g(Ei, ξ) =
4∑

j=1

ξjg(Ei, Ej) = ϵiiξ
j. (3.2.13)

In Kählerian spacetime manifold, contracting the equation (3.2.8) over X and Y and using

(3.2.12) we obtain

r = 4ω + κ(σ − 3ρ). (3.2.14)

Recalling equation (3.2.8) and making use of the above value in it yields

S(X, Y ) =

(
ω +

κ(σ − ρ)

2

)
g(X, Y ) + κ(σ + ρ)η(X)η(Y ), (3.2.15)

for all vector fields X, Y ∈ χ(M). Hence in view of the above, we can state the following

Proposition 3.2.1. A Kählerian spacetime manifold is a quasi-Einstein manifold.

Next, we discuss the notion of almost pseudo symmetric manifold which was intro-

duced by U. C. De and A. K. Gazi [31] in 2008. Let (M, g) be a non-flat Riemannian

manifold of dimension greater than three. Then it is said to be an almost pseudo sym-

metric manifold if its Riemannian curvature tensor satisfies

(∇ZR̃)(X, Y, U,W ) = [A(Z) + B(Z)]R̃(X, Y, U,W ) +A(X)R̃(Z, Y, U,W )

+A(Y )R̃(X,Z, U,W ) +A(U)R̃(X, Y, Z,W )

+A(W )R̃(X, Y, U, Z), (3.2.16)

where A and B are two non-zero 1-forms on M defined as

A(Z) = g(Z,P), B(Z) = g(Z,N ). (3.2.17)

After B. O’Neill [68] investigated the applications of semi-Riemannian geometry in

general relativity, many authors have studied the curvature tensors and geometrical struc-

tures in spacetimes of general relativity [2]. Venkatesha and Kumara [94] studied Ricci

solitons and geometrical structure in a perfect fluid spacetime with torse forming vector

field. Blaga [12] investigated curvature properties and solitons in perfect fluid spacetime.
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3.3 ϵ-Kenmotsu manifold admitting conformal η-Ricci

soliton

Let us consider an ϵ-Kenmotsu manifold (M, g) admits a conformal η-Ricci soliton (g, ξ, λ, µ).

Then from equation (1.2.5) we can write

(Lξg)(X, Y ) + 2S(X, Y ) + [2λ− (p+
2

n
)]g(X, Y ) + 2µη(X)η(Y ) = 0, (3.3.1)

for all X, Y ∈ χ(M).

Again from the well-known formula (Lξg)(X, Y ) = g(∇Xξ, Y )+g(∇Y ξ,X) of Lie-derivative

and using (1.1.38), we obtain for an ϵ-Kenmotsu manifold

(Lξg)(X, Y ) = 2ϵ[g(X, Y )− ϵη(X)η(Y )]. (3.3.2)

Now in view of the equations (3.3.1) and (3.3.2) we get

S(X, Y ) = −[(λ+ ϵ)− (
p

2
+

1

n
)]g(X, Y )− (µ− 1)η(X)η(Y ). (3.3.3)

This shows that the manifold (M, g) is an η-Einstein manifold.

Also from equation (3.3.3) replacing Y = ξ we find that

S(X, ξ) = [ϵ(
p

2
+

1

n
)− (ϵλ+ µ)]η(X). (3.3.4)

Compairing the above equation (3.3.4) with (3.2.6) yields

ϵλ+ µ = ϵ(
p

2
+

1

n
) + (n− 1). (3.3.5)

Thus the above discussion leads to the following

Theorem 3.3.1. If an n-dimensional ϵ-Kenmotsu manifold (M, g) admits a conformal

η-Ricci soliton (g, ξ, λ, µ), then (M, g) becomes an η-Einstein manifold and the scalars λ

and µ are related by ϵλ+ µ = ϵ(p
2
+ 1

n
) + (n− 1).

Furthermore if we consider µ = 0 in particular, then from equations (3.3.3) and

(3.3.5), we get

S(X, Y ) = −[(λ+ ϵ)− (
p

2
+

1

n
)]g(X, Y ) + η(X)η(Y ),

λ = (
p

2
+

1

n
) + ϵ(n− 1).

This leads us to write
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Corollary 3.3.1. If an n-dimensional ϵ-Kenmotsu manifold (M, g) admits a conformal

Ricci soliton (g, ξ, λ), then (M, g) becomes an η-Einstein manifold and the scalars λ and

µ are related by λ = (p
2
+ 1

n
) + ϵ(n− 1). Moreover,

1. if ξ is spacelike then the soliton is expanding, steady or shrinking according as,

(p
2
+ 1

n
) > (1− n), (p

2
+ 1

n
) = (1− n) or (p

2
+ 1

n
) < (1− n); and

2. if ξ is timelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) > (n− 1), (p

2
+ 1

n
) = (n− 1) or (p

2
+ 1

n
) < (n− 1).

Next we try to find a condition in terms of second order symmetric parallel tensor

which will ensure when an ϵ-Kenmotsu manifold (M, g) admits a conformal η-Ricci soliton.

So for this purpose let us consider the second order tensor T on the manifold (M, g) defined

by

T := Lξg + 2S + 2µη ⊗ η. (3.3.6)

It is easy to see that the (0, 2) tensor T is symmetric and also parallel with respect to the

Levi-Civita connection.

Now in view of (3.3.2) and (3.3.3) the previous equation (3.3.6) we have

T (X, Y ) = [(p+
2

n
)− 2λ]g(X, Y ); ∀X, Y ∈ TM. (3.3.7)

Putting X = Y = ξ in the above equation (3.3.7) we obtain

T (ξ, ξ) = ϵ[(p+
2

n
)− 2λ]. (3.3.8)

On the other hand, as T is a second order symmetric parallel tensor; i.e; ∇T = 0, we can

write

T (R(X, Y )Z,U) + T (Z,R(X, Y )U) = 0,

for all X, Y, Z, U ∈ TM . Then replacing X = Z = U = ξ in above gives us

T (R(ξ, Y )ξ, ξ) + T (ξ, R(ξ, Y )ξ) = 0, ∀Y ∈ TM. (3.3.9)

Using (3.2.4) in the above equation (3.3.9) we get

T (Y, ξ) = T (ξ, ξ)η(Y ). (3.3.10)
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Taking covariant differentiation of (3.3.10) in the direction of an arbitrary vector field X,

and then in the resulting equation, again using the equation (3.3.10) we obtain

T (Y,∇Xξ) = T (ξ, ξ)(∇Xη)Y + 2T (∇Xξ, ξ)η(Y ).

Then in view of (1.1.38) and (3.2.1), the above equation becomes

T (X, Y ) = ϵT (ξ, ξ)g(X, Y ), ∀X, Y ∈ TM. (3.3.11)

Now using (3.3.8) in the above equation (3.3.11) and in view of (3.3.6) finally we get

(Lξg)(X, Y ) + 2S(X, Y ) + [2λ− (p+
2

n
)]g(X, Y ) + 2µη(X)η(Y ) = 0.

This leads us to the following:

Theorem 3.3.2. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold. If the second

order symmetric tensor T := Lξg+2S+2µη⊗ η is parallel with respect to the Levi-Civita

connection of the manifold, then the manifold (M, g) admits a conformal η-Ricci soliton

(g, ξ, λ, µ).

Now let us consider an ϵ-Kenmotsu manifold (M, g) and assume that it admits a

conformal η-Ricci soliton (g, V, λ, µ) such that V is pointwise collinear with ξ, i.e; V = αξ,

for some function α; then from the equation (1.2.5) it follows that

αg(∇Xξ, Y ) + (Xα)η(Y ) + αg(∇Y ξ,X) + (Y α)η(X)

+ 2S(X, Y ) + [2λ− (p+
2

n
)]g(X, Y ) + 2µη(X)η(Y ) = 0.

Then using the equation (1.1.38) in above we get

2ϵαg(X, Y )− 2αη(X)η(Y ) + (Xα)η(Y ) + (Y α)η(X)

+ 2S(X, Y ) + [2λ− (p+
2

n
)]g(X, Y ) + 2µη(X)η(Y ) = 0. (3.3.12)

Replacing Y = ξ in the above equation yields

(Xα) + (ξα)η(X) + 2S(X, ξ) + ϵ[2λ− (p+
2

n
)]η(X) + 2µη(X) = 0. (3.3.13)

By virtue of (3.2.6) the above equation (3.3.13) becomes

(Xα) + [(ξα) + ϵ[2λ− (p+
2

n
)] + 2µ− 2(n− 1)]η(X) = 0. (3.3.14)
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By taking X = ξ in the above equation (3.3.14) gives us

(ξα) = (n− 1)− µ− ϵ[λ− (
p

2
+

1

n
)]. (3.3.15)

Using this value from (3.3.15) in the equation (3.3.14) we can write

dα = [(n− 1)− µ− ϵ[λ− (
p

2
+

1

n
)]]η. (3.3.16)

Now taking exterior differentiation on both sides of (3.3.16) and using the famous Poincare’s

lemma i.e; d2 = 0, finally we arrive at

[(n− 1)− µ− ϵ[λ− (
p

2
+

1

n
)]]dη = 0.

Since dη ̸= 0 in ϵ-Kenmotsu manifold, the above equation implies

µ+ ϵ[λ− (
p

2
+

1

n
)] = (n− 1). (3.3.17)

In view of the above (3.3.17) the equation (3.3.16) gives us dα = 0 i.e; the function α is

constant. Then the equation (3.3.12) becomes

S(X, Y ) = [(
p

2
+

1

n
)− λ− ϵα]g(X, Y ) + (α− µ)η(X)η(Y ), (3.3.18)

for all X, Y ∈ χ(M). This shows that the manifold is η-Einstein. Hence we have the

following

Theorem 3.3.3. If an n-dimensional ϵ-Kenmotsu manifold (M, g) admits a conformal

η-Ricci soliton (g, V, λ, µ) such that V is pointwise collinear with ξ, then V is constant

multiple of ξ and the manifold (M, g) is an η-Einstein manifold. Moreover the scalars λ

and µ are related by µ+ ϵ[λ− (p
2
+ 1

n
)] = (n− 1).

In particular if we put µ = 0 in (3.3.17) and (3.3.18) we can conclude that

Corollary 3.3.2. If an n-dimensional ϵ-Kenmotsu manifold (M, g) admits a conformal

Ricci soliton (g, V, λ, µ) such that V is pointwise collinear with ξ, then V is constant

multiple of ξ and the manifold (M, g) is an η-Einstein manifold, and the scalars λ and µ

are related by λ = (p
2
+ 1

n
) + ϵ(n− 1). Furthermore,

i) if ξ is spacelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) + n > 1, (p

2
+ 1

n
) + n = 1 or (p

2
+ 1

n
) + n < 1; and

ii) if ξ is timelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) + 1 > n, (p

2
+ 1

n
) + 1 = n or (p

2
+ 1

n
) + 1 < n.
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3.4 Conformal η-Ricci soliton on ϵ-Kenmotsu mani-

fold with certain special types of Ricci tensor

The purpose of this section is to study Conformal η-Ricci soliton on ϵ-Kenmotsu manifold

admitting three special types of Ricci tensor namely codazzi type Ricci tensor, cyclic

parallel Ricci tensor and cyclic η-recurrent Ricci tensor.

Let us consider that, an ϵ-Kenmotsu manifold having Codazzi type Ricci tensor

admits a conformal η-Ricci soliton (g, ξ, λ, µ), then equations (3.3.3) and (1.1.7) hold.

Now taking covariant differentiation of (3.3.3) and using equation (3.2.1) we obtain

(∇XS)(Y, Z) = (1− µ)[g(X, Y )η(Z) + g(X,Z)η(Y )− 2ϵη(X)η(Y )η(Z)]. (3.4.1)

Since the manifold has Codazzi type Ricci tensor, in view of (1.1.7) equation (3.4.1) yields

(1− µ)[g(X,Z)η(Y )− g(Y, Z)η(X)] = 0, ∀X, Y, Z ∈ χ(M).

The above equation implies that µ = 1 and then from equation (3.3.5) it follows that

λ = (p
2
+ 1

n
) + ϵ(n− 2). Therefore we can state the following

Theorem 3.4.1. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal η-Ricci soliton (g, ξ, λ, µ). If the Ricci tensor of the manifold is of Codazzi type

then λ = (p
2
+ 1

n
) + ϵ(n− 2) and µ = 1.

Corollary 3.4.1. Let an n-dimensional ϵ-Kenmotsu manifold admits a conformal η-Ricci

soliton (g, ξ, λ, µ) and the manifold has Codazzi type Ricci tensor then

i) if ξ is spacelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) + n > 2, (p

2
+ 1

n
) + n = 2 or (p

2
+ 1

n
) + n < 2; and

ii) if ξ is timelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) + 2 > n, (p

2
+ 1

n
) + 2 = n or (p

2
+ 1

n
) + 2 < n.

Now, we consider an ϵ-Kenmotsu manifold, having cyclic parallel Ricci tensor, admits

a conformal η-Ricci soliton (g, ξ, λ, µ), then equations (3.3.3) and (1.1.8) hold. Now taking

covariant differentiation of (3.3.3) and using equation (3.2.1) we obtain

(∇XS)(Y, Z) = (1− µ)[g(X, Y )η(Z) + g(X,Z)η(Y )− 2ϵη(X)η(Y )η(Z)]. (3.4.2)
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In a similar manner we can obtain the following relations

(∇Y S)(Z,X) = (1− µ)[g(X, Y )η(Z) + g(Y, Z)η(X)− 2ϵη(X)η(Y )η(Z)] (3.4.3)

and

(∇ZS)(X, Y ) = (1− µ)[g(X,Z)η(Y ) + g(Y, Z)η(X)− 2ϵη(X)η(Y )η(Z)]. (3.4.4)

Now using the values from (3.4.2), (3.4.3) and (3.4.4) in the equation (1.1.8) we get

2(1− µ)[g(X, Y )η(Z) + g(Y, Z)η(X) + g(X,Z)η(Y )− 3ϵη(X)η(Y )η(Z)] = 0.

Replacing Z = ξ in the above equation yields

2(1− µ)[g(X, Y )− ϵη(X)η(Y )] = 0 ∀X, Y ∈ TM.

The above equation implies that µ = 1 and then from equation (3.3.5) it follows that

λ = (p
2
+ 1

n
) + ϵ(n− 2). Hence we have

Theorem 3.4.2. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal η-Ricci soliton (g, ξ, λ, µ). If the manifold has cyclic parallel Ricci tensor, then

λ = (p
2
+ 1

n
) + ϵ(n− 2) and µ = 1.

Next we focus on another important curvature tensor namely the cyclic-η-recurrent

Ricci tensor. An ϵ-Kenmotsu manifold is said to have cyclic-η-recurrent Ricci tensor if its

Ricci tensor S is non-zero and satisfies the following relation:

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y )

= η(X)S(Y, Z) + η(Y )S(Z,X) + η(Z)S(X, Y ) ∀X, Y, Z ∈ χ(M). (3.4.5)

Let us consider an ϵ-Kenmotsu manifold, having cyclic-η-recurrent Ricci tensor, that

admits a conformal η-Ricci soliton (g, ξ, λ, µ), then equation (3.3.3) holds. Now taking

covariant differentiation of (3.3.3) and using equation (3.2.1) and proceeding similarly as

the previous theorem we arrive at equations (3.4.2), (3.4.3) and (3.4.4). Then putting

these three values in (3.4.5) we get

(2(1− µ)− β)[g(X, Y )η(Z) + g(Y, Z)η(X) + g(X,Z)η(Y )]

−(3 + 6ϵ)(1− µ)η(X)η(Y )η(Z) = 0, (3.4.6)
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where β = (p
2
+ 1

n
)− (λ+ ϵ). Now putting Y = Z = ξ in (3.4.6) we obtain

3(ϵβ + (1− µ))η(X) = 0. ∀X ∈ TM. (3.4.7)

Since η(X) ̸= 0 and replacing the value of β in (3.4.7), after simplification we get λ =

(p
2
+ 1

n
)− ϵµ. Therefore we can state

Theorem 3.4.3. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal η-Ricci soliton (g, ξ, λ, µ). If the manifold has cyclic-eta-parallel Ricci tensor, then

λ = (p
2
+ 1

n
)− ϵµ and moreover

i) if ξ is spacelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) > µ, (p

2
+ 1

n
) = µ or (p

2
+ 1

n
) < µ; and

ii) if ξ is timelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) + µ > 0, (p

2
+ 1

n
) + µ = 0 or (p

2
+ 1

n
) + µ < 0.

Corollary 3.4.2. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal Ricci soliton (g, ξ, λ, µ). If the manifold has cyclic-eta-parallel Ricci tensor, then

the soliton constant λ is given by λ = (p
2
+ 1

n
).

3.5 Conformal η-Ricci soliton on ϵ-Kenmotsu mani-

fold satisfying some curvature conditions

Let us consider an ϵ-Kenmotsu manifold which admits a conformal η-Ricci soliton (g, ξ, λ, µ)

and also the manifold is Ricci semi symmetric i.e; the manifold satisfies the curvature con-

dition R(X, Y ) · S = 0. Then for all X, Y, Z,W ∈ χ(M) we can write

S(R(X, Y )Z,W ) + S(Z,R(X, Y )W ) = 0.

Taking W = ξ in the above equation implies

η(R(X, Y )Z) + S(Z,R(X, Y )ξ) = 0. (3.5.1)

Now using (3.2.2) and (3.2.5) in (3.5.1) we get

η(X)[S(Y, Z)− ϵg(Y, Z)]− η(Y )[S(X,Z)− ϵg(X,Z)] = 0.
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In view of (3.3.3) the previous equation becomes

[(
p

2
+

1

n
)− λ− 2ϵ][η(X)g(Y, Z)− η(Y )g(X,Z)] = 0.

Putting X = ξ in the above equation and then using (1.1.34) and (1.1.35) we finally

obtain

[(
p

2
+

1

n
)− λ− 2ϵ]g(ϕY, ϕZ) = 0. (3.5.2)

Since g(ϕY, ϕZ) ̸= 0 always, we can conclude from the equation (3.5.2) that [(p
2
+ 1

n
) −

λ − 2ϵ] = 0 i.e; λ = (p
2
+ 1

n
) − 2ϵ. Then from the equation (3.3.5) we have µ = (n + 1).

Therefore we have the following

Theorem 3.5.1. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal η-Ricci soliton (g, ξ, λ, µ). If the manifold is Ricci semi symmetric i.e; if the

manifold satisfies the curvature condition R(X, Y ) · S = 0, then λ = (p
2
+ 1

n
) − 2ϵ and

µ = (n+ 1). Moreover

i) if ξ is spacelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) > 2, (p

2
+ 1

n
) = 2 or (p

2
+ 1

n
) < 2; and

ii) if ξ is timelike then the soliton is expanding, steady or shrinking according as, (p
2
+

1
n
) + 2 > 0, (p

2
+ 1

n
) + 2 = 0 or (p

2
+ 1

n
) + 2 < 0.

Next we consider an n-dimensional ϵ-Kenmotsu manifold satisfying the curvature

condition C(ξ,X) ·S = 0 admitting a conformal η-Ricci soliton (g, ξ, λ, µ). Then we have

S(C(ξ,X)Y, Z) + S(Y,C(ξ,X)Z) = 0 ∀X, Y, Z ∈ χ(M). (3.5.3)

Now from equation (1.1.2) we can write

C(ξ,X)Y = R(ξ,X)Y − r

n(n− 1)
[g(X, Y )ξ − ϵη(Y )X].

Using (3.2.3) the above equation becomes

C(ξ,X)Y = [1 +
ϵr

n(n− 1)
][η(Y )X − ϵg(X, Y )ξ]. (3.5.4)

In view of (3.5.4) the equation (3.5.3) yields

[1 +
ϵr

n(n− 1)
][S(X,Z)η(Y )− ϵg(X, Y )S(ξ, Z)

+ S(Y,X)η(Z)− ϵg(X,Z)S(ξ, Y ] = 0.
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By virtue of (3.2.6) the above equation eventually becomes

[1 +
ϵr

n(n− 1)
][S(X,Z)η(Y ) + S(Y,X)η(Z)

+ ϵ(n− 1)(g(X, Y )η(Z) + g(X,Z)η(Y ))] = 0. (3.5.5)

Putting Z = ξ in (3.5.5) and then using (1.1.34), (3.2.6) we arrive at

[1 +
ϵr

n(n− 1)
][S(X, Y ) + ϵ(n− 1)g(X, Y )] = 0.

Thus from the above we can conclude that either r = −ϵn(n− 1) or

S(X, Y ) = −ϵ(n− 1)g(X, Y ). (3.5.6)

Combining (3.5.6) with (3.3.3) we get

[(λ+ ϵ)− (
p

2
+

1

n
)− ϵ(n− 1)]g(X, Y ) + (µ− 1)η(X)η(Y ) = 0.

Taking Y = ξ in above gives us

[(n− µ) + ϵ(
p

2
+

1

n
− λ− ϵ)]η(X) = 0, ∀X ∈ χ(M).

Since η(X) ̸= 0 always, from the above we have λ = ϵ(n − 1) + (p
2
+ 1

n
) − ϵµ. Therefore

we can state

Theorem 3.5.2. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal η-Ricci soliton (g, ξ, λ, µ). If the manifold satisfies the curvature condition C(ξ,X)·
S = 0, then either the scalar curvature of the manifold is constant or the manifold

is an Einstein manifold of the form (3.5.6) and the scalars λ and µ are related by

λ = ϵ(n− 1) + (p
2
+ 1

n
)− ϵµ.

Next we prove two results on ξ-projectively flat and ξ-concircularly flat manifolds.

For that let us first consider an ϵ-Kenmotsu manifold (M, g, ξ, ϕ, η) admitting a conformal

η-Ricci soliton (g, ξ, λ, µ). We know from definition that the manifold is ξ-projectively

flat if P (X, Y )ξ = 0, ∀X, Y ∈ χ(M). Then putting Z = ξ in (1.1.1) we obtain

P (X, Y )ξ = R(X, Y )ξ − 1

n− 1
[S(Y, ξ)X − S(X, ξ)Y ]. (3.5.7)

Now since it is given that (g, ξ, λ, µ) admits a conformal η-Ricci soliton, using (3.2.2) and

(3.3.4) in the above (3.5.7), we obtain

P (X, Y )ξ =

[
1 +

ϵ(p
2
+ 1

n
)− ϵλ− µ

n− 1

]
[η(X)Y − η(Y )X].
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In view of (3.3.5) the above equation finally becomes P (X, Y )ξ = 0. Hence we have the

following

Proposition 3.5.1. An n-dimensional ϵ-Kenmotsu manifold (M, g, ξ, ϕ, η) admitting a

conformal η-Ricci soliton (g, ξ, λ, µ) is ξ-projectively flat.

Again consider an n-dimensional ϵ-Kenmotsu manifold (M, g, ξ, ϕ, η) admitting a

conformal η-Ricci soliton (g, ξ, λ, µ). Then from definition we know that an ϵ-Kenmotsu

manifold is ξ-concircularly flat if C(X, Y )ξ = 0, ∀X, Y ∈ χ(M). So taking Z = ξ in

(1.1.2) we get

C(X, Y )ξ = R(X, Y )ξ − ϵr

n(n− 1)
[η(Y )X − η(X)Y ]. (3.5.8)

Using (3.2.2) in (3.5.8) we obtain

C(X, Y )ξ = [1 +
ϵr

n(n− 1)
][η(X)Y − η(Y )X].

Thus from the above we can conclude that C(X, Y )ξ = 0 if and only if, [1 + ϵr
n(n−1)

] = 0,

i.e; if and only if, r = −ϵn(n−1). Again since (g, ξ, λ, µ) is a conformal η-Ricci soliton, the

equation (3.3.3) holds and thus contracting (3.3.3) we obtain r = [(p
2
+ 1

n
)−λ−µ]n−(µ−1).

Thus combining both the values of r we have, λ = (p
2
+ 2

n
) − µ

n
− 2ϵ. Therefore we can

state

Proposition 3.5.2. An n-dimensional ϵ-Kenmotsu manifold (M, g, ξ, ϕ, η) admitting a

conformal η-Ricci soliton (g, ξ, λ, µ) is ξ-concircularly flat if and only if, λ = (p
2
+ 2

n
) −

µ
n
− 2ϵ.

We now assume that an n-dimensional ϵ-Kenmotsu manifold (M, g, ξ, ϕ, η) admits

a conformal η-Ricci soliton (g, ξ, λ, µ) which satisfies the curvature condition Q · C = 0,

where C denotes the concircular curvature tensor of the manifold. Then we can write

Q(C(X, Y )Z)− C(QX, Y )Z − C(X,QY )Z − C(X, Y )QZ = 0. (3.5.9)

Using (1.1.2) in (3.5.9) yields

Q(R(X, Y )Z)−R(QX, Y )Z −R(X,QY )Z −R(X, Y )QZ

+
2r

n(n− 1)
[S(Y, Z)X − S(X,Z)Y ] = 0. (3.5.10)
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Taking inner product of (3.5.10) with respect to the vector field ξ we get

η(Q(R(X, Y )Z))− η(R(QX, Y )Z)− η(R(X,QY )Z)

− η(R(X, Y )QZ) +
2r

n(n− 1)
[S(Y, Z)η(X)− S(X,Z)η(Y )] = 0.

Putting Z = ξ in above we obtain

η(Q(R(X, ξ)Z))− η(R(QX, ξ)Z)− η(R(X,Qξ)Z)

− η(R(X, ξ)QZ) +
2r

n(n− 1)
[S(ξ, Z)η(X)− S(X,Z)] = 0. (3.5.11)

Again from (3.2.3) we can derive

η(Q(R(X, ξ)Z)) = η(R(X,Qξ)Z) = (n− 1)[ϵη(X)η(Z)− g(X,Z)], (3.5.12)

η(R(QX, ξ)Z) = η(R(X, ξ)QZ) = ϵ[S(X,Z) + (n− 1)η(X)η(Z)]. (3.5.13)

By virtue of (3.5.12) and (3.5.13), the equation (3.5.11) becomes

ϵ[(n− 1)η(X)η(Z) + S(X,Z)]− r

n(n− 1)
[S(ξ, Z)η(X)− S(X,Z)] = 0.

Using (3.2.6) in above we arrive at

[ϵ+
r

n(n− 1)
][(n− 1)η(X)η(Z) + S(X,Z)] = 0.

Hence we can conclude that either r = −ϵn(n− 1) or,

S(X,Z) = −(n− 1)η(X)η(Z). (3.5.14)

Now combining equations (3.5.14) and (3.3.3), we get

[(λ+ ϵ)− (
p

2
+

1

n
)]g(X,Z) + (µ− n)η(X)η(Z) = 0.

Taking Z = ξ in above yields

[ϵ(λ− (
p

2
+

1

n
)) + (µ+ 1− n)]η(X) = 0, ∀X ∈ χ(M).

Since η(X) ̸= 0 always, from the above we can conclude that λ = (p
2
+ 1

n
) + ϵ(n− µ− 1).

Hence we can state the following
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Theorem 3.5.3. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal η-Ricci soliton (g, ξ, λ, µ). If the manifold satisfies the curvature condition Q ·C =

0, then either the scalar curvature of the manifold is constant or the manifold is a special

type of η-Einstein manifold of the form (3.5.14) and the scalars λ and µ are related by

λ = (p
2
+ 1

n
) + ϵ(n− µ− 1).

We conclude this section by this result on W2-curvature tensor. For this let us

consider an n-dimensional ϵ-Kenmotsu manifold admitting a conformal η-Ricci soliton

(g, ξ, λ, µ) and assume that the manifold satisfies the curvature condition W2(ξ, Y )·S = 0.

Then we can write

S(W2(ξ, Y )Z,U) + S(Z,W2(ξ, Y )U) = 0, ∀Y, Z, U ∈ χ(M).

Putting U = ξ in above we get

S(W2(ξ, Y )Z, ξ) + S(Z,W2(ξ, Y )ξ) = 0. (3.5.15)

Now taking X = ξ in (1.1.4) we obtain

W2(ξ, Y )Z = R(ξ, Y )Z +
ϵ

n− 1
[η(Z)QY − η(Y )Qξ].

Using (3.2.3) in above yields

W2(ξ, Y )Z = η(Z)Y − ϵg(Y, Z)ξ +
ϵ

n− 1
[η(Z)QY − η(Y )Qξ]. (3.5.16)

putting Z = ξ in (3.5.16) we arrive at

W2(ξ, Y )ξ = Y − η(Y )ξ +
ϵ

n− 1
[QY − η(Y )Qξ]. (3.5.17)

Using (3.5.16) and (3.5.17) in the (3.5.15) we get

η(Z)S(Y, ξ) + ϵ(n− 1)g(Y, Z) +
ϵ

n− 1
[η(Z)S(QY, ξ)− η(Y )S(Qξ, ξ)]

+ S(Y, Z)− η(Y )S(Z, ξ) +
ϵ

n− 1
[S(Z,QY )− η(Y )S(Z,Qξ)] = 0.

In view of (3.2.6) the above equation becomes

S(Y, Z) + ϵ(n− 1)g(Y, Z) + ϵ[η(Y )η(Qξ)− η(Z)η(QY )]

+
ϵ

n− 1
[S(Z,QY )− η(Y )S(Z,Qξ)] = 0. (3.5.18)
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Taking Y = ξ in (3.5.18) and then using (3.2.7) we have

S(Z, ξ) + (1 + ϵ)(n− 1)η(Z) = (n− 1). (3.5.19)

Making use of (3.3.4) in (3.5.19) and then taking Z = ξ we finally get

λ = (
p

2
+

1

n
) + ϵ[(n− 1)(n− 2)− µ]. (3.5.20)

Thus we arrive at the following

Theorem 3.5.4. Let (M, g) be an n-dimensional ϵ-Kenmotsu manifold admitting a con-

formal η-Ricci soliton (g, ξ, λ, µ). If the manifold satisfies the curvature conditionW2(ξ, Y )·
S = 0, then the scalars λ and µ are related by λ = (p

2
+ 1

n
) + ϵ[(n− 1)(n− 2)− µ].

3.6 Conformal η-Ricci soliton on ϵ-Kenmotsu mani-

fold with torse-forming vector field

This section is devoted to the study of conformal η-Ricci solitons on ϵ-Kenmotsu manifolds

with torse-forming vector field.

Now let (M, g, ξ, ϕ, η) be an ϵ-Kenmotsu manifold admitting a conformal η-Ricci

soliton (g, ξ, λ, µ) and assume that the potential vector field ξ of is a torse-forming vector

field. Then ξ being a torse-forming vector field, by definiton from equation (1.1.12) we

have

∇Xξ = fX + γ(X)ξ, (3.6.1)

∀X ∈ χ(M), f being a smooth function and γ is a 1-form.

Recalling the equation (1.1.38) and taking inner product on both sides with ξ we can

write

g(∇Xξ, ξ) = ϵg(X, ξ)− ϵη(X)g(ξ, ξ),

which, in view of (1.1.34), reduces to

g(∇Xξ, ξ) = 0. (3.6.2)

Again from the equation (3.6.1), applying inner product with ξ we obtain

g(∇Xξ, ξ) = ϵfη(X) + ϵγ(X). (3.6.3)
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Combining (3.6.2) and (3.6.3) we get, γ = −fη. Thus for torse-forming vector field ξ in

ϵ-Kenmotsu manifolds, we have

∇Xξ = f(X − η(X)ξ). (3.6.4)

Since (g, ξ, λ, µ) is a conformal η-Ricci soliton, from (1.2.5) we can write

g(∇Xξ, Y ) + g(∇Y ξ,X) + 2S(X, Y ) + [2λ− (p+
2

n
)]g(X, Y ) + 2µη(X)η(Y ) = 0.

In view of (3.6.4) the above becomes

S(X, Y ) = [(
p

2
+

1

n
)− (λ+ f)]g(X, Y ) + (ϵf − µ)η(X)η(Y ). (3.6.5)

This implies that the manifold is an η-Einstein manifold. Therefore we have the following

Theorem 3.6.1. Let (g, ξ, λ, µ) be a conformal η-Ricci soliton on an n-dimensional ϵ-

Kenmotsu manifold (M, g), with torse-forming vector field ξ, then the manifold becomes

an η-Einstein manifold of the form (3.6.5).

In particular if ξ is spacelike, i.e; ϵ = 1, then for µ = f , the equation (3.6.5) reduces

to

S(X, Y ) = [(
p

2
+

1

n
)− (λ+ f)]g(X, Y ), (3.6.6)

which implies that the manifold is an Einstein manifold. Similarly for ξ timelike and

for µ = −f , from (3.6.5) we can say that the manifold becomes an Einstein manifold.

Therefore we can state

Corollary 3.6.1. Let (g, ξ, λ, µ) be a conformal η-Ricci soliton on an n-dimensional ϵ-

Kenmotsu manifold (M, g), with torse-forming vector field ξ, then the manifold becomes

an Einstein manifold according as ξ is spacelike and µ = f , or; ξ is timelike and µ = −f .

3.7 Gradient conformal η-Ricci soliton on ϵ-Kenmotsu

manifold

This section is devoted to the study of ϵ-Kenmotsu manifolds admitting gradient conformal

η-Ricci solitons and we try to characterize the potential vector field of the soliton. First,

we prove the following lemma which will be used later in this section.
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Lemma 3.7.1. On an n-dimensional ϵ-Kenmotsu manifold (M, g, ϕ, ξ, η), the following

relations hold

g((∇ZQ)X, Y ) = g((∇ZQ)Y,X), (3.7.1)

(∇ZQ)ξ = −ϵQZ − (n− 1)Z, (3.7.2)

for all smooth vector fields X, Y, Z ∈ χ(M).

Proof. Since we know that the Ricci tensor is symmetric, we have g(QX, Y ) = g(X,QY ).

Covariantly differentiating this relation along Z and using g(QX, Y ) = S(X, Y ) we can

easily obtain (3.7.1).

To prove the second part, let us recall equation (3.2.7) and taking its covariant derivative

in the direction of an arbitrary smooth vector field Z we get

(∇ZQ)ξ +Q(∇Zξ) + ϵ(n− 1)∇Zξ = 0. (3.7.3)

In view of (1.1.38) and (3.2.7), the previous equation gives the desired result (3.7.2). This

completes the proof.

Now, we consider ϵ-Kenmotsu manifolds admitting gradient conformal η-Ricci soli-

tons i.e.; when the vector field V is gradient of some smooth function f on M . Thus if

V = Df , where Df = gradf , then the conformal η-Ricci soliton equation becomes

Hessf + S + [λ− (
p

2
+

1

n
)]g + µη ⊗ η = 0, (3.7.4)

where Hessf denotes the Hessian of the smooth function f . In this case the vector field

V is called the potential vector field and the smooth function f is called the potential

function.

Lemma 3.7.2. If (g, V, λ, µ) is a gradient conformal η-Ricci soliton on an n-dimensional

ϵ-Kenmotsu manifold (M, g, ϕ, ξ, η), then the Riemannian curvature tensor R satisfies

R(X, Y )Df = [(∇YQ)X − (∇XQ)Y ] + ϵµ[η(X)Y − η(Y )X]. (3.7.5)

Proof. Since the data (g, V, λ, µ) is a gradient conformal η-Ricci soliton, equation (3.7.4)

holds and it can be rewritten as

∇XDf = −QX − [λ− (
p

2
+

1

2n+ 1
)]X − µη(X)ξ, (3.7.6)
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for all smooth vector field X on M and for some smooth function f such that V = Df =

gradf . Covariantly diffrentiating the previous equation along an arbitrary vector field Y

and using (1.1.38) we obtain

∇Y∇XDf = −∇Y (QX)− [λ− (
p

2
+

1

2n+ 1
)]∇YX

−µ[(∇Y η(X))ξ + ϵ(Y − η(Y )ξ)η(X)]. (3.7.7)

Interchanging X and Y in (3.7.7) gives

∇X∇YDf = −∇X(QY )− [λ− (
p

2
+

1

2n+ 1
)]∇XY

−µ[(∇Xη(Y ))ξ + ϵ(X − η(X)ξ)η(Y )]. (3.7.8)

Again in view of (3.7.6) we can write

∇[X,Y ]Df = −Q(∇XY −∇YX)− µη(∇XY −∇YX)ξ

−[λ− (
p

2
+

1

2n+ 1
)](∇XY −∇YX). (3.7.9)

Therefore substituting the values from (3.7.7), (3.7.8) (3.7.9) in (1.1.5) we obtain our

desired expression (3.7.5). This completes the proof.

Now we proceed to prove our main result of this section.

Theorem 3.7.1. Let (M, g, ϕ, ξ, η) be an n-dimensional ϵ-Kenmotsu manifold admitting a

gradient conformal η-Ricci soliton (g, V, λ, µ), then the potential vector field V is pointwise

collinear with the characteristic vector field ξ.

Proof. Recalling the equation (3.2.2) and taking its inner product with Df yields

g(R(X, Y )ξ,Df) = (Y f)η(X)− (Xf)η(Y ).

Again we know that g(R(X, Y )ξ,Df) = −g(R(X, Y )Df, ξ) and in view of this the previ-

ous equation becomes

g(R(X, Y )Df, ξ) = (Xf)η(Y )− (Y f)η(X). (3.7.10)

Now taking inner product of (3.7.5) with ξ and using (3.7.2) we obtain

g(R(X, Y )Df, ξ) = 0. (3.7.11)
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Thus combining (3.7.10) and (3.7.11) we arrive at

(Xf)η(Y ) = (Y f)η(X).

Taking Y = ξ in the foregoing equation gives us (Xf) = (ξf)η(X), which essentially

implies g(X,Df) = g(X, ϵ(ξf)ξ). Since this equation is true for all X, we can conclude

that

V = Df = ϵ(ξf)ξ. (3.7.12)

Hence, V is pointwise collinear with ξ and this completes the proof.

Corollary 3.7.1. If (g, V, λ, µ) is a gradient conformal η-Ricci soliton on an n-dimensional

ϵ-Kenmotsu manifold (M, g, ϕ, ξ, η), then the direction of the potential vector field V is

same or opposite to the direction of the characteristic vector field ξ, according as ξ is

spacelike or timelike vector field.

Again covariantly differentiating (3.7.12) and then combining it with (3.7.6), and

after that taking X = ξ in the derived expression we obtain

∇2
ξf = λ+ µ− (

p

2
+

1

n
)− ϵ(n− 1).

Hence we can conclude the following

Corollary 3.7.2. If (g, V = Df, λ, µ) is a gradient conformal η-Ricci soliton on an

n-dimensional ϵ-Kenmotsu manifold (M, g, ϕ, ξ, η), then at the particular point ξ, the

potential function f satisfies the Laplace’s equation ∇2f = 0, if and only if,

λ+ µ = (
p

2
+

1

n
) + ϵ(n− 1).

3.8 Example of a 5-dimensional ϵ-Kenmotsu manifold

admitting conformal η-Ricci soliton

In this section an example of a conformal η-Ricci soliton on a 5-dimensional ϵ-Kenmotsu

manifold is constructed.
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Example 3.8.1. Let us consider the 5-dimensional manifold M = {(u1, u2, v1, v2, w) ∈
R5 : w ̸= 0}. Define a set of vector fields {ei : 1 ≤ i ≤ 5} on the manifold M given by

e1 = ϵw
∂

∂u1

, e2 = ϵw
∂

∂u2

, e3 = ϵw
∂

∂v1
, e4 = ϵw

∂

∂v2
, e5 = −ϵw

∂

∂w
.

Let us define the indefinite metric g on M by

g(ei, ej) =

 ϵ, for i = j

0, for i ̸= j

for all i, j = 1, 2, 3, 4, 5. Now considering e5 = ξ, let us take the 1-form η, on the manifold

M , defined by

η(U) = ϵg(U, e5) = ϵg(U, ξ), ∀U ∈ χ(M).

Then it can be observed that η(e5) = 1. Let us define the (1, 1) tensor field ϕ on M as

ϕ(e1) = e2, ϕ(e2) = −e1, ϕ(e3) = e4, ϕ(e4) = −e3, ϕ(e5) = 0.

Then using the linearity of g and ϕ it can be easily checked that

ϕ2(U) = −U + η(U)ξ, g(ϕU, ϕV ) = g(U, V )− ϵη(U)η(V ), ∀U, V ∈ χ(M).

Hence the structure (ϕ, ξ, η, g, ϵ) defines an indefinite almost contact structure on the

manifold M .

Now, using the definitions of Lie bracket, direct computations give us

[ei, e5] = ϵei; ∀i = 1, 2, 3, 4, 5 and all other [ei, ej] vanishes. Again the Riemannian

connection ∇ of the metric g is defined by the well-known Koszul’s formula which is given

by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]).

Using the above formula one can easily calculate that

∇eiei = −ϵe5, ∇eie5 = −ϵei; for i=1,2,3,4 and all other ∇eiej vanishes. Thus it fol-

lows that ∇Xξ = ϵ(X − η(X)ξ), ∀X ∈ χ(M). Therefore the manifold (M, g) is a

5-dimensional ϵ-Kenmotsu manifold.
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Then, the non-vanishing components of the Riemannian curvature tensor R are

R(e1, e2)e2 = R(e1, e3)e3 = R(e1, e4)e4 = R(e1, e5)e5 = −e1,

R(e1, e2)e1 = e2, R(e1, e3)e1 = R(e1, e3)e2 = R(e1, e3)e5 = e3,

R(e1, e2)e3 = R(e1, e2)e4 = R(e1, e2)e5 = −e2, R(e1, e2)e4 = −e3,

R(e1, e2)e2 = R(e1, e2)e1 = R(e1, e2)e4 = R(e1, e2)e3 = e5,

R(e1, e2)e1 = R(e1, e2)e2 = R(e1, e2)e3 = R(e1, e2)e5 = e4.

From the above values of the curvature tensor, we obtain the components of the Ricci

tensor as follows

S(e1, e1) = S(e2, e2) = S(e3, e3) = S(e4, e4) = S(e5, e5) = −4. (3.8.1)

Therefore using (3.8.1) in the equation (3.3.3) we can calculate λ = 3ϵ + (p
2
+ 1

5
) and

µ = 1. Hence we can say that for λ = 3ϵ+ (p
2
+ 1

5
) and µ = 1, the data (g, ξ, λ, µ) defines

a 5-dimensional conformal η-Ricci soliton on the manifold (M, g, ϕ, ξ, η).

3.9 Conformal η-Ricci soliton on almost pseudo sym-

metric Kählerian spacetime manifold

This section is devoted to the study of a four dimensional almost pseudo symmetric

Kählerian spacetime manifold admitting conformal η-Ricci solitons and we try to char-

acterize the nature of the soliton. For this, we will make use of two types of curvature

conditions namely the projective curvature tensor and the conharmonic curvature tensor.

First, we consider the projective curvature tensor in a Kählerian spacetime manifold

(M, g) of dimension 4 and hence taking n = 4 in equation (1.1.1) we have

P̃ (X, Y, U,W ) = R̃(X, Y, U,W ) +
1

3
[g(X,U)S(Y,W )− g(Y, U)S(X,W )], (3.9.1)

for all vector fields X, Y, U,W ∈ χ(M) and P̃ (X, Y, U,W ) = g(P (X, Y )U,W ), where P is

the projective curvature tensor.

Now, let us consider a projectively flat almost pseudo symmetric Kählerian spacetime

manifold of dimension 4 and study the nature of the conformal η-Ricci soliton within this

framework. In this regard our first result is
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Theorem 3.9.1. A conformal η-Ricci soliton (g, ξ, λ, µ), on a projectively flat almost

pseudo symmetric Kählerian spacetime manifold, is shrinking if p < 8ω+2κ(σ− 3ρ)− 1
2
,

steady if p = 8ω + 2κ(σ − 3ρ)− 1
2
and expanding if p > 8ω + 2κ(σ − 3ρ)− 1

2
; provided ξ

is solenoidal.

Proof. Since by hypothesis the manifold is projectively flat, i.e; P (X, Y )U = 0, from

(3.9.1) we can write

R̃(X, Y, U,W ) = −1

3
[g(X,U)S(Y,W )− g(Y, U)S(X,W )], (3.9.2)

for all X, Y, U,W ∈ χ(M).

Now, covariantly differentiating the relation (3.2.9) along the arbitrary vector field Z and

using (1.1.28), (1.1.29) we obtain

(∇ZR̃)(JX, JY, U,W ) = (∇ZR̃)(X, Y, U,W ), (3.9.3)

for all X, Y, U,W ∈ χ(M).

Making use of equation (3.2.16) in above (3.9.1) and recalling (3.9.2) yields

A(X)R̃(Z, Y, U,W ) +A(Y )R̃(X,Z, U,W )

= A(JX)R̃(Z, JY, U,W ) +A(JY )R̃(JX,Z, U,W ). (3.9.4)

By virtue of (3.9.2) the foregoing equation becomes

A(X)[g(U,Z)S(Y,W )− g(Y, U)S(Z,W )]

+A(Y )[g(U,X)S(Z,W )− g(Z,U)S(X,W )]

= A(JX)[g(U,Z)S(JY,W )− g(JY, U)S(Z,W )]

+A(JY )[g(U, JX)S(Y,W )− g(Z,U)S(JX,W )]. (3.9.5)

Taking an orthonormal basis {Ei : 1 ≤ i ≤ 4} and putting X = P = Ei in (3.9.5), then

after contraction we get

g(Z,U)S(Y,W )− g(Y, U)S(Z,W ) = 0. (3.9.6)

On contracting the above equation over Z = W = Ei we arrive at

S(Y, U) = rg(Y, U) ∀ U, Y ∈ χ(M). (3.9.7)
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Since, (g, ξ, λ, µ) is a conformal η-Ricci soliton, from (1.2.5) we can write

g(∇Xξ) + g(X,∇Y ξ) + 2S(X, Y ) +

[
2λ−

(
p+

1

2

)]
g(X, Y )

+2µη(X)η(Y ) = 0. (3.9.8)

Plugging in the value from (3.9.7) in the above equation (3.9.8) we get

g(∇Xξ) + g(X,∇Y ξ) +

[
2r + 2λ−

(
p+

1

2

)]
g(X, Y ) + 2µη(X)η(Y ) = 0. (3.9.9)

Multiplying both sides of (3.9.9) by ϵii, then taking summation over 1 ≤ i ≤ 4 for

X = Y = Ei and making use of equations (3.2.12), (3.2.13) yields

divξ + 2

[
2r + 2λ−

(
p+

1

2

)]
− µ = 0. (3.9.10)

Again setting X = Y = ξ in (3.9.9) and recalling (3.2.12), (3.2.13) we get[
2r + 2λ−

(
p+

1

2

)]
− 2µ = 0. (3.9.11)

From equations (3.9.10) and (3.9.11) after solving we finally obtain

λ =

(
p

2
+

1

4

)
− r − divξ

3
, (3.9.12)

µ = −divξ

3
. (3.9.13)

Therefore using the condition ξ is solenoidal, i.e; divξ = 0 in (3.9.12) and then by virtue

of (3.2.14) we get

λ =

(
p

2
+

1

4

)
− 4ω − κ(σ − 3ρ). (3.9.14)

Hence from the above the soliton is shrinking, steady and expanding according to λ < 0,

λ = 0 and λ > 0 respectively. This completes the proof.

Now, note that from (3.9.13) it is evident that if divξ = 0 then µ = 0 and vice versa.

Therefore we have the following

Corollary 3.9.1. A conformal η-Ricci soliton (g, ξ, λ, µ), on a projectively flat almost

pseudo symmetric Kählerian spacetime manifold, reduces to a conformal Ricci soliton

(g, ξ, λ) if and only if, the potential vector field ξ is solenoidal.
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Remark 3.9.1. We know that, for radiation fluid σ = 3ρ, then from (3.9.14) it follows

that, λ =
(
p
2
+ 1

4

)
− 4ω. Hence in this case the soliton is shrinking, steady or expanding

according to p < 8ω − 1
2
, p = 8ω − 1

2
or p > 8ω − 1

2
respectively.

Next, we consider another important curvature tensor, namely the conharmonic cur-

vature tensor [99] in a Kählerian spacetime manifold (M, g) of dimension 4 and hence

taking n = 4 in equation (1.1.3) we have

H̃(X, Y, U,W ) = R̃(X, Y, U,W ) +
1

2
[g(X,U)S(Y,W )− g(Y, U)S(X,W )

+S(X,U)g(Y,W )− S(Y, U)g(X,W )], (3.9.15)

for all vector fields X, Y, U,W ∈ χ(M) and H̃(X, Y, U,W ) = g(H(X, Y )U,W ), where H

denotes the conharmonic curvature tensor.

Now, we focus our study on the nature of the conformal η-Ricci soliton on a conhar-

monicly flat almost pseudo symmetric Kählerian spacetime manifold. We precisely prove

the following

Theorem 3.9.2. A conformal η-Ricci soliton (g, ξ, λ, µ), on a conharmonically flat almost

pseudo symmetric Kählerian spacetime manifold, is shrinking if p < −4ω−κ(σ−3ρ)− 1
2
,

steady if p = −4ω− κ(σ− 3ρ)− 1
2
and expanding if p > −4ω− κ(σ− 3ρ)− 1

2
; provided ξ

is solenoidal.

Proof. Since by hypothesis the manifold is conharmonically flat, i.e; H(X, Y )U = 0, from

(3.9.15) we can write

R̃(X, Y, U,W ) = −1

2
[g(X,U)S(Y,W )− g(Y, U)S(X,W )

+S(X,U)g(Y,W )− S(Y, U)g(X,W )], (3.9.16)

for all X, Y, U,W ∈ χ(M).
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Then, making use of (3.9.16) in (3.9.4) we obtain

Ã(X)[g(U,Z)S(Y,W )− g(Y, U)S(Z,W )

+S(U,Z)g(Y,W )− S(Y, U)g(Z,W )]

+Ã(Y )[g(U,X)S(Z,W )− g(Z,U)S(X,W )

+S(U,X)g(Z,W )− S(Z,U)g(X,W )]

= Ã(JX)[g(U,Z)S(JY,W )− g(JY, U)S(Z,W )

+S(U,Z)g(JY,W )− S(JY, U)g(Z,W )]

+Ã(JY )[g(U, JX)S(Z,W )− g(Z,U)S(JX,W )

+S(U, JX)g(Z,W )− S(Z,U)g(JX,W )]. (3.9.17)

On contracting the above equation over X = P = Ei we get

g(Z,U)S(Y,W )− g(Y, U)S(Z,W ) + S(Z,U)g(Y,W )− S(Y, U)g(Z,W ) = 0. (3.9.18)

Setting Z = W = Ei in (3.9.18) we arrive at

S(Y, U) = −r

2
g(Y, U) ∀ U, Y ∈ χ(M). (3.9.19)

As (g, ξ, λ, µ) is a conformal η-Ricci soliton, from (1.2.5) we can write

g(∇Xξ) + g(X,∇Y ξ) + 2S(X, Y ) +

[
2λ−

(
p+

1

2

)]
g(X, Y )

+2µη(X)η(Y ) = 0. (3.9.20)

Using (3.9.19) in the previous equation (3.9.20) we obtain

g(∇Xξ) + g(X,∇Y ξ) +

[
2λ− r −

(
p+

1

2

)]
g(X, Y ) + 2µη(X)η(Y ) = 0. (3.9.21)

Multiplying both sides of (3.9.21) by ϵii, then taking summation over 1 ≤ i ≤ 4 for

X = Y = Ei and making use of equations (3.2.12), (3.2.13) yields

divξ + 2

[
2λ− r −

(
p+

1

2

)]
− µ = 0. (3.9.22)

Again setting X = Y = ξ in (3.9.21) and recalling (3.2.12), (3.2.13) we get[
2λ− r −

(
p+

1

2

)]
− 2µ = 0. (3.9.23)
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Solving equations (3.9.22) and (3.9.23) we finally obtain

λ =
r

2
+

(
p

2
+

1

4

)
− divξ

3
, (3.9.24)

µ = −divξ

3
. (3.9.25)

Therefore using the condition ξ is solenoidal, i.e; divξ = 0 in (3.9.24) and then by virtue

of (3.2.14) we get

λ = 2ω +
κ

2
(σ − 3ρ) +

(
p

2
+

1

4

)
. (3.9.26)

Hence completes the proof.

Now, note that from (3.9.25) it follows that µ = 0 if and only if divξ = 0. Therefore

we can state the following:

Corollary 3.9.2. A conformal η-Ricci soliton (g, ξ, λ, µ), on a conharmonically flat al-

most pseudo symmetric Kählerian spacetime manifold, reduces to a conformal Ricci soliton

(g, ξ, λ) if and only if, the potential vector field ξ is solenoidal.

Remark 3.9.2. We know that, for radiation fluid σ = 3ρ, then from (3.9.26) it follows

that, λ = 2ω +
(
p
2
+ 1

4

)
. Hence in this case the soliton is shrinking, steady or expanding

according to p < −4ω − 1
2
, p = −4ω − 1

2
or p > −4ω − 1

2
respectively.

3.10 Gradient conformal η-Ricci soliton on almost

pseudo symmetric Kählerian spacetime mani-

fold

This section is devoted to the study of almost pseudo symmetric Kählerian spacetime

manifolds admitting gradient conformal η-Ricci soliton.

On a Kählerian spacetime manifold (M, g) a conformal η-Ricci soliton (g, V, λ, µ) is

said to be a gradient conformal η-Ricci soliton if the potential vector field V is the gradient

of some smooth function f on the manifold M . Hence in this case V = Df , where Df

denotes the gradient of f and then equation (1.2.5) becomes

Hessf + S +

[
λ−

(
p

2
+

1

4

)]
g + µη ⊗ η = 0, (3.10.1)
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where Hessf denotes the Hessian operator of the function f . Moreover, the gradient

conformal η-Ricci soliton is called proper if µ ̸= 0.

Now we prove our main theorem of this section on gradient conformal η-Ricci soliton

on almost pseudo symmetric Kählerian spacetime manifolds.

Theorem 3.10.1. Let (g,Df, λ, µ) be a proper gradient conformal η-Ricci soliton on a

projectively flat almost pseudo symmetric Kählerian spacetime manifold of non-zero scalar

curvature. Then the integral curves generated by the velocity vector field ξ are geodesics

if and only if the potential function f is constant.

Proof. Given that (g,Df, λ, µ) is a proper gradient conformal η-Ricci soliton, the equation

(3.10.1) can be rewritten as

∇XDf +QX +

[
λ−

(
p

2
+

1

4

)]
X + µη(X)ξ = 0, (3.10.2)

for all X ∈ χ(M) and Q is the Ricci operator given by g(QX, Y ) = S(X, Y ).

Taking covariant differentiation of (3.10.2) along Y we get

∇Y∇XDf = −(∇YQ)(X)−Q(∇YX)−
[
λ−

(
p

2
+

1

4

)]
∇YX

−µ[(∇Y η)(X)ξ + η(∇YX)ξ + η(X)∇Y ξ]. (3.10.3)

Interchanging X and Y in (3.10.3) we obtain

∇X∇YDf = −(∇XQ)(Y )−Q(∇XY )−
[
λ−

(
p

2
+

1

4

)]
∇XY

−µ[(∇Xη)(Y )ξ + η(∇XY )ξ + η(Y )∇Xξ]. (3.10.4)

Again from (3.10.2) we can write

∇[X,Y ]Df = −Q(∇XY ) +Q(∇YX)−
[
λ−

(
p

2
+

1

4

)]
(∇XY −∇YX)

−µ[η(∇XY )ξ − η(∇YX)ξ]. (3.10.5)

Now using (3.10.3), (3.10.4), and (3.10.5) in (1.1.5) we arrive at

R(X, Y )Df = (∇YQ)(X)− (∇XQ)(Y )− µ[(∇Xη)(Y )ξ + η(Y )∇Xξ]

+µ[(∇Y η)(X)ξ + η(X)∇Y ξ]. (3.10.6)
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Contracting the foregoing equation (3.10.6) along X and in view of (3.2.12), (3.2.13) we

obtain

S(Y,Df) = −µ[(∇ξη)(Y ) + η(Y )divξ]. (3.10.7)

Since by our hypothesis, the manifold is projectively flat, from (3.9.7) we can write

S(Y,Df) = rg(Y,Df). (3.10.8)

Combining the equations (3.10.7) and (3.10.8) we get

−µ[(∇ξη)(Y ) + η(Y )divξ] = rg(Y,Df). (3.10.9)

Finally putting Y = ξ in (3.10.9) and using (3.2.12) we arrive at

∇ξξ =
r

µ
Df. (3.10.10)

Hence ∇ξξ = 0 if and only if Df = 0 i.e; if and only if f is constant. This completes the

proof.
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4
On some Ricci solitons and Yamabe solitons

4.1 Introduction

In this chapter we consider Ricci soliton and some types of Yamabe soliton on some

differentiable manifolds. This chapter is divided into six sections. In sections one and two

we give introduction and preliminaries respectively.

In section three, we study some curvature properties of 3-dimensional quasi-Sasakian

manifolds with respect to Zamkovoy connection. Then section four characterizes the Ricci

soliton on 3-dimensional quasi-Sasakian manifolds with respect to Zamkovoy connection.

Section five deals with the study η-Ricci-Yamabe soliton on almost pseudo symmetric

Kählerian spacetime manifolds. Finally in section six, we characterize quasi-Yamabe

soliton within the framework of generalized Sasakian spaceform.

4.2 Preliminaries

In this section we discuss some basic results From now on we assume that the manifold

M is a 3-dimensional quasi-Sasakian manifold. According to Z. Olszak [66], an almost

contact metric manifold M of dimension 3 is quasi-Sasakian if and only if

∇Xξ = −βϕ(X), (4.2.1)

for all X ∈ χ(M) and for some smooth function β on the manifold M , ∇ being the

Levi-Civita connection of M . This function β is called the structure function of M [67].
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For a 3-dimensional quasi-Sasakian manifold it is known that the structure function β

satisfies the relation ξβ = 0. In particular, a quasi-Sasakian structure with β = 0 is a

cosymplectic manifold of rank 1.

Olszak [67] established the necessary and sufficient condition for a three-dimensional

quasi-Sasakian manifold to be conformally flat with the help of its structure function β.

In [36], the authors studied 3-dimensional quasi-Sasakian manifolds with semi-symmetric

non-metric connection.

In a 3-dimensional quasi-Sasakian manifold the following relations hold [67]

(∇Xϕ)(Y ) = β(g(X, Y )ξ − η(Y )X), (4.2.2)

(∇Xη)(Y ) = −βg(ϕ(X), Y ), (4.2.3)

S(X, Y ) = (
r

2
− β2)g(X, Y ) + (3β2 − r

2
)η(X)η(Y )

−η(X)dβ(ϕY )− η(Y )dβ(ϕX), (4.2.4)

R(X, Y )ξ = β2(η(Y )X − η(X)Y )− (Xβ)ϕY + (Y β)ϕX, (4.2.5)

S(X, ξ) = 2β2η(X)− dβ(ϕX), (4.2.6)

for all X, Y ∈ χ(M), S denotes the Ricci tensor, R is the curvature tensor of M and

df(X) = g(gradf,X) relates the gradient of a function f to the exterior derivative df .

4.3 Geometry of quasi-Sasakian 3-manifold with re-

spect to the Zamkovoy connection

This section is devoted to the study of some geometrical properties of a 3-dimensional

quasi-Sasakian manifold M admitting Zamkovoy connection. First we try to establish the

relations between the Riemannian curvature tensors and Ricci tensors of M with respect

to the Levi-Civita connection and the Zamkovoy connection.

Using equations (4.2.1) and (4.2.3) in (1.1.20), we obtain the expression for the

Zamkovoy connection in a 3-dimensional Quasi-Sasakian manifold M as follows

∇∗
XY = ∇XY − β(g(ϕ(X), Y )ξ − η(Y )ϕX) + η(X)ϕY, (4.3.1)

for all X, Y ∈ χ(M), where ∇ is the Levi-Civita connection on M .
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Furthermore, it can be easily seen that in this case the torsion tensor with respect

to the Zamkovoy connection is

T ∗(X, Y ) = (1− β)(η(X)ϕY − η(Y )ϕX) + 2βg(X,ϕY ), (4.3.2)

for all X, Y ∈ χ(M).

Again, in a 3-dimensional quasi-Sasakian manifold M we can easily calculate that,

with respect to the Zamkovoy connection, ∇∗g = 0, i.e., the Zamkovoy connection is a

metric compatible connection on the manifold M .

Now, in view of (4.3.1), it can be easily obtained that,

∇∗
X∇∗

YZ = ∇X∇YZ + η(∇XY )ϕZ + η(Y )ϕ(∇XZ)− g(ϕY, Z)(Xβ)ξ

+η(Z)(Xβ)ϕY + η(X)ϕ(∇YZ)− η(X)η(Y )(Z − η(Z)ξ)

+β[η(∇XZ)ϕY + η(Z)ϕ(∇XY ) + η(∇YZ)ϕX − η(Z)η(X)Y

+g(∇XY, ϕZ)ξ − η(Z)η(Y )X − g(ϕX,∇YZ)ξ

+2η(X)η(Y )η(Z)ξ − g(ϕX, Y )ϕZ]

+β2[g(X,Z)η(Y )ξ − g(ϕX,Z)ϕY − η(Y )η(Z)X

+η(X)η(Y )η(Z)ξ − g(X, Y )η(Z)ξ], (4.3.3)

for all X, Y ∈ χ(M), where ∇ is the Levi-Civita connection on M . Again, interchanging

X and Y in (4.3.3) we get the value of ∇∗
Y∇∗

XZ.

Recalling the following curvature formula

R∗(X, Y )Z = ∇∗
X∇∗

YZ −∇∗
Y∇∗

XZ −∇∗
[X,Y ]Z

and then using the values of (4.3.3) and ∇∗
Y∇∗

XZ, after simplification we obtain

R∗(X, Y )Z = R(X, Y )Z + [(Xβ)ϕY − (Y β)ϕX]η(Z) + 2βg(X,ϕY )ϕZ

+[g(ϕX,Z)(Y β)− g(ϕY, Z)(Xβ)]ξ + β2[g(ϕY, Z)ϕX − g(ϕX,Z)ϕY ]

+β2[g(X,Z)η(Y )− g(Y, Z)η(X)]ξ + β2[η(X)Y − η(Y )X]η(Z), (4.3.4)

for all X, Y ∈ χ(M), where R(X, Y )Z is the Riemannian curvature tensor with respect

to the Levi-Civita connection on M .
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Contracting (4.3.4) yields the Ricci tensor S∗ of a quasi-Sasakian 3-manifold with

respect to Zamkovoy connection

S∗(X, Y ) = S(X, Y ) + η(Y )dβ(ϕX) + 2βg(X, Y )− 2β(1 + β)η(X)η(Y ), (4.3.5)

for all X, Y ∈ χ(M).

Again contraction of (4.3.5) gives the scalar curvature r∗ of a quasi-Sasakian 3-

manifold with respect to Zamkovoy connection

r∗ = r + 2β(2− β). (4.3.6)

Now, taking inner product of (4.3.4) with an arbitrary vector field W , we obtain the

following two relations

g(R∗(X, Y )Z,W ) + g(R∗(Y,X)Z,W ) = 0 (4.3.7)

and

g(R∗(X, Y )Z,W ) + g(R∗(Y,X)W,Z) = 0, (4.3.8)

for all X, Y, Z,W ∈ χ(M).

Therefore, summarizing all the discussions above, we have the following

Theorem 4.3.1. Let (M, g) be a quasi-Sasakian 3-manifold with respect to the Zamkovoy

connection, then

i) The Riemannian curvature tensor R∗, the Ricci tensor S∗ and the scalar curvature

r∗ are given by (4.3.4), (4.3.5) and (4.3.6) respectively,

ii) The Ricci tensor S∗ is not symmetric,

iii) The Riemannian curvature tensor R∗ satisfies

(a) g(R∗(X, Y )Z,W ) = −g(R∗(Y,X)Z,W ) and

(b) g(R∗(X, Y )Z,W ) = −g(R∗(X, Y )W,Z),

for all X, Y, Z,W ∈ χ(M).
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Now, we focus on two important curvature tensors in a quasi-Sasakian 3-manifold

with respect to the Zamkovoy connection.

First, let us consider a quasi-Sasakian 3-manifold with concircular curvature tensor.

Then equation (1.1.2) holds and taking n = 3 in it, we can write the expression for the

concircular curvature tensor C∗ in a quasi-Sasakian 3-manifold with respect to Zamkovoy

connection as follows:

C∗(X, Y )Z = R∗(X, Y )Z − r∗

6
(g(Y, Z)X − g(X,Z)Y ), (4.3.9)

for all X, Y, Z ∈ χ(M).

The manifold is called ξ-concircularly flat if C∗(X, Y )ξ = 0 for all X, Y ∈ χ(M).

Using (4.3.4) and (4.3.6) in (4.3.9) we get

C∗(X, Y )Z = R(X, Y )Z + [(Xβ)ϕY − (Y β)ϕX]η(Z) + 2βg(X,ϕY )ϕZ

+[g(ϕX,Z)(Y β)− g(ϕY, Z)(Xβ)]ξ + β2[g(ϕY, Z)ϕX − g(ϕX,Z)ϕY ]

+β2[g(X,Z)η(Y )− g(Y, Z)η(X)]ξ + β2[η(X)Y − η(Y )X)]η(Z),

−r + 2β(2− β)

6
[g(Y, Z)X − g(X,Z)Y ],

for all X, Y, Z ∈ χ(M).

Replacing Z = ξ in the previous equation yields

C∗(X, Y )ξ = R(X, Y )ξ + [(Xβ)ϕY − (Y β)ϕX] + β2[η(X)Y − η(Y )X)]η(Z)

−r + 2β(2− β)

6
[g(Y, Z)X − g(X,Z)Y ]. (4.3.10)

In view of (4.2.5), the above (4.3.10) becomes

C∗(X, Y )ξ =
r + 2β(2− β)

6
[η(X)Y )− η(Y )X], (4.3.11)

for all X, Y ∈ χ(M). Hence, C∗(X, Y )ξ = 0 if and only if r = 2β(2 − β). Therefore, we

can conclude the following

Theorem 4.3.2. A quasi-Sasakian 3-manifold with respect to the Zamkovoy connection

is ξ-concircularly flat, if and only if, the scalar curvature with respect to the Levi-Civita

connection is given by r = 2β(2− β).
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Corollary 4.3.1. Let (M, g) be a ξ-concircularly flat quasi-Sasakian 3-manifold with

respect to the Zamkovoy connection. Then the manifold M is Ricci flat with respect to the

Levi-Civita connection if and only if, either it is a cosymplectic manifold or the structure

function β = 2.

Next, we study another curvature tensor, namely the conharmonic curvature tensor

in a quasi-Sasakian 3-manifold. Then equation (1.1.3) holds and using it we can write

the expression for the conharmonic curvature tensor H∗ in a quasi-Sasakian 3-manifold

w.r.to Zamkovoy connection as follows:

H∗(X, Y )Z = R∗(X, Y )Z − (g(Y, Z)Q∗X − g(X,Z)Q∗Y

+S∗(Y, Z)X − S∗(X,Z)Y ), (4.3.12)

for allX, Y, Z ∈ χ(M). The manifold (M, g) is called ξ-conharmonically flat ifH∗(X, Y )ξ =

0 for all X, Y ∈ χ(M).

Now, from (4.3.4), taking Z = ξ we obtain

R∗(X, Y )ξ = R(X, Y )ξ + [(Xβ)ϕY − (Y β)ϕX] + β2[η(X)Y − η(Y )X]. (4.3.13)

Again (4.3.5) can be rewritten as

Q∗X = QX + dβ(ϕX)ξ + 2βX − 2β(1 + β)η(X)ξ. (4.3.14)

So, if we consider a ξ-conharmonically flat quasi-Sasakian 3-manifold with respect to the

Zamkovoy connection, we have H∗(X, Y )ξ = 0 and then in view of (4.3.12), (4.3.13) and

(4.3.14) we have

R(X, Y )ξ = [(Y β)ϕX − (Xβ)ϕY ] + β2[η(Y )X − η(X)Y ]

+η(Y )[QX + dβ(ϕX)ξ + 2βX − 2β(1 + β)η(X)ξ]

−η(X)[QY + dβ(ϕY )ξ + 2βY − 2β(1 + β)η(Y )ξ]

+S(Y, ξ)X − 2β2η(Y )X − S(X, ξ)Y + 2β2η(X)Y.

Recalling, (4.2.5) and (4.2.6), then using them in the foregoing equation gives

[η(Y )QX − η(X)QY ] + [Y + η(Y )ξ]dβ(ϕX)

= [X + η(X)ξ]dβ(ϕY )− 2β[η(Y )X − η(X)Y ]. (4.3.15)

100



Taking inner product of (4.3.15) with an arbitrary vector field Z we obtain

[η(Y )S(X,Z)− η(X)S(Y, Z)] + [g(Y, Z) + η(Y )η(Z)]dβ(ϕX)

= [g(X,Z) + η(X)η(Z)]dβ(ϕY )− 2β[η(Y )g(X,Z)− η(X)g(Y, Z)].

Putting Y = Z = ξ in the previous equation yields

4β2η(X) = 0,

for all X ∈ χ(M). Since, η(X) ̸= 0 always, we can conclude that β = 0. Hence we can

state the following:

Theorem 4.3.3. Let (M, g) be a ξ-conharmonically flat quasi-Sasakian 3-manifold with

respect to the Zamkovoy connection. Then the manifold M becomes a cosymplectic man-

ifold.

4.4 Ricci soliton on quasi-Sasakian 3-manifold with

respect to the Zamkovoy connection

In this section we focus on characterizing a Ricci soliton (g, V, λ) on a quasi-Sasakian

3-manifold with respect to the Zamkovoy connection. We say that the manifold (M, g)

admits a Ricci soliton (g, V, λ) with respect to Zamkovoy connection if

L∗
V g + 2S∗ = 2λg, (4.4.1)

where L∗
V denotes the Lie derivative with respect to Zamkovoy connection along the

direction of the vector field V and is given by (L∗
V g)(X, Y ) = g(∇∗

XV, Y ) + g(X,∇∗
Y V ),

for all X, Y ∈ χ(M).

Now, let us consider a quasi-Sasakian 3-manifold (M, g) that admits a Ricci soliton

(g, V, λ) with respect to the Zamkovoy connection. Then from (4.4.1) we can infer that

g(∇∗
XV, Y ) + g(X,∇∗

Y V ) + 2S∗(X, Y ) = 2λg(X, Y ), (4.4.2)

for all X, Y ∈ χ(M).
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Recalling (4.3.1) and (4.3.5) and using them in the previous equation gives

2S(X, Y ) + g(∇XV, Y ) + g(X,∇Y V ) = 2(λ− 2β)g(X, Y )− 2dβ(ϕX)η(Y )

+β(g(ϕX, V )η(Y ) + g(ϕY, V )η(X))

−(g(ϕV,X)η(Y ) + g(ϕV, Y )η(X))

+4β(1 + β)η(X)η(Y ). (4.4.3)

Moreover, If (g, V, λ) is also a Ricci soliton with respect to the Levi-Civita connection,

then (1.2.1) holds, and in view of that equation (4.4.3) reduces to

β(g(ϕX, V )η(Y ) + g(ϕY, V )η(X)) = 4β(g(X, Y )− (1 + β)η(X)η(Y )) + 2dβ(ϕX)η(Y )

+(g(ϕV,X)η(Y ) + g(ϕV, Y )η(X)). (4.4.4)

Taking X = Y = ξ in (4.4.4), we obtain β = 0 and this implies that the manifold (M, g)

is a cosymplectic manifold. Hence we can state the following

Theorem 4.4.1. Let (M, g) be a quasi-Sasakian 3-manifold which admits a Ricci soli-

ton (g, V, λ) with respect to the Zamkovoy connection. If (g, V, λ) is also a Ricci soliton

with respect to the Levi-Civita connection, then the manifold M becomes a cosymplectic

manifold.

Again, if (g, V, λ) is a Ricci soliton with respect to the Zamkovoy connection on a

quasi-Sasakian 3-manifold (M, g), then from (4.4.3) we can write

2S(X, Y ) + g(∇XV, Y ) + g(X,∇Y V ) = 2(λ− 2β)g(X, Y )− 2dβ(ϕX)η(Y )

+β(g(ϕX, V )η(Y ) + g(ϕY, V )η(X))

−(g(ϕV,X)η(Y ) + g(ϕV, Y )η(X))

+4β(1 + β)η(X)η(Y ).

Considering an orthonormal basis {e1, e2, e3} of (M, g) and replacing X = Y = ei in the

foregoing equation, then summing over i = 1, 2, 3 we get

r = 3λ+ 2β2 − 4β − divV, (4.4.5)

where r is the scalar curvature of M and divV denotes the divergence of the vector field

V . Therefore, we can write
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Theorem 4.4.2. Let (M,g) be a quasi-Sasakian 3-manifold admitting a Ricci soliton

(g, V, λ) with respect to the Zamkovoy connection, then the scalar curvature is given by

r = 3λ+ 2β2 − 4β − divV .

Corollary 4.4.1. Let (M, g) be a quasi-Sasakian 3-manifold admitting a Ricci soliton

(g, V, λ) with respect to the Zamkovoy connection. If V is a solenoidal vector field, then

the soliton is

i) shrinking if r > 2β(β − 2),

ii) steady if r = 2β(β − 2) and

iii) expanding if r < 2β(β − 2).

Next, we consider V = gradf , for some f ∈ C∞(M) and we focus our study on the

Laplacian equation satisfied by the function f . Laplace equation is a second order partial

differential equation which is frequently used in physics. Solution of Laplace equation

is widely known as harmonic functions and they appear in various physical problems in

magnetic and gravitational potentials of steady state temperature. For example, real and

imaginary parts u and v of a complex analytic function f = u+iv both satisfy the Laplace

equation.

Let us consider a a Ricci soliton (g, V, λ) with respect to the Zamkovoy connection

on a quasi-Sasakian 3-manifold (M, g) and assume that the potential vector field V is

gradient of a smooth function f on M . Then from (4.4.1) we can write

g(∇∗
XDf, Y ) + g(X,∇∗

YDf) + 2S∗(X, Y ) = 2λg(X, Y ), (4.4.6)

for all X, Y ∈ χ(M) and Df = gradf = V . Then using (4.3.1) and (4.3.5) in (4.4.6)

yields

2S(X, Y ) + g(∇XDf, Y ) + g(X,∇YDf) = 2(λ− 2β)g(X, Y )− 2dβ(ϕX)η(Y )

+β(g(ϕX,Df)η(Y ) + g(ϕY,Df)η(X))

−(g(ϕ(Df), X)η(Y ) + g(ϕ(V ), Y )η(X))

+4β(1 + β)η(X)η(Y ).
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Putting X = Y = ei in the foregoing equation, where {e1, e2, e3} constitute a local

orthonormal basis of (M, g) and then summing over i = 1, 2, 3 we get

divV + 4β + r = 3λ+ 2β2, (4.4.7)

where r is the scalar curvature of M and divV denotes the divergence of the vector field

V . Since, our potential vector field V is the gradient of a smooth function f on M , the

above equation (4.4.7) becomes

∆(f) = 3λ− r − 4β + 2β2,

where ∆(f) = div(gradf) denotes the Laplacian operator of f . Hence we have the follow-

ing

Theorem 4.4.3. Let (M, g) be a quasi-Sasakian 3-manifold admitting a Ricci soliton

(g, V, λ) with respect to the Zamkovoy connection. If the potential vector field V is gradient

of some smooth function f on M , then the Laplacian equation satisfied by f becomes

∆(f) = 3λ− r − 4β + 2β2. (4.4.8)

Remark 4.4.1. Laplace equation has applications in the theory of gravity also. If the

gravitational acceleration field is represented as the gradient of a scalar potential function

h, then the Poisson’s equation for gravitational field is given by

∇2h = −4πGρ,

where G denotes the universal gravitational constant and ρ denotes the mass density. This

physical significance is equivalent to the above Theorem 4.4.3 and the equation (4.4.8) of

this section, which is a Laplace equation with potential vector field of gradient type.

Finally, we conclude this section with our last result on Ricci soliton and for this we

consider the case when the potential vector field is same as the characteristic vector field,

i.e., V = ξ.

So, let us assume that (g, ξ, λ), be a Ricci soliton on a quasi-Sasakian 3-manifold

(M, g) with respect to the Zamkovoy connection. Then by (4.4.1) we have

g(∇∗
Xξ, Y ) + g(X,∇∗

Y ξ) + 2S∗(X, Y ) = 2λg(X, Y ), (4.4.9)
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for all X, Y ∈ χ(M). Using (4.3.1) and (4.3.5) in (4.4.9) and then recalling (4.2.1) we

arrive at

S(X, Y ) = (λ− 2β)g(X, Y ) + 2βη(X)η(Y )− dβ(ϕX)η(Y ). (4.4.10)

Taking X = Y = ξ in the previous equation (4.4.10) gives

S(ξ, ξ) = λ+ 2β2. (4.4.11)

Again, replacing X = ξ in equation (4.2.6) we get

S(ξ, ξ) = 2β2. (4.4.12)

Thus, combining (4.4.11) and (4.4.12), we can conclude that λ = 0 and this implies that

the Ricci soliton is steady. Hence, we can state

Theorem 4.4.4. Let (M, g) be a quasi-Sasakian 3-manifold admitting a Ricci soliton

(g, ξ, λ) with respect to the Zamkovoy connection, then the soliton is a steady Ricci soliton.

4.5 Almost pseudo symmetric Kählerian spacetime

manifold admitting η-Ricci-Yamabe soliton

In this section we investigate the nature of η-Ricci-Yamabe soliton on four dimensional

almost pseudo symmetric Kählerian spacetime manifolds which are projectively flat and

conharmonicly flat respectively. First we prove the following

Theorem 4.5.1. If (g, ξ, λ, µ, α, β) is an η-Ricci-Yamabe soliton on a projectively flat

almost pseudo symmetric Kählerian spacetime manifold, then the scalars λ and µ are

related by λ = 2µ +
(
β
2
− α

)
[4ω + κ(σ − 3ρ)]. Moreover, the η-Ricci-Yamabe soliton

reduces to the Ricci-Yamabe soliton (g, ξ, λ, α, β) if and only if the potential vector vector

field ξ is solenoidal.

Proof. Since the data (g, ξ, λ, µ) is an η-Ricci-Yamabe soliton, from (1.2.12) we can write

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2αS(X, Y ) + (2λ− βr)g(X, Y ) + 2µη(X)η(Y ) = 0. (4.5.1)

By hypothesis, as the manifold is projectively flat, we proceed similarly as Theorem-3.9.1

and then using the equation (3.9.7) in the above equation (4.5.1) we get

g(∇Xξ, Y ) + g(X,∇Y ξ) + (2rα + 2λ− βr)g(X, Y ) + 2µη(X)η(Y ) = 0. (4.5.2)
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Multiplying both sides of (4.5.2) by ϵii, then considering an orthonormal basis {Ei : 1 ≤
i ≤ 4} and taking summation over 1 ≤ i ≤ 4 for X = Y = Ei, and making use of

equations (3.2.12), (3.2.13) yields

divξ + (4rα + 4λ− 2βr)− µ = 0. (4.5.3)

Again setting X = Y = ξ in (4.5.2) and recalling (3.2.12), (3.2.13) we get

(2rα + 2λ− βr)− 2µ = 0. (4.5.4)

From equations (4.5.3) and (4.5.4) after solving we finally obtain

λ =

(
β

2
− α

)
r − 2divξ

3
, (4.5.5)

µ = −divξ

3
. (4.5.6)

Therefore using (3.2.14) and (4.5.6) in the equation (4.5.5) we get

λ = 2µ+

(
β

2
− α

)
[4ω + κ(σ − 3ρ)]. (4.5.7)

This completes the proof of the first part.

Again from (4.5.6) we can see that µ = 0 if and only if divξ = 0 i.e; if and only if ξ

is solenoidal. This completes the proof.

Now taking µ = 0 and (α, β) = (1, 0) in (4.5.7) we obtain λ = −4ω − κ(σ − 3ρ).

Hence we can state the following

Corollary 4.5.1. A Ricci soliton (g, ξ, λ) on a projectively flat almost pseudo symmetric

Kählerian spacetime manifold is shrinking if ω > −κ
4
(σ − 3ρ), steady if ω = −κ

4
(σ − 3ρ)

and expanding if ω < −κ
4
(σ − 3ρ).

Again for µ = 0 and (α, β) = (0, 1) in (4.5.7) we arrive at λ = 2ω − κ
2
(σ − 3ρ).

Therefore we have

Corollary 4.5.2. A Yamabe soliton (g, ξ, λ) on a projectively flat almost pseudo symmet-

ric Kählerian spacetime manifold is shrinking if ω < −κ
4
(σ−3ρ), steady if ω = −κ

4
(σ−3ρ)

and expanding if ω > −κ
4
(σ − 3ρ).

Also setting µ = 0 and (α, β) = (1,−1) in (4.5.7) we get λ = −6ω − 3κ
2
(σ − 3ρ).

Hence we can state the following

106



Corollary 4.5.3. An Einstein soliton (g, ξ, λ) on a projectively flat almost pseudo sym-

metric Kählerian spacetime manifold is shrinking if ω > −κ
4
(σ − 3ρ), steady if ω =

−κ
4
(σ − 3ρ) and expanding if ω < −κ

4
(σ − 3ρ).

Next we focus on conharmonically flat almost pseudo symmetric Kählerian spacetime

manifold and we study the nature of the η-Ricci-Yamabe soliton within this framework.

We precisely prove the following

Theorem 4.5.2. If (g, ξ, λ, µ, α, β) is an η-Ricci-Yamabe soliton on a conharmonically

flat almost pseudo symmetric Kählerian spacetime manifold, then the scalars λ and µ are

related by λ = µ+
(
α+β
2

)
[4ω + κ(σ − 3ρ)]. Moreover, the η-Ricci-Yamabe soliton reduces

to the Ricci-Yamabe soliton (g, ξ, λ, α, β) if and only if, the potential vector vector field ξ

is solenoidal.

Proof. Since the data (g, ξ, λ, µ) is an η-Ricci-Yamabe soliton, from (1.2.12) we can write

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2αS(X, Y ) + (2λ− βr)g(X, Y ) + 2µη(X)η(Y ) = 0. (4.5.8)

By hypothesis, as the manifold is conharmonically flat, we proceed similarly as Theorem-

3.9.2 and then using the equation (3.9.19) in the previous equation (4.5.8) we get

g(∇Xξ, Y ) + g(X,∇Y ξ) + (2λ− αr − βr)g(X, Y ) + 2µη(X)η(Y ) = 0. (4.5.9)

Multiplying both sides of (4.5.9) by ϵii, then taking summation over 1 ≤ i ≤ 4 for

X = Y = Ei and making use of equations (3.2.12), (3.2.13) yields

divξ + 2(2λ− αr − βr)− µ = 0. (4.5.10)

Again setting X = Y = ξ in (4.5.9) and recalling (3.2.12), (3.2.13) we get

(2λ− αr − βr)− 2µ = 0. (4.5.11)

Solving equations (4.5.10) and (4.5.11) we obtain

λ =

(
α + β

2

)
r − divξ

3
, (4.5.12)

µ = −divξ

3
. (4.5.13)
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Therefore using (3.2.14) and (4.5.13) in the equation (4.5.12) we get

λ = µ+

(
α + β

2

)
[4ω + κ(σ − 3ρ)]. (4.5.14)

This completes the proof of the first part.

Again from (4.5.13) we can see that µ = 0 if and only if divξ = 0 i.e; if and only if ξ

is solenoidal. This completes the proof.

Now taking µ = 0 and for different values of (α, β) = (1, 0) in (4.5.14) we obtain

λ = 2ω − κ
2
(σ − 3ρ). Hence we can state the following

Corollary 4.5.4. A Ricci soliton (g, ξ, λ) on a conharmonicly flat almost pseudo symmet-

ric Kählerian spacetime manifold is shrinking if ω < −κ
4
(σ−3ρ), steady if ω = −κ

4
(σ−3ρ)

and expanding if ω > −κ
4
(σ − 3ρ).

Again for µ = 0 and (α, β) = (0, 1) in (4.5.14) we arrive at λ = 2ω − κ
2
(σ − 3ρ).

Therefore we have

Corollary 4.5.5. A Yamabe soliton (g, ξ, λ) on a conharmonicly flat almost pseudo sym-

metric Kählerian spacetime manifold is shrinking if ω < −κ
4
(σ − 3ρ), steady if ω =

−κ
4
(σ − 3ρ) and expanding if ω > −κ

4
(σ − 3ρ).

Also setting µ = 0 and (α, β) = (1,−1) in (4.5.14) we get λ = 0. Hence we can state

the following

Corollary 4.5.6. An Einstein soliton (g, ξ, λ) on a conharmonicly flat almost pseudo

symmetric Kählerian spacetime manifold is always steady.

4.6 Quasi-Yamabe soliton on generalized Sasakian space

form

This section is devoted to the study of generalized Sasakian space form admitting quasi-

Yamabe soliton whose the potential vector field is pointwise collinear with the Reeb vector

field. In this regard, our main result of this section is as follows:

Theorem 4.6.1. If a (2n+1)-dimensional generalized Sasakian space form M(f1, f2, f3)

admits a quasi-Yamabe soliton (g, V, σ, µ) with the potential vector field V pointwise

collinear with the Reeb vector field ξ, then
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i) M becomes a manifold of constant scalar curvature,

ii) the soliton reduces to the Yamabe soliton (g, V, σ),

iii) V becomes a constant multiple of ξ and

iv) V is a strict infinitesimal contact transformation.

Proof. Let us assume that (g, V, σ, µ) is a quasi-Yamabe soliton on the generalized Sasakian

space form M(f1, f2, f3) such that the potential vector field V is pointwise collinear with

ξ, the there exists a non-zero smmooth function b on M such that V = bξ. Then from

the equation (1.2.8) we can write

1

2
(Lbξg)(X, Y ) = (r − σ)g(X, Y ) + µb2η(X)η(Y ), (4.6.1)

for all vector fields X, Y ∈ χ(M).

Again, from the definition of Lie derivative we have

(Lbξg)(X, Y ) = g(∇Xbξ, Y ) + g(X,∇Y bξ)

= bg(∇Xξ, Y ) +X(b)η(Y ) + bg(X,∇Y ξ) + Y (b)η(X),

which in view of (2.2.1) and (1.1.16) reduces to

(Lbξg)(X, Y ) = X(b)η(Y ) + Y (b)η(X). (4.6.2)

Substituting (4.6.2) in (4.6.1) infers that

X(b)η(Y ) + Y (b)η(X) = 2(r − σ)g(X, Y ) + 2µb2η(X)η(Y ). (4.6.3)

Now taking Y = ξ in (4.6.3) we obtain

X(b) = [2(r − σ + µb2)− ξ(b)]η(X). (4.6.4)

Again replacing X by ξ in the foregoing equation yields

ξ(b) = (r − σ) + µb2. (4.6.5)

Now consider an orthonormal basis {ei : 1 ≤ i ≤ (2n + 1)} of the tangent space at

each point of the manifold. Then setting X = Y = ei in (4.6.3) and summing over

1 ≤ i ≤ (2n+ 1) we get

ξ(b) = (r − σ)(2n+ 1) + µb2. (4.6.6)
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Equating (4.6.5) with (4.6.6) we arrive at

r = σ = constant, (4.6.7)

which implies that M is a manifold of constant scalar curvature and this proves part i)

of the theorem.

Again, in view of (4.6.5), the equation (4.6.4) gives us

db = µb2η. (4.6.8)

Taking exterior differentiation on the above equation and using Poincare lemma d2 = 0,

we obtain µb2 = 0. This eventually implies that µ = 0 and hence the quasi-Yamabe

soliton reduces to the Yamabe soliton (g, V, σ). This proves part ii) of the theorem.

Now using µ = 0 in the equation (4.6.8) we get db = 0, which implies b is constant.

Therefore V is a constant multiple of ξ and this proves part iii) of the theorem.

Again setting Y = ξ in (4.6.1) and using (1.1.14) we obtain

(LV g)(X, ξ) = 2(r − σ + µb2)η(X). (4.6.9)

Using (4.6.7) and the fact that µ = 0 in (4.6.9) yields (LV g)(X, ξ) = 0, which implies

(LV η)(X) = g(X,LV ξ). (4.6.10)

Recalling that V = bξ and b is a constant it can be easily deduced that LV ξ = 0. Therefore

from (4.6.10) finally we obtain (LV η)(X) = 0 for any vector field X on M . Hence the

potential vector field V is a strict infinitesimal contact transformation. This proves part

iv) of the theorem and hence completes the proof.

According to Corollary 1.1 of [74], in a generalized Sasakian space form M(f1, f2, f3)

with the Yamabe soliton metric, the scalar curvature is harmonic. Thus in view of this

and from our previous theorem we can conclude the following

Corollary 4.6.1. If a (2n+1)-dimensional generalized Sasakian space form M(f1, f2, f3)

admits a quasi-Yamabe soliton (g, V, λ), whose potential vector field V is pointwise collinear

with the Reeb vector field ξ, then the scalar curvature is harmonic.

110



5
On η-Einstein solitons

5.1 Introduction

This chapter deals with 3-dimensional trans-Sasakian manifolds admitting η-Einstein soli-

tons and the chapter is divided into ten sections. Chapter one and two are introduction

and preliminaries respectively.

In section three, we characterize the nature of η-Einstein soliton on a 3-dimensional

trans-Sasakian manifold and find the conditions when the soliton is shrinking, steady and

expanding. Then in section four, we construct an example of a trans-Sasakian 3-manifold

admitting an η-Einstein soliton and we verify some of our results. Next section five is

devoted to the study of η-Einstein solitons on 3-dimensional trans-Sasakian manifolds

with Codazzi type and cyclic parallel Ricci tensor and the nature of the manifold is

characterized. In Sections six to nine, we study some curvature conditions R · S = 0,

W2 ·S = 0, R ·E = 0, B ·S = 0, S ·R = 0 admitting η-Einstein solitons on 3-dimensional

trans-Sasakian manifold. Finally in section ten, we consider 3-dimensional trans-Sasakian

manifolds admitting η-Einstein solitons with torse forming vector field.

5.2 Preliminaries

The definition of trans-Sasakian manifold has been given in the introductory Chapter

one. In what follows, by a trans-Sasakian 3-manifold, we mean a 3-dimensional trans-

Sasakian manifold (M, g, ϕ, ξ, η) of type (α, β). Now recalling the definition of trans-
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Sasakian manifold, from the expression (1.1.19), it can be derived that

∇Xξ = −αϕ(X) + β(X − η(X)ξ), (5.2.1)

(∇Xη)(Y ) = −αg(ϕ(X), Y ) + βg(ϕ(X), ϕ(Y )), (5.2.2)

for all vector fields X, Y ∈ χ(M). Again from equation (20) of corollary 4.2. in the paper

[35], the Riemannian curvature tensor in a trans-Sasakian 3-manifold (M, g) is given by

R(X, Y )Z = (
r

2
+ 2ξβ − 2(α2 − β2))[g(Y, Z)X − g(X,Z)Y ]

−g(Y, Z)[(
r

2
+ ξβ − 3(α2 − β2))η(X)ξ

−η(X)(ϕ(gradα)− gradβ) + (Xβ + (ϕX)α)ξ]

+g(X,Z)[(
r

2
+ ξβ − 3(α2 − β2))η(Y )ξ

−η(Y )(ϕ(gradα)− gradβ) + (Y β + (ϕY )α)ξ]

−[(Zβ + (ϕZ)α)η(Y ) + (Y β + (ϕY )α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(Y )η(Z)]X

+[(Zβ + (ϕZ)α)η(X) + (Xβ + (ϕX)α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(X)η(Z)]Y. (5.2.3)

Furthermore, if the functions α, β are constants then, in a trans-Sasakian 3-manifold

(M, g) the following relations hold,

R(X, Y )ξ = (α2 − β2)[η(Y )X − η(X)Y ], (5.2.4)

R(ξ,X)Y = (α2 − β2)[g(X, Y )ξ − η(Y )X], (5.2.5)

R(ξ,X)ξ = (α2 − β2)[η(X)ξ −X], (5.2.6)

S(X, Y ) = [
r

2
− (α2 − β2)]g(X, Y )− [

r

2
− 3(α2 − β2)]η(X)η(Y ), (5.2.7)

S(X, ξ) = 2(α2 − β2)η(X), (5.2.8)

for all smooth vector fields X, Y ∈ χ(M), where R is the curvature tensor and S is the

Ricci tensor of the manifold M .
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5.3 η-Einstein soliton on trans-Sasakian 3-manifold

Let us consider a trans-Sasakian 3-manifold (M, g) admitting an η-Einstein soliton (g, ξ, λ, µ).

Then from equation (1.2.10) we can write

(Lξg)(X, Y ) + 2S(X, Y ) + [2λ− r]g(X, Y ) + 2µη(X)η(Y ) = 0, (5.3.1)

for all X, Y ∈ χ(M).

Again from the well-known formula (Lξg)(X, Y ) = g(∇Xξ, Y )+g(∇Y ξ,X) of Lie-derivative

and using (5.2.1), we obtain for a trans-Sasakian 3-manifold

(Lξg)(X, Y ) = 2β[g(X, Y )− 2βη(X)η(Y )]. (5.3.2)

Now in view of the equations (5.3.1) and (5.3.2) we get

S(X, Y ) = (
r

2
− λ− β)g(X, Y ) + (β − µ)η(X)η(Y ). (5.3.3)

This shows that the manifold (M, g) is an η-Einstein manifold.

Also from equation (5.3.3) replacing Y = ξ we find that

S(X, ξ) = (
r

2
− λ− µ)η(X). (5.3.4)

Comparing the above equation (5.3.4) with (5.2.8) yields

r = 4(α2 − β2) + 2λ+ 2µ. (5.3.5)

Again, considering an orthonormal basis {e1, e2, e3} of (M, g) and then settingX = Y = ei

in equation (5.3.3) and summing over i = 1, 2, 3 we get

r = 6λ+ 4β + 2µ. (5.3.6)

Finally combining equations (5.3.5) and (5.3.6) we arrive at

λ = (α2 − β2)− β. (5.3.7)

Thus the above discussion leads to the following

Theorem 5.3.1. If a trans-Sasakian 3-manifold (M, g) admits an η-Einstein soliton

(g, ξ, λ, µ), then the manifold (M, g) becomes an η-Einstein manifold of constant scalar

curvature r = 6λ + 4β + 2µ. Furthermore, the soliton is shrinking, steady or expanding

according as; α2 < β(β + 1), α2 = β(β + 1), α2 > β(β + 1) respectively.
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Next we consider a trans-Sasakian 3-manifold (M, g) and assume that it admits an

η-Einstein soliton (g, V, λ, µ) such that V is pointwise collinear with ξ, i.e; V = bξ, for

some function b; then from the equation (1.2.10) it follows that

bg(∇Xξ, Y ) + (Xb)η(Y ) + bg(∇Y ξ,X) + (Y b)η(X)

+ 2S(X, Y ) + (2λ− r)g(X, Y ) + 2µη(X)η(Y ) = 0.

Then using the equation (5.2.1) in above we arrive at

(2bβ + 2λ− r)g(X, Y ) + (Xb)η(Y ) + (Y b)η(X)

+ 2S(X, Y ) + 2(bβ + µ)η(X)η(Y ) = 0. (5.3.8)

Replacing Y = ξ in the above equation yields

(Xb) + (ξb)η(X) + 2S(X, ξ) + (2λ+ 2µ− r)η(X) = 0. (5.3.9)

Again taking X = ξ in (5.3.9) and by virtue of (5.2.8) we arrive at

2(ξb) = (r − 2λ− 2µ)− 4(α2 − β2). (5.3.10)

Using this value from (5.3.10) in the equation (5.3.9) and recalling (5.2.8) we can write

db = [
r

2
− λ− µ− 2(α2 − β2)]η. (5.3.11)

Now taking exterior differentiation on both sides of (5.3.11) and using the famous Poincare’s

lemma i.e; d2 = 0, finally we arrive at

r = 2λ+ 2µ+ 4(α2 − β2). (5.3.12)

In view of the above (5.3.12) the equation (5.3.11) gives us db = 0 i.e; the function b is

constant. Then the equation (5.3.8) reduces to

S(X, Y ) = (
r

2
− λ− bβ)g(X, Y ) + (bβ − µ)η(X)η(Y ), (5.3.13)

for all X, Y ∈ TM . Hence we can state the following

Theorem 5.3.2. If a trans-Sasakian 3-manifold (M, g) admits an η-Einstein soliton

(g, V, λ, µ) such that V is pointwise collinear with ξ, then V is constant multiple of ξ

and the manifold (M, g) becomes an η-Einstein manifold of constant scalar curvature

r = 2λ+ 2µ+ 4(α2 − β2).
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5.4 Example of an η-Einstein soliton on a trans-Sasakian

3-manifold

In this section we construct an example of a trans-Sasakian 3-manifold admitting an

η-Einstein soliton and we verify some of our results.

Example 5.4.1. Let us consider the 3-dimensional manifold M = {(u, v, w) ∈ R3 : w ̸=
0}. Define a linearly independent set of vector fields {ei : 1 ≤ i ≤ 3} on the manifold M

given by

e1 = e2w
∂

∂u
, e2 = e2w

∂

∂v
, e3 =

∂

∂w
.

Let us define the Riemannian metric g on M by

g(ei, ej) =

 1, for i = j

0, for i ̸= j

for all i, j = 1, 2, 3. Now considering e3 = ξ, let us take the 1-form η, on the manifold

M , defined by

η(U) = g(U, e3), ∀U ∈ χ(M).

Then it can be observed that η(ξ) = 1. Let us define the (1, 1) tensor field ϕ on M as

ϕ(e1) = e2, ϕ(e2) = −e1, ϕ(e3) = 0.

Using the linearity of g and ϕ it can be easily checked that

ϕ2(U) = −U + η(U)ξ, g(ϕU, ϕV ) = g(U, V )− η(U)η(V ), ∀U, V ∈ χ(M).

Hence the structure (g, ϕ, ξ, η) defines an almost contact metric structure on the manifold

M . Now, using the definitions of Lie bracket, after some direct computations we get

[e1, e2] = 0, [e1, e3] = −2e1, [e2, e3] = −2e2.

Again the Riemannian connection ∇ of the metric g is defined by the well-known Koszul’s

formula which is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]).
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Using the above formula one can easily calculate that

∇e1e1 = 2e3, ∇e1e2 = 0, ∇e1e3 = −2e1,

∇e2e1 = 0, ∇e2e2 = 2e3, ∇e2e3 = −2e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Thus from the above relations it follows that the manifold (M, g) is a trans-Sasakian 3-

manifold. Now using (1.1.5) the non-vanishing components of the Riemannian curvature

tensor R can be easily obtained as

R(e1, e2)e2 = R(e1, e3)e3 = −4e1,

R(e2, e3)e3 = R(e3, e1)e1 = −4e2,

R(e3, e2)e2 = 4e2, R(e2, e1)e1 = 4e3.

Hence we can calculate the components of the Ricci tensor as follows

S(e1, e1) = 0, S(e2, e2) = 0, S(e3, e3) = −8.

Therefore in view of the above values of the Ricci tensor, from the equation (1.2.10) we

can calculate λ = −2 and µ = 6. Hence we can say that the data (g, ξ,−2, 6) defines

an η-Einstein soliton on the trans-Sasakian 3-manifold (M, g). Also we can see that the

manifold (M, g) is a manifold of constant scalar curvature r = −8 and hence the Theorem

5.3.1 is verified.

5.5 η-Einstein soliton on trans-Sasakian 3-manifold

with Codazzi type and cyclic parallel Ricci tensor

The purpose of this section is to study η-Einstein solitons in trans-Sasakian 3-manifolds

having certain special types of Ricci tensor namely codazzi type Ricci tensor and cyclic

parallel Ricci tensor.

Let us consider a trans-Sasakian 3-manifold having Codazzi type Ricci tensor and

admits an η-Einstein soliton (g, ξ, λ, µ), then equation (5.3.3) holds. Now covariantly

differentiating the equation (5.3.3) with respect to an arbitrary vector field X and then
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using (5.2.2) we get

(∇XS)(Y, Z) = 2(β − µ)[η(Y )(−αg(ϕX,Z) + βg(ϕX, ϕZ))

+η(Z)(−αg(ϕX, Y ) + βg(ϕX, ϕY ))]. (5.5.1)

Similarly we can compute

(∇Y S)(X,Z) = 2(β − µ)[η(X)(−αg(ϕY, Z) + βg(ϕY, ϕZ))

+η(Z)(−αg(ϕY,X) + βg(ϕY, ϕX))]. (5.5.2)

Since the manifold has Codazzi type Ricci tensor, using (5.5.1) and (5.5.2) in the equation

(1.1.7) and then recalling (1.1.15) we arrive at

2(β − µ)[η(Y )(−αg(ϕX,Z) + βg(X,Z))− η(X)(−αg(ϕY, Z)

+βg(Y, Z))− 2αη(Z)g(ϕX, Y )] = 0. (5.5.3)

Putting Z = ξ in above and in view of (1.1.14) we finally obtain

4α(µ− β)g(ϕX, Y ) = 0, (5.5.4)

forall X, Y ∈ χ(M). Therefore from (5.5.3) we can conclude that either α = 0 or µ = β.

Hence we have the following

Theorem 5.5.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the Ricci tensor of the manifold is of Codazzi type then the manifold

becomes a β-Kenmotsu manifold provided µ ̸= β.

Now using α = 0 in equation (5.3.7) we get λ = −β(β + 1). Thus we can state the

following

Corollary 5.5.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein

soliton (g, ξ, λ, µ) with µ ̸= β. If the Ricci tensor of the manifold is of Codazzi type then

the soliton is shrinking if β < −1 or, β > 0; steady if β = −1 or β = 0; and expanding if

−1 < β < 0 respectively.

Again from the equation (5.5.3) we can write that µ = β if α ̸= 0. Then from

equation (5.3.3) we obtain

S(X, Y ) = (
r

2
− λ− β)g(X, Y ), (5.5.5)

for all X, Y ∈ χ(M). Then contracting the equation (5.5.4) we get r = 6λ + 6β. Hence

in view of this and equation (5.5.4) we have the following
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Theorem 5.5.2. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the Ricci tensor of the manifold is of Codazzi type then the manifold

becomes an Einstein manifold of constant scalar curvature r = 6λ+ 6β provided α ̸= 0.

Let us now consider a trans-Sasakian 3-manifold, having cyclic parallel Ricci tensor,

admits an η-Einstein soliton (g, ξ, λ, µ), then equation (5.3.3) holds. Now taking covariant

differentiation of (5.3.3) and using equation (5.2.2) we obtain relations (5.5.1) and (5.5.2).

In a similar manner we get the following

(∇ZS)(X, Y ) = 2(β − µ)[η(X)(−αg(ϕZ, Y ) + βg(ϕZ, ϕY ))

+η(Y )(−αg(ϕZ,X) + βg(ϕZ, ϕX))]. (5.5.6)

Now since the manifold has cyclic parallel Ricci tensor, using the values from (5.5.1),

(5.5.2) and (5.5.6) in the equation (1.1.8) and then making use of (1.1.15) we arrive at

4β(β − µ)[η(X)g(ϕY, ϕZ) + η(Y )g(ϕZ, ϕX) + η(Z)g(ϕX, ϕY )] = 0. (5.5.7)

Replacing Z = ξ in the above equation (5.5.7) yields

4β(β − µ)g(ϕX, ϕY ) = 0, (5.5.8)

for all X, Y ∈ χ(M). Since g(ϕX, ϕY ) ̸= 0 always, the above equation (5.5.8) implies

that either β = 0 or, µ = β. Thus we can state the following

Theorem 5.5.3. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the manifold has cyclic parallel Ricci tensor, then the manifold becomes

an α-Sasakian manifold provided µ ̸= β.

Now using β = 0 in equation (5.3.7) we get λ = α2 > 0. Therefore we have

Corollary 5.5.2. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein

soliton (g, ξ, λ, µ) with µ ̸= β. If the manifold has cyclic parallel Ricci tensor then the

soliton is expanding.

Again if β ̸= 0 then from (5.5.8) it follows that µ = β. Therefore after a similar

calculation like equation (5.5.5) we can state

Theorem 5.5.4. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the manifold has cyclic parallel Ricci tensor, then the manifold becomes

an Einstein manifold of constant scalar curvature r = 6λ+ 6β provided β ̸= 0.
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5.6 η-Einstein soliton on trans-Sasakian 3-manifold

satisfying R(ξ,X) · S = 0 and W2(ξ,X) · S = 0

Let us first consider a trans-Sasakian 3-manifold which admits an η-Einstein soliton

(g, ξ, λ, µ) and the manifold satisfies the curvature condition R(ξ,X) · S = 0. Then

∀X, Y, Z ∈ χ(M) we can write

S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0. (5.6.1)

Now using (5.3.3) in (5.6.1) we get

(
r

2
− λ− β)g(R(ξ,X)Y, Z) + (β − µ)η(R(ξ,X)Y )η(Z)

+ (
r

2
− λ− β)g(R(ξ,X)Z, Y ) + (β − µ)η(R(ξ,X)Z)η(Y ) = 0. (5.6.2)

In view of (5.2.5) the previous equation becomes

(α2 − β2)(β − µ)[g(X, Y )η(Z) + g(X,Z)η(Y )− 2η(X)η(Y )η(Z)] = 0. (5.6.3)

Putting Z = ξ in the above equation (5.6.3) and recalling (1.1.15) obtain

(α2 − β2)(β − µ)g(ϕX, ϕY ) = 0, (5.6.4)

for all X, Y ∈ χ(M). Since g(ϕX, ϕX) ̸= 0 always and for non-trivial case α2 ̸= β2, we

can conclude from the equation (5.6.4) that µ = β. Then from equation (5.3.3) we obtain

S(X, Y ) = (
r

2
− λ− β)g(X, Y ), (5.6.5)

for all X, Y ∈ χ(M). Then contracting the equation (5.6.5) we get r = 6λ + 6β. Hence

in view of this and equation (5.6.5) we have the following

Theorem 5.6.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the manifold satisfies the curvature condition R(ξ,X) · S = 0, then the

manifold becomes an Einstein manifold of constant scalar curvature r = 6λ+ 6β.

Our next result is on W2-curvature tensor, which is defined in the introductory chap-

ter one. So, the equation (1.1.4) holds and taking n = 3 in it, we can write the expression

for the W2-curvature tensor in a trans-Sasakian 3-manifold as follows:

W2(X, Y )Z = R(X, Y )Z +
1

2
[g(X,Z)QY − g(Y, Z)QX]. (5.6.6)
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Now assume that (M, g) is a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ) and also the manifold satisfies the curvature condition W2(ξ,X) · S = 0. Then

we can write

S(W2(ξ,X)Y, Z) + S(Y,W2(ξ,X)Z) = 0, ∀X, Y, Z ∈ TM. (5.6.7)

In view of (5.3.3) the above equation (5.6.7) becomes

(
r

2
− λ− β)[g(W2(ξ,X)Y, Z) + g(W2(ξ,X)Z, Y )]

+ (β − µ)[η(W2(ξ,X)Y )η(Z) + η(W2(ξ,X)Z)η(Y )] = 0. (5.6.8)

Again from (5.3.3) it follows that

QX = (
r

2
− λ− β)X + (β − µ)η(X)ξ, (5.6.9)

which implies

Qξ = (
r

2
− λ− µ)ξ. (5.6.10)

Replacing X = ξ in (5.6.6) and then using equations (5.2.5), (5.6.9) and (5.6.10) we obtain

W2(ξ, Y )Z = Bg(Y, Z)ξ − Aη(Z)Y + (A−B)η(Y )η(Z), (5.6.11)

where A = (α2 − β2) − 1
2
( r
2
− λ − β) and B = (α2 − β2) − 1

2
( r
2
− λ − µ). Taking inner

product of (5.11) with respect to the vector field ξ yields

η(W2(ξ, Y )Z) = B[g(Y, Z)− η(Y )η(Z)]. (5.6.12)

Using (5.6.11) and (5.6.12) in the equation (5.6.8) and then taking Z = ξ we arrive at

(A−B)[2B − (
r

2
− λ− β)][g(X, Y )− η(X)η(Y )] = 0,

which in view of (1.1.15) implies

(A−B)[2B − (
r

2
− λ− β)]g(ϕX, ϕY ) = 0, (5.6.13)

for all X, Y ∈ χ(M). Since g(ϕX, ϕX) ̸= 0 always, we can conclude from the equation

(5.6.13) that either A = B or, 2B = r
2
− λ − β. Thus recalling the values of A and B it

implies that either µ = β or,

2(α2 − β2) = r − 2λ− µ− β. (5.6.14)
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Now for the case µ = β, proceeding similarly as the equation (5.6.5) we can say that the

manifold becomes an Einstein manifold. Again combining (5.6.14) with (5.3.5) we get

r = 2λ+ 2β. (5.6.15)

Therefore we can state the following

Theorem 5.6.2. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the manifold satisfies the curvature condition W2(ξ,X) · S = 0, then

either the manifold becomes an Einstein manifold or it is a manifold of constant scalar

curvature r = 2λ+ 2β.

Again in view of (5.3.6), the equation (5.6.15) implies λ = −1
2
(µ+β). Hence we have

Corollary 5.6.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein

soliton (g, ξ, λ, µ) with µ ̸= β. If the manifold satisfies the curvature condition W2(ξ,X) ·
S = 0, then the soliton is expanding, steady or shrinking according as µ < −β, µ = −β

or, µ > −β respectively.

5.7 Einstein semi-symmetric trans-Sasakian 3-manifold

admitting η-Einstein soliton

This section is devoted to the study of η-Einstein solitons on Einstein semi-symmetric

trans-Sasakian 3-manifolds.

A trans-Sasakian 3-manifold (M, g) is called Einstein semi-symmetric [89] if R.E = 0,

where E is the Einstein tensor given by

E(X, Y ) = S(X, Y )− r

3
g(X, Y ), (5.7.1)

for all vector fields X, Y ∈ χ(M) and r is the scalar curvature of the manifold.

Now consider a trans-Sasakian 3-manifold is Einstein semi-symmetric i.e; the man-

ifold satisfies the curvature condition R.E = 0. Then for all vector fields X, Y, Z,W ∈
χ(M) we can write

E(R(X, Y )Z,W ) + E(Z,R(X, Y )W ) = 0. (5.7.2)
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In view of (5.7.1) the equation (5.7.2) becomes

S(R(X, Y )Z,W ) + S(Z,R(X, Y )W ) =
r

3
[g(R(X, Y )Z,W ) + g(Z,R(X, Y )W )]. (5.7.3)

Replacing X = Z = ξ in the above equation (5.7.3) and then using (5.2.5), (5.2.6) we

arrive at

(α2 − β2)S(Y,W ) = (α2 − β2)[η(Y )S(ξ,W ) + η(W )S(ξ, Y )− g(Y,W )S(ξ, ξ)]. (5.7.4)

So, now in view of (5.2.8) the above equation (5.7.4) finally yields

S(Y,W ) = −2(α2 − β2)g(Y,W ) + 4(α2 − β2)η(Y )η(W ), (5.7.5)

for all Y,W ∈ χ(M). This implies that the manifold is an η-Einstein manifold. Hence we

have the following

Lemma 5.7.1. An Einstein semi-symmetric trans-Sasakian 3-manifold is an η-Einstein

manifold.

Now let us assume that the Einstein semi-symmetric trans-Sasakian 3-manifold (M, g)

admits an η-Einstein soliton (g, ξ, λ, µ). Then equation (5.3.3) holds and combining (5.3.3)

with the above equation (5.7.5) we get

r = 2λ+ µ+ β. (5.7.6)

Again recalling the equation (5.3.6) in the above (5.7.6) we have

λ = −1

4
(µ+ 3β). (5.7.7)

Therefore we can state the following

Theorem 5.7.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the manifold is Einstein semi-symmetric, then the manifold becomes

an η-Einstein manifold of constant scalar curvature r = 2λ + µ + β and the soliton is

expanding, steady or shrinking according as µ < 3β, µ = 3β or, µ > 3β respectively.
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5.8 η-Einstein soliton on trans-Sasakian 3-manifold

satisfying B(ξ,X) · S = 0

In 1949, S. Bochner [16] introduced the concept of the well-known Bochner curvature

tensor merely as a Kähler analogue of the Weyl conformal curvature tensor but the ge-

ometric significance of it in the light of Boothby-Wangs fibration was presented later by

D. E. Blair [13]. The notion of C-Bochner curvature tensor in a Sasakian manifold was

introduced by M. Matsumoto, G. Chūman [62] in 1969. The C-Bochner curvature tensor

in trans-Sasakian 3-manifold (M, g) is given by

B(X, Y )Z = R(X, Y )Z +
1

6
[g(X,Z)QY − S(Y, Z)− g(Y, Z)QX

+S(X,Z)Y + g(ϕX,Z)QϕY − S(ϕY, Z)ϕX − g(ϕY, Z)QϕX

+S(ϕX,Z)ϕY + 2S(ϕX, Y )ϕZ + 2g(ϕX, Y ))QϕZ

+η(Y )η(Z)QX − η(Y )S(X,Z)ξ + η(X)S(Y, Z)ξ − η(X)η(Z)QY ]

−D + 2

6
[g(ϕX,Z)ϕY − g(ϕY, Z)ϕX + 2g(ϕX, Y )ϕZ]

+
D

6
[η(Y )g(X,Z)ξ − η(Y )η(Z)X + η(X)η(Z)Y − η(X)g(Y, Z)ξ]

−D − 4

6
[g(X,Z)Y − g(Y, Z)X], (5.8.1)

where D = r+2
4
.

Let us consider a trans-Sasakian 3-manifold (M, g) which admits an η-Einstein soliton

(g, ξ, λ, µ) and also the manifold satisfies the curvature condition B(ξ,X) · S = 0. Then

∀X, Y, Z ∈ χ(M) we can write

S(B(ξ,X)Y, Z) + S(Y,B(ξ,X)Z) = 0. (5.8.2)

Now using (5.3.3) in (5.8.2) we get

(
r

2
− λ− β)[g(B(ξ,X)Y, Z) + g(B(ξ,X)Z, Y )]

+ (β − µ)[η(B(ξ,X)Y )η(Z) + η(B(ξ,X)Z)η(Y )] = 0. (5.8.3)

Again from (5.3.3) it follows that

QX = (
r

2
− λ− β)X + (β − µ)η(X)ξ, (5.8.4)
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which implies

Qξ = (
r

2
− λ− µ)ξ. (5.8.5)

Also taking X = ξ in (5.8.1) we obtain

B(ξ, Y )Z = R(ξ, Y )Z
1

6
[S(ξ, Z)Y − g(Y, Z)Qξ + η(Y )η(Z)Qξ

−η(Y )S(ξ, Z)ξ] +
4

6
[η(Z)Y − g(Y, Z)ξ]. (5.8.6)

Using equations (5.2.5), (5.3.4) and (5.8.5) in (5.8.6) yields

B(ξ, Y )Z = [(α2 − β2)− 1

6
(
r

2
− λ− µ)− 4

6
][g(Y, Z)ξ − η(Z)Y ]. (5.8.7)

In view of (5.8.7) the equation (5.8.3) becomes

[(α2 − β2)− 1

6
(
r

2
− λ− µ)− 4

6
](β − µ)[g(X, Y )η(Z)

+g(X,Z)η(Y )− 2η(X)η(Y )η(Z)] = 0.

Replacing Z = ξ in the above equation and recalling (1.1.15), finally we arrive at

[(α2 − β2)− 1

6
(
r

2
− λ− µ)− 4

6
](β − µ)g(ϕX, ϕY ) = 0, (5.8.8)

for all vector fields X, Y ∈ χ(M). Hence from (5.8.8) we can conclude that either

[(α2 − β2)− 1

6
(
r

2
− λ− µ)− 4

6
] = 0, (5.8.9)

or, µ = β. Also for µ = β proceeding similarly as equation (5.5.5) it can be easily shown

that the manifold becomes an Einstein manifold. Again if µ ̸= β using (5.3.7) in the

equation (5.8.9) we have

r = 10λ+ 2µ+ 12β − 8, (5.8.10)

which implies that the manifold becomes a manifold of constant scalar curvature. There-

fore we can state the following

Theorem 5.8.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the manifold satisfies the curvature condition B(ξ,X) · S = 0, then

either the manifold is an Einstein manifold or it is a manifold of constant scalar curva-

ture r = 10λ+ 2µ+ 12β − 8.

Now for the case µ ̸= β, using the equation (5.3.6) in (5.8.10) we obtain λ = 2(1−β).

Hence we have
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Corollary 5.8.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein

soliton (g, ξ, λ, µ) with µ ̸= β. If the manifold satisfies the curvature condition B(ξ,X) ·
S = 0, then the soliton is expanding, steady or shrinking according as β < 1, β = 1 or,

β > 1 respectively.

5.9 η-Einstein soliton on trans-Sasakian 3-manifold

satisfying S(ξ,X) ·R = 0

In this section we study the curvature condition S(ξ,X) · R = 0, where by · we denote

the derivation of the tensor algebra at each point of the tangent space as follows:

S((ξ,X) ·R)(Y, Z)W := ((ξ ∧S X) ·R)(Y, Z)W

:= (ξ ∧S X)R(Y, Z)W +R((ξ ∧S X)Y, Z)W

+R(Y, (ξ ∧S X)Z)W +R(Y, Z)(ξ ∧S X)W, (5.9.1)

where the endomorphism X ∧S Y is defined by

(X ∧S Y )Z := S(Y, Z)X − S(X,Z)Y.

Now let us consider a trans-Sasakian 3-manifold (M, g) which admits an η-Einstein soliton

(g, ξ, λ, µ) and also the manifold satisfies the curvature condition S(ξ,X) · R = 0. Then

using this condition and the equation (5.9.1) we can write

S(X,R(Y, Z)W )ξ − S(ξ, R(Y, Z)W )X + S(X, Y )R(ξ, Z)W

−S(ξ, Y )R(X,Z)W + S(X,Z)R(Y, ξ)W − S(ξ, Z)R(Y,X)W

+S(X,W )R(Y, Z)ξ − S(ξ,W )R(Y, Z)X = 0, (5.9.2)

for all vector fields X, Y, Z,W ∈ χ(M). Taking inner product of the above (5.9.2) with

the vector field ξ and then replacing W = ξ we obtain

S(X,R(Y, Z)ξ)− S(ξ, R(Y, Z)ξ)η(X) + S(X, Y )η(R(ξ, Z)ξ)

−S(ξ, Y )η(R(X,Z)ξ) + S(X,Z)η(R(Y, ξ)ξ)− S(ξ, Z)η(R(Y,X)ξ)

+S(X, ξ)η(R(Y, Z)ξ)− S(ξ, ξ)η(R(Y, Z)X) = 0,
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In view of (5.2.4) and (5.2.6) the above equation becomes

(α2 − β2)[S(X, Y )η(Z)− S(X,Z)η(Y )− S(ξ, Y )η(X)η(Z)

+S(ξ, Z)η(X)η(Y )]− S(ξ, ξ)η(R(Y, Z)X) = 0. (5.9.3)

Putting Y = ξ in (5.9.3) and then recalling (5.2.5) we get

(α2 − β2)[S(X, ξ)η(Z)− S(X,Z)− S(ξ, ξ)η(X)η(Z)

+S(ξ, Z)η(X)− S(ξ, ξ)[g(X,Z)− η(X)η(Z)]] = 0. (5.9.4)

Using equations (5.3.3) and (5.3.4) in the above (5.9.4) yields

(α2 − β2)[(r − 2λ− 2µ+ β)η(X)η(Z)− (r − 2λ− µ− β)g(X,Z)] = 0.

Replacing X = ξ in above we arrive at

(α2 − β2)(2β − µ)η(X) = 0, ∀X ∈ TM. (5.9.5)

Since for non-trivial case α2 ̸= β2, from the above equation (5.9.5) it follows that µ = 2β.

Therefore in view of this and recalling (5.3.6) we finally obtain r = 6λ + 8β. Therefore

we can state the following

Theorem 5.9.1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soli-

ton (g, ξ, λ, µ). If the manifold satisfies the curvature condition S(ξ,X) · R = 0, then it

becomes a manifold of constant scalar curvature r = 6λ+ 8β.

5.10 η-Einstein soliton on trans-Sasakian 3-manifold

with torse-forming vector field

This section is devoted to study the nature of η-Einstein solitons on trans-Sasakian 3-

manifolds with torse-forming vector field. The definition of a torse-forming vector field is

given in the introductory chapter one and hence (1.1.12) holds.

Now let us consider that (g, ξ, λ, µ) be an η-Einstein soliton on a trans-Sasakian 3-

manifold (M, g) and assume that the Reeb vector field ξ of the manifold is a torse-forming

vector field. Then ξ being a torse-forming vector field, from equation (1.1.12) we have

∇Xξ = fX + γ(X)ξ, (5.10.1)
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∀X ∈ χ(M), f being a smooth function and γ is a 1-form.

Recalling the equation (5.2.1) and taking inner product on both sides with ξ we can write

g(∇Xξ, ξ) = (β − 1)η(X). (5.10.2)

Again from the equation (5.10.1), applying inner product with ξ we obtain

g(∇Xξ, ξ) = fη(X) + γ(X). (5.10.3)

Combining (5.10.2) and (5.10.3) we get, γ = (β − 1− f)η. Thus from (5.10.1) it implies

that, for torse-forming vector field ξ in a trans-Sasakian 3-manifold, we have

∇Xξ = f(X − η(X)ξ) + (β − 1)η(X)ξ. (5.10.4)

Now from the formula of Lie differentiation and using (5.10.4) yields

(Lξg)(X, Y ) = g(∇Xξ, Y ) + g(∇Y ξ,X)

= 2f [g(X, Y )− η(X)η(Y )] + 2(β − 1)η(X)η(Y ). (5.10.5)

Since (g, ξ, λ, µ) is an η-Einstein soliton, the equation (1.2.10) holds. So in view of (5.10.5),

the equation (1.2.10) reduces to

S(X, Y ) = (
r

2
− λ+ f)g(X, Y ) + (f − µ− β + 1)η(X)η(Y ). (5.10.6)

This implies that the manifold is an η-Einstein manifold. Again putting Y = ξ in (5.10.6)

we get

S(X, ξ) = (
r

2
− λ− µ− β + 1)η(X). (5.10.7)

Combining (5.10.7) with the equation (5.2.8) implies

(
r

2
− λ− µ− β + 1) = 2(α2 − β2). (5.10.8)

Again tracing out the equation (5.10.6) we obtain

r = 6λ+ 2µ+ 4f + 2β − 2. (5.10.9)

Using the above equation (5.10.9) in (5.10.8), finally we get λ = f − (α2 − β2). Therefore

we have the following

Theorem 5.10.1. Let (g, ξ, λ, µ) be an η-Einstein soliton on a trans-Sasakian 3-manifold

(M, g), with torse-forming vector field ξ, then the manifold becomes an η-Einstein man-

ifold and the soliton is expanding, steady or shrinking according as f > (α2 − β2),

f = (α2 − β2) or, f < (α2 − β2) respectively.
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The present paper is devoted to generalized Sasakian space forms admitting conformal 
Ricci soliton and Quasi-Yamabe soliton. Nature of the conformal Ricci soliton is character-
ized on generalized Sasakian space form with various types of the potential vector field, 
and conditions for the conformal Ricci soliton to be shrinking, steady, or expanding are also 
given. Then it is shown that, depending on the nature of the structure functions of a gen-
eralized Sasakian space form, the potential function of a conformal gradient Ricci soliton is 
constant. Next, it is proved that under certain conditions, a quasi-Yamabe soliton reduces 
to a Yamabe soliton on generalized Sasakian space forms. Finally, an illustrative example of 
a generalized Sasakian space form is discussed to verify our results.
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1. Introduction

In 1982, R. S. Hamilton [15] introduced the Ricci soliton as a self similar solution to the Ricci flow equation given by 
∂
∂t (g(t)) = −2Ric(g(t)), where g(t) is an one parameter family of metrics on a certain manifold.

A Riemannian metric g defined on a smooth manifold M of dimension n is said to be a Ricci soliton if, for some constant 
λ, there exists a smooth vector field V on M satisfying the equation

Ric + 1

2
LV g = λg, (1.1)
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where LV denotes the Lie derivative in the direction of V and Ric is the Ricci tensor. The Ricci soliton is called shrinking if 
λ > 0, steady if λ = 0 and expanding if λ < 0. Ricci solitons can also be viewed as natural generalizations of Einstein metrics 
which moves only by a one-parameter group of diffeomorphisms and scaling [16].

In [12] A. E. Fischer introduced conformal Ricci flow equations a modified version of Hamilton’s Ricci flow equation 
that modifies the volume constraint such that equation scalar curvature constraint. The conformal Ricci flow equations on a 
smooth closed connected oriented manifold M of dimension n is given by

∂ g

∂t
+ 2(Ric + g

n
) = −pg, (1.2)

r(g) = −1,

where p is a non-dynamical (time-dependent) scalar field and r(g) is the scalar curvature of the manifold. The term −pg
acts as the constraint force to maintain the scalar curvature constraint. Thus these evolution equations are analogous to 
famous Navier-Stokes equations in fluid mechanics where the constraint is divergence-free. That is why sometimes p is also 
called the conformal pressure.

N. Basu et al. [3] introduced the concept of conformal Ricci soliton as a generalization of the classical Ricci soliton.
A Riemannian metric g on a smooth manifold M of dimension (2n + 1) is called a conformal Ricci soliton if there exists 

a constant λ and a vector field V such that

LV g + 2Ric = [2λ − (p + 2

2n + 1
)]g, (1.3)

where S = Ric is the Ricci tensor, λ is a constant, and p is the conformal pressure. It can be easily checked that the 
above soliton equation satisfies the conformal Ricci flow equation (1.2). Further, Ganguly and A. Bhattacharyya studied the 
conformal Ricci soliton within the framework of almost co-Kähler manifolds [13] and (LC S)n-manifolds [14] and authors 
generalized conformal Ricci soliton and obtained some interesting results in [11]. M. D. Siddiqui [20] proved that if a 
compact Lagrangian submanifold in a complex space form under certain conditions admits a conformal Ricci soliton, then it 
is either totally geodesic or flat with parallel mean curvature vector field.

Furthermore, if the soliton vector field is a gradient of some smooth function on the manifold, i.e., V = grad f = ∇ f , for 
some smooth function f then the soliton is called conformal gradient Ricci soliton [13]. In this case, the soliton equation 
(1.2) becomes

S + ∇∇ f = [λ − (
p

2
+ 1

2n + 1
)]g, (1.4)

where ∇ is the Riemannian connection on the manifold Mn .
The notion of Yamabe flow was introduced by R. S. Hamilton [16] as a tool for constructing metrics of constant scalar 

curvature in a given conformal class of Riemannian metrics on a Riemannian manifold of dimension greater than or equal 
to three. The Yamabe flow on a smooth Riemannian manifold (M, g) is defined as the evolution equation of the Riemannian 
metric g = g(t) as follows

∂

∂t
(g(t)) = −r(g(t)), (1.5)

where r denotes the scalar curvature of the manifold. It should be noted that two dimensional the Yamabe flow is equivalent 
to the Ricci flow . Still for dimensions greater than two, the Yamabe flow and the Ricci flow do not agree, as the Yamabe flow 
preserves the metric’s conformal class whereas the Ricci flow does not. The Yamabe flow corresponds to the fast diffusion 
case of the plasma equation inmathematical physics.

Let (M, g) be an n-dimensional complete Riemannian manifold. If the Riemannian metric g satisfies

1

2
LV g = (r − σ)g, (1.6)

for some smooth vector field V and some σ ∈R, then it is known as a Yamabe soliton [16]. The Yamabe soliton is said to be 
shrinking, steady, or expanding according to σ < 0, σ = 0 or σ > 0 respectively. Like Ricci solitons are self-similar solutions 
of the Ricci flow, Yamabe solitons are also self-similar solutions to the Yamabe flow, which moves by a one-parameter family 
diffeomorphism and scaling. Over the years, many authors have studied Yamabe solitons [4,6,7,17,10,18,21].

As a generalization of Yamabe soliton, recently, B. Y. Chen and S. Deshmukh [7] introduced the notion of quasi-Yamabe 
soliton. A Riemannian metric (M, g) is said to be a quasi-yamabe soliton if

1

2
LV g = (r − σ)g + μV ∗ ⊗ V ∗, (1.7)

for some smooth function μ, real constant σ and V ∗ is the dual 1-form of V . If μ = 0 then the quasi-Yamabe soliton 
(g, V , σ , μ) reduces to the Yamabe soliton (g, V , σ). Chen-Deshmukh [7] proved that a Euclidean hypersurface is totally 
2



D. Ganguly, S. Dey, A. Ali et al. Journal of Geometry and Physics 169 (2021) 104339
umbilical if and only if it admits a Yamabe soliton with the tangential component of the position vector field as the soliton 
vector field. In [9], authors showed that if a contact metric manifold admits a quasi-Yamabe soliton whose soliton vector 
field is a V -Ric vector field, then the Ricci operator Q and φ commutes with each other. A. M. Blaga [5] investigated almost 
quasi-yamabe solitons on warped product manifolds and derived a Bochner-type formula for a gradient almost quasi-Yamabe 
soliton.

Motivated by the above studies, we study conformal Ricci soliton and quasi-Yamabe soliton in generalized Sasakian space 
forms. The paper is organized as follows: After the introduction, Section-2, we discuss some basic notions and curvature 
formulas of generalized Sasakian space forms. Section-3, we study generalized Sasakian space forms admitting conformal 
Ricci soliton and conformal gradient Ricci soliton. Finally, Section-4, we investigate quasi-Yamabe solitons on generalized 
Sasakian space forms.

2. Generalized Sasakian space form

A 2n + 1-dimensional smooth Riemannian manifold (M, g) is said to be an almost contact metric manifold [5] if it 
admits a (1, 1) tensor field φ, a characteristic vector field ξ , a global 1-form η and a Riemannian metric g on M satisfying 
the following relations

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

η(X) = g(X, ξ), φ(ξ) = 0, η(φ X) = 0, (2.2)

g(φ X, φY ) = g(X, Y ) − η(X)η(Y ), (2.3)

g(X, φY ) + g(Y , φ X) = 0, (2.4)

for all vector fields X, Y ∈ T M , where T M is the tangent bundle of the manifold M .
A Sasakian manifold with constant φ-sectional curvature c is called a Sasakian space form. Similarly, a Kenmotsu space 

form is a Kenmotsu manifold with constant φ-sectional curvature c. As a natural generalization of these spaces, P. Alegre, D. 
E. Blair and A. Carriazo [1] introduced the concept of generalized Sasakian space form. An almost contact metric manifold 
(M, g, φ, ξ, η) is called a generalized Sasakian space form if there exist three smooth functions f1, f2, f3 on M such that 
the curvature tensor R satisfies

R(X, Y )Z = f1[g(Y , Z)X − g(X, Z)Y ]
+ f2[g(X, φ Z)φY − g(Y , φ Z)φ X + 2g(X, φY )φ Z ]
+ f3[g(X, Z)η(Y )ξ − g(Y , Z)η(X)ξ

+η(X)η(Z)Y − η(Y )η(Z)X], (2.5)

for all vector fields X, Y , Z ∈ 	(T M). In particular, for f1 = c+3
4 , f2 = f3 = c−1

4 M becomes a Sasakian space form. Again, 
if f1 = c−3

4 , f2 = f3 = c+1
4 then M is a Kenmotsu space form. M is a cosymplectic space form if f1 = f2 = f3 = c

4 . In 
[2] the authors constructed various examples of generalized Sasakian space forms and showed that any three dimensional 
trans-Sasakian manifold under certain conditions is a generalized Sasakian space form. U. C. De and A. Sarkar [8] proved 
that a conformally flat generalized Sasakian space form is locally φ-symmetric if and only if f1 is constant. From hereon, 
throughout this article, the notation M( f1, f2, f3) will be used to denote a (2n + 1)-dimensional generalized Sasakian space 
form with f1 �= f3 in general.

Now a (2n + 1)-dimensional generalized Sasakian space form M( f1, f2, f3), we have the following relations from [1];

∇Xξ = ( f3 − f1)φ(X), (2.6)

(∇Xη)(Y ) = ( f3 − f1)g(φ(X), Y ), (2.7)

(∇Xφ)(Y ) = ( f3 − f1)[η(Y )X − g(X, Y )ξ ], (2.8)

R(X, Y )ξ = ( f1 − f3)[η(Y )X − η(X)Y ], (2.9)

R(ξ, X)Y = ( f3 − f1)[η(Y )X − g(X, Y )ξ ], (2.10)

S(X, Y ) = (2nf1 + 3 f2 − f3)g(X, Y ) − (3 f2 + (2n − 1) f3)η(X)η(Y ), (2.11)

Q X = (2nf1 + 3 f2 − f3)X − (3 f2 + (2n − 1) f3)η(X)ξ, (2.12)

S(X, ξ) = 2n( f1 − f3)η(X), (2.13)

Q ξ = 2n( f1 − f3)ξ, (2.14)

for all vector fields X, Y in T M and where R is the curvature tensor, S is the Ricci tensor and Q is the Ricci operator 
respectively.
3
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Definition 2.1. A smooth vector field V on a (2n + 1)-dimensional Riemannian manifold (M, g) is said to be a conformal 
vector field [23,24] if

LV g = 2ρg, (2.15)

for some smooth function ρ on M .

Definition 2.2. A smooth vector field V on a contact metric manifold is said to be an infinitesimal contact transformation 
[22] if LV η = hη for some smooth function h and LV η denotes the Lie derivative of η by V . In particular, if h = 0, then V
is said to be a strict infinitesimal contact transformation.

3. Conformal Ricci soliton on a generalized Sasakian space form

In this section we characterize a generalized Sasakian space form admitting a conformal Ricci soliton with various con-
ditions on the potential vector field. Then we study conformal gradient Ricci soliton on a generalized Sasakian space form. 
So let us first state our first result of this section:

Theorem 3.1. If a (2n +1)-dimensional generalized Sasakian space form M( f1, f2, f3) admits a conformal Ricci soliton (g, V , λ) then 
the soliton is

1. shrinking if p < [4n( f3 − f1) − 2
2n+1 ],

2. steady if p = [4n( f3 − f1) − 2
2n+1 ] and

3. expanding if p > [4n( f3 − f1) − 2
2n+1 ].

Proof. Then for all vector fields X, Y in T M , from (1.3) we have

(LV g)(X, Y ) + 2S(X, Y ) = [2λ − (p + 2

2n + 1
)]g(X, Y ). (3.1)

Now consider a (0, 2) tensor field defined by

T = LV g + 2S. (3.2)

It can be easily seen that the tensor field T is a symmetric tensor field. Again since g is a metric connection, we have 
∇g = 0 and hence from (3.1) note that LV g + 2S is parallel with the Levi-Civita connection. Therefore (3.2) implies that T
is a parallel, symmetric (0, 2) tensor field. Thus we have ∇T = 0, which can be written as

T(R(X, Y )Z , W ) +T(Z , R(X, Y )W ) = 0

Putting X = W = Z = ξ in the above equation and using (2.10) we get

T(Y , ξ) = T(ξ, ξ)η(Y ) (3.3)

Taking covariant differentiation of (3.3) along arbitrary vector field X , then recalling (2.6) and (2.7) we obtain

T(∇X Y , ξ) + ( f3 − f1)T(Y , φ X) = T(ξ, ξ)[( f3 − f1)g(φ X, Y ) + η(∇X Y )].
In view of (3.3) the above equation reduces to

T(Y , φ X) = T(ξ, ξ)g(φ X, Y ).

Replacing X by φ X in the foregoing equation and then using (3.3) we arrive at

T(X, Y ) = T(ξ, ξ)g(X, Y ). (3.4)

Again from (3.2) we can write

T(X, Y ) = (LV g)(X, Y ) + 2S(X, Y ).

Taking X = Y = ξ in above, the using (2.7) and (2.13) yields

T(ξ, ξ) = 4n( f1 − f3).

Using the above value in (3.4) and then recalling (3.2) we get
4
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(LV g)(X, Y ) + 2S(X, Y ) = 4n( f1 − f3)g(X, Y ). (3.5)

Finally equating (3.1) and (3.5) we obtain

λ = 2n( f1 − f3) + (
p

2
+ 1

2n + 1
). (3.6)

Hence the soliton is shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0. This completes the proof. �
Again for a Sasakian space form f1 = c+3

4 and f3 = c−1
4 , then from (3.6) we get λ = 2n + (

p
2 + 1

2n+1 ). Thus we have the 
following

Corollary 3.2. A conformal Ricci soliton in a (2n + 1)-dimensional Sasakian space form is shrinking if (p + 4n + 2
2n+1 ) < 0, steady if 

(p + 4n + 2
2n+1 ) = 0 and expanding if (p + 4n + 2

2n+1 ) > 0.

Similarly in a Kenmotsu space form f1 = c−3
4 and f3 = c+1

4 , then from (3.6) we deduce λ = −2n + (
p
2 + 1

2n+1 ). Thus we 
have the following

Corollary 3.3. A conformal Ricci soliton in a (2n + 1)-dimensional Kenmotsu space form is shrinking if (p − 4n + 2
2n+1 ) < 0, steady 

if (p − 4n + 2
2n+1 ) = 0 and expanding if (p − 4n + 2

2n+1 ) > 0.

Now we consider a conformal Ricci soliton (g, V , λ) with V pointwise collinear with the Reeb vector field ξ . In this 
regard our next theorem is

Theorem 3.4. Let M( f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian space form admitting a conformal Ricci soliton 
(g, V , λ), whose potential vector field V is pointwise collinear with the Reeb vector field ξ . Then V is a constant multiple of ξ and 
M is an Einstein manifold of scalar curvature r = 2n(2n + 1)( f1 − f3).

Proof. Let us assume that V = bξ for some smooth function b, then from (1.3) we can write

bg(∇Xξ, Y ) + X(b)η(Y ) + bg(X,∇Y ξ) + Y (b)η(X) = [2λ − (p + 2

2n + 1
)]g(X, Y ) − 2S(X, Y ).

Using (2.6) the foregoing equation reduces to

X(b)η(Y ) + Y (b)η(X) + 2S(X, Y ) = [2λ − (p + 2

2n + 1
)]g(X, Y ). (3.7)

Replacing Y by ξ in (3.7) and recalling (2.13) we have

X(b) = [2λ − (p + 2

2n + 1
) − 4n( f1 − f3) − ξ(b)]η(X). (3.8)

Taking X = ξ in the previous equation yields

ξ(b) = [λ − (
p

2
+ 1

2n + 1
) − 2n( f1 − f3)]. (3.9)

In view of (3.9), the equation (3.8) becomes

db = [λ − (
p

2
+ 1

2n + 1
) − 2n( f1 − f3)]η. (3.10)

Operating d on both sides of (3.10) and using Poincare lemma d2 = 0 we get

[λ − (
p

2
+ 1

2n + 1
) − 2n( f1 − f3)]dη = 0.

But as dη �= 0, the foregoing equation gives us

λ = 2n( f1 − f3) + (
p

2
+ 1

2n + 1
). (3.11)

Now using (3.11) in (3.11) we obtain db = 0, which eventually implies that

b = constant. (3.12)
5
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Therefore V is a constant multiple of ξ . This proves first part of the theorem.
Again considering an orthonormal basis {ei : 1 ≤ i ≤ (2n + 1)} of the tangent space at each point of the manifold and 

then putting X = Y = ei in (3.7) and summing over 1 ≤ i ≤ (2n + 1) we get

ξ(b) + r = (2n + 1)[λ − (
p

2
+ 1

2n + 1
)].

Using (3.12) in the previous equation infers that

r = (2n + 1)[λ − (
p

2
+ 1

2n + 1
)]. (3.13)

Combining (3.11) and (3.13) we obtain

r = 2n(2n + 1)( f1 − f3). (3.14)

Also recalling (3.7) and then using (3.12) we get

S(X, Y ) = [λ − (
p

2
+ 1

2n + 1
)]g(X, Y ). (3.15)

Thus in view of (3.14) and (3.15) we can conclude that the manifold M is an Einstein manifold of scalar curvature r =
2n(2n + 1)( f1 − f3), which proves the second part of the theorem. Hence completes the proof. �
Corollary 3.5. Let M( f1, f2, f3) be a (2n + 1)-dimensional Sasakian space form admitting a conformal Ricci soliton (g, V , λ), whose 
potential vector field V is pointwise collinear with the Reeb vector field ξ . Then V is a constant multiple of ξ and the manifold M is an 
Einstein manifold of constant scalar curvature r = 2n(2n + 1).

Corollary 3.6. Let M( f1, f2, f3) be a (2n + 1)-dimensional Kenmotsu space form admitting a conformal Ricci soliton (g, V , λ), whose 
potential vector field V is pointwise collinear with the Reeb vector field ξ . Then V is a constant multiple of ξ and the manifold M is an 
Einstein manifold of constant scalar curvature r = −2n(2n + 1).

Next we characterize the potential vector field V of a conformal Ricci soliton (g, V , λ) on a (2n + 1)-dimensional gen-
eralized Sasakian space form M( f1, f2, f3) that satisfies the Ricci semi-symmetric curvature condition. Regarding this we 
prove the following:

Theorem 3.7. If a (2n +1)-dimensional Ricci semi-symmetric generalized Sasakian space form M( f1, f2, f3) admits a conformal Ricci 
soliton (g, V , λ), then M is an Einstein manifold and the potential vector field V is a conformal vector field.

Proof. Let us assume that M( f1, f2, f3) be a (2n + 1)-dimensional generalized Sasakian space form admitting a conformal 
Ricci soliton (g, V , λ), and the manifold is Ricci semi-symmetric. Then we have R(X, Y ) · S = 0, which can be written as

S(R(X, Y )Z , U ) + S(Z , R(X, Y )U ) = 0.

Replacing U by ξ in above yields

S(R(X, Y )Z , ξ) + S(Z , R(X, Y )ξ) = 0.

Using (2.9) and (2.14) in the previous equation we obtain

2n( f1 − f3)η(R(X, Y )Z) + ( f1 − f3)η(Y )S(X, Z) − ( f1 − f3)η(X)S(Y , Z) = 0.

Taking X = ξ in the foregoing equation, then recalling (2.10) and (2.13) infers that

S(Y , Z) = 2n( f1 − f3)g(Y , Z), (3.16)

which implies that the manifold is an Einstein manifold and this proves the first part of the theorem.
Again, as (g, V , λ) is a conformal Ricci soliton on the (2n +1)-dimensional generalized Sasakian space form M( f1, f2, f3), 

recalling the soliton equation (1.3) we have

(LV g)(X, Y ) + 2S(X, Y ) = [2λ − (p + 2

2n + 1
)]g(X, Y ).

Now in view of (3.16) the previous equation reduces to

(LV g)(X, Y ) = [2λ − 4n( f1 − f3) − (p + 2
)]g(X, Y ), (3.17)
2n + 1

6
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for all vector fields X, Y in T M . Thus from (3.17) it can be written that

LV g = 2ρg,

where ρ = [λ −2n( f1 − f3) − (
p
2 + 1

2n+1 )]. Thus in view of the equation (2.15), we can conclude that V is a conformal vector 
field. This completes the proof. �

In the last part of this section, we now concentrate on the generalized Sasakian space form M( f1, f2, f3) admitting 
conformal Ricci soliton whose potential vector field V is gradient of some smooth function f . But before proving our main 
theorem in this direction, let us first prove the following

Lemma 3.8. If a (2n + 1)-dimensional generalized Sasakian space form M( f1, f2, f3) admits a conformal gradient Ricci soliton 
(g, ∇ f , λ), then the curvature tensor R satisfies

R(X, Y )∇ f = (2ndf1 + 3df2 − df3)(Y )X − (3df2 + (2n − 1)df3)(Y )η(X)ξ

+(3df2 + (2n − 1)df3)(X)η(Y )ξ − (2ndf1 + 3df2 − df3)(X)Y

+( f1 − f3)(3 f2 + (2n − 1) f3)[g(X, φY )ξ − g(φ X, Y )ξ

+η(X)φY − η(Y )φ X], (3.18)

for all vector fields X, Y on the manifold.

Proof. Let us assume that (g, ∇ f , λ) be a conformal gradient Ricci soliton on M( f1, f2, f3). Then from the conformal 
gradient Ricci soliton equation (1.4) we can write

∇X∇ f = [λ − 2n( f1 − f3) − (
p

2
+ 1

2n + 1
)]X − Q X, (3.19)

for any vector field X on M and Q is the Ricci operator.
Taking covariant differentiation of (3.19) along an arbitrary vector field Y we obtain

∇Y ∇X∇ f = [λ − 2n( f1 − f3) − (
p

2
+ 1

2n + 1
)]∇Y X − ∇Y Q X (3.20)

Interchanging X and Y in the foregoing equation infers that

∇X∇Y ∇ f = [λ − 2n( f1 − f3) − (
p

2
+ 1

2n + 1
)]∇X Y − ∇X Q Y . (3.21)

Also from (3.19) it can be written that

∇[X,Y ]∇ f = [λ − 2n( f1 − f3) − (
p

2
+ 1

2n + 1
)](∇X Y − ∇Y X) − Q (∇X Y − ∇Y X). (3.22)

Now using (3.20)–(3.22) in R(X, Y )Z = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ] Z we obtain

R(X, Y )∇ f = (∇Y Q )X − (∇X Q )Y . (3.23)

Again recalling (2.12) and covariantly differentiating it along Y yields

∇Y Q X = (2nf1 + 3 f2 − f3)∇Y X + (2ndf1 + 3df2 − df3)(Y )X

−(3 f2 + (2n − 1) f3)[∇Y η(X)ξ + η(X)∇Y ξ ]
−(3df2 + (2n − 1)df3)(Y )η(X)ξ. (3.24)

Also from (2.12) we can write

Q (∇Y X) = (2nf1 + 3 f2 − f3)∇Y X − (3 f2 + (2n − 1) f3)η(∇Y X)ξ. (3.25)
7
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Using (3.24) and (3.25) in (∇Y Q )X = ∇Y Q X − Q (∇Y X), then recalling (2.6) and (2.7) we obtain

(∇Y Q )X = (2ndf1 + 3df2 − df3)(Y )X

−(3df2 + (2n − 1)df3)(Y )η(X)ξ

+( f1 − f3)(3 f2 + (2n − 1) f3)[g(X, φY )ξ + η(X)φY ]. (3.26)

Interchanging X and Y in (3.26) yields

(∇X Q )Y = (2ndf1 + 3df2 − df3)(X)Y

−(3df2 + (2n − 1)df3)(X)η(Y )ξ

+( f1 − f3)(3 f2 + (2n − 1) f3)[g(φ X, Y )ξ + η(Y )φ X]. (3.27)

Finally making use of (3.26) and (3.27) in the equation (3.23) completes the proof. �
Now we conclude this section with our main result on conformal gradient Ricci soliton which is the following:

Theorem 3.9. If a (2n + 1)-dimensional generalized Sasakian space form M( f1, f2, f3) admits a conformal gradient Ricci soliton 
(g, ∇ f , λ) then the potential function f is constant, provided f1 and f3 are both constants. Furthermore, the soliton is shrinking if 
p < [2 f3 − 6 f2 − 2nf1 − 2

2n+1 ], steady if p = [2 f3 − 6 f2 − 2nf1 − 2
2n+1 ] or, expanding if p > [2 f3 − 6 f2 − 2nf1 − 2

2n+1 ].

Proof. Let us assume that (g, ∇ f , λ) is a conformal gradient Ricci soliton on the generalized Sasakian space form 
M( f1, f2, f3). Now putting X = ξ in (3.18) of Lemma (3.8) and then taking inner product with arbitrary vector field Z
we obtain

g(R(ξ, Y )∇ f , Z) = 2n(df1 − df3)(Y )η(Z)

−2n(df1 − df3)(ξ)[g(Y , Z) − η(Y )η(Z)]
+( f1 − f3)(3 f2 + (2n − 1) f3)g(φY , Z), (3.28)

for all vector fields Y , Z on the manifold.
Again in view of (2.10) and making use of the curvature property g(R(ξ, Y )∇ f , Z) = −g(R(ξ, Y )Z , D f ), we can write

g(R(ξ, Y )D f , Z) = ( f3 − f1)[g(Y , Z)(ξ f ) − η(Z)(Y f )]. (3.29)

Equating (3.28) and (3.29) we deduce

( f3 − f1)[g(Y , Z)(ξ f ) − η(Z)(Y f )] = 2n(df1 − df3)(Y )η(Z)

−2n(df1 − df3)(ξ)[g(Y , Z) − η(Y )η(Z)]
+( f1 − f3)(3 f2 + (2n − 1) f3)g(φY , Z).

Now replacing Z by ξ , the foregoing equation infers that

2n(df1 − df3)(Y ) = ( f3 − f1)[η(Y )(ξ f ) − (Y f )],
which reduces to

[η(Y )(ξ f ) − (Y f )] = 0,

provided f1 and f3 are both constants. Also this can be rewritten as

g(Y , (ξ f )ξ) = g(Y ,∇ f ).

Since the above holds for all vector field Y on the manifold, we obtain

∇ f = (ξ f )ξ. (3.30)

Differentiating (3.30) covariantly along arbitrary vector field X and then using 2.6 yields

∇X∇ f = (X(ξ f ))ξ + ( f3 − f1)(ξ f )φ X . (3.31)

Equating (3.31) with (3.19) we deduce
8
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Q X = [λ − (
p

2
+ 1

2n + 1
)]X − (X(ξ f ))ξ − ( f3 − f1)(ξ f )φ X . (3.32)

Comparing the coefficients of φ X from (3.32) and (2.12) we get (ξ f ) = 0. Using this in (3.30) infers that D f = grad f = 0, 
which eventually implies that f is constant. This proves first part of the theorem.

Again comparing the coefficients of X from (3.32) and (2.12) we obtain

λ = [( p

2
+ 1

2n + 1
) + (2nf1 − 3 f2 − f3)]. (3.33)

Hence the soliton is shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0. This completes the proof. �
4. Quasi-Yamabe soliton on generalized Sasakian space form

This section is devoted to the study of generalized Sasakian space form admitting quasi-Yamabe soliton whose the 
potential vector field is pointwise collinear with the Reeb vector field. In this regard, our main result of this section is as 
follows:

Theorem 4.1. If a (2n + 1)-dimensional generalized Sasakian space form M( f1, f2, f3) admits a quasi-Yamabe soliton (g, V , σ , μ)

with the potential vector field V pointwise collinear with the Reeb vector field ξ , then

1. M becomes a manifold of constant scalar curvature,
2. the soliton reduces to the Yamabe soliton (g, V , σ),
3. V becomes a constant multiple of ξ and
4. V is a strict infinitesimal contact transformation.

Proof. Let us assume that (g, V , σ , μ) is a quasi-Yamabe soliton on the generalized Sasakian space form M( f1, f2, f3) such 
that the potential vector field V is pointwise collinear with ξ , the there exists a non-zero smooth function b on M such 
that V = bξ . Then from the equation (1.7) we can write

1

2
(Lbξ g)(X, Y ) = (r − σ)g(X, Y ) + μb2η(X)η(Y ), (4.1)

for all vector fields X, Y in T M .
Again from the definition of Lie derivative we have

(Lbξ g)(X, Y ) = g(∇X bξ, Y ) + g(X,∇Y bξ)

= bg(∇Xξ, Y ) + X(b)η(Y ) + bg(X,∇Y ξ) + Y (b)η(X),

which in view of (2.6) and (2.4) reduces to

(Lbξ g)(X, Y ) = X(b)η(Y ) + Y (b)η(X). (4.2)

Substituting (4.2) in (4.1) infers that

X(b)η(Y ) + Y (b)η(X) = 2(r − σ)g(X, Y ) + 2μb2η(X)η(Y ). (4.3)

Now taking Y = ξ in (4.3) we obtain

X(b) = [2(r − σ + μb2) − ξ(b)]η(X). (4.4)

Again replacing X by ξ in the foregoing equation yields

ξ(b) = (r − σ) + μb2. (4.5)

Now consider an orthonormal basis {ei : 1 ≤ i ≤ (2n + 1)} of the tangent space at each point of the manifold. Then setting 
X = Y = ei in (4.3) and summing over 1 ≤ i ≤ (2n + 1) we get

ξ(b) = (r − σ)(2n + 1) + μb2. (4.6)

Equating (4.5) with (4.6) we arrive at

r = σ = constant, (4.7)

which implies that M is a manifold of constant scalar curvature and this proves (1).
9
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Again, in view of (4.5), the equation (4.4) gives us

db = μb2η. (4.8)

Taking exterior differentiation on the above equation and using Poincare lemma d2 = 0, we obtain μb2 = 0. This eventually 
implies that μ = 0 and hence the quasi-Yamabe soliton reduces to the Yamabe soliton (g, V , σ). This proves (2) of the 
theorem.

Now using μ = 0 in the equation (4.8) we get db = 0, which implies b is constant. Therefore V is a constant multiple of 
ξ and this proves (3).

Again setting Y = ξ in (4.1) and using (2.2) we obtain

(LV g)(X, ξ) = 2(r − σ + μb2)η(X). (4.9)

Using (4.7) and the fact that μ = 0 in (4.9) yields (LV g)(X, ξ) = 0, which implies

(LV η)(X) = g(X,LV ξ). (4.10)

Recalling that V = bξ and b is a constant it can be easily deduced that LV ξ = 0. Therefore from (4.10) finally we obtain 
(LV η)(X) = 0 for any vector field X on M . Hence in the sense of definition (2.2), the potential vector field V is a strict 
infinitesimal contact transformation. This proves (4) and hence completes the proof. �

According to Corollary 1.1 of [17], in a generalized Sasakian space form M( f1, f2, f3) with the Yamabe soliton metric, 
the scalar curvature is harmonic. Thus in view of this and from our previous theorem we can conclude the following

Corollary 4.2. If a (2n + 1)-dimensional generalized Sasakian space form M( f1, f2, f3) admits a quasi-Yamabe soliton (g, V , λ), 
whose potential vector field V is pointwise collinear with the Reeb vector field ξ , then the scalar curvature is harmonic.

5. Examples of generalized Sasakian space form

In this section we discuss examples of generalized Sasakian space form admitting conformal Ricci soliton and Yamabe 
soliton.

Example 5.1. P. Alegre, D. E. Blair and A. Carriazo in their seminal work [1] constructed an example of generalized Sasakian 
space form on the manifold R ×Cm endowed with three smooth functions given as follows:

f1 = − ( f ′)2

f 2
, f2 = 0, f3 = − ( f ′)2

f 2
+ f ′′

f ′ , (5.1)

for some smooth real valued function f = f (t) and f ′ denotes the derivative of f with respect to t .
Now if we consider f (t) = eαt , for some real number α, then from equation (3.6) we can compute λ = −mα + p

2 + 1
2m+1 . 

Therefore we can comment that the generalized Sasakian space form (R ×Cm, f1, f2, f3) admits a conformal Ricci soliton 
with the soliton constant λ as computed above. Furthermore the conformal Ricci soliton is shrinking if p < [2mα − 2

m+1 ], 
steady if p = [2mα − 2

m+1 ] and expanding if p > [2mα − 2
m+1 ].

Example 5.2. Here we give a non-trivial example of a conformal Ricci soliton on a three dimensional generalized Sasakian 
space form as constructed in [19]. Let us consider the 3-dimensional manifold M = {(u, v, w) ∈ R3 \ {(0, 0, 0)}}. Define a 
linearly independent set of vector fields {Ei : 1 ≤ i ≤ 3} on the manifold M given by

E1 = ∂

∂u
− v

∂

∂ w
, E2 = ∂

∂v
, e3 = ∂

∂ w
.

Let us define the Riemannian metric g on M by

g(Ei, E j) =
{

1, for i = j
0, for i �= j

for all i, j = 1, 2, 3. Now considering E3 = ξ , let us take the 1-form η, on the manifold M , defined by

η(U ) = g(U , E3), ∀U ∈ T M.

Then it can be observed that η(ξ) = 1. Let us define the (1, 1) tensor field φ on M as

φ(E1) = −E2, φ(E2) = E1, φ(E3) = 0.
10
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Using the linearity of g and φ it can be easily checked that

φ2(U ) = −U + η(U )ξ, g(φU , φV ) = g(U , V ) − η(U )η(V ), ∀U , V ∈ T M.

Hence the structure (g, φ, ξ, η) defines an almost contact metric structure on the manifold M . Now, using the definitions of 
Lie bracket, after some direct computations we get [E1, E2] = E3 and [e1, e3] = [e2, e3] = 0. Again the Riemannian connection 
∇ of the metric g is defined by the well-known Koszul’s formula which is given by

2g(∇X Y , Z) = X g(Y , Z) + Y g(Z , X) − Z g(X, Y )

−g(X, [Y , Z ]) + g(Y , [Z , X]) + g(Z , [X, Y ]).
Using the above formula one can easily calculate that

∇E1 E1 = 0, ∇E1 E2 = 1

2
E3, ∇E1 E3 = −1

2
E2,

∇E2 E1 = −1

2
E3, ∇E2 E2 = 0, ∇E2 E3 = 1

2
E1,

∇E3 E1 = −1

2
E2, ∇E3 E2 = 1

2
E1, ∇E3 E3 = 0.

Thus from the above relations and using the well-known formula R(X, Y )Z = ∇X∇Y Z −∇Y ∇X Z −∇[X,Y ] Z the non-vanishing 
components of the Riemannian curvature tensor R can easily be computed as

R(E1, E2)E1 = 3

4
E2, R(E1, E3)E1 = −1

4
E3, R(E2, E2)E3 = 1

4
E2,

R(E1, E2)E2 = −3

4
E1, R(E2, E3)E2 = −1

4
E3, R(E1, E3)E3 = 1

4
E1.

Hence we can calculate the non-vanishing components of the Ricci tensor as follows

S(E1, E1) = −1

2
, S(E2, E2) = −1

2
, S(E3, E3) = 1

2
.

Therefore in view of the above values of the Ricci tensor, we can say that the manifold M is a generalized Sasakian space 
form with the functions f1 = − 1

4 , f2 = 0 and f3 = − 1
3 .

Now if we take the soliton vector field V = ξ = E3, then from the equation (1.3) we obtain λ = (
p
2 − 1

6 ). Hence for 
this value of λ the data (g, ξ, λ) defines a conformal Ricci soliton on the generalized Sasakian space form M( f1, f2, f3). 
Moreover we can see that (M, g) is a manifold of constant scalar curvature r = − 1

2 = 2 × 3 × ( f1 − f3) and hence the 
theorem (3.4) is verified.

Again on this generalized Sasakian space form M( f1, f2, f3), considering V = ξ in the equation (1.7), we compute that 
σ = − 1

2 and μ = 0. Therefore for this values of σ and μ the data (g, ξ, σ , μ) defines a quasi-Yamabe soliton, which 
eventually reduces to a Yamabe soliton as μ = 0 and hence the theorem (4.1) is verified.
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CONFORMAL RICCI SOLITON ON ALMOST CO-KÄHLER MANIFOLD

DIPEN GANGULY1 AND ARINDAM BHATTACHARYYA

ABSTRACT. In this paper, we study almost coKähler manifolds admitting the
conformal Ricci soliton and determine the value of the soliton constant λ and
hence the condition for the soliton to be shrinking, steady or expanding. Then
we find the condition on the conformal pressure p under which, a conformal
Ricci soliton on a (k, µ)-almost coKähler manifold becomes expanding. Finally
we show that a (k, µ)-almost coKähler manifold, with the potential vector field
V pointwise collinear with the Reeb vector field ξ, does not admit conformal
gradient Ricci soliton.

1. INTRODUCTION

A Riemannian metric g defined on a smooth manifold Mn,of dimension n, is
said to be a Ricci soliton if for some constant λ, there exists a smooth vector
field X on M satisfying the equation

(1.1) Ric+
1

2
LV g = λg,

where LV denotes the Lie derivative in the direction of V and Ric is the Ricci
tensor. The Ricci soliton is called shrinking if λ > 0, steady if λ = 0 and ex-
panding if λ < 0. In 1982, R.S. Hamilton [11] first studied the Ricci soliton as a
self similar solution to the Ricci flow equation given by: ∂

∂t
(g(t)) = −2Ric(g(t)),

where g(t) is a one parameter family of metrics on M2n+1.
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Ricci solitons can also be viewed as natural generalizations of Einstein metrics
which moves only by a one-parameter group of diffeomorphisms and scaling
[12]. Again a Ricci soliton is called a gradient Ricci soliton [3] if the concerned
vector field V in the equation (1.1), is the gradient of some smooth function f ,
i.e; if V = Df , where D is the gradient operator of g. This function f is called
the potential function of the Ricci soliton.

A.E. Fisher, in 2005, introduced [9] conformal Ricci flow equation which is
a modified version of the Hamilton’s Ricci flow equation that modifies the vol-
ume constraint of that equation to a scalar curvature constraint. The conformal
Ricci flow equations on a smooth closed connected oriented manifold Mn, of
dimension n, are given by

(1.2)
∂g

∂t
+ 2

(
Ric+

g

n

)
= −pg,

r(g) = −1,

where p is a non-dynamical(time dependent) scalar field and r(g) is the scalar
curvature of the manifold. The term −pg acts as the constraint force to maintain
the scalar curvature constraint. Thus these evolution equations are analogous
to famous Navier-Stokes equations in fluid mechanics where the constraint is
divergence free. That is why sometimes p is also called the conformal pressure.

Recently, in 2015, N. Basu and A. Bhattacharyya [2] introduced the concept
of conformal Ricci soliton as a generalization of the classical Ricci soliton.

Definition 1.1. A Riemannian metric g on a smooth manifold Mn,of dimension n,
is called a conformal Ricci soliton if there exists a constant λ and a vector field V
such that

(1.3) LV g + 2S =

[
2λ−

(
p+

2

n

)]
g,

where S = Ric is the Ricci tensor, λ is a constant and p is the conformal pressure.

It can be easily checked that the above soliton equation satisfies the conformal
Ricci flow equation (1.2). Later, T. Dutta. et.al. [7] studied this conformal Ricci
soliton in the framework of Lorentzian α-Sasakian manifolds. Moreover, if the
vector field V is the gradient of some smooth function f on Mn, we call the
soliton a conformal gradient Ricci soliton and then the soliton equation (1.2)
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becomes

(1.4) S +∇∇f =

[
λ−

(
p

2
+

1

n

)]
g,

where ∇ is the Riemannian connection on the manifold Mn.
Motivated by the above studies, here we study conformal Ricci soliton in the

framework of almost coKähler manifold and on its various versions. We find
conditions to determine the nature of the soliton for different cases. The pa-
per is organised as follows: in section-2, we discuss some preliminary concepts
of almost coKähler manifolds. Then in section-3, we study almost coKähler
manifolds admitting the conformal Ricci soliton and we calculate the value of
the soliton constant λ and hence we find the condition for the soliton to be
shrinking, steady or expanding. After that in section-4, we find the condition
on the conformal pressure p under which, a conformal Ricci soliton on a (k, µ)-
almost coKähler manifold becomes expanding. Finally in section-5, we show
that a (k, µ)-almost coKähler manifold, with the potential vector field V point-
wise collinear with the Reeb vector field ξ, does not admit conformal gradient
Ricci soliton.

2. PRELIMINARIES ON ALMOST COKÄHLER MANIFOLDS

The geometry of coKähler manifolds as a special case of almost contact man-
ifolds was studied primarily as an odd-dimensional analogy of the Kähler man-
ifolds in complex geometry. So, let us first recall some preliminaries on almost
coKähler manifolds. A smooth (2n + 1) dimensional manifold M2n+1 is said to
admit an almost contact structure (φ, ξ, η) if there exist a (1, 1) tensor field φ, a
vector field ξ and a global 1-form η on M2n+1 such that

(2.1) φ2 = −I + η ⊗ ξ and η(ξ) = 1,

where I is the identity endomorphism on M. Then the manifold M equipped
with this almost contact structure (φ, ξ, η) is called an almost contact manifold
(see [1]) and is denoted as (M2n+1φ, ξ, η). The vector field ξ is called the char-
acteristic vector field or Reeb vector field.

From (2.1) it can easily be seen that, for an almost contact structure the
following relations hold; φ(ξ) = 0 and η ◦ φ = 0.
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Furthermore, on an almost contact manifold (M2n+1, φ, ξ, η) if there exists a
Riemannian metric g satisfying;

g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for all vector fields X, Y in TM , where TM is tangent bundle of M, then the
metric g is called compatible with the almost contact structure. The manifold
M2n+1 together with the almost contact metric structure (φ, ξ, η, g) is called an
almost contact metric manifold and we denote it as (M2n+1, g, φ, ξ, η).

We define the fundamental 2-form Φ on an almost contact metric manifold as

(2.2) Φ(X, Y ) = g(X,φY ) = dη(X, Y ),

for all vector fields X, Y in TM . Now, it is known that on the product manifold
M2n+1 × R, if we define a structure J as;

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

for all X in TM , where t is the coordinate of R and f is a smooth function
on M2n+1 × R: then J becomes an almost complex structure and if this al-
most complex structure J is integrable we say that the almost contact structure
(M2n+1, φ, ξ, η) is normal. Again, D.E. Blair [1] expressed the condition for nor-
mality of an almost contact structure as: [φ, φ] = −2dη ⊗ ξ; where the Nijenhuis
tensor [φ, φ] is defined as

[φ, φ](X, Y ) = φ2[X, Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ],

for all X, Y in TM and [X,Y] is the Lie bracket operation. Now we are in a
position to define the concept of coKähler manifold [see [1], [4]] and almost
coKähler manifold.

Definition 2.1. An almost contact metric manifold is called an almost coKähler
manifold if both the 1-form η and the fundamental 2-form Φ (as defined by equa-
tion (2.2)) are closed.

In particular, if the associated almost contact structure is normal or equiva-
lently ∇φ = 0 or ∇Φ = 0: then the almost coKähler manifold is called a coKäh-
ler manifold. Also, it is to be noted that, examples (see [5], [13]) of almost
coKähler manifolds exist, which are not globally the product of a almost Kähler
manifold and the real line.
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Next, we set two symmetric operators h and h′ given by, h = 1
2
Lξφ and h′ =

h ◦ φ on the almost coKähler manifold (M2n+1, g, φ, ξ, η). Then the following
relations can be obtained (see [13], [6])

(2.3) hξ = 0, hφ+ φh = 0, tr(h) = tr(h′) = 0,

(2.4) ∇ξφ = 0, ∇ξ = h′, divξ = 0,

(2.5) S(ξ, ξ) + ‖h‖2 = 0,

(2.6) φlφ− l = 2h2,

∇ξh = −h2φ− φl,
where we set l := R(., ξ)ξ and R is the Riemannian curvature tensor defined by

(2.7) R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

for all vector fields X, Y, Z ∈ TM .

3. CONFORMAL RICCI SOLITON ON ALMOST COKÄHLER MANIFOLD

Let us consider (M2n+1, g, φ, ξ, η) be an almost coKähler manifold which sat-
isfies the conformal Ricci soliton equation given in equation (1.3); then for all
vector fields X, Y in TM i.e; we have

(3.1) (LV g)(X, Y ) + 2S(X, Y ) =

[
2λ− (p+

2

2n+ 1
)

]
g(X, Y ).

Now, let the vector field V be pointwise collinear with the Reeb vector field
ξ, i.e; V = βξ, where βis a non-zero smooth function on the corresponding
manifold. Then taking covariant differentiation of both sides of V = βξ, along
the direction of X we get

∇XV = X(β)ξ + β∇Xξ,

and using ∇ξ = h′ from equation (2.4) the above equation eventually becomes

(3.2) ∇XV = X(β)ξ + βh′X.

On the other hand, from the definiton of Lie derivative it follows from equation
(3.1) that

(3.3) g(∇Y βξ, Z) + g(Y,∇Zβξ) + 2S(Y, Z) =

[
2λ−

(
p+

2

2n+ 1

)]
g(Y, Z),
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for all Y, Z in TM . Then using equation (3.2) in the above equation (3.3) we
get

g(Y βξ + βh′Y, Z) + g(Y, Zβξ + βh′Z) + 2S(Y, Z) = [2λ− (p+
2

2n+ 1
)]g(Y, Z).

Again using from the fact that h′ is symmetric and after simplification the above
equation finally becomes

(3.4) Y (β)η(Z)+Z(β)η(Y )+2βg(h′Y, Z)+2S(Y, Z) = [2λ−(p+
2

2n+ 1
)]g(Y, Z).

Next, we consider a local φ-basis {ej : 1 ≤ j ≤ 2n + 1} on the tangent space
TpM for each point p ∈ M2n+1. Then putting Y = Z = ej in the equation (3.4)
and taking summation over 1 ≤ j ≤ 2n + 1 and also using tr(h′) = 0 from
equation (2.3) we get

(3.5) ξ(β) + r = [λ− (
p

2
+

1

2n+ 1
)](2n+ 1).

Again putting Z = ξ in the equation (3.4) and using symmetry of h′ we have

(3.6) Y (β) + ξ(β)η(Y ) + 2S(Y, ξ) = [2λ− (p+
2

2n+ 1
)]η(Y ).

Now, combining equations (3.5) and (3.6) and after some calculations we get

Y (β) + 2S(Y, ξ) = [[λ− (
p

2
+

1

2n+ 1
)](1− 2n) + r]η(Y ).

Thus, from the above it is easily seen that

(3.7) ξ(β) + 2S(ξ, ξ) = [λ− (
p

2
+

1

2n+ 1
)](1− 2n) + r.

Eliminating ξ(β) from equations (3.5) and (3.7) and after simplification we ar-
rive at

2n[λ− (
p

2
+

1

2n+ 1
)]− r + S(ξ, ξ) = 0.

Using equation (2.5) in the above equation and using the fact that for conformal
Ricci soliton the scalar curvature r = −1 (see equation(1.2)) and then simplify-
ing we get the value of the soliton constant as

(3.8) λ =
‖h‖2 − 1

2n
+ (

p

2
+

1

2n+ 1
).

Therefore in view of the fact that the soliton is shrinking, steady or expanding
according as λ > 0, λ = 0 or, λ < 0; from the above equation (3.8) we can state
the following theorem
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Theorem 3.1. Let (M2n+1, g, φ, ξ, η) be an almost coKähler manifold such that the
metric g is a conformal Ricci soliton. If the potential vector field V be non-zero
pointwise collinear with the Reeb vector field ξ, then

(i) the soliton is shrinking if, p > 1−(2n+1)‖h‖2
(2n2+n)

,

(ii) the soliton is steady if, p = 1−(2n+1)‖h‖2
(2n2+n)

,

(iii) the soliton is expanding if, p < 1−(2n+1)‖h‖2
(2n2+n)

.

Again if we have S = [‖h‖
2−1
2n

]g, then from equation (3.1) and using value of
the soliton constant λ from (3.8) we have LV g = 0. Therefore we can see that
V = βξ is a Killing vector field and hence the soliton becomes trivial. Hence we
can state the following corollary.

Corollary 3.1. Let (M2n+1, g, φ, ξ, η) be an almost coKähler manifold such that
the metric g is a conformal Ricci soliton. If the potential vector field V be non-zero
pointwise collinear with the Reeb vector field ξ and the Ricci tensor S be a constant
multiple of the metric g, with the constant ‖h‖

2−1
2n

, (i.e; if S = [‖h‖
2−1
2n

]g), then the
soliton is trivial.

4. CONFORMAL RICCI SOLITON ON (k, µ)-ALMOST COKÄHLER MANIFOLD

In recent years, many authors studied (k, µ)-contact metric manifolds as a
generalization of Sasakian and K-contact metric manifolds. Also R. Sharma
[15], and later A. Ghosh [10] proved some interesting results in the field of
Ricci solitons on (k, µ)-contact metric manifolds. Let us now give the definition
(k, µ)-almost coKähler manifold.

Definition 4.1. An almost coKähler manifold is said to be a (k, µ)-almost coKähler
manifold if the characteristic vector field ξ belongs to the generalised (k, µ)-nullity
distribution i.e; if the Riemannian curvature tensor R satisfies

(4.1) R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],

for all X, Y in TM and for some smooth functions (k, µ).

Remark 4.1. Here, in this paper, we call a (k, µ)-almost coKähler manifold with
k < 0, a proper (k, µ)-almost coKähler manifold . Proper almost coKähler mani-
folds with k and µ being constants were introduced by H. Endo [8] and later Dacko
and Olszak [6] further studied it in generalised cases.
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Now, putting Y = ξ in (4.1) we get

R(X, ξ)ξ = k[X − η(X)ξ] + µ[hX − η(X)hξ].

Then using the definition of l := R(., ξ)ξ and from equation (2.3) using the fact
that hξ = 0, we can write

l = −kφ2 + µh.

Combining the equation (2.6) and the above equation and after brief calcula-
tions we get h2 = kφ2. Thus, it is clear that the manifold M2n+1 is K-almost
coKähler if and ony if, k = 0. According to Dacko and Olszak [6] a (k, µ, ν)-
almost coKähler manifold with k < 0 becomes a (−1, µ√

−k )-almost coKähler
manifold, under some D-homothetic deformation.

Now, we state a lemma [for proof see Lemma 4.1 of [16]] which will be used
in the later theorems.

Lemma 4.1. Let (M2n+1, g, φ, ξ, η) be a (k, µ)-almost coKähler manifold of dimen-
sion greater than 3 with k < 0. Then the Ricci operator is given by

(4.2) Q = µh+ 2nkη ⊗ ξ,

where k is a non-zero constant and µ is a smooth function satisfying dµ ∧ η = 0.

Now let us consider the metric g of the (k, µ)-almost coKähler manifold admits
a conformal Ricci soliton. Then from the soliton equation (1.3) and using the
definition of the Lie derivative we can write

(4.3) g(∇XV, Y ) + g(X,∇Y V ) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ).

Then, substituting V = ξ in the above equation (4.3) and using the result ∇ξ =

h′ from (2.4) we get

g(h′X, Y ) + g(X, h′Y ) + 2S(X, Y ) = [2λ− (p+
2

2n+ 1
)]g(X, Y ).

Again as h′ is symmetric the above equation implies

(4.4) g(h′X, Y ) + g(QX, Y ) = [λ− (
p

2
+

1

2n+ 1
)]g(X, Y ).

Now, in view of the Lemma 4.1 putting value of the Ricci operator Q, from
equation (4.2), in the above equation (4.4) we get

(4.5) g(h′X, Y ) + g(µhX, Y ) + 2nkη(X)η(Y ) = [λ− (
p

2
+

1

2n+ 1
)]g(X, Y ).
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Thus putting Y = ξ in the above (4.5) and using hφ + φh = 0 from equation
(2.3) we finally get

(4.6) 2nk = [λ− (
p

2
+

1

2n+ 1
)].

Now, as it is mentioned in the Lemma 4.1 that k < 0, so from the above
relation (4.6) we can conclude that [λ− (p

2
+ 1

2n+1
)] < 0 that is; λ < (p

2
+ 1

2n+1
).

Thus if (p
2

+ 1
2n+1

) ≤ 0, i.e; if, p ≤ −2
2n+1

then λ < 0 and therefore the soliton is
expanding. So, in view of the above we have the following theorem.

Theorem 4.1. Let (M2n+1, g, φ, ξ, η) be a (k, µ)-almost coKähler manifold of di-
mension greater than 3 with k < 0 and the metric g admits a conformal Ricci
soliton. Then the soliton is expanding if the conformal pressure p satisfy the in-
equality p ≤ −2

2n+1
.

5. CONFORMAL GRADIENT RICCI SOLITON ON (k, µ)-ALMOST COKÄHLER

MANIFOLD

This section is devoted to the study of conformal gradient Ricci soliton on
(k, µ)-almost coKähler manifold. So, let us first give the statement of our main
theorem of this section.

Theorem 5.1. Let (M2n+1, g, φ, ξ, η) be a (k, µ)-almost coKähler manifold of di-
mension greater than 3 with k < 0. Then there exist no conformal gradient Ricci
soliton on the manifold, with the potential vector field V pointwise collinear with
the Reeb vector field ξ.

Proof. We prove this theorem by the method of contradiction. So, let us assume
that the manifold admits a conformal gradient Ricci soliton. Then from equation
(1.4) we have

S +∇∇f = [λ− (
p

2
+

1

2n+ 1
)]g.

Now as the soliton is gradient, i.e; V = Df for some smooth function f and
here D is the gradient operator. Thus for any vector field X ∈ TM , the above
equation is equivalent to

(5.1) ∇XDf +QX = [λ− (
p

2
+

1

2n+ 1
)]X.



8408 D. GANGULY AND A. BHATTACHARYYA

Replacing X by Y in the above (5.1) we get

(5.2) ∇YDf +QY = [λ− (
p

2
+

1

2n+ 1
)]Y.

Similarly replacing X by [X, Y ] in the equation (5.1) we get

(5.3) ∇[X,Y ]Df +Q[X, Y ] = [λ− (
p

2
+

1

2n+ 1
)][X, Y ].

Now from the well-known formula for Riemannian curvature, using (2.7) we
can write

(5.4) R(X, Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df.

Using equations (5.1), (5.2) and (5.3) in the equation (5.4) and after some
simple calculations we get

(5.5) R(X, Y )Df = (∇YQ)X − (∇XQ)Y.

Again for any vector fields X, Y in TM , using equation (4.2) of Lemma 4.1 we
obtain

(∇YQ)X − (∇XQ)Y = µ((∇Y h)X − (∇Xh)Y )

+ 2nk(η(X)h′Y − η(Y )h′X) + Y (µ)hX −X(µ)hY.
(5.6)

Now we shall use an equation from Proposition-9 of the paper [14]. The result
is, for any vector fields X, Y in TM ,

(∇Xh)Y − (∇Y h)X = k(η(Y )φX − η(X)φY

+ 2g(φX, Y )ξ) + µ(η(X)h′Y − η(Y )h′X).
(5.7)

Then using (5.6) in (5.5) and then using (5.7), a simple computation gives that

R(X, Y )Df = kµ(η(X)φY − η(Y )φX + 2g(X,φY )ξ) + Y (µ)hX

−X(µ)hY − µ2(η(X)h′Y − η(Y )h′X) + 2nk(η(X)h′Y − η(Y )h′X),
(5.8)

for any vector fields X, Y in TM . Putting X = ξ in the above equation (5.8) we
get

R(ξ, Y )Df = kµ(φY )− ξ(µ)hY − µ2(h′Y ) + 2nk(h′Y ).

Replacing Y by X in the above equation and then taking inner product with
respect to arbitrary vector Y gives us

g(R(ξ,X)Df, Y ) =kµg(φX, Y )− ξ(µ)g(hX, Y )− µ2g(h′X, Y )

+2nkg(h′X, Y ).
(5.9)
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Again for a (k, µ)-almost coKähler manifold, using equation (4.1) we can write

R(ξ,X)Y = k[g(X, Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX].

Taking inner-product of the equation with respect to the vector field Df and
using the fact that g(X,Df) = (Xf) we get

g(R(ξ,X)Y,Df) = k[g(X, Y )(ξf)− η(Y )(Xf)] + µ[g(hX, Y )(ξf)

− η(Y )((hX)f)].
(5.10)

Now combining (5.9) and (5.10) and applying the property g(R(X, Y )Z,U) =

−g(R(X, Y )U,Z), for any vector fields X, Y, Z, U in TM , yields

kµg(φX, Y )− ξ(µ)g(hX, Y )− µ2g(h′X, Y ) + 2nkg(h′X, Y ) =

− kg(X, Y )(ξf) + kη(Y )(Xf)− µg(hX, Y )(ξf) + µη(Y )((hX)f).
(5.11)

Antisymmetrizing the above equation we get

kµ[g(φX, Y )− g(X,φY )] = k[η(Y )(Xf)− η(X)(Y f)]

+ µ[η(Y )((hX)f)]− η(X)((hY )f).
(5.12)

Now as per our assumption V = bξ, it is easy to see that h′(Df) = 0. This again
implies, (h′X)f = g(h′X,Df) = g(X, h′(Df)) = 0. Similarly (h′Y )f = 0. Thus

(5.13) (h(φX))f = 0, (h(φY ))f = 0.

Using antisymmetry of φ and then putting X = φX in equation (5.11) and using
(5.12) we get

(5.14) −2µg(X, Y ) + µη(X)η(Y ) = η(Y )((φX)f).

Putting Y = ξ in the above (5.13) yields

(5.15) −µg(X, ξ) = g(φX,Df).

Then again using X = φX in the above equation (5.14) we get g(X,Df) =

g(X, ξ(ξf)). This gives us

(5.16) Df = (ξf)ξ.

Covariant differentiation of the equation (5.15) along the direction of X we get

(5.17) ∇XDf = (X(ξf))ξ + (ξf)(h′X).
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Again from the equation (5.1) we have

(5.18) ∇XDf = [λ− (
p

2
+

1

2n+ 1
)]X −QX.

Thus combining equations (5.16) and (5.17) we get

(5.19) QX = [λ− (
p

2
+

1

2n+ 1
)]X − (X(ξf))ξ − (ξf)(h′X).

Again, the value of Q from Lemma 4.1 gives us

QX = µhX + 2nkη(X)ξ.

Now, compairing right hand sides of (5.18) and (5.19) we get (X(ξf)) =

−2nkη(X) i.e; D(ξf) = −2nkξ or equivalently, d2f = −2nk, where d is the
exterior derivative of f . Again from the well-known Poincare lemma of exterior
differentiation we know that, d2 = 0 and this implies, −2nk = 0, which is a
contradiction to our assumtion that k < 0. This completes the proof. �
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Abstract

The main aim of this paper is to study Lorentzian concir-
cular structure manifolds (brie�y, (LCS)n-manifolds) admitting
the conformal Ricci soliton and to characterize when the soliton
is shrinking, steady or expanding. Next we establish some re-
sults on the (LCS)n-manifold whose metric is a conformal Ricci
soliton. Finally some interesting results have been obtained by
applying certain curvature conditions on (LCS)n-manifolds ad-
mitting conformal Ricci solitons.

Subject Classi�cation: 53C15, 53C25, 53D10.
Keywords: Ricci soliton, Conformal Ricci soliton, (LCS)n-manifold, pseudo-
projective curvature tensor, concircular curvature tensor.

1 Introduction

In 1982, R.S. Hamilton [7] introduced the Ricci soliton as a self similar solution
to the Ricci �ow equation given by: ∂

∂t(g(t)) = −2Ric(g(t)), where g(t) is an one
parameter family of metrics on the manifold.

A Riemannian metric g de�ned on a smooth manifoldM ,of dimension n, is said
to be a Ricci soliton if for some constant λ, there exists a smooth vector �eld V on
M satisfying the equation

(1.1) Ric+
1

2
LV g = λg,

where LV denotes the Lie derivative in the direction of V and Ric is the Ricci tensor.
The Ricci soliton is called shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0.
Ricci solitons can also be viewed as natural generalizations of Einstein metrics which
moves only by an one-parameter group of di�eomorphisms and scaling [8]. After
Hamilton's work many authors have studied Ricci �ow and a rigorous literature on
this topic can be found in [4, 17].

A.E. Fischer [6] in 2005, introduced conformal Ricci �ow equation which is a
modi�ed version of the Hamilton's Ricci �ow equation that modi�es the volume
constraint of that equation to a scalar curvature constraint. The conformal Ricci
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�ow equations on a smooth closed connected oriented manifold M , of dimension n,
are given by

(1.2)
∂g

∂t
+ 2(Ric+

g

n
) = −pg,

r(g) = −1,
where p is a non-dynamical (time dependent) scalar �eld and r(g) is the scalar
curvature of the manifold. The term−pg acts as the constraint force to maintain the
scalar curvature constraint. Thus these evolution equations are analogous to famous
Navier-Stokes equations in �uid mechanics where the constraint is divergence free.
That is why sometimes p is also called the conformal pressure.

Recently, in 2015, N.Basu et.al. [3] introduced the concept of conformal Ricci
soliton as a generalization of the classical Ricci soliton.

/

De�nition 1. A Riemannian metric g on a smooth manifold M ,of dimension n,
is called a conformal Ricci soliton if there exists a constant λ and a vector �eld V
such that

(1.3) LV g + 2S = [2λ− (p+
2

n
)]g,

where S = Ric is the Ricci tensor, λ is a constant and p is the conformal pressure.

It can be easily checked that the above soliton equation satis�es the conformal
Ricci �ow equation(1.2). Later, T. Dutta et.al. [5] studied the conformal Ricci
soliton in the framework of Lorentzian α-Sasakian manifolds.

A.A. Shaikh [14] in 2003, introduced the study of Lorentzian concircular struc-
ture manifolds (or, brie�y, (LCS)n-manifolds) which generalizes the notion of LP-
Sasakian manifolds introduced by Matsumoto [10]. After that, a lot of study
has been carried out on (LCS)n-manifolds and on locally φ-symmetric (LCS)n-
manifolds [16]. Moreover, in 2005, A.A. Shaikh et.al. [15] have shown the applica-
tions of (LCS)n-manifolds to the general theory of relativity and cosmology.

Motivated by the above studies, here we study conformal Ricci soliton in the
framework of (LCS)n-manifold. We �nd conditions to determine the nature of the
soliton for di�erent cases. The paper is organised as follows: After introduction,
we discuss some preliminary concepts of (LCS)n-manifolds, in section-2. Then in
section-3, we study (LCS)n-manifolds admitting the conformal Ricci soliton and we
calculate the value of the soliton constant λ and hence we �nd the condition for the
soliton to be shrinking, steady or expanding. After that, we prove that, if a (LCS)n-
manifold admits conformal Ricci soliton then it is ξ-projectively �at. In this section
we also �nd conditions for a (LCS)n-manifold admitting conformal Ricci soliton
to be ξ-conharmonically �at and ξ-concircularly �at. Finally, in section-4 and
section-5 we obtain some interesting results on conformal Ricci soliton on (LCS)n-

manifolds satisfying curvature conditions R(ξ,X) · P̃ = 0 and R(ξ,X) · M̃ = 0;

where R is the Riemann curvature tensor, P̃ is the pseudo-projective curvature
tensor and M̃ is the M -projective curvature tensor.
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2 Brief overview of (LCS)n-manifolds

A smooth connected paracompact Hausdor� n dimensional manifold (M, g) is said
to be a Lorentzian manifold if the metric g is Lorentzian metric, i.e; M admits
a smooth symmetric tensor �eld g of type (0, 2) such that for each point p ∈ M ,
the tensor gp : TpM × TpM → R is a non-degenerate inner product of signature
(−,+,+, ...,+), where TpM denotes the tangent space of the manifoldM at point p
and R is the real line. A non-zero vector v ∈ TpM is said to be timelike(respectively;
non-spacelike, null, spacelike) if it satis�es gp(v, v) < 0 (respectively;≤ 0,= 0, > 0)
[11].

Next, we give the de�nition of a concircular vector �eld in a Lorentzian manifold,
which is essential for the study of (LCS)n-manifolds.

De�nition 2. Let (M, g) be a Lorentzian manifold and P is a vector �eld in M
de�ned by g(U,P ) = B(U), for any vector �eld U in M . Then the vector �eld P
is said to be a concircular vector �eld if

(∇UB)(Y ) = α[g(U, Y ) + ω(U)B(Y )],

where α is a non-zero scalar and ω is closed 1-form and ∇ denotes the covariant
di�erentiation operator of the manifold M with respect to the Lorentzian metric g.

Let (M, g) be a Lorentzian manifold of dimension n and let M admits a unit
timelike concircular vector �eld ξ satisfying g(ξ, ξ) = −1. The vector �eld ξ is
called the characteristic vector �eld of the manifold (M, g). Then ξ being unit
concircular vector �eld, there exists a non-zero 1-form η such that

(2.1) g(X, ξ) = η(X) and (∇Xη)(Y ) = α[g(X,Y ) + η(X)η(Y )], α 6= 0.

Also the non-zero scalar α satis�es the equation

(2.2) (∇Xα) = (Xα) = dα(X) = ρη(X),

where ρ is a scalar function given by ρ = −(ξα) and ∇ denotes the covariant
di�erentiation operator of the manifoldM with respect to the Lorentzian metric g.
Now we consider a (1, 1) tensor �eld φ given by, φX = 1

α∇Xξ. Therefore it is to be
noted that the tensor �eld φ also satis�es φX = X + η(X)ξ and this implies that
φ is a symmetric (1, 1) tensor �eld, called the structure tensor of the manifold.

So now, we are in a position to de�ne (LCS)n-manifolds, introduced by A.A.
Shaikh [14] to generalize the notion of LP-Sasakian manifolds of Matsumoto [10].

De�nition 3. Let (M, g) be an n-dimensional Lorentzian manifold. Then the
manifold (M, g) together with the unit timelike concircular vector �eld ξ, associated
1-form η an (1, 1) tensor �eld φ and the non-zero scalar function α is said to
be a Lorentzian concircular structure manifold (M, g, ξ, η, φ, α)(brie�y, (LCS)n-
manifold) [14].
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It is to be noted that, if we consider the scalar function α = 1, then we can
obtain the LP-Sasakian structure introduced by Matsumoto [10]. So, in that sense
(LCS)n-manifolds are a generalization of LP-Sasakian manifolds. Furthermore, in
a (LCS)n-manifold (n > 2), the following relations hold [14, 15, 16]:

φ2X = X + η(X)ξ , η(ξ) = −1,(2.3)

φ(ξ) = 0 , η ◦ φ = 0,(2.4)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ),(2.5)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],(2.6)

R(ξ,X)Y = (α2 − ρ)[g(X,Y )ξ − η(Y )X],(2.7)

η(R(X,Y )Z) = (α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )],(2.8)

S(X, ξ) = (n− 1)(α2 − ρ)η(X),(2.9)

for all vector �elds X,Y, Z in TM , where TM is tangent bundle of M . Here R is
the Riemannian curvature tensor of the manifold M de�ned by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and S is the Ricci tensor de�ned by S(X,Y ) = g(QX,Y ), where Q is the Ricci
operator.

Next, we discuss an illustrative example of an (LCS)n-manifold of dimension
n = 3 as follows:

Example: Let us consider the manifold M = {(u, v, w) ∈ R3 : u 6= 0}, where
{u, v, w} are usual Euclidean coordinates in R3. Now we choose a set {Ei : 1 ≤ i ≤
3} of linearly independent vector �elds on the manifold M as follows,

E1 = u
∂

∂u
, E2 = u

∂

∂v
, E3 = u

∂

∂w
.

De�ne the Lorentzian metric g on M as,

g(E1, E1) = −1, g(E2, E2) = g(E3, E3) = 1; g(Ei, Ej) = 0, ∀i 6= j.

Now if we choose ξ = E1 and de�ne a 1-form η on M by, η(X) = g(X,E1),
∀X ∈ TM , where TM is the tangent bundle of M , then it is easy to see that
η(ξ) = −1.
Next let us de�ne a (1, 1) tensor �eld φ on M as,

φ(E1) = 0, φ(E2) = E3, φ(E3) = E2.

Again as g and φ are both linear maps, for all X,Y ∈ TM , from the above one
can easily check that,

φ2(X) = X + η(X)ξ,

g(φX, φY ) = g(X,Y ) + η(X)η(Y ).
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Now, it is well known that the connection ∇ of the metric g is given by the
Koszul's formula,

2g(∇XY,Z) = ∇Xg(Y, Z) +∇Y g(X,Z)−∇Zg(X,Y )

−g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),

for all X,Y, Z ∈ TM and the Lie bracket operation [X,Y ] is given by [X,Y ] =
∇XY −∇YX. Then one can easily calculate [E1, E2] = E2, [E2, E3] = 0, [E1, E3] =
E3. Again using the above Koszul's formula and after a straightforward calculation
we get,

∇E1E1 = 0, ∇E1E2 = 0, ∇E1E3 = 0,

∇E2E1 = −E2, ∇E2E2 = −E1, ∇E2E3 = 0,

∇E3E1 = −E3, ∇E3E2 = 0, ∇E3E3 = −E1.

Thus from the above we can easily verify that for α = −1, the relation φX = 1
α∇Xξ

holds for all X ∈ TM . Hence we can conclude that (M, g, ξ, η, φ, α) is an (LCS)n-
manifold of dimension n = 3.

3 Conformal Ricci soliton on (LCS)n-manifolds

Let us consider (M, g, ξ, η, φ, α) be an n-dimensional (LCS)n-manifold. Again we
know that, for all vector �elds X,Y in TM , the 1-form η satis�es the equation

(3.1) (∇Xη)(Y ) = ∇Xη(Y )− η(∇XY ).

Using the equation (2.1) in the above equation (3.1), after a simple calculation, we
get

(3.2) (Lξg)(X,Y ) = 2α[g(X,Y ) + η(X)η(Y )].

Now applying the conformal Ricci soliton equation (1.3) in the above equation (3.2)
we have

(3.3) S(X,Y ) = [(λ− α)− (
p

2
+

1

n
)]g(X,Y )− αη(X)η(Y ).

Let us take σ = [(λ − α) − (p2 + 1
n)]. Then we can rewrite the above equation

(3.3) as

(3.4) S(X,Y ) = σg(X,Y )− αη(X)η(Y ).

which shows that the manifold is an η-Einstein manifold.

Now since the above is true for all vector �elds X and Y , using the relation
S(X,Y ) = g(QX,Y ) in the above equation (3.4) we have

(3.5) QX = σX − αη(X)ξ.
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Again taking Y = ξ in the equation (3.4) we get

(3.6) S(X, ξ) = (σ + α)η(X).

Let us consider an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold (M, g).
Then putting X = Y = ei in the equation (3.4) and summing over 1 ≤ i ≤ n, we
have r(g) = nσ + α. But we know that for conformal Ricci �ow, r(g) = −1, which
leads us to get σ = −(α+1

n ). Again we have σ = [(λ− α)− (p2 + 1
n)], using this in

the previous result we get

(3.7) λ =
p

2
+ (1− 1

n
)α.

So, from the above discussions, using equations (3.4) and (3.7), we can state the
following theorem

Theorem 1. Let (M, g, ξ, η, φ, α) be an n-dimensional (LCS)n-manifold admitting
a conformal Ricci soliton. Then

a) The manifold becomes an η-Einstein manifold.

b) The value of the soliton scalar λ is equal to λ = p
2 + (1− 1

n)α.

c) The soliton is shrinking, steady or expanding according as the conformal pressure
p < 2(1−nn )α, p = 2(1−nn )α or p > 2(1−nn )α.

Next, we discuss about the projective curvature tensor which plays an important
role in the study of di�erential geometry. The projective curvature has an one-to-
one correspondence between each coordinate neighbourhood of an n-dimensional
Riemannian manifold and a domain of Euclidean space such that there is an one-to-
one correspondence between geodesics of the Riemannian manifold with the straight
lines in the Euclidean space. The projective curvature tensor in an n-dimensional
Riemannian manifold (M, g) is de�ned by [19]

(3.8) P (X,Y )Z = R(X,Y )Z − 1

(n− 1)
[g(QY,Z)X − g(QX,Z)Y ],

for any vector �elds X,Y, Z ∈ χ(M), χ(M) being the Lie algebra of vector �elds
of the manifold M , R is the Riemannian curvature tensor of M and Q is the Ricci
operator.
The manifold (M, g) is called ξ-projectively �at if P (X,Y )ξ = 0 for any vector
�elds X,Y ∈ χ(M) and ξ is the characteristic vector �eld of the manifold. Now for
an (LCS)n-manifold of dimension n, putting Z = ξ in (3.8) we get

P (X,Y )ξ = R(X,Y )ξ − 1

(n− 1)
[S(Y, ξ)X − S(X, ξ)Y ].

Using (2.6) and (3.6) the above equation becomes

(3.9) P (X,Y )ξ = [(α2 − ρ)− σ + α

(n− 1)
][η(Y )X − η(X)Y ].
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Again combining equations (2.9) and (3.6) we have

(3.10) [(α2 − ρ)(n− 1)− σ − α]η(X) = 0,

which essentially gives us

(3.11) [(α2 − ρ)(n− 1)] = (σ + α).

Now in view of (3.11), the equation (3.9) yields us P (X,Y )ξ = 0 for any vector
�elds X,Y ∈ χ(M). Thus we have the following

Theorem 2. If (M, g, ξ, η, φ, α) is an n-dimensional (LCS)n-manifold admitting
a conformal Ricci soliton, then the manifold becomes ξ-projectively �at, ξ being the
characteristic vector �eld of the manifold.

A transformation of a Riemannian manifold of dimension n, which transforms
every geodesic circle of the manifoldM into a geodesic circle, is called a concircular
transformation [18]. Here a geodesic circle is a curve in M whose �rst curvature is
constant and second curvature (that is, torsion) is identically equal to zero. The
concircular curvature tensor in a Riemannian manifold (M, g) of dimension n is
de�ned by [13, 18]

(3.12) C(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ],

for any vector �elds X,Y, Z ∈ χ(M), χ(M) being the Lie algebra of vector �elds
of the manifold M and r is the scalar curvature of M .
The manifold (M, g) is called ξ-concircularly �at if C(X,Y )ξ = 0 for any vector
�elds X,Y ∈ χ(M) and ξ is the characteristic vector �eld of the manifold. Now for
an (LCS)n-manifold of dimension n, putting Z = ξ in (3.12) we get

C(X,Y )ξ = R(X,Y )ξ − r

n(n− 1)
[η(Y )X − η(X)Y ].

Using (2.6) the above equation becomes

(3.13) C(X,Y )ξ = [(α2 − ρ)− r

n(n− 1)
][η(Y )X − η(X)Y ].

Again in view of equation (3.11), the above equation (3.13) becomes

(3.14) C(X,Y )ξ = [
(σ + α)

(n− 1)
− r

n(n− 1)
][η(Y )X − η(X)Y ].

Now in view of equation (3.14), we can say that C(X,Y )ξ = 0 i� r = n(σ + α).
Again using the fact that for conformal Ricci �ow r = −1 and using σ = [(λ−α)−
(p2 + 1

n)] we eventually get C(X,Y )ξ = 0 i� λ = p
2 . This leads to the following

theorem
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Theorem 3. If (M, g, ξ, η, φ, α) is an n-dimensional (LCS)n-manifold admitting a
conformal Ricci soliton, then the manifold becomes ξ-concircularly �at i� λ = p

2 , ξ
being the characteristic vector �eld of the manifold and p is the conformal pressure.

The conharmonic curvature tensor plays an important role in the study of mani-
folds. The conharmonic curvature tensor of an n-dimensional Riemannian manifold
(M, g) is de�ned as [9]
(3.15)

H(X,Y )Z = R(X,Y )Z− 1

n− 2
[g(Y, Z)QX−g(X,Z)QY +S(Y,Z)X−S(X,Z)Y ]

for any vector �elds X,Y, Z ∈ χ(M), χ(M) being the Lie algebra of vector �elds of
the manifold M , R is the Riemannian curvature tensor of M , S is the Ricci tensor
and Q is the Ricci operator.
The manifold (M, g) is called ξ-conharmonically �at if H(X,Y )ξ = 0 for any vector
�elds X,Y ∈ χ(M) and ξ is the characteristic vector �eld of the manifold. Now for
an (LCS)n-manifold of dimension n, putting Z = ξ in (3.15) we have

H(X,Y )ξ = R(X,Y )ξ − 1

(n− 2)
[η(Y )QX − η(X)QY + S(Y, ξ)X − S(X, ξ)Y ].

Using (2.6), (3.5) and (3.6) the above equation yields

(3.16) H(X,Y )ξ = [(α2 − ρ)− (2σ + α)

(n− 2)
][η(Y )X − η(X)Y ].

Again in view of equation (3.11), the above equation (3.16) becomes

(3.17) H(X,Y )ξ = [
(−nσ − α)

(n− 1)(n− 2)
][η(Y )X − η(X)Y ].

Thus from the above (3.17) we can conclude that H(X,Y )ξ = 0 i� nσ = −α.
Moreover, using the value σ = [(λ−α)−(p2 +

1
n)] and after few steps of calculations

we have H(X,Y )ξ = 0 i� λ = p
2 + 1

n + (1− 1
n)α. Thus we can state the following:

Theorem 4. If (M, g, ξ, η, φ, α) is an n-dimensional (LCS)n-manifold admitting
a conformal Ricci soliton, then the manifold becomes ξ-conharmonically �at i�
λ = p

2 + 1
n + (1− 1

n)α, ξ being the characteristic vector �eld of the manifold and p
is the conformal pressure.

Next, let us consider a conformal Ricci soliton (g, V, λ) on an n-dimensional
(LCS)n-manifold M as

(3.18) LV g(X,Y ) + 2S(X,Y ) = [2λ− (p+
2

n
)]g(X,Y ),

where LV g denotes the Lie derivative of the Lorentzian metric g in the direction of
the vector �eld V . This vector �eld V is also called the potential vector �eld.
Now assume that the vector �eld V be pointwise collinear with the characteristic
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vector �eld ξ, that is, V = bξ, where b is a smooth function on the manifold M .
Then for any vector �elds X,Y ∈ χ(M , the equation (3.18) implies

(3.19) Lbξg(X,Y ) + 2S(X,Y ) = [2λ− (p+
2

n
)]g(X,Y ).

Again from the property of the Lie derivative of the Levi-Civita connection we
know that LZg(X,Y ) = g(∇XZ, Y ) + g(∇Y Z,X). Applying this formula in the
above equation (3.19) and then using φX = 1

α∇Xξ we get
(3.20)

bαg(φX, Y )+(Xb)η(Y )+bαg(φY,X)+(Y b)η(X)+2S(X,Y ) = [2λ−(p+2

n
)]g(X,Y ).

Putting Y = ξ in (3.20) and using the equations (2.4) we obtain

(3.21) 2S(X, ξ)− (Xb) + (ξb)η(X) = [2λ− (p+
2

n
)]η(X).

Using equation (3.6) in the above(3.21) and then putting the value σ = [(λ− α)−
(p2 + 1

n)] gives us

(3.22) (Xb) = (ξb)ηX.

Again putting X = ξ in the equation (3.21) we have

(3.23) S(ξ, ξ)− (ξb) + [λ− (
p

2
+

1

n
)] = 0.

Now, in view of equation (3.6) and σ = [(λ − α) − (p2 + 1
n)], the above equation

(3.23) yields (ξb) = 0. Furthermore, using (ξb) = 0 in equation (3.22) we can
conclude that (Xb)=0, for any vector �eld X ∈ χ(M). And this implies that the
function b is constant and hence V is a constant multiple of ξ. Therefore we have
the following theorem

Theorem 5. Let (M, g, ξ, η, φ, α) be an n-dimensional (LCS)n-manifold which ad-
mits a conformal Ricci soliton (g, V, λ), V being the potential vector �eld of the
manifold. If the potential vector �eld V is pointwise collinear with the characteris-
tic vector �eld ξ, i.e; if V = bξ, then b is constant, i.e; V becomes constant multiple
of ξ.

Next, we study an important curvature property called ξ-Ricci semi symmetry.

Let (M, g, ξ, η, φ, α) be an n-dimensional (LCS)n-manifold. Then we say that
the manifold M is ξ-Ricci semi symmetric if R(ξ,X) · S = 0 in M , where ξ is the
characteristic vector �eld, R is the Riemannian curvature tensor, S is the Ricci
tensor.

Let us start with the known formula that for any vector �elds X,Y, Z on M ,

(3.24) R(ξ,X) · S = S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z).
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Now, using (2.7) the above equation (3.24) yields

R(ξ,X)·S = (α2−ρ)[g(X,Y )S(ξ, Z)−η(Y )S(X,Z)+S(Y, ξ)g(X,Z)−η(Z)S(Y,X)].

Using (2.9) in the above equation and after few steps we get

(3.25) R(ξ,X) · S = α(α2 − ρ)[g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z)].

Now note that (α2 − ρ) = 0 implies λ = p
2 + 1

n , which is the trivial case. Thus for

non-triviality we assume (α2− ρ) 6= 0. Again as α is a non-zero scalar, from (3.25)
we can state the following:

Theorem 6. If (M, g, ξ, η, φ, α) is an n-dimensional (LCS)n-manifold admitting
a conformal Ricci soliton, then the manifold becomes ξ-Ricci semi symmetric, i.e;
R(ξ,X) · S = 0 i� the Lorentzian metric g satis�es the relation

g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z) = 0

for any vector �elds X,Y, Z on M , ξ being the characteristic vector �eld, R is the
Riemannian curvature tensor and S is the Ricci tensor.

4 Conformal Ricci soliton on (LCS)n-manifolds satisfying certain
curvature conditions

First let (M, g) be an n-dimensional (LCS)n-manifold. Then from equation (3.15)
the conharmonic curvature tensor on M is given by
(4.1)

H(X,Y )Z = R(X,Y )Z− 1

n− 2
[g(Y,Z)QX−g(X,Z)QY +S(Y, Z)X−S(X,Z)Y ].

Interchanging Z and X and the putting Z = ξ, we can rewrite the above equation
(4.1) as

H(ξ,X)Y = R(ξ,X)Y − 1

n− 2
[S(X,Y )ξ − S(ξ, Y )X + g(X,Y )Qξ − g(ξ, Y )QX].

Using (2.7), (3.4), (3.5) and (3.6) in the above we get

(4.2) H(ξ,X)Y = [(α2 − ρ)− (2σ + α)

(n− 2)
][g(X,Y )ξ − η(Y )X].

Also from (4.2) we can write

(4.3) η(H(ξ,X)Y ) = −[(α2 − ρ)− (2σ + α)

(n− 2)
][g(X,Y ) + η(X)η(Y )].



GANITA,Vol.70(2), 2020, 201-216 211

Now we assume that H(ξ,X) · S = 0 holds. Then we have

(4.4) S(H(ξ,X)Y,Z) + S(Y,H(ξ,X)Z) = 0.

In view of (3.4) the above (4.4) yields

σ[g(H(ξ,X)Y,Z)+g(Y,H(ξ,X)Z)]−α[η(H(ξ,X)Z)η(Y )+η(H(ξ,X)Y )η(Z)] = 0.

Using (4.2) and (4.3) in the above equation we get

(4.5) α[(α2 − ρ)− (2σ + α)

(n− 2)
][g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z)] = 0.

Finally taking Z = ξ in equation (4.5) and then using (2.5) we arrive at

(4.6) α[(α2 − ρ)− (2σ + α)

(n− 2)
]g(φX, φY ) = 0.

Since α is non-zero and g(φX, φY ) 6= 0 always; then [(α2 − ρ) − (2σ+α)
(n−2) ] = 0 i.e;

λ = p
2 + 1

n + (1− 1
n)α. Therefore we can state the following theorem:

Theorem 7. If (M, g, ξ, η, φ, α) is an n-dimensional (LCS)n-manifold which ad-
mits a conformal Ricci soliton, and satis�es the condition H(ξ,X) · S = 0 i.e; the
manifold is ξ-Ricci conharomnically symmetric. Then the soliton constant is given
by λ = p

2 + 1
n + (1 − 1

n)α; where H is the conharmonic curvature tensor and S is
the Ricci tensor of the manifold and ξ is the characteristic vector �eld.

Next we study another important curvature tensor called M̃ -projective curva-
ture tensor. The M̃ -projective curvature tensor on an (LCS)n-manifold is de�ned
by [1]
(4.7)

M̃(X,Y )Z = R(X,Y )Z− 1

2(n− 1)
[S(Y,Z)X−S(X,Z)Y+g(Y, Z)QX−g(X,Z)QY ].

Taking inner product with respect to the vector �eld ξ, the above (4.6) yields

(4.8) η(M̃(X,Y )Z) = η(R(X,Y )Z)− 1

2(n− 1)
[S(Y,Z)η(X)− S(X,Z)η(Y )

+ g(Y,Z)η(QX)− g(X,Z)η(QY )].

Using (2.8), (3.4) and (3.5) in the above equation we get

(4.9) η(M̃(X,Y )Z) = [(α2 − ρ)− (2σ + α)

2(n− 1)
][g(Y,Z)η(X)− g(X,Z)η(Y )].

Now we assume the condition that R(ξ,X) · M̃ = 0. Then we have

(4.10) R(ξ,X)M̃(Y,Z)W − M̃(R(ξ,X)Y,Z)W

− M̃(Y,R(ξ,X)Z)W − M̃(Y,Z)R(ξ,X)W = 0.
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Using (2.7) in (4.9) and then taking an inner product with respect to ξ we get

(4.11) − g(X, M̃(Y,Z)W )− η(X)η(M̃(Y,Z)W )− g(X,Y )η(M̃(ξ, Z)W )

+ η(Y )η(M̃(X,Z)W )− g(X,Z)η(M̃(Y, ξ)W ) + η(Z)η(M̃(Y,X)W )

− g(X,W )η(M̃(Y, Z)ξ) + η(W )η(M̃(Y,Z)X) = 0.

Then in view of (4.8) the above (4.10) becomes
(4.12)

[(α2 − ρ)− (2σ + α)

2(n− 1)
][g(Y,W )g(X,Z)− g(X,Y )g(Z,W )] + g(X, M̃(Y,Z)W ) = 0.

From (4.6) and (4.11) we get

(4.13)

[(α2 − ρ)− (2σ + α)

2(n− 1)
][g(Y,W )g(X,Z)− g(X,Y )g(Z,W )] + g(X,R(Y,Z)W )

− 1

2(n− 1)
[S(Z,W )g(X,Y )−S(Y,W )g(X,Z)+g(Z,W )S(Y,X)−g(Y,W )S(Z,X)] = 0.

Let us consider an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold (M, g).
Then putting X = Y = ei in the equation (4.12) and summing over 1 ≤ i ≤ n, we
get

(4.14) 2nS(Z,W ) = [2(n− 1)2(α2 − ρ)− (n− 1)(2σ + α)− r]g(Z,W ).

Again putting Z =W = ξ in above and using equation (3.6) we get

(4.15) 2(n− 1)2(α2 − ρ)− (5n− 2)[λ− (
p

2
+

1

n
)] + 2nα = 0.

Now using (3.11) in the above equation (4.14) and after a simple calculation we
arrive at

(4.16) λ = (
p

2
+

1

n
)− 2α.

Thus we have the following theorem

Theorem 8. Let (M, g, ξ, η, φ, α) be an n-dimensional (LCS)n-manifold admitting

a conformal Ricci soliton and the manifold is ξ-M̃ -projectively semi symmetric i.e;
it satis�es the condition R(ξ,X) · M̃ = 0; ξ being the characteristic vector �eld, M̃
is the M -projective curvature tensor of the manifold. Then the soliton is shrinking,
steady or expanding according as p > (4α− 2

n), p = (4α− 2
n) or p < (4α− 2

n)

Next we prove an interesting result on (LCS)n-manifold admitting a conformal

Ricci soliton and satisfying the condition R(ξ,X) · P̃ = 0, where P̃ denotes the
well-known Pseudo-projective curvature tensor. But before that let us recall some
well-known results that will be used later in this section:
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Theorem 9. [11] If S : g(x, y, z) = c is a surface in R3 then the gradient vector
�eld ∇g (connected only at a point of S) is a non-vanishing normal vector �eld on
the entire surface S.

S.R. Ashoka et.al. in their paper [1] have given the higher dimensional version
of the above theorem as follows:

Corollary 1. [1] If S : g(x, y, z) = c is a surface (abstract surface or manifold)
in Rn then the gradient vector �eld ∇g (connected only at points of S) is a non-
vanishing normal vector �eld on the entire surface (abstract surface or manifold)
S.

Then the above mentioned authors in [1] also gave the following remark from
the above corollary as:

Remark 1. [1] Taking a real valued scalar function α associated with an (LCS)n-
manifold with M = R3 and g = α in the above corollary we have, ∇α as a non-
vanishing normal vector �eld on S ⊂M and directional derivative of α with respect
to ξ, ξα = ξ, ∇α = |ξ||∇α|cos(ξ̂,∇α)
1) If ξ is tangent to S then ξα = 0.
2) If ξ is tangent to M but not to S then ξα 6= 0.

3) If the angle between ξ and ∇α is acute then 0 < cos(ξ̂,∇α) < 1, then ξα =
k|∇α|, 0 < k < 1 and ξα > 0.

4) If the angle between ξ and ∇α is obtuse then −1 < cos(ξ̂,∇α) < 0, then
ξα = k|∇α|, −1 < k < 0 and ξα < 0.

Now we see the dependance of the conformal Ricci soliton on ξα for (LCS)n-

manifolds satisfying R(ξ,X) · P̃ = 0. The Pseudo projective curvature tensor P̃ is
de�ned by

(4.17) P̃ (X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X − S(X,Z)Y ]

− r

n
(

a

n− 1
+ b)[g(Y,Z)X − g(X,Z)Y ],

where a, b 6= 0 are constants. Taking Z = ξ in (4.16) we get

(4.18) P̃ (X,Y )ξ = aR(X,Y )ξ + b[S(Y, ξ)X − S(X, ξ)Y ]

− r

n
(

a

n− 1
+ b)[η(Y )X − η(X)Y ].

Using (2.6) and (3.6) the above equation (4.17) yields

(4.19) P̃ (X,Y )ξ = [a(α2 − ρ) + b(σ + α)− r

n
(

a

n− 1
+ b)][η(Y )X − η(X)Y ],

where σ is as described in the previous section. Again from (4.16) we can write

η(P̃ (X,Y )Z) = aη(R(X,Y )Z) + b[S(Y,Z)η(X)− S(X,Z)η(Y )]

− r

n
(

a

n− 1
+ b)[g(Y, Z)η(X)− g(X,Z)η(Y )].
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Using (2.8) and (3.4) the above equation becomes

(4.20) η(P̃ (X,Y )Z) = [a(α2−ρ)+bσ− r
n
(

a

n− 1
+b)][g(Y,Z)η(X)−g(X,Z)η(Y )].

Now we assume the condition that R(ξ,X) · P̃ = 0. Then we have

(4.21) R(ξ,X)P̃ (U, V )W − P̃ (R(ξ,X)U, V )W

− P̃ (U,R(ξ,X)V )W − P̃ (U, V )R(ξ,X)W = 0,

for any vector �elds X,U, V,W on M . Using (2.7) in the above equation and then
taking an inner product with respect to ξ we get

− g(X, P̃ (U, V )W )− η(X)η(P̃ (U, V )W )− g(X,U)η(P̃ (ξ, V )W )

+ η(U)η(P̃ (X,V )W )− g(X,U)η(P̃ (U, ξ)W ) + η(V )η(P̃ (U,X)W )

− g(X,W )η(P̃ (U, V )ξ) + η(W )η(P̃ (U, V )X) = 0.

Then using (4.18) and (4.19) the above equation becomes

(4.22) [a(α2 − ρ) + bσ − r

n
(

a

n− 1
+ b)][g(X,V )g(U,W )− g(X,U)g(V,W )]

+ g(X, P̃ (U, V )W ) = 0.

Now in view of (4.16) and then using (3.4) in the equation (4.21) we get

(4.23) ag(X,R(U, V )W )− bα[η(V )η(W )g(X,U)− η(U)η(W )g(X,V )]

+ a(α2 − ρ)[g(X,V )g(U,W )− g(X,U)g(V,W )] = 0.

Let us consider an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold (M, g). Then
putting X = U = ei in the equation (4.22) and summing over 1 ≤ i ≤ n, we get

(4.24) aS(V,W )− b(n− 1)αη(V )η(W )− a(n− 1)(α2 − ρ)g(V,W ) = 0.

Again setting V =W = ξ in (4.23) and after a few steps of simple calculations we
get

(4.25) λ = (n− 1)[(α2 − ρ)− b

a
α] + (

p

2
+

1

n
).

Therefore in view of the above equation (4.24) and Remark-4.1 we can state the
following :

Theorem 10. Let (M, g, ξ, η, φ, α) be an n-dimensional (LCS)n-manifold which
admits a conformal Ricci soliton and the manifold is ξ-pseudo-projectively semi
symmetric i.e; if it satis�es the condition R(ξ,X) · P̃ = 0; ξ being the characteristic

vector �eld, P̃ is the pseudo-projective curvature tensor of the manifold and α is a
positive function; then
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1) If ξ is orthogonal to ∇α; the soliton is expanding if α > b
a , p > −

2
n ; steady

if α = b
a , p = −

2
n and shrinking if α < b

a , p < −
2
n .

2)If the angle between ξ and ∇α is acute; the soliton is expanding if α2 + k|∇α| >
b
aα, p > −

2
n ; steady if α2+k|∇α| = b

aα, p = −
2
n and shrinking if α2+k|∇α| < b

aα,

p < − 2
n .

3) If the angle between ξ and ∇α is obtuse; the soliton is expanding if α2 >
k|∇α| + b

aα, p > − 2
n ; steady if α2 = k|∇α| + b

aα, p = − 2
n and shrinking if

α2 < k|∇α|+ b
aα, p < −

2
n .

Acknowledgement: The �rst author D. Ganguly is thankful to the National
Board for Higher Mathematics (NBHM),India, for their �nancial support(Ref No:
0203/11/2017/RD-II/10440) to carry on this research work.

References

[1] S.R. Ashoka, C.S. Bagewadi, G. Ingalahalli, A geometry on Ricci solitons in
(LCS)n-manifolds, Di�erential Geometry - Dynamical Systems, vol.16, pp-50-
62, (2014).

[2] D.E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds,
Birkhauser, Second Edition, (2010).

[3] N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold,
Global Journal of Advanced Research on Classical and Modern Geometries,
Vol.4, Issue 1, pp.15-21, (2015).

[4] H.D. Cao, B. Chow, Recent developments on the Ricci �ow, Bull. Amer.
Math. Soc. 36, 59-74, (1999).

[5] T. Dutta, N. Basu, A. Bhattacharyya, Conformal Ricci Soliton in Lorentzian
α-Sasakian Manifolds, Acta. Univ. Palac. Olomuc. Fac. Rerum Natur. Math.,
55(2), pp.57-70., (2016).

[6] A.E. Fischer, An Introduction to Conformal Ricci �ow, Classical and
Quantum Gravity, Vol. 21, Issue 3, pp. S171-S218, (2004).

[7] R.S. Hamilton, Three manifolds with positive Ricci curvature, Journal of
Di�erential Geometry 17, 255-306, (1982).



216 Ganguly & Bhattacharyya: A study on conformal Ricci solitons ....

[8] R.S. Hamilton, The Ricci �ow on surfaces, Mathematical and General
Relativity, Contemporary Mathematics, Vol.71, pp.237-262, (American
mathematical Society, (1988).

[9] Y. Ishii, On conharmonic transformations, Tensor N.S, vol.7, pp-73-80, (1957).

[10] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. Yamagata
Univ. Nature. Sci., vol.12, pp-151-156, (1989).

[11] B. O'Neill, Elementary Di�erential Geometry, British Library Publica-
tion, (2006).

[12] G. Perelman, The entropy formula for the Ricci Flow and its geometric
applications, arxiv: math.DG/0211159v1, (2002).

[13] G.P. Pokhariyal, R.S. Mishra, The curvature tensor and their relativistic
signi�cance, Yokohoma Math. J., vol-18, pp-105-108, (1970).

[14] A.A. Shaikh, On Lorentzian almost para contact manifolds with a structure of
the concircular type, Kyungpook Math. J., 43, 305-315, (2003).

[15] A.A. Shaikh, K.K. Baishya, On concircular structure spacetimes, J. Math.
Stat., vol-1(2), pp-129-132, (2005).

[16] A.A. Shaikh, T. Basu, S. Eyasmin, On locally φ-symmetric (LCS)n-manifolds,
Int. J. Pure Appl. Math., vol-41(8), pp-1161-1170, (2007).

[17] P. Topping, Lectures on the Ricci Folw, LMS Lecture Notes Series, Cambridge
University Press, (2006).

[18] K. Yano, Concircular geometry I, Proceedings of the Imperial Academy
Tokyo, 16, pp-195-200, (1940).

[19] K. Yano, M. Kon, Structures on manifolds, Series in Pure Mathemat-
ics, vol.3, (1984).



http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(4): 5408–5430.
DOI: 10.3934/math.2022300
Received: 13 October 2021
Revised: 19 December 2021
Accepted: 31 December 2021
Published: 06 January 2022

Research article

Conformal η-Ricci solitons within the framework of indefinite Kenmotsu
manifolds

Yanlin Li1,*, Dipen Ganguly2, Santu Dey3 and Arindam Bhattacharyya2

1 School of Mathematics, Hangzhou Normal University, Hangzhou, 311121, China
2 Department of Mathematics, Jadavpur University, Kolkata 700032, India
3 Department of Mathematics, Bidhan Chandra College, Asansol-4, West Bengal 713304, India

* Correspondence: Email: liyl@hznu.edu.cn.

Abstract: The present paper is to deliberate the class of ε-Kenmotsu manifolds which admits
conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the
conformal η-Ricci soliton of ε-Kenmotsu manifolds. Moving further, we investigate some curvature
conditions admitting conformal η-Ricci solitons on ε-Kenmotsu manifolds. Next, we consider gradient
conformal η-Ricci solitons and we present a characterization of the potential function. Finally, we
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1. Introduction

The scientists and mathematicians across many disciplines have always been fascinated to study
indefinite structures on manifolds. When a manifold is endowed with a geometric structure, we have
more opportunities to explore its geometric properties. There are different classes of submanifolds
such as warped product submanifolds, biharmonic submanifolds and singular submanifolds, etc.,
which motivates further exploration and attracts many researchers from different research areas
[26–37, 40–50]. After A. Bejancu et al. [7] in 1993, introduced the concept of an idefinite manifold
namely ε-Sasakian manifold, it gained attention of various researchers and it was established by X.
Xufeng et al. [53] that the class of ε-Sasakian manifolds are real hypersurfaces of indefinite Kaehlerian
manifolds. On the other hand K. Kenmotsu [25] introduced a special class of contact Riemannian
manifolds, satisfying certain conditions, which was later named as Kenmotsu manifold. Later on U. C.
De et al. [14] introduced the concept of ε-Kenmotsu manifolds and further proved that the existence of
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the new indefinite structure on the manifold influences the curvatures of the manifold. After that several
authors [20, 21, 52] studied ε-Kenmotsu manifolds and many interesting results have been obtained on
this indefinite structure.

A smooth manifold M equipped with a Riemannian metric g is said to be a Ricci soliton, if for some
constant λ, there exist a smooth vector field V on M satisfying the equation

S +
1
2
LVg = λg,

where LV denotes the Lie derivative along the direction of the vector field V and S is the Ricci tensor.
The Ricci soliton is called shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0. In 1982,
R. S. Hamilton [22] initiated the study of Ricci flow as a self similar solution to the Ricci flow equation
given by

∂g
∂t

= −2S .

Ricci soliton also can be viewed as natural generalization of Einstein metric which moves only by
an one-parameter group of diffeomorphisms and scaling [11,23]. After Hamilton, the significant work
on Ricci flow has been done by G. Perelman [38] to prove the well known Thurston’s geometrization
conjecture.

A. E. Fischer [16] in 2005, introduced conformal Ricci flow equation which is a modified version
of the Hamilton’s Ricci flow equation that modifies the volume constraint of that equation to a scalar
curvature constraint. The conformal Ricci flow equations on a smooth closed connected oriented n-
manifold, n ≥ 3, are given by

∂g
∂t

+ 2(S +
g
n

) = −pg, r(g) = −1,

where p is a non-dynamical (time dependent) scalar field and r(g) is the scalar curvature of the
manifold. The term-pg acts as the constraint force to maintain the scalar curvature constraint in the
above equation. Note that these evolution equations are analogous to famous Navier-Stokes equations
where the constraint is divergence free. The non-dynamical scalar p is also called the conformal
pressure. At the equilibrium points of the conformal Ricci flow equations (i.e., Einstein metrices with
Einstein constant −1

n ) the conformal pressure p is equal to zero and strictly positive otherwise.

Later in 2015, N. Basu and A. Bhattacharyya [6] introduced the concept of conformal Ricci soliton
as a generalization of the classical Ricci soliton and is given by the equation

LVg + 2S = [2λ − (p +
2
n

)]g, (1.1)

where λ is a constant and p is the conformal pressure. It is to be noted that the conformal Ricci soliton
is a self-similar solution of the Fisher’s conformal Ricci flow equation. After that several authors
have studied conformal Ricci solitons on various geometric structures like Lorentzian α-Sasakian
Manifolds [15] and f -Kenmotsu manifods [24]. Since the introduction of these geometric flows,
the respective solitons and their generalizations etc. have been a great centre of attention of many
geometers viz. [1–5,8,9,13,17,40–47] who have provided new approaches to understand the geometry
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of different kinds of Riemannian manifold. Recently Sarkar et al. [48–50] studied ∗-conformal η-Ricci
soliton and ∗-conformal Ricci soliton within the frame work of contact geometry and obtaind some
beautiful results.

Again a Ricci soliton is called a gradient Ricci soliton [11] if the concerned vector field X in the
Eq (1.1) is the gradient of some smooth function f . This function f is called the potential function
of the Ricci soliton. J. T. Cho and M. Kimura [12] introduced the concept of η-Ricci soliton and
later C. Calin and M. Crasmareanu [10] studied it on Hopf hypersufaces in complex space forms. A
Riemannian manifold (M, g) is said to admit an η-Ricci soliton if for a smooth vector field V , the metric
g satisfies the following equation

LVg + 2S + 2λg + 2µη ⊗ η = 0,

whereLV is the Lie derivative along the direction of V , S is the Ricci tensor and λ, µ are real constants.
It is to be noted that for µ = 0 the η-Ricci soliton becomes a Ricci soliton.

Very recently M. D. Siddiqi [51] introduced the notion of conformal η-Ricci soliton given by the
following equation

LVg + 2S + [2λ − (p +
2
n

)]g + 2µη ⊗ η = 0, (1.2)

where LV is the Lie derivative along the direction of V , S is the Ricci tensor, n is the dimension of
the manifold, p is the non-dynamical scalar field (conformal pressure) and λ, µ are real constants. In
particular if µ = 0 the conformal η-Ricci soliton reduces to the conformal Ricci soliton.

The outline of the article goes as follows: In Section 2, after a brief introduction, we give some notes
on ε-Kenmotsu manifolds. Section 3 deals with ε-Kenmotsu manifolds admitting conformal η-Ricci
solitons and establish the relation between λ and µ. In Section 4, we have contrived conformal η-Ricci
solitons in ε-Kenmotsu manifolds in terms of Codazzi type Ricci tensor, cyclic parallel Ricci tensor
and cyclic η-recurrent Ricci tensor. Section 5 is devoted to the study of conformal η-Ricci solitons on
ε-Kenmotsu manifolds satisfying curvature conditions R · S = 0, C · S = 0, Q ·C = 0. In Section 6, we
have studied torse-forming vector field on ε-Kenmotsu manifolds admitting conformal η-Ricci solitons.
Section 7 is devoted to the study of gradient conformal η-Ricci soliton on ε-Kenmotsu manifold. Lastly,
we have constructed an example to illustrate the existence of conformal η-Ricci soliton on ε-Kenmotsu
manifold.

2. Preliminaries

An n-dimensional smooth manifold (M, g) is said to be an ε-almost contact metric manifold [7] if it
admits a (1, 1) tensor field φ, a characteristic vector field ξ, a global 1-form η and an indefinite metric
g on M satisfying the following relations

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

η(X) = εg(X, ξ), g(ξ, ξ) = ε, (2.2)

g(φX, φY) = g(X,Y) − εη(X)η(Y), (2.3)
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for all vector fields X,Y ∈ T M, where T M is the tangent bundle of the manifold M. Here the value of
the quantity ε is either +1 or −1 according as the characteristic vector field ξ is spacelike or timelike
vector field. Also it can be easily seen that rank of φ is (n − 1) and φ(ξ) = 0, η ◦ φ = 0. Now if we
define

dη(X,Y) = g(X, φY), (2.4)

for all X,Y ∈ T M, then the manifold (M, g) is called an ε-contact metric manifold.

If the Levi-Civita connection ∇ of an ε-contact metric manifold satisfies

(∇Xφ)(Y) = −g(X, φY) − εη(Y)φX, (2.5)

for all X,Y ∈ T M, then the manifold (M, g) is called an ε-Kenmotsu manifold [14].

Again an ε-almost contact metric manifold is an ε-Kenmotsu manifold if and only if it satisfies

∇Xξ = ε(X − η(X)ξ), ∀X ∈ T M. (2.6)

Furthermore in an ε-Kenmotsu manifold (M, g) the following relations hold,

(∇Xη)(Y) = g(X,Y) − εη(X)η(Y), (2.7)
R(X,Y)ξ = η(X)Y − η(Y)X, (2.8)
R(ξ, X)Y = η(Y)X − εg(X,Y)ξ, (2.9)
R(ξ, X)ξ = −R(X, ξ)ξ = X − η(X)ξ, (2.10)

η(R(X,Y)Z) = ε(g(X,Z)η(Y) − g(Y,Z)η(X)), (2.11)
S (X, ξ) = −(n − 1)η(X), (2.12)

Qξ = −ε(n − 1)ξ, (2.13)

where R is the curvature tensor, S is the Ricci tensor and Q is the Ricci operator given by g(QX,Y) =

S (X,Y), for all X,Y ∈ T M.

Moreover, it is to be noted that for spacelike structure vector field ξ and ε = 1, an ε-Kenmotsu
manifold reduces to an usual Kenmotsu manifold.

Next, we discuss about the projective curvature tensor which plays an important role in the study
of differential geometry. The projective curvature has an one-to-one correspondence between each
coordinate neighbourhood of an n-dimensional Riemannian manifold and a domain of Euclidean space
such that there is a one-to-one correspondence between geodesics of the Riemannian manifold with the
straight lines in the Euclidean space.

Definition 2.1. The projective curvature tensor in an n-dimensional ε-Kenmotsu manifold (M, g) is
defined by [55]

P(X,Y)Z = R(X,Y)Z −
1

(n − 1)
[g(QY,Z)X − g(QX,Z)Y], (2.14)

for any vector fields X,Y,Z ∈ T M and Q is the Ricci operator.
The manifold (M, g) is called ξ-projectively flat if P(X,Y)ξ = 0, for all X,Y ∈ T M.
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A transformation of a Riemannian manifold of dimension n, which transforms every geodesic
circle of the manifold M into a geodesic circle, is called a concircular transformation [54]. Here a
geodesic circle is a curve in M whose first curvature is constant and second curvature (that is, torsion)
is identically equal to zero.

Definition 2.2. The concircular curvature tensor in an ε-Kenmotsu manifold (M, g) of dimension n is
defined by [54]

C(X,Y)Z = R(X,Y)Z −
r

n(n − 1)
[g(Y,Z)X − g(X,Z)Y], (2.15)

for any vector fields X,Y,Z ∈ T M, and r is the scalar curvature of M.
The manifold (M, g) is called ξ-concircularly flat if C(X,Y)ξ = 0 for any vector fields X,Y ∈ T M.

Another important curvature tensor is W2-curvature tensor which was introduced in 1970 by
Pokhariyal and Mishra [39].

Definition 2.3. The W2-curvature tensor in an n-dimensional ε-Kenmotsu manifold (M, g) is defined
as

W2(X,Y)Z = R(X,Y)Z +
1

n − 1
[g(X,Z)QY − g(Y,Z)QX]. (2.16)

Definition 2.4. An ε-Kenmotsu manifold (M, g) is said to be an η-Einstein manifold if its Ricci tensor
S satisfies

S (X,Y) = ag(X,Y) + bη(X)η(Y), (2.17)

for all X,Y ∈ T M and smooth functions a, b on the manifold (M, g).

3. ε-Kenmotsu manifolds admitting conformal η-Ricci solitons

Let us consider an ε-Kenmotsu manifold (M, g) admits a conformal η-Ricci soliton (g, ξ, λ, µ). Then
from Eq (1.2) we can write

(Lξg)(X,Y) + 2S (X,Y) + [2λ − (p +
2
n

)]g(X,Y) + 2µη(X)η(Y) = 0, (3.1)

for all X,Y ∈ T M.
Again from the well-known formula (Lξg)(X,Y) = g(∇Xξ,Y) + g(∇Yξ, X) of Lie-derivative and
using (2.6), we obtain for an ε-Kenmotsu manifold

(Lξg)(X,Y) = 2ε[g(X,Y) − εη(X)η(Y)]. (3.2)

Now in view of the Eqs (3.1) and (3.2) we get

S (X,Y) = −[(λ + ε) − (
p
2

+
1
n

)]g(X,Y) − (µ − 1)η(X)η(Y). (3.3)

This shows that the manifold (M, g) is an η-Einstein manifold.
Also from Eq (3.3) replacing Y = ξ we find that

S (X, ξ) = [ε(
p
2

+
1
n

) − (ελ + µ)]η(X). (3.4)
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Compairing the above Eq (3.4) with (2.12) yields

ελ + µ = ε(
p
2

+
1
n

) + (n − 1). (3.5)

Thus the above discussion leads to the following

Theorem 3.1. If an n-dimensional ε-Kenmotsu manifold (M, g) admits a conformal η-Ricci soliton
(g, ξ, λ, µ), then (M, g) becomes an η-Einstein manifold and the scalars λ and µ are related by ελ+µ =

ε( p
2 + 1

n ) + (n − 1).

Furthermore if we consider µ = 0 in particular, then from Eqs (3.3) and (3.5), we get

S (X,Y) = −[(λ + ε) − (
p
2

+
1
n

)]g(X,Y) + η(X)η(Y),

λ = (
p
2

+
1
n

) + ε(n − 1).

This leads us to write

Corollary 3.2. If an n-dimensional ε-Kenmotsu manifold (M, g) admits a conformal Ricci soliton
(g, ξ, λ), then (M, g) becomes an η-Einstein manifold and the scalar λ satisfies λ = ( p

2 + 1
n ) + ε(n − 1).

Moreover,

1. if ξ is spacelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) > (1− n),
( p

2 + 1
n ) = (1 − n) or ( p

2 + 1
n ) < (1 − n); and

2. if ξ is timelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) > (n − 1),
( p

2 + 1
n ) = (n − 1) or ( p

2 + 1
n ) < (n − 1).

Next we try to find a condition in terms of second order symmetric parallel tensor which will ensure
when an ε-Kenmotsu manifold (M, g) admits a conformal η-Ricci soliton. So for this purpose let us
consider the second order tensor T on the manifold (M, g) defined by

T := Lξg + 2S + 2µη ⊗ η. (3.6)

It is easy to see that the (0, 2) tensor T is symmetric and also parallel with respect to the Levi-Civita
connection.
Now in view of (3.2) and (3.3) the above Eq (3.6) we have

T (X,Y) = [(p +
2
n

) − 2λ]g(X,Y); ∀X,Y ∈ T M. (3.7)

Putting X = Y = ξ in the above Eq (3.7) we obtain

T (ξ, ξ) = ε[(p +
2
n

) − 2λ]. (3.8)

On the other hand, as T is a second order symmetric parallel tensor; i.e., ∇T = 0, we can write

T (R(X,Y)Z,U) + T (Z,R(X,Y)U) = 0,
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for all X,Y,Z,U ∈ T M. Then replacing X = Z = U = ξ in above gives us

T (R(ξ,Y)ξ, ξ) + T (ξ,R(ξ,Y)ξ) = 0, ∀Y ∈ T M. (3.9)

Using (2.10) in the above Eq (3.9) we get

T (Y, ξ) = T (ξ, ξ)η(Y). (3.10)

Taking covariant differentiation of (3.10) in the direction of an arbitrary vector field X, and then in the
resulting equation, again using the Eq (3.10) we obtain

T (Y,∇Xξ) = T (ξ, ξ)(∇Xη)Y + 2T (∇Xξ, ξ)η(Y).

Then in view of (2.6) and (2.7), the above equation becomes

T (X,Y) = εT (ξ, ξ)g(X,Y), ∀X,Y ∈ T M. (3.11)

Now using (3.8) in the above Eq (3.11) and in view of (3.6) finally we get

(Lξg)(X,Y) + 2S (X,Y) + [2λ − (p +
2
n

)]g(X,Y) + 2µη(X)η(Y) = 0.

This leads us to the following

Theorem 3.3. Let (M, g) be an n-dimensional ε-Kenmotsu manifold. If the second order symmetric
tensor T := Lξg + 2S + 2µη ⊗ η is parallel with respect to the Levi-Civita connection of the manifold,
then the manifold (M, g) admits a conformal η-Ricci soliton (g, ξ, λ, µ).

Now let us consider an ε-Kenmotsu manifold (M, g) and assume that it admits a conformal η-Ricci
soliton (g,V, λ, µ) such that V is pointwise collinear with ξ, i.e., V = αξ, for some function α; then
from the Eq (1.2) it follows that

αg(∇Xξ,Y) + ε(Xα)η(Y) + αg(∇Yξ, X) + ε(Yα)η(X)

+ 2S (X,Y) + [2λ − (p +
2
n

)]g(X,Y) + 2µη(X)η(Y) = 0.

Then using the Eq (2.6) in above we get

2εαg(X,Y) − 2εαη(X)η(Y) + ε(Xα)η(Y) + ε(Yα)η(X)

+ 2S (X,Y) + [2λ − (p +
2
n

)]g(X,Y) + 2µη(X)η(Y) = 0. (3.12)

Replacing Y = ξ in the above equation yields

ε(Xα) + ε(ξα)η(X) + 2S (X, ξ) + ε[2λ − (p +
2
n

)]η(X) + 2µη(X) = 0. (3.13)

By virtue of (2.12) the above Eq (3.13) becomes

ε(Xα) + ε[(ξα) + 2λ − (p +
2
n

)]η(X) + 2[µ − (n − 1)]η(X) = 0. (3.14)
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By taking X = ξ in the above Eq (3.14) gives us

ε(ξα) = (n − 1) − µ − ε[λ − (
p
2

+
1
n

)]. (3.15)

Using this value from (3.15) in the Eq (3.14) we can write

εdα = [(n − 1) − µ − ε[λ − (
p
2

+
1
n

)]]η. (3.16)

Now taking exterior differentiation on both sides of (3.16) and using the famous Poincare’s lemma,
i.e., d2 = 0, finally we arrive at

[(n − 1) − µ − ε[λ − (
p
2

+
1
n

)]]dη = 0.

Since dη , 0 in ε-Kenmotsu manifold, the above equation implies

µ + ε[λ − (
p
2

+
1
n

)] = (n − 1). (3.17)

In view of the above (3.17) the Eq (3.16) gives us dα = 0 i.e., the function α is constant. Then the
Eq (3.12) becomes

S (X,Y) = [(
p
2

+
1
n

) − λ − εα]g(X,Y) + (α − µ)η(X)η(Y), (3.18)

for all X,Y ∈ T M. This shows that the manifold is η-Einstein. Hence we have the following

Theorem 3.4. If an n-dimensional ε-Kenmotsu manifold (M, g) admits a conformal η-Ricci soliton
(g,V, λ, µ) such that V is pointwise collinear with ξ, then V is constant multiple of ξ and the manifold
(M, g) is an η-Einstein manifold. Moreover the scalars λ and µ are related by µ+ε[λ−( p

2 + 1
n )] = (n−1).

In particular if we put µ = 0 in (3.17) and (3.18) we can conclude that

Corollary 3.5. If an n-dimensional ε-Kenmotsu manifold (M, g) admits a conformal Ricci soliton
(g,V, λ, µ) such that V is pointwise collinear with ξ, then V is constant multiple of ξ and the manifold
(M, g) is an η-Einstein manifold, and the scalars λ and µ are related by λ = ( p

2 + 1
n ) + ε(n − 1).

Furthermore,

1. if ξ is spacelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) + n > 1,
( p

2 + 1
n ) + n = 1 or ( p

2 + 1
n ) + n < 1; and

2. if ξ is timelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) + 1 > n,
( p

2 + 1
n ) + 1 = n or ( p

2 + 1
n ) + 1 < n.

4. Conformal η-Ricci solitons on ε-Kenmotsu manifolds with certain special types of Ricci
tensor

The purpose of this section is to study conformal η-Ricci solitons in ε-Kenmotsu manifolds
admitting three special types of Ricci tensor namely Codazzi type Ricci tensor, cyclic parallel Ricci
tensor and cyclic η-recurrent Ricci tensor.
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Definition 4.1. [19] An ε-Kenmotsu manifold is said to have Codazzi type Ricci tensor if its Ricci
tensor S is non-zero and satisfies the following relation

(∇XS )(Y,Z) = (∇YS )(X,Z), ∀X,Y,Z ∈ T M. (4.1)

Let us consider an ε-Kenmotsu manifold having Codazzi type Ricci tensor admits a conformal η-
Ricci soliton (g, ξ, λ, µ), then Eq (3.3) holds. Now taking covariant differentiation of (3.3) and using
Eq (2.7) we obtain

(∇XS )(Y,Z) = (1 − µ)[g(X,Y)η(Z) + g(X,Z)η(Y) − 2εη(X)η(Y)η(Z)]. (4.2)

Since the manifold has Codazzi type Ricci tensor, in view of (4.1) Eq (4.2) yields

(1 − µ)[g(X,Z)η(Y) − g(Y,Z)η(X)] = 0, ∀X,Y,Z ∈ T M.

The above equation implies that µ = 1 and then from Eq (3.5) it follows that λ = ( p
2 + 1

n ) + ε(n − 2).
Therefore we can state the following

Theorem 4.2. Let (M, g) be an n-dimensional ε-Kenmotsu manifold admitting a conformal η-Ricci
soliton (g, ξ, λ, µ). If the Ricci tensor of the manifold is of Codazzi type then λ = ( p

2 + 1
n ) + ε(n − 2) and

µ = 1.

Corollary 4.3. Let an n-dimensional ε-Kenmotsu manifold admits a conformal η-Ricci soliton
(g, ξ, λ, µ) and the manifold has Codazzi type Ricci tensor then

1. if ξ is spacelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) + n > 2,
( p

2 + 1
n ) + n = 2 or ( p

2 + 1
n ) + n < 2; and

2. if ξ is timelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) + 2 > n,
( p

2 + 1
n ) + 2 = n or ( p

2 + 1
n ) + 2 < n.

Definition 4.4. [19] An ε-Kenmotsu manifold is said to have cyclic parallel Ricci tensor if its Ricci
tensor S is non-zero and satisfies the following relation

(∇XS )(Y,Z) + (∇YS )(Z, X) + (∇ZS )(X,Y) = 0 ∀X,Y,Z ∈ T M. (4.3)

Let us consider an ε-Kenmotsu manifold, having cyclic parallel Ricci tensor, admits a conformal
η-Ricci soliton (g, ξ, λ, µ), then Eq (3.3) holds. Now taking covariant differentiation of (3.3) and using
Eq (2.7) we obtain

(∇XS )(Y,Z) = (1 − µ)[g(X,Y)η(Z) + g(X,Z)η(Y) − 2εη(X)η(Y)η(Z)]. (4.4)

In a similar manner we can obtain the following relations

(∇YS )(Z, X) = (1 − µ)[g(X,Y)η(Z) + g(Y,Z)η(X) − 2εη(X)η(Y)η(Z)]. (4.5)

and
(∇ZS )(X,Y) = (1 − µ)[g(X,Z)η(Y) + g(Y,Z)η(X) − 2εη(X)η(Y)η(Z)]. (4.6)
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Now using the values from (4.4), (4.5) and (4.6) in the Eq (4.3) we get

2(1 − µ)[g(X,Y)η(Z) + g(Y,Z)η(X) + g(X,Z)η(Y) − 3εη(X)η(Y)η(Z)] = 0.

Replacing Z = ξ in the above equation yields

2(1 − µ)[g(X,Y) − εη(X)η(Y)] = 0 ∀X,Y ∈ T M.

The above equation implies that µ = 1 and then from Eq (3.5) it follows that λ = ( p
2 + 1

n ) + ε(n − 2).
Hence we have

Theorem 4.5. Let (M, g) be an n-dimensional ε-Kenmotsu manifold admitting a conformal η-Ricci
soliton (g, ξ, λ, µ). If the manifold has cyclic parallel Ricci tensor, then λ = ( p

2 + 1
n )+ ε(n−2) and µ = 1.

Definition 4.6. An ε-Kenmotsu manifold is said to have cyclic-η-recurrent Ricci tensor if its Ricci
tensor S is non-zero and satisfies the following relation

(∇XS )(Y,Z) + (∇YS )(Z, X) + (∇ZS )(X,Y)
= η(X)S (Y,Z) + η(Y)S (Z, X) + η(Z)S (X,Y) ∀X,Y,Z ∈ T M. (4.7)

Let us consider an ε-Kenmotsu manifold, having cyclic-η-recurrent Ricci tensor, admits a conformal
η-Ricci soliton (g, ξ, λ, µ), then Eq (3.3) holds. Now taking covariant differentiation of (3.3) and using
Eq (2.7) and proceeding similarly as the previous theorem we arrive at Eqs (4.4)–(4.6). Then putting
these three values in (4.7) we get

(2(1 − µ) − β)[g(X,Y)η(Z) + g(Y,Z)η(X) + g(X,Z)η(Y)]
−(3 + 6ε)(1 − µ)η(X)η(Y)η(Z) = 0, (4.8)

where β = ( p
2 + 1

n ) − (λ + ε). Now putting Y = Z = ξ in (4.8) we obtain

3(εβ + (1 − µ))η(X) = 0. ∀X ∈ T M. (4.9)

Since η(X) , 0 and replacing the value of β in (4.9), after simplification we get λ = ( p
2 + 1

n ) − εµ.
Therefore we can state

Theorem 4.7. Let (M, g) be an n-dimensional ε-Kenmotsu manifold admitting a conformal η-Ricci
soliton (g, ξ, λ, µ). If the manifold has cyclic-eta-parallel Ricci tensor, then λ = ( p

2 + 1
n ) − εµ and

moreover

1. if ξ is spacelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) > µ,
( p

2 + 1
n ) = µ or ( p

2 + 1
n ) < µ; and

2. if ξ is timelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) + µ > 0,
( p

2 + 1
n ) + µ = 0 or ( p

2 + 1
n ) + µ < 0.

Corollary 4.8. Let (M, g) be an n-dimensional ε-Kenmotsu manifold admitting a conformal Ricci
soliton (g, ξ, λ, µ). If the manifold has cyclic-eta-parallel Ricci tensor, then the soliton constant λ
is given by λ = ( p

2 + 1
n ).
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5. Conformal η-Ricci solitons on ε-Kenmotsu manifolds satisfying some curvature conditions

Let us consider an ε-Kenmotsu manifold which admits a conformal η-Ricci soliton (g, ξ, λ, µ)
and also the manifold is Ricci semi symmetric i.e., the manifold satisfies the curvature condition
R(X,Y) · S = 0. Then ∀X,Y,Z,W ∈ T M we can write

S (R(X,Y)Z,W) + S (Z,R(X,Y)W) = 0.

Putting W = ξ in above and taking (2.12) into account, we have

− (n − 1)η(R(X,Y)Z) + S (Z,R(X,Y)ξ) = 0. (5.1)

Now using (2.8) and (2.11) in (5.1) we get

η(X)[S (Y,Z) − ε(n − 1)g(Y,Z)] − η(Y)[S (X,Z) − ε(n − 1)g(X,Z)] = 0.

In view of (3.3) the previous equation becomes

[(
p
2

+
1
n

) − λ + ε(n − 2)][η(X)g(Y,Z) − η(Y)g(X,Z)] = 0.

Putting X = ξ in the above equation and then using (2.2) and (2.3) we finally obtain

[(
p
2

+
1
n

) − λ + ε(n − 2)]g(φY, φZ) = 0. (5.2)

Since g(φY, φZ) , 0 always, we can conclude from the Eq (5.2) that [( p
2 + 1

n ) − λ + ε(n − 2)] = 0 i.e.,
λ = ( p

2 + 1
n ) + ε(n − 2). Then from the Eq (3.5) we have µ = 1. Therefore we have the following

Theorem 5.1. Let (M, g) be an n-dimensional ε-Kenmotsu manifold admitting a conformal η-Ricci
soliton (g, ξ, λ, µ). If the manifold is Ricci semi symmetric i.e., if the manifold satisfies the curvature
condition R(X,Y) · S = 0, then λ = ( p

2 + 1
n ) + ε(n − 2) and µ = 1. Moreover

1. if ξ is spacelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n ) > (2− n),
( p

2 + 1
n ) = (2 − n) or ( p

2 + 1
n ) < (2 − n); and

2. if ξ is timelike then the soliton is expanding, steady or shrinking according as, ( p
2 + 1

n )+(2−n) > 0,
( p

2 + 1
n ) + (2 − n) = 0 or ( p

2 + 1
n ) + (2 − n) < 0.

Next we consider an n-dimensional ε-Kenmotsu manifold satisfying the curvature condition C(ξ, X)·
S = 0 admitting a conformal η-Ricci soliton (g, ξ, λ, µ). Then we have

S (C(ξ, X)Y,Z) + S (Y,C(ξ, X)Z) = 0 ∀X,Y,Z ∈ T M. (5.3)

Now from Eq (2.15) we can write

C(ξ, X)Y = R(ξ, X)Y −
r

n(n − 1)
[g(X,Y)ξ − εη(Y)X].
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Using (2.9) the above equation becomes

C(ξ, X)Y = [1 +
εr

n(n − 1)
][η(Y)X − εg(X,Y)ξ]. (5.4)

In view of (5.4) the Eq (5.3) yields

[1 + εr
n(n−1) ][S (X,Z)η(Y) − εg(X,Y)S (ξ,Z)

+ S (Y, X)η(Z) − εg(X,Z)S (ξ,Y] = 0.

By virtue of (2.12) the above equation eventually becomes

[1 + εr
n(n−1) ][S (X,Z)η(Y) + S (Y, X)η(Z)

+ ε(n − 1)(g(X,Y)η(Z) + g(X,Z)η(Y))] = 0. (5.5)

Putting Z = ξ in (5.5) and then using (2.2), (2.12) we arrive at

[1 +
εr

n(n − 1)
][S (X,Y) + ε(n − 1)g(X,Y)] = 0.

Thus from the above we can conclude that either r = −εn(n − 1) or

S (X,Y) = −ε(n − 1)g(X,Y). (5.6)

Combining (5.6) with (3.3) we get

[(λ + ε) − (
p
2

+
1
n

) − ε(n − 1)]g(X,Y) + (µ − 1)η(X)η(Y) = 0.

Taking Y = ξ in above gives us

[(n − µ) + ε(
p
2

+
1
n
− λ − ε)]η(X) = 0, ∀X ∈ T M.

Since η(X) , 0 always, from the above we have λ = ε(n − 1) + ( p
2 + 1

n ) − εµ. Therefore we can state

Theorem 5.2. Let (M, g) be an n-dimensional ε-Kenmotsu manifold admitting a conformal η-Ricci
soliton (g, ξ, λ, µ). If the manifold satisfies the curvature condition C(ξ, X) · S = 0, then either the
scalar curvature of the manifold is constant or the manifold is an Einstein manifold of the form (5.6)
and the scalars λ and µ are related by λ = ε(n − 1) + ( p

2 + 1
n ) − εµ.

Next we prove two results on ξ-projectively flat and ξ-concircularly flat manifolds. For that let us
first consider an ε-Kenmotsu manifold (M, g, ξ, φ, η) admitting a conformal η-Ricci soliton (g, ξ, λ, µ).
We know from definition 2.1 that the manifold is ξ-projectively flat if P(X,Y)ξ = 0, ∀X,Y ∈ T M.
Then putting Z = ξ in (2.14) we obtain

P(X,Y)ξ = R(X,Y)ξ −
1

n − 1
[S (Y, ξ)X − S (X, ξ)Y]. (5.7)

Now since it is given that (g, ξ, λ, µ) admits a conformal η-Ricci soliton, using (2.8) and (3.4) in the
above (5.7), we obtain

P(X,Y)ξ =

1 +
ε( p

2 + 1
n ) − ελ − µ
n − 1

 [η(X)Y − η(Y)X].

In view of (3.5) the above equation finally becomes P(X,Y)ξ = 0. Hence we have the following
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Proposition 5.3. An n-dimensional ε-Kenmotsu manifold (M, g, ξ, φ, η) admitting a conformal η-Ricci
soliton (g, ξ, λ, µ) is ξ-projectively flat.

Again consider an n-dimensional ε-Kenmotsu manifold (M, g, ξ, φ, η) admitting a conformal η-Ricci
soliton (g, ξ, λ, µ). Then from definition 2.2 we know that an ε-Kenmotsu manifold is ξ-concircularly
flat if C(X,Y)ξ = 0, ∀X,Y ∈ T M. So taking Z = ξ in (2.15) we get

C(X,Y)ξ = R(X,Y)ξ −
εr

n(n − 1)
[η(Y)X − η(X)Y]. (5.8)

Using (2.8) in (5.8) we obtain

C(X,Y)ξ = [1 +
εr

n(n − 1)
][η(X)Y − η(Y)X].

Thus from the above we can conclude that C(X,Y)ξ = 0 if and only if, [1 + εr
n(n−1) ] = 0, i.e., if and only

if, r = −εn(n − 1). Again since (g, ξ, λ, µ) is a conformal η-Ricci soliton, the Eq (3.3) holds and thus
contracting (3.3) we obtain r = [( p

2 + 1
n ) − λ − µ]n − (µ − 1). Thus combining both the values of r we

have, λ = ( p
2 + 2

n ) − µ

n − 2ε. Therefore we can state

Proposition 5.4. An n-dimensional ε-Kenmotsu manifold (M, g, ξ, φ, η) admitting a conformal η-Ricci
soliton (g, ξ, λ, µ) is ξ-concircularly flat if and only if, λ = ( p

2 + 2
n ) − µ

n − 2ε.

We now assume that an n-dimensional ε-Kenmotsu manifold (M, g, ξ, φ, η) admits a conformal
η-Ricci soliton (g, ξ, λ, µ) which satisfies the curvature condition Q · C = 0, where C denotes the
concircular curvature tensor of the manifold. Then we can write

Q(C(X,Y)Z) −C(QX,Y)Z −C(X,QY)Z −C(X,Y)QZ = 0. (5.9)

Using (2.15) in (5.9) yields

Q(R(X,Y)Z) − R(QX,Y)Z − R(X,QY)Z − R(X,Y)QZ

+
2r

n(n − 1)
[S (Y,Z)X − S (X,Z)Y] = 0. (5.10)

Taking inner product of (5.10) with respect to the vector field ξ we get

η(Q(R(X,Y)Z)) − η(R(QX,Y)Z) − η(R(X,QY)Z)

− η(R(X,Y)QZ) +
2r

n(n − 1)
[S (Y,Z)η(X) − S (X,Z)η(Y)] = 0.

Putting Z = ξ in above we obtain

η(Q(R(X, ξ)Z)) − η(R(QX, ξ)Z) − η(R(X,Qξ)Z)

− η(R(X, ξ)QZ) +
2r

n(n − 1)
[S (ξ,Z)η(X) − S (X,Z)] = 0. (5.11)
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Again from (2.9) we can derive

η(Q(R(X, ξ)Z)) = η(R(X,Qξ)Z) = (n − 1)[εη(X)η(Z) − g(X,Z)], (5.12)

η(R(QX, ξ)Z) = η(R(X, ξ)QZ) = ε[S (X,Z) + (n − 1)η(X)η(Z)]. (5.13)

By virtue of (5.12) and (5.13), the Eq (5.11) becomes

ε[(n − 1)η(X)η(Z) + S (X,Z)] −
r

n(n − 1)
[S (ξ,Z)η(X) − S (X,Z)] = 0.

Using (2.12) in above we arrive at

[ε +
r

n(n − 1)
][(n − 1)η(X)η(Z) + S (X,Z)] = 0.

Hence we can conclude that either r = −εn(n − 1) or,

S (X,Z) = −(n − 1)η(X)η(Z). (5.14)

Now combining Eqs (5.14) and (3.3), we get

[(λ + ε) − (
p
2

+
1
n

)]g(X,Z) + (µ − n)η(X)η(Z) = 0.

Taking Z = ξ in above yields

[ε(λ − (
p
2

+
1
n

)) + (µ + 1 − n)]η(X) = 0, ∀X ∈ T M.

Since η(X) , 0 always, from the above we can conclude that λ = ( p
2 + 1

n ) + ε(n − µ − 1). Hence we can
state the following

Theorem 5.5. Let (M, g) be an n-dimensional ε-Kenmotsu manifold admitting a conformal η-Ricci
soliton (g, ξ, λ, µ). If the manifold satisfies the curvature condition Q · C = 0, then either the scalar
curvature of the manifold is constant or the manifold is a special type of η-Einstein manifold of the
form (5.14) and the scalars λ and µ are related by λ = ( p

2 + 1
n ) + ε(n − µ − 1).

We conclude this section by this result on W2-curvature tensor. For this let us consider an n-
dimensional ε-Kenmotsu manifold admitting a conformal η-Ricci soliton (g, ξ, λ, µ) and assume that
the manifold satisfies the curvature condition W2(ξ,Y) · S = 0. Then we can write

S (W2(ξ,Y)Z,U) + S (Z,W2(ξ,Y)U) = 0, ∀Y,Z,U ∈ T M.

Putting U = ξ in above we get

S (W2(ξ,Y)Z, ξ) + S (Z,W2(ξ,Y)ξ) = 0. (5.15)

Now taking X = ξ in (2.16) we obtain

W2(ξ,Y)Z = R(ξ,Y)Z +
1

n − 1
[εη(Z)QY − g(Y,Z)Qξ].
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Using (2.9) in above yields

W2(ξ,Y)Z = η(Z)Y − εg(Y,Z)ξ +
1

n − 1
[εη(Z)QY − g(Y,Z)Qξ]. (5.16)

putting Z = ξ in (5.16) we arrive at

W2(ξ,Y)ξ = Y − η(Y)ξ +
ε

n − 1
[QY − η(Y)Qξ]. (5.17)

Using (5.16) and (5.17) in the Eq (5.15) and taking (2.1), (2.12) into account, we get

S (Y,Z) + ε
n−1 [S (Z,QY) − η(Y)S (Z,Qξ)]

+ ε(n − 1)g(Y,Z) − εη(Z)η(QY) + g(Y,Z)η(Qξ) = 0. (5.18)

Taking Y = ξ and taking (2.12) and (2.13) into account, the previous equation identically satisfies:

ε(n − 1)g(ξ,Z) + (n − 1)η(Z) − ε(n − 1)g(ξ,Z) + S (Z, ξ) − S (Z, ξ)(n − 1)eta(Z) = 0.
(5.19)

Thus we arrive at the following

Theorem 5.6. Every n-dimensional ε-Kenmotsu manifold (M, g) admitting a conformal η-Ricci soliton
(g, ξ, λ, µ) satisfies the curvature condition W2(ξ,Y) · S = 0.

6. Conformal η-Ricci solitons on ε-Kenmotsu manifolds with torse-forming vector field

A vector field V on an n-dimensional ε-Kenmotsu manifold is said to be torse-forming vector
field [56] if

∇XV = f X + γ(X)V, (6.1)

where f is a smooth function and γ is a 1-form.

Now let (g, ξ, λ, µ) be a conformal η-Ricci soliton on an ε-Kenmotsu manifold (M, g, ξ, φ, η) and
assume that the Reeb vector field ξ of the manifold is a torse-forming vector field. Then ξ being a
torse-forming vector field, by definiton from Eq (6.1) we have

∇Xξ = f X + γ(X)ξ, (6.2)

∀X ∈ T M, f being a smooth function and γ is a 1-form.
Recalling the Eq (2.6) and taking inner product on both sides with ξ we can write

g(∇Xξ, ξ) = εg(X, ξ) − εη(X)g(ξ, ξ),

which, in view of (2.2), reduces to
g(∇Xξ, ξ) = 0. (6.3)

Again from the Eq (6.2), applying inner product with ξ we obtain

g(∇Xξ, ξ) = ε fη(X) + εγ(X). (6.4)
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Combining (6.3) and (6.4) we get, γ = − fη. Thus for torse-forming vector field ξ in ε-Kenmotsu
manifolds, we have

∇Xξ = f (X − η(X)ξ). (6.5)

Since (g, ξ, λ, µ) is a conformal η-Ricci soliton, from (1.2) we can write

g(∇Xξ,Y) + g(∇Yξ, X) + 2S (X,Y) + [2λ − (p +
2
n

)]g(X,Y) + 2µη(X)η(Y) = 0.

In view of (6.5) the above becomes

S (X,Y) = [(
p
2

+
1
n

) − (λ + f )]g(X,Y) + (ε f − µ)η(X)η(Y). (6.6)

This implies that the manifold is an η-Einstein manifold. Therefore we have the following

Theorem 6.1. Let (g, ξ, λ, µ) be a conformal η-Ricci soliton on an n-dimensional ε-Kenmotsu manifold
(M, g), with torse-forming vector field ξ, then the manifold becomes an η-Einstein manifold of the
form (6.6).

In particular if ξ is spacelike, i.e., ε = 1, then for µ = f , the Eq (6.6) reduces to

S (X,Y) = [(
p
2

+
1
n

) − (λ + f )]g(X,Y), (6.7)

which implies that the manifold is an Einstein manifold. Similarly for ξ timelike and for µ = − f ,
from (6.6) we can say that the manifold becomes an Einstein manifold. Therefore we can state

Corollary 6.2. Let (g, ξ, λ, µ) be a conformal η-Ricci soliton on an n-dimensional ε-Kenmotsu manifold
(M, g), with torse-forming vector field ξ, then the manifold becomes an Einstein manifold according as
ξ is spacelike and µ = f , or ξ is timelike and µ = − f .

7. Gradient conformal η-Ricci soliton on ε-Kenmotsu manifold

This section is devoted to the study of ε-Kenmotsu manifolds admitting gradient conformal η-Ricci
solitons and we try to characterize the potential vector field of the soliton. First, we prove the following
lemma which will be used later in this section.

Lemma 7.1. On an n-dimensional ε-Kenmotsu manifold (M, g, φ, ξ, η), the following relations hold

g((∇ZQ)X,Y) = g((∇ZQ)Y, X), (7.1)
(∇ZQ)ξ = −εQZ − (n − 1)Z, (7.2)

for all smooth vector fields X,Y,Z on M.

Proof. Since we know that the Ricci tensor is symmetric, we have g(QX,Y) = g(X,QY). Covariantly
differentiating this relation along Z and using g(QX,Y) = S (X,Y) we can easily obtain (7.1).
To prove the second part, let us recall Eq (2.13) and taking its covariant derivative in the direction of
an arbitrary smooth vector field Z we get

(∇ZQ)ξ + Q(∇Zξ) + ε(n − 1)∇Zξ = 0. (7.3)

In view of (2.6) and (2.13), the previous equation gives the desired result (7.2). This completes the
proof. �
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Now, we consider ε-Kenmotsu manifolds admitting gradient conformal η-Ricci solitons i.e., when
the vector field V is gradient of some smooth function f on M. Thus if V = D f , where D f = grad f ,
then the conformal η-Ricci soliton equation becomes

Hess f + S + [λ − (
p
2

+
1
n

)]g + µη ⊗ η = 0, (7.4)

where Hess f denotes the Hessian of the smooth function f . In this case the vector field V is called the
potential vector field and the smooth function f is called the potential function.

Lemma 7.2. If (g,V, λ, µ) is a gradient conformal η-Ricci soliton on an n-dimensional ε-Kenmotsu
manifold (M, g, φ, ξ, η), then the Riemannian curvature tensor R satisfies

R(X,Y)D f = [(∇Y Q)X − (∇XQ)Y] + εµ[η(X)Y − η(Y)X]. (7.5)

Proof. Since the data (g,V, λ, µ) is a gradient conformal η-Ricci soliton, Eq (7.4) holds and it can be
rewritten as

∇XD f = −QX − [λ − (
p
2

+
1

2n + 1
)]X − µη(X)ξ, (7.6)

for all smooth vector field X on M and for some smooth function f such that V = D f = grad f .
Covariantly diffrentiating the previous equation along an arbitrary vector field Y and using (2.6) we
obtain

∇Y∇XD f = −∇Y(QX) − [λ − (
p
2

+
1

2n + 1
)]∇Y X

−µ[(∇Yη(X))ξ + ε(Y − η(Y)ξ)η(X)]. (7.7)

Interchanging X and Y in (7.7) gives

∇X∇Y D f = −∇X(QY) − [λ − (
p
2

+
1

2n + 1
)]∇XY

−µ[(∇Xη(Y))ξ + ε(X − η(X)ξ)η(Y)]. (7.8)

Again in view of (7.6) we can write

∇[X,Y]D f = −Q(∇XY − ∇Y X) − µη(∇XY − ∇Y X)ξ

−[λ − (
p
2

+
1

2n + 1
)](∇XY − ∇Y X). (7.9)

Therefore substituting the values from (7.7), (7.8) (7.9) in the following well-known Riemannian
curvature formula

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z,

we obtain our desired expression (7.5). This completes the proof. �

Remark 7.3. A particular case of the above result for the case ε = 1 is proved in Lemma 4.1 in the
paper [18].

Now we proceed to prove our main result of this section.
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Theorem 7.4. Let (M, g, φ, ξ, η) be an n-dimensional ε-Kenmotsu manifold admitting a gradient
conformal η-Ricci soliton (g,V, λ, µ), then the potential vector field V is pointwise collinear with the
characteristic vector field ξ.

Proof. Recalling the Eq (2.8) and taking its inner product with D f yields

g(R(X,Y)ξ,D f ) = (Y f )η(X) − (X f )η(Y).

Again we know that g(R(X,Y)ξ,D f ) = −g(R(X,Y)D f , ξ) and in view of this the previous equation
becomes

g(R(X,Y)D f , ξ) = (X f )η(Y) − (Y f )η(X). (7.10)

Now taking inner product of (7.5) with ξ and using (7.2) we obtain

g(R(X,Y)D f , ξ) = 0. (7.11)

Thus combining (7.10) and (7.11) we arrive at

(X f )η(Y) = (Y f )η(X).

Taking Y = ξ in the foregoing equation gives us (X f ) = (ξ f )η(X), which essentially implies g(X,D f ) =

g(X, ε(ξ f )ξ). Since this equation is true for all X, we can conclude that

V = D f = ε(ξ f )ξ. (7.12)

Hence, V is pointwise collinear with ξ and this completes the proof. �

Remark 7.5. Since, the above result is independent of ε, it is also true for ε = 1, i.e., for the case of
Kenmotsu manifold (for details see [18]).

Corollary 7.6. If (g,V, λ, µ) is a gradient conformal η-Ricci soliton on an n-dimensional ε-Kenmotsu
manifold (M, g, φ, ξ, η), then the direction of the potential vector field V is same or opposite to the
direction of the characteristic vector field ξ, according as ξ is spacelike or timelike vector field.

Again covariantly differentiating (7.12) and then combining it with (7.6), and after that taking X = ξ

in the derived expression we obtain

∇2
ξ f = λ + µ − (

p
2

+
1
n

) − ε(n − 1).

Hence we can conclude the following

Corollary 7.7. If (g,V = D f , λ, µ) is a gradient conformal η-Ricci soliton on an n-dimensional ε-
Kenmotsu manifold (M, g, φ, ξ, η), then at the particular point ξ, the potential function f satisfies the
Laplace’s equation ∇2 f = 0, if and only if,

λ + µ = (
p
2

+
1
n

) + ε(n − 1).
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8. Example of a 5-dimensional ε-Kenmotsu manifold admitting conformal η-Ricci soliton

Let us consider the 5-dimensional manifold M = {(u1, u2, v1, v2,w) ∈ R5 : w , 0}. Define a set of
vector fields {ei : 1 ≤ i ≤ 5} on the manifold M given by

e1 = εw
∂

∂u1
, e2 = εw

∂

∂u2
, e3 = εw

∂

∂v1
, e4 = εw

∂

∂v2
, e5 = −εw

∂

∂w
.

Let us define the indefinite metric g on M by

g(ei, e j) =

{
ε, for i = j
0, for i , j

for all i, j = 1, 2, 3, 4, 5. Now considering e5 = ξ, let us take the 1-form η, on the manifold M, defined
by

η(U) = εg(U, e5) = εg(U, ξ), ∀U ∈ T M.

Then it can be observed that η(e5 = 1). Let us define the (1, 1) tensor field φ on M as

φ(e1) = e2, φ(e2) = −e1, φ(e3) = e4, φ(e4) = −e3, φ(e5) = 0.

Then using the linearity of g and φ it can be easily checked that

φ2(U) = −U + η(U)ξ, g(φU, φV) = g(U,V) − εη(U)η(V), ∀U,V ∈ T M.

Hence the structure (φ, ξ, η, g, ε) defines an indefinite almost contact structure on the manifold M.
Now, using the definitions of Lie bracket, direct computations give us
[ei, e5] = εei; ∀i = 1, 2, 3, 4, 5 and all other [ei, e j] vanishes. Again the Riemannian connection ∇ of
the metric g is defined by the well-known Koszul’s formula which is given by

2g(∇XY,Z) = Xg(Y,Z) + Yg(Z, X) − Zg(X,Y)
−g(X, [Y,Z]) + g(Y, [Z, X]) + g(Z, [X,Y]).

Using the above formula one can easily calculate that
∇eiei = −εe5, ∇eie5 = −εei; for i=1,2,3,4 and all other ∇eie j vanishes. Thus it follows that
∇Xξ = ε(X − η(X)ξ), ∀X ∈ T M. Therefore the manifold (M, g) is a 5-dimensional ε-Kenmotsu
manifold.
Now using the well-known formula R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z the non-vanishing
components of the Riemannian curvature tensor R can be easily obtained as

R(e1, e2)e2 = R(e1, e3)e3 = R(e1, e4)e4 = R(e1, e5)e5 = −e1,

R(e1, e2)e1 = e2, R(e1, e3)e1 = R(e1, e3)e2 = R(e1, e3)e5 = e3,

R(e1, e2)e3 = R(e1, e2)e4 = R(e1, e2)e5 = −e2, R(e1, e2)e4 = −e3,

R(e1, e2)e2 = R(e1, e2)e1 = R(e1, e2)e4 = R(e1, e2)e3 = e5,

R(e1, e2)e1 = R(e1, e2)e2 = R(e1, e2)e3 = R(e1, e2)e5 = e4.
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From the above values of the curvature tensor, we obtain the components of the Ricci tensor as
follows

S (e1, e1) = S (e2, e2) = S (e3, e3) = S (e4, e4) = S (e5, e5) = −4. (8.1)

Therefore using (8.1) in the Eq (3.3) we can calculate λ = 3ε + ( p
2 + 1

5 ) and µ = 1. Hence we can say
that for λ = 3ε + ( p

2 + 1
5 ) and µ = 1, the data (g, ξ, λ, µ) defines a 5-dimensional conformal η-Ricci

soliton on the manifold (M, g, φ, ξ, η).

9. Conclusions

The effect of conformal η-Ricci solitons have been studied within the framework of ε-Kenmotsu
manifolds. Here we have characterized ε-Kenmotsu manifolds, which admit conformal η-Ricci soliton,
in terms of Einstein and η-Einstein manifolds. It is well-known that for ε = 1 and spacelike Reeb
vector field ξ, the ε-Kenmotsu manifold becomes a Kenmotsu manifold. Also we know that Einstein
manifolds, Kenmotsu manifolds are very important classes of manifolds having extensive use in
mathematical physics and general relativity. Hence it is interesting to investigate conformal η-Ricci
solitons on Sasakian manifolds as well as in other contact metric manifolds. Also there is further
scope of research in this direction within the framework of various complex manifolds like Kaehler
manifolds, Hopf manifolds etc.
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On trans-Sasakian 3-manifolds as η-Einstein solitons
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The present paper is to deliberate the class of 3-dimensional trans-Sasakian manifolds which

admits η-Einstein solitons. We have studied η-Einstein solitons on 3-dimensional trans-Sasakian

manifolds where the Ricci tensors are Codazzi type and cyclic parallel. We have also discussed some

curvature conditions admitting η-Einstein solitons on 3-dimensional trans-Sasakian manifolds and

the vector field is torse-forming. We have also shown an example of 3-dimensional trans-Sasakian

manifold with respect to η-Einstein soliton to verify our results.
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Introduction

In 2016, G. Catino and L. Mazzieri [7] introduced the notion of Einstein soliton, which can

be viewed as a self-similar solution to the Einstein flow
∂g

∂t
= −2

(

S −
r

2
g
)

,

where g is the Riemannian metric, S is the Ricci tensor and r is the scalar curvature.

It can be easily seen that the Einstein soliton is analogous to the Ricci soliton, which is also

generated by a self-similar solution to the very famous geometric revolution equation Ricci

flow. The term “Ricci soliton” [11] arose as a need for a more general self-similar solution, to the

Ricci flow equation, than the uniformly shrinking or expanding solutions in case of Einstein

manifolds. It is a well-known fact now that the study of Ricci soliton has tremendous contribu-

tion in solving the longstanding Thurston’s geometric conjecture. Similarly it is also interesting

to study the Einstein soliton from various directions to solve many physical and geometrical

problems. In [7], the authors characterized the nature of complete three-dimensional, posi-

tively curved, Riemannian manifold satisfying gradient Einstein soliton equation. Motivated

from their work, in this paper we consider a slight perturbation of the Einstein soliton by η ⊗ η,

called the η-Einstein soliton. The mathematical expression for the η-Einstein soliton [1] is given

by the following equation

Lξ g + 2S + (2λ − r)g + 2µη ⊗ η = 0, (1)

УДК 514.76, 514.764.22
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where Lξ denotes the Lie derivative along the direction of the vector field ξ, S is the Ricci

tensor, r is the scalar curvature and λ, µ are real constants. The η-Einstein soliton is called

shrinking if λ < 0, steady if λ = 0 and expanding if λ > 0. In particular, if µ = 0, the

η-Einstein soliton reduces to the Einstein soliton (g, ξ, λ).

J. T. Cho and M. Kimura [6] introduced the concept of η-Ricci soliton and later C. Calin and

M. Crasmareanu [5] studied it on Hopf hypersufaces in complex space forms. A Riemannian

manifold (M, g) is said to admit an η-Ricci soliton if for a smooth vector field V, the metric g

satisfies the following equation

Lξ g + 2S + 2λg + 2µη ⊗ η = 0, (2)

where Lξ is the Lie derivative along the direction of ξ, S is the Ricci tensor and λ, µ are real

constants. It is to be noted that if the manifold has constant scalar curvature, then the data

(g, ξ, λ − r
2 , µ) of the equation (1) satisfies the equation (2), i.e. the η-Einstein soliton reduces to

an η-Ricci soliton. Hence we can remark that the two notions are different for the manifolds of

non-constant scalar curvature and if the scalar curvature of the manifold is constant then the

concepts of η-Ricci soliton and η-Einstein soliton coincide.

In [18], the authors studied Ricci solitons within the framework of three-dimensional trans-

Sasakian manifolds. They proved that if a compact three-dimensional trans-Sasakian manifold

with constant scalar curvature admits Ricci soliton, then the manifold is either α-Sasakian or

β-Kenmotsu. Later T. Dutta et al. [8] investigated three-dimensional trans-Sasakian manifolds,

which admits conformal Ricci soliton. Furthermore they showed that on a three-dimensional

trans-Sasakian manifold, under some condition on the potential vector field, almost conformal

Ricci soliton reduces to conformal Ricci soliton. Very recently, in [15] the author studied η-Ricci

soliton on three-dimensional trans-Sasakian manifolds satisfying various tensorial conditions

S · R = 0, R · S = 0, W2 · S = 0 and S · W2 = 0.

Motivated by the above papers, here we propose to study various geometric aspects of

three-dimensional trans-Sasakian manifolds admitting η-Einstein solitons.

The paper is organised as follows. After a brief introduction, in Section 2, we recall some ba-

sic knowledge on trans-Sasakian manifolds. Section 3 deals with 3-dimensional trans-Sasakian

manifolds admitting η-Einstein solitons and also the nature of the soliton is dicussed. In this

section, we have constructed an example of a 3-dimensional trans-Sasakian manifold satisfy-

ing η-Einstein soliton. In Section 4, we have contrived η-Einstein solitons in 3-dimensional

trans-Sasakian manifolds in terms of Codazzi type and cyclic parallel Ricci tensor and charac-

terized the nature of the manifold. Sections 5, 6, 7, 8 are devoted to the study of some curvature

conditions R · S = 0, W2 · S = 0, R · E = 0, B · S = 0, S · R = 0 admitting η-Einstein solitons in

3-dimensional trans-Sasakian manifold. In last section we have studied torse forming vector

field when 3-dimensional trans-Sasakian manifolds admitting η-Einstein solitons.

1 Preliminaries

An n-dimensional smooth Riemannian manifold (M, g) is said to be an almost contact met-

ric manifold [3] if it admits a (1, 1) tensor field φ, a characteristic vector field ξ, a global 1-form

η and an indefinite metric g on M satisfying the following relations
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φ2 = −I + η ⊗ ξ,

η(ξ) = 1, (3)

η(X) = g(X, ξ),

g(φX, φY) = g(X, Y) − η(X)η(Y), (4)

g(X, φY) + g(Y, φX) = 0,

for all vector fields X, Y ∈ TM, where TM is the tangent bundle of the manifold M. Also it can

be easily seen that φ(ξ) = 0, η(φX) = 0 and rank of φ is (n − 1).

The geometry of the almost Hermitian manifold (M × R, G, J) gives rise to the geometry

of the almost contact metric manifold (M, g, φ, ξ, η), where G is product metric of the product

manifold M × R with the complex structure J defined by

J(X, f
d

dt
) =

(

φX − f ξ, η(X)
d

dt

)

,

for all vector fields X on the manifold M and smooth function f on the product manifold

M × R. An almost contact metric manifold (M, g, φ, ξ, η) is called a trans-Sasakian manifold if

the product manifold (M × R, G, J) belongs to the class W4 [10]. The notion of trans-Sasakian

manifolds was introduced by J.A. Oubina [14] and later J.C. Marrero [12] completely character-

ized the local structures of trans-Sasakian manifolds of dimension n ≥ 5. The expression for

which an almost contact metric manifold (M, g, φ, ξ, η) becomes a trans-Sasakian manifold is

given by

(∇Xφ)(Y) = α[g(X, Y)ξ − η(Y)X] + β[g(φX, Y)ξ − η(Y)φX], (5)

for all X, Y ∈ TM and for some smooth functions α, β on the manifold M. Then such kind

of manifold is called a trans-Sasakian manifold of type (α, β). In particular trans-Sasakian

manifolds of type (0, 0), (α, 0) and (0, β) are called cosymplectic, α-Sasakian and β-Kenmotsu

manifolds respectively.

In what follows, by a trans-Sasakian 3-manifold, we mean a 3-dimensional trans-Sasakian

manifold (M, g, φ, ξ, η) of type (α, β) and we will use the notation (M, g) to denote it through-

out this article. Now from the expression (5) it can be derived that

∇Xξ = −αφ(X) + β(X − η(X)ξ), (6)

(∇Xη)(Y) = −αg(φ(X), Y) + βg(φ(X), φ(Y)), (7)

for all vector fields X, Y in TM. Again from equation (20) of corollary 4.2 in the paper [19], the

Riemannian curvature tensor in a trans-Sasakian 3-manifold (M, g) is given by

R(X,Y)Z =
( r

2
+ 2ξβ − 2(α2 − β2)

)

[

g(Y, Z)X − g(X, Z)Y
]

− g(Y, Z)
[( r

2
+ ξβ − 3(α2 − β2)

)

η(X)ξ − η(X)(φ(grad α)−grad β) + (Xβ + (φX)α)ξ
]

+ g(X, Z)
[( r

2
+ ξβ − 3(α2 − β2)

)

η(Y)ξ − η(Y)(φ(grad α)−grad β) + (Yβ + (φY)α)ξ
]

−
[

(Zβ + (φZ)α)η(Y) + (Yβ + (φY)α)η(Z) +
( r

2
+ ξβ − 3(α2 − β2)

)

η(Y)η(Z)
]

X

+
[

(Zβ + (φZ)α)η(X) + (Xβ + (φX)α)η(Z) +
( r

2
+ ξβ − 3(α2 − β2)

)

η(X)η(Z)
]

Y.



On trans-Sasakian 3-manifolds as η-Einstein solitons 463

Furthermore, in a trans-Sasakian 3-manifold (M, g), if the functions α, β are constants then,

taking Z = ξ (similarly for the second relation taking X = ξ and taking X = Z = ξ for the

third relation) in the above equation, the following relations can easily be deduced

R(X, Y)ξ = (α2 − β2)[η(Y)X − η(X)Y], (8)

R(ξ, X)Y = (α2 − β2)[g(X, Y)ξ − η(Y)X], (9)

R(ξ, X)ξ = (α2 − β2)[η(X)ξ − X]. (10)

Also, taking both α, β constant in corollary 4.2 in [19], we obtain the relations for the Ricci

tensor

S(X, Y) =
[ r

2
− (α2 − β2)

]

g(X, Y) −
[ r

2
− 3(α2 − β2)

]

η(X)η(Y),

S(X, ξ) = 2(α2 − β2)η(X), (11)

for all vector fields X, Y in TM and where R is the curvature tensor and S is the Ricci tensor.

Definition 1. A trans-Sasakian 3-manifold (M, g) is said to be an η-Einstein manifold if its

Ricci tensor S is of the form

S(X, Y) = ag(X, Y) + bη(X)η(Y),

for all X, Y ∈ TM and smooth functions a, b on the manifold (M, g).

2 η-Einstein solitons on trans-Sasakian 3-manifolds

Let us consider a trans-Sasakian 3-manifold (M, g) admitting an η-Einstein soliton given

by the data (g, ξ, λ, µ). Then from equation (1) we can write

(Lξ g)(X, Y) + 2S(X, Y) + [2λ − r]g(X, Y) + 2µη(X)η(Y) = 0 (12)

for all X, Y ∈ TM.

Again from the well-known formula (Lξ g)(X, Y) = g(∇Xξ, Y) + g(∇Yξ, X) of Lie-deriva-

tive and using (6), we obtain for a trans-Sasakian 3-manifold

(Lξ g)(X, Y) = 2β[g(X, Y) − 2βη(X)η(Y)]. (13)

Now in view of the equations (12) and (13) we get

S(X, Y) =
( r

2
− λ − β

)

g(X, Y) + (β − µ)η(X)η(Y). (14)

This shows that the manifold (M, g) is an η-Einstein manifold. Also from equation (14) replac-

ing Y = ξ we find that

S(X, ξ) =
( r

2
− λ − µ

)

η(X). (15)

Compairing the above equation (15) with (11) yields

r = 4(α2 − β2) + 2λ + 2µ. (16)

Again, considering an orthonormal basis {e1, e2, e3} of (M, g) and then setting X = Y = ei in

equation (14) and summing over i = 1, 2, 3 we get

r = 6λ + 4β + 2µ. (17)

Finally combining equations (16) and (17) we arrive at

λ = (α2 − β2)− β. (18)

Thus the above discussion leads to the following result.
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Theorem 1. If a trans-Sasakian 3-manifold (M, g) admits an η-Einstein soliton (g, ξ, λ, µ),

then the manifold (M, g) becomes an η-Einstein manifold of constant scalar curvature

r = 6λ + 4β + 2µ. Furthermore, the soliton is shrinking, steady or expanding according as

α2
< β(β + 1), α2 = β(β + 1), α2

> β(β + 1) respectively.

Example 1. Let us consider the 3-dimensional manifold M = {(u, v, w) ∈ R
3 : w 6= 0}. Define

a linearly independent set of vector fields {ei : 1 ≤ i ≤ 3} on the manifold M given by

e1 = e2w ∂

∂u
, e2 = e2w ∂

∂v
, e3 =

∂

∂w
.

Let us define the Riemannian metric g on M by

g(ei, ej) =

{

1, for i = j,

0, for i 6= j,

for all i, j = 1, 2, 3. Now considering e3 = ξ, let us take the 1-form η, on the manifold M,

defined by η(U) = g(U, e3), for all U ∈ TM. Then it can be observed that η(ξ) = 1. Let us

define the (1, 1) tensor field φ on M as

φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.

Using the linearity of g and φ it can be easily checked that

φ2(U) = −U + η(U)ξ, g(φU, φV) = g(U, V)− η(U)η(V), ∀U, V ∈ TM.

Hence the structure (g, φ, ξ, η) defines an almost contact metric structure on the manifold M.

Now, using the definitions of Lie bracket, after some direct computations we get

[e1, e2] = 0, [e1, e3] = −2e1, [e2, e3] = −2e2.

Again the Riemannian connection ∇ of the metric g is defined by the well-known Koszul’s

formula, which is given by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z, X) − Zg(X, Y) − g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y]).

Using the above formula one can easily calculate that

∇e1e1 = 2e3, ∇e1e2 = 0, ∇e1e3 = −2e1,

∇e2e1 = 0, ∇e2e2 = 2e3, ∇e2 e3 = −2e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Thus from the above relations it follows that the manifold (M, g) is a trans-Sasakian

3-manifold. Now using the well-known formula R(X, Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z

the non-vanishing components of the Riemannian curvature tensor R can be easily obtained

as

R(e1, e2)e2 = R(e1, e3)e3 = −4e1,

R(e2, e3)e3 = R(e3, e1)e1 = −4e2,

R(e3, e2)e2 = 4e2, R(e2, e1)e1 = 4e3.
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Hence we can calculate the components of the Ricci tensor as follows

S(e1, e1) = 0, S(e2, e2) = 0, S(e3, e3) = −8.

Therefore in view of the above values of the Ricci tensor, from the equation (1) we can calculate

λ = −2 and µ = 6. Hence we can say that the data (g, ξ,−2, 6) defines an η-Einstein soliton on

the trans-Sasakian 3-manifold (M, g). Also we can see that the manifold (M, g) is a manifold

of constant scalar curvature r = −8 and hence the theorem 1 is verified.

Next we consider a trans-Sasakian 3-manifold (M, g) and assume that it admits an

η-Einstein soliton (g, V, λ, µ) such that V is pointwise collinear with ξ, i.e. V = bξ for some

function b. Then from the equation (1) it follows that

bg(∇Xξ, Y) + (Xb)η(Y) + bg(∇Yξ, X) + (Yb)η(X)

+ 2S(X, Y) + (2λ − r)g(X, Y) + 2µη(X)η(Y) = 0.

Then using the equation (6) in above we arrive at

(2bβ + 2λ − r)g(X, Y) + (Xb)η(Y) + (Yb)η(X) + 2S(X, Y) + 2(bβ + µ)η(X)η(Y) = 0. (19)

Replacing Y = ξ in the above equation yields

(Xb) + (ξb)η(X) + 2S(X, ξ) + (2λ + 2µ − r)η(X) = 0. (20)

Again taking X = ξ in (20) and by virtue of (11) we arrive at 2(ξb) = (r− 2λ− 2µ)− 4(α2 − β2).

Using this value in (20) and recalling (11), we can write

db =
[ r

2
− λ − µ − 2(α2 − β2)

]

η. (21)

Now taking exterior differentiation on both sides of (21) and using the famous Poincare’s

lemma, i.e. d2 = 0, finally we arrive at r = 2λ + 2µ + 4(α2 − β2). Therefore, the equation

(21) gives us db = 0, i.e. the function b is constant. Then the equation (19) reduces to

S(X, Y) =
( r

2
− λ − bβ

)

g(X, Y) + (bβ − µ)η(X)η(Y)

for all X, Y ∈ TM. Hence we can state the following result.

Theorem 2. If a trans-Sasakian 3-manifold (M, g) admits an η-Einstein soliton (g, V, λ, µ) such

that V is pointwise collinear with ξ, then V is constant multiple of ξ and the manifold (M, g)

becomes an η-Einstein manifold of constant scalar curvature r = 2λ + 2µ + 4(α2 − β2).

3 η-Einstein solitons on trans-Sasakian 3-manifolds with Codazzi type and

cyclic parallel Ricci tensor

The purpose of this section is to study η-Einstein solitons in trans-Sasakian 3-manifolds

having certain special types of Ricci tensor, namely Codazzi type Ricci tensor and cyclic paral-

lel Ricci tensor.

Definition 2 ([9]). A trans-Sasakian 3-manifold is said to have Codazzi type Ricci tensor if its

Ricci tensor S is non-zero and satisfies the following relation

(∇XS)(Y, Z) = (∇YS)(X, Z), ∀X, Y, Z ∈ TM. (22)
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Let us consider a trans-Sasakian 3-manifold having Codazzi type Ricci tensor and admits

an η-Einstein soliton (g, ξ, λ, µ), then equation (14) holds. Now covariantly differentiating (14)

with respect to an arbitrary vector field X and then using (7) we get

(∇XS)(Y, Z) = 2(β − µ)[η(Y)(−αg(φX, Z) + βg(φX, φZ))

+ η(Z)(−αg(φX, Y) + βg(φX, φY))].
(23)

Similarly we can compute

(∇YS)(X, Z) = 2(β − µ)[η(X)(−αg(φY, Z) + βg(φY, φZ))

+ η(Z)(−αg(φY, X) + βg(φY, φX))].
(24)

Since the manifold has Codazzi type Ricci tensor, using (23) and (24) in the (22) and then

recalling (4) we arrive at

2(β − µ)[η(Y)(−αg(φX, Z) + βg(X, Z))

− η(X)(−αg(φY, Z) + βg(Y, Z)) − 2αη(Z)g(φX, Y)] = 0.
(25)

Putting Z = ξ in above and in view of (3) we finally obtain

4α(µ − β)g(φX, Y) = 0 (26)

forall X, Y ∈ TM. Therefore from (25) we can conclude that either α = 0 or µ = β. Hence we

have the following result.

Theorem 3. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the Ricci tensor of the manifold is of Codazzi type then the manifold becomes a

β-Kenmotsu manifold provided µ 6= β.

Now using α = 0 in equation (18) we get λ = −β(β + 1). Thus we can state the following

assertion.

Corollary 1. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ) with µ 6= β. If the Ricci tensor of the manifold is of Codazzi type then the soli-

ton is shrinking if β < −1 or β > 0; steady if β = −1 or β = 0; and expanding if −1 < β < 0

respectively.

Again from the (25) we can write that µ = β if α 6= 0. Then from equation (14) we obtain

S(X, Y) =
( r

2
− λ − β

)

g(X, Y) (27)

for all X, Y ∈ TM. Then contracting the equation (26) we get r = 6λ + 6β. Hence in view of

this and (26) we have the following result.

Theorem 4. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the Ricci tensor of the manifold is of Codazzi type then the manifold becomes an

Einstein manifold of constant scalar curvature r = 6λ + 6β provided α 6= 0.

Definition 3 ([9]). A trans-Sasakian 3-manifold is said to have cyclic parallel Ricci tensor if its

Ricci tensor S is non-zero and satisfies the following relation

(∇XS)(Y, Z) + (∇YS)(Z, X) + (∇ZS)(X, Y) = 0 ∀X, Y, Z ∈ TM. (28)
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Let us consider a trans-Sasakian 3-manifold, having cyclic parallel Ricci tensor, admits an

η-Einstein soliton (g, ξ, λ, µ), then equation (14) holds. Now taking covariant differentiation of

(14) and using (7) we obtain relations (23) and (24). In a similar manner we get the following

(∇ZS)(X, Y) = 2(β − µ)[η(X)(−αg(φZ, Y) + βg(φZ, φY))

+ η(Y)(−αg(φZ, X) + βg(φZ, φX))].
(29)

Now since the manifold has cyclic parallel Ricci tensor, using the values from (23), (24) and

(29) in the equation (28) and then making use of (4) we arrive at

4β(β − µ)[η(X)g(φY, φZ) + η(Y)g(φZ, φX) + η(Z)g(φX, φY)] = 0.

Replacing Z = ξ in the above equation yields

4β(β − µ)g(φX, φY) = 0 (30)

for all X, Y ∈ TM. Since g(φX, φY) 6= 0 always, the above equation implies that either β = 0

or µ = β. Thus we can state the following result.

Theorem 5. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the manifold has cyclic parallel Ricci tensor, then the manifold becomes an

α-Sasakian manifold provided µ 6= β.

Now using β = 0 in equation (18) we get λ = α2
> 0. Therefore we have the following

assertion.

Corollary 2. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ) with µ 6= β. If the manifold has cyclic parallel Ricci tensor then the soliton is ex-

panding.

Again if β 6= 0 then from (30) it follows that µ = β. Therefore after a similar calculation like

equation (27) we can state the following assertion.

Theorem 6. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the manifold has cyclic parallel Ricci tensor, then the manifold becomes an Ein-

stein manifold of constant scalar curvature r = 6λ + 6β provided β 6= 0.

4 η-Einstein solitons on trans-Sasakian 3-manifolds satisfying R(ξ,X)·S=0

and W2(ξ, X) · S = 0

Let us first consider a trans-Sasakian 3-manifold, which admits an η-Einstein soliton

(g, ξ, λ, µ) and the manifold satisfies the curvature condition R(ξ, X) · S = 0. Then for all

X, Y, Z ∈ TM we can write

S(R(ξ, X)Y, Z) + S(Y, R(ξ, X)Z) = 0. (31)

Now using (14) in (31) we get

( r

2
− λ − β

)

g(R(ξ, X)Y, Z) + (β − µ)η(R(ξ, X)Y)η(Z)

+
( r

2
− λ − β

)

g(R(ξ, X)Z, Y) + (β − µ)η(R(ξ, X)Z)η(Y) = 0.
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In view of (9) the previous equation becomes

(α2 − β2)(β − µ)[g(X, Y)η(Z) + g(X, Z)η(Y) − 2η(X)η(Y)η(Z)] = 0.

Putting Z = ξ in the above equation and recalling (4), we obtain

(α2 − β2)(β − µ)g(φX, φY) = 0 (32)

for all X, Y ∈ TM. Since g(φX, φX) 6= 0 always and for non-trivial case α2 6= β2, we can

conclude from (32) that µ = β. Then from equation (14) we obtain

S(X, Y) =
( r

2
− λ − β

)

g(X, Y) (33)

for all X, Y ∈ TM. Then contracting (33) we get r = 6λ + 6β. Hence in view of this and

equation (33) we have the following result.

Theorem 7. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the manifold satisfies the curvature condition R(ξ, X) · S = 0, then the mani-

fold becomes an Einstein manifold of constant scalar curvature r = 6λ + 6β.

Our next result of this section is on W2-curvature tensor. It is an important curvature tensor,

which was introduced in 1970 by G.P. Pokhariyal and R.S. Mishra [16]. For this let us recall the

definition of W2-curvature tensor.

Definition 4. The W2-curvature tensor in a trans-Sasakian 3-manifold (M, g) is defined as

W2(X, Y)Z = R(X, Y)Z +
1

2

[

g(X, Z)QY − g(Y, Z)QX
]

. (34)

Now assume that (M, g) is a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ) and also the manifold satisfies the curvature condition W2(ξ, X) · S = 0. Then we

can write

S(W2(ξ, X)Y, Z) + S(Y, W2(ξ, X)Z) = 0, ∀X, Y, Z ∈ TM.

In view of (14) the above equation becomes

( r

2
− λ − β

)

[

g(W2(ξ, X)Y, Z) + g(W2(ξ, X)Z, Y)
]

+ (β − µ)
[

η(W2(ξ, X)Y)η(Z) + η(W2(ξ, X)Z)η(Y)
]

= 0.
(35)

Again from (14) it follows that

QX =
( r

2
− λ − β

)

X + (β − µ)η(X)ξ, (36)

which implies

Qξ =
( r

2
− λ − µ

)

ξ. (37)

Replacing X = ξ in (34) and then using equations (9), (36) and (37) we obtain

W2(ξ, Y)Z = Bg(Y, Z)ξ − Aη(Z)Y + (A − B)η(Y)η(Z), (38)
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where A = (α2 − β2)− 1
2(

r
2 − λ − β) and B = (α2 − β2)− 1

2(
r
2 − λ − µ). Taking inner product

of (38) with respect to the vector field ξ yields

η(W2(ξ, Y)Z) = B[g(Y, Z) − η(Y)η(Z)]. (39)

Using (38) and (39) in (35) and then taking Z = ξ we arrive at

(A − B)
[

2B −
( r

2
− λ − β

)]

[g(X, Y) − η(X)η(Y)] = 0,

which in view of (4) implies

(A − B)
[

2B −
( r

2
− λ − β

)]

g(φX, φY) = 0 (40)

for all X, Y ∈ TM. Since g(φX, φX) 6= 0 always, we can conclude from (40) that either A = B

or 2B = r
2 − λ − β. Thus recalling the values of A and B it implies that either µ = β or

2(α2 − β2) = r − 2λ − µ − β. (41)

Now for the case µ = β, proceeding similarly as the equation (33) we can say that the manifold

becomes an Einstein manifold. Again combining (41) with (16) we get

r = 2λ + 2β. (42)

Therefore we can state the following assertion.

Theorem 8. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the manifold satisfies the curvature condition W2(ξ, X) · S = 0, then either

the manifold becomes an Einstein manifold or it is a manifold of constant scalar curvature

r = 2λ + 2β.

Again in view of (17), equation (42) implies λ = −1
2 (µ + β). Hence we have the following

result.

Corollary 3. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ) with µ 6= β. If the manifold satisfies the curvature condition W2(ξ, X) · S = 0,

then the soliton is expanding, steady or shrinking according as µ < −β, µ = −β or µ > −β,

respectively.

5 Einstein semi-symmetric trans-Sasakian 3-manifolds admitting η-Einstein

solitons

Definition 5. A trans-Sasakian 3-manifold (M, g) is called Einstein semi-symmetric [17] if

R.E = 0, where E is the Einstein tensor given by

E(X, Y) = S(X, Y) −
r

3
g(X, Y) (43)

for all vector fields X, Y ∈ TM and r is the scalar curvature of the manifold.
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Now consider a trans-Sasakian 3-manifold is Einstein semi-symmetric, i.e. the manifold

satisfies the curvature condition R.E = 0. Then for all vector fields X, Y, Z, W ∈ TM we can

write E(R(X, Y)Z, W) + E(Z, R(X, Y)W) = 0. In view of (43) the last equation becomes

S(R(X, Y)Z, W) + S(Z, R(X, Y)W) =
r

3

[

g(R(X, Y)Z, W) + g(Z, R(X, Y)W)
]

. (44)

Replacing X = Z = ξ in (44) and using (9), (10) we arrive at

(α2 − β2)S(Y, W) = (α2 − β2)[η(Y)S(ξ, W) + η(W)S(ξ, Y) − g(Y, W)S(ξ, ξ)].

So, now in view of (11) the above equation finally yields

S(Y, W) = −2(α2 − β2)g(Y, W) + 4(α2 − β2)η(Y)η(W) (45)

for all Y, W ∈ TM. This implies that the manifold is an η-Einstein manifold.

Lemma 1. An Einstein semi-symmetric trans-Sasakian 3-manifold is an η-Einstein manifold.

Now let us assume that the Einstein semi-symmetric trans-Sasakian 3-manifold (M, g)

admits an η-Einstein soliton (g, ξ, λ, µ). Then equation (14) holds and combining (14) with

the above equation (45) we get r = 2λ + µ + β. Again recalling (17) in the last equation we

have λ = −1
4(µ + 3β).

Theorem 9. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the manifold is Einstein semi-symmetric, then the manifold becomes an

η-Einstein manifold of constant scalar curvature r = 2λ + µ + β and the soliton is expand-

ing, steady or shrinking according as µ < 3β, µ = 3β or µ > 3β respectively.

6 η-Einstein solitons on trans-Sasakian 3-manifolds satisfying B(ξ,X)·S=0

In 1949, S. Bochner [4] introduced the concept of the well-known Bochner curvature ten-

sor merely as a Kähler analogue of the Weyl conformal curvature tensor but the geometric

significance of it in the light of Boothby-Wangs fibration was presented later by D.E. Blair [2].

The notion of C-Bochner curvature tensor in a Sasakian manifold was introduced by M. Mat-

sumoto, G. Chūman [13] in 1969. The C-Bochner curvature tensor in trans-Sasakian 3-manifold

(M, g) is given by

B(X, Y)Z = R(X, Y)Z +
1

6

[

g(X, Z)QY− S(Y, Z)− g(Y, Z)QX+ S(X, Z)Y+g(φX, Z)QφY

− S(φY, Z)φX− g(φY, Z)QφX+ S(φX, Z)φY+ 2S(φX, Y)φZ+ 2g(φX, Y))QφZ

+ η(Y)η(Z)QX − η(Y)S(X, Z)ξ + η(X)S(Y, Z)ξ − η(X)η(Z)QY
]

−
D + 2

6

[

g(φX, Z)φY − g(φY, Z)φX + 2g(φX, Y)φZ
]

+
D

6

[

η(Y)g(X, Z)ξ − η(Y)η(Z)X + η(X)η(Z)Y − η(X)g(Y, Z)ξ
]

−
D − 4

6

[

g(X, Z)Y − g(Y, Z)X
]

,

(46)

where D = r+2
4 .
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Let us consider a trans-Sasakian 3-manifold (M, g), which admits an η-Einstein soliton

(g, ξ, λ, µ) and also the manifold satisfies the curvature condition B(ξ, X) · S = 0. Then for all

X, Y, Z ∈ TM we can write

S(B(ξ, X)Y, Z) + S(Y, B(ξ, X)Z) = 0. (47)

Now using (14) in (47) we get
( r

2
− λ − β

)

[g(B(ξ, X)Y, Z) + g(B(ξ, X)Z, Y)]

+ (β − µ)[η(B(ξ, X)Y)η(Z) + η(B(ξ, X)Z)η(Y)] = 0.
(48)

Again from (14) it follows that QX = ( r
2 − λ − β)X + (β − µ)η(X)ξ, which implies

Qξ =
( r

2
− λ − µ

)

ξ. (49)

Also taking X = ξ in (46) we obtain

B(ξ, Y)Z = R(ξ, Y)Z +
1

6

[

S(ξ, Z)Y − g(Y, Z)Qξ + η(Y)η(Z)Qξ − η(Y)S(ξ, Z)ξ
]

+
4

6

[

η(Z)Y − g(Y, Z)ξ
]

.

Using equations (9), (15) and (49) in the above equation yields

B(ξ, Y)Z =
[

(α2 − β2)−
1

6

( r

2
− λ − µ

)

−
4

6

]

[g(Y, Z)ξ − η(Z)Y]. (50)

In view of (50) the equation (48) becomes
[

(α2 − β2)−
1

6

( r

2
− λ − µ

)

−
4

6

]

(β − µ)[g(X, Y)η(Z) + g(X, Z)η(Y) − 2η(X)η(Y)η(Z)] = 0.

Replacing Z = ξ in the above equation and recalling (4), finally we arrive at
[

(α2 − β2)−
1

6

( r

2
− λ − µ

)

−
4

6

]

(β − µ)g(φX, φY) = 0 (51)

for all vector fields X, Y ∈ TM. Hence from (51) we can conclude that either
[

(α2 − β2)−
1

6

( r

2
− λ − µ

)

−
4

6

]

= 0 (52)

or µ = β. Also for µ = β proceeding similarly as equation (27) it can be easily shown that the

manifold becomes an Einstein manifold. Again if µ 6= β using (18) in (52) we have

r = 10λ + 2µ + 12β − 8, (53)

which implies that the manifold becomes a manifold of constant scalar curvature. Therefore

we can state the following assertion.

Theorem 10. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the manifold satisfies the curvature condition B(ξ, X) · S = 0, then either the

manifold is an Einstein manifold or it is a manifold of constant scalar curvature

r = 10λ + 2µ + 12β − 8.

Now for the case µ 6= β, using the equation (17) in (53) we obtain λ = 2(1 − β).

Corollary 4. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ) with µ 6= β. If the manifold satisfies the curvature condition B(ξ, X) · S = 0, then

the soliton is expanding, steady or shrinking according as β < 1, β = 1 or β > 1 respectively.
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7 η-Einstein solitons on trans-Sasakian 3-manifolds satisfying S(ξ,X)·R=0

In this section, we study the curvature condition S(ξ, X) · R = 0, where by · we denote the

derivation of the tensor algebra at each point of the tangent space as follows

S((ξ, X) · R)(Y, Z)W := ((ξ ∧S X) · R)(Y, Z)W

:= (ξ ∧S X)R(Y, Z)W + R((ξ ∧S X)Y, Z)W

+ R(Y, (ξ ∧S X)Z)W + R(Y, Z)(ξ ∧S X)W,

(54)

where the endomorphism X ∧S Y is defined by (X ∧S Y)Z := S(Y, Z)X − S(X, Z)Y.

Now let us consider a trans-Sasakian 3-manifold (M, g), which admits an η-Einstein soliton

(g, ξ, λ, µ) and also the manifold satisfies the curvature condition S(ξ, X) · R = 0. Then using

this condition and the equation (54) we can write

S(X, R(Y, Z)W)ξ − S(ξ, R(Y, Z)W)X + S(X, Y)R(ξ, Z)W − S(ξ, Y)R(X, Z)W

+ S(X, Z)R(Y, ξ)W − S(ξ, Z)R(Y, X)W

+ S(X, W)R(Y, Z)ξ − S(ξ, W)R(Y, Z)X = 0

(55)

for all vector fields X, Y, Z, W ∈ TM. Taking inner product of (55) with the vector field ξ and

then replacing W = ξ we obtain

S(X, R(Y, Z)ξ) − S(ξ, R(Y, Z)ξ)η(X) + S(X, Y)η(R(ξ, Z)ξ) − S(ξ, Y)η(R(X, Z)ξ)

+ S(X, Z)η(R(Y, ξ)ξ) − S(ξ, Z)η(R(Y, X)ξ)

+ S(X, ξ)η(R(Y, Z)ξ) − S(ξ, ξ)η(R(Y, Z)X) = 0.

In view of (8) and (10) the foregoing equation becomes

(α2 − β2)[S(X, Y)η(Z) − S(X, Z)η(Y) − S(ξ, Y)η(X)η(Z) + S(ξ, Z)η(X)η(Y)]

− S(ξ, ξ)η(R(Y, Z)X) = 0.
(56)

Putting Y = ξ in (56) and then recalling (9) we get

(α2 − β2)
[

S(X, ξ)η(Z) − S(X, Z)− S(ξ, ξ)η(X)η(Z)

+ S(ξ, Z)η(X) − S(ξ, ξ)[g(X, Z) − η(X)η(Z)]
]

= 0.

Using equations (14) and (15) in the previous equation yields

(α2 − β2)[(r − 2λ − 2µ + β)η(X)η(Z) − (r − 2λ − µ − β)g(X, Z)] = 0.

Replacing X = ξ in above, we arrive at

(α2 − β2)(2β − µ)η(X) = 0, ∀X ∈ TM. (57)

Since for non-trivial case α2 6= β2, from the above equation (57) it follows that µ = 2β. There-

fore in view of this and recalling (17) we finally obtain r = 6λ + 8β. Therefore we can state the

following assertion.

Theorem 11. Let (M, g) be a trans-Sasakian 3-manifold admitting an η-Einstein soliton

(g, ξ, λ, µ). If the manifold satisfies the curvature condition S(ξ, X) · R = 0, then it becomes a

manifold of constant scalar curvature r = 6λ + 8β.
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8 η-Einstein solitons on trans-Sasakian 3-manifolds with torse-forming

vector field

This section is devoted to study the nature of η-Einstein solitons on trans-Sasakian 3-mani-

folds with torse-forming vector field.

Definition 6. A vector field V on a trans-Sasakian 3-manifold is said to be torse-forming vector

field [20] if

∇XV = f X + γ(X)V, (58)

where f is a smooth function and γ is a 1-form.

Now let (g, ξ, λ, µ) be an η-Einstein soliton on a trans-Sasakian 3-manifold (M, g) and as-

sume that the Reeb vector field ξ of the manifold is a torse-forming vector field. Then ξ being

a torse-forming vector field, by definiton from equation (58) we have

∇Xξ = f X + γ(X)ξ, ∀X ∈ TM, (59)

f being a smooth function and γ is a 1-form.

Recalling (6) and taking inner product on both sides with ξ we have

g(∇Xξ, ξ) = (β − 1)η(X). (60)

Again from the equation (59), applying inner product with ξ we obtain

g(∇Xξ, ξ) = f η(X) + γ(X). (61)

Combining (60) and (61) we get γ = (β − 1 − f )η. Thus from (59) it implies that for torse-

forming vector field ξ in a trans-Sasakian 3-manifold we have

∇Xξ = f (X − η(X)ξ) + (β − 1)η(X)ξ. (62)

Therefore using (62) from the formula of Lie differentiation it follows

(Lξ g)(X, Y) = g(∇Xξ, Y) + g(∇Yξ, X) = 2 f [g(X, Y) − η(X)η(Y)] + 2(β − 1)η(X)η(Y). (63)

Since (g, ξ, λ, µ) is an η-Einstein soliton, the equation (1) holds. So in view of (63), equation (1)

reduces to

S(X, Y) =
( r

2
− λ + f

)

g(X, Y) + ( f − µ − β + 1)η(X)η(Y). (64)

This implies that the manifold is an η-Einstein manifold. Again putting Y = ξ in (64) we get

S(X, ξ) =
( r

2
− λ − µ − β + 1

)

η(X). (65)

Combining (65) with (11) gives us
( r

2
− λ − µ − β + 1

)

= 2(α2 − β2). (66)

Again tracing out the equation (64) we obtain

r = 6λ + 2µ + 4 f + 2β − 2. (67)

Using the above equation (67) in (66), finally we get λ = f − (α2 − β2). Therefore we have the

following result.

Theorem 12. Let (g, ξ, λ, µ) be an η-Einstein soliton on a trans-Sasakian 3-manifold (M, g)

with torse-forming vector field ξ. Then the manifold becomes an η-Einstein manifold and

the soliton is expanding, steady or shrinking according as f > (α2 − β2), f = (α2 − β2) or

f < (α2 − β2) respectively.
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[13] Matsumoto M., Chūman G. On the C-Bochner curvature tensor. TRU Math. 1969, 5 (1), 21–30.

[14] Oubina J.A. New class of almost contact metric structures. Publ. Math. Debrecen. 1985, 32 (4), 187–193.

[15] Pahan S. η-Ricci solitons on 3-dimensional Trans-Sasakian manifolds. Cubo 2020, 22 (1), 23–37.

doi:10.4067/S0719-06462020000100023

[16] Pokhariyal G.P., Mishra R.S. Curvature tensor’s and their relativistic significance. Yokohoma Math. J. 1970, 21,

105–108.
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Ґанґулi Д., Дей С., Бхаттачарiя А. Про транс-Сасакяновi 3-многовиди як η-солiтони Айнштайна

// Карпатськi матем. публ. — 2021. — Т.13, №2. — C. 460–474.

Ця стаття має на метi обговорення класу 3-вимiрних транс-Сасакянових многовидiв, що
допускають η-солiтони Айнштайна. Ми вивчили η-солiтони Айнштайна на 3-вимiрних транс-

Сасакянових многовидах, де тензори Рiччi мають тип Кодаццi та є циклiчно паралельними.

Ми також обговорили деякi умови кривизни, що допускають η-солiтони Айнштайна на 3-

вимiрних транс-Сасакянових многовидах, а векторне поле торцеутворююче. Ми також пока-

зали приклад 3-вимiрного транс-Сасакянового многовиду вiдносно η-солiтону Айнштайна для
перевiрки наших результатiв.

Ключовi слова i фрази: солiтон Айнштайна, η-солiтон Айнштайна, транс-Сасакяновий мно-

говид, тензор Рiччi типу Кодаццi, C-тензор кривизни Бохнера.
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