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Abstract

The numerical range W(A) of a bounded linear operator A on a complex Hilbert space H is
defined as the range of the continuous mapping  — (Ax, z) on the unit sphere of the Hilbert
space, i.e., W(A) = {(Az,z) : x € H,||z|| = 1}. Clearly W(A) is a bounded subset of the
scalar field and its closure contains the spectrum of the operator. The bounds of the numerical
range helps in estimating the spectrum of the operator. In this connection the numerical radius
w(A), which is defined as the radius of the smallest circle with center at the origin that contains
the numerical range W (A), plays a very important role. The main focus of this thesis is to
develop stronger lower and upper bounds of the numerical radius using various technique. We
obtain improvements and generalizations of the inequalities w(A) < 1 (||A]| + [ 42|/?) and
1lA*A + AA*|| < w?(A) < 3||A*A + AA*||. Then we study the numerical radius inequality
of the generalized commutator and anti-commutator operators which improves and generalizes
the inequality w(AB + BA) < 2v/2||B||w(A). Next we present upper bounds for the numerical
radius of bounded linear operators which generalize and improve on the well-known upper bound
w?(A) < 3||A*A+ AA*||. We obtain an upper bound for the numerical radius of the sum of the
product operators which generalizes and improves on the existing ones. We present equivalent
conditions for the equality of w(A) = @ as well as w?(A) = 1[|A*A + AA*| in terms of the
geometrical shape of the numerical range of A. Next we develop a number of inequalities using
the properties of t-Aluthge transform. We show that the bounds obtained here are better than
the existing ones. We also estimate the spectral radius of the sum of the product of n pairs of
operators. Then we present upper and lower bounds for the numerical radius of 2 x 2 operator
matrices. Applying the bounds obtained here, to Frobenius companion matrix of a complex

monic polynomial p(z) of degree greater than or equal to three, we obtain new bounds for the

zeros of p(z).
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CHAPTER 1

INTRODUCTION

The motivation of numerical range comes from the classical quadratic forms and in early days
of Hilbert space studies quadratic forms were the object of chief interest. Later on the chief
interest was shifted from quadratic questions to theory of operators and relevant notions like
numerical ranges. The theories of numerical range and their applications appear in many
branches of sciences including very recently grown quantum information system. The extension
of quadratic forms to the setting of linear operator on both finite and infinite dimensional Hilbert
spaces lead to the notion of numerical range or field of values of an operator. The numerical
range of a bounded linear operator A on a complex Hilbert space H, denoted by W (A), is
defined as the range of the continuous mapping x — (Az,z) defined on the unit sphere of the
Hilbert space H. Readers can look at the two excellent books on numerical ranges in Hilbert
space setting one by Halmos [44] and another by Gustafson and Rao [43]. The same in Banach
space setting can be found in a book by Bonsall and Duncan [34]. The study of numerical
range assists in understanding the behavior of a bounded linear operator. As for example, the
spectrum of a bounded linear operator is always contained in the closure of the numerical range
of that bounded linear operator. So, the spectral value of a bounded linear operator can be
estimated if the numerical range of that bounded linear operator is known to us. The major
role in this connection is played by the well-known constant numerical radius associated with
the numerical range. The numerical radius of a bounded linear operator A, to be denoted by
w(A), is defined as the radius as the smallest circle with center at the origin that contains the
numerical range W(A). The classical bounds for the numerical radius is %HAH <w(A) < ||A4]

which was later on improved by many mathematicians. Out of those improvements a few
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are worth mentioning here, namely by Kittaneh [54, 55] and Yamazaki [75]. The key word
of the title of this thesis is “Numerical Radius Inequalities”. Having introduced “Numerical
Radius” we now say a few words about “Inequalities”. Over the years various inequalities
have existed in different branches of Mathematics. In 1934, the first book “Inequalities” was
written by G.H. Hardy, J.E. Littlewood and G. Pélya [45]. The second book on this topic was
written by E.F. Beckenbach and R. Bellman [15] in 1961. These books have revolutionized the
field of inequalities into a well organized field and provide motivations, ideas, techniques and
applications for new research. The main purpose of this work is to develop numerical radius
inequalities of Hilbert space operators and operator matrices with nice and simple form, which
improve the existing lower and upper bounds. As applications of those bounds we give better
estimations for the zeros of a complex polynomial of degree greater than or equal to three.
For more on existing numerical radius inequalities we refer the readers to the monograph by

Dragomir [37].

1.1 Introduction and preliminaries

Let R and C denote the field of real and complex numbers, respectively. First we define an

inner product space which is one of the fundamental concept in Functional Analysis.

Definition 1.1. Let V be a vector space over the field F (=R or C). An inner product on 'V is
a function (-,-) = F such that for all z,y,z € V and for all a, B € F the following are satisfied:

(1) {ax+ Py, z) = alz,2) + By, 2),
(i1) (z,0y+ Bz) = alz,y) + B, 2),
(#ii) (z,2) >0,

() (z,z) =0 1if and only if x =0,
(

v) (z,y) = (y,2),

where & denotes the complex conjugate of the scalar o and o = & if « is real. If the vector
space is considered over real field (complez field) then the pair (V,{-,-)) is called a real (complex)

inner product space.

If (V,(:,-)) is an inner product space then it is easy to see that the function || - || : V — R

defined by ||z|| = (=, x)é for all x € V satisfies the following:

e |lz|| > 0 for all € V (non-negativity), and ||z|| = 0 if and only if z = 0.
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o |lz+y| < ||+ |y| for all z,y € V (triangle inequality).
e |laz| = |a|||z| for all @ € F and for all x € V (homegenity).

Therefore, the function || - || induced by the inner product (-,-) satisfies all the conditions of a

norm and so (V,|| - ||) is a normed linear space. In general, a vector space V is said to be a

normed linear space if there is a function || - || on V satisfying the above three properties.
However, we concentrate our attention to an inner product space. First we note few prop-

erties on an inner product space.

1. (Cauchy-Schwarz inequality) Let (V, (-,-)) be an inner product space. Then

(@, )l < llzllllyll for all z,yeV.

2. (Parallelogram law) Let (V, (-,-)) be an inner product space. Then

lz +yl® + llz = yl* = 2(|}2[1* + [[yl|*) for all ,y € V.

3. (Polarization identity) Let (V, (-,-)) be an inner product space. Then

Aa,y) =z +yl* — oz =yl +i(lz +iy)? — ||z —iyl]*) forall z,yeV.

A Hilbert space is an inner product space (V, (-, -)) such that the space is complete with respect
to the metric d(z,y) = ||lx —y| = (z —y,x —y)é for all x,y € V, induced from the inner product
(+,-). From now on, we reserve the symbol H for a complex Hilbert space with inner product
(.,.). Let B(H) denote the C*-algebra of all bounded linear operators acting on A with the
identity I. The norm induced by the inner product (.,.) is denoted by || - ||. For A € B(#H), A*
stands for the adjoint of A and |A| denotes the positive operator (A*A)'/2. We denote the real
part and the imaginary part of an operator A € B(H) by R(A) and I(A), respectively, that is,
R(A) = 1(A+A*) and S(A) = 5 (A—A*). Therefore, the Cartesian decomposition of A € B(H)
is given by A = R(A) + iS(A). The resolvent set of an operator A € B(H) is defined as the
collection of all scalars A for which (A —\I)~! exists as a bounded linear operator on the Hilbert
space H and is denoted by p(A). The spectrum of an operator A € B(#), denoted by o(A), is
defined as the complement of the resolvent set, i.e., 0(A) = C\ p(A). For A € B(H), o(A) is
a non-empty compact subset of C. The spectral radius of an operator A € B(H), denoted by
r(A), is defined by
r(A) = max{|A\| : A € 0(4)}.
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The set 0p(A) ={A € 0(A): Az = Az for some non-zero x € H} is called the point spectrum
of A. For a matrix A, o,(A) = o(A), since a linear operator on a finite-dimensional space
is always bounded and is injective if and only if it is surjective. For A € B(H), ||A|| denotes
the operator norm of A. Recall that |A|| = sup{||Az| : x € H,||z| =1}. Tt is known that
7(A) = lim, o0 ||A™||V/™. If A is self-adjoint, then || A]|? = ||A*A|| = ||A2|| and so, by induction,
|A||>" = ||A%"||. Therefore, for the self-adjoint operator A, r(A) = lim,_,o ||A2"||*/?" = ||A]|.
In addition, at least one of ||A]| or —||A4| is in o(A) and o(A) C [—|| A, [|A]|]-

Let A € B(H). The numerical range of A, denoted by W (A), is defined as W (A) = {(Az, z) :
x € H, |z|| = 1}. The following properties of the numerical range W (A) can be easily verified:

(i) W(al + BA) = a+ pW(A) for all o, 5 € C.
(i) WA ={x:xeW(A)}.
(iii) W (U*AU) = W (A) for every unitary operator U € B(H).
In the following theorems we state fundamental properties of the numerical range.

Theorem 1.1. (Ellipse lemma, [/3, Lemma 1.1-1]) If A is an operator on a two-dimensional

space H, then W (A) is an ellipse whose foci are the eigenvalues of A.

Theorem 1.2. (Toeplitz-Hausdorff theorem, [43, Th. 1.1-2]) The numerical range of an oper-

ator 1s convez.

Considering the continuous mapping x — (Axz,z) from {x € H : ||z|| = 1} to the scalar
field C, it is easy to see that W (A) is a compact subset of C if H is finite dimensional. Further,

we note the following characterization for the self-adjoint operators in B(H).
Proposition 1.1. ([/3, p. 7]) Let A € B(H). The following statements hold:
(i) A is self-adjoint if and only if W (A) is real.
(11) If A is self-adjoint and W(A) = [m, M], then ||A|| = max {|m|, |M]}.

(i3) If W(A) = [m, M], then m, M € o(A).

Note that for a normal operator A € B(H), the closure of W(A), i.e., W(A) is the convex
hull of the spectrum o(A) of A.
Now, we recall the following key notions of our study. The numerical radius of A € B(H),

denoted by w(A), is defined as
w(d) = sup{|(Az,2)| s w € H,|jofl = 1} =sup {]Al: A e W(A)}.

4
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Similarly, another numerical constant, the Crawford number of A, denoted by ¢(A), is defined

c(A) :iﬁgm%@pxeﬂmﬂzq}zqupAewm&.

It is not difficult to verify that the numerical radius w(-) defines a norm on B(#H) and for

A € B(H), we infer that
1
Al = w(d) < [|A]l (1.1)

Therefore, the numerical radius norm is equivalent to the operator norm on B(#). Let us note
here that w(-) fails to be a norm if the Hilbert space is considered over the real field. The
inequalities in (1.1) are sharp, w(A) = ||A|| if 4 is normal (i.e., A*A = AA*) and w(A) = %HAH
if A2=0.

The spectral inclusion theorem reads as follows.

Theorem 1.3. (Spectral inclusion theorem, [/3, p. 6]) Let A € B(H). Then o(A) is contained

in the closure of W(A), that is, o(A) C W(A).

Therefore, the spectral radius r(A4) of A always satisfies r(A) < w(A). A basic property
for the numerical radius is that it satisfies the power inequality, i.e., for A € B(H), w(A™) <
w™(A) for alln € N. Here, N denotes the set of all natural numbers.

For A € B(H), let A = U|A| be the polar decomposition of A. The Aluthge transform of A,
denoted as ;1, is defined as

A=|AlzU|Alz,

where U is the partial isometry associated with the polar decomposition of A and so ker A =
ker U. It follows easily from the definition of A that ||A| < |A| and r(A) = r(A). Also,

w(A) <w(A) (see [51]). Okubo [62] generalized the Aluthge transform, known as the ¢-Aluthge
transform as follows. The t-Aluthge transform of A, denoted by :4:, is defined by

Ay = AUIAI, te [0,1].

Here, |A[? is defined as U*U. In particular, Ay = U*U2|A|, A, = |[AJUU*U = |A|U, A
|A|2U|Az = A.
Over the years, various eminent mathematicians have been tried to improve on the inequali-

ties in (1.1), we refer to see [4, 7, 11, 12, 13, 19, 24, 25, 27, 32, 48, 50, 61, 63, 65, 66, 67, 68, 71, 72]

1
2

and the references therein. Here we note some important improvement of the inequalities for
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the numerical radius of a bounded linear operator A on H. Kittaneh [55] improved on the right

hand inequality in (1.1) to prove that for A € B(H),
1
w(d) < 5 (IlAl+VI47). (1.2)
Further, Kittaneh [54] improved on both the inequalities in (1.1) to proved that for A € B(H),

1 1
T4 A+ AN < w(A) < S AT A+ A (1.3)

Observe that for A € B(H), the terms 3 (||AH + «/||A2||) and /5 [|A*A + AA*|| are not com-

parable, in general. In [39], Dragomir obtained an another inequality, namely, for A € B(H),

w(A) < 5 (4P +w(4?), (1.4)

| =

which improve on the right hand inequality in (1.1). Further, Abu-Omar and Kittaneh [1]
obtained that for A € B(H),

1 1 1 1
SeA?) + 7 [A"A+ AAT|| S w(4) < 7 | A" A+ AA"]| + Sw(4?). (1.5)

Clearly, the first inequality in (1.5) is better than the first inequality in (1.3). Also, the second
inequality in (1.5) is stronger than the corresponding inequalities in (1.2), (1.3) and (1.4).
Using the Aluthge transform, Yamazaki [75] proved that if A € B(#), then

wa) < 3 (14l +w(). (16)

Since w(A) < ||A]] < /[|A2]], the inequality in (1.6) refines that in (1.2). After that, Abu-Omar
and Kittaneh [6] improved on the inequality (1.6) by using t-Aluthge transform to prove that

wa) < | (|A|| +0g1tiglw<ﬁz>) . (L.7)

In this thesis, we develop various new upper and lower bounds for the numerical radius of
bounded linear operators defined on H which refine the bounds mentioned in (1.1) - (1.7). We

next give a brief outline of the thesis.
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1.2 Out line of the thesis

The thesis consists of seven chapters including the Introductory one. In the introductory chapter
we provide a brief history of numerical range along with definitions and notations to be used
throughout the thesis.

In Chapter 2, we present an improvement and generalization of the inequality in (1.2),
that is, w(A) < 3 (||A|| + ||A%||*/2) . Further, we study the numerical radius inequality of the
generalized commutator and anti-commutator operators which improves and generalizes the
inequality w(AB + BA) < 2v/2||B|lw(A), proved by Fong and Holbrook [40]. Recall that for
linear operators A and B, the operator AB— BA is called commutator operator and the operator
AB + BA is called anti-commutator operator.

In Chapter 3, we present upper bounds for the numerical radius of bounded linear operators
which generalize and improve on the well-known upper bounds both in (1.2) and (1.3), that is,
w(A) < 3 (J|A] + [|A%)|*/?) and w?(A) < 1||A*A + AA*||. Further, we present an upper bound
for the numerical radius of the sum of the product operators which generalizes and improves on
the existing ones.

In Chapter 4, we develop norm inequalities for the sum of two bounded linear operators,
from which we derive lower bounds for the numerical radius of bounded linear operators that
strongly refine the lower bound in (1.3), that is, %HA*A + AA*|| < w?(A). Further, we present
upper bounds for the numerical radius of bounded linear operators by using operator convex
functions which improve on the existing ones.

In Chapter 5, we establish new inequalities for the numerical radius of bounded linear

operators. For A € B(H), we obtain the following bounds:

g
=
=
A

)

a2 _§ |2
4|A| —i—(l 4a> |A*| }

We show that the inequalities obtained here greneralize and improve on the existing well-

min1 ||a|A|2 +(1- a)\A*|2|

0<a<

w?(A) < min {Zw(ﬁﬁ)—i—

0<a<l1

known inequalities given in [1, 54, 55]. Further, we obtain lower bounds for the numerical
radius of bounded linear operators which refine the well-known lower bounds w(A4) > @ and
w?(A) > 1||A* A+ AA*||. We also present equivalent conditions for the equality of w(A4) = @
as well as w?(A) = 1[|A* A+ AA*| in terms of the geometrical shape of the numerical range of
A. Further, applying the lower bounds obtained here, we obtain upper bounds for the numerical
radius of commutators of bounded linear operators, which refine the existing ones in [40, 47].

In Chapter 6, we develop a number of inequalities using the properties of ¢-Aluthge trans-
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form. We show that the inequalities obtained here improve (1.2), (1.3), (1.4) and (1.6). We
also obtain an upper bound for the numerical radius and show by an example that the bound
is incomparable, in general, with that in (1.7).

In Chapter 7, we obtain an upper bound for the numerical radius of a bounded linear
operator which improves on the upper bound in (1.5). Also we obtain a lower bound for the
numerical radius of a bounded linear operator which improves on the lower bound in (1.3).
We present an upper bound of the numerical radius in terms of ||Hp|| and a lower bound of
the numerical radius in terms of the spectral values of $(A) and $(A4), which improves on the
existing lower bounds. Here, Hy = R(e? A) for §# € R. We also estimate the spectral radius of
the sum of the product of n pairs of operators. Further, we present upper and lower bounds
for the numerical radius of 2 x 2 operator matrices. Applying the bounds obtained here, to
Frobenius companion matrix of a complex monic polynomial p(z) of degree greater than or

equal to three, we provide bounds for the zeros of p(z) which refine the existing ones.

Before we end this section we would like to mention that in the beginning of each of the fol-
lowing chapter we provide a brief motivation along with the relevant notations and terminologies

necessary to keep each chapter independent for the convenience of the reader.



CHAPTER 2

FURTHERANCE OF NUMERICAL
RADIUS INEQUALITIES

2.1 Introduction

The main focus of this chapter is to provide improvement and generalization of the inequality
(1.2), i.e., w(A) < % (I1A] + ||A2||1/2) , obtained in [55]. Further, we study the numerical radius
inequality of the generalized commutator and anti-commutator operators which improves and
generalizes the inequality w(AB + BA) < 2v/2||B|lw(A), obtained in [40]. Let us now introduce
the following necessary notations and terminologies.

Let H be a complex Hilbert space with inner product (.,.) and let B(#) denote the C*-
algebra of all bounded linear operators on H. As usual the norm induced by the inner product
(.,.) is denoted by || - ||. For A € B(#H), A* denotes the adjoint of A and |A|, |A*| respectively
denote the positive square root of A*A, AA* ie., |A| = (A*A)%, |A*| = (AA*)%. Let Sy denote
the unit sphere of the Hilbert space H. For A € B(H), let ||A|| be the operator norm of
A, ie., [|A]] = sup,cg,, [[Az||. The numerical range of A, denoted by W(A), is defined as
W(A) = {{Az,z) : © € Sy}. Considering the continuous mapping z — (A, ) from Sy to

Content of this chapter is based on the following paper:
P. Bhunia, K. Paul; Furtherance of numerical radius inequalities of Hilbert space operators, Arch.
Math. (Basel), 117 (2021), no. 5, 537-546. https://doi.org/10.1007/s00013-021-01641-w
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the scalar field C, it is easy to see that W (A) is a compact subset of C if H is finite-dimensional.
The famous Toeplitz-Hausdorff theorem states that the numerical range of a bounded linear
operator is a convex subset of C. The numerical radius and the Crawford number of A, denoted

as w(A) and c¢(A), respectively, are defined as

w(A) = sup |(Az,z)| and c(A) = inf |(Az,z)|.

€Sy TESY

The spectral radius of A, denoted as r(A), is defined as 7(A) = supyc,(a) [A|, where o(A) is the
spectrum of A. Since o(A) C W(A), so r(A4) < w(A). Tt is well-known that r(A4) = w(A4) = ||A4]|

if A is normal operator in B(H).

2.2 Bounds for the numerical radius of op-

erators

An improvement of the inequality (1.2), is stated as the following theorem.

Theorem 2.1. If A € B(H), then

w(4) < 3 (14l + V7 TATAT)

Remark 2.2. If A € B(H), then v (JA||A*]) < w (|A]|A*]) < || (JA||A*]) || = ||42||. Hence,
4
Theorem 2.1 improves (1.2). To show proper improvement we consider A = . Then
11
11 41 ,
|A| = and |A*| = . It is easy to see that v (|[A||A*|) =9 < || (|A||A*)) || =
1 4 11
| A2]| = v/59 + 10+/34 ~ 10.83.

In order to prove Theorem 2.1 we need the following sequence of lemmas. First lemma can

be found in [58].

Lemma 2.1. ([58, Cor. 2]) Let A, B € B(H) be positive operators. Then
|4+ Bl < max{|A], 1B} + | 4252

Second lemma which contains a mixed schwarz inequality, can be found in [44, pp. 75-76].

10



Chapter 2. Furtherance of numerical radius inequalities

Lemma 2.2. ([44, pp. 75-76]) Let A € B(H). Then
Az, z)| < (|Alz, 2)V2(|A* |z, 2)V/2, ¥ z e H.

Third lemma is as follows.

Lemma 2.3. Let A, B € B(H) be positive operators. Then

Vr(AB) = HAl/QBl/QH.
Proof. Using commutative property of the spectral radius, we infer that
r(AB) = r <A1/2A1/2B1/231/2> — <A1/2B1/231/2A1/2>
- <A1/231/2 (Al/zBl/Q)*> _ HA1/231/2 <A1/QB1/2>*

- o

as required.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Let x € H with ||z|| = 1. Then by Lemma 2.2 we get,

(Az,z)| < (|Alz,2)/? (|A"|z,2)!/?
1 *
< (A, 2) + (|47, 2))
1 *
< gl 1A+ ATl
1 1/2( 4%(1/2
< 5 (nan+ a2t} (by zemma 2.1)

% (||A|| + \/W) (by Lemma 23)

Therefore, taking supremum over all x € H with ||z|| = 1 we get,

w() < 5 (1Al+ V7 TATAT)

as desired.

As an application of Theorem 2.1, we prove the following corollary.

Corollary 2.1. Let A € B(H). If r(|A||A*]) = 0, then w(A) = 121

11



Chapter 2. Furtherance of numerical radius inequalities

Proof. Tt follows from (1.1) and Theorem 2.1 that

AL < wiay < £ (1140 + Vo GATAT).

This implies that if r(|A||A*|) = 0, then w(A) = L;‘ll, .

Remark 2.3. It should be mentioned here that the converse of Corollary 2.1 does not hold if

0 3 0
dim(H) > 3. As for ezample, we consider A= | 0 0 0 |. Then we see that w(A) = 3 =
0 01
A *
131, but r(A] A7) # 0.
The following corollary is an immediate consequence of Theorem 2.1.
Corollary 2.2. Let A € B(H). If w(A) = (||AH + /[ A2 ) then r(|A||A*]) = || A?||.
Proof. It follows from Theorem 2.1 and Remark 2.2 that
1 1 5
w(4) < 5 (141 + v/r (ATAD) < 5 (141 + VIAT)
This implies that if w(A) = 1 (HAH + v/ ||A2||), then 7(|A||A*|) = || 42 O
Remark 2.4. It should be mentioned that the converse of Corollary 2.2 is not true. Considering
0 30
the same example as in Remark 2.3, i.e., A= | 0 0 0 |, wesee that r(|A||A*]) = || A?|| =1,
0 01

but w(4) = § < 2= 5 (||4] + /747]).

Now we give a sufficient condition for w(A) = 3 (HAH + /7 (|A]| A ) when A is a complex

n X n matrix.

Proposition 2.1. Let A be a compler n X n matriz. Suppose A satisfies either one of the
following conditions.

(1) A is unitarily similar to [o] ® B, where B is an (n — 1) x (n — 1) matriz with |B|| < |af.
(i0) r(|A[|A*]) = 0.

Then, w(A) = § (JlA]l + /7 (TATA)).
Proof. Let (i) holds. Then w(A) = |a| and ||A| = |a|. Also it is not difficult to verify
that r(|A||A*]) = |af2. Hence, %(HAH + /r (JATTA| ) = |a|. Now let (i) holds. Then from
Corollary 2.1 we get, w(A4) = % (||A|| + /7 (|A]| A ) |A” . Thus, we complete the proof.

0

12



Chapter 2. Furtherance of numerical radius inequalities

Next we give a generalized result of Theorem 2.1. For this purpose we need the following

lemma, which is the generalization of Lemma 2.2.

Lemma 2.4. ([59, Th. 5]). Let A,B € B(H) be such that |A|B = B*|A| and let f,g be
non-negative continuous functions on [0, 00| satisfy f(t)g(t) = t, V& > 0. Then, |(ABz,y)| <
r(BIf(AD=lllg(A*Dyll, Va,y € H.

By using Lemma 2.4 and proceeding similarly as in Theorem 2.1, we can prove the following.

Theorem 2.5. Let A, B € B(H) be such that |A|B = B*|A| and let f, g be as in Lemma 2.4.
Then
r(B)

w(AB) < —

(max {1 AN, N A™DIEY + 11 1£ADgA DI ).

In particular, considering f(t) = g(t) = v/t in Theorem 2.5 we get the following corollary.

Corollary 2.3. Let A, B € B(H) be such that |A|B = B*|A|. Then

w(dB) = @(IIAIH r (JA[AD)
< i(”BH-I- r(|B||B*|)) <||A||+ 7‘(|A||A*|)),

Remark 2.6. If A, B € B(H) be such that |A|B = B*|A|, then Alomari [7, Cor. 8.2] proved
that

w(aB) < ¢ (IBI+ VIB) (141 + VAT (2.1)

Clearly, the inequalities in Corollary 2.3 improve on the inequality (2.1).

2.3 Bounds for the numerical radius of com-

mutators of operators

To achieve our aim in this section we need the following inequality, which we obtained in [20,

Cor. 2.3].
Lemma 2.5. (/20, Cor. 2.3]) Let A € B(H). Then

A(R(4)) +(S(4))
2

|AA* + A*A|| < 4 |[w?(A) —

13



Chapter 2. Furtherance of numerical radius inequalities

Theorem 2.7. Let A, B, X,Y € B(H). Then

A(R(4)) +(3(4)

w(AX B £ BY A) < 22| B| max {|| X[|, | Y]|} /w*(4) — 5

Proof. First we assume that | X|| <1, [|[Y]| <1 and let z € H with ||z|| = 1. Then, we have

[{((AX £YA)z,z)| < |[(AXz,2)|+ (Y Az, )]
= [(Xz, A%z)| + |[(Az, Y )|
< ||A*z| + ||Az|] (by Cauchy-Schwarz inequality)
< VR([AP +TAalP) by conveaity of f(x) = a?)
< V2||AA* + A* A
< 2V2y[w?(A) - c(R(4)) ; c(3(4) (by Lemma 2.5).

Hence, by taking supremum over all z € H with ||z|| = 1 we get,

) + AS(A)

wAX £YA) < 2\/5\/w2(A)—62(§R( :

(2.2)

Now we consider the general case, i.e., X,Y € B(H) be arbitrary. If X = Y = 0, then
Theorem 2.7 holds trivially. Let max {|X]|,|[Y||} # 0. Then clearly Hm” <1 and

Y : X Y : :
| | < 1 S0, xeplacing X and ¥ by ey and ey respectively, in
(2.2) we get,

cA(R(4)) +(3(4)

w(AX £ Y A) < 2vV2max {||X]], |V ||} \/w2(A) — 3

Now replacing X by XB and Y by BY in the above inequality we get,

A(R(A)) +(S(4)

w(AXB + BY A) < 2v2max {| XB|, |BY ||} \/w2(A) — ; ,

which implies that

W(AXB £ BY 4) < 23| Bl max {1 . [ |} w2 (4) — “ AN EEEA)

This completes the proof. O

Based on Theorem 2.7, we obtain the following corollary.

14
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Corollary 2.4. Let A, B € B(H). Then

A(R(4)) +(3(4)

w(AB + BA) < 2V2||B|\/w?(A) — 5 (2.3)
and
w(AB + BA) < 2¢mAuV@%B)—C%%uﬂ);C%S“”f (2.4)

Proof. By considering X =Y = I in Theorem 2.7 we get, (2.3). Interchanging A and B in
(2.3) we get, (2.4).

Remark 2.8. Clearly, the inequality (2.3) is stronger than the inequality w(AB + BA) <
2v/2|| B||w(A), obtained by Fong and Holbrook [40].

As an application of the inequality (2.3) we prove the following result.

Corollary 2.5. Let A,B € B(H) and let B # 0. If w(AB + BA) = 2v/2||B|lw(A), then
0 € W(R(A)) N W(S(A)).

Proof. Let w(AB 4 BA) = 2v/2||B||w(A). Then it follows from (2.3) that

w(A) = W( 4) - SO+ M)

Hence, c?(R(A)) + c2(I(A)) = 0, i.e., c(R(A)) = ¢(F(A)) = 0. Therefore, there exist norm one
sequences {z,} and {y,} in H such that [(R(A)z,,z,)| — 0 and [{(S(A)yn, yn)| — 0 as n — co.
So, 0 € W(R(A)) NW(S(A)). O

For our next result we need the following three lemmas, the first two of which can be found

in [2] and [50], respectively.

Lemma 2.6. (/2, Remark 2.2]) Let A,B,X,Y € B(H). Then
w?(AX + BY) < ||[AA* +Y*Y| |X*X + BB|.

Lemma 2.7. ([50, Th. 1.1]) Let A, B, X,Y € B(H). Then

A 1A 11X
I 1Bl

The next lemma is as follows.

15



Chapter 2. Furtherance of numerical radius inequalities

Lemma 2.8. Let A, B € B(H). Then |AA* + B*B|| < u(A, B), where

1
WA, B) =5 {IIAI2 +BII* + \/(HAII2 —IBI?)* + 4] BAJ?| .

Proof. AA* + B*B being a self-adjoint operator, we have

|AA* + B*B|| = r(AA* + B*B)
AA* + B*B 0

0 0
A% 1B A% 0
0 0 Bl 0
AT 0 A" |B
- 4118 (r(xy) = (v X))
1Bl 0 0 0

|A*[> |4 B]
|Bl|A*[|BJ?

e A
Bll47[B?
lAI2 4B
IBIA* 1B

IN

(by Lemma 2.7)

IBAIl|1BI”

| e usa H

N =

[HAH? FIBIP + (Al - B2 +4||BA||2] .
Hence, ||AA* 4+ B*B|| < u(A, B).
]

Remark 2.9. Notice that (A, B) < max{||A|]?, | B||?} + || BA||. In particular, if A = B then
(A, A) = ||A||? + ||A?|. Hence, we have ||[AA* + A*A|| < ||A|? + || A?|.

Now we are in a position to prove the following result.

Theorem 2.10. Let A, B, X, Y € B(H). Then

w(AX + BY) < \/u(A,Y) u(B, X).

Proof. The proof follows from Lemma 2.6 and Lemma 2.8.

16



Chapter 2. Furtherance of numerical radius inequalities

An application of Theorem 2.10, we get the following corollary.

Corollary 2.6. Let A, B € B(H). Then

w(AB £ BA) < /([IA? + [142])) (1BI? + [[1B2]).

Remark 2.11. Let A, B € B(H) with A?> = B? = 0. Then it follows from Corollary 2.6 that
w(AB + BA) < | Al B < 2V3|Bllw(4) = V3| || B

17



CHAPTER 3

NEW UPPER BOUNDS FOR THE
NUMERICAL RADIUS

3.1 Introduction

The main purpose of this chapter is to present upper bounds for the numerical radius of bounded
linear operators which generalize and improve on the well-known upper bounds in (1.2) and
(1.3), ie., w(Ad) < 3 (||4] + [|4%*/?) and w?(A) < 3||A*A + AA*||, respectively. Further,
we present an upper bound for the numerical radius of the sum of the product of operators
which generalizes and improves on the existing ones. First we introduce the following necessary
notations.

Let H be a complex Hilbert space with inner product (.,.) and let B(#) be the C*-algebra
of all bounded linear operators on H. As usual the norm induced by the inner product (.,.) is
denoted by || - ||. For A € B(H), let [|A]| be the operator norm of A, i.e., [[Al| = sup,—y [[Az].
For A € B(H), A* denotes the adjoint of A and |A| denotes the positive square root of A*A,
ie., |Al = (A*A)%. Let Sy denote the unit sphere of the Hilbert space H. The numerical range
of A, denoted by W (A), is defined as W(A) = {(Az,z) : x € H, |z| = 1}. Considering the

Content of this chapter is based on the following paper:
P. Bhunia, K. Paul; New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci.
Math., 167 (2021), Paper No. 102959, 11 pp. https://doi.org/10.1016/j.bulsci.2021.102959
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Chapter 3. New upper bounds for the numerical radius

continuous mapping ¢ — (Ax, x) from Sy to the scalar field C, it is easy to see that W (A) is a
compact subset of C if H is finite-dimensional. The numerical radius of A, denoted as w(A), is
defined as w(A) = sup|, =1 [(Az,z)|. The numerical radius is a norm on B(H), satisfying that
for A € B(H), 3||All < w(A) < [|A|. This implies that the numerical radius norm is equivalent
to the operator norm on B(#). The above inequality is sharp, w(A) = 3| A| if A2 = 0 and
w(A) = [|A] if AA* = A*A.

3.2 Bounds for the numerical radius con-

cerning one operator

We begin with the following sequence of lemmas which will be used to reach our goal in this
present chapter. First lemma is known as a generalized mixed Cauchy-Schwarz inequality which

involves two non-negative continuous functions.

Lemma 3.1. ([59, Th. 5]). Let A € B(H). Let f and g be non-negative functions on [0, o)
which are continuous and satisfy the relation f(t)g(t) =t for allt € [0,00). Then

[(Az, )| < [IF([AD=[l[lg(1A™yll;

for all x,y € H.
Second lemma deals with positive operators.

Lemma 3.2. ([73, p. 20]). Let A € B(H) be positive, i.e., A > 0. Then
(Az,z)" < (A"z,z),

for allr > 1 and for all x € H with ||z| = 1.
Third lemma is known as Buzano’s inequality.

Lemma 3.3. ([35]) Let z,y,e € H with |le|| = 1. Then

(@, e)e,; )| < 5 (zllllyll + [{z, v)]) -

N |

Fourth lemma is known as Bohr’s inequality which deals with positive numbers.
Lemma 3.4. ([74)) Fori=1,2,...,n, let a; be a positive real number. Then
n r n
(o) <13
i=1 i=1

19



Chapter 3. New upper bounds for the numerical radius

for allr > 1.
Now, we are in a position to present our first inequality in this section.

Theorem 3.1. Let A € B(H). Then
w?"(4) < 3 (1P + 14| + Sw (APIAT),
for allr > 1.
Proof. Let x € H with ||z|| = 1. Considering f(t) = g(t) = #2 in Lemma 3.1 we have that
(Az,2)[* < (|Alz, 2)(|A%|z, z).
It follows from Lemma 3.2 that
|(Az, )" < (|Al"z, 2)(|A* 2, 2) = (|A"| 2, 2)(x, | A z).
From Lemma 3.3 we have,

(A, x) (@, |A"2) - < H|A|’xIIHIA*|’"mII+ (| A", [A]"z)] -

So we get, [(Az, ) < (APl + 114" 2l?) + 3 {IAI| A"z, )
(A", z) + (|4, x>) 5 HIATIA*T 2, 2)

(
(AP +[A*Pr) @ $> 5 [(1A["[A™ 2, )

IN
[ I N N N

AP+ A" + 5“} (1A]"1A%) -
Therefore, taking supremum over ||z|| = 1 we get,
2r 1 2r *|2r 1 T AT
W (4) < 1 [P+ AT+ S (AF1ATT),

as required.
The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.1. Let A € B(H). Then

1
w?(A) < 7 [[IAP + 4P| + Sw (A A7)

20



Chapter 3. New upper bounds for the numerical radius

Remark 3.2. (i) If |A||A*] = 0, i.e., A% = 0, then it follows from Corollary 3.1 and the left
hand inequality of (1.3) that w?(A) = 1 ||[[A]? + |A*?|| = 3] A* A + AA*|.

(i) The inequality in Corollary 3.1 improves on the right hand inequality in (1.3). Clearly,
w (JA[|A%]) < [[|AN|A*||| = ||A%|| . Also, 2||A?|| < ||A*A+ AA*|| (see [57]). Therefore,

1 1
w(A) < [P+ AP + Sw (4] A7)

IN

1 2 *|2 Ly 2
A At 4 L a2

IN

1 2 *|2 1 2 *|2
T AP + 14|+ 7 [1AP + 4P

1
= S lAP+ 1A

Thus, the inequality in Corollary 3.1 improves on the right hand inequality in (1.5).
(iii) The inequality in Corollary 3.1 improves on the inequality in (1.2).

1 1
Clearly, w?(A) < 7|12 +14°F] + Jw (4]l 4°)

IN

1 2 *|2 1 2
A + a0 + 5 a2

IN

Liazpe Lz L 23
a2 S+ S a
(1 1ot
= (Glan+ 34
Thus, the inequality in Corollary 3.1 also improves on that in (1.2).

Next we obtain the following inequality for the numerical radius of the sum of n operators

which generalizes Theorem 3.1.

Theorem 3.3. Let A; € B(H) fori=1,2,...,n. Then

n2r—1 n
+— > w( A4 ),

i=1

2r—1

for allr > 1.

D (AP 147 )
i=1
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Proof. Let « € H with ||z|| = 1. Then from Lemma 3.4 we get,

n 2r n 2r
|< (Z Ai> x,x> = Z (Ajz, x)
i=1 i=1
n 2r
< (X1 tma)
i=1
n
< n2r71 <Z| <A1.CE,$> |2r> )
i=1
Proceeding similarly as in the proof of Theorem 3.1 we get the required inequality. O

Our next result reads as follows:

Theorem 3.4. Let A, B € B(H) be self-adjoint. Then

1A+ Bll < Vw*(A+iB) + [A[IB]l + w(BA) < | Al + || B].
Proof. Let z € H be such that ||z|| = 1. Then we have,

|A+B||*> = w?(A+B)
= sup [{(A+ B)z,z)|?

< ;:151 (I{Az, z)| + |(Baz, )|)”

= e ({Az,2)* + [(Bz,z)|* + 2|(Az, z)||( Bz, z)|)

= Hiﬁ& (|(Az, z) + i(Bz, 2)|* + 2|(Az, 2)(z, Bz)|)

< s ({(A +iB)z, )2 + || Az||| Bx| + (A, Bx)|) (by Lemma 3.3)
S ((A +iB)a, 2)[* + || Azl||| Bx|| + |(BAz, )])”

IA

w?(A+1B) + | A||||B|| + w(BA).

Hence, ||A+ B|| < v/w2(A +iB) + || A|||| B + w(BA).
It is easy to verify that w?(A +iB) < ||A? 4+ B?||. Therefore, we have

w?(A+1B) + A Bl + w(BA) < (|A] + | BI)*.

This completes the proof. O

Remark 3.5. We would like to remark that Theorem 3.4 gives better bound than the bound
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obtained by Moradi and Sababheh [60, Th. 2.4], namely, if A, B € B(H) are self-adjoint, then
A+ B|| < \/w*(A+iB) + 2| Al B < [|A[l + || Bl

3.3 Bounds for the numerical radius of the

sum of the product operators

Our first result in this section reads as follows.

Theorem 3.6. Let A;, B;, X; € B(H) fori = 1,2,...,n. Let f and g be two non-negative
functions on [0, 00) which are continuous and satisfy the relation f(t)g(t) =1t for allt € [0, 00).

Then

(ZAXB) - (i ([Bi £P(1XiDBi]" +i[Afg*(| X} ])A ])>7

i=1
for allr > 1.
Proof. Let € H with ||z|| = 1. Then we have,

(o))

r

T

n

A%XZ‘BZ‘.%‘,Q?
> (A )

i=1

< (D (4;X:B :c>|>r
< (Zn] (A*X,;Bjz,z)|" ) (by Lemma 3.4)
=
= i1| (X;B;z, Aiz) |" )
< S £ Bl (1K) Ase )( by Lemma 3.1)

i=1

al
-t
-
-t

%

M:

(DB B (XA )

1

<Bf2|X Bz, z)? <A*2|X|Ax:v>>

M:

1
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[N

IN

" <Z<[B:f2<Xi|>&}’"oc,ac>é ([A1g2 (XD A 7, 2) )

i=1

(by Lemma 3.2)

( y 2(Xi)Bi]" &, z) + <[A?92(|X§‘|)Ai}7‘mafv>)>

IN

=

=)

(as \a+b|§\/§\a+ib\, Va,béR)

(35 e i baxipa) ) o)

%w (i([B POXDB]" +1[A1g*(1X7]) Al )>'

IA
S
N

IN

Therefore, taking supremum over ||z|| = 1, we get

(ZA*XB) _ (i 2(1Xai)Bi])" +1i[Arg* (1 X7 A ])).

O

Remark 3.7. Note that Theorem 3.6 indeed does not depend on the number n of summands in

the case r = 1.

Considering f(t) = t* and g(t) = t'17%, 0 < a < 1 in Theorem 3.6 we get the following

corollary.

Corollary 3.2. Fori=1,2,...,n, let A;, B;, X; € B(H). Then

(ZA*XB) 3 (f(B*|XZ-MB¢]’“+1[A:|X:|2<1am}r)),

i=1
for allr > 1.
The following corollary is an easy consequence of Theorem 3.6.

Corollary 3.3. Fori=1,2,...,n, let X; € B(H). Let f and g be non-negative functions on
[0, 00) which are continuous and satisfy the relation f(t)g(t) =t for allt € [0,00). Then

! (ZX) < (Z (7 (X)) + 92T<|X;|>)> ,

i=1
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for allr > 1.

In particular, taking n = 1, r = 1 and f(t) = g(t) = £2 in Corollary 3.3 we get the following

inequality which refines the second inequality in (1.3).

Corollary 3.4. Let A € B(H). Then

w(A) < 7 w(|A] +1]A™).

Remark 3.8. It is easy to observe that w?(|A| +i|A*|) < |||A|? + [A*[?|| . Therefore,

1
w?(A) < Sw(|A] +i]A%) < o [||A]” + A7

l\')\r—l

Hence, Corollary 3.4 is sharper than that in (1.3).
Next, we obtain an inequality which follows from Corollary 3.2.

Corollary 3.5. Let A, B € B(H). Then
TOA* 1 2 T : T
W (A°B) < Ju? (1B +iA1),
for all r > 2.
Remark 3.9. In [39], Dragomir proved that if A,B € B(H) and r > 1 then
T * 1 T T
w'(AB) < 5 [IBI*" + AP .
For r > 2, from Corollary 3.5 we get,
T * 1 T T T
w'(A"B) < Jw? (B +i|A]") |W3|2 + AP

We would like to remark that for r > 2, the inequality in Corollary 3.5 is stronger than the
above Dragomir’s inequality [39].
Finally, we obtain the following estimation.

Theorem 3.10. Let A;, By, Xi; € B(H) fori,j =1,2,...n. Then

n

> (A;A; + B} B)

=1

- 1
Z A5 Xy B; §||XH
ij=1
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where
X1 Xo1 . . . X
X12 X22 R Xn2
X eB(Z@H)
i=1
X1in Xon . . . X
A0 . . .0 B 0O .. .0
Ay 0 . . .0 B, 0 . . .0
Proof. Let A = ' , B = ' e B>, ®H). Then,
A, 0 . . .0 B, 0 . . .0
}:Zj:1¢4;)gjfﬁ o . . .0
0 o . . .0
A*XB = ’ and so we have
0 o .. .0
w <ZZ;’:1 A;XijBi) = w(A*XB). Now, by Cauchy-Schwarz inequality we get,
w(A*XB) = sup |[(A*XBz,z)| = sup |(X¥Bzx, Az)|
TESy €Sy

< sup [[XBz|l[|Az| < sup [[X[[[|Bz]||| Az|
TESy rESy

1 1 * *
< sup C[|X)|(| Bz + | Az|®) = sup S[|X[[((B*B + A*A)x, z)
IESH 2 .T€SH 2
1 * * 1 . * *
= SIXlIA™A+B"B| = S || X| > (AjA;+ BBy
=1

Thus, we have the desired inequality.
O

Remark 3.11. We observe that the expression )} ;_; AjXi;B; can also be written as Zil ClX;D;
where C; € {A; : 1 < j <n}, X; € {Xy;:1< 4,5 <n},D; e {Bj:1<j < n} forall

i=1,2,...n2%. So, one can estimate w (Z?j:l A;XijBi) as in Theorem 3.6.
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CHAPTER 4

REFINEMENTS OF NORM AND
NUMERICAL RADIUS INEQUALITIES

4.1 Introduction

The main objective of this chapter is to develop norm inequalities for the sum of two bounded
linear operators, from which we obtain lower bounds for the numerical radius of bounded linear
operators that strongly refine the lower bound in (1.3), i.e., $]|4*A + AA*| < w?(A), obtained
by Kittaneh [54]. Further, we present upper bounds for the numerical radius of bounded linear
operators by using operator convex functions which improve on the existing ones. First we
introduce the following necessary notations and terminologies.

Let H denote a complex Hilbert space with inner product (.,.) and | - || denotes the norm
induced by the inner product (.,.). Let B(#) denote the collection of all bounded linear opera-
tors on H. For A € B(H), A* denotes the adjoint of A and |A| = V/A*A. For A € B(H), let ||A]
be the operator norm of A. Recall that ||Al| = supj =y [[Az| = supj=|jy|=1 [{Az,y)|. The
numerical range of A, denoted by W(A), is defined as W(A) = {(Az,z) : 2 € H, |z|| = 1}.

The two numerical constants, numerical radius w(A) and Crawford number c¢(A), associated

Content of this chapter is based on the following paper:
P. Bhunia, K. Paul; Refinements of norm and numerical radius inequalities, Rocky Mountain J.
Math., (2022), to appear.
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Chapter 4. Refinements of norm and numerical radius inequalities

with the numerical range W(A), of A, are defined respectively as w(A) = supyecy(a) |Al and
c(A) = infyep(a) [A|. The numerical radius is a norm on B(H) and is equivalent to the operator

norm on B(H), satisfying 1||A| < w(A) < ||A|| for all A € B(H).

4.2 Norm inequalities in estimating lower

bound for the numerical radius

We begin with the introduction of two notations. Let A = B+iC be the Cartesian decomposition
of A, ie., B=R(A) = 454 and C = (4) = 454, We observe that

1, ., 1
Z||A A4 AA*| = §||B2 + C?. (4.1)

By using the identity (4.1), we obtain our first refinement.

Theorem 4.1. Let A € B(H). Then

1 1
leA*AJrAA*H < g(\|A+A*||2+||A*A*||2)
1 1 1
< é(\|A+A*||2+||A—A*||2)+§c2(A+A*)+§c2(A—A*)
< w?(A).

Proof. From the identity (4.1) we get,

1, L1 1 1 . .
A+ ALY = glle +C?|| < §(HBH2 +lo)?) = glla+4 12+ 1A — A%|1%).

This is the first inequality of the theorem. The second inequality follows trivially. Now we prove

the third inequality. Let € H with ||z|| = 1. Then from the Cartesian decomposition of A we
get,

|(Bzx,z)|* + |(Cz, 2)|* = |(Az, z)|*. (4.2)
From (4.2), we get the following two inequalities
(B) + [IC)* < w?(4) (4.3)
and
(C) +||IB]]* < w?(A). (4.4)
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Chapter 4. Refinements of norm and numerical radius inequalities

It follows from the inequalities (4.3) and (4.4) that
A(B)+A(0) + | BIIP +[|C)? < 20*(A).
This implies that
1 12 *12 1 2 * 1 2 * 2
§HA+AH%WA—AH +§CM+A)+§CM7A)Sw(m.
This completes the proof. O
Remark 4.2. We note that the inequalities obtained in Theorem 4.1 refine
1 * *
A+ ATIA = AT < wi(4), (4.5)

obtained by Omidvar and Moradi [64, Th. 2.1] and the first inequality in (1.3). Consider the

. 2+i 0
matric A = , then
0 1+3i

1
5= 714" A+ A

1 * *
< 6=lA+ATA- A

1 * *
<65:§mA+AH%Hm—AH%

1 1 1
<75:§mA+Aw%Hm—Aw%+§§M+Aﬂ+§§M—Aﬂ
< 10 =w?(A)

This shows that the inequalities obtained in Theorem 4.1 are proper.
The following corollary follows from Theorem 4.1.

Corollary 4.1. Let A € B(H). Then
1 * * 1 2 * 1 2 * 2
ﬁAA+AAH+§cM+A)+§cM—A)§w(m. (4.6)

It should be mentioned here that the inequality (4.6) is weaker than the third inequality in
Theorem 4.1.

In the next theorem we obtain a norm inequality which refines the triangle inequality.

29



Chapter 4. Refinements of norm and numerical radius inequalities

Theorem 4.3. Let A,D € B(H). Then
lA+DI* < [lAI? + D] + [|A*D + D*A|| < (I All + | DID*.

Proof. Let @ € H with ||z|| = 1. Then we have,

[(A+ D)z|> = ((A+ D)z,(A+ D))
|Az||? + | Dz|* + ((A*D + D*A)z, x)

< [AJ* + DI + | A*D + D* AJ.
Taking supremum over ||x|| = 1 we get the first inequality of the theorem. The second inequality
follows from the inequality ||A*D + D*A|| < 2||A||||D||- O

Remark 4.4. We would like to note that if || A+ D|| = || A||+||D|| then it follows from Theorem
4.8 that ||A*D + D*A|| = 2||A||||D||. The converse is not true, in general. Consider A =1 and
D = —1I, then [|A*D + D*A|| = 2[|A[[[| DI|, but | A+ D|| # [|A[l + [|D]].

Next we need the following inequality, known as Buzano’s inequality.

Lemma 4.1. ([35]) Let z,e,y € H with |le|| = 1. Then

[(z, e){e,v)] < 5 (l=llllyll + [z, ) -

N |

Now, we obtain another refinement of the triangle inequality.

Theorem 4.5. Let A, D € B(H). Then
1A+ DI* < [[AI* + [IDIP* + | Al DI| + min {w(A* D), w(AD") } < (Al + [[D|})*.

Proof. Let x,y € H be two unit vectors. Then we get,

[{(A+ D)z, y)* < ((Az,y)| + [(Dz, y)])?
= [(Az,y)]” + [(Dz,y)* +2|(Az, y)(Dz,y)|
= [(Az,y)* + (Da,y)|* + 2/(Az, y)(y, Dz)]
< Az, ) + [(Dz,y)* + | Az|||| Dz + [(Az, Dz)|

(by Lemma 4.1)
< [lAIP + DI + Al ]| + w(A*D).
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Chapter 4. Refinements of norm and numerical radius inequalities

Taking supremum over ||z|| = |Jy|| = 1 we get,

IA+DI* < [ A” + ID]I* + [ AID]| + w(A*D). (4.7)
Replacing A by A* and D by D* in (4.7) we get,

IA+ D|* < ||AI” + IDIP* + | Al| D]l + w(AD"). (4.8)

Combining (4.7) and (4.8) we have the first inequality of the theorem. The second inequality
follows from the observation that min{w(A*D),w(AD*)} < ||A||||D||. O

Remark 4.6. It follows from Theorem 4.5 that if || A+D|| = ||A||+||D|| then w(A*D) = || All||D||
and w(AD*) = ||A||||D||. The converse is not true, in general. Consider A =1 and D = —1I,
then w(A*D) = ||A[| D] and w(AD*) = [[A[|DI], but A+ DI # ||All + [|D]-

Now we need the following norm inequality.

Lemma 4.2. ([36]) Let A, D € B(H) be positive. Then

1
[A+ Dl < max{[[Al, D]} +[|AD]]>.

Next refinement of the first inequality in (1.3) is as follows.
Theorem 4.7. Let A € B(H). Then
1
ZHA*AJrAA*H
< g max (A4 AP A= AP+ A+ AT 20| < wR)
Proof. From the identity (4.1) we get,
Logs * Lo 2
ZHA A+ AAY| = §||B + C7|
< % {max{|B|2, ICI”} + ||BZCQ||;} (by Lemma 4.2)

1
< 2{max{lBlg,IICIIQ}JrIIBIIIICII}

This implies the first inequality of the theorem. The second inequality follows from the obser-

vation that ||B|| < w(A) and ||C|| < w(A). O

Remark 4.8. We note that the second inequality in Theorem 4.7 refines (4.5), obtained by
Omidvar and Moradi [6/, Th. 2.1].
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Chapter 4. Refinements of norm and numerical radius inequalities

Next we need the following lemma, proved in [25, Th. 2.4], by Bhunia et al.

Lemma 4.3. (/25, Th. 2.4]) Let A,D € B(H). Then
JA+DJ? < 2max{|A"A+D*D],||AA* + DD"|}.

Based on the above lemma we obtain the following refinement of the first inequality in (1.3).

Theorem 4.9. Let A € B(H). Then

1

'1Dm+Aw4umAwﬂ2gwuu

4v2

Proof. From the identity (4.1) we get,

1
A+ aa <

1 1
JATA+ A4 = 5|\B2 +C?|
1 1
< —||B*+ Y2 (b Lemma 4.3)
< \@II | y
1
1 3
< —|IB|*+||C 4] .
< 5 |IB1+ e
This implies the first inequality of the theorem. As before, the second inequality follows from
the observation that || B|| < w(A) and ||C|| < w(A). O

Remark 4.10. The concavity of the function f(t) = \/t ensures that the first inequality in
Theorem 4.9 is stronger than the first inequality in Theorem 4.1. We also note that the second
inequality in Theorem 4.9 refines the inequality (4.5), obtained by Omidvar and Moradi [64, Th.
2.1].

To obtain the next refinement of the first inequality in (1.3), we need the following lemma,

proved in [25, Th. 2.10], by Bhunia et al.
Lemma 4.4. (/25, Th. 2.10]) Let A, D € B(H). Then
|A+ D||* < 2max {||A*A + D*D|? + 4w?(D*A), | AA* + DD*||* + 4w?*(AD*)}.
Theorem 4.11. Let A € B(H). Then
1 * *
1||A A+ AAY|

1

1 * * 2 * * 1
< g2(la+A 114114 = A*[)" + 8 A+ AFHA - A1 < w?(A).
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Chapter 4. Refinements of norm and numerical radius inequalities

Proof. From the identity (4.1) we get,

1 1

A7 A+ A4 SlIB*+ 7l

- 1
1 1
5 2||B* + C*||? + 8 max{w?(B*C?), wz(CZBQ)}]

IN

(by Lemma 4.4)

1
< 3 2(||B|4+||C|4)2+8IBI4IICII4}

1
1

This implies the first inequality of the theorem. As before, the second inequality follows from

the observation that ||B|| < w(A) and ||C]| < w(A). 0O
Now, we prove the following norm inequalities.

Theorem 4.12. Let A, D € B(H). Then the following inequalities hold:

4+ DI? < JAI? + DI + 4" A + D" D]l + w(4"D) (4.9)
and

4+ DI? <A + DI + §| A4 + DD + w(AD") (4.10)

Proof. Let x,y € H be two unit vectors. Then we get,

{(A+ D)z, y)* < ((Az,y)| + (Dz,y)])?
= |{Az,y)|* + (D, y)|* + 2|(Az, y)(Dz,y)|
= [(Az,y)|* + (D, y)|* + 2|(Az, y)(y, Dx)|
< [(Az,y)|* + (Dz,y)* + [|Az|[| De|| + [(Az, Dz)]

(by Lemma 4.1)
< [(Az,y)|* + [(Dz,y)* + %(HACCH2 + Dz ||?) + [(Az, Dz)]
< [(Az,y)|* + [(Dz,y)?
+%<(A*A + D*D)x,z) + |(A*Dx, x)|
< AP+ HD||2+%||A*A+D*DH+w(A*D).
Taking supremum over ||z|| = |ly|| = 1 we get,

1
14+ DJI* < [|AI* + DI + 5[ A" A+ D*D| + w(A" D).
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Chapter 4. Refinements of norm and numerical radius inequalities

Replacing A by A* and D by D* in the above inequality we get,
1
IA+D|* < | AI* + [ID|* + 51447 + DD™|| + w(AD").

This completes the proof. O

Based on the norm inequalities obtained in Theorem 4.12 we obtain the following refinement

of the first inequality in (1.3).

Theorem 4.13. Let A € B(H). Then
1 * *
Z”A A+ AAY|

1 % * 2 1 * * 2

< 50+ AP 1A= A 4 5 0A+ P - A= aP| < u)

Proof. From the identity (4.1) we get,

1, ., i 1
Z||A A4 AAY| = 5||B2+02||

ol

IA

1 1
3 [IB14+ 114+ 3154+ 1)+ w(E2c?)]

(by Theorem 4. 12)

=

2

1 1
< 5 [IBI+ICI + 5B+ IC1Y + IBIPICIP)

This implies the first inequality of the theorem. The second inequality follows from the obser-
vation that ||B|| < w(A) and ||C]| < w(A4). O

Remark 4.14. The first inequality in Theorem 4.13 is better than the first inequality in Theorem
4.1. We also note that the second inequality in Theorem 4.13 refines the inequality (4.5),
obtained by Omidvar and Moradi [64, Th. 2.1].

In [16], Bhatia and Kittaneh have obtained that if A, D € B(H) be positive then
1 2
lADI < Zll4+ DI~ (4.11)
Now, by using the inequality (4.11) we prove the following numerical radius inequality.

Theorem 4.15. Let A € B(H). Then

1 1 1
A+ aar) < 2w2(A)+8H(A+A*)2(A—A*)2 < w?(A).
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Proof. From the inequality (4.11) we have,

1
1B2C?| < 711B% + 2|1 < L (IBI* + CI1*)*.

e~ =

It follows from the observation ||B|| < w(A) and ||C|| < w(A) that

1
w?(A) > |B*C*||2 > || |Bl|C| || = [IBC.
Thus,
1
2 1 *\2 *\2 2 1 * *

w?(A) 2 |[(A+ AP (A- AP 2 (A4 AT)(A - A7)
This implies that

1 1 1 1

w?(A) > QwQ(A)+8H(A+A*)2(A—A*)2 > §w2(A) +8H(A+A*)(A—A*) .

From [64, Th. 2.1], we have

1uP(A) + ;H(A + A*)(A — A%)

1
>7 * * .
: > AT A+ a7

This completes the proof of the theorem. O
The following corollary is obvious.

Corollary 4.2. Let A € B(H). Then

1

SlATA+ An - 1H(A A (A - A2

1 < w(A) < %HA*A—%AA*H.

The following remark follows from the above corollary.

Remark 4.16. If (A+ A*)*(A— A*)2 =0, then w?(A) = J||A*A+ AA*|.

4.3 Numerical radius inequalities of bounded

operators via operator convex function

The notion of operator convex function plays an important role in the development of norm
and numerical radius inequalities. A real-valued continuous function f on an interval J is said

to be operator convex if for all self-adjoint operators A, D € B(H) whose spectra are contained
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Chapter 4. Refinements of norm and numerical radius inequalities

in J satisfy f((1—t)A+tD) < (1 —1t)f(A)+tf(D) for all ¢ € [0,1]. The function f(t) =" is
operator convex on [0, 00) if either 1 <r <2or -1 <r <0.

Bhatia and Kittaneh [18] have obtained a norm inequality, namely, for A, D € B(H),
1
|AD*|| < 3 |A*A+ D*D||. (4.12)

Lemma 4.5. Let A € B(H) and let f be non-negative increasing operator convex function on

[0,00). Then
Fw?(4)) < |If (AP + (1 = a)|A*P)[l, Ya € [0,1]. (4.13)
Proof. In [30, Cor. 2.5], Bhunia and Paul obtained that
w?(4) < [la| AP + (1 = a)|A*[|, ¥ ae[0,1]. (4.14)
Therefore, for all « € [0, 1],
Fw?(A) < flalAP + @ = ) AP]) < [If(alAP + (1 = )| A"P)].

This completes the proof. |

Lemma 4.6. (/38]) Let f : J — R be an operator convex function on the interval J. Let A and

D be two self-adjoint operators with spectra in J. Then

7 (AJ;D> < /01f<(1 —t)A—i—tD)dt < %(f(A) + £(D)). (4.15)

If f is non-negative then the operator inequality (4.15) can be reduced to the following norm

(2]«

Lemma 4.7. ([56]) Let A,D € B(H) be positive. Then || A+ D|| = ||All + ||D]| if and only if
IADI| = [|Al[|D]-

inequality

/01f<(1 - t)A”D)dtH < %Hf(A) + f(D)]|. (4.16)

Now, we present the first theorem of this section.

Theorem 4.17. Let A € B(H) and let f be non-negative increasing operator convex function
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Chapter 4. Refinements of norm and numerical radius inequalities

on [0,00). Then

Fw?(4))

IN

H/ <l—t J(alAl2 + (1 a)|A*|2)+tw2(A)I>dtH
| £ (AP + (1 — a)|A*]?)||, Vae€[0,1].

IN

Proof. For all a € [0,1] we have,
(@A + (1~ @) A P)uP (AT = [lal AP + (1 — @)l A"|[[w?(A)1])
Thus, it follows from Lemma 4.7 that
JolAP + (1 A" + (A1 = [|o]AP + (1 — a)|A° P + w?(A).
So, by using the inequality (4.14) we get,
w?(A) < SllalAP + (1~ o) A2+ w(A)1])

Then,

=
g
=
2
IA

7 (3llatar + 1 =yt +wrcan])

- Hf <O¢|A|2 + (1 a)2|A*|2+w2(A)I>H
< H/ <1—t (AP + (1 a)|A*|2)+tw2(A)I>dtH

<by inequality (4.16))
< %||f(a|A|2 +(1—a)|A") +f(w2 A)) IH(by inequality (4.16) )
_ 1||f(a|A|2+( @) AP)| + 3£ (w?(4)) (by Lemma 4.7)
< || F (AP + (1= a)A*P)| (byLemma4.5).

This completes the proof.

By considering f(t) = t? in Theorem 4.17, we get the following corollary.

Corollary 4.3. Let A € B(H). Then

(NI

w?(A)

IN

H/ol (0= 0elar + (1= ) + )

oA + (1= Q)| AP, Vaelo,1].

IN
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In particular, for a = %

[ (00 (MEE) ) o <

This inequality can be written in the following form:

1
2

1
w(4) < < s lhar -+ 14,

2 *(2\ 2 2 «12\ || 2
wi(4) < (W) + W (AT + w(A) <|A|+2A|) (4.17)
< H|A|2+|A*2 (4.18)

Remark 4.18. We observe that the inequality in (4.17) is sharper than the second inequality
in (1.3). We also remark that the first inequality in Corollary 4.3 improves on the inequality
(4.14), obtained by Bhunia and Paul [30, Cor. 2.5].

The following theorem again involves operator convex function.

Theorem 4.19. Let A € B(H) and let f be non-negative increasing operator convex function

on [0,00). Then

L Al + 1A%\ ?
fw?(A) < f ((1 — 1) ( <||+2||) + (1= ) AP | + tw*(A)I | dt
Al + |A*

< H ( | |+| ) +(1—a)|A|2> , Va€0,1].

Proof. Following [30, Cor. 2.15] we have,
) A+ 147 2

w?(A) < ||« <2> + (1 —-a)A7||, Yael0,1]. (4.19)

Proceeding similarly as in Theorem 4.17 we get the required inequality. OJ

Considering f(t) = t? in Theorem 4.19, we get the following corollary.

Corollary 4.4. Let A € B(H). Then

1 * 2
/0 <(1 _4) (a <W+2|A>2 +(1- a)|A|2> +tw2(A)I> dt

Ha ('A'*'A*')Qm — )l

[N

w?(A)

IN

5 , Ya €0,1].
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Next, we prove the following theorem.

Theorem 4.20. Let A € B(H) and let f be non-negative increasing operator convex function

on [0,00). Then
1 1 ((1 —4) (a (""*ﬂ)z . a)|A*|2> +tw2(A)I> dt

H < 'A'“A*') +<1a>A*|2)

Proof. Following [30, Cor. 2.15] we have,

’wQ(A) S Ha<|A|+|A*|) +(1—a)\A*|2

Fw?(A)

IN

IN

, Ya€l0,1].

5 , Yae[0,1]. (4.20)

The proof then follows by using the inequality (4.20) and proceeding similarly as in Theorem
4.17. O

By considering f(t) = 2 in Theorem 4.20, we get the following corollary.

Corollary 4.5. Let A € B(H). Then

: AL AN ) )
/0 ((1t) (a <2> +(1 a)A|>+tw (A)I) dt

Ha <|A| + |A*)Z’+ (1 - )"

1
2

w?(A)

IN

IN

5 , Yae€l0,1].

In particular, for a =1

s [ ((1—t) (A|ZA*|>2+tw2(A)I>2dt g [ 2

This inequality can be written in the following form:

1\ 4

< 7 5 ) +w4(A)I+w2(A)(

H|A| + |A*]|1?

5 (4.21)

A+|A*|>2 ’

(4.22)

Remark 4.21. The inequality (4.17) follows from the inequality (4.21) by using the operator
convezity of the function f(t) = t2. Clearly, the inequality (4.21) is also a refinement of the
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second inequality in (1.3).
Next, we prove the following norm inequality.

Theorem 4.22. Let A,D € B(H) be positive and let f be non-negative increasing operator
convez function on [0,00). Then

01f<(1—t) (A;DYHHADII) " f<<A;D>2>|"

Proof. Using the inequality (4.11) and proceeding similarly as in Theorem 4.17, we get the

f(IADI)) <

required inequality. O
In particular, if we consider f(¢) = t? in Theorem 4.22, then we get the following corollary.

Corollary 4.6. Let A, D € B(H) be positive. Then

1
2 2
! A+ D\ 1
lani < | [ ((u)( 52 +dapir) @ < )4+ DIP.
0

S

This inequality can be written in the following form:

1
AD| < —
l4D] < =

(A+D

A+ D\?
2

: 1
<_||A+D
> 4|| +D|?.

4
) 1 |AD|’T + | AD| (

Remark 4.23. Clearly, the first inequality in Corollary 4.6 improves on the inequality (4.11),
obtained by Bhatia and Kittaneh [16].

The final result of this section is an improvement of the norm inequality (4.12), obtained by

Bhatia and Kittaneh [18].

Theorem 4.24. Let A, D € B(H) and let f be non-negative increasing operator convex function

on [0,00). Then

<10 (H20) o) < (4£320)

Proof. Using the inequality (4.12) and proceeding similarly as in Theorem 4.17, we get the
desired inequality. O

In particular, if we consider f(¢) = t? in Theorem 4.24, then we get the following corollary.
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Corollary 4.7. Let A, D € B(H). Then

/01 <(1 _4) (W) +t||AD*|I)2dt

This inequality can be written in the following form:

1
2

1
[AD™| < < 5 [1AP + [DP[|.

1
2

1
V3

1
< 51474+ DD

[AD]|

IN

2

2
) hapt e an (25

<|A|2 +|D|?

A* + |D|2>

Remark 4.25. We would like to remark that the first inequality in Corollary 4.7 refines the

0 2
inequality (4.12), obtained by Bhatia and Kittaneh [18]. Consider A = and D =
0 0
1
. Then by elementary calculations we get,
0
2 3
1 |I(1A]? + |DP? 2 [A]? + |DJ? 61
— || ————— AD*||°1 AD*|| | ——— =/ — =~ 2.2546
I (FEE) s panripr s+ janny (M55 e

and % |[A*A+ D*DJ| = g This shows that the inequality obtained in Corollary 4.7 is a proper
refinement of the inequality (4.12).
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CHAPTER 5

DEVELOPMENT OF INEQUALITIES
AND CHARACTERIZATION OF
EQUALITY CONDITIONS FOR THE
NUMERICAL RADIUS

5.1 Introduction

In this chapter, we establish new inequalities for the numerical radius of bounded linear opera-
tors. For a bounded linear operator A, we obtain the following inequalities

w?(A) < min
0<a<l1

ol AP + (1 = )| AP,

Content of this chapter is based on the following papers:
P. Bhunia, K. Paul; Proper improvement of well-known numerical radius inequalities and their ap-
plications, Results Math., 76 (2021), no. 4, Paper No. 177, 12 pp. https://doi.org/10.1007/
s00025-021-01478-3
P. Bhunia, K. Paul; Development of inequalities and characterization of equality conditions for the
numerical radius, Linear Algebra Appl., 630 (2021), 306-315. https://doi.org/10.1016/j.1laa.
2021.08.014
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Qa2 3 (2
4A—i—(l 4a>|A| }

We show that the inequalities obtained here generalize and improve on the existing well-known

radius

and

2 . o 2
) < i, { Gl +

inequalities given in [1, 54, 55]. Further, we obtain lower bounds for the numerical radius of
bounded linear operators which refine the well-known lower bound w(A) > @ and the bound
w?(A) > 1||A*A + AA*||, obtained by Kittaneh [54, Th. 1]. We present equivalent conditions
for the equality of w(A) = @ as well as w?(A) = 1||A*A + AA*|| in terms of the geometric
shape of numerical range of A. Further, applying the lower bounds obtained here, we obtain
upper bounds for the numerical radius of commutators of bounded linear operators, which
refine the existing ones [40, 47]. For this purpose first we introduce the following notations and
terminologies.

Let B(#) denote the C*-algebra of all bounded linear operators on a complex Hilbert space
H with inner product (.,.). As usual the norm induced by the inner product (., .) is denoted by
| - ||. For A € B(H), let W(A) denote the numerical range of A, which is defined as W(A) =
{(Az,z) : = € H,||z| = 1}. For A € B(H), let w(A) and ||A] denote the numerical radius
and the operator norm of A, respectively, defined as, w(A) = sup{|(Ax,x)| : = € H,||z| = 1}
and ||Al| = sup{||Az| : z € H,||z|]| = 1}. It is easy to verify that w(.) defines a norm on
B(H), which is equivalent to the operator norm || - ||. In fact, for every A € B(H), we have
that 3[|A| <w(A) < ||A]|. The Crawford number of A, denoted by c¢(A), is another important
numerical constant associated with the numerical range and is defined as ¢(A) = inf{|(Ax, x)| :
x € H,||z|| = 1}. The adjoint of an operator A is denoted by A*. Clearly w(A) = w(A*) and
c(A) = ¢(A*). For A € B(H), the real part and imaginary part of A, denoted as R(A) and
$(A), respectively, that is, R(A) = # and $(A) = AElA*. Thus, A = R(A) +iS(A) is the
Cartesian decomposition of A. Tt is well known that, for A € B(H), w(A) = suppeg ||R(e? A)|| =

SUPgeRr H%(ewA)H, see in [75].

5.2 Refined and generalized upper bounds
for the numerical radius of bounded lin-

ear operators

We begin this section with the following proposition that gives an inequality involving the

operator norm and the Crawford number of bounded linear operators.
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radius

Proposition 5.1. Let A € B(H). Then the following inequality holds.
]I + max {e(|A), e(|A*?) } < [|A*A + AA%|.

Proof. The proof follows from the observation that Vo € H with ||z|| = 1 we have, ||Az|® +
|A*z|? = ((A*A+ AA")z, x) < ||A*A + AA*|. O

To proceed further we need the following lemmas.

Lemma 5.1. ([44, pp. 75-76]) Let A € B(H) and let x € H. Then
[(Az, 2)] < (| Al ) V2| A" |, 2) 2.
Lemma 5.2. ([73, p. 20]) Let A € B(H) be positive and let x € H with ||z|| = 1. Then
(Az,z)" < (A"z,z), ¥V r>1.
Also we need the well-known Heinz inequality.
Lemma 5.3 (Heinz inequality [52]). Let A € B(H). Then for all z,y € H,

(Az,y)* < (JAP 2, @) (JA POy ), ¥V A, 0< A< L (5.1)

We note that Lemma 5.1 is a special case of the Heinz inequality. Now we prove our first

theorem.

Theorem 5.1. Let A € B(H). Then

(0% r * _ *
w?(4) < |5 (141 + 147 F07) 4 (1 - aplar (5:2)

and

™ « ' * — T T
w?(4) < |5 (JAIP + 4707 4 (1 - )| AP

: (5-3)

Vr>1andV a, A with0 <a, A <1.

Proof. Let x € H with ||z|| = 1. Then by Cauchy-Schwarz inequality, we get

[(Az, )| = al(Az, z)| + (1 — a)[(Az, )| < al(Az, z)| + (1 — a)[| A%z
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Therefore, by the convexity of the function f(t) = %", we get

[(Az,2)|*" < al{Az,2)|*" + (1 - )| A"2]*

< (AP, ) (A POV, ) 4+ (1 — a) (| APz, )" (by Lemma 5.3)
< o|APY 2, ) (A PO e 1) 4+ (1 — ) (|AY )Pz, ) (by Lemma 5.2)
< S (UAPY2,2)? + (A PON2,2)?) + (1 - a) (A", )
< %(@MM%J»+QA%H4VLx»441—axmﬂ%%xwmummma5@
_ <{% (‘A|4/\r I |A*|4(1—/\)r) (11— a)|A*‘2r}x7$>
< H% (IA‘MT 4 ‘A*|4(17A)r) 41— a)|At? .
Taking supremum over all z € H with ||z|| = 1, we get (5.2). By similar arguments as above

we can prove (5.3).

O
Based on Theorem 5.1 we prove the following inequality.
Corollary 5.1. Let A € B(H). Then
w?(A) < Ha|A|2T +(1- a)|A*|2T|| , Vr>1 and Va, 0<a<l.
Proof. Taking A = % in (5.2) and (5.3), respectively, we get
2r g 2r E *|2r
wr(A4) < | FIAT+ A=A, YV r21 Va, 0<asl
and
M%mg“@—%ym%+%mwr,Vr21,vmogag1
Combining the above two inequalities we get the desired inequality. 0
As a consequence of Corollary 5.1 we easily get the following corollary.
Corollary 5.2. Let A € B(H). Then
2 < . 2 _ *12|| .
w(A) < 0r§naH§11||a|A| + (1= o)A (5.4)

Inequalities obtained in Corollary 5.1 and Corollary 5.2 generalize and improve on the second

inequality in (1.3). In order to appreciate our inequality (5.4), we give the following examples
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which show that

Oggrgll Hoz|A|2 +(1—-a)|A \QH < 5 H|A|2 +|A \QH

and imply that our inequality (5.4) is a non-trivial improvement of the second inequality in

(1.3).

Example 5.2. (i) Let

0
A=10 2
0
Then
0 00 1 0
A= 0 1 0 and |A* )P =1 0
0 0 4 000
Therefore,
min Ha\A\Q +(1—-«w) |A*|2|| = min max{l — o,4 — 3a,4a} = 16
0<a<1 0<a<1 ’ ’ 7
and
1 2 *|2 5
3 AP+ 14 =
Thus,
1
. 2 *|2 2 *|2
1-— — .
min ol + (1= o) |42 < LA 1 147
(ii) Let
0200
00 30
g —
00 00
0 0 01
Then
00 00 4 0 0 0
0400 09 00
1S|2 = and |S*|? =
0090 0000
00 01 00 01
Therefore,
81 13 1
. 2 * |2 2 * |2
OISHC:ISIIHO[|S| +(1—O[)‘S | H = ﬂ<?:§“|5| +‘S ‘ ”
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radius

In [1], Abu-Omar and Kittaneh proved that the following inequality

1 1
w?(A) < 5w(A"’) +3 [IA]? + [A*P)) .

(5.5)

In our next theorem we generalize and improve on the inequality (5.5). To do so we need

the following inequality.

Lemma 5.4. (Buzano’s inequality, [35]) Let a,e,b € H with |le|| = 1. Then

[(a; e){e, b)] < 5 (llalll[bll + [{a, b)) -

N |

Using Buzano’s inequality we first prove the following lemma.

Lemma 5.5. Let A € B(H) and let x € H with ||z|| = 1. Then

|(Az, ) <

[N

Proof. Taking a = Az, b = A*z and e = z in Lemma 5.4, we get

[{Az, 2)|* < o ({422, 2)| + [ Az [ A"=]).

N =

By convexity of the function f(t) =" (r > 1), we get

T 1 T T % T
[(Az,2)[* < o ((A%,2)[" + Azl [ A"2]]")
< % <|<A2:E,:U>|T + %(HA:CHQT + ||A*:v|2r)) (by AM-GM inequality)
1 2 r 1 2 r *|2 r
= 5 (&%) + 5 {[Afz,2)" + (A" 2, 2)")
1 2 r 1 2r * |21
< 5 (A%,2)" + 5 (AP 2,2) + (| A**2,2)) ) (by Lemma 5.2)
1 T 1 T * 4T
= Sl A%+ L (A7 + A"z, 7).

This completes the proof.
Now, we present the desired theorem.

Theorem 5.3. Let A€ B(H). ThenV r>1andV o, 0 <a <1,

() ¥ (4) < Sw'(4%)+ HZ|A|2T + (1 - ia) |A¥

47
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(A%, 2)[" + 5 (AP + A e, 2), ¥ or>1.
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(i) w?(A) < ng(£)+”<1_2@> |A|27’+%\A*|2’” (5.8)

Proof. Let x € H with ||z|| = 1. Then by Cauchy-Schwarz inequality, we get
[(Az, z)| = al(Az, z)| + (1 — a)[{Az, )| < of(Az,2)| + (1 - )| A"2], V 0,0 << 1.
By convexity of the function f(t) = t*" (r > 1), we get

(A, 2)|*" < al{Az,2)" + (1 - o) | A"|*

< al(Az, )| 4+ (1 — a){|A** x, x) (by Lemma 5.2)

< SNA%@) 4 (AP + APz a) + (1 - a)(|A* e, 2),
(by Lemma 5.4)

= A%+ ({T (A7 +147) + (1 - @) * f o)

= St + ({1 + (1-3a) o)

< %wT(AQ)-i‘ %|A|2T+ (1—Za> | A

Taking supremum over all z € H with ||z|| = 1, we get the inequality (5.7). Replacing A by A*
in the inequality (5.7) we get the inequality (5.8). This completes the proof. O

As a consequence we get the following upper bound for the numerical radius.

Corollary 5.3. Let A € B(H). Then

w?(A) < min {B1(A), B2(A)}, (5.9)
where
) = i, { G+ | F1ar+ (1 5a) 1] }
and
) = i { a2 + [ (1= Ja) 14 + S1ap ).
Proof. The proof follows easily by taking r = 1 in the inequalities (5.7) and (5.8). O

Inequalities obtained in Theorem 5.3 and Corollary 5.3 generalize and improve on the in-
equality (5.5). In order to appreciate our obtained inequality (5.9), we give the following

examples, it shows that the inequality (5.9) is a non-trivial improvement of the inequality (5.5).
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Example 5.4. (i) Let

0
A =
0
Then by elementary calculations, we get $1(A) = Z and Pa(A) = % Therefore,
_ 22 7 1 o 1. o
min {31(A), B2(A)} = B3<1= iw(A )+ 1 |IA[*+ [A*]|.
(ii) Let
0 2 00
00 30
S pr—
0000
0 0 0 1

Then by elementary calculations, we get B1(S) = % and B2(S) = %. Therefore,

min {31(5), B2(5)} = % < % ;

_ 2 1 2 |2
_Qw(5)+4}||5| +15*1%]|.

Next, we prove the following theorem.

Theorem 5.5. Let A € B(H). ThenV r>1andV o, 0 < a <1 we have

* 2r

w?(A) < Ha (A|+2A|> + (1 —a) |[A** (5.10)
* 2r

w?(A) < Ha<|A|+2|A|) +(1—a)|A]*. (5.11)

Proof. Let x € H with ||z|| = 1. Then by Cauchy-Schwarz inequality, we get V «, 0<a <1,

[(Az, )| = af(Az, 2)| + (1 — o)[{Az, 2)| < o|(Az, 2)| + (1 — @) [|A"z]].
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By the convexity of the function f(t) = t*" (r > 1), we get

[(Az, )" < al(Ar,2)* + (1 - a) || A"|*"
< al(Az, @) + (1 — a){|A* Pz, 2) (by Lemma 5.2)
< a( |Alz, z) V2 (| A* |z, x>1/2> + (1 —a){|A*|*z, x) (by Lemma 5.1)
< Oé( |A|£L‘ LE ‘A |m $>) + (1 _ 04)<|A*|2Tm,x>
<by AM-GM inequality)
2r
- a( A+ E )z x>> + (1 - a){|A*[¥, )
< < |A| + |A a:,:c> + (1 —a)({|A** z, x) (by Lemma 5.2)
= <{ ‘AH—lA > —|—(1—a)|A*|27°}:c,a:>
Al + A\
< Ha | |‘;‘ |> —|—(1—a)|A*|2T

Taking supremum over all z € H with ||z|| = 1, we get the inequality (5.10). Replacing A by
A* in the inequality (5.10), we get that the inequality (5.11). O

The following corollary is an easy consequence of Theorem 5.5.

Corollary 5.4. Let A € B(H). Then

w?(A) < min{yi(4),72(4)}, (5.12)
where )
o |A] + A" 2
n(A) = min | (2 +(1-a)lA
and

Ay :
) = i fo (M) a1y

Remark 5.6. In [55], Kittaneh proved that the following inequality
2 1 ® (12
w(4) < 7 [llA]+ A" (5.13)

The inequalities obtained in Theorem 5.5 and Corollary 5.4 generalize and improve on the

inequality (5.13). As before considering the operators A and S used in Example 5.2 we can
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show that the inequality (5.12) is a non-trivial improvement of the inequality (5.13).

5.3 Refined lower bounds for the numerical

radius of bounded operators

We begin by noting an elementary equality of real numbers; max{a,b} = %"b + @ for all
a,b € R. By using this maximum function we obtain the following lower bound for the numerical

radius of bounded linear operators.

Theorem 5.7. Let A € B(H), then

1Al [ IR IS |
w(4) > 5 + 5 :

Proof. Let x be a unit vector in H. Then it follows from the Cartesian decomposition of A that
(A, 2)? = [(R(A)z, 2)]? + |(S(A)z, 2)[2. This implies w(4) > [R(A)] and w(4) = [S(A)].

Thus, we have

w(A) > max{[|R(A)[,[|S(A)[}
II%(A)H+H%(A)II+\ IR(A) - IS |
2 2
> II%(A);i%(A)II+| II%(A)II;II%(A)H |
AL T IR = ISA)]
= 5 ° 2 ’

as desired.

O

Remark 5.8. (i) We note that if A is Hermitian or skew Hermitian operator then the inequality
in Theorem 5.7 becomes an equality.

(ii) Clearly, the inequality in Theorem 5.7 is stronger than the first inequality in (1.1) when
IR(A) # (S

As a consequence of Theorem 5.7 we prove the following corollary.

Corollary 5.5. Let A € B(H). If w(A) = 1L then |R(A)[| = [|3(4)| = 141

Proof. From Theorem 5.7, we have w(A) > @ + H%(A)H;HS(A)H | > @. This implies that if
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w(A) = 4L then |R(A)| = ||S(A)]|. Also

_ AL _ [130A) + IS R+ [S(A)]

IR(A)] < w(a) = 12 ; ;

= [[R(A)]|

and so [|R(A)]| = [|S(4)] = 14L. O

Note that the converse of Corollary 5.5 is not true, in general. Now, we concentrate our

study on an equivalent condition for w(A) = @.

Theorem 5.9. Let A € B(H). Then the following are equivalent.
. A

(i) w(A) = 14l

(ii) [|R(e? A) || = ||3(e? A) | = 1L, for ali 6 € R.

Proof. (ii) implies (i) is trivial. We only prove (i) implies (ii). Let w(A) = @ Then from
Corollary 5.5, we have |R(A)|| = [|S(A4)]| = 4L, Clearly, for all 6 € R, ¢?A € B(H) and
w(e® A) = w(A), e Al = ||A|l. Thus, w(A) = 121 implies |R(e?A)|| = |3 A)|| = L for
all 4 € R.

O

Next we prove that, [|A|| = /[[A*A+ AA*[| = \/[[A*A — AA*|, if w(A) = | A]|. To do so

we need the following lemma.

Lemma 5.6 ([14]). Let A,B € B(#H) be non-zero operators. Then ||A+ B|| = ||Al + ||B|| if

and only if ||A||||B|| € W (A*B).
Theorem 5.10. Let A € B(H). If w(A) = @, then
JAJ2 = A4+ AA*| = [ A"A — AX°].

Proof. We note that for all § € R, by Theorem 5.9,

1A]l = IR(e” 4) +iS(e? A)|| < [|R(”A) | + 13(e” A = || Al

Then using Lemma 5.6 we get, |[R(A)||[|S(e?A)|| € W (i R(e?A)F(el?A)). Clearly, we have
IREAIS(A)] < wi R(EPA)I(A)) < [li R(PA)I(A)] < [R(EA)][S3(A)].
Since [|R(A)[|[[S(e’A)| € R,

IR A IS A = |® (i R )37 a))] .
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Clearly, R (i R(e?A)I(eA4)) = 1(A*A— AA*). Thus we get,
. : 1
|R(?A)||||S(e? A) || = ZHA*A — AA*||, for all 0 €R. (5.14)

From Theorem 5.9, we have ||A|> = |[|[A*A — AA*||. Now, by the first inequality in (1.3),
|A*A — AA*|| = | A]? < [[A*A + AA*|| < 4w?(A) = ||A]]”. Hence, [|A|* = [[A*A — AA*| =
|A*A+ AA*|. O

Remark 5.11. Kittaneh [54, Prop. 1] proved that if A2 = 0 then ||A||? = |[AA* — A*A|| =
|[AA* + A*A||, whereas Theorem 5.10 says that if w(A) = @ then ||A||? = ||AA* — A*A|| =
|AA* + A*Al|. Clearly, {A € B(H): A2=0} C {A €B(H): w(A) = @} is proper. Thus,
Theorem 5.10 is applicable to a larger class of operators than [5, Prop. 1].

In the next theorem we obtain another lower bound for the numerical radius which improves

on that in (1.3).
Theorem 5.12. Let A € B(H), then
WA) > TIAA+ AL+ 2| IRA - ISP |
Proof. Let x be a unit vector in H. Then it follows from the Cartesian decomposition of A that

(Az, z)|? = |(R(A)x, 2)|? + [(S(A)z,2)|%. This implies w(A) > [|R(A)|| and w(A) > [|S(A)||

and so,

w?(4)

v

masx {IR(A) 2, 13(4)]°}

R LI | IR IS
IRADIE LM | IR~ IS
IR + AP IR ISP
= Lpgas aaeg o IRAP I

as required.

Now, using Crawford number we obtain our next refinement.
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Theorem 5.13. Let A € B(H), then

) 2 Ljasas aa s CEA LEEA)
> ;
N HS‘E(A)H?;II%(A)H?+c2(%(A));02(§re(A)) |

Proof. Let x be a unit vector in H. Then it follows from the Cartesian decomposition of
A that [(Az,2)|> = [(R(A)z, 2)|> + [($(A)z, x)|?. This implies the following two inequalities:
w?(A) > [|[R(A)|? + A(S(A)) and w?(A) > |S(A)]|2 + 2(R(A)). Therefore, we have

w’(4) > max {|[R(A)]* + (3(4)), |

(A)), IS(A? + *(R(A)) }
IRCA)[* + e*(S(4)) + [SAI +
2

c*(R(A))

+

IR+ (S(4)) = [S(A)]* — CQ(%(A))‘
2
IRCAIZ + ISP | ARA)) +A(3(A))
2 2
IR = ISP | (S(4)) - 62(3?(14))‘

* 2 T 2

IREA I+ ISA2] | A(R(A)) +2(S(A4))
2 2
IRCAZ = ISP | A(S(A4)) = A(R(A))
2 * 2
[(R(A))? + (S]], (R(A) +*(S(4))
2 2
L[ IR . ISCIE 62(3(14));02(?}3(:4))

A(R(4)) +(S(4))

+

v

|A*A+ AA"|| +

IRCAIZ = ISP A(3(4)) = (R(4))
2 2 ’

P

as required.

Remark 5.14. In [20, Cor. 2.3/, Bhunia and Paul obtained that if A € B(H), then
1 1
w'(A) = L [ATA+ ALY + 5 (P(R(A)) + ¢4(S(4))) (5.15)

Clearly, Theorem 5.13 is stronger than (5.15).

Next, we obtain an equivalent condition for the equality of w(A) = §/[[A*A + AA*.
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Theorem 5.15. Let A € B(H). Then w?(A) = || A*A+ AA*|| if and only if |R(e? A)|* =
[S(e?A)||2 = 3| A*A+ AA*|, for all 6 € R.

Proof. The sufficient part is trivial, so we only prove the necessary part. Let w?(A) = %HA*A +
AA*||. Let § € R be arbitrary. Then by simple computation we have, (?)‘E(eieA))2 + (S‘s(ei"A))2 =

%. Now, we have
iHA*A TAAY| = % H (afe(eif’A))2 + (%(eieA))QH
< g (Imen] + Jseal’)
< % (w?(A4) + w?(A))
- i”A*A + A4
Thus, [|R(e?A4)||? = [|S(e?A) || = w?(A) = 1||A*A + AA*||, for all 6 € R. O
In the next theorem we characterize the numerical range of an operator when the numerical
radius attains its lower bounds, namely, w(A) = @ and w(A) = 7W.

Lemma 5.7. Let A € B(H). Then the following are equivalent:
(i) |R(e? A)|| = k, (k is a constant) for all § € R.

(i) W(A) is a circular disk with center at the origin and radius k.

Proof. (i) = (ii). Since w (R(e”®A)) = k for all § € R, so, supj, =1 [(R(e?A)z,z)| = k, ie.,
SUP|4)|=1 |Re(e?(Ax,x))| = k for all # € R. Thus, for each § € R, there exist a norm one
sequence {2} in H such that |Re(e®(Azf,2%))| — k. This implies that the boundary of W (A)

must be a circle with center at the origin and radius k. Since W(A) is a convex subset of C, so

W (A) is a circular disk with center at the origin and radius k.
(13

) = (7). Follows easily. O

Now, the desired characterizations follows easily from Theorem 5.9 and Theorem 5.15, re-

spectively, by using Lemma 5.7.

Theorem 5.16. Let A € B(#H). Then we have,

(i) w(A) = %HAH if and only if W(A) is a circular disk with center at the origin and radius
4]l

(it) w(A) = $/||A*A+ AA*|| if and only if W(A) is a circular disk with center at the origin

and radius 3/ A*A+ AA*|.
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Remark 5.17. For A € B(H), we note w(A) = @ implies w(A) = 1\/|A*A+ AA*.
However, w(A) = %\/m does not always imply w(A) = M Consider A =
010
0 01 .Then,w(A):%sz%>%:@.

0 00

Our final inequality in this section is as follows.

Theorem 5.18. Let A € B(H), then

wA) > o |(ATa ARt 4 4 (R + IR - 3]

i * *12 1 2\ 2 l 4 cx 4
> AT A+ AXT P + 2o (R(AD)?) + 5 IR — IS
Proof. Tt follows from w*(A) > max{||R(A4)|*, ||S(A4)[*} that

IRCAI* + IS [ IR - IS ]
2 * 2

I(R(A)* + (S(A) +\ IRCA)[* = IS |
2 2

_ % (ama s aany? + 4 (mea2)?| + |

w(A)

Y

Y

IR = IS |
2

IR — S|
5 :

v
=

1 * * (12 1 2 |
lAaTa+ x| +Zc((§re( )?) +

Remark 5.19. Bag et al. [10, Th. 8] obtained that the following inequality:

wi(A) > 1—16||A*A+AA*||2+ic((%(AQ)f). (5.16)

Bhunia et al. [25, Cor. 2.8] improved on the inequality (5.16) to

1

4 >
wi(4) = 3

H(A*A+AA*)2 +4(§R(A2))2H. (5.17)

Clearly, Theorem 5.18 improves on both the inequalities (5.16) and (5.17).
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radius

5.4 Application to estimate numerical ra-
dius bounds concerning commutators of

operators

In this section we obtain upper bounds for the numerical radius of commutators of bounded
linear operators, as applications of the lower bounds obtained in the previous section. First we

prove the following theorem.

Theorem 5.20. Let A, B, X,Y € B(H), then

w(AXB % BY 4) < 2v2| B max {|[X], [Y]}} /?(4) — ,

where v — CRACEU) | | IRAPSAN | ES(A) @) ‘

Proof. First we assume that || X|| < 1 and ||[Y] < 1. Let = be a unit vector in H. Then, with
I Xz|| <1and [|[Y*z| <1, we have

HAX £ YA)z,2)| < |(Xz, A*2)| + |(Az, Y*2)|
< || + || Az
< V(|42 + [ Ax]?)
< 2[AA* + A*A|
< 2v2y/w?(4) —v,

where the last inequality follows from Theorem 5.13 with

AR(A)) +(S(A)) |, [IRAIZ = ISP | A(S(4)) = (R(A) |

v 2 * 2 * 2
Hence, by taking supremum over ||z|| =1 we get,
w(AX +YA) < 2vV2y/w?(A) —v. (5.18)

Now we consider the general case, i.e., X,Y € B(H) be arbitrary operators. If X =Y = 0, then
Theorem 5.20 holds trivially. Let max {||X]||, ||[Y||} # 0. Then clearly HWH <1 and

Y : X Y . . .
HWH < 1. So, replacing X and Y by ma{TXTIYTT and ma{TXTIYTE? respectively, in
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Chapter 5. Development of inequalities and characterization of equality conditions for the numerical
radius

(5.18) we get,
w(AX £ Y A) < 2v2max {| X||, [V [} Vw?(A) - v. (5.19)

Now replacing X by XB and Y by BY in (5.19) we get,

w(AX B+ BY A) < 2v2max {| X B||, || BY ||} vw2(A) — v.
This implies that

w(AXB + BY A) < 2V2|| B[ max {|| X[, |Y|[} vw?(4) — v,
as desired. O

Considering X =Y = I in Theorem 5.20, we get the following inequality.

Corollary 5.6. Let A, B € B(H), then

w(AB + BA) < 2V2||B|w?(A) — v, (5.20)

where v = CRANIEEA) | IRAPISAIR | (GA)_2(R(A) ‘

Remark 5.21. Fong and Holbrook [}0] obtained that the following inequality
w(AB + BA) < 2v2||B|jw(A). (5.21)

Hirzallah and Kittaneh [47] improved on the inequality (5.21) to prove that

[ IR =32 |

w(AB+BA) < 2V3|B|/ui(4) - .

(5.22)

Now,

5 +

A(R(A) +A(S(A) | [IRAIP = IS@AIP | A(S(A) — (R(4))
* 2 2

L AR(A) +A(S(4)) +‘|I5R(A)I2—||%(A)Il2 _ CQ(Q(A))—CQ(?R(A))’
= 2 2 2
> ||§)‘E(A)||2;H3(A)II2 .

Hence, Corollary 5.6 improves (5.22).
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radius

Proceeding similarly as in Corollary 5.6 and using Theorem 5.18, we get the following

inequality.

Corollary 5.7. Let A, B € B(H), then

IA

w(AB £+ BA)

2

IR(A)* — IS(A)]* |>‘1*
4

2035 (w4<A> Lo (o) -

IN

| IR — S |>i
: |

2v2| B|| <w4(A) -

Remark 5.22. Clearly, Corollary 5.7 is an improvement of the inequality (5.21).
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CHAPTER 6

BOUNDS FOR THE NUMERICAL
RADIUS OF BOUNDED OPERATORS
VIA T-ALUTHGE TRANSFORM

6.1 Introduction

The aim of this chapter is to develop a number of inequalities using the properties of ¢-Aluthge
transform. We show that the inequalities obtained here improve (1.2), (1.3), (1.4) and (1.6). We
also obtain an upper bound for the numerical radius and show by an example that the bound
is better than that in (1.7) for certain operators. Let us first introduce the following necessary
notations, definitions and terminologies.

Let B(#H) denote the C*-algebra of all bounded linear operators defined on a complex Hilbert
space H. For T € B(H), the numerical range of T is defined as W (T) = {(Tx,x) : x € H, ||z| =
1}. The numerical radius, w(7T), is defined as the radius of the smallest circle with center at
the origin and containing the numerical range, i.e., w(T) = sup{|\| : A € W(T)}. The Crawford
number of T is defined as ¢(T) = inf{|A| : A € W(T)}. The Cartesian decomposition of T is

Content of this chapter is based on the following paper:
S. Bag, P. Bhunia, K. Paul; Bounds of numerical radius of bounded linear operator using t-
Aluthge transform, Math. Inequal. Appl., 23 (2020), no. 3, 991-1004. dx.doi.org/10.7153/
mia-2020-23-76
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Chapter 6. Bounds for the numerical radius of bounded operators via t-Aluthge transform

given by T' = R(T) +i (T, where R(T) = TE= and I(T') = 5. The spectral radius of T is

defined as r(T") = sup{|A| : A € o(T)} where o(T) is the collection of all spectral values of T'. It

is well-known that w(-) defines a norm on B(#), which is equivalent to the operator norm || - ||,
satisfying that 1| T|| < w(T) < ||T|. The first inequality becomes an equality if 72 = 0 and the
second inequality becomes an equality if T' is normal. For T' € B(#), the Aluthge transform of
T, denoted as T, is defined as

T = |T|3UT|2,

where |T| = (T*T)% and U is the partial isometry associated with the polar decomposition of
T and so T = U|T|, ker T = ker U. It follows easily from the definition of T that HfH < |7l
and r(T) = r(T). Also w(T) < w(T) (see [51]). Okubo [62] generalized the Aluthge transform,
known as the t-Aluthge transform as follows: For ¢ € [0, 1], the ¢-Aluthge transform is defined
by,

T, = [Ty'U T,

Here, |T|° is defined as U*U. In particular, To = U*U(T|, T\ = |T|\UU*U = |T|U, ig =
IT|2U|T|2 =T.
6.2 Numerical radius inequalities using t-

Aluthge transform

We begin this section with two notations Hy and Kjy, defined as follows: For T' € B(#) and
0 € R, Hy = R(T) and Ky = I(e'T). The following lemma (see [75]) will be used repeatedly

to reach our goal in this chapter.

Lemma 6.1. Let T € B(H). Then
w(T) = sup || Hy|| = sup | R("T)]|.
0eR 0eR
Replacing T by iT in the above equation, we have
w(T) = sup || Ko|| = sup||S(e’T)].
0eR (SN

We next prove the following proposition which states that 72 = 0 and Tt = 0 for any

t € [0, 1] are equivalent. To achieve it, we need the Heinz inequality (see [46]) given below.

61



Chapter 6. Bounds for the numerical radius of bounded operators via t-Aluthge transform

Lemma 6.2. [46] Let A, B, X € B(H) where A and B be positive operators. Then
|A"XB"|| < [[AX B||"[|X|[*,

for r €[0,1].
Proposition 6.1. Let T € B(H). Then (i) T2 =0 and (ii) T, = 0 for t € [0,1] are equivalent.

Proof. We first prove the easier part (ii) = (i). It follows from the fact that 7% = U|T|U|T| =
U|T|*HT|tU | T4 T |t = UT|*T|T| for any ¢ € [0,1].
We next prove (i) = (ii). We claim that

~ T2, 0<t<g
T3] <
T2, g <t<t
Consider 0 < t < . Then ||T;|| = |||T]*U|T|""||. Using Lemma 6.2, we get

ITel < [ITPFUTEIITE> 0 < WTOT O T2 = 12 )=,
Next consider % <t < 1. Then using Lemma 6.2, we get
ITell = NTFOIT < TP HINT O < TP T o) = 0T et
The proof now easily follows from the claim established.

OJ

Next we present the following numerical radius inequality in terms of the Aluthge transform,

which improves on the upper bound obtained by Yamazaki in [75, Th. 2.1].

Theorem 6.1. (i) Let T € B(H). Then

1 o~ 1
T) < min { ~w(Ty) + = (|1T)* + |T>72) ¢ .
w(?) < min { Gu(E) + 1 (1T + I712-2)
In particular,

w(T) < Ju(@) + ST,

| =

(is) If dim H < oo, then the equalities hold in the above inequalities if and only if T is
. . . . a 0 9 o\ L
either unitarily similar to [a] ® B, |B| < |a| or to @ C, |IC| < (lal]* + b]*)2 and
b 0
w(Cr) < |al.
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Chapter 6. Bounds for the numerical radius of bounded operators via t-Aluthge transform

(iii) When H is an arbitrary Hilbert space, then the equalities hold if T?> = 0 or T is normaloid,
i.e., w(T) =T

Proof. (i) It follows from arithmetic-geometric mean inequality that 2||T'|| < |T||* + ||T)|>~%
for all t € [0, 1]. Using this and inequality (1.7), we get

. 1 T 1 2t 22t
'Y< m —w(1 — (|7 | .
w(T) < te[(l)g] {QU’( t) + 1 (|| 15"+ 17| )

Considering t = %, we get

w(T) < Ju(T) + 51T,

(ii) Let us assume that 7" is an n x n matrix. Then following [42, Th. 4.2] we can conclude

that the equalities hold if and only if T is either unitarily similar to [a] ® B, || B|| < |a| or to
®C, [|C < (lal* + [b?)% and w(C) < |al.

(iii) The proof is obvious.

O

Next we prove the following inequality for the numerical radius which improves on the upper

bound obtained by Kittaneh in [55, Th. 1].

Theorem 6.2. Let T € B(H). Then

1 ~ 1
2 . * *

)

In particular,

1 ~ 1, . .
w(T) < T + 17T + 7T
Proof. Since Hy = 3(eT + e71T*) for all § € R, we have
4H92 _ 62i9T2 +€_2i9T*2 +T*T+TT*
= SUITUIT| + e 2| T\U|T|U* + T*T + TT*
— 6219U|T\1’t|T|tU|T|1’t|T|t+e’2i9|T|t|T\1’tU*|T|t|T|l’tU*
+HT*'T +TT™)
_ 6219U|T‘17tﬁ|T‘t +€7219‘T|tf/t*|T‘17tU* +T*T + TT*.
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Chapter 6. Bounds for the numerical radius of bounded operators via t-Aluthge transform

Hence,

4| Hol®

IN

€00 T TT | + e 71T} [T)*10° | + |17°T + 77|

A

2 TINTl + NT™T + TT™].

Therefore,

[Hl> < SITIIEN + 17T + 777,
Taking supremum over # € R in the above inequality and then using Lemma 6.1, we get
WA(T) < SITNIEN + FIT°T + 7).
This inequality holds for all ¢ € [0, 1], and so taking minimum we get,

1 ~ 1
2 : * *
T) < =|T||( min ||T3||) + =||T"T + TT*||.

Considering the case t = %, we get
2 1 Cal 1 * *
wi(T) < SITINTN + L IT°T + 7T

O

Remark 6.3. IfT%2 =0 or T is a normaloid operator then inequalities in Theorem 6.2 become
equalities. If T? = 0 then w(T) = %m (see [33, Th. 2.8]) and %||T||(mint€[071] ||ﬁ||)
+3|T*T + TT*|| = | T*T + TT*||. Thus we get the equalities if T?> = 0. Note that w*(T) <
1T (mingep 1) ||I~}||) +1|T*T +TT*|| < ||T||* and so normaloid condition forces the inequali-

ties to be equalities.

Remark 6.4. Kittaneh in [55, Th. 1] proved that for T € B(H),
1 oL
w(T) < 5 (17N +I72)1%) -

Since, || T < HT2||% (see the proof of Proposition 6.1) and ||T*T + TT*|| < ||T||? + || T?| (see
[22, Remark 8.9]), so from Theorem 6.2, we get

1 1
w*(T) < 5||T||||T2||2 + = (ITI1” + 1721) -

S,
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Hence,

w(T) < 3 (1T +17)7)

Thus the bound obtained in Theorem 6.2 is better than bound (1.2) obtained by Kittaneh in [55,
Th. 1]. Also there are operators for which bound obtained by us in Theorem 6.2 is better than
that in (1.7) obtained by Abu-Omar and Kittaneh [6, Th. 3.2]. As for example we consider

0 20
T=1]10 0 0 |.Itis easy to see that ||T|| = 2 and T has the polar decomposition T = U|T|,
0 0 1
000 010 0 00
where |[T) = | 0 2 0 | andU =] 1 0 0 |. Hence T, = |T|'UIT|** = | 0 0 0
0 0 1 0 0 1 0 0 1

for all t € [0,1], and so w(Ty) = |Ty|| = 1 for all t € [0,1]. It follows that

1
(”TH + trrfl?]w(Tt)) 2(2 +1) ==

1 1 1
I min ITi) + —||T*T+TT*|| =S x2x147x4=2

Therefore, Theorem 6.2 gives w(T') < /2, whereas (1.7) gives w(T') <

M\CO

Next we obtain an upper bound for the numerical radius which improves on the bound (1.2).

To achieve it, we need the following inequality obtained by Abu-Omar and Kittaneh [6].

Theorem 6.5. [6, Th. 2.2] Let Ay, Ag, B1, Ba € B(H). Then

1
’I"(AlBl + AQBQ) < 5 (w(BlAl) + U)(BQAQ))

1
+§\/(w(BlA1) — w(ByAs))? + 4| B1 As ||| B2 Ay |-
Now, we prove the following theorem.

Theorem 6.6. Let T € B(H). Then

1 ~2 1 ~ 1
2 : TINT, T*T + TT*
') < min | —+ + + .
w ( ) = te[é,l} <1w( t ) 1” ”H t||> 1” ”
In particular,

w(T) <

1 1 ~ 1
“w(T?) + S|\ TIT| + 2| T*T + TT*|.
1)+ JITNTI + 7T + 777
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Proof. Since Hy = (T + e71T*) for all § € R, we have

4Hp? = 07?4 72072 L 7T 4 TT™
= 2U|T\U|T| + e 20|T\U*|T|U* + T*T + TT*
— 621€U|T‘1_t|T|tU|T|1_t|T|t+6_2i9|T|t|T‘1_tU*|T|t|T|1_tU*

+T*T +TT".
Hence,

4Hol> < (XU T UITI TN + e 2T | T U T T U
+|T°T +TT"||

_ T'(6210U|T|1_t‘T|tU|T|1_t|T|t—I—6_216|T‘t|T|1_tU*|T|t‘T|1_tU*)

+||T*T + 7T (T‘(S) = ||S|| for hermitian operator S)
= ’I“(AlBl + A2B2) + ||T*T + TT*”,

where Ay = 20U |T|' | T|'U|T|*t, By = |T|t, Ay = e~ 29|T|* and
By = |T|1tU*|T|HT|* ~tU*. Then using Theorem 6.5, we get

=2 . '3 * *
4| H|? w(Ty) + \/H|T|2t”HTt [T UUIT T + 17T + TT|

IN

~ 2 ~ % ~
= W@+ ITIE T2 + | T°T + TT7)

~9 —

< w(li )+ \/\|T||2t||Tt||2||T|\2’2t +|T°T +TT7||
~2 = * *

= w(Ty ) + [T T3] + | T*T + TT.

Taking supremum over # € R in the above inequality and then using Lemma 6.1, we get

~2 1 ~ 1
wA(T) < (@) + ZITIIT + 17T + 777

I,

This holds for all ¢ € [0,1], and so taking minimum we get,

1 ~2 1 ~ 1
2 . % *
< min — — — .
w™(T) = <1w(1t )+ 4112 ||||1t||> + 1T T+ TT7

Considering the case t = %, we get

T 1 T 1 * *
w*(T) < sw(T?) + TNTN+ 17T + T

1
— 4
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Remark 6.7. We observe that minsg 1 (%w(ff) + i”TH”Tt”) =0 if T? = 0. Also, as dis-
cussed in Remark 6.3, if T?> =0 or T is a normaloid operator then inequalities in Theorem 6.6

become equalities.

Remark 6.8. It is easy to observe that the inequality obtained by us in Theorem 6.6 is sharper

than the inequality obtained in Theorem 6.2 and so it is sharper than inequality (1.2) obtained

0 20
in [55, Th. 1]. Also if we take the same matrizx T = 0 00 as in Remark 6.4 then
0 01

Theorem 6.6 gives w(T) < y/%, whereas (1.7) gives w(T) < 3. Thus for this matriz, our

inequality obtained in Theorem 6.6 is better than inequality (1.7) obtained by Abu-Omar and

0 a O
Kittaneh [6, Th. 3.2]. In fact, if we consider T = | 0 0 0 | where a,b € C, then we see
0 0 b

that the bound in Theorem 6.6 is always less than or equal to the bound (1.7) given in [6, Th.

Now, by using Theorem 6.6 we obtain the following inequality for the numerical radius in
terms of iterated ¢t-Aluthge transform. For a non-negative integer n, we denote the nth iterated

t-Aluthge transform Ttn, ie., ﬁn = Tt%l and Tto =T.

Theorem 6.9. Let T € B(H). Then
oo 1 ™ . . " ~ ~
(1) < Y 2 (1T T+ 1T Ty + T T )
n=1

for all t € [0,1].
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Proof. By using Theorem 6.6 repeatedly, we get

w*(T)

IN

IN

IN

IN

IA

IN

IN

w(T})

A~ =

(ITUIT + 17T + 777 ) +

~ 1 -
(IITII Tl + 17T + TT*| ) + Jw?(Th)

N———
W

(R Y [ N

7 (1PN + |77 + 777 )

g (WENTo |+ 1B T T ) + ()

L (ITT) + e + 777

b (1Tl + 1T T+ 7)) + pu(E)

3 (TN + 7T + 777

b (1T Tol + 1T+ T

b (1Tl Ti + 1T + T T ) + fyu(E3)

(o]
1/ ~ - - -
o UL T2+ W75, Ty + T T3, ) -
4

n=1

Now, based on Theorem 6.9, we obtain the following inequality.

Corollary 6.1. Let T € B(H). Then

1 1 (1 1 1 1
WD) < 3 1 (S0 + S0 ) + ST+ 77

Proof. Let T, be the n-th iterated Aluthge transform. Then from Theorem 6.9 (for t= %), we
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get

o

1 ~ ~ ~ o~ -~ o~
A1) < Y (1Tl Tl + 1T Ty + Tara T )

#k\»—lﬁ

1
(T + 77 + 77 )

o0
1 T i~ ~* T o~ ~*
+ 3 5 (Tl Tl + 1Ty T + Tuma i)
n=2

1 T * * = 1 7 - =
(Il + 17T+ 77) + 3 1 (1T Tl + 20T 1)

IN
= |

. . . — 1 (o
7 (ITNTIN+ 17T+ 77) + > 2= (31T1?)

n=2

(using 17l < |1 Tarll, > 2)

IN
—

1 . . — 1
(ITNT2E + 17T+ TT1) + Y = (BIT2))

n=2

IN

1
4

(using |17 < 17%)3)

1 " " 3 1
(ITINT21% + 17T+ TT7) + 1T =
n=0

1 " 1
(ITINT21% + 7T + 7T ) + 7177

e e

1 1 1
1722 (=T + =722 ) + = | T*T + TT*||| -
2 2 2
O

Remark 6.10. The inequality in Corollary 6.1 is better than inequality (1.2), it follows from
the fact that

1 1 /1 1 1 1

— T3z ( =T + =||T?|2 —|T*T +TT*
5 1721 (0T+ 17208 ) + T+ 7
1 . 1 1
T2 2||T|| + || T?|| + = || T*T + TT*
4|| 2] ||+4|| H+4II + l
4||T 12017 + 4||T [ + 4IIT | + 4IITH

IN

IN

1 1 1 1
—IT?2||T|| + =% || + = || T
ST IZTI + ST+ 1T

1 1 1\ 2

T+ <1722 ) .
(3h71+ 31720¢)

We also observe that bound obtained in Corollary 6.1 is sharper than that in the right hand
inequality of (1.3), if | T T2 + |T2| < |TT* + T*T).
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Next we obtain an upper bound for the numerical radius and give an example to show that

this bound improves on bound (1.6).

Theorem 6.11. Let T € B(H). Then

: ~2 =021 1
min (w(Ty) + | TIT) + gu(T?P +PT?) + 1P|,

1
YTy < =
wiT) < 16 tefo,1]

where P =T*T + TT*. In particular,

1 ~ ~\2 1 1
4 < = 2 1 2 2 = 2
wh(T) < o (w(T) + [ TITI) + gu(T*P+PT?) + |||

Proof. Since Hy = 3(eT + e1T*) for all § € R, we have

4H92 _ 62i9T2 +67219T*2 +P
= 16H94 _ (€2i9T2 4 e—2i0T*2)2 + 2%(6210(T2P+ PTQ)) + P2.

Hence,
L6[|Hp " <[0T + e 20T + 2 R((T2P + PT?)| + || P|?
< (7% + e 2T*?) 4 20(T?P + PT?) + | P|?,

<T(S) = ||S|| for hermitian operator S>
r? (XU |T|U|T| + e 2| T\U*|T|U*) + 2w(T?P + PT?) + || P||%.

Then using the same technique as in Theorem 6.6, we get
g 1 2 =02, L 2 2 1 2
1Hy||* < — (w(Ti) + ITIT)" + qw(T*P + PT?) + — || P|I*.
16 8 16
Taking supremum over 6 € R in the above inequality and then using Lemma 6.1, we get

~2 ~ 2 1 1
wh(T) < 16 (w(T) + I TIIT)" + guw(T?P + PT?) + |1P]*

&=

This holds for all ¢ € [0,1], and so taking minimum we get,

1 ~2 ~ 2 1 1
4 . 2 2 2
T) < m T 71T —w(T*P + PT PJ“.
wi(T) < 15 min (w(T)+ TN + Gu(T2P+ PT?) + 1P|
Considering the case t = %, we get

~ ~n2 1 1
W (1) < 36 (T + |TNITN) + (TP + PT?) + Lo |PJP.

sl-
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O

Remark 6.12. We observe that as discussed in Remark 6.3, if T?> = 0 or T is a normaloid

operator then inequalities in Theorem 6.11 become equalities.

Now, we give an example to show that the bound obtained in Theorem 6.11 improves on

bound (1.6) obtained by Yamazaki in [75, Th. 2.1].

0 20 4 0 0
Example 6.13. We considerT = | 0 0 3 |.ThenitiseasytoseethatP =1 0 13 0 |,
0 00 0 0 9
0 00 010
ITI=1 0 2 0 andU =1 0 0 1 |, where U is the partial isometry in the polar de-
0 0 3 0 00

composition of T, i.e., T =U|T|. So,

00 0
Ty =TtUIT]**=| 0 0 ot3'-t
00 0

Therefore, w(T};) = 21’321%, ||| = 2t311, ||P|| = 13 and w(T2P + PT2) = 39. So, the inequality
obtained by us in Theorem 6.11 gives w(T) < 2.05076838. But inequality (1.6) obtained by
Yamazaki in [75, Th. 2.1] gives w(T) < 2.11237244.

6.3 Bounds for the numerical radius of op-

erators

Our aim in this section is to improve on both upper and lower bounds for the numerical radius

of bounded operators, obtained by Kittaneh in [54, Th. 1], i.e.,
1 * * 2 1 * *
ZHT T+TT| <w*(T) < §HT T+TT"|.

Before doing so, we first give an alternative proof of the above inequalities.

Theorem 6.14. [5/, Th. 1] Let T € B(H), then

1 1
T T+ 1T < w?(T) < SITT+TT7.
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Proof. Since Hy = (€T +e7T*) and Ky = 5:(e¥T—e19T*) for all § € R, we have Hi+Kj =
H(T*T +TT*) and so 3 ||T*T + TT*| = ||H3 + K3|| < ||Hp|* + || Ko||? < 2w*(T), using Lemma
6.1. Thus 1||7*T + TT*|| < w*(T). This completes the proof of the first inequality.
Again, from H} + K} = L(T*T + TT*) we get, H} — 1(T*T + TT*) = —K; < 0. Thus
H? < 4(T*T + TT*) and so |H}|| < 3||T*T + TT*|. Taking supremum over § € R and then
using Lemma 6.1, we get w?(T) < 3| T*T + TT*|.

O

Now, we prove the desired inequality which improves on inequality (1.3).

Theorem 6.15. Let T € B(H). Then
1 1 1 1
1c( (R(T*)?) + 1—6||T*T +TT*? < w!(T) < in(TQ) + g\|T*T +TT*|%.

Proof. We first prove the left hand inequality. Let z € H with ||z|| = 1. Since Hp = (/T +
e 07T*) and Ky = % (T — e719T*) for all § € R, we have

i

. 2
;[4 (%(e219T2)> +(T*T+TT*?| = Hj+K}
1 2i0 2 2 1 * *\2 4 4
= S((RET)) w,0) + (T T+TTV wx) = (Hiw,a) + (Kjo,a)
. 2
;»%<(@%(6219T2)) m,x)—i—%((T*T—Q—TT*)Qx,@ < 2ul(T).

This inequality holds for all # € R. So taking # = 0, we infer that
1 21\ 2 1 * *\2 4
§<(§R(T ) @, z) + §<(T T+TT ) z,z) < 2w (T)
1 1

= §c((§R(T2))2) + (T T + TT*Y z,z) < 2w*(T).
Taking supremum over x € H, ||z|| = 1, we get

1 24\ 2 1 * * (12 4

5c( (R(T?)7) + g||T T+TT** < 2w (7).
Thus,

ic((%(T2))2)+%6||T*T+TT*|\2 < w(1).

This completes the proof of the left hand inequality. We next prove the right hand inequality.
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As before, we have

1 ) 2
%+m::8P@M%ﬂ)HWTHTﬂ
and so
1 . 2
SPCm&%%)4(TT+TTY]Hg:KgZO
Hence,
4 1 2i0 2 2 * %\ 2
Hf < 3 4@we T))—%G’T+TT) .
Therefore,
4 1 2i0 2 2 * *\2
|Holl* < 5 4@sz))+ch+TT)
1 .
< g [HIRET)) + 7T+ T
1
< 3 [4w?*(T?) + | T*T + TT*|)?] (using Lemma 6.1).

Taking supremum over 6 € R in the above inequality and then using Lemma 6.1, we get

w!(T)

Remark 6.16. Clearly the left hand
of (1.8) obtained by Kittaneh in [54,

1
<

Zw?

1
5 @%+§WW+TTW.

OJ

inequality obtained in Theorem 6.15 is sharper than that
Th. 1]. To claim the same for the right hand inequality

we first note that 2||T?|| < |T*T + TT*|| (see [57]). From the right hand inequality obtained in

Theorem 6.15 we get,

w!(T)

IA

IN

1
2
1
2
1
8
1
8

1
4

uﬁ(TQ)+-éHT*T—%IU“H2

T2 4+ LI T + TP
QT + LT + 7T P
|WT+TTW+§UT#TTW
|T*T + TT*|*.

Thus, the right hand inequality in Theorem 6.15 is sharper than that of (1.83) obtained by Kit-
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taneh [5, Th. 1].

Next, we concentrate our attention to the bounds that are, not comparable, in general. The
following numerical examples will illustrate the incomparability of some of the upper bounds of

the numerical radius.

Example 6.17.
(i) Incomparability of 3 (HTH + HT2||%) and \/3||T*T + TT*||. Consider T = (1) 11
then % (HTH + HT2||%) = 32—\/5, whereas \/ $|T*T +TT*|| = \/g Again if we consider T =
1 2
0 -1
upper bounds in (1.2) and (1.83) are, not comparable, in general.
(ii) Incomparability of (1w?(T?) + L|T*T + TT*|?) and %(minte[ovu w(Ty) +||T|\>, Con-
02 0
siderT=1 0 0 0 | then (%wQ(TQ) + %HT*T + TT*||2)% = \/g, whereas
0 01
5 (I + mingego g w(T)) = 3.
0

1 1
Again, if we consider T = then (3w*(T?) + S| T*T + TT*|?)" = 4/ \/g, whereas
0 0

then % <||T|| + ||T2H%) = 2+T\/§, whereas %HT*T +TT*|| = /3. This shows that

: <||T|| + minge ) w(ﬁ)) = L. This shows that the upper bounds in (1.7) and Theorem 6.15

are, not comparable, in general.
We observe that inequality (1.7) is sharper than (1.2) and the inequality obtained in Theorem

6.15 is sharper than (1.3). Similarly, using the same matrices one can conclude that upper

bound in (1.8) is not comparable, in general, with the inequalities in (1.6) and (1.7).
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CHAPTER 7

NUMERICAL RADIUS INEQUALITIES
AND ITS APPLICATTIONS IN
ESTIMATION OF ZEROS OF

POLYNOMIALS

7.1 Introduction

In this chapter, we aim to develop an upper bound for the numerical radius of a bounded linear
operator which improves on the existing upper bound in (1.5) , i.e., w?(A4) < I [|A*A + AA*|| +

%w(AQ). We obtain a lower bound for the numerical radius of a bounded linear operator which

Partial content of this chapter is based on the following papers:
P. Bhunia, S. Bag, K. Paul; Numerical radius inequalities and its applications in estimation of zeros of
polynomials, Linear Algebra Appl., 573 (2019), 166-177. https://doi.org/10.1016/j.1laa.2019.
03.017
P. Bhunia, S. Bag, K. Paul; Numerical radius inequalities of operator matrices with applications,
Linear Multilinear Algebra, 69 (2021), no. 9, 1635-1644. https://doi.org/10.1080/03081087.
2019.1634673
P. Bhunia, S. Bag, K. Paul; Bounds for zeros of a polynomial using numerical radius of Hilbert space
operators, Ann. Funct. Anal., 12 (2021), no. 2, Paper No. 21, 14 pp. https://doi.org/10.1007/
s43034-020-00107-4

75
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improves on the existing lower bound (1.3), obtained in [54, Th. 1]. We also estimate the
spectral radius of the sum of the product of n pairs of operators. Further, we present upper
and lower bounds for the numerical radius of 2 x 2 operator matrices. As an application of
the numerical radius inequalities of 2 x 2 operator matrices, we estimate bounds for the zeros
of a monic polynomial with complex coefficients. First we introduce the following necessary
notations and terminologies.

Let B(#H) denote the C*-algebra of all bounded linear operators on a complex Hilbert space
‘H with inner product (.,.). Let T' € B(H) and W(T'), w(T), ¢(T), |T|| be the numerical range,

numerical radius, Crawford number, operator norm of 7', respectively, defined as follows:

WA(T) {(Tz,2) : x € U, ||z = 1},
w(T) = sup{[Al: A e W(T)},

oT) = f{|\: X e W(T)},

1Tl

sup{||Tz|| : z € H, ||z|]| = 1}.

It is well known that w(-) is a norm on B(H), which is equivalent to the usual operator norm
|| - || and satisfies the inequality 1||T|| < w(T) < ||T||. The first inequality becomes an equality
if 72 = 0 and the second inequality becomes an equality if 7' is normal. The bounded linear
operator T' can be represented as T' = R(T') + iS(T'), the Cartesian decomposition, where R(T")
and (T') are the real part of T and the imaginary part of T, respectively, i.e., ®(T) = TJFTT*
and 3(T) = Tg—;f*, T* denotes the adjoint of T. It is well known that w(T") = supgcr ||[Hol|,
where Hy = R(e”T) (see in [75]). Let r(T) be the spectral radius of T, i.e., r(T) = sup{|\| :
A € o(T)}, where o(T) denotes the spectrum of 7. Also it is well known that o(7T") C W (T),
so r(T) < w(T).

The direct sum of two copies of H is denoted by H & H. If A, B,C,D € B(H), then the

A B
operator matrix can be considered as an operator on H @ H, and is defined by
A B Az, + Bzx T
T = ! 2 Vo = ! ceHOH.
C D Cx1 + Dxo X2

7.2 Upper bounds for the numerical radius

of bounded operators
We begin this section with the following inequality.
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Theorem 7.1. Let T € B(H). Then

1 1 1
w(T) < Zw?(TQ) + gw(TQP + PT?) + 1—6HP||2,

where P =T*T + TT*.

Proof. We know that w(T') = supgep || Hg|| where Hg = R(e?T). Then,

1 . )
Hy = (T +e7T7)
= 4H,? = 2072 4 2072 4 p
= 16H94 — (62i0T2 _|_6—2i0T*2 +P) (62i0T2 _|_6—2i0T*2 +P)

(62i9T2 + e—2i9T*2)2 + (62i9T2 + 6—2i9T*2)P

+

P(GZiHTZ +672i9T*2) +P2
4(R(e¥0T?)) + 2R(e**(T?P + PT?)) + P?
1 . 1 , 1
= [|He'| < 1!|9‘E(62“’T2)H2 + glIRE (TP + PT?))|| + LI PIP,

Now taking the supremum over 6 € R in the above inequality we get,

1 1 1
= wi(T) < sz(TQ)—|—§w(T2P+PT2)+E||P||2.

O

Remark 7.2. It is easy to check that w(T*P+ PT?) < 2w(T?)||P||, (see [40]) and so the bound
obtained in Theorem 7.1 improves on the bound (1.5) obtained by Abu-Omar and Kittaneh [1],

namely,

WHT) < Jud(T) +

1

1
T P| + — | P>
10@IP]+ P

Abu-Omar and Kittaneh [1] also proved that this bound is better than the bounds (1.2) and
(1.3) obtained in [55, 5/]. The inequality (1.4) obtained by Dragomir [39], namely, w*(T) <
2 (w(T?) +|T|?), ie., wi(T) < 3w*(T?) + Jw(TH|T|? + | T||* which is weaker than the
bound (1.5). Thus the bound obtained in Theorem 7.1 improves on all the existing upper bounds
in (1.2), (1.3), (1.4) and (1.5).

Next, we prove the following inequality.

Theorem 7.3. Let T € B(H). Then

1
w(T) < —w(T?) + 1w(TQT* +T*T? + TT*T).

&~
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Moreover,

if T = 0, then w(T) = /| TT* + T*T|, and
1
if T3 =0, then w(T) = [fw(T*T* + T*T? + TT*T)]5.

Proof. We note that w(T) = suppeg || Hp|| where Hy = R(e*T). Then,

1 . .
H@ — 5(619T+€_29T*)

= 4H92 _ €2i0T2+€72i9T*2+T*T+TT*

= 8H93 — (e2z9T2 —2i0T*2+T*T+TT*)( i9T+€—i0T*)
1

= H; = TR e30T3) 4 %R( BT 4 T*T? + TT*T)

1

= [HGll < ZIRETH+ 5 H?R( YUTT* + TT? + TT*T)).

Taking the supremum over 6 € R in the above inequality we have the desired inequality. If

2 = 0 then 4Hy> = T*T + TT* and so w(T) = |TT* +T*T||. If T3 = 0 then Hj =
R(e?(T?T* + T*T? + TT*T) and so w3(T) = tw (T2T* +T*T? + TT*T). O

Remark 7.4. The inequality obtained in Theorem 7.3 gives a better bound for the numerical

1 1 2
radius of the matriz T than the upper bound in (1.5) obtained in [1], where T = | 0 —1 1
0 0 O

In particular, w(T) < 1.863 if we follow the inequality obtained in Theorem 7.3, whereas w(T) <
1.989 if we follow the bound (1.5).

Next, we prove the following inequality.

Theorem 7.5. Let T € B(H). Then for each r > 1,

L@y + @y

1
2r r 2
T) < — T4) +

Proof. We note that w(T) = suppeg || Hy|| where Hy = R(e?T). Now,

Hy = (T +e7T")
= 4H92 — eQiQTQ + 672i6T*2 +T*T+TT*
1. o 1
= Hy> = §§R(e2’0T2) + i(T*T +TT)

= ||Hg?|| < H%R (e¥972) H+ HT*T—l—TT*H

78



Chapter 7. Numerical radius inequalities and its applications in estimation of zeros of polynomials

1
For r > 1, t" and t+ are convex and concave operator functions respectively and using that we

get,
1 , 1|77 +TT*|N"
| Ho?|I" < {2||§R(€219T2)||+2H2}
1 , 1| 7T + 17+ ||"
S 5"%(627'9T2)"T+§ f
1 T
1 , L /() + (T \ 7
o |
1
2

1 i r (T*T)" + (TT*)"
= Lmeer + ! H

Now taking the supremum over 6 € R in the above inequality we get,

1
wZT(T) S 5,wr(T2)+

ey @y,

OJ

Remark 7.6. For A,B € B(H), Sattari et. al. [71] proved that w"(B*A) < 1|(AA*)" +
(BB*)"||+ sw"(AB*). When A = B* then w"(A?%) < 1||(AA*)" + (A*A)"|| + Sw" (A?). Thus for
the case A = B* our bound obtained in theorem 7.5 is better than the bound obtained by Sattari
et. al. [71].

Next we give another upper bound for the numerical radius w(7T') in terms of ||Hyl|.

Theorem 7.7. Let T € B(H). Then

. 2 2
w(T) < inf \/IHo* + | Hoy 5|

where Hy = R(e*T).

79



Chapter 7. Numerical radius inequalities and its applications in estimation of zeros of polynomials

Proof. We have, Hy = R(e?T) = cos OR(T) — sin 6(T"). Then for ¢ € [0, 27], we get

Hpiy = cos(0+ ¢)R(T) —sin(0 + ¢)3(T)
= cosflcos $R(T) — sin ¢S(T)] — sin Bfsin $R(T) + cos pS(T)]
= cosBcos pR(T) — sin ¢S(T)] — sinf]— cos(d + g)afe(:r)
+sin(6 + 2)3(D)]
cos OR(e*T) + sin OR(P+2)T)

Hycos0 + Hyy z sinf

IN

= [[Hotoll

2 2
S Hosgll < JIHGI? + | Horz |

[ Hy cos 0| + || Hyrz sin 6|

Taking supremum over § € R in the above inequality, we get

w(T) < \JIH P + [ Horz

This is true for any ¢ € R and so we get,

. 2 2
w(T) < inf \JIHy| + | Hoe s
]

Remark 7.8. Noting that for ¢ =0, [ Hg| = [|[R(T)|| and |[[Hgyr/oll = IS(T)||, it follows from
Theorem 7.7 that w(T) < /||R(T)||2 + [|S(T)|]2. Also, this inequality follows directly from the

definition of the numerical radius by considering the Cartesian decomposition of T'.

Next we give an upper bound for the numerical radius of n x n operator matrices which

follows from [3, Theorem 2 and Remark 1].

Theorem 7.9. Let Hi, Ha, ..., Hy be Hilbert spaces and H = @) H;. If A = (A;;) be an

n X n operator matriz acting on H with A;; € B(Hj, H;), then

1 n
w(A) < max ¢ w(dii) + 5 > A1+ 11450

T 1<i<n =
J=Lj#i

By using Theorem 7.9 we can estimate the spectral radius of the sum of the product of n

pairs of operators as follows.
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Theorem 7.10. Let A;, B; € B(H). The spectral radius of Y ;. AiB; satisfies the following

inequality

n 1 n
r<ZAz~Bi> < max Qw(BA) +5 > (B4 +BiAl)

=1

Proof. We have

SPLAB 0 . . .0
0 o . . .0
T(ZAsz> = T
=1
0 0 0
A Ay .. . A, B, 0. . .0
o o . . . 0 B, 0. . .0
= T
0 O 0 B, 0 0
B, 0. . .0 A A . LAy
By, 0. . .0 0 o . . . 0
= T
B, 0 0 0 0 0
BlAl BlAg RN BlAn
B2A1 BQAQ Coe BQAn
= r
B,A1 B,As . . . B,A,
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B1AT B1Ay . . . BiA,
BoA1 ByAs . . . ByA,
< w
B,A, B,A, . . . B,A,
1 n
< max w(B;A;) + 7 ;#A(”BiAj” + (| B; Aill)
J=197

7.3 Lower bounds for the numerical radius

of bounded operators
We begin this section with the following inequality on lower bound of numerical radius.
Theorem 7.11. Let T € B(H). Then
4 Loy 1 o 2 1 2
wi(T) > -C*(T*) + <c(T°P + PT*) + —|| P|I%,
4 8 16
where P = T + TT*, C(T) = ianEH,HxH:l inf¢€R ||8‘E(e“75T)xH

Proof. We know that w(T') = supyeg || Hp|| where Hy = R(e’T). Let  be a unit vector in H
and let 6 be a real number such that e??((T?P + PT?)z,z) = [((T?P + PT?)z,z)|. Then

1 . .
H9 — 5(619T—|—6_Z9T*)
N 4H92 _ 62i0T2 + 6721'9T*2 +P
= 16H94 — (€2i0T2 + e—QiOT*Q +P) (eQiOTZ + 6—22’0T*2 + P)

_ (€2i9T2 +e—2i9T*2)2 4 (62i9T2 +e—2i9T*2)P
+P(62i9T2 +€72i6T*2) +P2
= 4(R(*T?))” + 2R(¥(T2P + PT?)) + P>
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[4(R(e¥0T?))? 4 2R(e**(T?P + PT?)) + P?|
[((4(R(e*T2))* 4+ 2R(eX*(T? P + PT?)) + P?)z, )|

| 4((R(X0T?)) 2, ) + 2R(* (TP + PT?)a,z)) + (P%x, z)|
= 4| (R(*T?)a|* + 2[((T*P + PT?)z, )| + || Px|?

4C*(T?) + 2¢(T?*P + PT?) + | Pz

4C?%(T?) + 2¢(T*P + PT?) + sup ||Px|?
lzl|=1

4C*(T?) + 2¢(T*P + PT?) + | P|?

1 2 (2 1 2 2 1 2
~C*(T?*) + —c(T?P + PT?*) + — :
40 (T*) + 8c( + ) + 16||P||

= 16w*(T)

v

Vv

v

= 16w*(T)

v

= wl(T)

v

This completes the proof. O

Remark 7.12. Kittaneh[5/, Th. 1] proved that w*(T) > L||T*T +TT*|| = ¥||P||, which easily
follows from Theorem 7.11.

Next, we prove the following inequalities involving R(7") and (7).

Theorem 7.13. Let T € B(H). Then

T) > VIIR(T)|? + A(S(T)) and w(T) > V/[S(T)I + AR(T)).

Proof. First we assume ||[R(T)|| = |A|. Therefore, there exists a sequence {z,} in H with

||| = 1 such that (R(T)an, z,) — A. Now

(Txp,xn) = (R(T)+iXT))xn, Tn)
= (Txp,zn) = R(T)xp,xn) + {S(T)an, Tn)
= [(Tan,20)]* = (R(D)zn, 20))? + ((T)2n, 7))
= [(Tan, 2 2 (R(T)n, 20))* +m*((T))
w?(T) > N4 A((T))
w(T) = VIRD)?+ A(3(T)).
The proof of other inequality follows in the same way. O

Note that if #(7") and I(T') are unitarily equivalent to scalar operators then ||R(T)|| =
c(R(T)) and ||S(T)|| = ¢(S(T)) respectively. Therefore from Remark 7.8 and Theorem 7.13 we
get the following equality.
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Corollary 7.1. Let T € B(H). If either R(T) or (T) is unitarily equivalent to a scalar
operator, then w(T) = /| R(T)|2 + |S(T)|?.

Remark 7.14. For T € B(H), Kittaneh et. al. [53] proved that w(T) > |R(T)|| and w(T) >
IS(T)||. For any bounded linear operators these bounds are weaker than the bounds obtained in

Theorem 7.13.

7.4 Bounds for the numerical radius of 2 x 2

operator matrices

We begin this section with the following lemmas which are used to reach our goal in this present

section.

Lemma 7.1 ([48]). Let X € B(H1),Y € B(H2,H1),Z € B(H1,Hz2) and W € B(H2). Then the
following results hold:

X 0
(i) w = max{w(X),w(W)}.
0 w
B 0 Y 0 Z
(i1) w =w
Z 0 Y 0
0 Y i —i0 7%
(4i) w 7 0 = supgcp 5]1€’Y + e~ 2.
. 0 Y
() If Hi = Ha, then w =w(Y).
Y 0

Lemma 7.2 ([40]). Let C,T € B(H). Then w(TC+C*T) < 2w(T), where C is any contraction
(i.e.,||C|| <1).

Now, we are ready to prove the following inequality for the numerical radius of 2 x 2 operator

matrices which improves on the existing inequalities.

Theorem 7.15. Let X € B(Hz2,H1),Y € B(H1,Hz2). Then

0 X 1 1 1
< —|ISI?2 + 2w(YX) + ~w(Y XS + SYX

where S = | X |2 + |Y*|2.
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Proof. Let f(0) = %[l X + e=®Y*||. Therefore,

1 . . . .

f(@) — 5“(619X+6729Y*)*(6Z9X+6719Y*)||%
1 ) . . .

_ 5”(6_10)(*+620Y)(6l0X—|—6_10Y*)||%

1 )
= SIS+ 2Ry X))

1 i 1
= SIS +2R(* Y X)) |3

= %HSQ F ARV X)) + 2R(e20(Y XS + SY X))||1

IN

1 1 : 1 ,
= f4(9) T ISI7 + ZIREY X)| + S [R( (Y XS + SY X))

Now taking supremum over 6 € R in the above inequality and then from Lemma 7.1 (iii) we

get,
0 X 1
4 2
—|IS YX YXS+SYX
w0 ] S I ) + Gu(r XS+ SYX).
This completes the proof. O

Now using Lemma 7.1 (i4) and Theorem 7.15 we get the following inequality.

Corollary 7.2. Let X € B(Ha,H1),Y € B(Hi,Hz2). Then

0 X 1
w! < IIPIP +

w XY)+ -w(XYP+ PXY
. HXY) + g )

4

where P = | X*]2 + |V |2
Again using Lemma 7.1 (i) and Theorem 7.15 we get the following inequality.

Corollary 7.3. Let X € B(H2,H1),Y € B(H1,Hz2). Then

1
w(XY) < Z\/||S\|2 +4w2(YX) +2w(Y XS + SY X)

where S = | X |2 + |[Y*|2.
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Proof. We have,

w(XY) < max{w(XY),w(YX)}
XYy 0
= w
0 YX
2
0 X
= w
Y 0
0 X
< W’
Y 0
1
< Z\/||S||2+4w2(YX)+2w(YXS+SYX).

O

Remark 7.16. Using Lemma 7.2, it is easy to observe that the bound obtained in Theorem

7.15 is better than the second inequality in [3, Th. §].

Remark 7.17. Here we note that when Hi1 = Ha and Y = X then it follows from Theorem 7.15
and Lemma 7.1 (iv) that w*(X) < %||RH2—}—%wQ(X2)—1—%111()(21%—5—RX2)7 where R = | X |2+|X*|2.
This inequality also obtained in Theorem 7.1, i.e., [33, Th. 2.1].

Next we prove a lower bound for the numerical radius of 2 x 2 operator matrices.

Theorem 7.18. Let X € B(Ho,H1),Y € B(H1,H2). Then

0 X 1 1 1
4 > ISP+ ~C*(YX) + =
w SlISIP 4+ JCP(rX) + e

> (YXS +SYX),
Y 0

where S = | X|* + [Y*[?, C(YX) = infgep inf eq, 221 |R(?Y X)z]|.

Proof. Let = € Ho with ||z|| = 1 and @ be a real number such that e*?((YXS + SY X))z, z) =
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[{(YXS + SYX)z,z)|. Then from Lemma 7.1 (ii7) we get,

0 X 1. . )
w > 7||610X_‘_€—zéy*”
Y 0 2

Y]

%H(ez’OX_i_efmi/*)*(eiHX+efi9y*)||%

1 . . . ,
5”(6—16)(* +626Y)(610X+6_10Y*)”%

Y

v

1 )
SIS + 2RV X) | 2

v

1 . 1
SIS+ 2R(*Y X)) 3

v

%HSQ + ARV X))2 4 2R(2O(V XS + SY X))

%u(s? L AREEIY X)) 4 2RV XS + SYX)))a, 2|

1

v

(S22, ) + 4((R(e20Y X)) 2z, ) + 2R((eX (Y XS + SY X))z, x) |4

Y

Bl

(S| + 4|R(e*Y X)z|? + 2(Y XS + SY X))z, z)]

N»—‘

Y

[I|Sz||> + 4C*(Y X) + 2¢(Y XS + SY X)] 2.

N =N N

Now taking supremum over z € Hy with ||z|| = 1 in the above inequality we get,

0 X 1
4 2 2
—||S C YX)+ -c(YXS+SYX).
wt{ 0] 2 I O + ey XS + 5V X)
This completes the proof. O

Now using Lemma 7.1(47) and Theorem 7.18 we get the following inequality.

Corollary 7.4. Let X € B(H2,H1),Y € B(H1,Hz2). Then

0 X 1
4 2 2
> —||P C*(XY) + XYP+ PXY
whl ClIPI? + SO XY) + Se(XYP + PXY),

where P = | X*|2 + |Y|2.

Remark 7.19. Here we note that when Hi = Ho and Y = X then it follows from Theorem 7.18
and Lemma 7.1 (iv) that w*(X) > | RI*+ ;2 (X?)+im(X2R+RX?), where R = | X |*+| X*|2.
Also, this inequality obtained in 7.11, i.e., [33, Th. 3.1].

Next we state the following lemma which can be found in [17, p. 107].
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Lemma 7.3. Let X, Y, Z,W € B(H). Then

X Y 0Y
w > w
Z W Z 0
and
X Y X 0
w > w

zZ W | 0 W
Now we are ready to prove an upper bound and a lower bound for the numerical radius of

X Y
an operator matrix , where X, Y, Z, W € B(H).
Zz W

Corollary 7.5. Let X,Y,Z, W € B(H). Then

Bl

X v
wl < max{w(X),w(W)} + Ll6|5|2 - in(Zy) + éw(ZYS + SZY)]
and
1
X v i
el > max {w(X), w(W), [116||S||2 + iCQ(ZY) + éc(zys + SZY)] 4} ,

where S = |Yv|2 + |Z*‘27 C(ZY) = infgeR inf:re’r‘-[,H:EH:l ||§R(6ZQZY)QZ||
Proof. The proof follows easily from Theorem 7.15, Theorem 7.18 and Lemma 7.3. 0
Now, we prove the following theorem.

Theorem 7.20. Let X € B(Ha2,H1),Y € B(H1,H2). Then

2 0 X 1 * * * *
w > “max {|| XX+ Y'Y, | XX +YY*|},
Y 0 4
0 X 1
w? < §max{||XX*+Y*Y||,HX*X+YY*H}.
Y 0

0 X , ‘
Proof. Let T = v and Hp = R(T), Ky = 3(e”T). An easy calculation gives
0

1A 0
Hj + K = N
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where A = XX*+Y*Y, B=X*X 4+ YY*. Therefore,
1 A 0
ol 5 | =18+ KB < Il + ) < 20(T)

This shows that
1
3 max { || A|l, || B} < 2w (T).

This completes the proof of the first inequality of the theorem.

: 2 2 1 A0
Again, from Hy + Ky = 5 , we have
0 B
1[ A O
HZ — - =K <0.
2\ 0o B
Therefore,
A 0
H} < 1
2\ 0 B
and so,
1 A0 1
| Holl? < 5 | | = 5 max {141,131}
0 B

Taking supremum over 6 € R, we get
9 1
w(T) < 5 max {||A]|, | BI|}-

This completes the proof of the second inequality of the theorem. O

Corollary 7.6. Let X,Y,Z W € B(H). Then

N

X Y 1
w < max {w(X),w(W)} + ( max {||YY* +Z°Z|, IY'Y + ZZ*||}) )
zZ W 2
XY 1 2
w > max ¢ w(X),w(W), | = max < |[YY* + Z*Z|, |Y'Y + ZZ*|| .
zZ W 4
Proof. The proof follows easily from Theorem 7.20 and Lemma 7.3. O

Remark 7.21. We would like to remark that the first inequality of Corollary 7.6 is valid even
if we consider X € B(H1),Y € B(Ha, H1),Z € B(H1,Ha), W € B(Hz).
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7.5 Application to estimate bounds for the
zeros of polynomials

We consider a monic polynomial p(z) = 2" + a, 12" ' + ... + a1z + ag of degree n, with
complex coefficients ag, a1, ...,a,—1. When n varies from 1 to 4, we can exactly compute the
zeros of the polynomial p(z). But for n > 5, there is no general method to compute the zeros of
the polynomial p(z) and for this reason the estimation of bounds for the zeros of polynomials
becomes more interesting. One of the important technique to obtain bounds for the zeros of
the polynomial p(z) is to obtain bounds for the numerical radius of the Frobenius companion

matrix C(p) of p(z), where

—Qp—-1 —aQp—92 . . . —a1 —Qo
1 0 .. .0 0
0 1 .. .0 0
Clp) =
0 0 1 0

n,n

It is well-know that the zeros of the polynomial p(z) are exactly the eigenvalues of C'(p). There-
fore, if A is a zero of the polynomial p(z), then |A| < w(C(p)).

Many eminent mathematicians, over the years, have estimated the zeros of the polynomial,
some of them are mentioned below. Let A be a zero of the polynomial p(z).

(1) Cauchy [49] proved that
A< 1+ max {Jaol, faal, a1 }.
(2) Carmichael and Mason [49] proved that
1
N < (1+ laol? + |ar]? + ... + |an,1|2)2.
(3) Montel [49] proved that

N < max{l, lao| + la1| + ... + |an_1|}.
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(4) Fujii and Kubo [41] proved that

(SIS

m 1
|A| < cos ——] + 3 Z |aj|2 + |an—1]

(5) Alpin et. al. [9] proved that

A< max | (14 fan-a DL+ fanl) - (U Jani)]

(6) Paul and Bag [65] proved that

Al < = |w(A) 4 cos T
n

| =

—ap_q —
where A = )
[5]

(7) Abu-Omar and Kittaneh [5

proved that

Al <

N |

1
2

where o = ,/Z?:_& laj|? and o/ = Z;:g |aj|?.

(8) M. Al-Dolat et. al. [8] proved that

2
1
(Jan—1] + @) —i—cosn:1 + \/<Q(|an1| + ) —COSni 1) +4o/ |,

1
)\gmax{w(A),cosnil}+2 1+

—Qp—-1 —ap-2

1 0

where A =

To obtain our desired bounds we first we need the following lemma.
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0 0 0
1 0 0
Lemma 7.4. [}3, pp. 89/ If D, = | , then w(Dy) = cos .
00 10
n,n
Now, we prove the following theorem.
Theorem 7.22. Let A be any zero of p(z). Then
_ 1 1
Al < tn 1‘—I—cosz +3 [(1+a)? +4a+4va(l +a)]*,
n n
where
. Gn1\k
o = ZkC}(— T;; ) “Tag, r=0,1,....n—2,a,=1,Cyh =1,
k=r
n—2
a = |ovi|?
i=0
Proof. Putting z =1 — “>=X in the polynomial p(z) we get, a polynomial
q(n) = 0" + an-an™ % + an_3n" P + ...+ a1n + a,
where o, = >0 *C (= a”—n’l)k_rak, r=0,1,...,n—2,a, =1and °Cy = 1.
. . . . . A B
Now the Frobenius companion matrix of the polynomial ¢(n) is C(q) = o where
D
A = (0)1,1, B = (—Ozn_g — Qp—3 — 1 — aO)l,n—h Ct = (1 0 0 0)1771_1,
00 .. .0
10 . . .0
D =
0 0 1 0
n—1n—1
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Now using Lemma 7.1(7) and Lemma 7.4 we get,

A B A 0 0 B
w < w +w
C D 0 D cC 0
0 B
= w(D)+w
C 0
T 0 B
= cos— 4w
n 0

0 B
Therefore, if 7 is any zero of the polynomial ¢(n) then [n| < cos T + w o . Therefore
0

if A is any zero of the polynomial p(z) then [A| < [*2=%] 4+ cos T + w . Now using
0

Theorem 7.15 in the above inequality we get,

1
1

A< |2 —+ |= - B)+ -w(CB B
Al < | eos 16\|S\| + g (C )+8w(0 S+SCB)|
where S = B*B+ CC*
_ 1 1
< “T;L Ly Cos% + 5 [ISI2 +41BIP + 4 BJ|IS1] (using Lemma 7.2)
- 1 1
< | +cosz+§[(1+a)2+4a+4\/a(1+a)]4.
n n
This completes the proof of the theorem. |

We illustrate with numerical examples to show that the above bound obtained by us in

Theorem 7.22 is better than the existing bounds.

Example 7.23. Consider the polynomial p(z) = 2° 4+ 22* + 2z + 1. Then the upper bounds
of the zeros of this polynomial p(z) estimated by different mathematicians are as shown in the

following table.
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Cauchy [49] 3.000

Montel [49] 4.000
Carmichael and Mason [49] | 2.645
Fujii and Kubo [41] 3.090
Alpin et. al. [9] 3.000

Paul and Bag [65] 2.810
Abu-Omar and Kittaneh [7] | 2.914
M. Al-Dolat et. al. [8] 3.325

But our bound obtained in Theorem 7.22 gives |A| < 2.625 which is better than all the estima-
tions mentioned above.

Next, we obtain another bound for the zeros of the polynomial p(z).

Theorem 7.24. Let A be any zero of p(z). Then

s 1 -
[\l Smax{|an_1|,cos 5}+ 5 1+Z|an_j|2
j=2

Proof. Let C(p) = A B ,
C D
where A = (—ap—1)1,1, B=(—an—2 —ap-3 ... —ai —aop)in—1,
00 00
1 0 0 0
0 1 0 0
C*=(10...00)1p—1and D=D,,_; =
00 .. .10

n—1ln—1
Therefore, using Lemma 7.4 and Corollary 7.6, we get

w(C(p))

IN

1
max{|an1|,cosZ} + \/2 maX{HB*B—I—CC*H, ||BB* +C*C’|}

1
max {|an_1|,cos ”} + \/ (|B||2 + ||0||2>.
n 2

T 1 -
A < max{lan—1|,cos n} + B (1 + jzz |an_j|2>,

IN

Thus,
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as required. M

We would like to note that the existing bounds for the zeros of the polynomial p(z) are not

always better than the one in Theorem 7.24, and vice versa.
1

Clearly, the zeros of the polynomial %p(;) are the reciprocal of the zeros of p(z), if ag # 0

(see in [21]). Therefore, lower bound for the zeros of p(z) can be obtained by considering the

polynomial ’Z—Zp(%) and using Theorem 7.24. This enables us to describe annuli in the complex

plane containing all the zeros of p(z).
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