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Abstract

The present thesis is concerned with spherically symmetric astrophysical objects in
GR and modified gravity theories. We organize the whole thesis into ten chapters as
follow:

The first chapter is introductory in which the contents of the certain relevant
topics concerning the problems in the subsequent chapters are briefly described. This
chapter presents an overview of general relativity (GR), extended theories, supporting
evidences of GR, physics of compact stars, basics of wormhole geometry etc.

In the second chapter, we have presented a static anisotropic solution of stellar
compact objects for self-gravitating system by using minimal geometric deformation
techniques in the framework of embedding class one space-time. We deform this
system into two separate system through the geometric deformation of radial com-
ponents for the source function A(r) by mapping: e " — e~ 1) 4 B g(r), where
g(r) is deformation function. The first corresponds to Einstein’s system and other
quasi-Einstein system.

The third chapter employed Tolman VII solution with exotic matter that may
be present in the extremely dense core of compact objects. For our purpose we use
generalized non-linear equation of state which may incorporate exotic matter along
with dust, radiation and dark energy. The amount of exotic matter contain can be
modify by a parameter n which can be linked to adiabatic index. The M — R relation
is constructed analytically and the maximum mass and its corresponding radius is
determined using the exact solutions and is shown to satisfy various observed stellar
compact stars.

In fourth chapter, we will explore new relativistic anisotropic solutions of the
Einstein field equation for compact stars under embedding class one condition. For
this purpose, we use the embedding class one methodology by employing the Kar-
markar condition. By using this methodology we obtain a particular differential equa-
tion that connects both gravitational potentials e* and e”. We have also discussed
thermodynamical observable like radial and tangential pressures, matter density, etc.
Further, we discussed the moment of inertia and M — R curve for rotating and non-
rotating stars.

The fifth chapter discuss relativistic anisotropic solutions of the Einstein field
equation for the spherically symmetric line element under the class one condition.
To do so we apply the embedding class one technique using Eisland condition. Once
the space-time geometry is specified we obtain the matter density p, the radial, and
tangential pressures p, and p;, respectively. The M — R diagram suggest that the

solution yields stiffer EoS as parameter n increases. The M — I graph is in agreement



with the concepts of Bejgar et al. Bejger and Haensel [2002] that the mass at I, is
lesser by few percent (for this solution ~ 3%) from M,,,,. This suggest that the EoSs
is without any strong high-density softening due to hyperonization or phase transition
to an exotic state.

In the sixth chapter, we present a physically plausible solution representing Ein-
stein’s cluster mimicking the behaviors of compact star in the context of f(T)—gravity.
We chose both diagonal and off-diagonal tetrads in linear and quadratic functions of
f(T). However, we have found that Einstein clusters exist only in the case of Telepar-
allel Equivalent of General Relativity. The system also gain its stability when a small
net electric is introduced.

The aim of the seventh chapter is to explore exact solutions in linear and
Starobinsky- f (R, T)—gravity theory. Further, we employ embedding class one condi-
tion. We then compare the cases when £ = x = 0 [GR], £ = 0, x = 0.5 [fL(R,T)],
=05, x=0[fs(R,T)] and £ = x = 0.5 [fs+L(R,T)]. The M — R and M — I curves
from our solution are well fitted with observational data.

The eighth chapter focuses on strange star hydrostatic equilibrium assuming a
maximally symmetric phase of homogeneous superconducting quark matter called the
color-flavor-locked (CFL) phase in the energy-momentum squared gravity (EMSG).
We explored the structure of stellar objects in EMSG, which allows a correction term
T, T* in the action. Interestingly, EMSG may be effective to resolve the problems
at high energy densities without invoking some new forms of fluid stress. Finally, we
solve the complicated field equations numerically to obtain the mass-radius relations
for strange stars in CFL equation of state.

In ninth chapter, we consider wormhole geometries in the context of teleparallel
equivalent of general relativity (TEGR) as well as f(T) gravity. We present the
analytical solutions under the assumption of spherical symmetry and the existence
of Conformal Killing Vector. In addition, a wide variety of solutions are deduced
by considering a linear equation of state relating the density and pressure, for the
isotropic and anisotropic pressure, independently of the shape functions, and various
phantom wormhole geometries are explored.

The summary and future scopes for all the above chapters are presented in the

tenth chapter.
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Chapter 1

Introduction

1.1 Preliminaries of general relativity

The “Universal Law of Gravitation” proposed by Sir Isaac Newton in 1687 in his fa-
mous work “Philosophiae Naturalis Principia Mathematica” described the motion of
planets in the solar system almost perfectly. During this era of Newtonian mechanics,
the space and time were separate entities where time is absolute for any observer. This
relativity (named as Newtonian or Galilean relativity) explains all the physical phe-
nomena corresponding to low velocity limits. However, the transformation equations
from the Galilean relativity was incompatible with the Maxwell’s equations of the
electromagnetic theory of light. Initially, light needs a hypothetical medium known
as “Fther” to propagate between two points. To detect this luminiferous medium,
Michelson and Morley set up an optical instrument based on Michelson-Morley inter-
ferometer. Consequently, the negative results from this experiment put forward to the
non existence of the Ether medium. This inspired a young unknown scientist named

Albert Einstein to arrived at the postulates of the “Special Theory of Relativity”:
1. Laws of physics remain the same in all inertial observers.
2. Speed of light in vacuum is constant and same for all inertial observers.

Using these postulates as foundation Einstein arrived at a relativistic transformations
law, which was similar to the one derived by Hendrik Lorentz. These transformations
equations are now known as “Lorentz Transformation”. The concept of space and time
as non-separable entities was put forward by Hermann Minkowski as four-dimensional

spacetime continuum. This four-dimensional spacetime can be presented by a simple

1
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line element
ds® = —c*dt* + da® + dy® + dz° = 1, dz¥dz” (Einstein convention) (1.1)

where, 7, is the metric tensor which can be represented by a 4 x 4 matrix with
diagonal elements (—1,1,1,1). Events in Minkowski’s spacetime are now represented
by four-vectors z# = (2%, 2!, 22, 23) = (ct, x,y,x) in Cartesian coordinates. Now the

Lorentz transformation in four-vector form can be written as
= 't = AN, (1.2)

where, A is the Lorentz matrix defined as

v qv/e 00
00

A= M;J/C g 10 (13)
0 0 01

Here v = (1 — v%/c?)~'/2, the Lorentz factor. For inertial frames, equation (1.2) can
also be written as
da™ = AF dx”. (1.4)

The invariance of the four-dimensional line element ds? leads to

Nwda™dx” = n,,detdz”
or N Ay Ay daPda? = npedaPd’?
or NuwALAL = 1y (1.5)

The last equation is the Lorentz transformation of the Minkowskian metric tensor.
Since the special theory of relativity was confined only to inertial frames, Einstein
wanted to generalized to any arbitrary frames (accelerated frames). Soon he realized
that accelerating frames can also seen as a source of gravity. This idea led him to
the “ Principal of Equivalence” which states that “at every space-time point in an
arbitrary gravitational field it is possible to choose a locally inertial coordinate system
such that, within a sufficiently small region of the point in question, the laws of nature

take the same form as in unaccelerated Cartesian coordinate systems in the absence
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of gravitation” (Einstein [1907], Weinberg [1972]). This also further implicates the
equivalence of gravitational and inertial masses.

The general theory of relativity was formulated based on the “Principle of General
Covariance which states that “a physical equation of general relativity is generally
true in all coordinate systems if (a) it preserves its form under general coordinate
transformations, and (b) the equation is true in special relativity” (Weinberg [1972]).
In this theory, freely falling massive point-like objects following time-like geodesics of
the metric and the equations of motion are independent of their masses given by

d%at dx® dxP

r“, ——=0. 1.6
dr? thap dr dr (1.6)

Here 7 is the proper time and I‘ZB the Christoffel symbols of the second kind named
as “affine connection”. Since the equivalence principle implies the equality of inertial
and gravitational mass, gravity is nothing to do with force acting on the individual
particles but should be related to the structure of the spacetime. In 1915, Einstein
finally published the field equation in general relativity as

1 87
GMV = Rp,u - 5 guum = _7 Tp,u‘ (]‘7)

Here G, is named as Einstein tensor, R, is the Ricci tensor defined as

org,  org,

_ po o B a 78
RMV - R,uau - a.’L‘V axa + Fuﬁrya - Ful/raﬁﬂ (18)
and R = ¢"R,,, the Ricci scalar. The left hand side of the field equation (1.7)

represents the curvature of the spacetime which is due to the presence of a matter
source 7T}, defined as

T/u/ = (p + p)vuvl/ + PYuv- (19)

Here, p is the energy density of the matter distribution, p the pressure associated and
v” is the four-velocity satisfying the relation v,v¥ = —1. Further, the conservation of

energy and matter requires V, 7" =T" = 0.

1.2 Predictions of General Relativity
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As consequences of the general relativity, many new phenomena has been pre-
dicted theoretically which upon observations can be confirmed. General relativity
also predicted the existence of new objects like black holes, compact stars, wormholes
etc in astrophysical realm. In cosmological scale, general relativity predicts the origin
of universe from a singularity and its evolution. In this thesis, we will only focus on

the astrophysical objects.

1.2.1 Perihelion advance of Mercury

In 1859, astronomer Urbain Le Verrier observed an anomalous precessional motion of
the perihelion of Mercury about 43" arc sec/century that could not accommodated
in Newtonian gravity. However, due to perturbations from the other planets the
Newtonian gravity predicts a precession of 5557.62 4 0.20 arc sec/century which was
about 43" arc sec/century less from the observed value 5600.73£0.41 arc sec/century.
Assuming a Schwarzschild exterior around the Sun, the equation of orbit for massive
objects following time-like geodesics with relativistic correction is given by
d*u _ GM  3Gm .2

_+u

Tt amt o (1.10)

Here w = 1/r and h is the angular momentum. The perihelion shift per revolution

was
6mrGM

ca(l —e?)’
Here a is the semi-major axis and e the eccentricity. For Mercury the observed values
was 43.11 + 0.45” and the prediction was 43.03".

¢ = (1.11)

1.2.2 Gravitational Lensing

Since gravity is because of the deformation of spacetime due to the presence of massive
objects, light paths will also be affected nearby massive objects. In fact the light will
bend around near a massive object like in a convex lens. This can be discussed using

the relativistic equation of orbit for null geodesics

d2u 3GM@

d7¢2+u 2

u?. (1.12)
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The angle of deflection of light ray at a far away observer was found to be

A AGM,
CQ R@

(1.13)

provided R, = 6.96 x 10%m is the radius of the sun. For the sun, the angle of
deflection predicted was 1.75”. The first observational confirmation came from A.

Eddington during a solar eclipse in 1919.

1.2.3 Gravitational redshift

When a radiation propagate against a uniform gravitational field, its frequency will
be lesser when received (redshift). The amount of frequency shift will depend on mass

and radius of the gravitating source. Mathematically, it can be written as

z= (1—%> 1/2—1: (1—20)72 -1, (1.14)
R

The quantity U = M/R is named as compactness factor. Moreover, if the radiation

propagates only the direction of the gravity, its frequency will shift towards higher

frequencies (blue-shift). This phenomenon was confirmed in 1959 is a famous exper-

iment now kwon as “Pound-Rebka experiment’. They have used Fe®® v—ray source

over a verticle height of 22.5 m (Pound and Rebka [1960]). Redshift is one of the

important parameter when discussing compact objects.

1.2.4 Existence of black hole

Soon after the publication of the general relativity in 1915, the first solution of the
field equations was put forwarded by K. Schwarzschild in 1916. He found the first
exact solution of the Einstein field equations describing an exterior of a spherically

symmetric object (Schwarzschild [1916b]) given by (G = ¢ = 1 unit)

2 2m !
ds? = — (1 - —m> dt? + <1 - —m) dr? + r2(d6? + sin2 0 do?). (1.15)
r r

This line element has a singularity at r = 2m i.e. g, — oo as r — 2m. This radius
r = 2m is named as “event horizon” , within which any object not even light can escape

and hence the name “Black Hole’. The Kretschmann scalar for the Schwarzschild
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solution is found to be
48m?

K= RuvaﬁRwaﬂ - r6

. (1.16)

This scalar blows-up only at » = 0 i.e. there exists a physical singularity at r = 0.
Hence, the singularity at r = 2m is a coordinates singularity and can be avoided e.g.

by the following transformation

r* =r+2mln <2L — 1) , Tortoise coordinate (1.17)
m

and the equation (1.15) reduces to

2
ds? = (1 - —m> [ —di? + drﬂ +72(d6? + sin? 0 dg?), (1.18)
r
where r is now a function of r*.

Recently, the existence of black hole have been proven by observing the shadow
of a black hole at the center of M87* galaxy using the Event Horizon Telescope
(Collaboration [2019]).

Figure 1.1: Shadow of black hole at the center of M87* galaxy.

1.2.5 Gravitational waves

Einstein initiated the theory of gravitational waves in 1916 assuming a small pertur-

bation in the Minkowski spacetime, known as “linearized theory’. The metric tensor
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describing the Lorentzian spacetime expands as

v = Mw + €Ay, (1.19)

where € << 1 and hy, is fluctuation in the spacetime. Under this linearized theory
the wave equation is found to be
167G

Nop0°0°h,, = Ohy,, = ——a Tw (1.20)

provided,

_ 1 -
hyw = by — 3 Muwheopn” . (1.21)

The wave equation (1.20) gives a propagating spacetime waves that travel exactly
at the speed of light. This first detection of gravitational waves used an indirect
method by observing orbital decay of the Hulse-Taylor binary pulsar (a neutron star
binary, PSR B1913+16 and PSR J1915+1606 with approximately equal masses of
about 1.4M). The rate of orbital decay predicted by general relativity due to the
continuous emission of gravitational waves is given by

dr 64G> myma(my + ms)

2 . 1.22
dt 5¢P 73 ( )

Hanford, Washmgton (H1) Livingston, Louisiana (L1)

Strain (10"

Frequency (Hz)

o N A O
Mormalized amplitude

0.30 035 0.40 D.45 0.30 035 0.40 0.45
Time (s} Time (s)

Figure 1.2: LIGO measurement of the gravitational waves at the Livingston (right)
and Hanford (left) detectors (Collaboration and Collaboration [2016]).
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The ratio of the observed orbital decay rate to the predicted one (1.22) is 0.997 &
0.002 (Weisberg et al. [2010]). The direct detection for the first time was made
in 2015 from a binary black hole merger and was detected by LIGO and VIRGO.
This event was named GW150914 and the masses of the two black holes was 36 M
and 29M,, (Collaboration and Collaboration [2016]). Gravitational waves from first
neutron stars merger was also made in the proceeding year and the event was named

GW170817 (Collaboration and Collaboration [2017]).

1.2.6 Existence of wormholes

The foundations of wormhole physics dated back to 1916 (Flamm [1916]) when the
Schwarzschild exterior solution was just discovered. However, the renaissance on
wormhole physics came only after the seminal paper by Morris and Thorne in 1988
(Morris and Thorne [1988]). Wormholes are basically a “bridge” connecting two far
away spacetime sheets. This kind of structure can exist by violating classical energy
conditions. The spacetime describing such geometry is given by Morrison-Thorne
solution given by

d 2
ds® = —e*®Mae? + - r + 72(d6? + sin’ 0 do?). (1.23)

1—b(r)/

The metric functions ®(r) is the “redshift function” and b(r), the “shape function”.
The radial coordinate r increases from a minimum value ry to +o0o. At r = ry,
b(rg) = ro and this is called “throat” of the wormhole. Although the metric potential
grr blows up at the throat r = r¢, it is merely a coordinate singularity. The proper

radial separation given by

(1.24)

fzi/;ﬁ

must be finite everywhere. The two connecting spacetime sheets are represented by
7 € [0, +o0] and 7 € [0, —oco] along with the horizon free condition gy # 0.
The wormhole geometry can be visualized via embedding diagram. Considering

an equatorial slice § = /2 for a fixed time t = constant, we get

dr?

ds:m

+ r2de?. (1.25)

Further, this slice will be embedded in three-dimensional Fuclidean space which can
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be written in cylindrical coordinate as
ds® = dz* + dr* + dr*dg¢®. (1.26)

On comparing (1.25) and (1.26) we get

1 dz\? dz r —1/2
1—b/r_1+($> or %_j:(E—l) . (1.27)

Now the embedding surface on the three-dimensional Euclidean space takes the form

dz\?
1 had
()

At the throat of the wormhole r = b(r) = ry and therefore dz/dr — oo, implying

ds* = dr® + r?d¢?. (1.28)

that the embedding surface is vertical at the throat. Also, dz/dr should tends to zero
when r — oo i.e. the space must be asymptotically flat.
A wormhole solution must satisfy “flare-out” condition d?r/dz* > 0 at or near the

throat. On using (1.27) we get

1/2 2 N
dr (f - 1) dr _b=br (1.29)

-t - -7
4z b O 2T T

Satisfying flare-out condition require the violation of few energy conditions. At the

throat of the wormhole it is also required to satisfy &'(rg) < 1.

Figure 1.3: Revolution of embedding surface of a wormhole.
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1.2.7 Compact stars

The existence of compact stellar system was first conceptualized by K. Schwarzschild
as a toy model, which was also the second exact solution of the Einstein’s field equa-
tion. This solution represents a static stellar system with uniform matter distribution.
Due to the assumption of uniform density this solution can’t be treated as physical
solution. It was the year 1939 Oppenheimer and Volkoff (Oppenheimer and Volkoff
[1939]) solved the field equations using an equation of state for degenerate proton
(similar to the equation of for degenerate electron used in white dwarf) and found a
realistic theoretical model of a neutron star. This compact star can hold a maximum
mass up to 0.7My known as “Oppenheimer-Volkoff limit’. In the same article they

have considered an spherically symmetric spacetime given as
ds® = —e’Pdt* + eMdr? + r*(d6? + sin” 0 d¢?). (1.30)

Now the field equation (1.7) reduces to

8rG Vo, l—e?
G P = et (1.31)
8rG (VN v V=X
_ (Y v 1.32
a b= e ( 2o 4 4 o (1.32)
8’/TG )\, _>\ 1 - €_>\
2 P = e (1.33)

This reduced field equations can be rearrange in form of hydrostatic equilibrium as
(in the unit G = ¢ =1)

- o ] [ ) [ 20
where ‘il_T — drr2p(r). (1.35)

Equation (1.34) is now known as “Tolman-Oppenheimer-Volkoff (TOV) equation (Op-
penheimer and Volkoff [1939]). The equation of state used by Oppenheimer and

Volkoft for degenerate neutrons was in the form (in G = ¢ = h = 1)(Oppenheimer

10
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and Volkoff [1939])

: t
p = %(sinht—Ssinh§+3t>, (1.36)
4
p = %(smht—t), (1.37)
where
P P\’
t=4ln{ L+ 1+(—F) . (1.38)
Ho Ho

Here Pp is the Fermi momentum and pg the rest mass of the proton. The Fermi
pressure is related to the proper particle density n = N/V = 87 P} /3. However, this

equation of state leads to a maximum mass of about 0.72M,.

1.2.8 Einstein cluster

A cluster of stationary gravitating particles moving separately along circular paths
about a common center of mass due to their effective gravitational field is named as
“Finstein cluster 7. The gravitational field produced by such object can be repre-
sented by equation (1.30). For Einstein cluster the stress-energy tensor was chosen
as (Einstein [1907])

7o =0 pupr (1.39)
m

where P* = mu*, m is the rest mass of the particle and ngy, the proper number

density. The field equation is given as (G =c=1)

-

—e 5 = 0, (radial) (1.40)
r r
1 1.,/ /2 / /
(v Nv Ve - A B
e (2 1 + 1 + 5 ) = 8n p, (transversal) (1.41)

—e — 5

= 87 p. (1.42)

T T

Since the radial pressure vanishes, Finstein clusters are highly anisotropic in pressure
i.e. the radial pressure is unequal with the transversal pressure. The vanishing radial

pressure in (1.40) implies a bridge equation that links the two metric functions as

A(r) = In (1 + ru(r)’) (1.43)

11
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Einstein clusters with uniform density are having very large central gravitational red-
shift. However, one can always see for other types of matter distributions like Burkert
or Navarro-Frenk-White type profiles, which are useful in modeling dark matter ha-
los (Geralico et al. [2012]). It has also been reported that instead of circular orbits

elliptical orbits are dynamically unstable, which will eventually evolve to circular.

1.3 Physics of compact stars

Compact stars are end products of main sequence stars (MSS) whose masses are
generally in the range ~ 1My — 25M,. For the MSS below 8Mg, the compact
star remnants are usually white dwarfs. White dwarfs are supported by the electron
degeneracy pressure known as “Fermi pressure ”. Fermi pressure arises due to the
Pauli exclusion princple, which states that “no two fermions can’t have the exact same
quantum numbers”. The number of states in a specified volume V' in the momentum
interval P and P + dP is given by

B 8t P?V

N(P) e (1.44)
The electron pressure can be calculated as
_ /OO N(P)P vp dP = >F "0 p (1.45)
P=3v ), PAETT s ), U ap Y '

Here vp is the velocity corresponding to the momentum P and F, the kinetic en-
ergy. Further, one can also find the internal energy of the electron gas due to their

transnational energy as

00 Pp
Uy = / N(P)EdP =V % EPdP. (1.46)
0 0
Now the pressure reduces to
8w Uk

12
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This is a general expression for any particles. For relativistic particles, we have

P2\ "2 OE 1 P2\
1 —1 —=—|1 P. 1.4
< * m202> TP " m ( * m262) (1.48)

Now (1.45) reduces to

E = md?

8r [FF PAdp

- 1.49
P = 3mns 0 1+ P2 /m?2c? (1.49)
which can be integrated with the substitutions
P
sinhf = — and sinhfp = £
mc mc
we get
8rmic® (sinh® Op cosh § 3sinh (20 30
p=" d L (26r) , 30k (1.50)
3h3 4 16 8
This is usually kept in the form
mmicd 9 41 Tmicd
p= [:U(2x —3)Va? + 1+ 3sinh x] = f(z). (1.51)
3h3 353
Here x = Pr/mec. Similarly, the particle number density can can be found as
N 8r [fr 8T 8rm3c?
”VhS/O 3ps TP T g ! (152)

Equations (1.51) and (1.52) represents the equation of state of relativistic degenerate

electrons in parametric form. Finally, the expression of internal energy takes the form

4.5 4.5
Up=V ”;’230 [8:1:3{\/332 T1-1) - fo)] =V “3’236 g(z). (1.53)
The equation of state for this degenerate electrons reduce to

1 (3\**n?

p = —|— — n°3 | for non-relativistic case x — 0, (1.54)
20 \ 7 m
1/3\Y*

p =3 (—) he n*/3 | for relativistic case x — co. (1.55)

™

Since white dwarf’s compactness factor M/R is far less than unity the effects of

general relativistic correction is negligible and hence one can use the non-relativistic

13
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hydrostatic equation given by

1 d (r*dp

where p = nuempy = 9.82 x 1054, . Solving this equation using the equation of
state given in (1.51) and (1.52) leads to a maximum mass limit %M@. For He
core, . = 2 and hence the maximum mass limit is 1.44M. This limit is known as
“Chandrasekhar limit 7 (Chandrasekhar [1931]).

However, if the mass of the MSS is more than 8M, the electron degeneracy pres-
sure is not enough to hold the stellar system. This leads to collapsing of the He core
generating more gravitational energy producing enough thermal energy to ignite He
fusion. The fusion reaction continues until the core He completely converted into
Fe®® core. Since Fe®® is the most stable nucleus, the gravitational energy couldn’t
produce sufficient thermal energy to ignite it. Hence, the core start collapsing until
the atomic nuclei are crushed producing neutrons and protons. At a density of about
10%g/em? the Fermi energy of electrons is high enough to trigger inverse S—decay i.e.
e~ +p — n+v and hence 95Fe®® + e~ — o5 Mn® +v and o5 Mn®0 + e~ — 9, Cr + v,
Once the neutron drip density has reached (~ 4.3 x 10''g/cm?) the neutrons and
protons are no longer bound inside an atomic nucleus leading to electron capture re-
action p + e~ — n + v. This process continues during the collapsing of the core until
an enough amount of neutrons are generated. Once the neutron degeneracy pressure
is sufficient enough to counter-balance the collapse, the collapse will suddenly stop
producing an outward shock wave to initial a “supernova ”. Supernova will eject all
the matter from outward shells leaving behind the neutron rich compact core along
with the release of huge energy and neutrinos. Since the compact core is reach in

neutrons, it is named as “neutron star 7. A neutron star consists of many layers
(Haensel et al. [2007]):

(i) Atmosphere : It is a few cm thick plasma layer. This layer is responsible for
the observational evidences like surface temperature, surface gravity, chemical

composition, surface magnetic field, mass and radius etc.

(ii) Outer crust (0.3—0.5 km): It is composed of lattice atomic nuclei and rel-
ativistic degenerate electron liquid. The pressure in this layer is dominated by

the Fermi pressure of electrons. The upper surface is usually solidified.

14
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(iii) Inner crust (~ 1 km): This crust extend from neutron drip density to a
transition density ~ 1.7 x 101 g/cm3. Tt contain es, free neutrons and neutron-
rich nuclei. The the crust-core interface nuclei are disappeared and nucleons are

in superfluid states.

(iv) Outer core: It is of several km thick that contain protons, electrons, neutron
and muons (npep). The strong interactions in n —n and p — p makes superfluid
neutron liquid and superconducting protons. Electrons and muons acted as

ideal fermi gases.

(v) Inner core: It may also extend few km thick and the central density may grow
in the range ~ (2.8 — 4.2) x 10%g/cm3. Tt is also proposed that the following
phenomena can also occur:

(a) Pion condensation.
(b) Hyperonization.

(c) Koan condensation.
(

d) Quark matter (u,d,s).

Since the superfluidity of free neutrons are of Fermi-surface phenomenon, there is
negligible effects on the overall equation of state of the neutron star. The neutron
superfluids are produced due to the single state pairing (*Sp) in the crust and triple-
state pairing (3P) at the core (Ruderman [1967], Mackawa and Tamagaki [1968]).
The theory of proton superconductivity is given by the Ginzburg-Landau theory where
the coherence length ~ 2—6 fm and thereby a type-II superconductivity. The vortices
in neutron superfluid was also supported via the Feyman-Onsager quantization which
are parallel to the spin axis (Ginzburg and Kirzhnits [1964], Baym et al. [1969]).
These vortices may also pinned to the atomic nuclei or the lattice defects within
the crust leading to vortex creep. This phenomenon can explain the pulsar glitches.
Further, the free quarks at the core may also exist in super-conducting state due to the
color — color interactions with a critical temperature of about 50MeV =5 x 101 K.

The interior compositions of neutron star is highly uncertain due to the presence
of many exotic matters which are not familiar with our current knowledge. However,
one can propose models with certain matters included. In the composition baryons,

mesons (scalar, vector, isovector) and leptons (e~ and muons) the Lagrangian is given

15
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by (Glendenning [1982, 1985])

_or 1
L = Z (] [w,ﬁ“ —mMB + GoBT — GuB VW' — S9pB VT P VB
B

N J/

~
Baryon species: p, n, A, ¥t ¥~ 30 == =0 and interactions with mesons
1 1 1
- by _ m2g52| — Z By a2 I
+2[8M060 m,o 7 Wi @ +2mwwuw

v~

scalar and vector mesons

1 , 1 1 3 1 4
=P PSPy P = S bm (950)" = ¢ (900)

Vo
isovector meson coupled to isospin of baryons

+Z&A<z%8“ —m,\>w,\. (157)
A

J/

~
leptons term

Here 15 is the baryon spinors and ¢g = z/;jgfyo. The energy density and pressure can

be found as

_ 1 1 1 1 1
€= _<'£> + <¢’70k01/}> = g bmn(gao')g + Z 0(900)4 + 5 mgo-Q + 5 mz)w(Z) + 5 miﬂg:),
2Jp +1 (o
+> 5—7#/ VE2 + (mp — gop 0)? k2dk
B 0
1 [
+) F/O k2 +m2 k2dk (1.58)
A
1 - 1 5 1 s 1 1
p=(L)+ 3 (Yyikip) = —3 b, (go0)” — 1 ¢(9s0)" — 3 m2o® + 3 mewy

1 ,, 1 2JB+1/kB k*dk
‘|—2 mpp03+ 3 ; 272 0 \/k?2 +<

mB—goBU>2
1 1 (™ k*dk
+-) — S — 1.59
Tal (159

Here kg is the Fermi momenta of baryons species. Now, one can see that the equation
of state for the assumed matter contents is very complicated and can only solved by
numerical techniques. Further, the above equation of state doesn’t include the quark
matters, hyperonzation, meson condensation etc and hence for from real physical
System.

To include the quark matters the simplest model is given by the MIT-bag model

where the quarks are treated as free particles inside a hard spherical bag and the
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Lagrangian is given by (Bhaduri [1988])
- _ 1
¢ = [{¥row - @b - Ble@) - S,

where the symbols have their usual meanings. The Heaviside function and its deriva-

tive is defined as
Oy(z) =0(R—r) and 0,0 =n,A,. (1.60)

The pressure, energy density, baryon number density and entropy at finite tem-

perature for quarks Fermi gas of mass my and chemical potential 1y are

u,d,s
- 1 95
327r2

(/<a, pr) + n(k, —Mf)} K*dr — B, (1.61)

g
€= 22—7;/ Ey(k )[ (k, pug) + 0k, —uf)}f#dmtﬂ, (1.62)
f
u,d,s
1 g
v 327:2/ (k. ) = nloe, —pp) | 2 (1.63)
3p
S = 37 (1.64)
aT |y,

where the kinetic energy of the quarks are

Ei(k) = \/m7 + K? (1.65)

and n(k, p1r) the Fermi distribution function

1
exp [{Ef(k) £ ps}/T] + 1

n(k, ) = (1.66)

with 7" the temperature and g5 = 24,1 @ 3color - Under the massless quarks approx-

imation i.e. my = 0, the pressure p and the energy density p are link by a linear

equation of state (EoS)

p= %(6—43), (1.67)
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which is the famous MIT-Bag EoS. However, with the inclusion of color-superconductivity

the equation of state is modified as (Lugones and Horvath [2002])

1 3 472
p:§(e—43)+7r—§ %(E—B)+€2—§] (1.68)

where £ = 2§2/3 — m?/6, ¢ is the color-superconducting gap and m, mass of the
strange quark. However, this is just a simplified model and the actual physical quark
matters would be far more complicated. There is also very strong evidences that a
new category of compact star named “quark star 7 may also exist next to neutron
star. It is believed that if the mass of a neutron star increases beyond a maximum
limit, it will start collapsing again until Fermi pressure due to unconfined quarks
counter balance the system. The conversion of excess down (d) to strange (s) quark

via weak interaction is given by the reactions (Alcock et al. [1986])
d—u+e +0, ; s—u+e +0, ; d+u—s+u.

Witten [1984] have proposed that strange matter as the most stable substance known
and “strange star” may be the ultimate end product of a dying star.

The matter compositions considered directly link with the resulting equation of
state (EOS), which eventually affects the observable quantities, mainly mass and ra-
dius of the compact star. A matter compositions of free n, p and leptons (Nepu)
yields a very soft EOS allowing a maximum mass of about 0.7M; which is very
close to the Oppenheimer-Volkoff Limit i.e. M., ~ 0.72M in case only free neu-
tron gas is considered. However, with the inclusion of nucleon-nucleon interaction
the maximum mass (M., (New)) can be lift up to (1.8 — 2.2)My. At a density
of about 5.6 x 10g/em3, hyperonization occurs that convert baryons to hyperons
leading to the softening of the EOS and therefore the maximum mass reduces to
Mpaz(NHep) ~ (1.5 — 1.8) M. Nishizaki et al. [2002] have shown that by including
three-body interactions involving hyperons increases the stiffness of the EOS leading
t0 Mypazr(NHep) ~ (1.52 — 1.82) M. Poin condensation with the presence of pure
neutron matter soften the EOS and therefore the maximum mass reduces to 1.32M©®
[10.1086/160080]. Further, condensation of kaon in the background of nuclear matter
leads to soft EOS with a maximum mass < 2M (Lim et al. [2014]). The possible
maximum mass limit predicted by the general relativity can be found by considering

an incompressible fluid i.e. p;,. = constant. For this case the maximum is found to
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be

5 1014 3\ 1/2
. g/cm> Mo, (1.69)

M 42 (inc) = 5.09 (
Pine
For pine = 10¥%g/cm?, M4, (inc) ~ 2.545M,. Based on the satisfaction of causality
condition and Le Chatelier’s principle, the maximum mass limit cannot exceeds 3.2M
(Ruffini mass limit) (Rhoades and Ruffini [1974]). As per the recent observations, the
maximum mass recorded is about 2.141032 My, (Cromartie et al. [2020b]) for a binary
pulsar named PSR J07404+6620. To explain such observational evidences, one must
seek for more realistic EOSs to incorporate such high mass neutron stars. The recent
gravitational waves observation from a binary neutron star merger GW170817 put a
strong constraint on the acceptability of an EOS. Any EOSs must yield for a neutron
star of mass 1.6M and 1.4M, a radius above 10.687555 km (Bauswein et al. [2017])

and 11.00%99: km (Capano et al. [2020]) respectively.

1.4 Theories of Modified gravity

There is no doubt that general relativity is one of the greatest achievement in
the history of human endeavor in science. It predicted/explained almost perfectly
many phenomena starting from the perihelion shifting of Mercury to the detection
of gravitational waves recently. General relativity also describe in the most elegant
way how the universe began and how it is evolving, which was also supported by
observational data from PLANCK (Collaboration [2014]) and WMAP (Bennett et al.
[2013]). Despite of huge success, there are some phenomena where the gravitational
interaction based on general relativity can’t accommodate satisfactory answers. Some
these are given below:

(i) Its inability to explain the rotational curve of galaxies and the existence of “dark
matter” (Aguilar et al. [2013], Collaboration [2013]).

(ii) The accelerating expansion of the Universe with and the hypothetical “dark

enerqy’.

(iii) General relativity predicted and even confirmed the existence of spacetime sin-

gularity or black hole, however has no answer what is happening inside a black
hole.

(iv) General relativity still can’t reconcile with the quantum theory (or quantum
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theory of gravity is still in its infancy).

(v) Some of the massive compact stars can’t be accommodated in the realm of

general relativity.

1.4.1 Minimal Geometric Decoupling (MGD)

The simplest method of extending the Einstein’s gravity is by adding an additional
term in the Einstein-Hilbert action i.e. (Ovalle [2010])

1
S :/ F :R+£4M +ﬁ£’add vV —g d.ﬁlﬁ4. (170)
N

EH term

The strength of the Lgy — L4449 coupling is decided by the coupling constant 3. This

additional term modifies the energy-momentum tensor as 7, = ~W + 6 TW, where
- 2 0(v/=9Lwm) 0L m
T, = — = -2 L, 1.71
= 2 6(v/—9Lada) 0L qad
T, = — = -2 oL add- 1.72
g V=g g gy e 7

The field equation now becomes
1 - _
Ry = 5 R gy = =87 = =87 [T, + BT, (1.73)
Now the density, radial and tangential pressures modify as
The anisotropy in pressure is defined as
A:pt_pr:ﬁt_ﬁT+B(T11_T22>' (1.75)

If one consider the unperturbed energy-stress tensor TW as perfect fluid i.e. p, = py,
there is still anisotropy in pressure A = S(T} — T2). This is the advantage of MGD
approach i.e. one can generate anisotropic fluid from isotropic fluid without changing

the unperturbed energy-stress. The additional source Tm, will generate the anisotropy
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and thus an isotropic seed solution can be generalized. It has been suggested that the
highly dense interior of compact stars need not to consider isotropic fluid always as
many physical phenomena ultimately generate anisotropy. The beauty of this gravity
is that the extra source term T}, may arises from the curvature of the spacetime. If

one consider a spherically symmetric spacetime of the form,

ds® = e’dt* — eMdr® — 1r2(d#* + sin® 0 d¢?) (1.76)
the metric potentials will be modified as

e —e"+Bf(r), er— e + Bg(r), (1.77)

where f(r) and g(r) are deformations functions. If both the ggo and g;; metric
potentials are modified as above, we called it the Complete Geometric Decoupling
(CGD)” (Ovalle [2019]) and if one of these metric potential is modified, it is the MGD
approach. The modification in metric potentials in (1.77) leads to two decoupled field
equations, one the unperturbed Einstein field equations and other the “Quasi- Einstein
field equations”. Further, both the sources satisfy separate the Tolman-Oppenheimer-
Volkoff (TOV) equations i.e. V“T“” = 0 and V,T* = 0, which eventually implies
V, " = 0. The Einstein field equation are given by

1—e? e X

= = s (1.78)
612_ ! e:ﬁ "~ s, (1.79)
e (%ﬂ + %/2 - ﬁljl + Dl;f) = 8. (1.80)
and the quasi-Einstein field equations (for f(r) = 0) are
_97'_7:‘1_2 — 870 (1.81)
—g (V?, + %) = 87T} (1.82)
—g (ﬁ” + %2 + %,) - %/ (% + %) = 872 (1.83)

The methods of solving the field equations can be done in two way:
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(a) By choosing a seed solution and the deformation functions, one can find the
complete solution. The deformation functions must be chosen so that 0 <

goo(r =0) < 1 and g11(r = 0) = 1 are satisfied.

(b) By choosing a seed solution and solving the quasi-Einstein field equations with a
constraint on T}, i.e. T = p(r) (mimic density) or 7} = p(r) (mimic pressure)

etc.

This modified gravity is very useful in generating compact star solutions. It has
the ability to generate high mass compact structures via the coupling parameter 3, to
incorporate the observational evidences (las Heras and Ledn [2018], Tello-Ortiz et al.
[2020], Maurya et al. [2020]).

1.4.2 Embedding class one and Karmarkar condition

This is in fact not a modified gravity since the action is exactly the Einstein-Hilbert
action. However, the 4-dimensional Riemannian spacetime will be transformed in
to H-dimensional pseudo-Euclidean spacetime. Hence, the 4-dimensional spacetime is
embedded into 5-dimensional flat spacetime. The spherically symmetric configuration
given by the spacetime (1.30) with the transformations (Gupta and Goel [1975])

2 = ke¥/? cosh (%) . 2o = ke’/?sinh (%) , 23 = f(r),
2 =rsinfcos ¢, z5 = rsinfsing, z5 = rcosb,
takes the form
ds® = (dz1)? — (dz2)* F (dz3)? — (dz4)* — (dz5)* — (dz)?, (1.84)

with [f'(r)]? = F[ — (e* = 1) + k?¢"v?/4]. This means that the 4-dimensional
spacetime (1.30) is embedded in 6-dimensional pseudo-Euclidean space (1.84). This
kind of solution is called “embedding class two solution”. One example of class two
solution is the Schwarzschild exterior solution. Without the lost of generality, there
may exists a function f(r) such that f’(r) = 0, then the 6-dimensional pseudo-

Euclidean space (1.84) reduces to 5-dimensional pseudo-Euclidean space as

ds® = (dz1)? — (dzy)? — (dzy)? — (dzs)? — (dz)* (1.85)
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1.4. Theories of Modified gravity

Now, the 4-dimensional spacetime (1.30) is embedded in 5-dimensional pseudo-Euclidean
space (1.85) i.e. an “embedding class one solution”. For this case, the two metric po-

tentials goo and g, are linked

2

k
et =1+ - Ve’ (1.86)

This condition was generalized by Karmarkar [1948] as

R1010R2323 = R1212R3030 + R1220R1330~ (187)

An additional condition was proposed by Pandey and Sharma [1982] for spacetime to
become class as Rags # 0 or equivalently e* # 1. The advantage of class one method
is that only one degree of freedom can determine the entire physical nature of the
system. However, there is no physically acceptable solution in isotropic pressure.
Using (1.31) and (1.32) the anisotropy A(r) = pi(t) — p,(r) in class one condition
(1.87) is found to be (Maurya et al. [2015b])

Vo2 N Ve’ 1
(r) 4e |:T et — 1] [QTBQ } ’ k2 (1.88)

For isotropic case A(r) = 0 hence, we get

. r .o 2 >\,
(i) =0 or (ii) {7” p—

0 iy |22 1] =0 (1.89)

=0 or (i —1| =0. :
2rB?

The case (i) leads to v = C implies e* = 1, which is not a class one solution, case (ii)

gives

B

2
er=1—cr?, e = (A—Tcx/l—cr2> : (1.90)

the Schwarzschild interior solution (Schwarzschild [1916a]) (uniform density model)

and case (iii) gives
x_ A+2Br?
A+ DBr?

an asymptotically bounded Kohler and Chao [1965] solution. However, by introducing

e =A+Br*, e (1.91)

anisotropy and electric charge many solutions has be explored and even many more
can be found. An interesting fact is that embedding class one solutions are usually

well-behaved and hence can model physically acceptable astrophysical models.
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1.4.3 f(T)—gravity

This theory was firstly proposed by Albert Einstein himself attempting to unify the
gravity and electromagnetism (Einstein [1928; 1930]). The action in f(T)—gravity is

given by
1

_ - 4 4
= [erma x+/e£ diz, (1.92)

where, e = |ej,| and T is the torsion scalar. The tetrads are defined as

Here indices i, j, ... runs over tangent spacetime and p, v, ... runs of coordinate space-

time. The spacetime metric tensor links with the tetrads as

g;w(x) = %62(55) ezjj'(:l:% (194>

with n;; is the Miskowski metric of the tangent space.

The distinct feature of f(T)—gravity is the use of Weintzenbock connection
15, = €] Oye, = —€, 0€] (1.95)

instead of the Levi-Civita connection (i.e. I'7,). Here, the Weintzenbock covariant
derivative of the tetrads field is defined as

D,e, = 0Oy, — Ty e, (1.96)
Weintzenbock connection associated with a vanishing scalar curvature R = 0 but non-

null torsion i.e. T # 0. The Weintzenbock and Levi-Civita connections are linked

through the torsion and contorsion tensors as

T, = 17, —17, =€l (D€, — Oue;,) (1.97)
v o o 1 v v v
K& = TW—TMV:§<T“ G+T“U—TU“>. (1.98)

Further, a superpotential tensor can be found as

S = KM — §UT 4 §HT™ (1.99)

oo )
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1.4. Theories of Modified gravity

which defines the torsion scalar T as T =T}, SE.

By variation of (1.92) with respect to €/, leads to the field equation as

1
St frnO,T + 10 SIY) fr — TS fr — 7 /() = —4xT,  (1100)

wt Mo

with fr = df(T)/dT, frr = d*f(T)/dT? and T?, the energy-momentum tensor of the
source. The Teleparallel Equivalent of General Relativity (TEGR) (de Andrade et al.
[2000]) has the function f(T) = T and f(T) = T—2A, with the cosmological constant,
which are dynamically identical to the GR.

In the Born-Infeld modification to teleparallel gravity, the Lagrangian is given by

A 2SVPTH
Lpr = — 1+ =" 9 1.101
BI= 1675 © (V T ) (1.101)

which can explain the inflation without an inflation (Ferraro and Fiorini [2007]).

1.4.4 f(R,T)—gravity

The action in f(R, T)—gravity is given by (Harko et al. [2011])

S = ﬁ /f(fR, TV —g d*z + /Lm V—g d'z, (1.102)

where f(R,T) is an arbitrary function of the Riemann curvature R and trace of energy-
momentum tensor T = ¢"*T),,,, and £,,, the matter field Lagrangian that relates with

the energy-stress tensor as

T, = -2 0V=9Lm) _ . Lm—Qg;jj. (1.103)

Vg g

By varying the action (1.102) with respect to g"” we get the field equation as

(R = V¥ (R T) + g O fa(RT) = 5 FR TV = 85T — f(R,T)

(T +64). (1.104)
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Here, fa(R,T) = 0f(R,T)/OR, f+(R,T) = (R, T)/0T and

1 0 0 0T,
O=—— (/=g ¢®™— d 9, =g =28 1.105
/—_g ax“ < gyg axl,> an 22 g 59”” ( )
The covariant derivative of the energy-stress tensor gives
b _ [ 7 p 1 I
VI, = (T + ©,)V"In f5 + V"6, — = guV"T,  (1106)
8 — f7 2
which is non-vanishing. Hence, theory is non-conservative. Choosing £,, = —P =
(pr + 2p;)/3 (Harko et al. [2011]) and using (1.105), we get
B 0L,
Ow =—2T,, + guwlm — 29 2T, — P g (1.107)

agl“’ 8gf¥ﬁ -

For a linear function f(R,T) = R+ 2x7T, the field equation (1.104) takes the form
G =8 + XT9u +2xX(Tw + 2P 9u) (1.108)

and the corresponding covariant derivative of stress-energy tensor reduced to

X

ppo A
Vil 2(4m + x)

G VHT + 2VH(P gW)] . (1.109)
The field equation (1.104) for Starobinsky-f(R,T) function i.e. f(R,T) = R +
ER? 4+ 2xT reduced to

§

(1+2(R)G,, + 3 R2g,, + 2£(9,,0 — V, V)R = 87T, + XT gy

+2X (T + P gu)- (1.110)

This extension of Einstein-Hilbert action with higher order curvature and the
matter-geometry coupling can explain the origin of the mysterious dark energy with
FR,T) = filR) + fo(R)f(T) form (Moraes and Sahoo [2017a]). Further, the non-
conservative nature of the f(R,T) gravity was also considered as a possible source

of dark energy (Josset et al. [2017]) and accelerated expansion of the universe (Riess
et al. [1998b]).
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1.4. Theories of Modified gravity

1.4.5 Energy-momentum squared gravity (EMSG)

The EMSG modifies the Einstein-Hilbert action by adding a non-linear term of
energy-momentum tensor to embrace non-minimal matter-geometry coupling. The
action is given by (Katirci and Kavuk [2014], Roshan and Shojai [2016])

1
S:/(g— R+« T#,,T“”Jrﬁm) V=g d'z. (1.111)
T
The variation of (1.111) with respect to g"” leads to the field equation

1
Ry = 5 R g = 87T + 819, Ts, T — 20,,), (1.112)

where

2 (V=9 Lm) 0L

T, = — =Lngw —2 ——, 1.113
H \/__g 5ngI g'u‘ agu,y ( )
STBY STBY
— By
@;u/ — T 5gl“’ + B 5gl“’
= 20 (T = £ g T) = T Thy + 27T, — 4T "L, 1.114
= 20T = g 9wT) =T T 4 2 AT G (11
and T = ¢g"T),,. This formalism has a non-conservative gravity since
VT, = =g,V (T, T77) + 2aV"0,, (1.115)

which is non vanishing. The field equation (1.112) has the same geometrical form
as in GR, however the matter field has been modified. This gravity can become a

conservative theory if one defines an effective energy-momentum tensor as
Tiz{f = T;w + O‘(g,ul/{TBviTB’y - 2@;”/) (1116)

so that VAT¢// = 0.

Faraji et al. [2021] have used the EMSG gravity in the context of cosmology. They
found that this gravity have bouncing solution and a observably viable inflation for the
coupling strength in the range 0 < @ < 2.1x107°. Another group (Nazari et al. [2020])
has shown that the field equation in Palatini-EMSG ie. £ = R + R? + T, T
reduces to Poisson equation on weak field limit and also there exist a bouncing solution

ina>0.
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1.5 Killing vectors and conformal motion

The conformal motion is a mapping of manifold M — M such that the metric g
transforms as
g—§=2c"g , with ¢ =(a"). (1.117)

This can also be expressed as (Radinschi et al. [2010], Moopanar and Maharaj [2010])

]L’E Guv = g,u;u + gu;u = @Z) 9uv- (1118)

Here L is the Lie derivative along &* and ¢ (2*), the conformal factor. In GR, the
vector field that generates conformal symmetry with static and spherically symmetric

spacetime is found as (Herrera et al. [1984], Herrera and de Ledn [1985])

0 0

=&y — Ty —. 1.1
13 grat—l—f'r’ar (1.119)
On using (1.119) in (1.118) we get
dln gtt t w(T’) T d]-n g'r'r' dé’?”
r — — . L— r = 1.1
which further reduces to
)
2 92 (0 i i1 i
g =177, G = - , & =c30) + 3 o, (1.121)
2

with ¢1, co and c3 are the constants of integration. The vectors in (1.120) are phys-
ically acceptable since 1) = 0 gives Killing vector, a homothetic vector if 1 = 0 and
conformal motion when ¢ = ¥(z#).

The method of solving the field equations with conformal symmetry simplifies
the mathematical structures without neutralizing the physics behind it Herrera et al.

[1984], Maartens and Maharaj [1990].
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Chapter 2

Minimally deformed anisotropic
model of class one space-time by

gravitational decoupling '

2.1 Introduction

General Relativity (GR) theory of gravitation has been established by Einstein in
1916 in which gravitational properties spread with the speed of light and the law
of physics articulated to be invariant with respect to accelerated observers (Einstein
[1915a,d,b,c], Will [2006]). The main assumptions of Einstein’s theory of gravitation
are based on the (i) all events in the universe as a 4-dimensional Riemannian manifold,
which is called space-time, (ii) the curvature related with the metric is related to the
matter by Einstein’s field equations (EFE). There will be various fields on the space-
time which describe the matter content the space-time through energy-momentum
tensor 7},,. The field equation of GR is non-linear 2nd order partial differential equa-
tion of hyperbolic type, which permits clear freedom of change of coordinates. The
first solution of EFE describing a self-gravitating, bounded object was obtained by
Schwarzschild [1916a]. This interior solution represents a constant density model with
the outer space-time being empty. However, the velocity of sound within the sphere
exceeds the velocity of light thus such a model is not realistic. Therefore, this en-

couraged us to search for physically viable solutions to the Einstein field equations

!Content of this chapter has been published in European Physical Journal C (Springer), 79 (2019)
851.
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which describe the realistic models. The space-time of Schwarzschild’s exterior solu-
tion (Schwarzschild [1916b]) was obtained in 1916 which describes the gravitational
field outside a spherical mass by imposing spherical symmetry on the space-time man-
ifold. The theory of spherical symmetric space-time has been investigated by Takeno
(1966) from the point of view of invariant classification, group of motion, conformal
transformation and embedding classes, etc.

The method of gravitational decoupling by Minimal Geometric Deformation (MGD)
is a great and powerful technique that extends known solutions into more difficult situ-
ations. By using this MGD technique, Gabbanelli et al. [2018] have extended isotropic
Durgapal-Fuloria solution in the anisotropic domain while Ovalle et al. [2018b] have
shown that how a spherically symmetric fluid modifies the Schwarzschild vacuum
solution and necessity of anisotropy in the fluid. In this connection, several other
authors have used the MGD approach to discover the more complex solution which
can be seen in the following Refs. Sharif and Sadiq [2018b], Contreras [2018], Sharif
and Sadiq [2018a], Contreras and Bargueno [2018], Morales and Tello-Ortiz [2018a],
las Heras and Ledn [2018], Panotopoulos and Rincén [2018], Sharif and Saba [2018],
Contreras et al. [2019], Maurya and Tello-Ortiz [2019], Contreras [2019], Ovalle et al.
[2018a], Sharif and Waseem [2019], Gabbanelli et al. [2019]. The GD was developed by
Ovalle as a consequence of the Minimal Geometric Deformation (MGD) Ovalle [2017,
2019] (see also Ref. Casadio et al. [2015]) in the framework of Randall-Sundrum
gravity (Randall and Sundrum [1999b,a]). In Ref. Casadio et al. [2015], the author
extended the Minimal Geometric Deformation approach to investigate a new black
hole solution.

The key features of this approach for new solutions to EFE are available in liter-
ature as Ovalle et al. [2018c]:

I. Considering the energy-momentum tensor TW for known metric as a source and
extend known solutions of EFE into more complex situations. The new source is
coupled with the TW, associated with the seed solution through a non-dimensional

coupling constant § which can be written as:

7 (1 2 (1

Ty > TS =T, + BOTY) (2.1)
and then continue to same the process with more sources, like

7O o 70 = 70 4 gOTE (2.2)
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and so on. In this approach, we can spread direct solutions of the Einstein equations
related with the simplest gravitational source TW, into the province of more complex
forms of gravitational sources 7, w = T, ,EZ) .

IT. Tt is noted that we can also use the reverse of the above methodology in order
to find an exact solution to Einstein’s field equation. In this procedure, we can split
a more difficult energy-momentum tensor TNV into simpler components, say T,Ef,), and
then Einstein’s equations have to be solved for each one of these components. In this
situation, there will be many solutions corresponding to each component of T,Si,) asso-
ciated with the original energy-momentum tensor. At last, we can find the solution
of Einstein’s equations for the original energy-momentum tensor T;w by combining all
the above individual solution. However, we would like to mention that this procedure
works very well as each source satisfies the conservation equation identically, which

can be written as
v, = O g FOm Ly e g (2.3)

Now we explain the procedure to explore MGD-decoupling methodology which is as
follows: Suppose we have two gravitational sources namely S; and Sy where we will
first solve the standard Einstein’s equations corresponding to the source S; and then
the other set of quasi-Einstein equations are solved for the source S;. At last, we
combine these two solutions to determine the complete solution for the total system
of S; U S;. As we know that Einstein’s field equations are non-linear, therefore the
above procedure leads a powerful technique to find the solutions and their analysis,
especially during the situations that away form trivial cases.

Many analytical solutions were created by Tolman [1939], which describe the
structure of the interior stellar geometry for the perfect fluid models. However, the
anisotropic models where the tangential and radial pressures are unequal, allows a
better understanding of the highly-dense matter. Ruderman [1972] and Bowers and
Liang [1974] have been studied the anisotropic fluid distribution that has explored
the most updated research. In this continuation Mak and Harko [2003] has suggested
that anisotropy plays an important role to understand the variation of properties
of the dense nuclear matter for a strange star. On the other hand, the presence
of anisotropy could be identified through the existence of a solid core or type 3A
superfluid (Kippenhahn et al. [1990]), pion condensed phase (Sawyer [1972]), and
different kinds of phase transitions (Sokolov [1980]). The positive anisotropy inside
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star provides a realistic star which have been studied by several authors. If we have
the anisotropy factor A(r) = p, — p, > 0, then anisotropic force inside the stellar
system outward-directed which improve the stability and equilibrium criteria, and if
the anisotropy factor A(r) = p; — p, < 0, then anisotropic force inside the stellar
system is directed inward that introduce instability in the system.

Now the finding of the solutions to EFE is a great challenge to meet the require-
ments of physical acceptability (Ovalle [2016], Delgaty and Lake [1998], Gokhroo and
Mehra [1994]). Recently Jasim et al. [2016] have constructed an anisotropic fluid
sphere model by supposing a specific form of the potential metric functions e* and e”
to EFE with MIT bag EOS in presence of cosmological constant. This model yields
a realistic fluid sphere such as PSR 1937 +21. In this connection, an extensive study
has been conducted by several authors to understand the role of anisotropy of the
interior of stellar objects (Maurya et al. [2017a], Ivanov [2002b], Schunck and Mielke
[2003], Usov [2004], Deb et al. [2018], Panahi et al. [2016], Shee et al. [2016], Ra-
haman et al. [2012a], Kalam et al. [2012], Rahaman et al. [2011], Varela et al. [2010],
Negreiros et al. [2009)]).

The purpose of this chapter is to the study of minimally deformed solution for
class one space-time by using gravitational decoupling method that gives a generalised
solution for ansitropic compact star models. The chapter is organized as follows. In
sections 2.2 and 2.3, MGD have been used to scrutinize the interior space-time and
field equation to find new embedding class one solution. The non-singularity of the
solution has been discussed in section 2.4 while, in section 2.5, the boundary condition
and determination of constraints have been analyzed. The section 2.6 is devoted for
analysis of the slow rotation approximation, moment of inertia and Kepler frequency.
The elastic property of compact stars in section 2.7 has been studied to focus and
determine K, on compression modulus K, while, in section 2.8 the energy conditions
have been considered and confirmed at all points in the interior of a star. In section
2.9, we analyzed the physical features as well as stability of the resulting solution with
the help of graphical illustrations considering the equilibrium under various forces,
causality, adiabatic index, and Harrison-Zeldovich-Novikov static. We also compared
the solution for different values of  and analyzed for a well-behaved solution. Finally,

we summarize the results in the last section.
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2.2 Interior space-time and field equations with
MGD

2.2.1 Einstein equations for two sources:

The action of this modified matter distribution for MGD defined as (Ovalle [2019])

provided £, and £; are matter fields and additional Lagrangian density due to the
extra source respectively. However R denotes the Ricci scalar, ¢ is the determinant
of the metric tensor g,, and [ is a coupling constant. Now we define the energy-

momentum tensor for both Lagrangian matter which are given by

- 2 0(vV=9Lm) 20(Lm)

T, =— =— 2.

M Vg o g Ju (2.5)
2 §5(y =gl 5L

O = — (V=9Ly) _ 0L | GuLr. (2.6)

V=g ogv Togm

By Varying the action, (2.4) with respect to the metric tensor ¢g"”, we get the

general equations of motion

1
Rw/ - ég,ul/-{R = —8m T,LLZ/ (27)

where,
T,ul/ = T,uu + 5 @;w' (28)

The symbols used in above equations have their usual meanings. Let us consider the
inside of spherical body is filled of an anisotropic fluid matter, therefore in the current

situation the stress-energy tensor TM,, takes the following form

THV = (15 + ﬁt)u,uul/ - ﬁtg/ux + (p~r - p~t> VyVy, (29)

where the covariant component u, denote the 4-velocity, fulfilling u,u* = —1 and
u,V*u, = 0. Here, p, p, and p, represent the matter density and pressures (radial

and tangential) for anisotropic matter. It is noted that the presence of this extra
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source O, in Eq. (2.8) produce an ansitropies in self gravitating system that can be
a scalar, vector or tensor field. We would like to mention here that the Einstein tensor
is always divergence free, therefore the stress tensor 7, in Eq. (2.7) must satisfy the

conservation law,

Vi, =0, (2.10)
To describe the space-time geometry inside the body for complete system we assume
a spherically symmetric line element of the form,

ds® = e’ dt? — A ar? — 2 (d6* + sin® 6d¢?) (2.11)

where v and A are functions of the radial coordinate ‘r’ only. Then the Einstein field
equations (2.7) together with the egs. (2.8), (2.9) and line element (2.11) give the

following set of the equations,

S 1
87(p+pel) = e <i - —2) + =, (2.12)
T T T
- , (V1 1
8r(p, — pO;) = e (7 + 772) ~ 5 (2.13)
ef)\ l// _ )\/
8m(p — 5OF) = — (2u” + 1742 — u’X> : (2.14)
r

where the effective density (p), effective radial pressure (p,), effective tangential pres-
sure (p;) and effective anisotropy corresponding to the energy momentum tensor 7},

can be defined as,

p=p+ 5O, (2.15)
pr =Dy — 8Oy, (2.16)
pe = pr — BOE, (2.17)
A =p,—pr + B(O; — OF). (2.18)

Further, We would like to mention that the linear combination of equations (2.12)
-(2.14) satisfy the conservation equation for the energy-momentum tensor T/ = T 4

BO! with coupling parameter [ as

dp,

- der 2 % 205 — )
dr

— Y _ " — —(p D
dT + r (@gp @7”) 92 (p+p7”)+ r

V/
B 5(@§—@;) -

34



2.2. Interior space-time and field equations with MGD

2.2.2 Gravitational decoupling by MGD approach:

Since the system of equations (2.12) - (2.14) contains seven unknown functions which
are namely p(r), p(r), v(r), A(r) and three independent components of ©. Therefore,
this system has infinitely many solutions. Now we will apply the MGD approach to
solve this system of equations. In this approach, the system will be converted in the
such way that the field equations connected with the source ©,, will satisfy ”effective
quasi-Einstein”. Now we can start by taking a solution of the Eq. (2.7) for the stress-
tensor T/w which correspond to GR perfect fluid solution [that will be same as the
equations (2.12)-(2.14) when  — 0] with the line element,

432 — PO g2 — A0 g2 _ r2(df* + sin®0dp?), (2.20)

where the gravitational potential eM™ can be defined as,

~ T 2
e A =1 o7 r p(r)dr =1 — m(r)
r Jo r

(2.21)

here the m(r) represents the Misner-Sharp mass function for the standard general rel-
ativity. The influence of the extra source ©,,, on the energy-momentum tensor T v Can
be determined by the geometric deformation via perfect fluid geometry {o(r), A(r)}
in Eq. (2.20) as

e’ = e’ =e" + Bf(r) (2.22)
e et =t Byg(r). (2.23)

where f(r) and g(r) are the deformation functions associated with the temporal and
radial components of line elements, respectively. It is noted that these deformation
functions depend only on radial coordinate while constant (3 is a free parameter. The
considered MGD method allows to set ¢ = 0 or f = 0, then for this situation the
deformation will be performed only on the radial component and other temporal one

unaltered (it corresponds to f = 0). By setting f = 0 we get

e e =+ Bgl(r) (2.24)
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This is called as the Minimal Geometric Deformation (MGD) along the radial com-
ponent of the line element. After plugging the egs. (2.24) into field equations (2.12)
-(2.14), we get two sets of equations as first set corresponding to the standard Einstein

field equations for an energy-momentum tensor 7}, which is given as,

2 " = 8mp (2.25)
A1 e
= 8P, 2.26
r2 " P ( )
~ 11 ~ 2 ~/\/ ~/ 3/
(v v U'A vV —A 5
— 4 — — = 8p;. 2.27
€<2+4 4+27’) P (2.27)
along with the conservation equation,
dp, V' ,_ 2(pr — pr)
- - — - — =0. 2.28
o " g (PP (2.28)

while second set of equations for the source ©,,, called as quasi-Einstein equations,

is given as
g g
S
—g (5 + —) — 870’ (2.30)
roor
g » 1712 Dl gl D/ 1 $
—= —+—|—-=(=4+-) = 87O 2.31
2(V+2+r) ACRE: e (2:31)
The corresponding conservation equation VY0, = 0 gives,
v ey 2
- _Q") . r = — @) =0. 2.32
2 (61‘, @7‘) dr + r (@Lp @7") 0 ( 3 )

The above expression is a linear combination of the quasi-Einstein equations. At this
stage it is noted that both sources TW and ©,, are individually conserved, which

implies that both systems interact only gravitationally.
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2.2.3 Embedding class one condition associated with line el-
ement (2.20):

If the space-time (2.20) satisfies the Karmarkar [1948] condition

R1414R2323 = R1212R3434 + R1224R1334 (233)

then the two metric functions \ and 7 can be link via

!~
1A VX /D/—2ﬂ//_17,2
— €

P!

= (2.34)

The above condition implies that the four dimensional space-time (2.20) is embed-
ded into five dimensional pseudo-Euclidean space i.e. embedding class one solutions.
The Karmarkar condition must satisfy the Pandey and Sharma condition (Pandey
and Sharma [1982]) Rase3 # 0 to describe a class one solution. On integrating (2.34)

we get
2
e’ = (A + B/ Vet —1 dr) (2.35)

where A and B are constants of integration.
Using the definition of ansitropy in Eqgs. (2.26) and (2.27) together with Eq. (2.35)
we express the anisotropic factor, A(r), corresponding to energy-momentum tensor

T, by some manipulation (Maurya et al. [2015b]) as

A = i - r = —— {2 X Hﬂleﬁ —1}. (2.36)

2rer |1 er—1]|2r B2

Here some comments are in order: i) In this paper, we want to determine a new
solution for the field equations (2.25)-(2.27) using embedding class one condition.
However, it is well known that we can achieve only two kinds of perfect fluid solutions,
namely Schwarzschild interior solution (by vanishing of first factor in Eq. (2.36)) and
Kohlar-Chao solution (by vanishing of second factor in Eq. (2.36)), for embedding
class one space-time which have been already discussed in the literature. Therefore,
we choose anisotropic matter distribution corresponding to energy momentum tensor
TW for determining a new solution of embedding class one space-time. ii.) After
solving the system (2.25)-(2.27), we will solve the quasi-Einstein equations (2.29)-

(2.31) by taking a suitable form of the deformation function g(r) which we are going
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to discuss in next section.

2.3 New embedding class one solution by MGD

Here the field equations (2.25)-(2.27) corresponding to energy momentum tensor
Tz-j depends upon two unknown source functions, namely A and 7. Once these source
functions are determined then immediately we can obtain the thermodynamical ob-
servable like p, p, and p; to describe the complete structure of the proposed model.
In this connection, the physical validity of this source function 7(r) has been pro-
posed by Lake, in which the function should be monotonic increasing function with a
regular minimum at » = 0 that gives a physically viable static spherically symmetric
perfect fluid solution of Einstein’s equations which is regular at » = 0 (Delgaty and
Lake [1998]). On the other hand, the form of another source function A(r) must
ensure that e*™) =1 4 O(r?). This form of A gives a sufficient condition for a static
perfect fluid solution to be regular at the centre. Therefore in view of above points
we consider a new source function 5\(7“), to generate the physical viable solution, of

the form as,
& = 1+ e, (2.37)

where ¢ and a are arbitrary parameters with the dimension of length=2 while n is a
positive constant. Now form Eq. (2.37) we observe that ¢* — 1 + O(r?) and regular

at centre as eM® = 1. On inserting eq.(2.37) into (2.35) and integrate we obtain,

2
¢’ = <A+ﬂE eWZ/Z> . (2.38)

an

We observe that ©(r) is regular at centre r = 0 and positive increasing throughout
within the stellar compact object which provides a realistic compact star model.
Therefore, the solution of the field equations (2.25)-(2.27) can be given by following

line element,

B\/E 2 2 2\ 1
ds? = <A + —— " /2> dt* — (1 + erfe™” ) dr? + r?(d6* + sin? 0 d¢?). (2.39)
an
Now our next task to find all the components of ©% to describe the complete struc-

38



2.3. New embedding class one solution by MGD

ture of the model. As we see that all these components depend on the deformation
function ¢(r) that requires some restrictions to lead the well-behaved solutions i.e.
free of undesired mathematical and physical singularities, and non-decreasing nature,
etc. These choices of deformation functions g(r) have been widely considered by au-
thors (Maurya and Tello-Ortiz [2019], Morales and Tello-Ortiz [2018b], Estrada and
Prado [2019]). However, we can also be considered other options like as radial pressure
associated with O] to the mimic radial pressure i.e. O] = p, and density associated
with ©! to mimic energy density i.e. ©! = p, or relate only ©-sector components
through a polytropic, barotropic, or linear equation of state. It is worth mentioning
that both later cases are too complicated for determining the deformation function
f(r). Therefore, we adopt the first procedure to construct the physically acceptable

model then deformation function g(r) has the following form,

2

g(r) (2.40)

ECESE
This form was inspired by the property of e* that it tends to unity if » — 0 and
increasing outward to describe the well-behaved solutions. Then the explicit form

of the complete space-time associated with the energy momentum tensor 7}, can be

written as
B 2
ds®> = (A + Bye ea"”/?) dt? — r*(d6* 4 sin® 0 d¢?)
an
1 2 nar? 2 1
| ket ™)+l |, (2.41)
(er? 4+ 1) 4 Bner? (1 4 cr2enar)
where,
2 nar? 2
M) (L +erme™)(er” +1) —, (2.42)
(er? 4+ 1) + Bner? (1 4 cr2ener)
B o
61/(7’) — (A + _\/E eanr2/2) — el/(T)‘ (243)
an

The variation of both gravitational functions are shown in Fig. 2.1.

Now the density, pressures (radial & transverse), and anisotropy for complete
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system are givn as,

87p(r) = 712 [

2anr? + 1 2(anr®* +1)  Benr? (er® +3) 1] | (2.44)

crean® 41 (cr2ean® + 1)2 (er? + 1)2
-1
cler?+1)7" (crze“m’2 + 1)
8mp.(r) =
") aAnV cr2ean® 4 Berenr?
—I—ﬁn} + Bre“”TQ{cn [2ar*(Bn+ 1) + B] + ¢ o’

{arAnV 66‘17”2{6‘“"2 (cr*(Bn—1)—1)

[er? {Bn (2anr® +1) — 1} — 1] + 2an}], (2.45)
-2
cr? (er? + 1)_2 (crze‘””2 + 1) ,

A = Br r)+ f3(r)} e —aAnfi(r

aAnvcr2ean® 4 Bereanr? [ {alr) + £l hr)
cr%‘mrz} (2.46)
8rp(r) = 8mp,+ A (2.47)

where,

filr) = ne™” [a (er® + 1)2 + 25027’2} + e’ [502717“4 — (er® + 1)2}

+Bcn (2.48)
fo(r) = 2ene™™” [ﬁch (anr® + 1) {c (anr® = 1) + an} — a (cr® + 1)2] (2.49)
fa(r) = 2 e2anr? [5cm‘4 (am‘2 + 1) {c (anr2 — 1) + an} + (07”2 + 1)2}

+n [aQn(CTQ + 1) {er’(Bn+1)+ 1} +aBen — 502] (2.50)

The variations of density, pressure and anisotropy are shown in Figs. 2.2-2.4.

As we see that the central density is decreasing when n moves from 0.5 to 3.5
while the surface density increases for same n. This implies that the core will be
more denser if n increases. However, it will have reverse situation for surface density.
On the other hand, the pressure has totally opposite behavior than density. From
Fig. 3, it can be observed that central pressure increases with increasing value of n.
In this connection, we would like to mention that local anisotropies play an important
role in the study of the compact objects. Since positive anisotropy leads the repulsive
force which allows to more compact objects while negative anisotropy gives inward
force that encourage the compact in collapsing direction. The Fig. 2.4 shows that

the local anisotropy is increasing towards the boundary for each value of n.
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Figure 2.1: Variation of metric functions with radial coordinate r for 4U 1608-52
(M = 1.74Mg, R = 9.528km) by taking a = 0.001 km~2 and 8 = 0.01.
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Figure 2.2: Variation of density with radial coordinate r for 4U 1608-52 (M =
1.74My, R = 9.528km) by taking a = 0.001 km~2 and 3 = 0.01.
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1.74My, R = 9.528km) by taking a = 0.001 km~2 and 3 = 0.01.
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The mass, compactness parameter, equation of state parameter and red-shift can

be evaluated from

1 1
= dr [ () dr =21 - —— —1)| (@51
mtr) = an [ oty ar = f1e o n (1) | sy

2m(r
u(r) = 2m(r) (2.52)
r
wo= B =t (2.53)
p P
2(r) = e -1 (2.54)
0.10¢
0.08]
3 L
o 0067
3 0.04| n=0.5, Black \\;
[ n=1, Brown ~
I n=1.5, Blue n=3, Cyan
0.02¢ n=2, Green n=3.5, Purple ]
I n=2.5, Red
0.00
0 2 4 6 8
r(km)

Figure 2.5: Variation of pressure to density ratio with radial coordinate r for 4U
1608-52 (M = 1.74Mg, R = 9.528km) by taking a = 0.001 km~2 and 3 = 0.01.
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Figure 2.6: Variation of red-shift with radial coordinate r for 4U 1608-52 (M =
1.74Mg, R = 9.528km) by taking a = 0.001 km~2 and 8 = 0.01.
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For a realistic equation of state, the equation state parameters must be less than

unity. The variations of equation state parameter and red-shift are shown in Figs.

2.5 and 2.6.
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Figure 2.8: M — R graphs for non-rotating case with a = 0.001 km~2 and 3 = 0.2.

2.4 Non-singularity of the solution

The physical cogency of the solution confirm that the central values of pressure
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and density must be finite i.e.

Pe = %>0, V fn<1 & ¢<0, (2.55)
_ aAcen(pn — 1) + By/c [2an + ¢(fn — 1)]

8m(aAn + B4/c)

Pre = DPtc (256)
Also, it needs to ensure that any physical fluid fulfills the Zeldovich’s criterion i.e.
Pre/pe < 1 which implies

pre  aAcen(fn — 1) + By/c [2an + ¢(fn — 1)]

o 3c¢(Bn — 1)(aAn + By/c) =1 (2:57)

Now a limitations on B/A arises due to (2.56) and (2.57) as

—2acn(pn — 1) B —acn(pn — 1)

3c3/2(Bn — 1) — /c{2an + ¢(fn — 1)} = a° Ve[2an +¢(fn — 1)) (2:58)

2.5 Boundary Conditions and determination of con-

stants

The line element (2.11) which describes the interior of the star should join con-

tinuously with the exterior Schwarzschild metric, and can be written as

2 2m

ds? = — (1 - —m> di* + (1 = —m) dr® + 12 (d6 + sin® 0 do?)  (2.59)
r r

with the radial coordinate » must be greater than 2m.

At the pressure free interface (r = R), which needs the equality of corresponding
potential functions e’ and e* across the boundary (r = R), to get the following
equations (Israel [1966a])

2M

1- = ¢

= = e, (2.60)

Whereas the extrinsic curvature or the 2nd fundamental form of stars K, = V,r,,
where the unit radial vector r, is normal to any surface of radius r which is also

continuous at the interface (r = R). This can be stated in terms of Einstein’s tensorial
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form as (Santos [1985])
[GH«VTV]E = T£%+(G/LVTV) - Tgrél7 (Guyrl’) == 0- (2.61)
By using the field equations and (2.61) we get

[87TTW7~”} =0, (2.62)

which implies

e -s0)), =

Or p(R)—pBO}(r—R) = (2.63)

On using the boundary conditions (2.60) and (2.63) we get
c = e [RSea”Rz — QMR _ OMR? — BnR® + RZ{

2RA2M + R(fn —1)]

2 2 2 2 %
[QM (eanR + 1) — ReF ﬁnR} — 8Me™F*[2M + R(fn — 1)]} ] (2.64)
IM B anR?/2

A = (J1o2M_Byee (2.65)

R an
2M 2 2
B = any/1-— FV cR2eant? [e‘mR {cR*(Bn —1)—1} + Bn] [CR ekt
{ea”R2 [CRQ(ﬁTL —1)— 1} + Bn}Re“”RQ{cn [ZaRQ(Bn +1)+ 6] + cetnR?

[cR*{Bn (2anR®>+1) —1} — 1] + 2anH _1. (2.66)

The observed values of compact stars are providing us the values of M and R,
where a, n, [ as free constraints.

2.6 Slow rotation approximation, moment of iner-

tia and Kepler frequency

The moment of inertia for a uniformly rotating star with angular velocity w is
assumed by Lattimer and Prakash [2000]

8r [ z
1= (p 4 pp e/ “ dr (2.67)

3/, 0
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0.001 km~2 and B = 0.2.

.
2.6} n=0.5, Blue (2.887,2.466) Pink {
n=1, Red (3.045,2.43) Purple ‘I ! v
n=1.5, Green (3.203,2.397) Brown # ! '|
24 n=2, Black (3.378,2.353) Black " ¢ ? \
n=2.5, Cyan (3.549,2.315) Green " J H ‘\
n=3, Purple (3.727,2.277) Red / oy e ‘?
n=3.5, Pink (3.902,2.243) Blue U I
N 22f i
1
I /
X /
/ o
> S 7
PR
s
.
3.5 4.0

M Solar Mass

Figure 2.10: v — M graphs for a = 0.001 km~2 and 3 = 0.2.
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where, the Hartle’s equation has been satisfied for the rotational drag @ (Hartle
[1978])

d (,. dow 5_ dj
— — ) =-4 . 2.
dr (7" J ) rw dr (2.68)

with j = e~*)/2 at boundary value j(R) = 1. The moment of inertia solutions I

up to the maximum mass M,,,, have been provided by Bejger and Haensel [2002] as

2
1= (1 n x) MyrRp, (2.69)

where © = (Mygr/Rnr) - km/Mg. The solution so obtained have been plotted mass
vs I in Fig. 2.7 that demonstrated as n increases, the mass and moment of inertia are
increasing till up to convinced value of mass and then decreases. From M — R diagram
and by comparing Figs. 2.7 and 2.8, we have noticed that the mass corresponding
to Inee and M., are not equal. Actually, the mass corresponding to [,,., is lesser
by ~ 1.46% from the M,, ... This occurs to the EoSs due to hyperonization or phase
transition to an unusual state without any strong high-density softening (Bejger et al.
[2005]). Using this graph we can estimate the maximum moment of inertia for a
particular compact star or by matching the observed I with the [, we can determine
the validity of a model.

A rotating compact star can hold higher M,,,, than non-rotating one. The mass
relationship between non-rotating and rotating is given by (in the unit G = C' = 1)
can be written as (Ghosh [2007])

1
Mp = Myg + 5IQ‘j;(. (2.70)

Due to centrifugal force, the radius at the equator increases as some factor as compare
to the static one. Cheng and Harko [2000] find out the approximate radius formulas
for static and rotating stars as Rr/Ryr =~ 1.626. Assuming the compact star is

rotating in Kepler frequency Qx = (GMygr/R3 5)"?

and on using the Cheng-Harko
formula we have plotted the M — R for rotating and non-rotating (Fig. 2.9). The

corresponding frequency of rotating can be determined as (Haensel et al. [2007, 1995])

RNR —3/2 MNR 1/2
~ 1.22 KHz. 2.71
Y <10km) M, g (2.71)
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The variation of frequency with mass is shown in Fig. 2.10.

2.7 Energy Conditions

The energy conditions null energy condition (NEC), dominant energy condition
(DEC), weak energy condition(WEC) and strong energy condition (SEC) have to be
confirmed at all points in the interior of a star. Therefore, if the following inequalities

hold, then the energy conditions will be satisfied simultaneously:

WEC : T,t't" >00rp>0, p+p; >0
NEC : T,H">0or p+p; >0
DEC : T,t't"”" >0or p > |p;] where T""t, € nonspace-like vector

v 1 g
SEC : T, t't" — §T§t ty>0o0r p+ ;pi > 0.

where i = (radial r,transverse t), t* and [* are time-like vector and null vector
respectively.

With the help of graphical illustrations, the energy conditions have been checked.
In Fig. 2.11, the above inequalities have been plotted which confirms that all the

energy conditions are fulfilled at the interior of stellar object.

2.8 Stability of the model and equilibrium

2.8.1 Equilibrium under various forces

The conservation of stress tensor V, T/ = V,T# + BV,0" = 0 leads to Tolman-
Oppenheimer-Volkoff equations due to fluid and extra sources Ovalle [2017] as
7 dp, 2

—E(ﬁ—i—ﬁr)—ﬁ‘f‘;(ﬁt—ﬁr) =0 (2.76)

_%/ [9@ _ @;] + dg 1 % [@; — @j} =0. (2.77)

Now the overall TOV-equation becomes

v _ dp, 2, _
p+p —dr+r(pt—pr)—6{

—(e-e)

-0) -2

= 0. (2.78)

| I | l\Dlt\I
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The components for different effective forces due to MGD gravitational decoupling
namely gravitational force (Fy), hydrostatic force (£},) and anisotropic force (F,) can
be defined as,

Fy= 54+ st - 00, (2.79)
Fh=—<cgjj +5dd—(j:>, (2.80)
P = %[(@ 5+ 86 - @:)]. (2.81)

The profile of three different forces are plotted in Fig. 2.12. From this figure we
can observe that the system is in equilibrium position. Moreover, the gravitational
force F} is balanced the system by joint action of anisotropic force Fj, and hydrostatic
force Fj,. However, the parameter n plays an important effects on different forces as
gravitational force and anisotropic force decreases in magnitude when n — 0.5 to 3.5

while hydrostatic force Fj, is increasing when n moves from 0.5 to 3.5.
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Figure 2.11: Variation of energy conditions (EC) with radial coordinate r for 4U
1608-52 (M = 1.74M,, R = 9.528km) by taking a = 0.001 km~2 and 3 = 0.01.

2.8.2 Causality and stability condition

With the help of Causality condition, the stability situation have been analyzed. The

2

causality condition will occurs when the sound velocities (radial (v;

) and transverse

(v?) are greater than zero and less than 1. The radial velocity and transverse velocity
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Figure 2.12: Variation of forces in TOV-equation with radial coordinate r for 4U
1608-52 (M = 1.74Mg, R = 9.528km) by taking a = 0.001 km~2 and 3 = 0.01.

of sound can be achieved as

2 _ dp, 2 dp,
v, = , U = .
dp dp

(2.82)

Fig. 2.13, shows the profile of radial and transverse velocities of sound, which
indicates that our model fulfills the causality condition. While (Fig. 2.14) shows
the stability condition that proposed by Abreu et al. [2007], Herrera [1992]. i.e.
—1<v?—v?<0.

2.8.3 Adiabatic index and stability condition

The adiabatic index syndicates the basic features of the EoS on the randomness
formulae and consequently contains the link between the relativistic structure of the
anisotropic spheres and the EoS of the interior fluid. The stability is linked to the
adiabatic index I', which can be written as (Chan et al. [1993]),

T d T
r,— PP P (2.83)

prdp

The stability of a Newtonian sphere condition is I', > 4/3 while, for I' = 4/3 is the
condition for a neutral equilibrium (Bondi [1964]). Due to the regenerative effect of
pressure, this condition changes for a relativistic isotropic sphere, which is unstable.
For the anisotropic fluid sphere, if the stability depends on the type of anisotropy
then the situation becomes more complicated (Herrera [1992], Chan et al. [1993]).
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A recent work by Moustakidis Moustakidis [2017] reveals that the critical value of
adiabatic index strongly depends on the M/R. The critical value was found to be

4 19 2M

Ty = — + — . 92.84
=37 B R (2.84)

Fig. 2.15, confirms that the model under consideration is stable, due to the adiabatic

index is greater than 4/3.
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Figure 2.13: Variation of sound speed with radial coordinate r for 4U 1608-52 (M =
1.74My, R = 9.528km) by taking a = 0.001 km~2 and 3 = 0.01.
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Figure 2.15: Variation of adiabatic index with radial coordinate r for 4U 1608-52
(M = 1.74Mg, R = 9.528km) by taking a = 0.001 km~2 and 8 = 0.01.

2.9 Elastic property of compact stars

Assuming neutron stars exhibits isotropic bece polycrystal structure one can defined

the elastic properties via equation of deformation energy as (Haensel et al. [2007])

2
& = %Ke(v ‘u)’ + p (uzk — %51‘1@ Y 11> (2.85)

where K, and p represents compression and shear modulus respectively. The stress

tensor is given by

0€&
O,

1
Oik = = K .0,V -u+2pu (ulk - g@k \ u> (2.86)
In this work we will focus on compression modulus K, which can be determine
as K. = ny(0p,/0ny) = I'vp, (Haensel et al. [2007]). The variation of compression

modulus w.r.t. radius and mass are shown in Figs. 2.16 and 2.17 respectively.

2.9.1 Harrison-Zeldovich-Novikov static stability criterion

Harrison et al. [1965] and Zeldovich and Novikov [1971] have revealed that the adia-
batic index are the same of pulsating star and in slowly deformed matter, which leads
to be stable if the mass of the star is increasing with central density i.e. dm/dp. > 0
and unstable if Om/0p. < 0.

Therefore, the mass can be furnished as a function of central density and can be
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R 3—306n Bn
)= B _ _ — 41 2.87
m(P) 2 [3Bn—87rpcR2€‘mR -3 ﬁn‘i‘ %_’_14_ :| ( )
om(p.) 4nR? 9(fn — 1)%e _ pn (2.88)
dpe 3 — 3Bn | (SmpR2ean®> — 36n + 3)° (?i?a?i + 1>2 |

Its can be verified using the M — p. graph in Fig. 2.18.

2.9.2 Effect of coupling parameter 5 on the models

To complete the analysis in detail, we need to observe the effects of 5 on the nature
of the solution. To proceed, we are needed to assume a particular value of n and
then see the behavior by changing 8. For n = 3 we have analyzed thoroughly and
found that the physically acceptable range of [ is limited with a range between 0 and
0.7. As [ increases, the central density and pressure decrease while the anisotropy
changes very little. However, the central values of the adiabatic index and sound
speed increase with an increase of 3. Therefore, the corresponding equation of state
gains its stiffness along with 5 i.e. as the MGD+GR coupling gets stronger we can
obtain a very stiff equation of states, which may explain the current observations of
very massive neutron stars (i.e. M > 2Mg). Although, the range of /3 for a physically

acceptable solution depends on the assumed values of n.
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Table 2.1: Few interior parameters for 4U 1608-52 (M = 1.74My, R = 9.528km) by

taking a = 0.001 km~2 and 8 = 0.01.

n pe X 10 py x 10 p, x 103 I, Moo R Umar 1 X 10%
(g/cc) (g/cc) (dyne/cm?) (M) (km) kHz (g-cm?)

0.5 9.69 4.06 5.44 2.07 327 101 247 3.45

1.0 9.22 5.09 5.76 235 314 983 243 3.21

1.5 8.76 5.19 6.06 2.69 3.01 957 24 293

2.0 8.33 5.30 6.34 3.14 287 935 235 265

2.5 7.92 5.39 6.60 3.99 273 9.1 2.32 2.38

3.0 7.54 5.50 6.86 5.52 261 .86 228 2.12

3.5 7.15 5.61 7.09 949 248 863 224 191
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2.10 Discussion and conclusion

In this chapter, we have successfully incorporated the concepts of embedding class
one in the gravitational decoupling formalism for the first time. This method makes
a simple way of exploring new solutions in MGD, which leads to the new window of
re-investigating all the existed embedding class one solutions in MGD formalism and
their responses due to the additional source. The chapter presents a new embedding
class one solution which is deformed minimally by the gravitation decoupling tech-
nique. The MGD methodology demonstrated its adaptability in this area, making it
an important and acceptable solution for EFE. It is reproduced through the graph-
ical analysis, where the variation of the metric functions with the radial coordinate
r, (see Fig. 2.1) for M = 1.74M, and R = 9.528 km considering a = 0.001 km 2
and 8 = 0.01, and the deformation function g(r) as in Eq. (2.40). The deformation
function will be vanished at r = 0, while g(r) = n as r approaches to infinity. Thus,
the metric potential functions are well-behaved at the center and finite and regular
throughout of stars. Therefore they are proper to produce new models for anisotropic
compact stars.

Figs. 2.2 and 2.3, shows the behavior of density, pressures(radial and transverse)
with respect to M = 1.74M, and R = 9.528 km considering a = 0.001 km~2 and
B = 0.01, which detected that the model is non- singular, furthermore the model is
positively finite, and monotone decreasing functions throughout the interior of the
star, and achieve their maximum value at the center. Also, radial pressure vanishes
at the boundary. The anisotropy factor, which is given in (Fig. 2.4) with radial
coordinate r. However, A(0) = 0 at the center and it is positively increasing away
from the center. From Fig. 2.5, it is clear that the EoS is characterized by the
parameters w, and w; relating to radial coordinate r, in which, the EoS factors of the
model are less than unity i.e. within the region and demonstrated as a well-behaved
model. Fig. 2.6 shows the variations of surface red-shift with radial coordinate r.
Thus, the surface of redshift z(r) — 0 as r — 0 and subsequently monotonically
increasing onto the boundary. For n = 2 yields larger moment of inertia M,,,.
and K. (Figs. 2.7, 2.16). Also, we have noticed that from Figs 2.7 and 2.8 the
M — I graph is more sensitive and/or sharp in the stiffness of equation of states than
M — R graph. By using the concepts of Ghosh and Cheng-Harko i.e. Eq. (2.70) and
Rr/RNgr = 1.626 one can compare the M — R graphs of rotating and non-rotating

limits in one frame (Fig. 2.9), while the variation of frequency with mass for different

58



2.10. Discussion and conclusion

values of n is shown in Fig. 2.10. The EC with radial coordinate r for 4U 1608-52
(M = 1.74Mg, R = 9.528 km) by taking a = 0.001 km? and 8 = 0.01 are shown in
Fig. 2.11, which confirms that all EC are fulfilled at the interior of the stellar object.
While Fig. 2.12, shows the profile of three different forces to observe that the system
is equilibrium i.e variation of forces in TOV-equation with radial coordinate for 4U
1608-52 (M = 1.74M, R = 9.528 km) by taking a = 0.001 km™2 and § = 0.01. In
the Table 2.1, we have presented the values of physical parameters for different values
of n. The profile of radial and transverse velocities of sound has been motivated in
Fig. 2.13, which indicates that our model fulfills the causality condition. While (Fig.
2.14) shows the stability condition proposed by Abreu et al. [2007].

The satisfactions of static stability criterion, modified TOV-equation and Herrera’s
cracking method also ensures that the solution is static, equilibrium and stable. Also,
we noticed that the system is stable due to the adiabatic index I', is greater than
4/3 as shown in (Fig. 2.15), and is also increasing monotonically outward. The
K. — M graphs (Fig. 2.16) signifies that as the mass of compact star increases, the
compression modulus decreases while the K, with radial coordinate r graph implies
an increasing trend of K, as r approaches the center i.e .the parameter n increases
the stiffness of the corresponding equation of states increases. While in Fig. 2.17 a
variation of K, with radial coordinate r for 4U 1608-52 (M = 1.74M, R = 9.528 km)
by taking a = 0.001 km~2 and 8 = 0.01 are motivated for different n. Also, the static
stability criterion can be confirmed by the Figs. 2.18.

The former tendency can be explained as the mass increases the central density
also increases which may leads to generation of many interesting particles that un-
stiffen the equation of state and the compression modulus. The later one is due to
the central density is highly dense as compare to the surface that leads to more com-
pression modulus at the core than its surface. As the maximum mass M,,,, increases
when n increases, the spinning rate v,,,, also increases. We have also compared the
nature and behavior of the solution by assuming a particular value of n with differ-
ent values of 5. For this case, we have found that the central values of density and
pressure decreases with increase in 5 (Fig. 2.19). However, other physical behaviors
of solution for different [ are given in Figs. 2.20 and 2.21. On the other hand, the
stiffness increases with increase in § as the adiabatic index increases and the speed
of sound approaches the speed of light. Although, the anisotropy changes in a very
small amount when changing the coupling constant 5. The acceptable range of (3

depends upon the chosen value of n. For n = 3 the possible range lies in 0 < g < 0.7.

59



2. Minimally deformed anisotropic model of class one space-time by
gravitational decoupling

If B > 0.7, the trend of the density start increase slightly and decreasing near the
surface, and the solution start violating causality condition.

Summing up, we can conclude that our models are physically acceptable to de-
scribe minimally deformed class one space-time by gravitational decoupling based on

the results so obtained.
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Chapter 3

Compact stars with exotic matter !

3.1 Introduction

The advances in astrophysical observations has lead to great interest in the study of
composition of the astrophysical compact object. Moreover these objects contains
compressed ultra-dense nuclear matter in their interiors which make them superb
astrophysical laboratories for a wide range of intriguing physical studies. Traditionally
the term compact objects or compact stars refers collectively to white dwarfs, neutron
stars, and black holes. Compact stars are also called the stellar remnants as they are
often the endpoints of catastrophic astrophysical events such as supernova explosions
and binary stellar collisions. The state and type of a stellar remnant depends primarily
on the composition and properties of the dense matter of the star. However, due
to lack of knowledge of the extreme condition and its complex composition it is a
difficult task to determine the exact equation of state(EoS) to represent compact
stars. Various astrophysical observations measure masses and radii of compact stars
(Pons et al. [2002], Drake et al. [2002], Walter and Lattimer [2002], Cottam et al.
[2002], Miller [2002]), which in turn, constrain the EoS of dense matter in compact
stars. For example the observation of 2-solar mass neutron stars (Demorest et al.
[2010], Antoniadis et al. [2013]) suggests that the EoS for compact stars needs to be
sufficiently stiffer than the normal nuclear matter to accommodate the large mass.
This enables one to think of a stable mass configurations with exotic matter in their

interiors. In case of low mass compact stars too, the core matter density is much larger

!Content of this chapter has been published in Physics of Dark Universe (Elsevier), 29 (2020)
100575.
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than the normal matter. Due to extreme density, nuclear matter may consist not only
of nucleons and leptons but also several exotic components in their different forms
and phases such as Bose-Einstein condensates of strange mesons (Kaplan and Nelson
[1986], Nelson and Kaplan [1987], Schaffner-Bielich et al. [2002], Glendenning and
Schaffner-Bielich [1998], Banik and Bandyopadhyay [2003]), hyperons, and baryon
resonances (Glendenning [1985]), as well as strange quark matter (Prakash et al.
[1997], Farhi and Jaffe [1984], Schertler et al. [2000]).

Constructing the EoS of matter above the nuclear saturation density, relevant
for the description of compact stars, is a vast arena for research. For a proposed
EoS, the study of physical features of relativistic spheres like compact objects in
general relativity is done by finding the exact analytic solutions for static Einstein
field equations and imposing conditions for physical acceptability. However, it is a
daunting task to obtain explicit analytical solutions of Einstein’s field equation on
account of their complicated and non-linear nature. Karl Schwarzschild obtained
the first exact solution of Einstein’s field equations (Schwarzschild [1916b]). The
number of valid, exact solutions has been growing since then and are extensively
used in the studies of neutron stars and black hole formation (Ray et al. [2003],
de Felice et al. [1999]). Exact solutions for modelling more realistic relativistic fluids
include Buchdahl [1967] and Tolman VII (Tolman [1939], Raghoonundun and Hobill
[2015]) solutions. In pirticular, Tolman VII solution is stable for a large range of
compactness (ratio of mass over the radius) (Negi and Durgapal [1999, 2001]) and is
used to study various problems related to very compact object (Neary et al. [2001]).For
better understanding of the compact objects these analytical solutions with various
EoS are considered in the literature. In particular the linear EoS is considered to
model charged or neutral anisotropic relativistic fluid with strange quark matter (Mak
et al. [2002], Sharma and Maharaj [2007], Esculpi and Aloma [2010], Komathira]
and Maharaj [2007], Mafa Takisa and Maharaj [2013], Takisa and Maharaj [2013],
Rahaman et al. [2012b], Kalam et al. [2013], Maharaj et al. [2014]).

Usually EoS of dense matter including exotic phases are constructed using rela-
tivistic field theoretical models and chiral models. It was noted that the appearance
of exotic forms of matter in the high density regime resulted in kinks in the EoS
(Dai et al. [2010]), which resulted discontinuity in the speed of sound. This has a
great implication on determining the stability of the star. Using fundamental particle
physics, quark matter at high density is studied which leads to the MIT-bag model for

strange stars (Chodos et al. [1974]). This model added a correction term to the usual
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classical barotropic EoS called the Bag constant and assumes that the free quarks in
stellar configuration is confined in a bag characterized by a vacuum energy density
equal to the bag constant. As it is well established from cosmological observations
that around 70% of the energy budget of universe is invisible dark energy, there is
a growing interest to understand whether a stable configuration of compact can be
made up of dark energy. For this various dark energy EoS has been employed to
model compact objects ranging from quark stars through to neutron stars (Rahaman
et al. [2012a]).

The phenomenon of late time cosmic acceleration (Perlmutter et al. [1999], Riess
et al. [1998a]) can be understood by incorporating dark energy as an exotic relativistic
fluid with large negative pressure fills the whole universe. There is also an alternative
view according to which current cosmic acceleration is an artifact of modification of
gravity at large scale rather than the consequence of dark energy. Tons of theoreti-
cal approaches have been employed to explain the evolution of universe in the light
of cosmological observations. More recently the theory of ever exiting or emergent
universe (Ellis et al. [2003]) was formulated under which it may be possible to build
models which avoid the quantum regime for space-time, nevertheless share the novel
features of the standard big-bang model. This scenario can be treated as alterna-
tive inflationary model within the standard big bang framework which incorporates
an asymptotically Einstein static universe in the past and evolves to an accelerating
universe subsequently. The emergent universe scenario and has been studied recently
in different theories of modified gravity (Chen et al. [2009], Parisi et al. [2012], Zhang
et al. [2013]), Brane world models (Banerjee et al. [2007]), Brans-Dicke (Paul and
Ghose [2010]). In the framework of f(R) gravity, Mukherjee et al. [2005] pointed out
that the Starobinsky model, the original as well as the modified version, permits so-
lutions portraying an emergent universe. Subsequently, a general framework for such
a scenario in general relativity was proposed Mukherjee et al. [2006] with a different
constituents of matter that are prescribed by an non linear EoS : p = Ap — Bp*/",
where n, A and B are constants. For B > 0 and n = 2 the possible primordial
compositions of universe has been suggested that are permitted by the EoS. It admits
existence of exotic matter such as cosmic strings, domain wall, quark matter and dark
energy in addition to radiation and dust.

The purpose of the chapter is to model the stellar Compact star, with aforesaid EoS
and determine the physical stability by studying its exact solutions. The chapter is

organized as follows. In Sec 3.2 we consider a spherical symmetric metric and present
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the Einstein’s equations for anisotropic fluid distributions. In Sec. 3.3 we employ
the Tolman VII equation with above EoS and obtain the expressions for density and
pressures. Next, in Sec 3.4 we investigate non-Singular nature of the solutions. In
Sec. 3.5, from the Boundary conditions we determine the constant parameters of the
model. In Secs. 3.6 and 3.7 we discuss the energy conditions and stability of the

model. Finally, Sec. 3.8 is devoted to concluding remarks of the study.

3.2 Interior space-time and field equations

The interior space-time line element for an uncharged, static and spherically sym-

metric fluid is given by:

ds® = e’"dt* — Xdr? — r? (d6* + sin® 0 dg®) (3.1)

where v and A are functions of the radial coordinate ‘r” only.

The interior of a star is often modelled as a perfect fluid, which requires the
pressure to be isotropic. However, theoretical studies indicate that, at extremely
high densities, deviations from local isotropy may play an important role (Dev and
Gleiser [2002]). It was argued (Ruderman [1972]) that at high density regimes
(p > 10% g/cm?) the nuclear matter interacts relativistically as a result of which
nuclear matter may have anisotropic features. The numerical calculations of Barreto
and Rojas [1992] suggests that the exotic phase transitions that occurs during the
process of gravitational collapse (Collins and Perry [1975], Itoh [1970]) such as pion
condensed state (Hartle et al. [1975]), anisotropic stress tensor associated type II su-
perconductor (Jones [1975], Easson and Pethick [1977]), solid core (Ruderman [1972]),
type P superfluid (Ruffini and Bonazzola [1969]) etc. may also induce anisotropy.
Therefore, assuming an anisotropic fluid distribution the Einstein’s field equations

can be written as

1

RY = S0iR = —87[(pt + pc®)v* v, — pegl + (pr — o)X X" (3.2)

where the symbols have their usual meanings.
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For the space-time (3.1), the field equations reduces to

1—e? e\

= = 8mp (3.3)
er—1 e N
= + — = 87, (3.4)
1" 2 5% Y
e (% + VZ - V4 + - o ) = 8mp (3.5)

where (') denotes derivative with respect to radial coordinate r. We define that the
measure of anisotropy: A = p; — p,.
To study the static spherically symmetric configurations with anisotropic matter

distribution we adopt the following variable transformations:
r=r? Z(z)=e ) and  yP(z) =), (3.6)

the field equations (3.3)-(3.5)then takes the form

1~z .
8tp = —2Z (3.7)
xr
;71
stp, = 477+ (3.8)
Y x
. N
stA = ez’ 4+ 7 (1 + 2#) + (3.9)
y y x
pr = pr+A (3.10)

where Z = dZ/dx and Z = d*Z/dz>.

To proceed further, we assume Z(x) as Tolman VII and a nonlinear equation of

state as
Z(x) =1—azx+bz* and p, = Ap— Bp'/™ (3.11)

Here a, b, A, B and n are arbitrary constants.

These constants are not restricted to specific values. For A =0, v = 1/n, B =
—K gets p = Kp" (polytropic EoS); A=1/3, B=4B/3, gives p = (p—4B)/3 (the
MIT model); B =0, A =1 gets p = p ( Zeldovich’s stiff fluid); A =1/3, B =0
yields radiation (p = p/3) etc. Hence, for 0 < A < 1, the first term of the EoS
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represents normal /stiff matter /relativistic matter depending on the values of A. The
second term is the non-linear extension and by choosing B > 0, we ensure that it
is the source of dark energy and exotic matter. Since we have chosen n > 1, the
quantity p,/p given below

% — A /% (3.12)
tends to A as p — oo. This means that the contribution of dark energy component
is minimum at the center. Therefore, the dense core is populated with exotic and
stiff fluid. The density at which the second term in the above equation vanishes
depends on parameter n thereby determining the amount of exotic matter in the
stellar configuration. For large n the exotic component is more than for low n. As
exotic contribution stiffens the EoS therefore, the parameter n is directly linked with
the stiffness of EoS. For n = 2, B > 0 and —1 < A < 1, it is shown that the EoS
satisfies various constituents of universe (Mukherjee et al. [2006]), which includes
exotic matter, cosmic strings, dark energy, dust, radiation and stiff matter. We

intend to analyze the EoS for a variable n and deduce the other constants using the

boundary condition to fit for observed compact stars i.e. the X-ray pulsar LMC X-4.

1.00 T
0.95F
0.90

0.85[

0.80F n=2(Black), 3 (Red),
4 (Blue), 5 (Green)

gi & g

0.75F
0.70 ==

-
=
0657 qqqqqqqqq
B o N e ———— L

EEssmm=mn

Figure 3.1: Variation of metric functions with r for LMC X-4 assuming M =
1.04Mg, R =28.301 km, a =0.0039 and A =0.7.

3.3 A generalized solution

Solution of the field equations depend on the metric function v and A. As discussed

above we choose Tolman VII g, satisfying a nonlinear EoS. Using these in eqn. (3.6)
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Figure 3.2: \Variation of energy density with r for LMC X-4 assuming M =
1.04Mg, R =8.301 km, a = 0.0039 and A = 0.7.
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Figure 3.3: Variation of pressure with r for LMC X-4 assuming M = 1.04Mg, R =
8.301 km, a = 0.0039 and A =0.7.
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Figure 3.4: Variation of anisotropy with r for LMC X-4 assuming M = 1.0dMq, R =
8.301 km, a = 0.0039 and A = 0.7.

we get

_5A_1 a(A+1) _ 2bx — a
) = F(l—ax+bx?) & 3e {—tan1<—>
y(@) ( ) Plavap — a2 Vib— a2
9" 51/ Bt
Lres e (@) g 5ba:)1/”] , (3.13)

a? —4b

where F' is constant of integration and

() = (x)( 3a — 5bx )1/n—§(x)< 3a — 5bx ) L/n
X a—vVa?—4b — 2bx a? —4b+ a — 2bx
1 1 n-1 5vVa? —4b—a
x(x) = oF |—=, —=; ;
n n n 5(\/a2—4b—|—a—2bx)

1 1 n-1 5vVa? —4b+a
Ex) = oF |——, ——; ;
n n n 5(\/a2—4b—a+2bx)

Using the above equations we deduce the physical properties of the compact star such

as density, radial and transverse pressure and anisotropic factor from equns. (3.7), (3.8)
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and (3.9) which leads us to,

p(x)
pr(z)

A(z)

pi()

where,
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fa()

f3(x)
fa(z)

f5()
fo()
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Ap — Bp*/™ (3.15)
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64" " — a {fo(x) + f3(2)} + 5b{ fa(x) + f5(x) + fo(x)} (3.16)
pr(z) + Az) , (3.17)

3a’n(8m)V/" £y (z) — 9a® (34% + 44 +1)

2A [247B(3a — 5bx)"™ + 19b(87)"/"x] + 327 B

(3a — 5ba)Y™ + 45A%b(87) Y™z 4 13b(87) "z
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+225 A20%64Y " nr?/ma? + 556264 Mnm?/m
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bB2w 4 (3n — 2)mw 22 (3a — 5ba) /" + 2542

b264 "/ m a4 5b264Y Mg/ g

5Ab 25 /g [Swa(m — 5ba) Y™ + b(8m) e — 2"7”#”]

321 B(3a — 5bx)'/" |:27TBTLI‘(3CL — 5bx) /"™ — (8#)1/”} :

The variation of interior metric function of the chosen compact star: X-ray pulsar
LMC X-4 with distance r is shown in Fig. 3.1 and the trends of the above physical
quantities are depicted in Figs. 3.2-3.4.

The mass, compactness parameter, equation of state parameter and red-shift can

be determined as:

m(r) = 47T/T2p(7’) dr = % (ar® — br®) (3.19)
u(r) = —QTr:A(T) (3.20)
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Wy = ;W= — (3.21)

2(r) = e"?—1=—+—1. (3.22)

It is to be noted that for a realistic physical system, the EoS parameters must be less

than unity, which is depicted in Fig. 3.5. The redshift profile is shown in Fig. 3.6.
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Figure 3.5: Variation of equation of state parameters with r for LMC X-4 assuming
M =1.04My, R=28.301 km, a =0.0039 and A =0.7.
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Figure 3.6: Variation of redshift with r for LMC X-4 assuming M = 1.04Mg, R =
8.301 km, a = 0.0039 and A = 0.7.
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3.4. Non-singular nature of the solution

3.4 Non-singular nature of the solution

For a physical viable solution for an astrophysical compact object we must ensure

that the central values of density, pressure etc.are finite i.e.

3
pe = L5, (3.23)
8
Pre = Pie=Ap.— Bp" >0 (3.24)
provided a > 0 and A > B pi/ "1 These inequalities provide a bound on the constant

parameters and also implies that the solution is free from singularities.
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Figure 3.7: Variation of energy conditions with r for LMC X-4 assuming M =
1.04Ms, R =8.301 km, a = 0.0039 and A = 0.7.

3.5 Boundary Conditions and determination of con-
stants
Assuming the exterior space-time to be Schwarzschild’s which is given as

1
ds? = (1 _ M) d? — (1 — %> dr® —r? (d(92 + sin? 6 d¢2). (3.25)

T T

The continuity of the metric coefficients e” and e=* across the boundary r = R,
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3. Compact stars with exotic matter

also imposing that the radial pressure vanishes at the boundary yields:

2M
1 — ? = ¥ = e_)‘S 326)
p(r=R) = 0 (3.27)
that leads to
5 _ oM
p — — (3.28)
B = A(8r)*~' (3a—5bR?)' " (3.29)
2M 54,1 —a(A+1) (2R —a
F = 1 — — 1-&R2+bR4 8 8¢ {—tanl(— —
7 )T e | U Vib— @
2" 5YnBnr™s 7(R) (3a — 5bR2)'"
— (3.30)

where M and R denotes the mass and radius of the chosen compact star respectively,

while a and A are kept as free parameter.

3.6 Energy Conditions

Our next goal is to examine the condition under which static stellar configurations,
satisfies all the energy conditions namely, weak energy condition (WEC), null energy
condition (NEC), dominant energy condition (DEC) and strong energy condition
(SEC) at all points inside the star. The above energy conditions are determined by

the following inequalities:

WEC : T,t"t">0o0rp>0, p+p, >0 (3.31)
NEC : T,M">0or p+p; >0 (3.32)
DEC : T,t't" >0or p > |p;| where T""t, € nonspace-like vector
1
SEC : T, t"t" — ET/\At"tU >00r p+ Y pi=0 p+p; >0 (3.33)
where ¢ = (radial r,transverse t), t* and I* are time-like vector and null vector
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Figure 3.8: Variation of forces in TOV-equation with r for LMC X-4 assuming M =
1.04Ms, R =8.301 km, a = 0.0039 and A = 0.7.

respectively. The verification of the energy conditions are shown in Fig. 3.7.

3.7 Stability of the model and equilibrium

3.7.1 Equilibrium under various forces

The generalized Tolman-Oppenheimer-Volkoff (TOV) equation determine whether a

relativistic stellar system is in equilibrium or not. Mathematically, it is given by

M, +py dp, 2
N Q(T) (IO P ) e(l/f)\)/Q _ D + _(pt — pr) = O’ (334)
r dr r

where M, (r) is the gravitational mass and is calculated using the Tolman-Whittaker

formula and the Einstein field equations. The expression is given as
My(r) = 4r / (Tf =17 = 1§ — T3) v 2ar. (3.35)
0

For the Eqs. (3.3)-(3.5), the above Eqn. (3.35) reduces to

M,(r) = g P2 ), (3.36)

Using the above expression of My(r) in Eq. (3.34), we get

v dp, 2 B
—5lptp) ===+ (pe—p) =0 (3.37)
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3. Compact stars with exotic matter

which can also be expressed as:

Fy+ F, + F, =0, (3.38)
where I, F} and F, are the gravitational, hydrostatics and anisotropic forces respec-
tively i.e.

v dp, 2A
Fg = —E(p—i-pr), Fh:_dra Fa:T' (339>

Variation of the above forces with distance r is shown in Fig. 3.8 which clearly

convinces that the solution is in equilibrium.
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Figure 3.9: Variation of speed of sound with r for LMC X-4 assuming M =
1.04Mg, R =28.301 km, a = 0.0039 and A = 0.7.

3.7.2 Causality and stability condition

The sound speed is an important parameter to check the causality condition, which

2

2) and tangential velocity (v?) of sound should be

implies that the radial velocity (v
less than unity everywhere within the compact object, i.e., 0 < v? < land 0 < v? <1,

where

d
2 _ Pr Utz

. dpe
T dp’

dp’

(3.40)

Figure 3.9 verify the subliminal sound speed at the interior. The solution also satisfy
the Abreu’s stability criterion (Abreu et al. [2007]), which states: —1 < v? —v? <0,
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3.7. Stability of the model and equilibrium

which is depicted in Fig. 3.10.

3.7.3 Adiabatic index and stability condition

For an anisotropic matter distribution adiabatic index also determine the stability of
the fluid distribution which is defined as (Chan et al. [1993]),

T d T

I, = ﬂi (3_41)
pr dp

According to Bondi condition (Bondi [1964]) I, > 4/3 gives a stable Newtonian

system whereas I' = 4/3 is the condition for a neutral equilibrium. This condition

is partially valid for anisotropic case as it depends on nature of anisotropy. For an

anisotropic fluid sphere the adiabatic index modify to (Chan et al. [1993]),

4 4 (pei — Pra) 8_7T PiPri

I'>-+13 r ,
3 3 |plm‘|7" 3 |plm|

max

(3.42)

where, p.;, pi, and p; are the initial radial, tangential pressures and energy density
respectively in static equilibrium. Within the square bracket, first term gives the
anisotropic modification and the last term is relativistic correction to I' (Chan et al.
[1993], Herrera [1992]). If the anisotropy is positive, then a system with I', > 4/3
may not be in stable and vice versa. For such case the adiabatic index is more than

4/3 including the extra correcting terms (see Fig. 3.11) and therefore is stable.

0.00

“005F 2 (Black), 3 (Red),

4 (Blue), 5 (Green)

. =010}
[<] L
B :
L -0.15F
> L
S -0.20°L
] [
L [
-0.25F
-0.30f

F L L n L L

2 4 6 8

r(km)

Figure 3.10: Variation of stability factor with r for LMC X-4 assuming M =
1.04Ms, R =8.301 km, a =0.0039 and A = 0.7.

75



3. Compact stars with exotic matter

50 ]

[ n=2 (Black), 3 (Red),
4 (Blue), 5 (Green)

r(km)

Figure 3.11: Variation of adiabatic index with r for LMC X-4 assuming M =
1.04Ms, R =8.301 km, a =0.0039 and A =0.7.
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3.7.4 Harrison-Zeldovich-Novikov static stability criterion
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Figure 3.13: M — R curve fitted for few compact stars (A = 0.72, B = 0.01025, n =
2, b=8x1077).

The static stability criterion proposed by Harrison et al. [1965] and Zeldovich and
Novikov [1971] are much simpler than the Chandrasekhar’s criterion (Chandrasekhar
[1964]). It states that any stellar model is a stable configuration only if its mass
increases with growing central density i.e. du/dp. > 0. The opposite inequality i.e.,
du/dp. < 0 always implies instability of stellar models. Mass as a function of central
density is given below:

wlpe) = = (87R’p. — 3bR") (3.43)

|

One can clearly see the mass is a linear function of its central density which straight
ways yields Ou(p.)/0p. > 0 at constant R since b is of the order of 107°. Therefore,
the static stability criterion is fulfilled.

3.7.5 Determination of moment of inertia under slow rota-

tion approximation

Bejger and Haensel [2002] defined an approximate expression for the moment of inertia

of compact stars under slow rotation which is within 5% accuracy given by

2 M km
I==(14+— -— ) MR~ 3.44
5( +R M@> (3.44)
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The M — I curve in Fig. 3.12 can be generated using the above expression incorporat-
ing the variations of mass and radius from M — R curve in Fig. 3.13. As per Fig. 3.12,
the estimated values of I are 1.75 x 10**g em? (PSR J1614 + 2230), 1.42 x 10%g cm?
(4U 1608-52), 1.23 x 10%g cm? (4U 1820-30) and 8.92 x 10*g cm? (EXO 1785-248).

3.8 Discussion and conclusion

We have studied the effects of exotic matter on the astrophysical compact objects.
Owing to the high density in the interior of the compact objects, it is quite possible
that many exotic form of matter may exist. To explore this idea we employ Tolman
VII solutions to a generalized non-linear EoS. of the form mentioned in Eq. (3.12).
A special form of such EoS has been studied widely in case ever existing universe
(Mukherjee et al. [2006]), where the values of parameter determine the primordial
constitutes of universe. We have modeled such constituents in a stellar compact star
configuration, namely an X-ray pulsar i.e., LMC X-4, having the observed mass as
M = 1.04M©®. In order to solve Einstein’s equation and derive different thermody-
namic properties from it we first need to constraint the parameters of the model. The
constraint equations of the parameters are deduced from the boundary conditions
which are shown in Egs. (3.29) and (3.30). Here parameters b and B are related
to parameters n, A and a, which are treated as free parameters. We explore several
physical aspects of the model analytically along with graphical display in order to
verify that the model can depict a viable astrophysical compact object. Our analysis
show that model is free from all singularities and is stable for the parameter A rang-
ing from 0.58 — 1 for all n. Therefore, we choose the value of A in this range and
investigate all the physical aspects of the model for different values of n, which are
discussed below:

The metric potentials as a function of r is displayed in Fig. 3.1. We notice
that both the potentials are finite at the stellar center. The metric potential e
at center(r = 0) is constant and is monotonically increases towards the boundary
whereas e™* at r = 0 is one and is monotonically decreasing towards the boundary
of the star. They are free from singularities inside the star and values of both the
potential is identical at the surface of the star.

The thermodynamic properties of the interior of the star is shown in Fig. 3.2 and

Fig. 3.3. From the plots we notice that the density p and pressures p, and p; are
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Figure 3.14: Effects on M — R curve due to B and n parameter.

positive and maximum at the core of the star. They decreases towards the surface
of the star and are free from any central singularity. The radial pressure p, drops to
zero at the boundary of the star but the tangential pressure p; remains finite both
at the core and at the boundary. However the values of both p, and p; are equal at
the center of the star which implies that the pressure anisotropy factor vanishes at
the center, A(r = 0) = 0 as is evident from the profile of anisotropy A in Fig. 3.4.
Also one can note from it that anisotropy increases with distance r and is maximum
at the surface of the star. Moreover the anisotropy decreases for increasing values
of n. A > 0 inside the star causes the anisotropic force to be repulsive in nature.
One important information extracted from these graphs is that as the parameter n
increases the central values of pressure increases and anisotropy reduces. This means
that the EoS is getting stiffer as n increase i.e. by increasing dark energy/exotic
contribution (Bp'/") makes the EoS stiffer.

This can also be confirms from the variation of both radial (w,.) and transverse (w;)
EoS parameters with radial distance r (Fig. 3.5). As n increases the w—parameters
increases. The variation of gravitational redshift with radial distance is shown in Fig.
3.6, which shows it is monotone decreasing. All the energy conditions mentioned in
Section 3.6 are fulfilled by the stellar configuration which is depicted in Fig. 3.7. This
suggests that the model is viable in nature with no instability or presence of ghost
(negative mass or energy).

Equilibrium of a stellar system is determined by different forces that generate in-
side the system. These forces can be estimated from the TOV Eqgs. (3.37)-(3.39).The
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variation of these forces, namely gravitational force (Fy), hydrodynamic force (Fy),
and anisotropic force (F,) are shown in Fig. (3.8). From the figure we conclude that
the system is in equilibrium. Another important criterion to test the stability is the
causality condition which is valid when the sound is less than one. Fig. 3.9 confirms
not only the fulfillment of the causality condition but also the increase in stiffness as
n increases. It also follows the Abereu’s stability criterion vizz —1 < v? —v? < 0 as
can be seen from Fig. 3.10.

Stability of anisotropic matter distribution is also determined by the adiabatic
index of the constituents of the stellar configuration, which is verified in Fig. 3.11.
For the values of n considered the anisotropic stellar configuration is steady as I' > 4/3
in the interior of the system. Lastly the Harrison-Zeldovich-Novikov static stability
criterion is also checked for the model. Figure depicts the fulfillment of the criteria
as we see the mass increases with growing central density which is the necessary
condition for a stable stellar configuration.

To verify whether the stellar configuration can depict more varieties of observed
compact objects we construct the M — R plot in Fig. 3.13. From this curve we notice
that many observed compact objects can be modeled considering exotic matter as
their constituents. Particularly, it is well fitted within the observation errors for
EXO 1785-248 (Gangopadhyay et al. [2013]), PSR J1614 + 2230 (Demorest et al.
[2010]), 4U 1608-52 (Giiver et al. [2010a]) and 4U 1820-30 (Giiver et al. [2010b]). The
approximate moment of inertia I for these fitted compact objects can be estimated
from Fig. 3.13 within 5% accuracy. The M — R curve in Fig. 3.14 demonstrates
the effect of B and n parameters. As n increase the stiffness increases resulting into
increase in M,,,, significantly. In the similar fashion, a small change in B increases
M significantly. It means as n and B increases the dark energy contribution
increases resulting into more stiffer EoS. We therefore conclude that the theoretical
prediction of stellar configuration with non-linear EoS which incorporates the dark
energy /exotic matter follows all the stability criterion as well as goes well with the

observational data.
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Chapter 4

Static fluid spheres admitting

Karmarkar condition !

4.1 Introduction

The existence of anisotropy inside the compact star plays an essential role in the mod-
eling of relativistic stellar configuration. The well-known work on anisotropy has been
done by Bowers and Liang [1974], Herrera and Santos [1997] in which they showed
the effect of anisotropy on the self-gravitating system. Dev and Gleiser [2002, 2003]
have shown that the pressure anisotropy introduces an effect on the mass, structure
and other physical phenomena of highly dense compact stars. It is also observed that
the anisotropy influences the red-shift of the compact objects. In view of Ruderman
[1972], the compact objects having a high density of order > 10®gm/cm? pressure
anisotropy is the underlying nature of the atomic substance and their interactions are
relativistic. In this connection, some other important work on the anisotropic stellar
models can be seen in Refs. Mak and Harko [2003], Cosenza et al. [1981], Herrera
et al. [1984], Herrera and de Ledén [1985], Herrera and Ponce de Leon [1985], Esculpi
and Herrera [1986], Herrera et al. [2001, 2002], Rahaman et al. [2010b]. Normally
anisotropy arises due to the occurrence of different types, viz., a mixture of fluids,
rotation, the survival of superfluid, phase transitions, the existence of magnetic field
or external field, etc. Recently, significant efforts have been done by the researchers
in the modeling of observed astrophysical objects for the anisotropic matter config-

uration. Also, some important physical features of the anisotropic star have been

!Content of this chapter has been published in Chinese Physics C (I0P), 244 (2020) 035101.
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4. Static fluid spheres admitting Karmarkar condition

discussed in some recent works of Maurya et al. [2019, 2018, 2017b], Sharma and
Ratanpal [2013], Ngubelanga et al. [2015], Murad and Fatema [2015b], and the refer-
ences therein. The physical analyses contained in these works shows that the presence
of nonzero anisotropy plays an important role in modeling astrophysical stellar mod-
els. Also, de la Fuente [2009], Malaver [2014] have discussed compact star models
for strange quark matter in GR by taking linear and quadratic equation of state.
The conformal symmetry relativistic compact star objects have been proposed by
many authors (Rahaman et al. [2017, 2010a], Esculpi and Aloma [2010], Manjonjo
et al. [2018], Maharaj et al. [1995], Maartens et al. [1995, 1996, 1995]). Therefore, for
discussing any astrophysical relativistic compact objects, it is important to find an
exact solution of the system of the Einstein field equations. Delgaty and Lake [1998]
have given a complete detail of many exact solutions of the Einstein field equations
which have been obtained over the last century. They argued that only a few of them
satisfy the physical and mathematical requirements for a realistic stellar object in
general relativity. It is well-known that the solution of the Einstein field equation is
not an easy task due to its nonlinear nature. Therefore, in order to develop a physi-
cally realistic consistent stellar model, either we restrict the space-time geometry by
classifying an equation of state or another different approach. In this connection,
we have employed an embedding approach to tackle this field equation. From the
past of many years, the embedding approach keep continues a great interest among
the researchers (Singh et al. [2017¢,b,a], Bhar et al. [2016a], Maurya and Govender
[2017]). By employing this embedding theory, we may link the classical general the-
ory of relativity to the higher dimensional flat space-time that describes the inner
symmetry group characteristic of the particles. Romero and his collaborators (Rippl
et al. [1995], Romero et al. [1996]) have linked the different manifolds like vacuum
5D manifold to 4D manifold, 4D field equation in vacuum to 3D field equation, and
the 4D Einstein equations are embedded in a 5D Ricci-flat space-time by using the
Campbell’s theorem (Campbell [1926]). This theory gives the algebraic explanations
of the membrane theory and convinced matter theory. It is worth mentioning that
m dimensional manifold V,, can always be embedded into n—dimensional pseudo-
Euclidian space E,,, where n = m(m + 1)/2. This least additional dimension p of the
pseudo-FEuclidian space is called the embedding class of the manifold V,,, that must
be less than or equal to the value (n —m) = m(m — 1)/2. For example, 4 dimen-
sional relativistic space Vj time can be embedded in flat space-time of dimension 10.

In this case, the embedding class of V; is 6. On the other hand, the class of plane
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symmetric is 3 while the spherically symmetric space-time and Schwarzschild’s exte-
rior solution (Schwarzschild [1916b]) both are of class 2. Moreover, the well-known
Friedman-Robertson-Lemaitre (Friedman [1922], Lemaitre [1933], Robertson [1933])
space-time and Schwarzschild’s interior solution of class one (Schwarzschild [1916a]).

In this chapter, we have used Karmarkar condition to obtain relativistic anisotropic
stellar models of the Einstein field equation for spherically symmetric line element.
We derive a particular differential equation (known as class one condition) by using
the Karmarkar condition that connects both gravitational potential v and A. We
solve this equation by taking a particular form of ansatz for the gravitational po-
tential A. After that, we perform physical analysis of the solution which describes
realistic anisotropic stellar compact objects. The chapter is organized as follows: We
begin with Sec. 4.2 that include the spherically symmetric interior space-time and
the Einstein field equations for anisotropic matter distribution. We also mention the
non-vanishing components for Riemannian tensor along with embedding class one
condition for spherically symmetric metric line element. In Sec. 4.3, We have ob-
tained a generalized solution for anisotropic compact star model by solving of class
one condition. The expressions for pressures, density and anisotropy are also given
in Sec. 4.3. In Sect. 4.4, we have determined all necessary constant parameters by
matching of our interior space-time to the exterior space-time (Schwarzscild metric).
The non-singular nature of pressures, density, and bounds of the constant are given
in Sect. 4.5. We have also included the most important features of the compact
star models like the velocity of sound, adiabatic index, Tolman-Oppenheimer-Volkoff
equation equilibrium condition, stability through Harrison-Zeldovich-Novikov crite-
rion and Herrera cracking concept in same Sec. 4.5. In Sec. 4.6, we have discussed
Slow rotation approximation, the moment of inertia and Kepler frequency and energy

conditions. The final remark has been given in Sec. 4.7.

4.2 The Einstein Field Equations

The interior of the super-dense star is assumed to be described by the line element

ds? = e"Wdt* — X dr? — r2(dh? + sin® 0 dp?). (4.1)
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4. Static fluid spheres admitting Karmarkar condition

For our model the energy-momentum tensor for the stellar fluid is

Top = (P +pt)UaUﬁ — Pt9aB + (pr - pt)XaXﬁ- (4.2)

Here all the symbols are having usual meanings with v,v* = —1 = —x,x® and v,x* =
0.

The Einstein field equations for the line element (4.1) are

1—e? Ne?

8rp = T (4.3)
Ve 1—e?
8mp, = T T (4.4)
A 2 — N
8mp; = GT {2#’ +/7 U\ + #} (4.5)

where primes denotes the derivative w.r.t. radial coordinate r. We use the ge-
ometrized units G = ¢ = 1 throughout the study. Using Eqgs. (4.4) and (4.5) we
get

2 4+ 2T+T‘2

(4.6)

" /\// /2 ! )\/ )\_1
A = 87T<pt—pr):€>\|:y—— v v v+ e }

To solve (4.3)-4.5 we have adopted the method of embedding class one where e”

and e* are linked via the Karmarkar condition (Karmarkar [1948]) as

N4
1—er

=NV =20 + V7)) + V2 (4.7)
The solutions of (4.7) are class I so long as they satisfy the Pandey-Sharma condition
(Pandey and Sharma [1982]).

4.3 A new physical solution

In this model, we assume the following metric potential g, consisting of hyperbolic
function
e* =1+ ar*{1+ cosh (br* +¢) }". (4.8)

In the above equation the constant parameters a, b, ¢ and n are positive and we
coose e’ such that e’ = 1 which infers that the tangent 3 space is flat at the center

and the Einstein field equations can be solved for physically acceptable solution.
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4.3. A new physical solution

The metric potential gy is found using (4.7) and given by

(4.9)

e/ = | A= f(T)B\/a [cosh (br2 + ¢) + 1)]” 2
b(n + 1)/2 — 2 cosh (br? + c)

where A and B are constants of integration and

1 1 3 1
fir)y = oF {5, n—2|— ; n;— : cosh® (5 (br* + c))] sinh (br® +¢) . (4.10)
The variations of the two metric functions are shown in Fig. 4.1. For n = —2 to
n = —18 the behavior of metric function changes slightly.

Using metric potentials given in Eqns (4.8) and (4.9), the expressions of p, p,, A

and p; are given as

Metric Potentials

r(km)

Figure 4.1: Variation of metric functions for the neutron star in Vela X-1 with pa-
rameters n = —2 to —18, b = 0.001/km?, ¢ = 0.0001, M = 1.77Mg, and R = 9.56km.
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4. Static fluid spheres admitting Karmarkar condition
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Figure 4.2: Variation of pressure for the neutron star in Vela X-1 with parameters
n = —2to —18, b = 0.001/km?, ¢ = 0.0001, M = 1.77M and R = 9.56km. Here dn
is the increment in n while ploting the graph.
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Figure 4.3: Variation of density for the neutron star in Vela X-1 with parameters
n = —2to —18, b= 0.001/km?, ¢ =0.0001, M = 1.77Mg and R = 9.56km.
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Figure 4.4: Variation of pressure anisotropy for the neutron star in Vela X-1 with
parameters n = —2 to —18, b = 0.001/km?, ¢ = 0.0001, M = 1.77TMg and R = 9.56km.
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Figure 4.5: Variation of pressure and density gradients for the neutron star in Vela
X-1 with parameters n = —2 to —18, b = 0.001/km?, ¢ = 0.0001, M = 1.77M and
R = 9.56km.
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4. Static fluid spheres admitting Karmarkar condition

Pt =

r)y/a[cosh (br2 +¢) +1]"
87 f1(r) (ar? (cosh (br2 +¢) +1)" + 1)
alcosh (br® +¢) +1]""
87 [ar? {cosh (br2 + ¢) + 1}" + 1]?
sinh (br® + ¢) + 3cosh (br* + ¢) + 3] (4.12)
rf3(r)y/ar? [cosh (br2 + ¢) + 1]"
fa(r) [cosh (br? + ¢) + 1]
bn sinh (br? + ¢) — a [cosh (br? + ¢) +
[ar2 {cosh (br2 +¢) + 1}" +1)°

LA (4.14)
prt g .

(4.11)

X [ar2 {cosh (br2 + c) + 1}n+1 + 2bnr?

1]TL+1

(4.13)

The variations of pressures, density, anisotropy, equation of state parameters, dp/dr,

dp,/dr and dp;/dr are shown in Figs. 4.2-4.6. As values of n increases the central

density, anisotropy, adiabatic index increases, however, the pressures, equation of

state parameters and speed of sounds decreases.

Here,

fi(r)

fa(r)

fa(r)

fa(r)

— 2Ab(n + 1)r/1 — cosh (br2 + ¢) — V2B sinh (br* +¢)

1 1
\/ar2 [cosh (br? 4 ¢) + 1]”2F1 [— ntlnts (br + C)]

22 g 0

= 2b(n + 1)y/1 — cosh (br2 + ¢) <QBr - A\/ar2 cosh (br? 4 ¢) + 1]" ) +
V/2aBr sinh (br + c) [cosh (br + c) + 1]”

1l n+l n+3 o [br?+c
Fi|= ; : cosh
2 1|:2a 9 3 9 ; COS ( 9 ):|

= 2b(n + 1)y/1 — cosh (br2 + ¢) (Br — A\/ar2 [cosh (br? 4 ¢) + 1]")
++v/2aBr sinh (br2 + c) [cosh (br2 + c) + l]n

1 n+1 n+3 br? + ¢
= ; ; cosh”
2 l|:27 2 ) 2 ; COS ( 2 ):|

= 2A4b(n + 1)r/1 — cosh (br? 4+ ¢) — /2B sinh (br* +¢)

1 1 br?
\/&7’2 [cosh (br? + ¢) + 1]" o F} {5, n—21— ;n;—g;cosh2 ( d 2+ C)} :
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4.4. Matching of interior and exterior spacetime

4.4 Matching of interior and exterior spacetime

Assuming the exterior spacetime to be the Schwarzschild solution which has to

match smoothly with our interior solution and is given by

T T

-1
ds* = (1 — %) dt* — (1 — ﬂ) dr? — r*(d9? +sin* 0 d¢?).  (4.15)

By matching the first and second fundamental forms the interior solution (4.1) and

exterior solution (4.15) at the boundary » = R (Darmois-Israel condition Darmois
[1927], Israel [1966a]) we get

By/a? h (bR? "
2 1_%:14_]“(1%) V@ [cosh (bR2 + ¢) + 1)] (4.16)
R b(n +1)y/2 — 2 cosh (bR? + c)
-1
o 2M 2 2 n
e = 1= 1+ aR*{1+ cosh (bR* +¢) } (4.17)
pr(R) = 0. (4.18)
Using the boundary conditions (4.16-4.18), we get
2M (cosh (bR? +c¢) +1)"
= 4.1
¢ R2(R — 2M) (4.19)
2 —n/2
4 - B cosh (bR* + ¢) + 1] (4.20)
2v/ab(n + 1)4/1 — cosh (bR? + c)
n/2
B = \é_ 1— ? [cosh (bR* +¢) + 1] X [\/éasinh (bR* + ¢)

n 1 n+1 n+3 1
[cosh(bRQ—l—c)—l—l] o F1 {5, 5 5 - cosh? <§{bR2+c})1

+4b(n +1)4/1 — cosh (bR% +¢)| . (4.21)

4.5 Properties of the new solution
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4. Static fluid spheres admitting Karmarkar condition

The central pressure and density at the interior are given by

1 1
8mp.(0) = 8mpy(0) = {\/§CLB sinh ¢ (coshe +1)" o Fy [Q’ n;L : i —2'— 3;005112 (f)} }

1 1
{SW(\@B sinh c\/a (coshe+1)" o Fy [— nt : nt 3;C0Sh2 (f)}

27 2 2
-1
—2Ab(n + 1)V1 — cosh c) } >0 (4.22)

3a (cosh e + 1)
p(0) = “(COSSC+ ) (4.23)
T

The finite central values of the above parameters ensure that the solution is non-
singular. The Zeldovich’s condition i.e. p,/p at center is < 1, which is a must for

physical matters.

[ n=-2 (Violet)

0.021 ;- _18 (Red) ]
[ on=-4

0.00 ‘ ‘ ‘
0 2 4 6 8

r(km)

Figure 4.6: Variation of equation of state parameters for the neutron star in Vela
X-1 with parameters n = —2 to —18, b = 0.001/km?, ¢ = 0.0001, M = 1.77M, and
R = 9.56km.

4.5.1 Velocity of Sound and adiabatic index

The velocity of sound inside the stellar interior can be determined by using

V2 dp, /dr 02 dpy /dr
" dp/dr’ Y dp/dr’

(4.24)
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4.5. Properties of the new solution

For a stable configuration the stability factor v} — v? should lie between 0 and —1
(Abreu et al. [2007], Herrera [1992]). Variations of sound speed and stability factor
are shown in Figs. 4.7 and 4.8. The figures show that the solution satisfy the causality
condition and stability criterion. If n = 0, some part of the stability factor become
positive and therefore not stable, however, n can go beyond —18 and are still stable.

The relativistic adiabatic index is given by

' dT‘
r_ Pt ap
pr dp

. (4.25)

For a static configuration at equilibrium I" has to be more than 4/3 (Bondi [1964]).
The figure in Fig. 4.9 shows that the adiabatic index is > 4/3.

4.5.2 Equilibrium via modified Tolman-Oppenheimer-Volkoff
(TOV) equation

The modified Tolman-Oppenheimer-Volkoff (TOV) equation for anisotropic fluid dis-
tribution was given by Ponce de Leon [1987] as
_ My(p+pr) A1)/ _ dp, | 2A

— =0 4.26
r? dr + r ( )

provided
1 2.1 (v=X)/2
My(r) = = rve . (4.27)

The above equation (4.26) can be written in terms of balanced force equation due to

anisotropy (Fy), gravity (Fy)and hydrostatic (£},) i.e.

F,+F,+F,=0. (4.28)
Here
P;:—%%#ﬂ&%ﬂ (4.29)
po= (4.30)
a::%. (4.31)
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4. Static fluid spheres admitting Karmarkar condition

The TOV equation (4.28) can be represented by the figure showing that the forces
are counter balanced to each other Fig. 4.10. As n increases from —2 to —18 the
peak of the F, increases, Fj, is almost same from center upto about 4 km and show

significant increment till the surface, however, F, decreases as n approaches —18.
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Figure 4.7: Variation of velocity of sound for the neutron star in Vela X-1 with
parameters n = —2 to —18, b = 0.001/km?, ¢ = 0.0001, M = 1.77Mg and R = 9.56km.
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Figure 4.8: Variation of stability factor for the neutron star in Vela X-1 with param-
eters n = —2 to —18, b = 0.001/km?, ¢ = 0.0001, M = 1.77Mg, and R = 9.56km.

4.5.3 Stability Harrison-Zeldovich-Novikov criterion

The satisfaction of static stability criterion ensures that the solution is static and

stable. It was proposed independently by Harrison et al. [1965] and Zeldovich and
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Figure 4.9: Variation of adiabatic index for the neutron star in Vela X-1 with param-
eters n = —2 to —18, b = 0.001/km?2, ¢ = 0.0001, M = 1.77M and R = 9.56km.
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Figure 4.10: Variation of forces acting on the system via TOV-quation for the neutron
star in Vela X-1 with parameters n = —2 to —18, b = 0.001/km?, ¢ = 0.0001, M =
1.77TMg and R = 9.56km.
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4. Static fluid spheres admitting Karmarkar condition

Novikov [1971]. According to this criterion mass of compact stars must be an increas-

ing function of its central density i.e. dM/dp. > 0.

Mass

0 L L L L L L L L L L L L L L L L L L L L L L L L L L L L L
0.000 0.005 0.010 0.015 0.020 0.025 0.030
pc (km -2 )

Figure 4.11: Variation of mass with central density for the neutron star in Vela X-1
with parameters n = —2 to —18, b = 0.001/km? and R = 9.56km.

For the solutions the mass as function of central density can be written as

473 p, [cosh (DR? + ¢) + 1]"

M c) — n
(pe) 81 R?p, [cosh (bR? + ¢) 4+ 1]" + 3(cosh ¢ + 1)
(4.32)
oM 127 R3 [cosh (bR* + ¢) + 1]"
= 3(cosh 1"
Ope (coshe+1)n [ (cosh.e +1)
-2
+81R*p, {cosh (bR* + ¢) + 1}”} > 0. (4.33)
Referring to Fig. 4.11 we see that the solution fulfills this criterion.
Now the gravitational red-shift is given by
B+/ar? (cosh (br? )" B
) = evroq— |10 vertleosh(br?+ 9+ D | _ 1.(4.34)
b(n + 1)ry/2 — 2 cosh (br2 + ¢)

The variation of red-shift is shown in Fig. 4.12.

94



4.5. Properties of the new solution

\ V\
0.45
0.40
N 0.35F n=-2 (Violet)
n=-18 (Dashed)
030 =74
0.25 :
0 2

4
r(km)

Figure 4.12: Variation of red-shift for the neutron star in Vela X-1 with parameters
n=—2to —18, b= 0.001/km?, ¢=0.0001, M = 1.77TM and R = 9.56km.

4.5.4 Maximum allowable mass and compactness factor

The mass function and compactness factor of the solution can be determined using

the equations given below:

" ar? [cosh (br® + ¢) + 1]"
= [ 4 dr = 4.35
m{r) /0 mplr) v dr 2ar? [cosh (br2 +¢) + 1]" + 2 (4.35)
) 2m(r) ar? [cosh (br? + ¢) +1]" (436)
u(r) = = . _
r ar?[cosh (br2 +¢) +1]" +1
2.5
n=-2(Blue)
n=-3, (Green) (12.8, 2.529)
2.0}
n=-4, (Red)
n=-5, (Black)
2 157 (1076, 1.329)
=
1.0f
(8.289, 0.561)
0.5/
(6.107, 0.1995)
0.0 - L L L I
0 2 4 6 8 10 12 14
R km

Figure 4.13:

Variation of mass with radius for ¢ = 0.01, b = 0.001 and ¢ = 0.0001.
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4. Static fluid spheres admitting Karmarkar condition

The surface redshift can be found as
ze=eM? 1= (1—wu) V2 -1 (4.37)

Using the Buchdahl limit i.e. uw = 8/9, we get the maximum surface redshift z;(maz) =
2. When the compactness parameter is zero, the surface redshift is also zero. As the
compactness parameter reaches the Buchdahl limit i.e. u = 8/9 the surface redshift
will be exactly 2, however, if the compactness parameter is beyond the Buchdahl
limit the surface redshift blow-up. This is because of the formation of singularity.
However, Ivanov [2002a] has derived that that for a realistic anisotropic star models
the surface redshift z; cannot go beyoond to 5.211 (this value corresponds to a model

without cosmological constant).

4.6 Slow rotation approximation, moment of iner-

tia and Kepler frequency

For a uniformly rotating star with angular velocity €2, the moment of inertia is

given by

8 R
I= —W/ r(p 4 pp)er /2 dl (4.38)
3/, QO

where, the rotational drag w satisfy the Hartle’s equation

d (. dw dj

— — | = —4riw =, 4.

dr <r‘7 dr) " (4:39)
with j = e~*)/2 which has boundary value j(R) = 1. The approximate solution of

moment of inertia I up to the maximum mass M,,,, was given by Bejger and Haensel
[2002] as

I= %(1 + :c) MR?, (4.40)

where parameter x = (M/R) - km/M. For the solution we have plotted mass vs [ in
Fig. 4.14 that shows as n increases, the mass also increase and the moment of inertia
increases till up to certain value of mass and then decreases. Comparing Figs. 4.13
and 4.14 we can see that the mass corresponding to I,,.. is not equal to M,,,, from

M — R diagram. In fact the mass corresponding to I, is lower by ~ 1.46% from

96



4.6. Slow rotation approximation, moment of inertia and Kepler
frequency

the M,,4.. This happens to the EoSs without any strong high-density softening due
to hyperonization or phase transition to an exotic state (Bejger et al. [2005]). Using
this graph we can estimate the maximum moment of inertia for a particular compact
star or by matching the observed I with the [,,,x we can determine the validity of a
model.

A rotating compact star can hold higher M,,,, than non-rotating one. The mass
relationship between non-rotating and rotating is given by (in the unit G = C' = 1)

can be written as (Ghosh [2007])
L
Mrot = Mnon—’rot + §IQ . (441)

Due to centrifugal force, the radius at the equator increases as some factor as compare
to the static one. Cheng and Harko [2000] find out the approximate radius formulas

for static and rotating stars as Rt/ Rpon—rot = 1.626. Assuming the compact star is

3
non—rot

rotating in Kepler frequency Qx = (GMuon_rot/ R )12 and on using the Cheng-
Harko formula we have plotted the M — R for rotating and non-rotating (Fig. 4.15).

The corresponding frequency of rotating can be determined as (Haensel et al. [1995])

Rnon—rot 8/ Mnon—rot 1z
~122| —— _ kHz. 4.42
Y ( 10km ) M, : (442)

The variation of frequency with mass is shown in Fig. 4.16. It shows that the
frequency of rotation corresponding to maximum mass. On the other hand, we would
like to mention that recently, the direct detection of the gravitational wave (GW)
signal GW 170817 has been reported by the LIGO-Virgo collaboration from a binary
compact star system (Abbott et al. [2017]). New constraints for the tidal deforma-
bility of the 1.4 solar mass compact stars ( Aj4) have been estimated as A; 4 < 800
(Zhou et al. [2019]), which can also put constraints on the equation of state (EOS)
for the star matter and constrain the parameter sets for phenomenological models.
In the works Zhou et al. [2018], Chu et al. [2019], Rhoades and Ruffini [1974], the
researchers have used different phenomenological models to calculate the properties
of the tidal deformability and the maximum mass of neutron stars or quark stars

with the constraints of GW 170817, which can provide another alternative methods
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4. Static fluid spheres admitting Karmarkar condition
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Figure 4.14: Variation of moment of inertia with mass for n = —2 to n = —3 taking

a = 0.01/km?, b=0.001/km?, ¢ =0.0001.
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Figure 4.15: Variation of mas with radius for n = —2 & n = —4 taking a =

0.01/km?, b= 0.001/km?, ¢ = 0.0001 for rotating and non-rotating star.

Table 4.1: Central and surface values of some parameters for different values of n.

n a A B M R oz pe x 10 py x 10 p.x 103 T,
M, km g/cc g/cc dyne/cm?

-2 0.0259 0.6766 0.03183 1.77 9.56 0.477 10.44 4.89 5.31 1.91

—6 04170 0.6763 0.03183 1.77 9.56 0.478 10.50 4.85 5.22 1.93

—10 6.7279 0.6759 0.03183 1.77 9.56 0.479 10.59 4.81 5.13 1.95

—14 108.55 0.6756 0.03183 1.77 9.56 0.480 10.68 4.76 5.04 1.98

1751.4 0.6753 0.03183 1.77 9.56 0.481 10.77 4.71 4.94 2.00
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Figure 4.16: Variation of rotational frequency with mass for n = —2 to n = —3 taking

a=0.01/km?, b=0.001/km?, ¢=0.0001 for rotating and non-rotating star.

to constrain the parameter sets in the models.
4.6.1 Energy conditions
Any physical solutions other than those represent exotic matters, must fulfills the

energy conditions i.e. strong, weak, null and dominant energy conditions which can
be stated as,

NEC : T,MHM">0o0rp+p;, >0 (4.43)

WEC : T,t't">0o0rp>0, p+p; >0 (4.44)
1

SEC : T,t't" — éT/{\t"tJ >0orp+ Zpi > 0. (4.45)

DEC : T,,t'" >0or p > |p;] where T""t, € nonspace-like vector. (4.46)

where i = (radial r,transverse t), t* and [* are time-like vector and null vector
respectively.

Since the pressures and density are positive throughout within the stellar objects.
Then it is obvious that the energy conditions NEC, WEC and SEC will automatically
satisfy. We have shown the graphical representation for dominant energy conditions
in Figs. 4.17-4.19 where it can be observed that our solutions also hold good for

dominant energy conditions.
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Figure 4.17: Variation of p — p, for the neutron star in Vela X-1 with parameters
n = —2to —18, b= 0.001/km?, ¢=0.0001, M = 1.77TMg and R = 9.56km.
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Figure 4.18: Variation of p — p, for the neutron star in Vela X-1 with parameters
n = —2to —18, b= 0.001/km?, ¢=0.0001, M = 1.77TMg and R = 9.56km.

100



4.7. Results and conclusion

500 ]
E 450 3
3 400] 3
= [
s 350 n=-2 (Violet) 1
N | n=-18 (Dashed)
& 3000 sn=-4
@ 250"

200 L . . . | . . . | . . . | . . . |

(] 2 4 6 8

r(km)

Figure 4.19: Variation of p — p, for the neutron star in Vela X-1 with parameters
n=—2to —18, b= 0.001/km?, ¢=0.0001, M = 1.77TM and R = 9.56km.

4.7 Results and conclusion

A new family of non-singular solutions of the Einstein field equations for compact
stars under embedding class one condition is presented. The thermodynamical quan-
tities for stellar matter like anisotropic pressures, baryon density, red-shift and the
velocity of sound have been investigated using the Karmarkar condition of embedding
class one spacetime.

Based on various physical analysis such as equilibrium condition (TOV-equation),
static stability criterion (OM/dp. > 0), Bondi condition (I', > 4/3), singularity free
(pe; Pre = pre > 0), Zeldovich condition (p,./p. < 1) and satisfaction of energy
conditions imply that the new family of solutions is possible to represent realistic
matter. Therefore, these solutions are suitable to model physical compact stars.

For n = 0, some parts of the stability factor becomes positive, resulting insta-
bility in the model. However, beyond n = —18, the stability factor turns out to be
stable. From Fig. 4.10, one can observe that as n decreases from —2 to —18, the
peak of the F, increases, Fj, is almost same from center upto about 4 km and show
significant increment till the surface. However, F,, decreases as n approaches to —18.
Using the Buchdahl limit, we get the maximum surface red-shift z;(max) = 2. For
zero value of the compactness parameter, the surface red-shift is also zero. As the
compactness parameter reaches the Buchdahl limit, the surface red-shift becomes ex-
actly 2. However, if the compactness parameter is beyond the Buchdahl limit, then

because of the formation of singularity the surface red-shift blows up. The unique
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4. Static fluid spheres admitting Karmarkar condition

character of these solutions can be observed from the fact that for large range of pa-
rameter n, the profiles of density, pressures, equation of state parameters and speed
of sounds seem to be different, however, the profiles of adiabatic index, mass with
central density and red-shift are not very different. This signifies the fact that for
modeling compacts various choices of equation of state (EoS) can be made for a single
compact star. These choices of EoS lead to various structure of interior space-times,
however, look the same physical properties like mass, radius, luminosity etc. to an
external observer. It is to be noted form Fig. 4.13 that for larger values of parameter
n leads to smaller M,,,, and R,,... From Fig. 4.13, we can see that for n = —2 the
values of (Maz, Rmae) are (12.8 km, 2.529M) which is under the theoretical limit
proposed by Rhoades and Ruffini [1974], while for n = —5, the values are (6.107 km,
0.1995M,). But in recent studies, the heavy pulsars such as PSR J1614-2230, PSR
J03484-0432 and MSR J07404-6620 were discovered in the works of Demorest et al.
[2010], Antoniadis et al. [2013], Cromartie et al. [2020a], which has set the new record
of the maximum mass of the pulsars. Further, from Fig. 4.7, it is also clear that
the values of v? and v? are maximum for n = —2. Therefore, we can conclude that
the stiffness of the equation of state reduces as n increases. The sensitivity to EoS is
sharper in M — I graph than M — R because the peak points in these graphs are more
sharper in the former graph than the later. After the complete analysis of the solu-
tions with various mathematical and graphical representation, we can conclude that
the solution is physically reasonable. With the inclusion of small rotation, we have
also shown that the maximum mass that can hold by the system increases and the
corresponding radius also increases due to the centrifugal force. For smaller values of
n yields more M,,,,. The corresponding frequency of rotation can also be determined

using Haensel et al. formula (Haensel et al. [1995]).

4.8 Generating functions

Herrera et al. [2008] proposed an algorithm for generating all types of spheri-
cally symmetric static solutions using two physical quantities namely anisotropy and

function related to redshift function. These two generator are defined as

/

¢(r) = % + % and II(r) = 87 (p, — pr). (4.47)
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For this solution, they are found to be

¢(r) = % +4bB(n + 1)r? sinh” B (or® + c)]

\/ (cosh (br? +¢) +1)" [B sinh (br* + ¢)

/2 — 2cosh (br? + c) \/ar2 cosh (br? +¢) + 1)"
1 n+1 n+3
o Fy {5, 5 Ty o8 < {br —i—c})]—i—
4Ab(n + 1)r sinh? (§ {br* + c}> ] (4.48)
o(r) = —=A(r). (4.49)
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Chapter 5

A generalized Finch-Skea class one

static solution !

5.1 Introduction

It is well known that Einsteins general theory of relativity has fruitfully explained
about several observations or cosmological measures including astrophysical back-
grounds (Tipler et al. [1980], Shapiro and Teukolsky [2008]). The golden age of cos-
mology saw the theory of Hubble, the material, the biological structure, the nuclear
synthesis, as well as the higher level of precision in explaining the potential origin
of the universe and its subsequent evolution. Basically Einstein general theory of
relativity is generalization of Newtonian gravity which is mainly suitable to describe
the structure of compact star in the strong gravitational fields. Few of these com-
pact objects like pulsars, black holes and neutron stars have densities of the order
greater than or equal 10'4gm/cm?. The Schwarzschild has discovered the first precise
solution of Einstein field equations for the gravitational field in the inner part of a
non-circular spherical body consisting of a non-compressible fluid. This is also known
as constant density solution with outer being empty and has zero pressure at the
surface. Now a days, the researcher are busy on the study of relativistic compact
stars. For object modeling, we study the solutions of Einstein’s equations of static
spherically symmetric with different physical causes. These solution may be stated
as perfect fluid, anisotropic fluid, and dust. However, there are strong theoretical

evidence that steep excessive dense celestial bodies are not made of perfect fluids.

!Content of this chapter has been published in European Physics C (Springer), 79 (2019) 381.
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5. A generalized Finch-Skea class one static solution

In some cases, the objects with different physical phenomena are found, for example
anisotropy. The first theoretical attempt to look at the effect of variance was seen
in about 1922 when Jeans [1922] looked anisotropic pressure on the self-gravitating
bodies of Newtonian configurations.

After this, Ruderman [1972] has studied the effect of the anisotropy. He said
that the stars may have anisotropic characteristics at very high density of the order
10" gm/cm?® where the nuclear interaction becomes relativistic. Sudden after, Bowers
and Liang [1974] studied about confined properties of relativistic anisotropic matter
distribution for static spherically symmetric configurations, which is comprehensively
populated. Recently, An extensive research was conducted in the study of physics
related to anisotropic pressures.In this connection, Dev and Gleiser [2002, 2003] have
shown that pressure variation affects the physical properties of mass, structure and
excessive pressure areas. Also there are other several analytical static solutions have
been already discovered by several authors (Herrera and de Leén [1985], Maurya et al.
[2016b,a,c], Deb et al. [2017], Gupta and Maurya [2011], Mak and Harko [2003]). Most
pioneering work by Herrera and Santos [1997] where they have specified about effect
of local anisotropy in self gravitating systems. More remarkably, the algorithm for
all possible static isotropic, anisotropic as well as charged anisotropic solutions of
Einstein’s equation for the spherically symmetric line element can be attractively
determined by a general procedure which are given in Refs. Lake [2003], Herrera
et al. [2008].

It is essential to note that the redshift and mass of the stellar model both varies
with the anisotropy. Recently, an extensive efforts have been made in the modeling
of physical observed astronomical objects in the existence of anisotropy which can be
seen in recent research papers Sharma and Ratanpal [2013], Ngubelanga et al. [2015],
Murad and Fatema [2015b,a] and the references therein. In these recent papers, the
physical analysis reaffirms the significance of the presence of a non-zero anisotropy
in the modeling of astrophysical objects. In order to create a substantially reliable
object, it is necessary to find an analytical solution of Einstein field equations for
relativistic matter distribution which can be solved by restricting the space-time ge-
ometry or stating an equation of state (EOS) of the matter distribution. On the other
hand, we can generate the exact solution of relativistic field equation using another
different approach known as embedding class one condition. In this connection, Rie-
mann has presented the idea, known as Riemannian geometry, to study the essential

geometric properties of the objects. Immediately after this, Schlaefli [1871] estimated
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5.1. Introduction

that a Riemannian manifold of metric which is analytic with positively defined sig-
nature can be embedded locally and isometrically into the higher dimensional flat
Fuclidean space.

The idea of embedding locally and isometrically an n-dimensional Riemannian
manifold V,, into an N = n(n + 1)/2 dimensional pseudo-Euclidean space was proved
in the past by authors Janet [1927], Cartan [1927], Burstin [1931]. The embedding
class p of V,, is the minimum number of extra dimensions required by the pseudo-
Euclidean space, which is obviously equal to p = N —n = n(n — 1)/2. As we
know, general theory of relativity deals only with four dimensional spacetime, however
embedding class solution may provide new characteristics to gravitational field, as well
to physics. In case of relativistic space time V,,, the embedding class p turns out to
be p = 6. In particular the classes of spherical and plane symmetric space-time are
p = 2 and p = 3 respectively. The famous Friedman-Robertson-Lemaitre space-
time, is of class p = 1, while the Schwarzschilds exterior and interior solutions are
of class p = 2 and class p = 1 respectively, moreover Kerr metric is class 5. In the
literature Barnes [1974], Kumar et al. [2010], Barnes [2011], de Leon [2015], Akbar
[2017], Abbas et al. [2018], Kuhfittig [2018], Kuhfittig and Gladney [2018], there are
many interesting work concerning the effects of the technique of embedding of lower
dimensional Riemannian space into the higher dimensional pseudo-Fuclidean space
in the framework of GR. The main consequence of embedding a Riemannian variety
corresponding to a spherically symmetric and static spacetime into a pseudo Euclidean
space is the so-called Eisland condition. This condition links both metric potentials
e’ and e into a single differential equation. It is a mathematical simplification which
reduces the problem of obtaining exact solutions to a single-generating function. The
approach is to choose one of the gravitational potentials on physical grounds and to
then integrate the Eisland condition to fully specify the gravitational behavior of the
model. In this paper we utilize Eisland condition to derive solutions which describe
compact objects in general relativity. We subject our solutions to rigorous physical
tests which ensure that they do describe physically observable objects in the universe.

This chapter is organized as follows: In Sec. 5.2 we have specified the interior space
time and Einstein field equations for anisotropic matter distribution. This section also
includes the embedding class one condition along with non-vanishing Riemannian ten-
sor for interior space time. In the next section 5.3, we have presented a generalized
Finch-Skea solution for anisotropic matter distribution using the class one condition.

The nonsingular nature of pressures, density and bounds of the constant are given
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5. A generalized Finch-Skea class one static solution

in Sec. 5.4. In Sec. 5.5, we presents the necessary and sufficient conditions to de-
termine all possible constant parameters that describe the anisotropic solution. For
this purpose, we match our interior space-time to the exterior space-time (Schwarzs-
cild metric). The section 5.6 includes the energy conditions. In Sec. 5.7, we have
discussed the most important features of the objects like equilibrium condition via.
Tolman-Oppenhimer-Volkoff equation, Causality and stability condition through Her-
rera Aberu criterion, adiabatic index and Harrison-Zeldovich-Novikov static stability

criterion.

5.2 Interior space-time and field equations

The interior space-time for spherically symmetric space-time is chosen as,
ds? = e’dt? — A dr? — 2 (d6* + sin® 6 d¢?) (5.1)

where v and A are functions of the radial coordinate ‘r’ only.
The Einstein’s field equations corresponding an anisotropic fluid distribution be-

comes

1
Ry = SR = =8n[(pi + pc oo, — pugh + (pr = p)xox"] (5:2)

where the symbols have their usual meanings.

For the space-time (5.1), the field equations can be written as

1—e? e

= = 8mp (5.3)
erA—1 e
+ = 8mp, (5.4)
2
\ " 2 V/;/ V,_)T\’,
e (?4—?— 1 + o ) = 8mpy. (5.5)

The measure of anisotropy is defined as A = 8« (p; — p;.).

On the other hand, It was proved by Eisenhart [1966] that an embedding class 1
space (A (n+ 1) dimensional space V"™ can be embedded into a (n +2) dimensional
pseudo-Euclidean space E™"?) can be described by a (n + 1) dimensional space V"1

if there exists a symmetric tensor a,,, which satisfies the following Gauss- Codazzi
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5.2. Interior space-time and field equations

equations:

Ripnpg = 2€ampagn

and Gy — I'f

[np] Omg + an [n &p]q = O’ (56)

where e = £1, R,,,,, denotes the curvature tensor and square brackets represent
antisymmetrization. Here, a,,, are the coefficients of the second differential form.
Moerover, A necessary and sufficient condition for the embedding class I of Eq. (5.6)

in a suitable convenient form was given by Karmarkar [1948] as
Ro101Ro323 = Ro202R1313 — Ri202R1303- (5.7)

The non-vanishing components of Riemannian tensor for the spherically symmetric

interior space-time (5.1) are given as

1
Roio1 = -7 e” (—y')\' +1% 42 1/’) :

1
Rogos = —1%sin0 (1 —e ™), Roe = - e
1 .
Riz13 = 3 N7 sin? 0, Riss =0, Riz03=0 (5.8)

By plugging the values of above Riemannian components into Eq. (5.7) we obtain

a differential equation in v and A of the form
N =)V +2(1 - + 07 =0. (5.9)

The solutions Eq. (5.9) of are named as ‘embedding class one solution” and they can
be embedded in five dimensional pseudo-Euclidean space.

On integration of Eq. (5.9) we get

e = (A+B/\/ﬁdr>2 (5.10)

where A and B are constants of integration.

By using (5.10) we can express the anisotropy as (Maurya et al. [2015b])

Vo2 N v'e”
A=—|-— —-1]. 11
4e? [r et — 1} {27"32 } (5.11)
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5. A generalized Finch-Skea class one static solution

For isotropic case A = 0 and there are three possible solutions when (a) ¢/ = C
and e* = 1 (not physical), (b) Schwarzschild interior solution (not physical) and (c)

Kohler-Chao solution (cosmological solution as the pressure vanishes at r — 00).

5.3 A generalized solution for compact star model

Since the field equations depend on metric functions v and A. To construct a
viable anisotropic model, we have assumed the generalized form of Finch-Skea metric
(Finch and Skea [1989]) function g, as

A= In(1+ar®+ """ (5.12)

where a and b are non-zero positive constants and n is a positive integer. It is note
that Finch and Skea [1989] have used above metric function g,, corresponding b = 0
to solve Einstein field equations. The choice of this gravitational potential g, is well
motivated particularly they have shown that the solution is regular and physically
realistic for the some range of parameters as well as a good approximation to a neutron
star model (specially in terms of predicting central densities of neutron stars) based
on the relativistic mean field theory of Walecka [1975]. So, considering it we have
generalized this gravitational potential g, by introducing another parameter b with
the radial coordinate r which will provide a class of solution for compact stars, along
this the energy density, radial and tangential pressure are decreasing outward.
By substituting the value of A from Eq. (5.12) into Eq. (5.10) we get

& = (A - {23 [ab<n — 22 f(r)Wab 1+

+ bn—lrn—2)—1/2 2
6 — b 2 by } (a 5.13
(6= n) (abr +%7) } bn—6)(n+2) (5.13)
_ 1 n—6 . 10—3n. 1-n,.2—nm ) ; 3
where f(r) = oF) (5, 5y aon —ab*"r ) is known as Gauss hypergeometric

function. The behaviour of the metric potentials are plotted in Fig. 5.1.
By using the metric potentials v and A, we directly obtain the expression for

thermodynamic variables like density, radial and transverse pressure and anisotropy
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as

1
8mp(r) = a’r? +a (20" 1" 4 3) 4 by
o) (ar? 4+ br=1rn 4+ 1) [ ( )

(" "+ n+1) ] (5.14)
8mpr(r) = [(n — 6)b”k(r)r"{b[23r (ar®* —n—2) + A(n+ 2)j(r)] + QBbHTN—H}

—2abB(n — 2)r*f(r) (abr? + bnrnﬂ [(6 - n){2abBr3 + Ab(n + 2)j(r) +
=1 b2 (abr? + b™r™)

2Bb"r”+1} +2abB(n — 2)r® f(r)k(r)] @ T D (5.15)
A = o 2 ’“(Tglg)q% — (5.16)
r2p(r) (abr? + b™rm) (abr? 4+ bmr™ + b)
8rpi(r) = 8mp, + A. (5.17)
where,
j(r) = Var? i (5.18)
k(r) = Vabl=nr2—m 41 (5.19)
I(r) = 2a°b°r* + 4ab™ ™™ + "™ [20"r" 4 b(2 — n)] (5.20)
n(r) = b[Br(2ar® —n—2)+ A(n+2)j(r)] +2Bb"r"*! (5.21)
q(r) = 2abB(2—n)r’f(r) [abr® + 0"r"] + (n — 6)b"k(r)n(r)r" (5.22)
p(r) = (n—06)[2abBr’®+ Ab(n + 2)j(r) + 2Bb"r" ™| + 2abB(2 — n)

r3f(r)k(r). (5.23)

There variations of the above physical quantities are given in Figs. 5.2-5.4. We
should ensure that values of p,./p and p;/p at the interior must be less than unity for
a physical system (Fig. 5.5).

The other physical parameters mass, compactness factor and red-shift can be

determine as

_ 2y g = (1 b
m(r) = 47?/7‘ pdr = 5 (1 S e b) (5.24)
2m(r) b
= - 2
u(r) r abr? + bmrm 4+ b (5.25)
2(r) = eV? -1 (5.26)
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5. A generalized Finch-Skea class one static solution

We have plotted the M — R diagram in Fig. 5.6. Here we have determined the radius
from surface density and determine the mass using this radius using the boundary
condition. The trend of red-shift is plotted in Fig. 5.7.

5.4 Non-singular nature of the solution

To check the physical validity of the solution, we ensure that the central values of

pressure and density must be finite i.e.

3a
C - = 9 2
p o 0 (5.27)
2B — A
Pre = Dte = \/a( \/E ) > 0. (528)
8TA

It is also require to ensure that any physical fluid satisfies the Zeldovich’s criterion

i.e. pre/pe <1 which implies

Pre 2B —+/dA
Pre _ 22 7 V22
Pe 3VaA  —

Now a physical constraint on B/A arises due to (5.28) and (5.29) as

V2 _B
a A

1. (5.29)

<2V (5.30)

5.5 Boundary Conditions and determination of con-

stants

It is necessary that we should match our interior space-time to the exterior
Schwarzschild [1916b] line element

2 2m\ !
ds® = (1 — Tm> dt? — (1 - Tm) dr* —r?(d0® +sin® 0 d¢*)  (5.31)

at the boundary r = R. Also, the radial coordinate r must be greater than 2m so
that it doesn’t form a black hole.
Using the continuity of the metric coefficients e and e* across the boundary

(r = R) and vanishing of radial pressure at the boundary (r = R) we get the following
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equations
2M
l-— = "= e~ 5.32)
pr(r=R) = 0. (5.33)

On using the boundary conditions (5.32) and (5.33) we obtain the value of arbi-
trary constants as,
b"(R—2M)R™ — 2bM

¢ = bR2(2M — R) (5:34)

oM 2BR?
A = 4J1- b(6 —n) Va + 0 LR2
. +b(n—6)(n+2)[(6 n) Va+ bR

+a(n — 2)b"F f(R)R”T"} (5.35)
B - J1_ 2?%4 b(6 —n)(n+ 2)2\/a i [2<n )0 R + b(n — 6)

(aR? —n—2) — 2= Q)bl\;j: éflﬁz(ibfz V) L abn— 2)R?

f(R)Vab'="R*" + 1+ (6 —n) (abR* + b"R") } B (5.36)

Here M and R are chosen from observed values of compact stars and b as free param-

eter.
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Figure 5.1: Variation of metric potentials w.r.t radial coordinate r for M =
1.97Mg, R = 9.69km and b = 0.04.
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Figure 5.2: Density profile of PSR J1614-2230 for M = 1.97Mg, R = 9.69km and
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Figure 5.3: Radial and transverse pressure profile of PSR J1614-2230 for M =
1.97Mg, R = 9.69km and b = 0.04.
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5.6. Energy Conditions

5.6 Energy Conditions

In this section we are willing to verify the energy conditions namely null en-
ergy condition (NEC), dominant energy condition (DEC) and weak energy condi-
tion(WEC) at all points in the interior of a star which will be satisfied if the following

inequalities hold simultaneously:

WEC : T,t't">0o0rp>0, p+p; >0 ( )

NEC : T,0MH">0o0r p+p; >0 ( )

DEC : T,t't" >0or p > |p;| where T""t, € nonspace-like vector (5.39)
v 1 g

SEC : T,t't —QTi‘t tUZOOrp+Zp,~20 ( )

where i = (radial r,transverse t), t* and [* are time-like vector and null vector
respectively.

We will check the energy conditions with the help of graphical representation. In
Fig. 5.8, we have plotted the L.H.S of the above inequalities which verifies that all

the energy conditions are satisfied at the stellar interior.
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Figure 5.4: Anisotropy profile of PSR J1614-2230 for M = 1.97TMy, R = 9.69km and
b= 0.04.
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Figure 5.5: Equation of state parameter profiles of PSR J1614-2230 for M =
1.97Mg, R = 9.69km and b = 0.04.

5.7 Stability and equilibrium of the model

5.7.1 Equilibrium under various forces

Equilibrium state under three forces viz gravitational, hydrostatics and anisotropic
forces can be analyze whether they satisfy the generalized Tolman-Oppenheimer-

Volkoff (TOV) equation or not and it is given by

MY (p+p,) v dp 2
_Me 2> _ + Z(p—p) =0, (5.41)

r dr r

where M, (r) represents the gravitational mass within the radius =, which can derived

from the Tolman-Whittaker formula and the Einstein field equations and is defined

by
M,(r) = 4 / ' (T¢ =T — T — T2)r%e T dr. (5.42)
0
For the Egs. (5.3)-(5.5), the above Eq. (5.42) reduced to
M,(r) = %re(k”w V. (5.43)
Plugging the value of M,(r) in equation (5.41), we get
e 2

2(ﬂ+p7~) dr+r(pt pr) =0 (5.44)
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Mass

Figure 5.6: M — R diagram for a = 0.001 and b = 0.04.
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b= 0.04.

The above expression may also be written as

Fy+ Fy+F, =0,

(5.45)

where F,, I}, and F, represents the gravitational, hydrostatics and anisotropic forces

respectively and can be written as,

/

1%
F, = —5@+p0
dp,
F, = —
h dr
2A
F, = =
.
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5.7. Stability and equilibrium of the model

The profile of three different forces are plotted in Fig. 5.9 and we can see that the

system is in equilibrium state.

5.7.2 Causality and stability condition

In this section we are going to find the subliminal velocity of sound and stability
condition. For a physically acceptable model of anisotropic fluid sphere the radial and

transverse velocities of sound should be less than 1, which is known as the causality

2 2

condition. The radial velocity (vZ.) and transverse velocity (v3,) of sound can be

obtained as

2:dpr
r dp

2 dpy
Ut = d_p

(5.49)

(%

The profile of radial and transverse velocities of sound have been plotted in Fig.
5.10, the figure indicates that our model satisfies the causality condition. Now the
stability condition proposed by Abreu et al. [2007] i.e. —1 < v? —v? <0 (Fig. 5.11).

0.451
n=7 (Blue)

n=12 (Dashed) A

r(km)

Figure 5.10: Velocity of sound profiles of PSR J1614-2230 for M = 1.97Mg, R =
9.69km and b = 0.04.

5.7.3 Adiabatic index and stability condition

For a relativistic anisotropic sphere the stability is related to the adiabatic index I,
the ratio of two specific heats, defined by (Chan et al. [1993]),

- dp,
r, = 2P (5.50)

pr dp
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Figure 5.11: Stability factor (v} — v2?) profiles of PSR J1614-2230 for M =

T

1.97Mg, R = 9.69km and b = 0.04.

Now I', > 4/3 gives the condition for the stability of a Newtonian sphere and
[' = 4/3 being the condition for a neutral equilibrium proposed by Bondi [1964].
This condition changes for a relativistic isotropic sphere due to the regenerative effect
of pressure, which renders the sphere more unstable. For an anisotropic general
relativistic sphere the situation becomes more complicated, because the stability will
depend on the type of anisotropy. For an anisotropic relativistic sphere the stability
condition is given by (Chan et al. [1993]),
4 [4(pu—pri) | 87 piDri
SR A R AT A A >3
where, p,;, pu, and p; are the initial radial, tangential pressures and energy density
in static equilibrium satisfying (5.41). The first and last term inside the square
bracket represent the anisotropic and relativistic corrections respectively and both
the quantities are positive that increase the unstable range of I' (Herrera [1992],
Chan et al. [1993]). For this solution the adiabatic index is more than 4/3 and hence
stable, Fig. 5.12.

5.7.4 Harrison-Zeldovich-Novikov static stability criterion

The stability analysis of Harrison et al. [1965] and Zeldovich and Novikov [1971] have
shown that the adiabatic index of a pulsating star is same as in a slowly deformed
matter. This leads to a stable configuration only if the mass of the star is increasing

with central density i.e. dm/0p, > 0 and unstable if Om/dp. < 0.
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5. A generalized Finch-Skea class one static solution

In our solution, the mass as a function of central density can be written as

R 3b
) = —[1- 5.52
m{pe) 2 ( 30" R+ Sbp 2 + 3b) (552)
om(p. 12702 R
mipe) T _>0. (5.53)
Ipe [3bnRn + b (87pR? + 3)]
(5.54)

The satisfaction of the above condition is shown as a plot in Fig. 5.13.
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Figure 5.14: Variation of moment of inertia w.r.t. mass for a = 0.001 and b = 0.04.
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5.8 Discussion and conclusion

The solution of Einstein’s field equation with e ™ = 1 + ar? was presented by
Duorah and Ray [1987], however, Finch and Skea [1989] pointed out that the Duorah-
Ray (DR) solution doesn’t satisfy the field equations. Therefore, Finch-Skea (FS)
corrected the solution and hence known as FS solution. FS not only corrected the DR
solution but also performed extensive works to describe physically realistic neutron
stars. The resulting equation of state from FS solution was also compared with
Walecka’s relativistic mean-field theory description and found to be quite in good
agreement.

An interesting result was presented by Bhar et al. [2017] showing that with the
assumption of electric charge and Adler g;; metric potential in the Karmarkar condi-

tion, one leads to FS g,, metric potential which is a well behaved solution while its
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neutral counterpart isn’t.

The current chapter generalized the FS g, with the higher order term " 'r".
We also successfully analysed the behaviour of the solution showing its well behaved
range w.r.t. the parameter n. It is found that the solution exist and satisfy causality
condition for n = 4, 5 and within the range 7 < n < 12. All the solutions correspond
to other values are not well-behaved. The fulfillment of the stable static criterion
signifies that the solution is static and stable. The satisfaction of TOV-equation also
implies the solution is in equilibrium. We have also plotted the M — R diagram
for the range 7 < n < 12 and it shows that the maximum mass increases with n.
For n = 7 the maximum mass is 2.643M, with radius 8.976 km and for n = 12,
Mo = 3.063M, with radius 10.85 km. The profile of adiabatic index (see Fig.
5.12) shows that the equation of state gets stiffer for larger values of n since the
central values of I'. are larger. This increases the stiffness of the equation of state
leading to increase the maximum mass.

The stiffness of an EoS is also link with moment of inertia of the compact star.
For a uniformly rotating star with angular velocity €2 the moment of inertia is given
by (Lattimer and Prakash [2000])

_87r R

I= (p + py)eP /2 © dr (5.55)

3/, 9

where, the rotational drag w satisfy the Hartle’s equation (Hartle [1978])

d (4 dw\ 3 dj
%(r]%>— 4rw$. (5.56)

with j = e~*)/2 which has boundary value j(R) = 1. The approximate moment of

inertia I up to the maximum mass M,,,, was given by Bejger and Haensel [2002] as

I= %(1 v x) MER?, (5.57)

where parameter x = (M/R) - km/Mg. For the solution we have plotted mass vs
I in Fig. 5.14 that shows as n increases, the mass also increase and the moment of
inertia increases till up to certain value of mass and then decreases. Therefore, we
can say that as moment of inertia increases, the stiffness of the corresponding EoS
also increases. Comparing Figs. 5.6 and 5.14 we can see that the mass corresponding

to Lnae is not equal to M., from M — R diagram. In fact the mass corresponding
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5. A generalized Finch-Skea class one static solution

to Ipae 18 lower by ~ 3% from the M,,,,. This happens to the EoSs without any
strong high-density softening due to hyperonization or phase transition to an exotic
state (Bejger and Haensel [2002]).
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Chapter 6

Einsteins cluster mimicking
compact star in the teleparallel

equivalent of general relativity L

6.1 Introduction

The concepts of Einstein’s cluster (Einstein [1939]) was introduced in 1939 to under-
stand the system of stationary gravitating particles each moving along circular path
about a common center under the influence of their combine gravitational field. If
these particles are orbiting in same path with different phases or a similar orbit but
inclined at a different angle, it can construct a shell named as “Einstein’s Shell”.
By constructing layers of Einstein’s shell a FEinstein’s Cluster is formed. All these
particles are distributed spherically symmetric in sufficient continuous, random and
collisionless geodesics. Such systems are static and in equilibrium where the grav-
itational force is balanced by the centrifugal force. Therefore, in this way a thick
spherical shell of matter is composed without pressure in the radial direction, but
only tangential stresses.

Einstein clusters have been extensively studied in different literature (Florides
[1974], Zapolsky [1968], Gilhert [1954], Comer and Katz [1993]). Specially, the com-
ponents of energy momentum tensor for the cluster have been obtained in several
representations. Due to the spherical symmetry nature, the only non-vanishing com-

ponents of T} are T} = p, T = —p¢™ and T = T¢ = —p§", with p*" is the effective

!Content of this chapter has been published in Physical Review D (APS), 100 (2019) 084023.
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energy density and pe and p¢" are the effective radial and tangential pressures of the
cluster, respectively. In principle, the junction conditions require pe to be continu-
ous across the boundary of each layer of the shell, which follows that for the Einstein
cluster p¢f = 0. Therefore, Einstein’s clusters are known for their highly anisotropic
in nature, for which the radial pressure is different from the tangential one, p¢ff # p¢ff.

Interesting features of relativistic anisotropic matter distributions have been ex-
tensively pointed out as early as 1933 by Lemaitre [1933], Lemaitre [1997]. Though
in ref. Bowers and Liang [1974], they build up anisotropic models as the beginning
of the epoch of more active research. In the latter, anisotropic model has widely
been studied in many astrophysical objects such as stars, gravastars, wormholes
etc. Not surprisingly, in the last few decades there has been renewed interest in
structure and evolution of compact objects with interior anisotropic fluids (see for in-
stance Mak and Harko [2003], Herrera et al. [2004], Chaisi and Maharaj [2005], Abreu
et al. [2007], Thirukkanesh and Maharaj [2008], Maurya et al. [2017a], Folomeev and
Dzhunushaliev [2015]). In Bohmer and Harko [2006], Andréasson and Béhmer [2009],
upper and lower bounds for spherically-symmetric static solutions of the Einstein-fluid
equations in presence of a positive cosmological constant.

Within the context of GR, Florides [1974] had tried to understand why a spheri-
cally symmetric distribution of pressure-less dust at rest cannot maintain itself in equi-
librium. Since this attempt had opened up a new interior uniform density (Schwarzsc-
hildlike) solution. Specifically, the obtained interior solution process a positive tan-
gential pressure which is increasing function of the radial coordinate and having con-
stant density. In next, it has been found that Florides interior solution describes the
interior field of an Finstein cluster. In this spirit, a modified approach to the problem
of relativistic clusters was proposed by Zel’Dovich and Polnarev [1974]. Further, Za-
polsky [1968] discussed the stability of such clusters by adopting the same methods
which is used to study the stability of compact stars. Gilhert [1954] investigated the
stability of Einstein clusters, leading to an upper limit to the velocities of the particles
in the cluster. In this same context, Cocco and Ruffini [1997] introduced the concept
of metastable clusters by considering explicit examples.

In the 1970’s, Hogan [1973] who suggested that neutrinos can be emitted from
Einstein’s cluster at a very specific angle ranges from 0 to 7/2 with the radial direction.
If the cluster is made up of charged particles than it can’t be in stationary equilibrium
so long as the total charge is greater than or equal to the total mass (Banerjee and

Som [1981]). Interestingly, Einstein’s cluster is also considered as a spin fluid with
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zero pressure where the spin density vanishes at the boundary of the fluid sphere
(Bedran and Som [1982]). In a sense, elliptical Einstein shells by means of “elliptical”
orbits was studied (Comer et al. [1993]), however, such configurations were not stable
and eventually reduces to spherical shells (see Comer et al. [1993] for review).

Number of modified gravity theories have been proposed which may describe the
accelerated expansion of the universe in an effective level. This endeavor arises from
unifying gravitation and quantum mechanics, and addressing some cosmological prob-
lems which include the dark energy problem (non-standard cosmic fluid with negative
pressure) in the late Universe and singularity problem in the early Universe. In addi-
tion to theoretical considerations modified gravity also could give adequate description
of cosmological observations (Bahcall et al. [1999], Bamba et al. [2012], Joyce et al.
[2015], Perrotta et al. [1999]). A systematic review on recent progress in the construc-
tion of modified gravity models has been done (see Nojiri et al. [2017]) in cosmology,
emphasizing on inflation, bouncing cosmology and late-time acceleration era.

Among the modified theories of gravity, recently f(T) gravity has attracted much
attention in the community. Inspired by the formulation of f(R)-gravity (Sotiriou
and Faraoni [2010], Santos et al. [2008], Harko [2008], Capozziello et al. [2018b], As-
tashenok et al. [2015, 2013], Goswami et al. [2014]), where f(R) is a generic function
of the Ricci scalar R of the underlying geometry, f(T) gravity is a similar gener-
alization. This theory is based on the old definition of the “Teleparallel equivalent
to General Relativity” (TEGR) (Hayashi [1977], Hayashi and Shirafuji [1979, 1981]),
where the Lagrangian is an analytic function of the torsion scalar T (Ferraro and
Fiorini [2008], Fiorini and Ferraro [2009]). The basic equations of GR and its telepar-
allel equivalent is R = —T + B, where R and T are the Ricci scalar and torsion scalar
with B = 29,(eT*) is a total derivative term which only depends on torsion. Thus,
Einstein-Hilbert action can now be represented in two distinct ways, either using the
Ricci scalar or the torsion scalar, and consequently these two theories have the same
equations of motion (Bahamonde and Wright [2015, 2016], Bahamonde et al. [2015]).
However, the theoretical framework of f(T) gravity depends on an appropriate ansatz
for the tetrad field. It is interesting to mention that this theory is not invariant under
local Lorentz transformations, and therefore the choice of tetrad plays an important
role in determining such model. However TEGR, as a torsion theory, is equivalent to
GR, but f(T) theory is not equivalent to GR.

Although, f(T) gravity does not coincide with f(R) gravity. The main catch point

is that for a nonlinear f(R) function, gravity is a fourth-order theory, whereas f(T)-
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gravity field equations are always second-order. At this point one should have noted
that f(R) modified gravity, in the Palatini version, can also be viewed as a second
order system of equations (Ruiz-Lapuente [2010], De Felice and Tsujikawa [2010]).
Compare to f(R) gravity, the action of f(T) theory and the field equations are not
invariant under local Lorentz transformations (Li et al. [2011]), which relates to the
fact that f(T) theories appear to have extra degrees of freedom with respect to the
teleparallel equivalent of GR. (Sotiriou et al. [2011]), although their physical nature
is not yet well understood. Though, there has been a growing interest in this kind
of theories due to its ability to explain both early (Bamba et al. [2017], Jamil et al.
[2015], Qiu et al. [2019]), as well as at late times accelerating phases of the Universe
(Paliathanasis et al. [2016], Hohmann et al. [2017], Cai et al. [2016], Capozziello et al.
[2018a]) without the inclusion of a dark energy fluid.

In recent years attentions have been focused on the gravitational waves from com-
pact binary (Nunes et al. [2019, 2018]) in f(T) gravity. In Bamba et al. [2014], the
effects of the trace anomaly on inflation in T? gravity has been examined. On the
other hand, this model has been used for studying wormhole solution (see ?Rani et al.
[2016Db,a] and references therein). The structure of compact stars in f(T) gravity was
investigated recently in refs. Iliji¢ and Sossich [2018]. This method is examined for
f(T) theory where a special form of f(T) = T+ §T* is selected. Similar studies have
also concluded that due to presence of anisotropic fluid affects the value of luminosi-
ties, redshifts, and maximum mass of a compact relativistic object in Abbas et al.
[2015a], Momeni et al. [2018], Abbas et al. [2015b].

Recently, Lake [2006] and Boehmer and Harko [2007] considered Einstein’s clus-
ter of WIMPs dark matter generating spherically symmetric gravitational field of a
galactic halo that can fit the rotational curve of any galaxy by adjusting two param-
eters (i) angular momentum distribution and (ii) number distribution of the WIMPs.
Also it was shown that Einstein’s clusters were dynamically stable under radial and
non-radial perturbations Boehmer and Harko [2007]. The gravitation lensing due to
such Einstein’s cluster is slightly smaller as compare to isothermal sphere of dark
matter Boehmer and Harko [2007].

Inspired by the above applications of teleparallel and f(T) theories of gravity, we
are interested to investigate solution representing Einstein’s cluster. The chapter is
organized as follows: in Sec. 6.1 we briefly review the foundations of teleparallel
and f(T) theories. We find the corresponding field equations for general spherically

symmetric spacetime with diagonal and off-diagonal tetrad, and by assuming different
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f(T) function. In Sec. 6.2, we derive charged and uncharged solutions for Einstein
cluster and compare them with standard GR model. In Sec. 6.3, we presented the
Einstein clusters for charged and uncharged solutions. The metric exterior to the
sphere is given by Reissner-Nordstrom metric in Sec. 6.4. Secs. 6.5, 6.6 and 6.7
are devoted to discuss the stability of the Einstein cluster model. The modified
Oppenheimer-Volkoff limit is analyzed as well as other properties of the spheres, such
as causality condition, adiabatic index. Moment of inertia and time period of the

cluster are obtained in Sec. 6.8. Finally, in Sec. 6.9 we summarized the results.

6.2 Field equation and spherically symmetric so-
lutions in f(T) gravity

In this section we briefly present the main points of the f(T) gravity. We get the

field equations by varying the action

S = /d% {f(T) +L} : (6.1)

167

where £ is the matter Lagrangian with G = ¢ = 1, and T is the torsion scalar

constructed from the torsion tensor:

v

Ty, = T9,—T7, =¢l (6.6, —doe),). (6.2)

Notably, the difference of Weitzenbock connection and the Levi-Civita connection T o

widely used in GR is defined as the contorsion tensor K*” as follows
K= 79, o, = (T g e - (6.3)
o - ny (7272 9 o o o : .
In f(T) geometry, we introduce for convenience, the “superpotential”, namely
SW = KB 0 T oE T, (6.4)
and then the torsion scalar T is given by

T = 77,5 (6.5)

pr~o
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which is equivalent to the Ricci scalar R up to a total derivative term. Actually, with
the existence of torsion tensor, in particular, if f(T) = T, the resulting equations of
motion are equivalent to GR, and T}, no longer be expressed in terms of metric, but
act as an independent variable (see reviews Hehl et al. [1976], Cai et al. [2016]).

In torsional formulations of gravity ones uses the tetrad fields ei are related to
the metric tensor g,, by g () = mize), (x)el(x), where n;; is the Minkowski metric of
the tangent space with the form of n;; = diag (1, -1, -1, —1).

Additionally, we define the co-tetrad ¢!, through

el'e;, = 0l and el'e] = &7, (6.6)

with e = /=g = det(e},). Variation of the action (6.1) with respect to the tetrad field
gives the field equations
1

St frr Ty +e (eSH) u fo— T3S fo—el f = 4nT}. (6.7)
where fr and frr denote the first and second derivatives of the function f(T) with
respect to T, and the tensor 77 represents the energy-momentum tensor of the mat-
ter source £. Considering the description of energy momentum tensor, which, in
the present study is written as T} = M} + EY. Since, M} stands for the energy-
momentum tensor of an anisotropic fluid distribution and E} is the electromagnetic
energy-momentum tensor. So, the complete form of Einstein-Maxwell field equations

18

MY = (pe+ p)uui — pigi + (pr — pO)XiX" (6.8)
1 /1

Y = — | = VFa Faﬁ - QBFVFZ' 6.9

(2 47T (47T g’L /3 g o ﬁ> ? ( )

where u,, is the four-velocity and x, is the unit spacelike vector in the radial direction.

Moreover, the electromagnetic tensor Fj; satisfies Mexwells equations

Fa77ﬁ + F’Yﬁya + F0577 = 07
[V=gF’] ,=4nJ*/=g (6.10)

where J* = ou® is the electric current density and F,3 denotes the skew symmetric

electromagnetic field tensor, with the parameter o is the charge density.
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Since we are interested in spherically symmetric solutions that can be used to
describe a dense compact relativistic star. To this end, we write the space-time

metric in the following form
ds® = "M dt? — Adr? — 1? (df? + sin 0 d¢?) (6.11)

where (t,7,0,¢) are the usual Schwarzschild-like coordinates, with v and A are the
functions of the radial coordinate r, are yet to be determined. Now, by considering
diagonal and off-diagonal tetrad with different functional forms, we derive different

field equations, as f(T) theory is not invariant under local Lorentz transformations.

6.2.1 Diagonal tetrad and f(T) =aT +b

Here, we start with the simplest possible diagonal tetrad (T1) giving this metric (6.11)
as follows (Abbas et al. [2015a], Momeni et al. [2018]):

ler] = diag(e”/?, €2, r, rsinf), (6.12)

and its determinant is |e!,| = r?sin@ e*¥/2. The corresponding torsion scalar and

its derivative is given by

T(r) — 26? (u + %) , (6.13)
() = QiA [y” + % o, (/\’ + %)} , (6.14)

where the prime denotes the derivative with respect to r. Thus, the general field Eq.

(6.7) give rise to the explicit equations of motion:

Arp+ E? = ——+[T————], (6.15)

fr 1
drp, — B2 = 1T 2 )~
P 2 72
+

T v’ 78 | PN
drp + E* = [5 e_’\{?+(z+§> (V—A)}]%—{, (6.17)
0

: (6.16)

cot 0
272

T frr = 0, (6.18)

o(r) = (r*E)'. (6.19)
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The Eq. (6.18) puts a strict constraint on the possible f(T) functions. We imme-
diately observe few interesting facts. The Eq. (6.18) implies here that all solutions
satisfy either fpr =0 or T' = 0, where the former reduces the theory to TEGR (see
Ref. Boehmer et al. [2011]). As a result, the choice of frr = 0 leads to the following
linear model (Abbas et al. [2015a]):

F(T) = aT + b, (6.20)

where a and b are integration constants. Inserting Eq. (6.20) into the field Egs.
(6.15)-(6.17), one can obtain the modified field equations in Teleparallel gravity as,

2a (re’)‘)\’ —e M+ 1) + br?

dmp+ E? = " : (6.21)
2ae (1 + 1) — 2a — br?
Arp, — E? — ae™* (rv —ZTQ) a—br ’ (6.22)
Y\
drpy + E* = 68_ [2&1/ —aN (rv/ +2) +ar (2" +17) — QbreA]. (6.23)
r

where p is the energy density with p, and p; are the radial and tangential pressure of

the matter sector, considered correspond to a anisotropic fluid.
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Figure 6.1: Variation of metric potentials with radial coordinate for a = 1, b =
0.01, ¢=0.01, d =0.0001 and A =0.1 (f(T) =aT + b and T1).

6.2.2 Off-diagonal tetrad and f(T) =aT +b

Proceeding forward the above discussed linear model of f(T) function, we consider
another possible tetrad field which is off-diagonal (T2), given by Boehmer et al. [2012]
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Figure 6.2: Variation of charge density with radial coordinates (f(T) = aT + b and
T1).
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Figure 6.3: Variation of density with radial coordinate (f(T) = aT + b and T1).

By doing a rotation, the off-diagonal basis tetrad is related to its diagonal form.
One can obtain e = |e},| = r?sinf e /2 and we determine the torsion scalar as
2e”

T(r) = r; (8/2 - 1) (eW 1 21/). (6.24)
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of general relativity
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Figure 6.4: Variation of pressure with radial coordinate (f(T) = aT + b and T1).

Inserting this and the components of the tensors S and T into the equation (6.7), we

obtain the modified field equations

Amp
4dmp,

4mpy

-

= Z—Z 2ar N + 2ae? (rv/ +2) —2a+ be’\rﬂ — E? (6.25)
r2 |
-\ -

= Z_Z a(2—4eM?) —2a (M —1)rv/ — be’\rﬂ + B, (6.26)
r2 |
)

= 68— 2av" — aX (rv/ +2) + 2arv” + arv? — Qbekr] — E% (6.27)
rl

We would like to mention that gravitational sector of TEGR is Lorentz invariant in

the sense that any choice of the tetrad fields leads to the same equations of motion.

Here, we would like to emphasize that the claim made above concerned solely with

the argument.

6.2.3 Diagonal tetrad and f(T) = aT?

Proceeding forward and using the T1 tetrad with f(T) = aT?, one can get the fol-

lowing field equations:

dmp =
47Tp'r =

4mp

ae—2
— (/' +1) (2¢* +2rN — v/ = 3) — E?, (6.28)
,
ae™
— (/' +1) (—2¢* +3rv/ +3) + E?, (6.29)
”
ae—2>
o (rv/ +1) [r{y’ =NV +2)+2r/")(r/ +4)} + 2] — E%(6.30)
”
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Additional information are required to solve the above field equations.

6.2.4 Off-diagonal tetrad and f(T) = aT?

Taking into account the off-diagonal tetrad and viable power-law form of the f(T) =

aT? model, the field equations reduce to

ae—2>
drp = i (1- eA/2) (e’\/2 -/ —1) [3 —2rM v 4+ 2} + e
v — 36)‘/2} ) (6.31)
4 _ a€_2>\ A2 1 A2 / 1 A 6 A/2 3 A/2 1
™ = = (eM?—=1) (M —r/ = 1) [e* — 6e? = 3{eV* — 1}
r + 3] +E?, (6.32)
ae”* A/2 A2 / A2 2 9o
Adpy = ?(e —1)(6 —7‘1/—1) [2{(6 —1) —{—ry}
r
27 — N () +2) — 2 (M2 - 2) m/} 3 (6.33)

To proceed further, we will assume p, = 0 and a specific form of electric field F in

the proceeding section.

6.2.5 Field equations in pure GR

The well known field equation in the framework of GR with anisotropic stress-energy

tensor profile is given by

1 (1—e? Ne?

= — 6.34

p 8 { 72 * r } ’ (6.34)
1 (Ve 1—e?

. = — — , 6.35

P 8 { r r2 } ( )

e 20 2N
= — 299 2N = L 6.36
b 327r{ vt AT T T } ( )

6.3 Einstein’s cluster in f(T)—gravity and pure GR

Now, we want to show how it is possible to obtain an Einstein’s cluster solution

starting from a spherically symmetric metric in the absence and presence of electric
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charge by considering diagonal /off-diagonal tetrad with Specific f(T) function. More

interestingly, we compare these results with the results from pure GR.

6.3.1 Neutral solution with T1 and f(T) = aT + b:

In the case of neutral anisotropic system with vanishing radial pressure (Boehmer
and Harko [2007]), Eq. (6.22), gives

2ae™ (r/ + 1) — 2a — br* = 0. (6.37)

Seeking solutions to the Eq. (6.37) is extremely difficult due to the presence of
two unknown variables. We need at least one additional information. Hence, the

simplest conception is to introduce the metric potential of form
e’ = A+cr? +dr?, (6.38)

and solving the Eq. (6.37) using (6.38), we get

2 4
A 2a (A + 3er® 4 5dr*) . (6.39)
(2a 4 br?) (A + cr? 4+ dr)

Accordingly we obtained solution, the energy density and transverse pressure in

the following form

(A+ cr? 4+ dr*) (6ac + 20adr? — Ab + 5bdr?)

r = Y
pir) 8 (A 4 3cr? + 5drt)?
(6.40)
1
= A?38a (¢ + 4dr?
pt(T) 167 (A+ cr2 + d’l“4) (A + 3cr2 + 5d7“4)2 [ { a (C r )

—br? (90 + 4d7“2) } + A{Qa (11027"2 + 6dedr® + 68d27“6) + brt
(10d27"4 — 1562 — 14cdr2)} + 1"4{a (6c3 + 54c2dr? + 96¢ed*r* + 4Od3r6)

—br? (1267 + 3T¢3dr® + Aled*r* + 204%°) b — 247 (6.41)

To examine the system more closely we find the density and pressure gradients
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6.3. Einstein’s cluster in f(T)—gravity and pure GR

takes the form

dp Cr[Af(r) = folr) + f5(r)]

dr (A+3cr? + 5dr4)3 ’ (6:42)
% T 2Ate? o dr4)22A + 3cr? + 5drt)? [A°5or) — A* (320 + St + 360dr?)
FARE L) + AT {o(r) + o)} + 0 6s(r)] (6.43)
where
filr) = 2a(15¢° + 64cdr® + 120d%r*) + br® (20d°r* — 3¢® — 30cdr?),

()
(r) = A®(20ad + 5bc + 28bdr*) + 5bedr® (3¢ + dr?)
f3(r) = 2a(9r* 4+ 45¢%dr* + 100ed®r® + 50d°r%)
(r) = 2a(63¢® +275c%dr* + 692cd*r* + 572d°r%) + br* (20d°r® — 3¢
—205¢%dr? — 250cd’r*)
(r) = 2a(17¢° + 8cdr® + 52d°r*) — br® (15¢% 4 172cdr? + 140d°r*),
fo(r) = br*(15¢* — 30’ dr? + 95¢*d*r* 4 508¢d’r® + 380d'r®),
(r) = 2a(63c¢* +406c°dr® + 1295¢*d*r* + 1808cd’r® + 860d*r®),
(r) = 2a(9¢" + 63c*dr® 4+ 267¢°d*r* + 525 d*r® + 420cd*r® + 100d°r™)
—bedr? (4503 + 119¢%dr? + 67cd*r* — 15d37"6).

Now, the EoS parameter and surface red-shift can be found as
w==<1, zy=e"—1. (6.44)

To conclude this section, we report the gravitational mass and compactness pa-

rameter by a spherically symmetric source with radius r, we get

B r  r¥[6a (c+ 2dr?) — Ab+ bdr']
mir) = [ ol0) ¢ ac = T Eo I (o)
u(r) = 2m(r)  r? [6a (c + 2dr?) — Ab+ bdr] (6.46)

ro 3 (A + 3cr? + 5dr)
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6.3.2 Charged solution with T1 and f(T) = aT + b:
Using Eq. (6.22), we have

2ae™ (rv/ +1) — 2a — br?

yr +E?=0. (6.47)

Follow the assumption (6.38) along with E? = kr? and the solution is easily found as

A 2a (A + 3cr® + 5drt) (6.48)
(2 + br? — 4krt) (A + cr? 4 drt)’ '
and the proper charge density is given by
k 2a + br? — 4krt) (A 2+ drt
o(r) = 3vVk [(2a+br r4) (A+cr? + r). (6.49)
4N/27 a (A4 3cr? + 5dr?)

Hence, at £ = 0 the charge solution reduces to the neutral solution. The variations
of metric functions and charge density are shown in Figs. 6.1 and 6.2. The next step

is to determine the energy density and pressure which are given by

smp = — At er’ +dr’ ~ [Gac + 20adr® — Ab+ 8Akr? + 5bdr* + 12ck:r4] (6.50)
2 (A + 3cr? + bdr)
8rp, = 243 (2kr? — b) + A2g1(r) + Ar2ge(r) — 7’493(7“).
4 (A + cer? +drt) (A+ 3cr? 4 5drt)?
(6.51)
where

gi(r) = 8a(c+4dr?) — 9ber? — 4bdr* + 4ckr* — 36dkr®,

9a(r) = 2a (11% + 64cdr® + 68d%r*) — r2[b(15¢2 + 1dedr® — 10d%r*)
+4kr? (4¢% 4 46¢dr® + 57d%r) |,

g3(r) = r?[b(12¢° + 37 dr® + 41led®r* + 20d°r®) + 4dkr* (16¢7
+35¢dr? +15d°r*) | — 2a(3¢® 4 27 dr? + 48cd?r* + 20d°r°).

The trends of density and pressure are shown in Figs. 6.3 and 6.4.

The mass function, compactness parameter and surface red-shift can be calculated
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6.3. Einstein’s cluster in f(T)—gravity and pure GR

as
m(r) = 1 /T (8mpa® + E*a?)dx + @ _ r [6@ (c+2dr?) — A
2 Jo 2r 12 (A + 3cr? + 5dr)
(b= 12kr2) + 1" (bd + 24ck + 36dkr?) |, (6.52)
2
u(r) = ":fr) (6.53)
Zzs = er—1. (6.54)

The variations in gradients, equation of state parameter, surface red-shift, mass func-

tion and compactness parameter are shown in Figs. 6.5, 6.6, 6.7 and 6.8.

6.3.3 Charged solution with T2 and f(T) = aT + b:

Proceeding the same as in previous section with vanishing radial pressure and assum-
ing E? = kr? for Eq. (6.26), our model provides that

a(2 — 46%) - 2au’r(e% —1) = br*e + kr? = 0. (6.55)
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Figure 6.9: Variation of pressure with radial coordinate with for solution in II1.3 for
a=1.5, b=0.0007, ¢ =0.002, d=0.001 and A =0.3.

However, in order to solve Eq. (6.55) we assume a specific from of gy as e =
A+ cr? 4+ dr?*, and the solution can be written as

N k 2a(A+ 3cr? + 5dr*) 4hs(r)

e = —+4

b b2 (A+cr?+drt) b2t (A+ or? + drt)*

(6.56)
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Taking into account the metric potential and plugging those values into the Egs.
(6.25)-(6.27), one can easily obtain the stress-energy tensor profile. However, we avoid
to enlist the physical character because of very complicated and lengthy expressions.
Alternatively, we could get rid of this complicated expressions through a graphical
representation. The qualitative behaviour of the stress-energy tensor components
(density, pressure, velocity of sound and adiabatic index) are depicted in Figs. 6.9.
Notice, that the pressure and density are decreasing outward, the velocity of sound
is also within the causal limit and the adiabatic index is > 4/3. Our approach here
follows make sense as a cluster solution which is sufficient to mimic as a compact star.
Similar to solution in Sect 6.2, one can also see that as charge parameter k increases,
the stiffness of the EoS also increases. Therefore, this cluster solution can also mimic

properties of compact star.

301

25F
20F g
151

10F 1

px10%& p x 107

0 2 4 6 8
r (km)

Figure 6.10: Variation of desnity and pressure with radial coordinate for in f(T) = aT?
and T1.

6.3.4 Charged solution with T1 and f(T) = aT?:

Further, we introduce the T1 tetrad and the function f(T) = aT?. For vanishing
radial pressure (6.29), we get

ae—QA

rd

(r/ +1) (3 —2¢* +3r/) + E* = 0. (6.57)

To solve the Eq. (6.57), we need an additional information because of the three

unknowns )\, v and E. Therefore, we have assumed the same e” = A + cr? + dr* and
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6.3. Einstein’s cluster in f(T)—gravity and pure GR

E? = kr?. The resulting solution can be written as

L Ja’[xa(r)P axi(r)
A
(& = % 7’—4 - 4&]{)(2(7") + 2 (658)
where,

(r) = 4c N 8d n 2
X Cor2(Ater4drt)  Atcer+drt Y

(") = 12¢2 N 48¢cd N 3 N 482
X2 r2(A+cr2 +dr)?  (A+e?+dr)? 5 (A+er? 4 drt)?

n 24d n 12¢
r2(A+cr2+drt)  rt(A+cer?+drt)

Again, we avoid to write the expressions for pressure and density because of their
lengthy expressions. Interestingly enough, from the Fig. 6.10, that the transverse
pressure and density vanishes at the center. In spite of the fact that there is no
physical solution exist because of the density vanishes at the center and increasing
outward.

A crucial point in this discussion is about the neutral solution i.e. E? = 0.
According to Eq. (6.57) and E? = 0, the expression is a product of two terms.
Investigating solutions for metric potential with the first equality of (6.57) we obtain
v(r) = B—Inr. Substituting this value we get e* = 0. Therefore, one can immediately
conclude that no physical solutions exist in this scenarios.

Furthermore, for T2 tetrad with the same function we found the exactly same
situation for neutral case i.e. ¥ = A —Inr and e = 0. Therefore, the main drawback
of the f(T) = aT? gravity model along the T1 and T2 tetrad is that the obtained

solutions do not process any physically realistic Einstein’s cluster solution.

6.3.5 Charged solution with T2 and f(T) = aT?:

For Einstein’s cluster, the vanishing radial pressure gives

a672)\

i (V2 —1) (M =1 —1) (e’\ —6eM?—3{eM 1}/ + 3) + E* =0. (6.59)
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Figure 6.13: Variation of pressure with radial coordinate in pure GR.
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6.3. Einstein’s cluster in f(T)—gravity and pure GR

Here, to simplify the solution we ansatz e¥ = A+ cr? and E? = kr?, and the solution

gives
2at(r) 1
x2 o ) , ) , y
e 2 = 6”’}/(7”) + C(T> {W{Sa 7'(7”) — GW/(T)(ZLA + 16Acr® + 15627 )
_ael’”y(r) (A -+ 307“2) + % [a (3A2 + 12ACT2 + 13027’4)
T
1/2
—hn® (4% 4 4 + 36°) H | (6.60)
where,

(r) = A+2c? | y(r)=a+kr®

B a(a — 3kr8) (A + 2cr?)?
C(T) - \/ (a+l€T6)2 (A+CT2)2

Due to extremely lengthy expressions of density and pressure will exclude their
expressions, however, their properties have been obtained by numerically integration
for the charged fluid equation of state and by graphical representation. As one can
see from Fig. 6.11, that the pressure and density are positive and decreasing out-
ward, however, they blows up at » = 0. Such a solution can mimic compact stars
which contain a central singularity. Even if such solutions could exist, they do not

gravitationally stable.

6.3.6 Neutral Einstein’s cluster solution in pure GR

Up to now, we have concentrated our discussion on modified teleparallel gravity or
f(T) gravity. We attempt to discuss here the general relativity case. Let us now

concentrate on Eq. (6.35), with vanishing radial pressure, we find

1=\ 1— -
e C 0 or =1+ (6.61)

r 72

Our focus is to obtain a complete solution, and for that we use e” = A + cr? + dr* as

previously discussed. Then, we find

x_ A+3cr®+5dr!
A4t drt

e (6.62)
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From Egs. (6.34)-(6.36), we deduce

8mp = 2 (3¢ 4+ 10dr?) (A + cr? + dr?) (6.63)
(A + 3cr? + 5drt)? ’
3c¢?r? + 16cdrt + 20d*r®
Srp = c’r® 4 1bcar® + 27“' (6.64)
(A 4+ 3cr? + bdr)

Since, our goal now is to build a more realistic model of Einstein’s cluster. To do
so we first fix the values of few unknown parameters by matching the Schwarzschild’s
vacuum solution at the boundary, which are found to be

2(R—3M 4(2R — 5M
4 _ CRAR=3M) .+ dR(2R — 5M) 6.65)

M
M — cR3
2R

d = (6.66)

The parameter ¢ will be treated as free parameter for tuning purpose. Moreover, ¢ is
directly related with determining cluster solution.

Considering Eq. (6.64), one immediately finds that p, = 0 at the center r = 0,
which violates the physical condition of a compact star. The qualitative behaviour of
the density and pressure are depicted in Figs. 6.12 and 6.13. Note that the energy
density is positive throughout the spacetime, but the pressure is zero at the center
and increasing outward. In a recent paper, Thirukkanesh et al. [2015] investigated
a particular class of stellar solutions which describe spherically symmetric matter
distributions with vanishing radial stresses within the framework of GR. However,
their model process p; > 0 everywhere inside the star but it decreases monotonically
from the center and reaches a minimum at certain radius, and thereafter increasing
monotonically toward the boundary of the star. But our pressure is strictly increasing
throughout the interior spacetime. Qualitatively, we verify that for increasing nature
of the pressure give raise to imaginary sound speed and the negative values of adiabatic
index. In general, this scenario does not process a physically valid compact star. Thus,

in pure GR the solutions representing Einstein cluster can’t mimic compact stars.

6.4 Matching of boundary for charged solution for
diagonal tetrad in linear f(T)

Having derived the equations that describe charged Einstein cluster, we now pro-
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ceed to match the interior solution with an exterior Reissner-Nordstrom vacuum solu-
tion. Moreover, we fix the values of constant a, b, A and B from junction conditions
imposed on the internal and external metrics at the hyper-surface. The Reissner-
Nordstrom metric is given by

2

2 2 2\
ds? = (12218 a2 (1200 L) @2 2(de? + sin® 0 de?).(6.67)
r r2 r r2

Now, using the continuity of the metric coefficients ¢’ and e* across the boundary

r = R, we get the following

oM Q*\ ! 2a (A 4 3¢R? + 5dR*) o
1—— 4= = A+ cR? +dR* 6.68
( R +R2) Qoo —qeRy) AT AR (668)
IM  Q?
1- -+ = A4cR? 4 .
=t I +cR*+dR (6.69)

Solving Egs. (6.68) and (6.69), we get

a = R®(b—4kR*) (A+ cR®+dR") [2AkR4 — 2AU + 6¢kR°® — 6cR*U

—1
F4eR? + 10dkR® — 10dR'U + 8dR4] , (6.70)
oM
A = 1—cR2—dR4+kR4—f. (6.71)

Here U = 2M/R, ¢, d, k and b will be treated as fitting parameters while M and R

can be chosen from observed values of compact stars.

6.5 Non-singular nature of the solution

The central density and central pressure are surprisingly independent of electric

charge and found as

6ac — Ab

= — 72

87, A 0, (6.72)
4ac — Ab

87Tptc = T > 0, (673)

which implies 4ac > Ab. The solution also satisfies the Zeldovich’s (Zeldovich and
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Novikov [1971]) condition as

Pe  4dac— Ab

—_ = — < 1. 74
Pe 6ac—Ab< (6:74)

Therefore, the solution doesn’t contain any singularity and also can represent physical

matters.
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Figure 6.14: Variation of forces acting on TOV-equation with radial coordinate
(f(T) = aT + b and T1).

6.6 Equilibrium and stability analysis

The task is now to study the stability of self-consistent regular solution. In the
present section, we analyse the stability of the Einstein clusters by performing some

analytical calculations and plotting several figures.

6.6.1 Equilibrium analysis via TOV-equation

In the spirit of completion we discuss the stability of the Einstein cluster modle.
Consider hydrostatic equilibrium via Tolman-Oppenheimer-Volkoff (TOV) equation.
Now by employing the generalised-TOV equation (Tolman [1939], Oppenheimer and
Volkoff [1939]) in the presence of charge, as prescribed in Ponce de Leon [1993], we

have the following form

My(r) p1) o 20) | e g (6.75)
T
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where M, (r) represents the gravitational mass within the radius r. It is defined using

the Tolman-Whittaker mass formula through the Einstein’s field equations as

" 1
My(r) = 4n / (T} —T7 — T} - Tf)rZe(”“)/zdr — 57“6&_”)/2 V. (6.76)
0

Now, plugging the value of M,(r) in equation (6.75), we get

/
2
‘% p(r) + 2nilr) +o0BeM? =0 or F,+F,+F,=0, (6.77)
T

where Fy, F, and Fj, are the three different forces namely gravitational, anisotropic

and electromagnetic forces, respectively. For our system the forces are as follows:

, 5 — F, = oFEeM?, (6.78)

The variation of forces in TOV-equation w.r.t. the radial coordinate r is given in Fig.
6.14.

6.6.2 Causality condition and stability criterion

For static spherically symmetric spacetime solution one has to check also the behavior
of speed of sound propagation v?, which is given by the expression dp/dp. Normally
it is believed that the velocity of sound is less than the velocity of light. For that the

speed of sound should be < 1 and it can be determined as

1.00;
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Figure 6.15: Variation of sound speed with radial coordinate (f(T) = aT+b and T1).
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2 _
vy =

where,

x1(r)

xa(r)

x3(r)

Xa(r)

X5 (r)

X6 (7)

1
— 5 X [4A5k + Atxi(r) — A3xa(r) — A%r?xs(r)

dp — 26(r) (A + cr? + drt)
—Arfya(r) + 7"6)(5(7’)} ; (6.79)

32ad + b (50 + 36dr2) — 4kr? (c + 43dr2) ,

2a(17¢® + 8cdr? + 52d*r*) — b(15c*r? + 172cdr* + 140d°r®) + 4kr*
(17¢* 4 268cdr? + 274d*r?),

2a(63¢* + 2752 dr® 4 692cd®r* + 572d°r%) — b(3c*r? + 2057 dr
+250cd?r® — 20d3r%) + 4kr*(23¢* + 4992 dr?

+946¢d®r* 4 426d°r°),

2a(63c* + 406c dr? + 12952 d*r* + 1808cd’r® + 860d*r®) + br?(15¢*
—30c%dr? + 95¢%d*r* + 508cdr® + 380d*r®)

+4dkr®(294¢® + 775c2dr* 4 516¢d*r* + 15d°r9),

—2a(9¢” + 63c*dr® 4+ 267 d*r* + 525¢2d°r® + 420ed*r® +
100d°r'%) + bedr* (45¢% 4 119c¢%dr? + 67cd*r* — 15d°r%)
—4dkr®(96¢* + 3633 dr? + 4857 d*r* 4 285¢d®r® + 75d*r®),
A*(20ad + 5bc + 28bdr* 4 16ckr® — 96dkr*) — A[2a(15¢°

+64cdr? + 120d*r*) + b(—3c*r* — 30cdr* + 20d*r°)

+4kr*(=9¢* + 32cdr® + 10d*r*)| — 2a(9c*r® + 45¢*dr* 4 100cd”r®
+50d°r®) + 8 A%k + cr®(3c + dr?)(5bd + 12¢k).

The presented solution also satisfy the causality condition (see Fig. 6.15). Since there

is no radial sound speed, the Herrera’s cracking method of analyzing stability is not

applicable in Einstein’s clusters.

6.6.3 Stability analysis using relativistic adiabatic index

Given the significance of the above results in the cluster solution, it would be of

interest if some comment regarding stable/instable criterion of the solution can be

made. For this purpose one may consider the dynamical stability based on the vari-
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ational method which was introduced by Chandrasekhar [1964]. Now considering an
adiabatic perturbation, the adiabatic index I', is defined as following Chandrasekhar
[1964], Merafina and Ruffini [1989], Chan et al. [1993], by

_ ptpdp:
pe  dp’

r (6.80)
where dp/dp is the speed of sound in units of speed of light. This approximation
leads to a very useful information for compact astrophysical objects and impose some
marginal constraints. In view of the above consideration, Bondi [1964] had clearly
mentioned that a stable Newtonian sphere has I' > 4/3 and I' = 4/3 for a neutral
equilibrium. Its values vary from 2 to 4 in most of the neutron stars equations of state
(Haensel et al. [2007]). For the solution also the adiabatic index is greater than 4/3.
In Fig. 6.16 one can see that the central value of the adiabatic index is independent

of electric charge and is about 1.386.

6.6.4 Static stability criterion

In order to clarify further the effect of mass-radius and mass-central density relation
for the stable stellar configuration, Harrison-Zeldovich-Novikov (Harrison et al. [1965],
Zeldovich and Novikov [1971]) argued that an increasing mass profile with increasing
central density i.e. OM/0p. > 0 represents stable configurations and vice-versa. In
particular stable or unstable region is achieved when the mass remains constant with
increase in central density i.e. OM/Jp. = 0. For the new solution M(p.) and OM/0p.

is found to be

R? 6ac (24kR? — 5b
M(p.) = { ac ) 4 304 (c + 24R?)
30 (- + 3cR2 + 5dR) L b+ ST
TPc
+R*(5bd + 1201{:)} : (6.81)

OM  24macR® (¢ + 2dR?) (2a + bR? — 4kR") (6.82)
e (6ac+ R2(b + 87po) (3c + BARZ) |

Here, we can clearly see that OM /0p. > 0 i.e. mass is increasing function of its central

density (Fig. 6.17) and therefore can represents static stable configuration.
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6.7 Energy conditions

It is reasonable to expect that models of charged perfect fluids satisfy the energy
conditions and such condition depends on the relation between matter density and

pressure obeying certain restrictions. In view of the above situation, we examine
Strong (SEC), Weak (WEC), Dominant (DEC) and Null (NEC) energy conditions,

which are defined as

WEC : p>0, p+p; >0, (6.83)
NEC : p+p >0, (6.84)
DEC : p > |pi, (6.85)
SEC : p+2p, > 0. (6.86)

Using the above expression, one can easily justify the nature of energy conditions.
The presented model also fulfill these energy conditions (Fig. 6.18). Since the allowed
values of the electric charge parameter % is very small i.e. 0 < k < 1.3 x 107, the

graphs of the above energy conditions are very closed to each other.

6.8 Slow rotation model, moment of inertia and
time period

For a uniformly rotating star with angular velocity €2, the moment of inertia is given

by Lattimer and Prakash [2000]

8 R
=2 r(p + pp e/ = dr, (6.87)
3 Jo Q

where, the rotational drag w satisfy the Hartle’s equation (Hartle [1978])

d (,.dw 3 dj
—_— E— = —4 —_—. .
dr (r J dr) T (6.88)

with j = e~*)/2 which has boundary value j(R) = 1. The approximate solution of

moment of inertia I up to the maximum mass M,,,, was given by Bejger and Haensel
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[2002] as

=2 (1 + M) MR?, (6.89)
5 M,
The M — I graph is shown in Fig. 6.19. The corresponding M — R graph is also
shown in Fig. 6.20. From these two graphs we can see that the maximum moment
of inertia and maximum mass increases with increase in electric charge. However,
the mass corresponding to I, from M — I graph is less by about 5% as compare
to Mypee from M — R graph. This suggest that the corresponding equation of state
is free from softening due to hyperonization or phase transition to an exotic state
(Bejger et al. [2005]).

The minimum time-periods of any rotating compact stars can be expressed with
good precision in terms of the masses and radii of the non-rotating configurations.
So long as the equation of states obeyed subluminal sound speeds one can expressed

the most accurate minimum time period as (Haensel et al. [1995])

M@ 1/2 R 3/2

The maximum values of each minimum time periods are almost equal and are negli-

gibly affected by the presence of electric charge (Fig. 6.21).

6.9 Results and discussions

In this chapter, we present a model of Einstein’s cluster mimicking compact star
in the context of TEGR, the Teleparallel Equivalent of General Relativity, as a gauge
theory of translations with the torsion tensor being non-zero but with a vanishing
curvature tensor, hence, the manifold is globally flat. Considering Einstein’s clusters
in GR realm arises many un-physical outcomes, such as pressure increases outward,
imaginary sound speed, negative adiabatic index and therefore can’t mimic compact
star model. We have developed the TEGR field equations having a diagonal and
off-diagonal tetrad with a specific function of f(T). More specifically, considering
the field equations with a diagonal (T1) and off-diagonal (T2) tetrads with linear
functional form of f(T) = aT+b, we found Einstein cluster solutions that behaves like
a compact star. Thus, it seems interesting that relativistic star solutions are possible

only in the case of teleparallel equivalent of general relativity. In connection with
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this, we have other solutions for particular power-law of f(T) model with diagonal
and off-diagonal tetrad. However, most of the attempts are unsuccessful because
the resulting solutions yield negative pressures. Indeed, we found a very compact
cluster solution in the case of f(T) = aT? using a off-diagonal tetrad. In this case we
found the decreasing and positive energy density and pressure, however, both blows
up at r = 0 i.e. it contain a central singularity which is unstable under gravitational
collapse. This may be because of the fact that the constraint on the field equations
i.e. frr = 0 puts a strict restriction on the choice of f(T) function to a linear one.
As a result, only if f(T) is a linear function of the torsion scalar T, one can leads to
the existence of neutron star solution (Deliduman and Yapiskan [2011]). In a recent
paper, Boehmer et al. [2011], Deliduman and Yapiskan [2011] suggested that, instead
of choosing frr = 0, if one consider T = 0 or T = T, the solution yields a constant
energy density and pressure, obeying the dark energy equation of state or the pressure
which blows up at  — 0. This result is similar to our solution for f(T) = aT? in T2.
Therefore, such solutions can’t be used to model neutron star alike cluster solution.
For the case of f(T) = aT + b in T1 two solutions of clusters were found. As per
the rigorous analysis and figures, presented model satisfy causality, energy condition,
TOV-equation, Bondi criterion and stable static criterion. This means that the solu-
tion has the ability to mimic compact star models. The M — I and M — R graphs
suggested that the I,,,, and M,,,, increases with increase in charge parameter k.
The M — p. graph signifies that the solution gain its stability with increase in electric
charge. However, the maximum time-period of rotation 7,,,. is negligibly affected
by the presence of electric charge. The stiffness in the equation of state seems to be
same and independent of electric charge from center till upto about 3.5 km, however,
beyond 3.5 km till the surface, the stiffness increases with increase in electric charge.
This may be because of the central region (0 < r < 3.5 km) is extremely dense thus
neutralizing the electric charge through e +p — n + v, which may also the source of
neutrinos as described in Hogan [1973]. As the density decreases outward, the gravity
becomes slightly weaker and the repulsive electric field starts affecting the stiffness.
The solution favor physical solution for the range 0 < k < 1.3 x 107°, beyond which
the solution doesn’t satisfy causality and trigger a gravitational collapse once crossed
the Buchdahl limit if & > 1.3 x 107>, Similarly, for the case of linear f(T) in T2,
we have also found cluster solution which mimic the nature of compact star. The
solution gives physical cluster solution for a very narrow range of charge parameter

k which must be in the range 0 < & < 107% or otherwise the solution violates the
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causality condition or physically unacceptable. Overall, the presented solution with

vanishing radial pressure and/or Einstein’s cluster model is fit for mimicking compact

star models.
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Chapter 7

Physical properties of class 1

compact star model for linear and
Starobinsky— f(R,T) functions '

7.1 Introduction

One of the recent major challenges in modern physics at the present time is to clarify
the dynamics of the Universe, specifically the phenomenon of accelerating Universe
expansion. Concerning this wonderful phenomenon of accelerating Universe expan-
sion, there are some freethinking perceptions in the background of astrophysics that
give proves about the accelerated expanding type of space. These astrophysical per-
ceptions incorporate the results procured from different cosmic sources viz., the Super-
nova type la (SNe Ia)(Perlmutter et al. [1997, 1998, 1999], Riess et al. [2004, 2007]),
Cosmic Microwave Radiation Background (CMRB)(Bennett et al. [2003], Spergel
et al. [2003, 2007]), Large Scale Structure (LSS)(Hawkins et al. [2003], Tegmark et al.
[2004], Cole et al. [2005]), Baryon Acoustic Oscillations (BAO) (Eisenstein et al.
[2005], Beutler et al. [2011], Percival et al. [2010], Anderson et al. [2012]) and Weak
Lensing (WL) (Jain and Taylor [2003]). This occurrence of accelerating expansion
comportment of the Universe is viewed as an extraordinary basic issues of modern
physics. The latest experimental datum effectively illustrates that our cosmic is ruled

by an element with strongly negative pressure, named as dark energy, which comprises

!Content of this chapter has been published in Physics of Dark universe (Elsevier), 30 (2020)
100620.
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with 3/4 of the critical density. So as to clarify the nature of this dominant mysterious
component and the accelerated expansion, there are some selections of the hypotheti-
cal models, in particular, the quintessence scalar field models (Wetterich [1988], Ratra
and Peebles [1988]), the ghost field (Caldwell [2002], Nojiri and Odintsov [2003c,al),
tachyon field (Sen [2002], Padmanabhan and Choudhury [2002]), K-essence (Chiba
et al. [2000], Armendariz-Picon et al. [2000, 2001]), quintom (Elizalde et al. [2004],
Anisimov et al. [2005]), etc., additionally, the A—CDM model (Bahcall et al. [1999],
Frieman et al. [2008]) clarifies this energy by incorporating a cosmological constant
into Einstein’s field equations (EFEs). However, some cosmological problems are
noted in this process (Binétruy [2013], Burgess [2015]) and several models in alter-
native theories of gravitation have been progressed (Luongo and Quevedo [2014b,a],
Luongo and Muccino [2018]). In the present period, many alternative theories of
gravitation have been presented, however some theories of gravity such as f(R), f(7)
and f(R,T) have become more important than all other theories of gravitation. Re-
garding all these theories, the geometric area has been substituted by a specialized
functional shape alternatively to modifying the source of the EFEs. This revela-
tion has now become the most significant progression in modern physics, specifically
cosmology and astrophysics due to Einstein’s theory of general relativity that our Uni-
verse is loaded with normal (baryonic, hadronic etc.) or exotic (dark matter (DM),
dark energy (DE) etc.) matter and convincing proof that the extension of the Uni-
verse is accelerating. In view of these alternative theories, numerous other notable
generalised alternative theories are additionally accessible, which help to investigate
different cosmic attributes effectively. These all alternative theories have adopted
various astrophysical and necessity planetary system requirements and are viewed as
feasible candidates.

After the basic mathematical formulation of Einsteins well-known theory of grav-
ity, some alterations in gravitational part of the general relativity action have been
included with the time passage in which the sleekest alteration of general relativity
is f(R) gravity (Capozziello [2002], Nojiri and Odintsov [2003b], Carroll et al. [2004],
Bertolami et al. [2007]) developed by taking a self-assertive function f(R) instead
of scalar curvature R in the action of Einstein-Hilbert. As can be seen, numerous
altered gravity theories have been examined in literature and different problems in
astrophysics and cosmology have been investigated with the assistance of these won-
derful theories, which upgrade the importance of these prolonged theories. Qadir and

his co-workers (Qadir et al. [2017]) fortified the prerequisite of the altered relativis-
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tic components and showed that this alteration may assist with settling down the
issues identified with DM and quantum gravity. Bhatti and his colleagues (Bhatti
et al. [2017]) investigate compact stellar structures development by picking inside
spherically symmetric line element and dark dynamical effect in the arena of this
theory. Numerous investigators Cognola et al. [2005], Abdalla et al. [2005], De la
Cruz-Dombriz and Dobado [2006], Bergliaffa [2006], Song et al. [2007], Akbar and
Cai [2007], Starobinsky [2007] have used various methods to analyze the stability as
well as consistency of this gravity theory. In this respect, to verify the consistency of
f(R) gravity theory, we can consider the hydrostatic equilibrium of stellar structures
as a test instrument. Nevertheless, there are certain forms of f(R) algebraic function
which eliminate the presence of stable astrophysical structures and are reported unre-
alistic. In recent years, much research has been conducted on the existence, steadiness
and dynamical unsteadiness of celestial stellar systems in the context of this theory of
gravity (Cooney et al. [2010], Arapoglu et al. [2011], Ganguly et al. [2014], Goswami
et al. [2014], Sharif and Yousaf [2014], Astashenok et al. [2014]).

Altered theories of gravity have provided the theorists with various celestial pro-
cedures to survey the purposes behind the phenomenon of accelerating Universe ex-
pansion. Harko and his teammates (Harko et al. [2011]) were the first to propose
the concept of curvature couplings and matter by representing a new version of al-
tered gravity theory, so-called f(R,T) gravity. The same authors also determined
the relating field equation by using the gravitational potentials mechanism and ex-
amined the importance of this alternative gravity theory. Moreover, they have in-
troduced various models for f(XR,T) algebraic functional in detachable compose viz.,
f(R,T) = fi(R)+ f2(T). Tt is accounted as an intriguing alteration in light of the fact
that the appearing field equations have not greatly complex structure or not man-
aged order. f(R,T) gravity models are generally examined in the literature because
of its dynamism in determining numerous astrophysical as well as cosmological issues.
In f(R,T) altered gravity the matter Lagrangian density L£,, fluctuates concerning
the line element which is appeared by the existence of a source term. The source
term expression is acquired as a function of the trace of the stress-energy tensor,
T, henceforth various opportunities of T would provide diverse ensemble of EFEs.
Subsequently, numerous researchers did investigate with different stellar systems of
Universe by taking diverse matter structures.

With the help of f(R, T)—gravity, Houndjo [2012] investigated matter commanded

age of our accelerating cosmic. Baffou and his co-workers (Baffou et al. [2015]) investi-
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gated the problem of Universe unsteadiness subsequent to implementing perturbation
method on the mathematical power-law systems and determined feasibility conditions.
Sahoo and his collaborators (Sahoo et al. [2017]) studied spatially uniform cosmic in
the arena of f(R,T)—gravity. Lately, Moraes and his partners (Moraes and Sahoo
[2017a]) examined the existence astrophysical structures and got a few reasonabil-
ity conditions in the background of f(R,T)—gravity. Several authors Yousaf et al.
[2016], Tlyas et al. [2017], Yousaf et al. [2017], Maurya and Tello-Ortiz [2020a,b] also
worked in the domain of f(R,T)— gravity with various stellar systems. Generally,
anisotropic fluids i.e. unequal radial and tangential pressure (p, # p;) are affected to
analyze developmental regime of stellar structure in mathematical physics. In survey
of stellar compact systems, term anisotropy is established at an immense area, which
has capability to influence and configuration of stellar objects as well as transform
stability. It is notable that anisotropic uids portray a more realistic system form the
astrophysical perspective. Surrender the isotropy condition raises an interesting event
interior the astrophysical object for instance at the point when p, > p, the frame-
work encounters an repulsive force that checks the gravitational gradient (attractive if
Pt < pr), which permits the building of progressively compact and massive structures
(Gokhroo and Mehra [1994]), expanding value of the gravitational surface red-shift
(Bowers and Liang [1974], Ivanov [2002b]) which is a significant amount that connects
the mass and the radius of the stellar configuration and amelioration of astrophysical
system steadiness.

Presently, various works accessible in the literature deal the investigation of com-
pact stellar structures representing the distributions of anisotropic matter; see e.g.
Maurya et al. [2018, 2019], Errehymy et al. [2019], Errehymy and Daoud [2020] and
references contained in that. Recently, a significant methodology for determining the
exact EFEs solutions, describing the compact stellar structures, has been suggested
by the theorists specifically the Karmarkar condition. The requisite and adequate
condition for a spherically symmetric space-time to be of implanting class one was
earliest inferred by Karmarkar [1948]. It is fundamentally a mathematical implement
which encourages us to get accurate EFEs solutions. In this respect, several authors
have been used this beautiful condition (Eisenhart [1966], Singh et al. [2017¢c|, Bhar
et al. [2016a], Maurya et al. [2018, 2019]), for examining the compact stellar systems.
So, In this article, we will adopt the Karmarkar condition to build up the analytical
and graphical solutions describing compact stellar configurations in the arena of an

alternative theory of gravity, specifically f(XR,T)—gravity.
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Drawing on the above works of literature, in the present article, we will examine
the existence of compact stellar models portraying anisotropic matter distributions
in the field of altered gravity theory, so-called f(XR,T)—gravity, by considering a
compact stellar structure, namely a low-mass X-ray binary 4U 1820-30. In this re-
gard, we choose two different functional forms of f(R, T)—gravity specifically, f(R,T)
=R+ 2xT and f(R,T) = R+ ER? + 2xT to address the physical features as well as
astronomical impacts of curvature and matter coupling of compact stars. We also use
the frame of embedding class one approaches to implant a 4-dimensional space-time
into a 5-dimensional pseudo- Euclidean space, in order to acquire a full space-time
portrayal within the relativistic astrophysical system in the arena of f(R,T)—gravity
theory. So, in class one approach which proposed the opportunity of arriving at
the well-comported solution, we have ansatz one of the gravitational potentials, in
particular, the time-time component (e”) and we have obtained the second gravita-
tional potential i.e, the radius-radius component (e), from the Karmarkar condition.
For two viable f(R,T) models, we have investigated the behavior of energy density,
radial as well as transverse pressures in the interior geometry of compact stars. Be-
sides, for exploring physical accessibility of the obtained solutions, we have analyzed
the new solutions through different physical tests such as hydrostatic equilibrium,
causality condition, stability factor, adiabatic index and stability, static stability
criterion and energy conditions with the help of the three compact stellar struc-
tures, in particular, PSR J1614-2230 (M = 1.97 £0.04 M, , R = 9.69 £+ 0.2 km),
Vela X-1 (M = 1.77 £ 0.08 My , R = 9.56 £ 0.08 km) and 4U 1820-30 (M =
1.58 £ 0.06 M, , R =9.1+0.4 km) associate with physical parameters analytically
and graphically. Moreover, we have matched the obtained astrophysical configura-
tion with the exterior space-time specified by Schwarzschild line element, in order to
acquire the constant parameters. On the other hand, the resulting M — R curve and
the appropriate moment of inertia (M — I curve) from our solution are well-adapted
with observed data of the mentioned compact stellar structures.

The outline of this chapter is as follows: In Sect. 7.2, we briefly review the
fundamental attributes of the altered gravity theory viz., f(R,T)—gravity. In Sect.
7.3, we express the fundamental EFEs for anisotropic matter distributions in linear
f(R,T)—gravity, and we will show the essential formalization of class one space-
time and the spherical symmetric line element in Sect. 7.4. In Sect. 7.5, we rep-
resent the total astrophysical system under embedding class one method in linear

f(R,T)—gravity and its thermodynamic portrayal is also specified. In Sect. 7.6, we
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have establishing arbitrary constants of the obtained astrophysical system with the
exterior spacetime specified by Schwarzschild line element. In Sect. 7.7 we have
analyzed the new solutions by means of several physical attempts viz., hydrostatic
equilibrium, causality condition, stability factor, Adiabatic index, static stability cri-
terion and energy conditions, as well as the stiffness of oS, M — R and I — M
diagram are represented in subsections 7.7.1-7.7.6. In Sect. 7.8, we present the
non-linear model for Starobinsky f(R,T)— and corresponding field equation with
its thermodynamic representation for anisotropic matter distributions in subsection
7.8.1. In subsection 7.8.2, we represent the full stellar system under embedding class
one method in Starobinsky f(R,T) model as well as constant parameters are addi-
tionally determined. Finally, the discussion and conclusion are suggested in Sect.
7.9.

7.2 Formalism of f(R,T)—gravity

In this section, we briefly survey the feasible modified gravity theory, as on account
of f(R,T)—gravity with T being the trace of the energy-momentum tensor, 7,,. The

complete action is

S— 16% / FRT)V=g d'z + /Lm\/—_g diz (7.1)

where f(R,T) is the algebraic function of scalar curvature R, and ¢ stand the de-
terminant of the metric tensor g,,. We describe the matter Lagrangian density £,

identified with the stress-energy tensor as

2 6/ ghn)
THV— \/_—g 59’“’ ) (72)

with the trace T = ¢*T,,. According to Harko et al. [2011], we take into account
the case of matter Lagrangian density £,, relies just upon the metric tensor elements
Guv- Shrinking Eq. (7.2) yields

20L,,
oghv

Ty = gulm — (7.3)

By varying the action, (7.1) as a function of the metric ¢g"”, we obtain the master

equations of movement
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(R = 9,5,) fa(ReT) + g OFa(R T) = 3R, T

=87 T, — f5(R,T) (T + O ), (7.4)

where fg(R,7T) = 0f(R,T)/OR and f3(R,T) = Jf(R,T)/0T. The V, indicates
covariant derivative which is related to the Levi-Civita association of metric tensor

9w and box operator [ is characterized by

L9
VTR

In order to arrive at the formula of the covariant derivative of the stress-energy tensor

0 oT,
— v ap?Lap
( /=g ¢" f)x”) and ©,, =g Sg

O

and draw the one of the generic function, we implement the covariant derivative of
Eq. (7.4) (Alvarenga et al. [2013]), as

fﬁT(Ru (‘T>

K _JN 0 7
V v 87T — fg‘(jz, (T)

[(TW +0,)V I f(R, T) + V'O, — %ngw (7.5)
So from this Eq. (7.5), it is clear to see that the stress-energy tensor 7, in
the context of f(R,T)—gravity isn’t preserved as a view purpose of Einstein general
relativity (GR) because of the presence of nonminimal matter-geometry coupling in
the system.
By employing Eq. (7.3), the tensor ©,, is characterized as

0*Ly,

O =-—2T,, y L — 29°7 —
o o +g,u g 89“’/ aga/g

(7.6)
Subsequently, so as to make easy an immediate comparison with the pioneering
work of Buchdahl [1959], we pursue his conventions. For star structures, one can as-
sumes a spherically symmetric metric with coordinates (¢, r, 0, ¢) in the accompanying

shape
ds® = e’ dt? — XM dr? — r2(d6? + sin® 0 dp?), (7.7)

where v(r) and A(r) are arbitrary functions of the radial coordinate r only. The
system of units here adopted is such that G = ¢ = 1. We suppose that the inside of

stellar configuration is replete of a perfect fluid source and stress-energy tensor of the
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shape
T = (p + Pty — Pegu + (Pr = Pt) G (7.8)

where u, is the 4-velocity, satisfying u,u* = —1 and u,V*u, = 0. Here, p is the
matter density, p, and p; are the radial and transverse pressure. Since, we choose
another hypothesis, specifically, £,, = —P = (p, + 2p;)/3, as per the definition
recommended by Harko and his co-workers in Harko et al. [2011], the tensor (7.6)

gives
O = 2T, — P gu. (7.9)

Generally, the field equations depend through the stress-energy tensor, on the
physical nature of the matter field. Thus on account of f(R,T) gravity relying upon
the nature of the matter source, we get several theoretical models corresponding to
different matter contributions for f(R,T) gravity are conceivable, where the general-

ized Einstein-Hilbert Lagrangian is given by

F(R,T) = f1(R) + fo(T), (7.10)

with f1(R) and fo(T) being functions purely dependent upon R and T, respectively.
This class of separable models offers a significant opportunities for solving or evad-
ing some issues one countenances when regarding GR as the background theory of
gravity and can give a reasonable extension of f(R) gravity. On this respect, the
f(R,T) gravity has been applied to astrophysics of compact structures and cosmol-
ogy, among other areas, yielding interesting and testable outcomes. In this regard,
the gravitational coupling is again given by an effective, matter dependent coupling,
which is proportional to the derivative of the function f5(7T) with respect to T. The
gravitational field equations can be reevaluated in such a form that the higher-order
corrections, coming both from the geometry and from the matter-geometry coupling,
give a stress-energy tensor of geometrical and matter origin, portraying an effective
source term on the standard Einstein field equations. In the f(R,T) domain, the
cosmic acceleration may result not only from a geometrical contribution to the total
cosmic energy density but it is also dependent on the matter content of the universe,
which provides new corrections to the Hilbert-Einstein Lagrangian via the matter-
geometry coupling. Therefore, depending upon the choice of f1(R) and f5(7T), we can

formulate different f(R, T) models which has consistently with astrophysical restraints
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and local gravity test. Being aware of this situation, we choose the two different func-
tional forms of f(R, T)—gravity corresponding linear and Starobinsky f(R,T) models
specifically, f(R,T) = R+ 2xT where f;(R) = R and f(R,T) = R+ ER? +2xT where
f1(R) = R + £R? along with the linear combination of f5(T) such as fo(T) = 2x7T to
determine the effective stress-energy tensor (Harko et al. [2011]), where £ and x are
two coupling constants. We would like to mention here that we can recover GR from
our selections of algebraic functions f(R,T) by setting the coupling parameters £ and
X to zero. As a general remark, we can say that the astrophysical model related to the
existence of the matter-geometry coupling is consistent with the stable stellar configu-
ration, as well as its consequences yield new features and the emergence of corrections
and extensions as compared to GR. In this regard, we discuss the physical nature of
the two different algebraic functions f(R,T) = R+2xT and f(R,T) = R+ER? +2xT
to address the study of compact astrophysical structures during the framework of
f(R) gravity theory examining the admissibility of the astrophysical system, where
the coefficient of R must be one to yield conventional gravity in low curvature en-
vironments and y is a single parameter describing the modification of gravity. Note
there is no question of Ostrogradsky instability in this theory. Obtaining strong limits
on y could severely effect the possible contributions of this term in astrophysical situ-
ations. The simplest and most trivial choice for the R dependence corresponds to the
Einstein-Hilbert term. This is the way to study how the material corrections given
by 2xT promote deviations from GR and f(R) gravity. Also, this modification makes
change in standard Einstein field equations and exhibits presence of the new matter
type interior the compact stellar structure. This type of matter being discovered by
a significant interaction of matter curvature coupling. However, the effect of matter
curvature coupling present in f(R,T) gravity on the relativistic structures leads to a
source term which may yield interesting results. It can produce a matter-dependent
deviation from geodesic motion and also helps to study dark energy, dark matter
interactions as well as late-time acceleration. For this purpose, we discuss the models
corresponding to linear and non-linear f(R,T) function in two different sections as

follows:

7.3 Field equations in linear f(R,7T)—model

By involving of the linear f(R,T) function in Eq. (7.4), the Einstein tensor be-
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comes
G =87 Ty +XxT g +2X(T0 + P g)- (7.11)

Note that field equations (7.4) are reduced to EFEs when f(R,T) = R. Studying
such a particular linear assumption has generally admitted addressing astrophysical
as well as cosmological solutions. By substituting the value of f(R,T) = R + 2x7T in
Eq. (7.5), we find

X

M - _ M H
V*T,., pEE— {ng T+2VH(P guw) |- (7.12)

For the spacetime (7.7), the field equations (7.11) when f(R,T) = R+ 2xT reduce

to
N 1 1
A
8Tpess =€ (?—ﬁ> _'_ﬁ’ (7.13)
/
(v 1 1
87TpTeff—€ (?—i—ﬁ) _ﬁ7 (714)
-2 2 — N
8T Presy = 67 (2V” + 7+ =) u’)\’) : (7.15)
r
where,

X( )
eff = — (90 —p, — 2
Pef f p+247T p—Dp Dt
X( )
reff — Pr — 3p—"Tp, —2
Dreff =P Y P p Pt

— _L< o )
Preff =Pt~ 54— 3p—pr —8p; ).

On using the above definitions, the field equations (7.13)-(7.15) becomes

A

ST (Y +627r>(x T dn) [PX {160 + 3m) — v’} + 16(x + 37)
(& = 1)+ rx {2/ + v (/ +4)} |, (7.16)
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A
(&
= )\/ / ) " / 9 o ’ 4
T e+ ) [T{X (rv/ +8) = 2" + 1/ (20x — rxv/' + 487) |
~16(x +3m)(c* - 1)) (7.17)
-
e , /
B = 12 4 9
" 48r2(x + 2m)(x + 4m) [r{ N{r(5x + 12m)v' +4(x + 67)} + 2r
(5 + 12m)" + r(5x + 1200/ 2+ 8(x + 31/} +8x (= 1) | (7.18)

Solving the above field equations exactly is a difficult task. Many authors have
adopted several methods to obtained the solution. In this article, we will adopt the

embedding class one approach to solve the field equations.

7.4 Method of embedding class one

Then again, Eisenhart [1966] was showed that an embedding class one space (n +
1) dimensional space V"™ can be implemented into a (n + 2) dimensional pseudo-
Euclidean space E™2 can be represented by a (n + 1) dimensional space V"t if
there subsists a symmetric tensor a,,,, which fulfills the accompanying Gauss-Codazzi

equations:

Rinnpg = 2€ amppagn

0 = ampny — F?np]amq + Fg@[nap]qv

where e = £1, R,y is the Riemann curvature tensor, while a,,, are the coefficients
of the 2nd order differential shape.

Kasner [1921] shown that the Schwarzschild’s vacuum can be embedded into six
dimensional psuedo-Euclidean space by a series of coordinate transformations. This
means that the Schwarzschild exterior is of class 2. Similarly, Gupta and Goel [1975]

adopted a different coordinate transformations:

21 = ke”/? cosh <£) . 2o = ke’/?sinh (é) , 23 = f(r),
4

z* =rsinfcos ¢, z5 = rsinfsin ¢, zg = rcosb,

to transform a generalized four dimensional spacetime (7.7) into six dimensional

pseudo-Euclidean space i.e.

ds* = (dz)* — (dz)? F (dzs)* — (dzy)? — (dzs)* — (dz)?, (7.19)
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with [f/(r)]*> = [ — (¢* — 1) + k*¢"v?/4]. This again involves that the 4-D line
element (7.7) can be implemented in 6-D Euclidean space, nevertheless, there exist
a conceivable case where (dz3)? = [f'(r)]* = 0, than the six dimensional Euclidean

space (7.19) can be reduces to 5-D pseudo-Euclidean space. This is conceivable only

if

Fr))?=F[— (= 1) +k2ev?/4] =0, (7.20)
or
k.2
=1+ y Ve, (7.21)

The same condition (7.21) was originally derived by Karmarkar [1948] in the shape

of components of Riemann tensor as

R1010R2323 = R1212R3030 + R1220R1330~ (722)

Pandey and Sharma [1982] drew attention to the fact that Karmarkar condition is just
the important condition to turn into a class one, they found the adequate condition
as Rago3 # 0. Henceforth, the requisite and adequate condition to be a class one
is to fulfill both Karmarkar and Pandey-Sharma conditions. In terms of the metric

components, (7.22) can be composed as

N/
1—e?

=NV =20 + V?) + 2 (7.23)

which on integration one gets the g;;—metric function as

e = (A+B/\/«5’)‘7—1dr)2. (7.24)

where A and B are two constants of integration. One must always keeps in mind that
there is no class one vacuum exterior as the static Schwarzschild’s vacuum is already

a class two solution.
7.5 Embedding class one background in linear f(R,T)
—gravity

Solving the field equations in f(R, T)—gravity exactly is a challenging task because

of the highly coupled non-linear differential equations. To simplify the problem, we
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have adopted the embedding class one approach, which is application to all four

dimensional spacetime. Here, we propose a new metric function
e =14 ar?log (br* +2). (7.25)

When ansatz e*, one must keep in minds that it must be increasing function of radial
coordinate and unity at the center which ensure that the gravitational potential e}
must keep the form e*") = 1 4+ O(r?) near at r = 0 as well as it should be not same
as Kohlar-Chao solution or Schwarzschild solution otherwise anisotropy will vanishes

throughout the model (Maurya et al. [2015a, 2016¢]). Using (7.25) in (7.24), we get

2
o VaB(br? 4 2)

e’ = 5 { log(br?2 +2) — F < log(br? + 2)) }} 2 (7.26)

where F'(z) is the Dawson’s integral defined by
F(z) = e_$2/ e dr = g e erfi(x).
0

Here erfi(x) is the usual imaginary error function. In order to test physical validity
of the obtained gravitational potential (7.26), it was proved by the researchers Lake
[2003, 2004], Herrera et al. [2008], Maurya et al. [2017a] that any realistic models
should preserve the monotonic increasing behaviour of v(r) throughout inside the
compact object and attains its regular minimum at centre. The said fetures of the

A(r) and v(r) can be observed from Fig. 7.1.
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Figure 7.1: Variation of metric functions with radial coordinate for 4U 1820-30 (M =
1.58 £0.06 Mg , R=19.1+0.4 km) with b = 0.004.
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Plugging the metric functions into the field equations (7.16)-(7.18), one can write

alfi(r) + fa(r) + fs(r) = fa(r)]

6(x + 2m)(x + 4m) (br2 +2) f5(r)[h(r) + 1]?

a

(7.27)

6(x + 2m)(x + 47) (12 + 2) g5 (r) [ (r) + 1] [bQTQX (4’4 V() = BT)

(1) + ga(r) + g5(r) + 9a(r)].
ar’ky(r) [a (br? + 2) log® (br? + 2) — b]
2(x + 4m) (br2 4+ 2) [h(r) + 1]2kqo(r)

(7.28)

(7.29)
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Figure 7.2: Variation of energy density with radial coordinate for 4U 1820-30 (M =
1.58 £0.06 My , R=9.1+0.4 km) with b = 0.004.
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Figure 7.3: Variation of pressures with radial coordinate for 4U 1820-30 (M = 1.58 +
0.06 My, , R=9.1+0.4 km) with b = 0.004.

172



7.5. Embedding class one background in linear f(R,T) —gravity

=
\

-
PR

N
N
3
\
s
\
\
\
\

P
-
-

- e
Pt

=
o
AR

P
L.~
b

A MeV/fm?
(-]

x =0 Black
x=0.2Red
x = 0.4 Blue

x = 0.6 Orange

x =0.8 Green
x =1Purple

0 2 4 6 8

r km

Figure 7.4: Variation of anisotropy with radial coordinate for 4U 1820-30 (M =
1.58 +£0.06 My , R=9.1+0.4 km) with b = 0.004.

where,

filr) = 2a*Br’(x + 3m) (br* + 2)2 log® (br* +2) + b*r® [8A(X + 3m)

Jar?log (br? 1 2) + Brx}
fa(r) = b(br® +2)log (b2 + 2) [12A(X + 3m)/A(r) +
4aBr¥(y + 37) + 3BTX}
fs(r) = 2ar (br* +2) log? (b + 2) [QAbr(X +37)/A(r)
+B {4brx + 97 (b1 + 2) + 6x} |,
fur) = vmaBr(x + 37)\/log (br% + 2) [(br2 +2) log(br? + 2){ar?
log(br? +2) + 3} + QW} erfi (m) ,
fs(r) = 2Aby/R(r) — gﬁBr\/merﬁ ( log (br2 + 2))
+aBr (br* + 2) log (br® + 2)
gi(r) = —2a*Bri(x + 3m) (br® + 2)log? (br? + 2) ,
g2(r) = 2aBr (b +2) \/log (br® + 2) [arz(x +3m) (b2 + 2) log? (br? + 2)
—br?x + 3m(br? + 2) log(br? + 2)] F (\/m) ,
gs(r) = b(br*+2)log (b +2) [Br{x(Qarz +9) + 2r) — 127TA\/W],
gi(r) = 2ar (br* +2) log® (br® + 2) [ — 2Abr(x + 37)/R(r) + 5bBrly

+7mB (9()7‘2 — 6) ] ,
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g5(r) = aBr (br® +2) log (br* + 2) + 2A4b\/h(r) — aBr (br® + 2)
log (br2 +2) F (m) ,
ki(r) = —vmaBry/log (0r? + 2) erfi ( log (br2 + 2)) +2aBr (br? +2)
log (br® + 2) + 4Ab\/h(r) — 4bBr,
ka(r) = 2aBr (br® +2) log (br® +2) + 4Ab\/h(r) — /7

aBr+/log (br? + 2) erfi (x/log (br? + 2)) :

with h(r) = ar?log (br? + 2).
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Figure 7.5: Variation of w, and w; with radial coordinate for 4U 1820-30 (M =
1.58 £0.06 M , R =9.1+0.4 km) with b = 0.004.

The remaining physical variables can be calculated from the above physical quan-

tities. The EoS parameter and interior redshift can be found as

Wy = b , W= b (7.30)
p p
2(r) = e -1 (7.31)

For physical matters one must always satisfy w; < 1.

7.6 Boundary conditions

It is well-important to matching the inward geometry M~ at the surface ¥ =r = R
with the outside space-time M™ encompassing the configuration in order to ensure

a confined and limited matter distribution with well-specified mass M and radius R
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i.e., a well-behaved compact stellar configuration. In this regard, on account of GR
background, the external manifold is notable, exactly it compares to Schwarzschild
vacuum space-time by taking into account a compact stellar structure which is static,
non-radiating, and uncharged. Nonetheless, with regards to f(XR,T) gravity the ex-
ternal manifold encompassing the fluid sphere doesn’t really correspond with the
Schwarzschild solution, what is more this outside space-time could on a basic level
get contributions from the material area given by the trace of the energy momentum
tensor because of the breakdown of the minimal coupling matter standard between
the material area and the gravitational. Subsequently, the well-known Israel-Darmois
(ID) (Israel [1966a], Darmois [1927]) formalism corresponding to the usual joining
conditions applicable in GR, could not work in f(R,T) gravity anymore. So, in order
to obtain the usual junction conditions to be applicable in this theory, we can redefine
it appropriately. In this respect, a straightforward method to perceive how the con-
tributions originating from the f(&R,7T) function could affect the outside space-time

is re-composed the field equations (7.4) as follows,

1 | f R
G,uz/ = R;w - 5 :ng/ = 7 |:87TT;UJ + 9w — §ffR Guv

2
f= (7.32)
- (T/w + @ul/) Jr— (g/wD - Vuvu) fﬂz} )
afterward by considering the trace of this expression (Eq.(7.32)) one gets
1
9%:f—[87r7+2f—(7+@)f7—3[]f4. (7.33)
R

Consequently, by taking into consideration a matter field under vacuum i.e, 7, =
0— T =0 Eq. (7.33) gives

R— L2 — 300, (7.34)
fr
where f; stands the geometrical part of the f(R,T) function that is f; = f1(R).
Indeed, the f(R,T) function can be viewed as f(R,T) = fi(R) + f2(T). In this
manner, it is easy to see that a disappearing stress-energy tensor in the context of
f(R,T) theory of gravity doesn’t mean a null Ricci scalar as we have seen in GR where
for 7,,, = 0 =+ R = 0 — R,, = 0 which describes a vacuum space-time. Additionally,
T,, = 0 doesn’t suggest fo = 0 at all obviously this term could contributes with
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a constant term. At this stage, the usual junction conditions proposed by Israel-
Darmois are well redefined, well-applicable, and will work as they do in usual gravity,
if and only if we make sure that the external solution corresponds to Schwarzschild
solution. Clearly it’s not a simple task to accomplish it, since the function f(R,T)
can be as complex as one wants. However, in the current circumstance, the linear
f(R,T) function i.e. f(R,T) = R+ 2x7T guarantees that the contributions of the
material and geometric area stay limited to the range 0 < r < R. Besides, the
reality that the function f(R,T) is linear in R, in addition to a linear coupling in
T via a flexible parameter y, can be viewed as a usual gravity model coupled to a
variable cosmological constant which likewise breaks the minimal coupling matter
with the gravitational area. More precisely, by substituting the linear functional form
f(R,T) =R+ 2xT into Eq. (7.34) and solving for R gives R = 0 and subsequently
R,, = 0 (in Eq (7.32)) which describes the Schwarzschild geometry encompassing
the fluid sphere i.e, a vacuum outside space-time. Then again, if f(R,T) function
takes another more complex form like f; includes the R?, R?® and so on terms. For
this purpose, if T, = 0 prompts f; = 0, the external variety can be influenced by
the geometric terms encoded in f; and fz. These terms R?, R3 etc. may alter the
interface between the internal geometry and the outside one (Capozziello [2002]). In
this regard, Cooney et al. [2010] have exhibited that in the presence of cosmological
constant A, the outside metric for f(R) gravity is like to Schwarzschild-de Sitter
metric which recognizes the constant cosmological, and which can be re-scaled by the
chosen f(R) function. Therefore, this claim was also supported by Ganguly et al.
[2014] which clarify in detail by taking into account Birkhoff’s theorem, i.e. for static
spherically symmetric stellar structure, the inside stellar systems can be matched with
Schwarzschild vacuum gave that the Ricci scalar and its normal derivative disappears
at the boundary surface of the stellar configuration. Therefore, the compatible outer
spacetime is only Schwarzschild vacuum solution. Now this exterior spacetime i.e.

Schwarzschild vacuum solution is given as

2 om\
ds? = (1 - —m> dt? — (1 . —m) dr? — r2(d6* + sin20 d¢?).  (7.35)

T r
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Figure 7.6: Variation of redshift with radial coordinate for 4U 1820-30 (M = 1.58 £+
0.06 My , R=19.1+0.4 km) with b = 0.004.

However, we must keep in mind that to avoid singularity, one must satisfy » > 2m.

At the surface r = R, we get ds? |,—p = ds? |,—r which imply
M) =1 T — (B (7.36)

On using (7.36), we get

oM
“ T RAR—2M)log (bR + 2) (7.37)

A = 4J1- 2]];4 | VaB (Zfz +2) [F( log (bRZ + 2)) — Jlog (bRZ + 2)} (7.38)

Generally, in modeling compact stars the pressure at the surface needs to vanish i.e.

pr(R) = 0. This condition allow us to determine one more constant as

— 4b/h(R) (J1- 22 [aRQ( +37) (bR + 2) log® (bR? + 2) — bR2y

+37 (bR? + 2) log (bR + 2) } {wg(R) + wy(R) —

2(x + 3m)h(R)%?wi(R) 67 (bR +2)" h(R)*w:(R)
VaR? (bR? +2)7? VaR?

+2aR (bR + 2) ws(R) 1og(bR2+2)F( log(bR2+2)>} . (7.39)
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wi(R) = F (m) — log (0RZ + 2)

wa(R) = aR*(x + 37) (bR* 4 2) log” (bR* + 2) — bR*x +
31 (bR* + 2) log (bR + 2)

ws(R) = bR (bR*+2) (x (2aR* +9) + 247) log (bR? 4 2) + 6maR
(bR* +2) (3bR* — 2) log® (bR* + 2) — b*R%x

wy(R) = 2y/abR?x (bR* + 2) \/h(R)w:(R) + 10abR*x (bR* + 2) log® (bR? + 2)
~2(x + 31)aR® (bR +2)” log® (bR? + 2) .

The parameter b will be treated as free whereas M and R will be taken from the

observational evidences.

7.7 Physical Analysis on the new solution

Any new solutions must be analyze through various physical tests. After satisfying
all the physical constraints one can proceed further for modeling physical systems as

follows:

7.7.1 Hydrostatc equilibrium

All the physical compact stars are believed to be in equilibrium state. Such equilib-
rium state can be tested by using equation of hydrostatic equilibrium or the modified
TOV-equation which is given by

' dp.  2A X

d
“o+p, e, S VS R R 4
2(p+p)+ dr r 3(8m+ 2x) dr<3'o P p) =0 (7.40)

<

Here, the first term is gravity (F}), second term is pressure gradient (F},), third
term is the anisotropic force (F;) and the last term is the additional force (F},) in
f(R, T)—gravity. The fulfillment of the modified TOV-equation is exhibited in Fig.
7.7. Tt shows that the forces due to gravity and pressure gradient are highest in GR
case i.e. x = 0, however, anisotropic force is lowest and F;,, vanishes. This will enable
to hold more mass than other cases. As x > 0 increases the Fj, and Fj} decreases
although the F, and F,, slightly increase. Hence the maximum mass that the hold

by the system will also reduces with increase in Y.
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Figure 7.7: Variation of different forces in modified TOV-equation with radial coor-
dinate for 4U 1820-30 (M = 1.58 £0.06 My , R =9.1 £0.4 km) with b = 0.004.

7.7.2 Causality condition and stability factor

We all aware of f(R,T)—gravity as an prolongation of GR, which provides a constraint
on maximum speed limit. All the particle with non-zero rest mass much travel at
subluminal speeds i.e. less than the speed of light (causality condition). The velocity
of sound in a medium must also satisfy the causality condition and it determines the
stiffness of the related EoS. Therefore, one can determine the sound speed in stellar
medium to relate its stiffness. The most stiff EoS is the Zeldovich’s fluid (p, = p.)

where the sound travels exactly at light speed. The sound speed can be determine as

2_dpr o _ A

= . 41
Ur dp ) Ut dp (7 )

In Fig. 7.8, we plot the velocity of sound with the radial coordinate. It can be seen
that the velocity of sound is maximum in GR (x = 0) and decreases with increase in
X- This imply that the solution leads to an stiffer EoS in GR than in f(R, 7).

The speed of sound can also related to the stability of the configuration. As per
Abreu et al. [2007], the stability factor can be defined as vZ—v?2. So long as v, > v;, the
system is generally considered stable, or in other form —1 < v? — v? < 0, otherwise
unstable. The variation of stability factor is also shown in Fig. 7.9 which clearly

indicates the solution is stable.
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Figure 7.8: Variation of sound speeds with radial coordinate for 4U 1820-30 (M =
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7.7.3 Adiabatic index and stability

Another parameter that determines the stability and stiffness of EoS is the adiabatic
index which is defined as the ratio of identifies heat at constant pressure to the
identifies heat at constant volume. For any fluid distribution the adiabatic index can
be determine as (Bondi [1964])

(7.42)

As per Bondi’s perceptions, the stellar fluid distribution is stable if v > 4/3 in New-
tonian limit. If v < 1 contraction is possible and catastrophic if v < 1. This is
no longer valid for anisotropic fluids. This was extended by Chan et al. [1993] to
anisotropic fluid. For anisotropic fluids, the stable limit of 4 depends in the nature
of anisotropy and its initial configuration. If anisotropy A > 0, the stable limit will
be still v > 4/3, however, if A < 0 stability is still possible even if v < 4/3.

- T - -
_____________ X =0 Black
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Figure 7.10: Variation of adiabatic index with radial coordinate for 4U 1820-30 (M =
1.58 £0.06 My , R=9.140.4 km) with b = 0.004.

The variation of adiabatic index is shown in Fig. 7.10. Once again we have higher
adiabatic index in GR than f(R,7). This also implies the EoS is more stiff in GR
and the solution is stable as v > 4/3.

7.7.4 Static stability criterion

This criterion analyze the stability of stellar configurations under radial perturbations
originally established by Chandrasekhar [1964]. Further, Harrison et al. [1965] and
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Zeldovich and Novikov [1971] simplifies this method. The static stability criterion
imposed the condition that if OM/Jp. is greater than zero, the system is stable
otherwise unstable. To see it, we have calculate the mass as a function of p. given as

R log 8

M(py) == [1— :
(o) = 3 poR?(3x + 87)log (bR? + 2) + log 8

(7.43)
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Figure 7.11: Variation of total mass with central density for 4U 1820-30 (M = 1.58 +
0.06 Mg, , R=9.1+0.4 km) with b = 0.004.

The variation of mass with respect to the central density is shown in Fig. 7.11.
From this, one can conclude that the stability is enhance with increase in x. This
is because the range of mass is saturated slightly fast in GR than in f(R,T). This
implies that the stable range of density during radial oscillation is more for higher

values of . This can conclude that that solution is stable under radial perturbations.

7.7.5 Energy conditions

After confirming all the stability tests, the nature of matter content i.e. either normal
(baryonic, hadronic etc.) or exotic (dark matter, dark energy etc.) can be identified
by using energy conditions. Satisfaction or violation of certain energy conditions will

imply the nature of the matter. These energy conditions are given as

Nul @ p+p >0, p+p >0,
Weak : p+p, >0, p+p >0, p>0,
Strong : p+p, >0, p+p: >0, p+pr+2p; >0,
Dominant : p > |p.|, p > |ps|.
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Figure 7.12: Variation of energy conditions (ECs) with radial density for 4U 1820-30
(M =1.58+0.06 Mg, R=9.1+0.4 km) with b = 0.004.

From Fig. 7.12, it is found that all the energy conditions are satisfied by the solution

and therefore, the matter content is normal.

7.7.6 Stiffness of EoS, M — R and [ — M curve

There are several ways of determining the stiffness of an EoS e.g. by determining
adiabatic index, sound speed etc. However, the sensitivity to stiffness is found to be
very sharp in M — R and I — M graphs. In fact, I — M graph is the most effective
and sensitive to the stiffness of an EoS. In Fig. 7.13 we shown the variation of mass
with respect to the radius. Since, from the above sections we have already noted
that the EoS is stiffest in GR case and as x increases the stiffness reduces. Due to
this, the mass that can hold by the corresponding EoS will also be maximum in GR
and reduces as x increases. The same nature can be seen from the M — R curve in
Fig. 7.13. To compare with the I — M curve, one must establish how to determine
the moment of inertia (I). Adopting the Bejger and Haensel [2002] formula one can

determine the I corresponding to a static solution. It is given by

I= % (1 + W) MR, (7.44)

The change in mass with respective to I is shown in Fig. 7.14. Again, we can verify
that the EoS is most stiff in GR regime. The transition at the peak in I — M curve

is sharper than in M — R curve. Therefore, one can conclude that the sensitivity in
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EoS is better in I — M curve.
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Figure 7.14: M — I curves for b = 0.004.

Further, our generated M — R curve is also fit with observational results for few
well-known compact stars. As examples, we have matched for PSR J1614—2230,
Vela X—1 and 4U 1820—30. Since the M — R curve fit with these compact stars, one
possibility arises from I — M graphs to predict the possible range of I for the above

mentioned objects.
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7.8 Nonlinear model for Starobinsky-f(XR,7T) func-
tion
7.8.1 Field equations for f(R,T) =R+ (R* + 2xT function

Taking the f(R) function to be of the form Starobinsky model while keeping f(7)
function the same as above i.e. f(R,T) = R+ ER? 4 2xT, the general field equations

becomes (7.4) reduces to

(1+2LR)G, + g R, + 26(9,,0 — V,V,)R
= 87TT;W + X ‘Tgwf + 2X<Tuu + :Pg;w)? (745)

where the RHS can be treated as effective energy-momentum tensor T/f,ff . Now, with

the interior spacetime (7.7) the decoupled field equations become

—e 2 2 2
P = T I [527“ YF" + 48712 F" — 107

XF'N = 247r? F'N — 120 Y F'V' + 40r F' + 967rF' —

16F ety + TEr NV + 120 Fr’ Ny — 14Fr? " — 24n

Fr2y" —TEr " — 120 Fr*v? — 16 FryN — 28Fryv/

—A8TFrv 4+ 16 Fx + 6 r*R2y + 24mwe er2R? + 6er?

Ry + 247re’\7”2.’R} (7.46)

e—)\

. = — 4 F" — 140> F' N —
b 9672 (x + m)(x + 4m) [ X X

12P2 F'V' — 247 F'Y — 40ryF' — 967 F' + 16Fety
—TFr* NV — 120 Fr* NV 4+ 14Fr*xv" + 24n Fr*y” +
TEr?x (V) 4+ 120 Fr? (V) = 32Fry N — 487 Fr)\ —
20Fryv — 16Fx — 6 r* Ry — 24me er’R? — 6e’r?

Ry — 247re’\r2fR] (7.47)
oA
A = 4P 2rF () 4 2) - 4Fe -
20y - 4n) r°F" +2rF (r\' + 2) e
2Fr*V" — Fr2v? + FrX (rv/ +2) + 2Fry + 4F] ) (7.48)
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and p; = A+ p,. Here FF = 0f(R,T)/OR = 1+ 2£R and prime “ /7 represents the
differentiation w.r.t. 7. Therefore, it is clear that F’ = 26dR/dr and F” = 2£d*R /dr?

with Ricci scalar R is given by

2 -
R = i ;? (2r2" + 2V — X (1 + 4) + 4r) + 4)

7.8.2 Embedding class one solution in Starobinsky—f(R,T)
model

Since the expression for the field equations (7.46)-(7.48) are very lengthy, we in-
tentionally chosen a simpler class one solution. As a consequence, we are assumed
Finch-Skea ¢1; and using (7.24) we get Adler [1974] goo form i.e.

A va ’
et =1+4ar* and e" = (787’2 + A) : (7.49)
Then corresponding interior spacetime can written as,
2 Va o, o ’ 2 20992 2 2 2\ 7.2
ds® = (TBT +A> dt® — r°(df” + sin* 0 do°) — (1 + ar?)dr?, (7.50)
Since the Schwarzschild exterior solution is compatible with the matching of in-
terior solution at the pressure free boundary for this Starobinsky — f(R, T) model as

discussed in Sect. 7.8. Then by joining of interior spactime (7.35) to exterior solution,

we determine the constant parameters a and A as

1 oM\
B 2M  Va o,

where, M and R are gravitational mass and radius of the stellar object, respectively.
Due to extremely lengthy expressions for density and pressures, we are unable to
include in the paper, however, their nature will be discuss in graphical forms.

Here we are comparing four different cases i.e. pure GR [ = x = 0], linear
fo(R,T) =R+ 2xT [x = 0.5, £ = 0], Starobinsky fs(R) =R+ ER? [x =0, £ =0.5]
and Starobinsky—fs (R, T) = R + ER? + 2xT [x = € = 0.5]. From Fig. 7.19,
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7.9. Discussion and conclusion

it can be seen that the central density is highest in pure GR case while lowest
in fo (R, T), however, the linear f,(R,T) has slightly higher central density than
Starobinsky fs(R,T) model. Indeed, all these cases has significant difference in cen-
tral density, although the surface density is almost the same. Further, the central
pressure is also highest in pure GR and lowest in fs, (R, T) gravity while f.(R,T)
has slightly low than fg(R). As a result, the surface radius decreases in the trend
Rgr > Rs > R;, > Rg.p, Fig. 7.20. Similar trends can also be observed in trans-
verse pressure as well (Fig. 7.15). In the case of pressure anisotropy A, the pure
GR and linear f1,(R,T) has vanishing anisotropy at center and increases outside with
same trends and almost equal while the central anisotropy in fg(R) and fsi (R, 7T)
are non-vanishing. And for the last two case, anisotropy decreases towards surface in
similar trend exactly equal at the surface, Fig. 7.16. All the four cases also fulfilled
all energy conditions (Figs. 7.17, 7.18) and therefore physically viable.

600 T T

Figure 7.15: Variation of transverse pressure in Starobinsky-f(R,T) theory.

7.9 Discussion and conclusion

In this chapter, we have investigated the existence of the embedding class one
methodology in the arena of f(R,T) gravity theory. We adopted the embedding
class one methodology where a four-dimensional interior spacetime is implanted into
the five-dimensional pseudo-Euclidean space throughout the area of f(XR,T) gravity
theory, so as to acquire general solutions of the altered EFEs. On the other hand,

this methodology not only improve in investigating new accurate solutions throughout
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f(R,T) gravity theory, yet additionally to explore the theory of compact stellar struc-
tures in the same domain. Using this beautiful methodology notable as Karmarkar
condition, we have found a new class of generalised solutions for the anisotropic
spherically symmetric relativistic stellar structures. In this regard, we have gener-
alised the portrayal of the compact stellar structures in the background of f(R,T)
gravity by exploring the modified shape of the EFEs. We got the metric potentials
from the set of EFEs under the Karmarkar condition and easily coordinated them
with outside Schwarzschild solution. It can be observed from the Egs. (7.25) and
(7.26) that e*(r = 0) = 1 and e”(r = 0) # 0 which shows that our stellar model is
physically achievable and agreeable. So, we can also see from Fig. 7.1 that the com-
portment of the gravitational potentials i.e, the time-time component (e”) and the
radius-radius component (e*), which are finite at the center of the stellar configura-
tion and monotonically increasing with increasing radius towards the surface, as well
as the solutions are free from any physical and geometric singularities. Moreover, all
the thermodynamic observables, namely energy density (p), radial pressure (p,) and
tangential pressure (p;) are represented in Figs. 7.2 and 7.3 respectively. It is clear
from this two figures that all the important conditions for a physical stellar model
via the comportment of energy density quantity as well as the two pressure elements
via radial and tangential behaviors are positive and well-defined inside the stellar sys-
tem. Additionally, all these quantities having their maximal values at the center of
the stellar configuration and afterward progressively decreasing with increasing radial
coordinate to arrive at their minimum value at the boundary surface, which approves
the physical availability of the accomplished solutions. The anisotropic stress is de-
scribed in Fig. 7.4 and expressed in Eq. (7.29). The magnificence of this quantity is
that the anisotropy will be directed outward when A > 0, i.e. p; > p, whereas, A <0
i.e., py < p, involves that direction of the anisotropy will be inward. Besides, from the
graph corresponding to the anisotropy stress versus radial coordinates r, it is easy to
observe that at the center anisotropy disappears, i.e., at the origin, the radial pres-
sure and tangential pressure are equal (p; = p,). Moreover, the anisotropy stress is
positive and reaches maximum value at the boundary surface of the stellar structure,
which provides an intrinsic property and helps to build a more compact and massive
stellar body. The profile of the radial (w,) and tangential (w;) EOS parameters with
radial coordinate for 4U 1820-30 is shown in Fig. 7.5. In this respect, the curve shows
that the EoS parameters are less than one i.e., w,,w; < 1, which establishes that the

Zeldovich condition is well-respected everywhere inside the astrophysical system for
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all the chosen values of y—coupling parameter of the f(R,T)—gravity. Concerning
the gravitational redshift Z,, for an isotropic stellar structure without a cosmological
constant, Buchdahl [1959] and Straumann [2012] have exhibited that Z; < 2. Béhmer
and Harko [2006] showed that for an anisotropic stellar structure within the sight of
a cosmological constant, the gravitational redshift can take significantly higher value
Zs < 5. This last constraint was thusly altered by Ivanov [2002b] who exhibited
that the most extraordinary acceptable value could be as high as Z, = 5.211. Along
these lines, the accomplishment of the gravitational redshift with radial coordinate
for 4U 1820-30 is represented in Fig. 7.6. From this figure, it can observe that
the gravitational redshift within representative value showing by the investigators
Buchdahl [1959], Straumann [2012], Béhmer and Harko [2006], Ivanov [2002b] which
strongly proves the agreement of our compact astrophysical system in the arena of
f(R, T)—gravity.

To reveal stability of the stellar model as far as the equilibrium state of the forces,
we have examined the equation of hydrostatic equilibrium or the modified TOV-
equation in the arena of f(R,T)—gravity theory. The behavior of the four forces,
namely, gravity (F}), pressure gradient (F}), the anisotropic force (F,) and the addi-
tional force (F,,) in f(R,T) -gravity are expressed in Eq. 7.40 and featured in Fig.
7.7, which affirms that our stellar model is completely stable in terms of the equilib-
rium state of forces. The curve corresponding to the different forces also presents an
intriguing phenomenon: an additional force F}, is generated because of the effect of
matter-geometry coupling. We presented this additional force as an altered force and
we noticed that this force is repulsive in kind as well as proceeds alongside the exter-
nal direction in the astrophysical system. On the other hand, concerning the effect
of x— coupling constant of the f(R,T)—gravity, the forces Fj, and Fj, are highest in
GR case i.e. y = 0, however, [, is lowest and F;, vanishes, as well as in this case
can hold more mass than the other cases. As a consequence, when y goes from 0 to
1 the F, and Fj, decrease despite the fact that the Fj, and Fj, lightly increase, which
also reduces the maximum mass that the stellar system can contain. So, after the
fulfillment of the equation of hydrostatic equilibrium or the modified TOV-equation,
the stability was also analyzed through different physically stringent conditions such
as causality condition, stability criteria via Bondi’s condition, Abreu et al. condition
and static stability criterion. In this connection, it is obvious to see from Fig. 7.8
the behavior of sound velocities against radial coordinate for different values of the

coupling parameter y. The figure shows that the sound velocities along a radial as

191



7. Physical properties of class I compact star model for linear and
Starobinsky— f(R, T) functions

well as transverse direction are well in the range between 0 and 1, and demonstrate
that the stellar system is totally well-behaved and keeps up the causality condition
within the source. Additionally, it can be seen from Fig. 7.8 that the sound velocity is
greatest in GR (y = 0) and decreases with increase in x. This infers that the solution
prompts a stiffer EoS in GR i.e., the case x = 0 than in f(R,T) i.e., the case x # 0.
The sound velocity can evenly be linked to the stability of the stellar structure. Ac-
cording to Abreu et al. condition, the stability factor can be characterized as v? —v2.
Since v, > vy, the stellar system is completely viewed as stable, or in another form
—1 < v? — v? <0, otherwise unstable. The behavior of stability factor has addition-
ally appeared in Fig. 7.9 which plainly demonstrates the solution is stable. Fig. 7.10
highlights that in all the choices of the y—coupling constant of the f(R,T)—gravity,
our anisotropic stellar system is perfectly stable versus an infinitesimal radial adia-
batic oscillation according to Bondi’s perceptions, as 7 is greater than 4/3 in all inside
points of the stellar structure and also confirms that the EoS is more stiff in GR case.
We too presented the behavior of mass as function the central density in Fig. 7.11,
which also validates the stability of our stellar system under radial perturbations, and
provides improvements with the increase in the values of y—coupling parameter.

It is intriguing to mention here that after affirming all the stability tests talked
about above, we have identified the nature of matter content by employing the ECs.
Along these lines, it is easy to see from Fig. 7.12 that all the ECs viz., null, weak,
strong and dominant in f(R,T)— gravity for all the chosen values of y— coupling pa-
rameter are fulfilled by the solution and thusly, the matter content is normal (baryonic,
hadronic, etc.).

The magnificence of our investigation isn’t just to have generated a new class
of generalized solutions for the anisotropic spherically symmetric stellar structures
under embedding class one space-time using Karmarkar’s condition in the arena of
f(R, T)—gravity, but also the sensitivity to stiffness which is very clear in M — R and
M — I diagrams. In this regards, the behavior of mass M with respect to the total
radius R appeared in Fig. 7.13 show that the EoS is stiffest in GR case i.e., y = 0 and
as x increases the stiffness diminishes which also infer that the mass can hold by the
corresponding EoS will likewise be most extreme in GR and diminishes as y increases.
On the other hand, Fig. 7.14 shows the behavior of mass versus the moment of inertia
with different values of y—coupling parameter. Also, it can be easily observed from
this figure that the EoS is most stiff in GR case. So the comparison between these
both beautiful results viz., M — R and M — I curves concluded that the sensitivity
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in EoS is better in I — M curve than in M — R curve. Moreover, the resulting
M — R and M — I curves are also well-adapted with observational data for some
compact stellar structures namely, PSR J1614-2230, Vela X-1 and 4U 1820-30, and
also we have predicted the corresponding possible range and their respective moment
of inertia from the well-behaved solution i.e, M — I curve.

Let us now discuss the impact of nonlinear f(R,T) functional form expressed
as f(R,T) = R+ ER? + 2xT on the physical features and astronomical effects of
curvature and matter coupling of compact stellar structures. It is worthwhile to
mention here that the dynamics present in f(R,T) gravity involves extra terms of
T that describes more generalized modification of GR as compared to f(R) gravity.
So depending on the parameters of the stellar model £ and x, we have analyzed the
stellar configuration from [ = 0,x = 0], [ = 0.5,x = 0], [ = 0,x = 0.5] and
[€ = 0.5, x = 0.5] corresponding pure GR, linear— f; (R, T), Starobinsky- fs(R) and
Starobinsky— fs. 1 (R, T), respectively. To present a realistic modeling of compact
stellar structures, we have applied Finch-Skea ¢, potential and we obtain the other
potential using the Karmarkar condition which corresponds to Adler g;; form as given
in (7.49), in which the unknown constant parameters a and A are determined through
a smooth link of inside and outside geometries of compact stellar structures. We have
examined graphically the physical behavior of transverse pressure, anisotropy, energy
conditions via WEC, NEC, SEC and DEC, energy density, and radial pressure corre-
sponding to specific choice of stellar model parameters, i.e., £ and y. All these physical
amounts can be observed in Figs. 7.15, 7.16, 7.17, 7.18, 7.19 and 7.20, respectively.
We have established that all energy conditions are fulfilled for all cases considered by
the choice of stellar model parameters which affirm the presence of normal matter in
the inside regime of compact stellar structures. The impact of anisotropic parame-
ter is additionally examined, i.e., A > 0 which prompts the presence of a repulsive
anisotropic force that allows the building of more massive structure. It is also found
that the physical amounts viz., p, p., p; exhibit regular as well as finite comportment
in the inside of compact stellar structures and the values of these amounts decrease
towards the surface of compact stellar objects.

In conclusion, our system of compact stellar spherical structures well-respected all
the critical physical tests carried out and mathematical point of view necessary under
embedding class one via Karmarkar condition in the arena of f(R, T)—gravity, as well
as their M — R and M — [ diagrams, are well-fitted with observational data. In this

regard, we have successfully describes the effects of all the physical requirements in
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7. Physical properties of class I compact star model for linear and
Starobinsky— f(R, T) functions

the framework of f(R,T)—gravity and we compared them with the standard theory
of GR. Accordingly, this new class of generalised solutions might have astrophysical

importance in future works.
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Chapter 8

Color-flavor locked quark stars in

energymomentum squared gravity
1

8.1 Introduction

Einsteins General Relativity agrees with all tests in the solar system to a precision of
107° (Will [2006]). Cosmic acceleration led to two possibilities: exotic matter fields
called dark energy, or a cosmological constant (A). However, some issues are still
unresolved which keep open the way to frameworks which try to extend GR. These
issues have led to another possibility by assuming that Einstein’s GR has to be mod-
ified in some way. Hence, the search for modified gravity theories which may describe
accelerating universe has become very popular due to their ability to provide an al-
ternative framework to understand dark energy. Some of these modified theories are
Lovelocks’ theory of gravitation (Lovelock [1971, 1972]), EinsteinGaussBonnet theory
(Lanczos [1938]), f(R) gravity (Sotiriou and Faraoni [2010], De Felice and Tsujikawa
[2010]), etc. For a brief review of modified gravity theories, see Ref. De Felice and
Tsujikawa [2010].

In addition to the theories mentioned above, energy-mom-entum-squared gravity
(EMSG) (Katirci and Kavuk [2014], Roshan and Shojai [2016]) has been proposed

to encode the non-minimal coupling between geometry and matter. According to

!Content of this chapter has been published in Physics of Dark universe (Elsevier), 31 (2021)
100774.
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8. Color-flavor locked quark stars in energy-momentum squared gravity

Ref. Katirci and Kavuk [2014], Roshan and Shojai [2016], the Lagrangian contains
an arbitrary functional of the Ricci scalar R and the square of the energy-momentum
tensor i.e. f(R,T*1T,,) gravity. Interestingly, it has been found that the non-linear
matter contributions in the field equations would affect the right-hand side of the
EFEs without invoking some new forms of fluid stress, such as bulk viscosity or scalar
fields. Concerning this approach, several interesting consequences have been reported,
such as cosmological solutions (Akarsu et al. [2018b, 2017], Faria et al. [2019], Barbar
et al. [2020]), dynamical system analysis (Bahamonde et al. [2019]), charged black
hole (Chen and Chen [2020]), wormhole solutions (Moraes and Sahoo [2018]), and
so on. In addition to these studies, mass-radius relations of neutron stars have been
studied for four different realistic EoS (Akarsu et al. [2018a]). In fact, authors have
used recent observational measurements for the masses and radii of neutron stars
to constrain the coupling constant «. Further, in Maulana and Sulaksono [2019]
polytropic EoS have been used to find mass-radius relation for neutron stars.

Neutron stars are dense, compact astrophysical objects with masses up to 2M
(Demorest et al. [2010], Antoniadis et al. [2013]). On the other hand, the radio pulsar
PSR J1614-2230 (Demorest et al. [2010]) around 1.97 + 0.04 M, mass has set rigid
constraints on various matter EoS for neutron stars at high densities. Initially, it was
assumed that neutron stars were composed of pure neutron matter described as a
non-interacting relativistic Fermi gas. Current sensitivities put up constraints in the
internal composition of neutron stars i.e. the composition and behaviour of equations
of state (EoS) of the dense nuclear matter. In addition to this measurements on
the radii of neutron stars provide additional constraints on the EoS (Steiner et al.
[2013], Lattimer and Steiner [2014]). However, in the aftermath of a core-collapse
supernova explosion, several compact objects can sustain densities above a few times
the nuclear saturation density in its interior. Thus, the composition and the properties
of dense and strongly interacting matter is still an open question, and of the greatest
importance for compact astrophysical objects. In spite of many efforts to explore the
EoS, dense matter in the core of compact stars may consist of quark matter which is
widely expected. On the other hand, several authors have considered an even more
extreme possibility in the formation of a degenerate Fermi gas of quarks in which the
quark Cooper pairs with very high binding energy condense near the Fermi surface.
And their prediction is the Color-Flavor Locking (CFL) phase is the real ground state
of Quantum Chromodynamics (QCD) at asymptotically large densities.

In this chapter, we focus on the CFL phase where all three flavors as well as
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8.2. Field equations in energy-momentum squared gravity (EMSG)

three colors undergo pairing near the Fermi surface due to the attractive one-gluon
exchange potential. In fact, the color neutrality constraint is to be imposed in the
CFL quark matter because a macroscopic chunk of quark matter must be color singlet
(see Alford and Rajagopal [2002], Steiner et al. [2002] for a review). According to
Ref. Rajagopal and Wilczek [2001], Alford et al. [2008] quarks in the cores of neutron
stars are likely to be in a paired phase. Depending on the previous results one may
consider that the CFL matter gives ‘absolute stability’ for sufficiently high densities
(Alford [2004]). The CFL phase has several remarkable properties, such as CFL is
more stable than SQM as long as y > m?/4A, with m, being the strange quark mass
and A the pairing gap (Alford et al. [2001]); at asymptotically large densities the CFL
phase is the energetically favored phase; at extremely high densities, where the QCD
gauge coupling is small, quark matter is always in the CFL phase with broken chiral
symmetry and so on. As it was mentioned earlier in Ref. Flores and Lugones [2017,
2010], Banerjee and Singh [2021], Lugones and Horvath [2003] that CFL matter could
be adequate candidate to explain stable neutron stars or strange stars.

From the above handful of literature it is clear that the structure of compact stars
with CFL quark matter could represent a testbed for EMSG theory. The outline of
the chapter is the following: In Sec. 8.2 we briefly introduce EMSG and its field
equations. In Sec. 8.3 we discuss the EoS for CFL strange matter. In Sec. 8.4 we
give a detailed analysis of the numerical methods employed to determine the mass-
radius relations. Sec. 8.5 and 8.6, is devoted to reporting the general properties of the
spheres in terms of the CFL strange quark matter. We finally draw our conclusion in
Sec. 8.7.

8.2 Field equations in energy-momentum squared
gravity (EMSG)

The main feature of EMSG theory is that the non-linear contributions of EM ten-
sor, to encode the non-minimal matter-geometry coupling. The Lagrangian contains

an arbitrary functional of the Ricci scalar and the square of the EM tensor, and the
action for EMSG theory is (Katirci and Kavuk [2014], Roshan and Shojai [2016])

S = / (8i R+ T, T + Lm) V—g d'z, (8.1)
™
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8. Color-flavor locked quark stars in energy-momentum squared gravity

where R is the Ricci scalar and 7}, is the energy-momentum tensor (EMT) with the
coupling paramter a. The £,,, denotes the matter Lagragian density.
The EMT, T,

v, 1s defined via the matter Lagrangian density as follows

2 5(\/ _ng) 8'E*m
Ty =— = £m v 2_7
g V=g g™ I = g

(8.2)

which depends only on the metric tensor components, and not on its derivatives. If
we vary the action (8.1) with respect to g"*, gives us the equation of motion for metric

functions:
1
RMV o EIRQMV = 8'/TT,W + 8ma (QWT,BVTM - 2@/“/) ) <83)

where,

(—)/“/ = T (5gFW + 67@7

DL,

opogn Y

1
= 2L (T - 5 guT) =TTy, + 2T Ty, — AT

with T = ¢""T},,, the trace of EMT.
Throughout this work we assume a perfect fluid EMT for the compact object. For
that we assume £,, = P and using (8.2) the perfect fluid form is given by

T = (p+ Pluyuy + Py, (8.5)

where p is the enrgy density, P is the isotropic pressure with u,u* = —1 & u,V,u" =
0, respectively. The conservation equation can be found by covariant derivative of
Eq. (8.3), which yield

VAT, = —agu V(T T7) + 2aV"0,,. (8.6)

Note that the standard conservation equation of the energy-momentum tensor does

not hold for this theory i.e., V#T),, is not identically zero.
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After some algebra, one obtains the following field equations

1 P P

R, — ?Rg;w = 87rp[ (1 + —) Uy Uy, + —guy} + 87rap2
p p

4P 3P 3P?

The Eq. (8.7) can further reduce to coupled differential equations by consider a
specific spacetime geometry. For the stellar configurations, it is generally assume a

spherically symmetric spacetime of the form
ds* = e*dt* — e dr? — r?(df* + sin? 0 d¢?), (8.8)

with two independent functions v(r) and A(r). Using the metric given in Eq. (8.8)
in Eq. (8.7), we reach the following set of equations (see Ref. Akarsu et al. [2018a])

672)\ , 1

r2 (QT)‘ - 1) + ﬁ = peff(’r)’ (89)
o i1 - L —p 8.10
r2 rv +1) 2 eff (1), (8.10)

where prime represent derivative with respect to r. Also, the effective density and

pressure po(r) and Pug(r) respectively, are given as

8P  3P?
peH(T) = 87Tp—|—87Tap2 (14-74-7),
3P?
Peﬂ‘(r) = 87TP+87TOép2 (14‘7)

To recast the Eq. (8.10) to a more familiar form we input the gravitational mass

function within the sphe