# INTERACTION OF SURFACTANT-SURFACTANT, SURFACTANT-SALT AND SURFACTANT-POLYELECTROLYTES IN AQUEOUS MEDIA

# THESIS SUBMITTED IN FULFILLMENT OF REQUIRMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (SCIENCE)

## OF

## JADAVPUR UNIVERSITY, INDIA



By SOURAV DAS, M.Sc.

2022

 Prof. Soumer Ghosk, M. Sc., Ph. D.
 Phone : +91-33-2457 2503

 Professor of Chemistry & Co-ordinator,
 Fax : 91-33-2414 4266

 Centre for Surface Science
 Mob - 9432 075 363

 Department of Chemistry, Jadavpur University
 Fax : 91-33-2414 4266

 Kolkata – 700 032, West Bengal, India
 Fax : 91-33-2414 4266

 Awards of Prof. B. N. Ghosh from ICS, Dr. B. C. Deb from ISCA, Bronze Medal from
 Selected as Top 2% World Ranking Scientist in Chemical Physics by Scientists of Stanford University, USA.

# **CERTIFICATE FROM THE SUPERVISOR**

This is to certify that the thesis entitled **"INTERACTION OF SURFACTANT-SURFACTANT, SURFACTANT-SALT AND SURFACTANT-POLYELECTROLYTES IN AQUEOUS MEDIA"** submitted by **Sri. Sourav Das,** who got his name registered on 09.05.2016 for the award of **Ph.D. (Science) degree** of **Jadavpur University**, is absolutely based upon his own work under the supervision of **Prof. Soumen Ghosh** and that neither this thesis nor any part of it has been submitted for any degree/diploma or any other academic award anywhere before.

Soumen Shoth. 17.06.2022

Soumen Ghosh Centre for Surface Science Department of Chemistry Jadavpur University Kolkata- 700032

> Prof. Soumen Ghosh Department of Chemistry Jadavpur University Kolkata-700 032, W.B., India

"Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less."

Marie Curie (1867-1934)

Dedicated To

My Beloved Parents

## **DECLARATION**

I hereby declare that the work incorporated in the present dissertation was carried out by me at the centre for surface science, Department of Chemistry, Jadavpur University, Kolkata-700032, India. The entire work or any part of it has never been submitted before for any prize or degree anywhere.

(SOURAV DAS) 7.06.2022

### **ACKNOWLEDGEMENT**

The research findings embodied in the dissertation "Interaction of Surfactant -Surfactant, Surfactant - Salt and Surfactant - Polyelectrolytes in Aqueous Media" were realized by me at the Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata, India.

At the outset, I would like to take the privilege of expressing my sincere thanks and deep sense of gratitude to Prof. Soumen Ghosh, Department of Chemistry, Jadavpur University not only for his unreserved inspiration, affectionate guidance, suggestions and advice, he gave me maintaining patience and understanding throughout the tenure of the work, but also for the great human being and the nice, warm person he is.

I acknowledge with pleasure the inspiration received from Prof. Satya Priya Moulik, Prof. Bijan Das and Prof. Chittaranjan Sinha during the execution of the work.

I would like to extend my sincere thanks to Prof. Swapan Kumar Bhattacharya, HOD, Department of Chemistry, Jadavpur University for getting me the central instrumental facilities throughout my research work. Author also expresses his heartiest thanks to all the faculty members, Department of Chemistry, Jadavpur University, and also university administration for smooth running his research work.

I warmly remember the all-out unconditional cooperation received from my colleagues, Dr. Nitai Patra, Dr. Arpan Mal, Dr. Jayabrata Maity, Mr. Rajesh Banik, Mr. Bipin Bihari Mandal, Ms. Ankita Saha, Ms. Tanaya Saha, Mr. Raju Sardar and Mrs. Sudipta Chakraborty for both technical and emotional support.

The author is highly indebted to Dr. Pinki Saha Sardar, Dr. Totan Ghosh, Dr. Anjoy Majhi, Dr. Arnab Halder, Mr. Sandip Paul, Dr. Dhiman Ray, Dr. Pritam Roy, Mr. Arnab Banerjee and Dr. Manas Barai.

I am also thankful to Central Instrumentation Facility, IICB and IACS; DBT-IPLS and CRNN, University of Calcutta for getting me some instrumentation facility.

The financial assistance received from Council of Scientific and Industrial Research (CSIR), Govt. of India during the tenure of the work is acknowledged with thanks.

The author will remain ever grateful to his parents and other members of his family for their unreserved endurance, encouragement and loving support.

Centre for Surface Science Department of Chemistry Jadavpur University Kolkata – 700032 India

Sourar Dus 17.06.2022 (SOURAV DAS)

#### PREFACE

Surfactant-salt mixtures find wide spread uses in biological, technological, medical formulations, pharmaceuticals, and enhanced oil recovery for the purpose of improved solubilisation, suspension and dispersion. Various organic and inorganic salts are used for this purpose.

Mixed surfactants are extensively used in recent times in the various combinations of conventional cationic, anionic, gemini, zwitterionic and non-ionic forms. Studies of mixed surfactants are recently gained importance owing to the 'mixed micelle' formation in aqueous solution which helps the understanding of the various biological supra-molecular assemblies, ions transfer, drug delivery and the formation of mimic biological systems. In technology, mixed surfactants are used in pharmaceuticals, detergency, foods, cosmetics, solubilization of drugs and enhanced oil recovery.

Interaction of bio polyelectrolyte (carbohydrate polymers, proteins, polypeptides, DNA etc.) with surfactant of different kinds has been focused much for their applications in biology, foods, drug delivery and biotechnology. Binding of proteins with surfactants either stabilises or denatures (unfolding form) them. The excellent example of protein-surfactant system for functionalization of enzymes, sodium-potassium and various metabolites in our body is PLP (protein-lipid-protein) membrane. The interaction of various biopolyelectrolyte - surfactant systems invitro could help us to explore several biological processes in human body.

Ionic liquids with long hydrocarbon tails constitute a special class of surfactants. Room Temperature Ionic liquids (RTILs) are the salts whose melting points are below 100<sup>o</sup>C. There are many kinds of ionic liquids. As mentioned, long chain ionic liquids (Surface Active Ionic Liquid, SAIL) behave as surfactants. Now-a-days, the ionic liquids are emerging in the present scenario due to their low vapour pressure, low volatility, significant conductivity, high thermal stability and non-flammability. Owing to their several physicochemical properties SAILs can be used in drug delivery, microbial activity, catalyst and alternative solvent to the traditional organic solvents for synthesis of materials.

For this reason, the interaction of SAILs with salts, conventional surfactants and bio polyelectrolytes are very important in the recent times.

# **CONTENTS**

| Introduction                                                                                                                                                                                                                          | <b>Page No.</b><br>1-80   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Chapter-I                                                                                                                                                                                                                             | 81-117                    |
| Formation of Mixed Micelle in an Aqueous Mixture of a Surface Active<br>Ionic Liquid and a Conventional Surfactant: Experiment and Modeling.<br>(J. Chem. Eng. Data 63 (2018) 3784-3800, published)                                   |                           |
| Chapter-II                                                                                                                                                                                                                            | 118-159                   |
| Studies on the self-aggregation, interfacial and thermodynamic properties of<br>a surface active imidazolium-based ionic liquid in aqueous solution: Effects<br>of salt and temperature. (J. Mol. Liq., 320 (2020) 114497, published) |                           |
| Chapter - III                                                                                                                                                                                                                         | 160-220                   |
| A detailed assessment on the interaction of sodium alginate with a surface-<br>active ionic liquid and a conventional surfactant: a multitechnique approach.<br>( <i>Phys. Chem. Chem. Phys.</i> , 2022, 24, 13738-13762, published)  |                           |
| Chapter – IV<br>Physicochemical and Spectroscopic Study on the Interaction of a Novel Aza<br>benzo crown Dye with Different Surfactants.<br>(Communicated)                                                                            | 221-251                   |
| Chapter – V<br>Addressing the Interaction of Stem Bromelain with different anionic<br>Surfactants, below, at and above CMC in Phosphate Buffer at pH 7:<br>Physicochemical, Spectroscopic, Molecular docking Study.<br>(Communicated) | 252-290                   |
| Summary and Conclusions<br>Appendix (Basic Data)<br>List of Publications and Reprints                                                                                                                                                 | 291-296<br>i –clxv<br>A-C |

# Introduction

#### Introduction

The word 'SURFACTANTS' come from SURFace ACTive ageNTS.<sup>1</sup> These are the major components of soaps and detergents for the purpose of cleaning at laundry and households. Detergent has been used for commercial purpose as a 'self-activated' cleaning agent since its first preparation<sup>2</sup> in 1907 by a German company, which is termed as 'PERSIL' in form of laundry detergent. Historically, 'PERSIL' had been prepared by sodium PERborate (acting as bleaching agent) and sodium SILicate (base washing agent), but none of these components are conventional surfactants which we have used in our daily lives as versatile washing agents. In this connection, it is worth mentioning the word 'SURFACTANS' which activate the interfaces (either interfaces of air-liquid, solid-liquid or interface of two immiscible liquids; Fig.1) by reducing surface tension of a liquid, an important parameter in surface chemistry, formed by molecules with dual solubility towards both in water and oil media. Surfactant molecules reside on the interface by approaching their polar heads to the interface and consequently, lowering the free energy of interface. In addition of lowering surface or interfacial tension, apart from its rich detergency properties (soluble or insoluble substances), surfactants are used in many every day products (toothpaste, shampoo, conditioner, shaving foam, facewash, toilet cleaner, adhesive, hair gel, ink, etc.) as emulsifier, dispersants, wetting, foaming and stabilizing agents.



Fig. 1. Adsorption pattern of surfactants at different interfaces: (a) air-water interface, (b) air-oil interface, (c) oil-water interface, (d) solid-water interface and (e) solid-oil interface.

Water

Oil

Due to the dual solubility nature, surfactants are often called amphiphiles. Typically, surfactants are formulated by a long alkyl hydrocarbon chain (8-22 carbon atoms) <sup>3</sup> known as hydrophobic tail and a hydrophilic head group which may be cationic, <sup>4-13</sup> anionic, <sup>14-20</sup> nonionic <sup>21-24</sup> and zwitterionic <sup>25, 26</sup> in nature. While normal soaps are prepared by the saponification of naturally occurring fatty acids (triglycerides) from vegetable and animal sources, surfactants are prepared from petroleum products and their structure can be modulated in various forms <sup>4-26</sup>; such fabrication is not possible in common soaps. A modern detergent at least contains 10-20 components, in which surfactants and fatty acid-based salts (sodium and potassium salts of C<sub>12-18</sub> long alkyl chain, <sup>3, 27, 28</sup> which are extracted from palm kernel oil, coconut oil, soy bean oil and animal fats by the process of saponification) are the major one. The use of surfactants is more fascinating over soaps as surfactants are more effective to clean a surface in presence of hard water and even at low temperature.



Fig. 2. Evolution of surfactants from Sumerians to modern century.

Even surfactants play a significant role in our biological system too. Biological cell membranes (lipid bilayer) contain amphiphile like molecules (phospholipids) <sup>29</sup> which conduct selective transportation of ions, proteins and other molecules inside and outside of cell. Bile salt (steroidal anionic surfactants) is present as a major organic solute in bile juice facilitating dietary fats adsorption in intestinal.<sup>30</sup> Human lungs produce pulmonary surfactant which is known as pulmonary epithelial lining fluid (ELF) helping in increase lung compliance and total lung capacity. ELF contains lipoprotein type surfactant which is secreted from lung epithelial type II cells and has been transported to alveolar space to decrease surface tension at air-liquid interface in the lung.<sup>31</sup>

#### 1. Cataloguing of surfactants:

Surfactants are generally classified according to the charge of head groups in aqueous solution. Some surfactants which have been commonly used are given in the Table below:

| Types of Surfactants                                                                                          | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anionic Surfactant:                                                                                           | Sodium lauryl sulphate (SLS/SDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| This type of surfactants has<br>negatively charged head groups and<br>positively charged counterions. Head    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| groups may be alkyl-sulfates,<br>sulfonates, sulfosuccinates,                                                 | Sodium laureth sulfate (SLES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| carboxylates, N-acyl amino acids etc. Counterions may be positively charged alkali metal ions $(Na^+/K^+)$ or | $Na^+ O^{S}O^{O}(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Anionic surfactants have been used<br>mostly in daily products. Anionic                                       | Sodium lauryl sarcosinate (SDDS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| surfactants are almost used in every household product.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cationic Surfactant:                                                                                          | Dodecyltrimethylammonium chloride (DTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| These surfactants have positive<br>charged head groups (alkyl<br>quaternary ammonium salts,                   | $H_3C \left[ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ |
| phosphonium salts, amine salts,<br>amine oxides etc.) along with                                              | 1-hexadecyltriphenylphosphonium bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| negatively charged counterions (mainly Cl <sup>-</sup> and Br <sup>-</sup> ). Preparations                    | (C <sub>16</sub> TPB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Та

| of these type of surfactants are<br>expensive, so their use is limited.                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nonionic Surfactant:                                                                                                                                                                                                                                                                                                                                                   | Polyoxyethylene (20) sorbitan monolaurate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| These types of surfactants have no<br>electrical charges. These are<br>miscible in water due to the<br>presence of polar functionality<br>present in their structures.<br>Polyoxyethylenes,<br>alkylpolyglucosides,<br>polyglycidols, N-based<br>glucamine surfactants belong to<br>this class. They are hugely<br>produced industrially after<br>anionic surfactants. | (Tween-20) $((Tween-20))$ $((Twee$ |
| Zwitterionic Surfactants:                                                                                                                                                                                                                                                                                                                                              | Lauramidopropyl betaine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| These surfactants contain both<br>negative and positive charged<br>centres and can be used either as<br>anionic or cationic surfactants<br>with variation of pH. Imidazole                                                                                                                                                                                             | $ \bigcirc \bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| derivatives, phosphatides,                                                                                                                                                                                                                                                                                                                                             | 3-[(3-cholamidonronyl) dimethylammonio]-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| betaines etc. belong to this class.<br>The source of positive charge is                                                                                                                                                                                                                                                                                                | propanesulfonate (CHAPS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Beyond broad classification, surfactants are again subdivided into some special classes. Significant attention has been paid in past two decades about these kinds of surfactants

#### **Ionic Liquids**

Ionic Liquids (ILs) have been designated as the molten salts (purely ionic semi organic molecules) whose melting points are below 100 °C (212 °F).<sup>32</sup> Melting point of common table salt (NaCl) is around 801 °C, this obviously indicates that there is a significant difference between ionic liquids with typical inorganic salts. This difference is due to the components (ions) by which these are formed; typical inorganic salts are formed by small symmetrical ions, while ionic liquids are formed by large unsymmetrical cations with large anions (Fig. 3.) and charges are distributed over large volume through resonance.



# Fig. 3. Comparative diagrams of anions and cations with possible orientation between conventional inorganic salts with ionic liquids.

Ethyl ammonium nitrate (m.p. 52–55 °C) was the first synthesized ionic liquid reported by Gabriel and Weiner in 1888.<sup>33</sup> Room Temperature Ionic Liquid (RTIL) was first synthesized (ethylammonium nitrate, (C<sub>2</sub>H<sub>5</sub>) NH<sub>3</sub><sup>+</sup>·NO<sub>3</sub><sup>-</sup> (m.p. 12 °C)) by Paul Walden, a Russian, Latvian and German chemist in 1914.<sup>34</sup> Ionic liquids have wide range of melting temperatures below 100°C. Some ionic liquids with long alkyl chains attached to imidazolium N-atom in combination with halide anions (one such example is 1-hexadecyl-3-methyl imidazolium chloride, (m.p. 64-65°C)) are solid in room temperature, some containing large organic /inorganic anions are generally liquids in room temperature and their melting points are even below 0°C (e.g., 1-ethyl-3-methylimidazolium ethylsulfate (m.p.<-20 °C), EMIM dicyanamide (m.p. -21°C) etc.). Ionic liquids are formed (Fig. 4) by typical organic cations, e.g., alkylimidazolium, -pyridinium, -ammonium, -phosphonium and -pyrrolidinium types in combination with anions, e.g., organic triflate, dicyanamide, acetate, trifluoroacetate, trifluoromethylsulfate, or inorganic halides (bromide or chloride), hexafluorophosphate, nitrate, perchlorate, chloroaluminate, tetrafluoroborate.<sup>35</sup> Presently the use of ionic liquids is found as an upsurge of interest due to their low vapour pressure, significant conductivity, low volatility, high thermal stability and non-flammability. Owing to their several physicochemical properties, ILs can be used in drug delivery,<sup>36</sup> antimicrobial activity,<sup>37</sup> micellar catalysis <sup>38</sup> and alternative solvent by replacing the traditional organic solvents <sup>39</sup>.



Fig.4. Some commonly used cations (within yellow segment) and anions (within green segment) forming ionic liquids.

Ionic liquids (IL) with di-alkyl imidazolium, di-alkyl pyridinium and alkylammonium type fragments have been considered a special type of surfactants, called Surface Active Ionic Liquids (SAILs), since the last two decades. Among the different cations which form SAILs, di-alkyl imidazolium ionic liquids have gained a special attention as varieties of imidazolium compounds have been formed by tuning N-substituents the with different alkyl groups along with counter anions by simple one-pot synthesis.<sup>40-42</sup> Surface activity of many ionic liquids have been reported in past and preceding literatures <sup>43-60</sup> and most of the investigations have been done in aqueous solution.

#### **Gemini Surfactant**

Gemini surfactants are the special class of surfactants (Fig. 5) comprising with a extended hydrocarbon chain attached to a polar head group, a rigid or non-rigid spacer, and another hydrocarbon chain with another polar head group in sequential arrangement having rich surface activity than the traditional surfactants. This polar head groups may be positive (ammonium), <sup>61</sup> negative (sulphates, carboxylate, etc.) <sup>62</sup> and also nonionic (carbohydrate based) <sup>63</sup> in nature. Spacer length may contain 2 to 12 methylene groups; may be flexible (saturated hydrocarbon chain) or rigid (stilbene). Gemini surfactants were first synthesized by Button *et al.* in 1971 <sup>64</sup>.



Fig. 5. Schematic representation of gemini surfactants

The term 'Gemini' was first coined by Menger *et al.* in 1991.<sup>65</sup> Spacers may be connected to the two identical head groups or alternatively it may be connected to the midway of long hydrocarbon tails.



Fig. 6. Different types of gemini surfactants (a and b), cationic gemini surfactant [(c): 1,3-butan-bis-(dimethyl dodecyl ammonium bromide); 12-4-12] and anionic gemini surfactant [(d):N, N'-ethylene (bis(sodium N-dodecanoyl-β-alaninate)); 212]

#### Fluorosurfactants

These are the distant class of surfactants where at least one hydrogen of alkyne chain is replaced by F-atom. Fluorosurfactants are used in versatile applications, such as, firefighting application, biomedicines, cosmetics, adhesives etc.<sup>66-68</sup> The surface activity of these surfactants has been detected by the number of fluorine atoms which replace the alkyne hydrogens. Fluorosurfactants have greater surface activity than the traditional organic surfactants.



Fig. 7. Perfluorooctane sulfonate (PFOS) generally used in firefighting foam.

#### **SILICONE** surfactants

Silicone surfactants (siloxane-polyoxyalkylene copolymers) are the special class of surfactants containing permethylated siloxane hydrophobic groups in addition with one or more hydrophilic polar groups which can be anionic, cationic, nonionic or zwitterionic in nature. Nonionic groups comprising either polyoxyethylene (PEO) and polyoxypropylene (PPO) in nature are the most common. Silicon surfactants reduce surface tension effectively to 15-20 mN.m<sup>-1</sup> than the typical hydrocarbon surfactants both in aqueous and non-aqueous solvents.<sup>69</sup> These surfactants show unique spreading properties, thereby they have been used commonly as stabilizers in polyurethane foams, conditioner in textile, additive in ink and emulsifier in cosmetic industries.<sup>70</sup>

$$Me_{3}SiO(SiO)_{x}(SiO)_{y}SiMe_{3}$$

$$Me_{1}$$

$$H H H H H H H Me_{1}$$

$$H-C-C-C-O-(C-C-O)_{m}(C-C-O)_{n}R$$

$$H H H H H H H H H$$

Fig. 8. General structure of silicone surfactants; x = 7 to 10, y = 2 to 5, m = 5 to 15, n = 0 to 5 and R is the alkyl group which have been selected for the compatibility of surfactants in special purpose.

There exists a balance between hydrophilicity and lipophilicity for different amphiphilic molecules depending on their structure. This is termed as hydrophilic lipophilic balance (HLB), which is essential for classification of surfactants as oil soluble or water soluble according to its relative solubility.

#### 2. Aggregation of Surfactants

Most significant property of surfactant is to form self-aggregates in solution. Hydrophobic parts of surfactants can make favourable contact to each other at bulk to avoid unfavourable interaction of them with polar solvents, resulting in the formation of arrangements at bulk where the hydrophobic tails (Fig. 9A) attract each other into an oil-like core and at the same time hydrophilic heads are exposed to the polar environment. Such self-assembly of surfactants (either small or large sized) is called micelle (Fig. 9B) and that threshold concentration of surfactants above which micelles are formed called Critical Micelle Concentration (CMC). Micellization is a dynamic process in which free surfactant molecules are in equilibrium with micelles. Micelles are colloidal dimensions. Self-assembly of surfactants in solution was first anticipated by McBain in 1913.<sup>71</sup> Although that time he was harshly criticized by a group of scientists in a meeting of Royal Society in London, later it was scientifically established that surfactant can practically aggregate in solution which was proved by its superior detergency properties by which they easily remove dirt and dissolve it to its hydrophobic core. The driving force of micelle formation is mostly hydrophobic in nature generated between the hydrophobic tails; apart from that, electrostatic and van der Walls forces have played major role for ionic surfactants by binding the counterions to the oppositely charged micellar heads to neutralize the charge and concomitant the repulsion between head groups. Positive entropy contribution plays a significant role in the micellization process as the loss of entropy due to aggregate of the surfactant monomers is overshowed by the gain in entropy by the free water molecules that were "trapped" in the solvation cage around the surfactant monomers through H- bonding interaction among them.<sup>72</sup> Basically, CMC which is addressing 'inexact' but 'convenient' is not a particular surfactant concentration, rather than a narrow range of surfactant concentrations.<sup>73</sup> Depending on microenvironments and nature of surfactants, micelles can be obtained in different shapes discussed elsewhere.

Reverse micelles are formed in a solution in which the content of a non-polar solvent (e.g., alkanes, haloalkanes, aromatic solvents etc.) is maximum than the polar one (just like water droplets in oil system) and surfactants are used to stabilize the components in solution as the

amphiphiles form aggregates. This method was used for the formation of one type microemulsion.<sup>74</sup> In reverse micelle (Fig. 9C), polar head groups are oriented to inner micellar core (which have been termed as Water pool, designated 'W' in Fig. 9C) around the water molecules, while the hydrophobic parts are exposed outside the non-polar solvents. Reverse micelles are in nanometre dimensions and their size can be increased by increasing water content in solution. These water pools of reverse micelles are used for synthesis of nano materials <sup>75</sup> and solubilization of proteins <sup>76</sup>.



Fig. 9. Aggregates of surfactants in solution: (A) free monomer, (B) normal micelle (spherical structure), (C) reverse micelle.

#### **3.** Determination of CMC

CMC is the most fundamental property of surfactants. There are numerable methods existing in literatures for the determination of CMC. For instance, in accordance with Mukerjee and Mysels,<sup>77</sup> there are 71 possible methods which they have been taken from literatures and have critically discussed each method. The appropriate choice of methods however, depends on the availability of instruments, personal preference of investigator and the relationship between the technique and the ultimate application. A virtuous number of methods can be used for the determination of CMC, viz., conductometry, tensiometry, viscometry, vapour pressure osmometry, turbidimetry, light scattering, fluorimetry (steady state fluorimetry, steady state anisotropy and time resolved fluorimetry), calorimetry, spectrophotometry, magnetic resonance etc. Among them, the methods used most frequently are tensiometry, conductometry

and fluorimetry. Conductometry methods are only applicable for ionic surfactants. Physical properties of surfactants in solution are measured using different techniques with variation of surfactant concentration showing a distinct feature in appearance of different plots in different methods (Fig. 10).



Fig. 10.

Evaluation of CMC of a surfactant with variation of surfactant concentration (C) by different methods: viz., Mag: magnetic resonance; Turb: turbidimetry; Flu: Fluorimetry; Spec: spectrophotometry (plotted against C); Surf: surface tension (against log C); Equiv: equivalent conductance; Osm: osmotic coefficient (against  $C^{1/2}$ ).

All physical properties show the distinct breaks which are considered as CMC denoted by the dotted white line. It is to be noted that CMC is not just a point but rather a narrow range (shown by a narrow bar denoted by a second bracket), as CMC is method dependent. Significant increase of scattering radiation above CMC using light scattering method <sup>78</sup> manifests the direct evidence of large assemblies after CMC, as this scattering phenomenon depends on the size of scattering units in solution. Another important proof for compactness of surfactant monomers in micelle has been made after focusing the self-diffusion of monomers after CMC by nuclear

magnetic resonance (NMR) study.<sup>79</sup> Both light scattering and magnetic resonance study correct the approach of self-assembly of micellar structure which was first proposed by McBain. Isothermal titration calorimetry (ITC) study not only gives the information about CMC, but also gives the direct information about standard enthalpy of micellization ( $\Delta H^0_{obs}$ , cf. Fig. 11a) and standard Gibbs free energy of micellization ( $\Delta G^0$ ). Pyrene (a fluorescent probe) has been widely used as a solvetochromic probe as the ratio of first  $(I_1)$  and third  $(I_3)$  vibronic peaks of pyrene strongly depend on solvent polarity. The ratio of  $(I_1/I_3)$  vs. logC has been plotted with sigmoidal fitting to determine CMC from the midpoint of sigmoid or taking intercept at the post micellar region (cf. Fig. 11b)<sup>80</sup> to maintain CMC values to keep close proximity with other techniques (specially conductometry). 1,6-Diphenyl-1,3,5-hexatriene (DPH) has been used as a fluorescence probe to determine CMC<sup>81,82</sup> by steady state anisotropy method considering its linear structure, which helps to detect its rotation when free in solution being its dimer formation or in micellar environment. Initial decrease in anisotropy of DPH is observed with increasing surfactant concentration; then after further addition of surfactant, anisotropy remains constant [cf. Fig. 11c]. CMC has been measured from the intercept of two consecutive slopes [Fig. 11c]. It has also been mentioned that, acceptable limit for the determination of CMC (method to method variation) is within  $\pm 10\%$ .



Fig. 11. Determination of CMC: (a) upper region: raw calorimetric date, lower region: enthalpy of dilution  $(\Delta H^0_{dil})$  vs. concentration (C) of surfactant. Here enthalpy of micellization  $(\Delta H^0_{obs})$  is also determined; (b) ratio of  $I_1/I_3$  vs. C; (c) steady state anisotropy (r) of DPH vs. C.

#### 4. Micellar characteristics

Structures, Shapes, Microenvironment and properties of micelles: In the year 1936, Hartley<sup>83</sup> has proposed that the micelles are essentially spherical. This proposal also supports McBain's <sup>84</sup> idea which published in 1920. Hartley's spherical micelle model describes the micelles should contain 50-100 monomers which are associated in a relatively narrow concentration range and the diameter of this associate structure is approximately twice the length of hydrocarbon chain. Interior of micelles is essentially hydrophobic as described here, while head groups bind with a fraction of counterions to avoid the close proximity due to repulsive interaction between them. Classical Hartley model described successfully many characteristics of one surfactant system having ionic properties. Ionic micelles form electrical double layer structure <sup>85</sup> which exhibits electrophoresis under an electric field by virtue of its surface charge and zeta potential. 'Stern layer' is formed by the ionic micelles to the immediate environment in which head groups and oppositely charged counter ions are in close proximity through electrostatic interaction. On the other hand, 'Gouy Chapman layer' is formed around the outside of 'Stern layer' contents, both can unbind free monomers, counterions and free water molecules which solvate micelle through ion-dipole interaction. Both 'Stern layer' and 'Gouy Chapman layer' have been jointly called electrical double layer (Fig. 12). Inside 'Stern layer', there exists hydrophobic core of micelles. Both Stern layer and core jointly form the micellar kinetic part. Gouy Chapman layer is also called diffuse layer. The boundary of the diffuse layer is also described as shear or slipping plane, which can move with the micelle in solution. The slipping plane potential (Fig.12) is called zeta potential ( $\zeta$ ) which is often used to designate the stability of colloidal dispersions. Micellar solution in which zeta potential values are beyond  $\pm$ 30 mV in magnitude is called stable solution. In case of nonionic micelles, some water molecules arrest inside the core just in the close proximity of head groups (palisade layer) through the H- bonding interaction with polyethylene oxide groups.



Fig. 12. Schematic representation of ionic micelles demonstrating counter ion binding, charge neutralization, micellar core and electrical double layer assuming spherical symmetry of micelle.

Using Hartley's concept as a starting point, modern science has developed more convenient microscopic picture of micelles, outcome is that of course micelles are not static. Rapid interchange of molecules between micelles and solution phase is possible. If we design a high-resolution camera or freeze the motion of molecules, then we can find micelles as irregular molecular cluster rather than smooth, perfectly uniform. Hartley's simple 'two-states' spherical micellar model has opened a criticism as several experimental facts cannot be explained by this model. Menger <sup>86</sup> have proposed a molecular model that differs substantially from Hartley <sup>83</sup> in point of view of solubilization of non-polar substances to micelles. Menger's 'porous cluster' model <sup>86</sup> states that water molecules penetrate inside a micelle upto a certain distance (3-4 methylene carbon atoms after the head group); i.e., greater ease of penetration inside the micelle and a relatively smaller interior or core supported by NMR and fluorescence measurements.

Apart from classical spherical micelle, other proposed geometry is rodlike micelle of Debye, <sup>87</sup> lamellar type of Philippoff,<sup>88</sup> disk or cylindrical structure of Harkins, <sup>89</sup> worm-like structure,<sup>90</sup> ellipsoid shape, <sup>91</sup> and spherical bilayer (vesicle) <sup>92</sup> structure. Israelachvili *et al.* <sup>93, 94</sup> proposed the concept of packing parameter to distinguish the different supramolecular assemblies form in solution. The amphiphile packing parameter (*P*) of micelle can be evaluated from the following equation:

$$P = \frac{\vartheta}{Al_c} \tag{1}$$

 $\vartheta$  is the volume of hydrophobic chain (nm<sup>3</sup>) assuming it as incompressible and  $l_c$  is the maximum effective length of hydrophobic chain of an amphiphile (nm). A is the surface area of headgroup at micellar-solution interface (nm<sup>2</sup>/molecule).  $n_c$  is the number of carbon atoms in the hydrophobic chain. For pure amphiphiles, the effective length and volume of hydrophobic chain are calculated using Tanford's formula.<sup>95, 96</sup>

$$l_c \le l_{max} \approx (0.154 + 0.126 n_c) \text{ and } \vartheta = (0.0274 + 0.0269 n_c)$$
 (2)

where,  $l_{max}$  is the maximum length of the monomer chain.

Packing parameter values for different aggregates are tabulated as follows:

| Aggregates               | Р                |
|--------------------------|------------------|
| Micelles                 | < 0.333          |
| Non-spherical aggregates | 0.333 < P < 0.50 |
| Bilayers and vsicles     | 0.5 < P <1       |
| Inverted aggregates      | >1               |

Some aggregated molecular geometries have been seen in Fig. 13.



Fig. 13. Schematic representation of geometrical forms of aggregates. A: spherical micelle; B. lamellar or bilayer arrangement; C: rodlike micelle, D: wormlike or cylindrical micelle and E: oblate ellipsoid (bisected) micelle.

Modern technological developments lead us to obtain the images and experimental proof of different types of micelles. DLS (dynamic light scattering) method gives us first-hand experience of micellar size (average hydrodynamic diameter) and diffusivity by considering the size distribution assuming spherical micelles <sup>97</sup> without distinguishing the micellar real shape. Micellar shape and also size can be determined using static light scattering (SLS), small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), Cryo-transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM) techniques.<sup>98-101</sup> Cryo-TEM is the only technique that can distinguish between linear and branched micelles. Shapes of micelles undergo transition in presence of various inorganic and organic salts. Few examples have been listed here in support of spherical to cylindrical and spherical to cylindrical conformation in presence of concentrated NaCl solution;<sup>102</sup> Na<sub>2</sub>SO<sub>4</sub> induced transformation of sodium alkylbenzenesulfonate from spherical to cylindrical micelles and finally multilamellar vesicle at high salt concentration;<sup>103</sup> cetyl trimethyl ammonium bromide, cetyl pyridinium chloride micelles transform to wormlike micelle in presence salicylate salts <sup>104, 105</sup> etc.

Aggregation number: Number of molecules which aggregate in micellar assembly is called aggregation number (n). Classical method for the determination of aggregation number had been introduced by Debye <sup>106</sup> using elastic light scattering technique. Intensity of scattered radiation at different angles below and above CMC has been measured for the determination of average aggregation number as well as average molecular weight (M<sub>w</sub>) of the aggregates. Other technique which has been employed for the determination of aggregation number as well as hydrodynamic diameter, is namely, laser light scattering.<sup>107-109</sup> Another important technique which is much popular even for the present time is the fluorescence quenching of a luminescent probe by a hydrophobic quencher.<sup>110, 111</sup> Distribution of probe and also quencher amongst micelles follow Poisson statistics, describe one probe which resides in a micelle predominately quenched by a quencher. Surfactant solutions were prepared well above their CMC and probe concentration has been fixed both in quencher and micellar solution. The ratio of [probe] to [micelles] and [quencher] to [micelles] values kept lower enough to ensure Poisson distributions. Both probe and quencher should be chosen in such a way that both resides on micellar interiors or at least at the surface. In the fluorescence technique, the probes not only interact with micellar system giving information about aggregation number, but also it determines the polarity of micellar core, its immediate environments and the equilibrium of substrate-micelle interaction. Probes frequently chosen for the determination of mean aggregation number are pyrene, anthracene sulphonate, safranine-T, fluorescein etc.; on the other hand, quenchers have been used like, cetylpyridinium chloride, dodecyl pyridinium chloride, thiourea, inorganic complex of Ru<sup>2+</sup>, Cu<sup>2+</sup>, Ni<sup>2+</sup> etc. Mean aggregation number can be estimated by both steady state and time resolved fluorescence methods on depending the nature of quenching either static or dynamic. Static quenching method is used extensively (in which method it is assumed that increasing quencher concentration may decrease the emission of probe located on micelle, but does not change its life time) using the following relation,

$$ln\frac{F}{F_0} = \frac{n[Q]}{[Surf] - CMC}$$
[3]

where *F* and  $F_0$  are the fluorescence intensities in presence and absence of quencher, [Surf] is the total concentration of surfactant, [Q] is the quencher concentration, n is the average aggregation number at CMC. Plot of ln (F/F<sub>0</sub>) vs. [Q] readily yields the value of n from the slope. In case of dynamic quenching in which the increasing quencher concentration changes the lifetime of a probe along with the decrease in fluorescence intensity, the above equation gives the erroneous result in aggregation number values. It is seen that mean aggregation number determined by steady state measurement is found lower than those calculated in time resolved method specially for the system of relatively large micro viscosity and lower aggregation number.<sup>112</sup> Fluorescence decay curve of micelle solubilized probe in presence of 'immobile' quencher shows the different nature than the free probe located on the same micelle. Under such situation, fluorescence decay curve in presence of quencher can be fitted by the following equation:<sup>111, 113, 114</sup>

$$I_{t} = I_{0} exp\left\{-\frac{t}{\tau_{0}} - R[1 - \exp(-k_{Q}t)]\right\}$$
[4]

 $I_t$  and  $I_0$  are the fluorescence intensities at time *t* and zero respectively.  $k_Q$  is the first order quenching rate constant.  $\tau_0$  is the lifetime of a probe in absence of quencher. R can be written as,  $R = \frac{[Q]}{[Micelle]}$ ; [Micelle] is the concentration of micelle. R values are adjusted close to 1 and not exceeded to 2 for theoretical consideration.<sup>115</sup> Taking the value of *R*, average no of aggregation number (n) can be calculated at a particular quencher concentration [*Q*] using the following relation:

$$n = R \, \frac{([Surf] - CMC)}{[Q]} \tag{5}$$

Light scattering experiment prove overestimate to mass and hence the volume of micelles as this experiment includes solvation and also counter ion binding to the micelles. Comparing both fluorescence and light scattering study, it is possible to estimate solvation and counterion binding. Size and dispersity of micelles can be governed by several internal and external factors:

(I) Internal factor: Greater the length of hydrocarbon chain length of a homologous series of surfactants, larger the number of aggregation number. Recent study <sup>116</sup> evaluates that micelle aggregation number increases linearly by nearly 16 monomers per micelle with single increase of each carbon atom to alkyl group. On the other hand, decrease in hydrophilicity of head group, e.g., greater the degree of ion binding, shorter polyoxyethylene group etc causes the increase in aggregation number (n). Tanford <sup>91</sup> predicted to increase micellar aggregation number to

maximum for a given alkyne chain length for spherical and ellipsoid structures over a given ellipticity ranges. It is seen that <sup>117</sup> increase of spacer length of gemini surfactants from 2 to 12, decreases aggregation number from approximately 48 to 11 in aqueous solution at 298.15K. So, it is obvious that, increase in effective head group size (relatively bulky head groups) decreases the aggregation number. The aggregation number of bile salt micelles can have lower <sup>118, 119</sup> of 4-10. Aggregation numbers of cationic surfactants vary within 20-100 in aqueous solution.

(II) External factors: With increasing salinity of the medium, aggregation number decreases, as increase in salt concentration or higher pH screens the head group charges of surfactant monomers residing at the Stern layer and consequently increases micellar aggregation number than those measured in pure aqueous solution.<sup>112, 120</sup> Although, increase in temperature slightly decreases aggregation number of ionic surfactants, but the significant increase in aggregation number of nonionic surfactants is due to 'cloud point' phenomenon.<sup>121</sup> Addition of slight amounts of non-amphiphilic organic compound of little solubility will often produces an apparent increase in micellar size although that may be more an effect of solubilization than an increase in number of surfactant molecules present in the micelle.

Degree of counterion binding: Counterions are the integral part of the micelles,  $^{122, 123}$  to the stern layer of micelle. Degree of counterion binding is essential parameter to know the electrical double layer and also for the calculation of thermodynamic parameters for the micellization process. Extent of degree of counterion binding (g) varies from 20–80% depending on amphiphiles, solution media, additives etc. Counterion binding can be determined by various methods, of which, the most popular method is conductometry measurement.



Fig. 14. Specific conductance vs. [Surfactant] profile for determination of CMC and degree of counterion binding using pre  $(S_1)$  and post micellar  $(S_2)$  slope.

Initially, at low surfactant concentration, free surfactant monomers with counterions both contribute to specific conductance value. With increasing surfactant concentrations, the increasing proportion of both monomer and counterions increase specific conductance value monotonously (shown in Fig 14). However, after micellization, some counterions bind to the micelles and formed micelles become less mobile due to larger size. The only contribution to specific conductance values is a smaller number of free monomers and unbound counterions (Fig.14), leading to offset of specific conductance values. Due to this conductometric phenomenon two distinct slopes of separate magnitude ( $S_1$  and  $S_2$ ) are found and these are used in a simple relation to determine degree of counterion binding (g), as follows,

$$g = 1 - \frac{s_2}{s_1}$$
(6)

Although this method is based on some assumptions, it is quite good indeed and uncertainty of the degree of counterion binding is within the acceptable error range (approximately 2-3%).

Another important technique is to determine degree of counterion binding (*g*) by measuring CMCs of surfactants at various salt concentrations of different salts (different added counterions). The plots of log (CMC) vs. log  $C_i$  yield *g* by using the following equation,<sup>124</sup> where  $C_i$  is the total counterion concentration in molarity unit:

#### $log(CMC) = -glogC_i + constant$

Apart from above two methods, electrochemical method <sup>125-127</sup> has been used for measuring degree of counterion binding. In this process, activities of counterion  $(a_{ion^{\pm}})$  have been measured by an ion selective membrane electrode coupled with a standard electrode (Ag/AgCl or calomel) forming a cell. The following equation can be used:

$$a_{ion^{\pm}} = g a_{ion^{\pm}}^{BP} + (1 - g) a_{ion^{\pm}}^{DH}$$
(8)

where  $a_{ion^{\pm}}$ ,  $a_{ion^{\pm}}^{BP}$ , and  $a_{ion^{\pm}}^{DH}$  are the activities of the surfactant from membrane electrode potential (E<sub>M</sub>), break point of activity-concentration curve and Debye-Hückel equation respectively. Membrane electrode potential is given by the following equation,

$$E_M = K_M^0 \pm \frac{RT}{F} \ln a_{ion\pm}$$
(9)

 $K_M^0$  being constant, depends on electrode system. But again, it has been ascertained that, conductance method is the simplest and quite popular than the other two.

#### 5. Factors affecting micelle formation and CMC

*The hydrophobic group*: Micelle formation becomes easier in solution with greater hydrophobicity of nonpolar tail part, and has been evidence in case of increased alkyne chain length in a homologous series;<sup>128</sup> thus hydrocarbon chain length shows major influence on CMC. <sup>129</sup> In fact, CMC decreases in a logarithmic pattern as the number of carbon atoms increases in hydrophobic part in a homologous series of carbon number,  $n_c$ . With the addition of each methylene group, for straight chain hydrocarbon surfactants, CMC usually reduced to approximately one half of its previous value of about 16 carbon atoms or less bound to a single terminal head group. However, this is more pronounced for nonionic surfactants in which CMC value decreases by a factor of 3 upon addition of one more methylene group to the chain <sup>130</sup> without any additives. Different effects on CMC have been observed by the insertion of phenyl or other linking groups, polar substituent groups on the hydrocarbon chain, branching on hydrophobic tail etc. Klevens <sup>131</sup> had given a mathematical relation between the hydrocarbon chain length and CMC, as,

$$\log_{10}CMC = A - Bn_c \tag{10}$$

where, A and B are constants to homologous series under constant condition of temperature and pressure, etc. Although B is fairly constant with a magnitude approximate to log 2 for all the paraffin salts belonging single ionic head group, A is different for each type of head group. However, B has the different value for the system of two different head group and for the nonionic surfactants.

*Polarity of the medium*: Polarity of the medium favour surfactant association. When polarity of the solvent decreases, CMC value will decrease. It has been seen that CMC increases in general for all types of surfactants in different volume fractions of polar organic solvent (acting as cosolvent which has dielectric constant values either greater or less than water) in comparison with purely aqueous medium.<sup>132, 133</sup> Polarity of the medium also influences the formation of the different aggregates. Normal micelles have been formed in sufficiently polar medium, while reverse micelles are formed in nonpolar medium with a trace amount of water contents.

*Temperature*: The CMC values of the most ionic surfactant go through a minimum as variation of temperature from 0 to 60-70°C.<sup>134-136</sup> Although nonionic and zwitterionic surfactants have not so predictable minimum CMC with variation of temperature, some nonionic have been shown CMC minimum.<sup>137</sup> The possible minimum value of CMC with increase in temperature may be addressed in terms of degree of hydration of head groups and hydrophobic tails. There are two factors contributing with increase of temperature, at lower range, desolvation of water structure around surfactant hydrophilic groups before CMC-minimum leading to earlier micellization and in the higher temperature range (after CMC-minimum), the breakdown of water structures from the surfactant hydrophobic tails, which is unfavourable in the process of micellization, leading to CMC at high surfactant concentration. The desolvated head groups also promote repulsive type interaction among them as the mobility of the counterions increases at higher temperature. In this connection, it is said that surfactants have characteristic temperature, known as 'Krafft temperature', which is essential to understand the phase behaviour of surfactant solutions at different temperatures. Fig. 15, displays such phase diagram. In this diagram, there exists three distinct zones, A, B and C, which have been designated as free surfactant monomers in solution, monomers in equilibrium with micelle and coexistence of monomers and precipitate (crystals) in solution respectively. At point P, all the three phases remain coexist, the temperature corresponds to this point P called Krafft temperature  $(T_k)$ . To avoid precipitation of crystal formation, working solution temperature should be above T<sub>k</sub>.



Fig. 15. Temperature vs. [surfactant] profile showing different state of aggregations of surfactant monomers in solution and the Krafft temperature (T<sub>k</sub>)

*Pressure*: The consequence of pressure <sup>138, 139</sup> on self-aggregation of surfactants has been discussed. CMC increases initially with increase of pressure and finally decreases at high pressure region. The turnover of CMC at high pressure region has been observed for all kinds of surfactants. It is seen that the threshold pressure in which CMC is maximum, varies from surfactant to surfactant, lied between 75-150 MPa range. In the low-pressure region, the applied thrust destructs water structure to support wider distribution of surfactant monomers in solution to oppose their tendency to aggregate, while at high pressure, the monomers associate to micelle to the change of dielectric constant of the medium. This has been supported by the measurement of aggregation number, which shows a minimum for ionic surfactants and a rapid initial decrease for nonionic surfactants with respect to pressure.

*Electrolyte effect*: Electrolytes effectively reduced CMC for ionic surfactants mainly. Less effect has been observed for zwitterionic and nonionic surfactants. The effect of added electrolytes with the same charge as the native counterion of surfactants on studying the micellization of ionic surfactant <sup>124</sup> has been empirically quantified by the following relation;

$$\log_{10}CMC = -a\log_{10}C_{salt} + b \tag{11}$$

where a and b are constants for a given head group for a particular temperature and  $C_{salt}$  is total concentration of monovalent counterion in molarity unit. The decrease of CMC has been shown more pronounced in presence of bivalent or trivalent counterions than the monovalent counterion of same salt type for ionic surfactants. Enhanced counterions in presence of added electrolytes effectively screen the head group charge of monomers at the micellar interface and consequently, less electrostatic repulsion between the surfactant monomers at the same time reduces CMC. Sometimes, relative reduction of CMC of an ionic surfactant by different electrolytes of different valencies may be explained by the effective nuclear charge (change to radius ratio of hydrated counterions), valency or hydration ability of counterions in solution and sometimes may not. It has been said that, counterions have specific effect for individual surfactants, yet not properly understandable.

In case of nonionic and zwitterionic surfactants, the impact of electrolytes on micellization process is significantly less. In this connection, Shinoda <sup>140</sup> has proposed an empirical relation between CMC of nonionic/zwitterionic surfactants with added electrolyte concentration (Cs) in molarity unit:

$$\log_{10}CMC = -\alpha Cs + \text{ constant} \quad (\text{for, } Cs < 1)$$
(12)

where,  $\alpha$  is a constant for a specific surfactant, nature of salts and temperature.

Electrolyte effect on the micellization of nonionic and zwitterionic surfactants and the observed change in CMC cannot be explained by the same perception of electrostatic screening model those appearing in fully ionic surfactants (discussed above). Solubility of many materials in water can be effectively altered by addition of electrolytes. Addition of such electrolytes can reduce (salting out) or increase (salting in) solubility for a material in solution depending on nature of electrolytes. For zwitterionic and nonionic surfactants, added salt will decrease solubility (salting out) if salt acts as a water structure breaker and CMC will decrease; on the other hand, if added salts make the water structure (salting in), solubility of surfactants increase and as well as CMC. Organic materials (non electrolytes) also increase or decrease CMC in the micellization process of surfactants.<sup>141-143</sup> So, to sum up, it has been said that interaction phenomenon of different inorganic/organic salts with various surfactants may influence on solvent structure, polarity of the medium and also on electrostatic interaction, still remaining a matter of further investigation.

*Counterion of surfactants*: It is not surprising that CMC decreases with the increase of degree of counterion biding (*g*), as the ionic head groups face repulsive interaction at the micellar interface. From the outcome of regular solution theory, it is said that the extent of paring of counterion increases with the increase of polarizability and valency, although a larger radius of hydration will result in ion separation. It is seen that the extent of decrease of CMC of a surfactant depends on the hydrated radius of its counterions; the more the hydrated radius, less efficient its tendency to decrease CMC. In general, it is found that for a given hydrophobic tail and a polar head, CMC decreases in the order,  $Li^+ > Na^+ > K^+ > Cs^+ > N(CH_3)_4^+ > N(CH_2CH_3)_4^+ > N (CH_3CH_2CH_3)_4 > Ca^{2+} \approx Mg^{2+}$  for anionic surfactants (like, surfactant of dodecyl sulfate salts, <sup>144, 145</sup> while for a cationic surfactant (e.g., cetyltrimethylammonium bromide <sup>146</sup>) CMC decreases by the anionic counterions shown in the order (formers are more efficient than latters):  $PO_4^{3-} \approx Citrate^{3-} > SO_4^{2-} \approx Oxalate^{2-} > I^- > Br^- > CI^- > F^-$ .

*Effect of* pH: Solution pH has relatively less effect on the industrially important surfactants having long alkyl chain length of strong acid. Unlike the salt of strong acid, significant pH effect has been observed on carboxylate acid surfactants as the carboxylate groups are not fully ionized near or below pK<sub>a</sub>. Since head group repulsion rendered surfactants to aggregate and it is controlled by the variation of pH, CMC is changed. When pH of the solution remains near or above pK<sub>a</sub> of alkyl ammonium salts, CMC decreases. pH has no effect on the CMC of nonionic surfactant. However, at very low pH, there is a possibility of protonation of ether oxygen of polyoxyethylene surfactants and eventually, the characteristics of the system is changed.<sup>147</sup>

#### 6. Cloud Point:

Nonionic surfactant shows temperature instability. At relatively higher temperature, nonionic surfactants lead to formation of aggregate in solution (not like micellar aggregate) due to dehydration of polar moieties. As a result, the conformational change of polyoxyethylene moieties is possible and turbidity appears. The average threshold temperature at which turbidity (phase separation) appears on heating and disappears on cooling is called Critical Solution Temperature (CST) of cloud point (CP) of surfactant.<sup>148-151</sup> Clouding phenomenon of some uncharged polymers having appreciable hydrophobicity is also found in literature.<sup>152-154</sup> Although clouding phenomena of individual nonionic surfactants, viz., triton X-100, brij 56, alkyl (linear, branched and cyclic) phenyl ethoxylates, igepal etc., block copolymers, methyl cellulose in water have been amply investigated in past, present time witnesses the investigation of CP originating from the combination of surfactants, polymers or both polymer

with surfactant in presence of other additives <sup>155-161</sup> and also variation of solvents. Both increase and decrease of cloud point have been observed for particular nonionic surfactant or uncharged polymers in comparison to their native states in aqueous solution with the influence of additives. Normally, water structure breaking species increase CP and water structure forming species decrease CP.<sup>1</sup> The presence of both CP (one is upper critical solution temperature (UCST) and another is lower critical solution temperature (LCST) has been reported for triblock copolymer (pluronics).<sup>162</sup> The effect of nonionic surfactants on the clouding phenomena of neutral polymers has been described by Flory-Huggins theory <sup>163, 164</sup> relating to the structure of surfactants during phase separation and temperature effect on aggregation number. Cloud point temperature for nonionic surfactants, as well as ionic surfactants combined with nonionic surfactant or combination of uncharged polymers (including proteins) with various surfactants (including lipids, amphiphilic drugs etc.) is very much essential in clinical preparations especially for drug immobilization, biomedical formulations, industrial extractions, enhanced oil recovery process,<sup>165-168</sup> where certain temperature is need to be adjusted for formulation of materials.

#### 7. Thermodynamics of micellization:

- -

Micellization process is energetically controlled by thermodynamic principles. During micellization of surfactant, the so called 'iceberg' structure around the surfactant monomer disrupts with a resultant increase in entropy.<sup>169, 170</sup>

Two approaches have been used extensively in classical literature and these are accepted as useful models of micellization: (i) the mass action model, and (ii) the phase separation model or pseudo phase model.<sup>149, 171</sup>

According to the mass action model, after CMC, monomer and micelles are interdependent to each other as with the increase of monomer concentration, micelle concentration also increases and vice versa according to the following equilibrium:

$$nS \stackrel{K_M}{\leftrightarrow} S_n \text{ or } M$$
 [13a]

for a nonionic surfactant, S,  $S_n$ , n and  $K_M$  denote surfactant monomers, micelles, aggregation number and equilibrium micellization constant respectively.

In case of ionic surfactants, while studying micellization, the above equilibrium takes the new equilibrium incorporating the charges and counterions:

$$nS^{\pm} + mZ^{\mp} \underset{K_M}{\leftrightarrow} (S_n Z_m)^{\pm (n-m)} \text{ or } M^{\pm (n-m)}$$
 [13b]

for a ionic surfactant, where  $Z^{\pm}$  and m denote counterions and no of counterions are attached to the micelle in the above equilibrium process.

Hence, it is written as, for nonionics, neglecting activity effect,

$$K_M = \frac{a_M}{a_S^n} \approx \frac{C_M}{C_S^n}$$
[13c]

where, a is the activity coefficient and C is the concentration.

For ionic surfactants,

$$K_{M} = \frac{a_{M}^{\pm (n-m)}}{a_{S^{\pm}}^{n} a_{Z^{\mp}}^{m}} \approx \frac{C_{M}^{\pm (n-m)}}{C_{S^{\pm}}^{n} C_{Z^{\mp}}^{m}}$$
[13d]

For nonionic surfactants, standard Gibbs free energy of micellization can be given by the following relation:

$$\Delta G_M^0 = -RT \ln K_M = -RT \ln C_M + nRT \ln C_S$$
<sup>[14]</sup>

Change of standard Gibbs free energy of micellization per monomeric unit (n) can be presented as:

$$\frac{\Delta G_M^0}{n} = \Delta G_{mic}^0 = -\frac{RT}{n} \ln C_M + RT \ln C_S$$
[15]

At CMC, percentage of monomers forms micelles which are very small. Hence, the eq. 15 can be approximated as:

$$\Delta G_M^0 = RT \ln C_S = RT \ln CMC$$
<sup>[16]</sup>

For ionic surfactants,

$$\Delta G_M^0 = -RT \ln K_M = -RT \ln C_M^{\pm (n-m)} + nRT \ln C_S^{\pm} + mRT \ln C_Z^{\mp}$$
[17]

Therefore, it can be written as standard Gibbs free energy change per monomeric unit in the following form:

$$\frac{\Delta G_M^0}{n} = \Delta G_{mic}^0 = -\frac{RT}{n} \ln C_M^{\pm (n-m)} + RT \ln C_S^{\pm} + \frac{m}{n} RT \ln C_Z^{\mp}$$
[18]
Again, as the percentage of monomers is very small and usually n is large, the eq. 18 is transformed as

$$\Delta G_{mic}^{0} = RT \ln C_{S}^{\pm} + \frac{m}{n} RT \ln C_{Z}^{\mp}$$
<sup>[19]</sup>

For normal ionizable surfactants, it can be written as

$$C_S^{\pm} = C_Z^{\mp}$$
[20]

Hence, at CMC, it is obviously,  $C_S^{\pm} = C_Z^{\mp} = CMC$  [21]

so that, 
$$\Delta G_{mic}^0 = \left(1 + \frac{m}{n}\right) RT \ln CMC = (1+g) RT \ln CMC$$
 [22]

where, g is the fraction or degree of counterion binding.

If g = 0, there is no counterion binding in case of nonionic surfactant,

$$\Delta G_{mic}^0 = RT \ln CMC$$
<sup>[23]</sup>

On the other hand, if 100% counterions are bound, g = 1 and the Eq. 22 takes the form:

$$\Delta G_{mic}^0 = 2RT \ln CMC$$
<sup>[24]</sup>

The above relation is based on constant condition of aggregation number (n) and several valid approximations.

Pseudophase model is based on the assumption that, micelles are considered to constitute a new phase at or above CMC and concentration of monomers remains invariant at or above CMC.

According to Pseudophase model, the following equilibrium can be conferred based on phase equilibrium:  $monomer \leftrightarrow micelle (Pseudophase)$  [25]

At a constant temperature, chemical potential of free surfactant monomers ( $\mu_S$ ) in solution is equal to chemical potential of surfactant monomers in pseudo micellar phase ( $\mu_S^{micelle}$ ).

Thus, for nonionic surfactant,

$$\mu_S = \mu_S^{micelle} \text{ or } \mu_M$$
[26]

The eq. 26 can be written for nonionic surfactant,

$$\mu_S^0 + RT \ln a_S = \ \mu_M^0 + RT \ln a_M$$
[27]

or, 
$$\Delta G_m^0 = \mu_M^0 - \mu_S^0 = RT \ln a_S \approx RT \ln CMC$$
 [28]

Since,  $a_M$  (activity of micelle considering it as a separate pure phase or pseudo phase) = 1, in case of ionic surfactant,

$$\mu_{S}^{\pm} + \frac{m}{n} \mu_{Z}^{\mp} = \mu_{M}^{\pm}$$
 [29] as,  $\mu_{S} = \mu_{M}$ 

Therefore, the eq. 29 is transform to

$$\mu_{S^{\pm}}^{0} + RT \ln a_{S}^{\pm} + \frac{m}{n} \,\mu_{Z^{\mp}}^{0} + \frac{m}{n} RT \ln a_{Z}^{\mp} = \,\mu_{M^{\pm}}^{0} + RT \ln a_{M}^{\pm}$$
[30]

Or, 
$$\left[\mu_{M^{\pm}}^{0} - (\mu_{S^{\pm}}^{0} + \frac{m}{n} \mu_{Z^{\mp}}^{0})\right] = RT \ln a_{S}^{\pm} + \frac{m}{n} RT \ln a_{Z}^{\mp} - RT \ln a_{M}^{\pm}$$
 [31]

hence, 
$$\Delta G_m^0 = RT \ln a_S^{\pm} + \frac{m}{n} RT \ln a_Z^{\mp} - RT \ln a_M^{\pm}$$
 [32]

Since, 
$$a_M^{\pm} = 1, \Delta G_m^0 = RT \ln a_S^{\pm} + \frac{m}{n} RT \ln a_Z^{\mp} = \left(1 + \frac{m}{n}\right) RT \ln CMC$$
 [33]

Or, 
$$\Delta G_m^0 = (1+g) RT \ln CMC$$
 [34]

In the equations [29] to [33],  $\mu_M^{\pm}$  is actually  $\mu_M^{\pm(n-m)}$ ; the factor (n-m) has been neglected for simplicity.

We get the same equation for  $\Delta G_m^0$  from pseudophase model that we get from mass action model.  $\mu_S^0$  and  $\mu_M^0$  are the standard chemical potentials of monomer and micelle respectively, and,  $a_S$  and  $a_M$  are the activities for the same respectively. Here, it is noted that, for the above two methods, equilibrium concentration of free monomer ( $C_S$ ) is considered to be equivalent to CMC.

In case of mass action model, including the contribution of aggregation number  $(n)^{172}$ , standard Gibbs free energy of micellization  $(\Delta G_{mic}^0)$  and standard enthalpy of micellization  $(\Delta H_{mic}^0)$  can be expressed by,

$$\Delta G_{mic}^{0} = (1+g) RT \ln X_{CMC} + \frac{RT}{n} \ln[2n(n+m)]$$
[35]

and, 
$$\Delta H_{mic}^{0} = -RT^{2} \left[ (1+g) \frac{d \ln X_{CMC}}{dT} + \ln X_{CMC} \frac{dg}{dT} + \frac{d \left[ \left( \frac{1}{n} \right) \ln \{2n(n+m)\} \right]}{dT} \right]$$
[36]

CMC has been expressed in mole fraction ( $X_{CMC}$ ) unit in the above two equations. Here, g is the number of counterion binding and n is the aggregation number. Usually, the second and third terms of equations [35] and [36] are small. In the pseudophase model, the terms can be conceptually avoided.

Thus, for ionic micelles,

$$\Delta H_{mic}^{0} = -RT^{2} \left[ (1+g) \frac{d \ln X_{CMC}}{dT} + \ln X_{CMC} \frac{dg}{dT} \right]$$
[37]

and for nonionic micelles,

$$\Delta H_{mic}^0 = -RT^2 \frac{d\ln X_{CMC}}{dT}$$
[38]

Entropy of micellization ( $\Delta S_{mic}^0$ ) can be calculated from Gibbs- Helmholtz equation,

$$\Delta S_{mic}^{0} = \frac{\Delta H_{mic}^{0} - \Delta G_{mic}^{0}}{T}$$
[39]

CMC should be measured at different temperature in order to evaluate  $\Delta H_{mic}^0$  and  $\Delta S_{mic}^0$  using equations 35 to 39, whichever is applicable for different systems.  $\Delta S_{mic}^0$  values are normally positive. Negative entropy contribution due to amphiphilic association in micelle or the solvation of monomers are overshadowed by the disruption of iceberg structure around the monomers to take them into micelle, this process in terms increase the overall entropy.

It may be mentioned that for calculation of thermodynamic parameters, CMC should be converted in mole fraction unit (stated earlier). The van't Hoff method is used to calculate standard enthalpy of micellization ( $\Delta H_{mic}^0$ ) by measuring the CMC values at different temperatures using the equation 38. By using ITC (isothermal titration calorimetry), both CMC and  $\Delta H_{mic}^0$  can be measured directly. Determination of  $\Delta H_{mic}^0$  using calorimetry method gives the exact value with high precision of accuracy.<sup>173-176</sup> The enthalpies determined by van't Hoff method (by determining CMC at different temperatures) are generally found dissimilar with those calculated by direct method, especially for ionic surfactants.<sup>177-180</sup> Neither the mass action model nor the pseudophase model for micellization of surfactant is precisely correct. In both approaches, it is considered that equilibrium free monomer concentration during micellization process is equivalent to CMC. It is also conveniently considered that, both the aggregation number and degree of counterion binding are independent on temperature or at least independent within the investigated temperature range. Despite these limitations, these two models are the simplified version to determine thermodynamic parameters.

Besides these two above models, there are also some other approaches. A thermodynamic model is developed by Hill <sup>181</sup> for small system and applied by Hall and Pethica to nonionized and noninteracting systems.<sup>149</sup> Hall <sup>182-184</sup> has developed detailed treatment of multicomponent system of interacting aggregates. Corkill and coworkers <sup>185-187</sup> has been proposed another thermodynamic approach for nonionic surfactant systems. Tanford <sup>188</sup> has proposed an interesting model for micelle formation based on micelle shape. This geometrical approach is extended by Israelachvili *et al.* <sup>93</sup> and is further developed by Ruckenstein and Nagarajan.<sup>189</sup>

Several variables such as, change in aggregation number, micellar shape and size, counter ion condensation and micellar solvation with variation of temperatures and other environmental changes provide challenges to determine thermodynamic parameters with absolute precession making this topic worthy of further investigation.

#### 8. Theory of mixed micelles:

In aqueous solution, two or more surfactants exhibit rich interfacial properties, such as, decrease of CMC, higher surface activity, increase of intensity of scattered radiation, etc., compared to their individual components. Mixed micelles are formed in solution by active participation of both surfactants (Fig. 16) and formed micelles after CMC; are in equilibrium with individual monomeric species.<sup>9</sup> Low concentration of mixed surfactants mixture has been allowed to the treatment of potential skin irritation.<sup>190</sup> As the smaller number of surfactants can be required to form mixed micelle, it is also beneficiary for the environment as the amount of surfactant release.<sup>191</sup> Mixed micelle has enhanced the substantial absorption of hydrophobic drugs in human body.<sup>192, 193</sup> It is interesting to observe that equimolar mixture of cationic and anionic surfactants may form insoluble ion pair, they get solubilized if the proportion of one component is appreciably higher than other in solution. Vesicle like structure has also been reported in literatures by the conjugation of catanionic surfactants.<sup>194-196</sup> Mixture of cationic

and anionic surfactants can be used for the use of cleansing product to reduce water hardness. <sup>197</sup> Mixed micelles of ionic-ionic,<sup>198-207</sup> ionic-nonionic,<sup>208-214</sup> and nonionic-nonionic <sup>215-217</sup> combinations have been reported in literature; among them, nonionic-nonionic and cationic-cationic combinations are rare. Mixed micelle formation of surface active ionic liquid (SAIL) in combination with anionic,<sup>218-224</sup> amphiphilic drugs,<sup>225-229</sup> cationic <sup>9, 230-237</sup> and nonionic surfactants <sup>21, 238-243</sup> have also been studied significantly.



Fig. 16. Schematic representation of a mixed micelle formed by two ionic surfactants (Surfactant 1 (olive green) and Surfactant 2 (red)).

A simple theory is proposed by Clint <sup>244</sup> to determine CMC assuming the ideal mixing by the monomeric amphiphiles during mixed micelle formation. The proposed relation made by Clint's <sup>244</sup> assumption is given here:

$$\frac{1}{(CMC)_{max}} = \sum_{i} \frac{\alpha_i}{(CMC)_i}$$
[40]

where,  $\alpha_i$  and  $(CMC)_i$  are the stoichiometric mole fraction and CMC of  $i^{th}$  component respectively. If the mixing of surfactant components forming mixed micelle is not ideal, eq. [40] takes the form:

$$\frac{1}{(CMC)_i} = \sum_i \frac{\alpha_i}{f_i (CMC)_i}$$
[41]

where,  $f_i$  is the activity coefficient of the  $i^{th}$  species.

Clint's <sup>244</sup> theory provides an adequate description where nearly ideal mixing might be expected, i.e., homologous series of surfactants with similar head groups; but on the other hand, fails to predict either  $(CMC)_{max}$  or the monomeric compositions in the mixed micelle formed

by different head group of surfactants. In this connection it has been noted that a theory which is based on Regular Solution Theory (RST) provides a way to deal with both enthalpic as well as entropic factors in the mixed micelle formation. Prediction of this theory gives the satisfactory result with the experimental CMCs ( $(CMC)_{max}$ ) on the compositions of ionicnonionic or nonionic-nonionic mixed micelle.

Lange <sup>245</sup> developed an equation for binary mixtures of nonionics which accurately described CMC-dependence upon bulk composition assuming ideal mixing, *i.e.*, the only contribution to the free energy of mixing came from the entropy change upon mixing of two surfactant species within the micelle. A similar treatment was also developed independently by Lange <sup>246</sup> and Shinoda <sup>247</sup> assuming ideal mixing for homologous pair of ionic surfactants. Later, Moroi and coworkers <sup>248</sup> have extended Lange-Shinoda approach of ionic and nonionic surfactants. Theories were developed in mid to late seventies <sup>248, 249</sup> to account for micellar mole fraction, activity coefficient, extent of interaction among the surfactants in mixed micelles. Rubingh <sup>249</sup> formulated a theoretical approach to relate monomer concentration to micellar molefraction of surfactants. Although satisfactory result found to explain a micellar system,<sup>250, 251</sup> Rubingh<sup>249</sup> theory was criticized on thermodynamic grounds. Motomura *et al.* <sup>250</sup> proposed a mixed micellar theory claiming to be a better description of mixed surfactant solution. In the early nineties, Sarmoria et al. 252 and Puvvada et al. 253 have developed a molecular thermodynamic model (SPB model) for mixed surfactant systems. Majority of the studies which describe mixed micellar system till now have been based on Rubingh <sup>249</sup> theory as it includes a specific interaction parameter ( $\beta$ ) measuring the interaction between surfactants either synergistic or antagonistic. Rubingh treatment is itself simpler than SPB model.

#### Rubingh's treatment on binary mixtures:

If two surfactants 1 and 2 form mixed micelle, the mole fraction of surfactant 1 can be estimated from the known values of CMC of individual surfactants,  $C_1$  and  $C_2$  and the CMC of mixed micelle,  $C^*$  and stoichiometric mole fraction of surfactant 1 ( $\alpha$ ) in the total mixed solute.

#### List of symbols:

 $\mu_1$  = chemical potential of monomeric surfactant 1

 $\mu_1^0$  = standard chemical potential of monomeric surfactant 1

 $\mu_{1^M}$  = chemical potential of 1 in micelle

 $\mu_{1^{M0}}$  = chemical potential of 1 in pure micelle

 $C_1^m$  and  $C_2^m$  = concentration of monomeric surfactants 1 and 2

 $f_1$  and  $f_2$  = activity coefficient of surfactants 1 and 2 in mixed micelle

x = mole fraction of surfactant 1 in mixed micelle.

The chemical potential of monomeric component 1in mixed micelle solution can be written as:

$$\mu_1 = \mu_1^0 + RT \ln C_1^m \tag{42}$$

and chemical potential of component 1 in mixed micelle is

$$\mu_{1^{M}} = \mu_{1^{M_{0}}} + RT \ln f_{1} x$$
[43]

By using a phase separation model of micellization, we can write for component 1 in the pure micelle,

$$\mu_{1^{M_0}} = \mu_1^0 + RT \ln C_1 \tag{44}$$

As, at equilibrium since  $\mu_1 = \mu_{1^M}$ , we obtain from Eq. [42], [43] and [44] that for component 1,

$$C_1^m = x f_1 C_1 \tag{45}$$

Similarly, for component 2, we may write,

$$C_2^m = (1 - x)f_2C_2$$
[46]

Below  $C^*$ , the concentration of component 1 is given by,

$$C_1^m = \alpha C \tag{47}$$

here, C is total surfactant concentration of surfactants 1 and 2 in solution.

Similarly, for component 2, we can write,

$$C_2^m = (1 - \alpha)C \tag{48}$$

At the mixed CMC ( $C^*$ ), by considering the Eqs. [45], [46], [47] and [48], it can be written

$$\alpha C^* = x f_1 C_1 \tag{49}$$

$$(1-\alpha) C^* = (1-x) f_2 C_2$$
[50]

Eliminating x from equation [49] and [50], we can write,

$$\frac{1}{C^*} = \frac{\alpha}{f_1 C_1} + \frac{1 - \alpha}{f_2 C_2}$$
[51]

Since,  $f_1 = f_2$  (ideal approximation), then Eq. [51] reduces to,

$$\frac{1}{c^*} = \frac{\alpha}{c_1} + \frac{1 - \alpha}{c_2}$$
[52]

Equation [52] is derived by Lange, Beck and Clint.

On the other hand, we can eliminate  $C^*$  between the two equations ([49] and [50]) to get the mole fraction of component 1 at CMC (Eq. [53]),

$$x = \frac{\alpha f_2 C_2}{\alpha f_2 C_2 + (1 - \alpha) f_1 C_1}$$
[53]

Relationships of monomer concentrations valid above CMC can be developed from the following relation:

$$x = \frac{\alpha C - C_1^m}{C - C_1^m - C_2^m}$$
[54]

Substituting  $C_1^m$  and  $C_2^m$  from Eqs. [45] and [46] to Eq. [54], one can get a quadratic expression of *x*; upon solving yields the following value of *x*.

$$x = \frac{-(C-\Delta) + \sqrt{(C-\Delta)^2 + 4\alpha C\Delta}}{2\Delta} \quad [55] \quad \text{where, } \Delta = f_2 C_2 - f_1 C_1$$

Finally, using [45] again, the monomer concentration of component 1 can be written explicitly,

$$C_1^m = \frac{-(C-\Delta) + \sqrt{(C-\Delta)^2 + 4\alpha C\Delta}}{\left(\frac{f_2 C_2}{f_1 C_1}\right) - 1}$$
 [56] and,  $C_2^m = \left(1 - \frac{C_1^m}{f_1 C_1}\right) f_2 C_2$  [57]

Although, Eqs. [56] and [57] correct the expression for micellar composition and monomer concentrations, remain incomplete without some relation between activity coefficients in micelle and micellar composition. Regular solution approximation can be used to determine activity coefficient of monomers in mixed micellar state.

$$f_1 = \exp \beta (1 - x)^2$$
 [58] and,  $f_2 = \exp \beta x^2$  [59]

This parameter  $\beta$  (stated earlier) is also molecular interaction in mixed micelle,

$$\beta = \frac{N \left(W_{11} + W_{22} - 2W_{12}\right)}{RT}$$
[60]

where,  $W_{11}$  and  $W_{22}$  are the energies of interaction between surfactant molecules in pure micelles and  $W_{12}$  is the interaction between two species in mixed aggregate. N is Avogadro number. It can be demonstrated within regular solution context, the excess enthalpy ( $H_E$ ) is given by,

$$H_E = \beta RT x (1-x)$$
[61]

Since,  $\beta$  cannot be 0, this model considers both enthalpy and entropy (for ideal mixing) contribution in mixed micelle formation. If  $\beta$  is negative, then it can be said that the interaction between surfactants is synergistic in mixed micelle and reverse is true for antagonistic type interaction.  $\beta$  can be calculated using the following relationships in terms of  $C_1$ ,  $C_2$ ,  $\alpha$  and  $C^*$ ,

$$\frac{x^2 \ln\left(\frac{\mathcal{C}^* \alpha}{\mathcal{C}_1 \alpha}\right)}{(1-x)^2 \ln\left(\frac{\mathcal{C}^*(1-\alpha)}{(1-x)}\right)} = 1$$
[62]

Eq. [62] is solved iteratively for *x*, and substitution of *x* into equation [63] yields the immediate solution of  $\beta$ .

$$\beta = \ln\left[\frac{\left(\frac{C^*\alpha}{C_1\alpha}\right)}{(1-x)^2}\right]$$
[63]

Mixed micellization studies have been attempted in details by several workers. <sup>246, 253-257</sup> CMC values for the mixtures of alkyl sulphate anions <sup>246, 258</sup> and also quaternary ammonium cations <sup>259</sup> have been studied. Moroi *et al.* <sup>248</sup> and others <sup>260-262</sup> have been studied the mixtures of ionic and nonionic surfactants to evaluate CMC. Although it has been seen that CMCs for mixed surfactant systems lies in between the CMC of pure surfactants, several studies show that CMC of mixed surfactant system are even higher than pure parent components.<sup>263-265</sup>

### 9. Interaction of macrocycle with surfactants:

An enormous attention has been focused in the synthesis of aza-crown compounds in the past and preceding years. The aza-crowns have intermediate complexation properties between those of the all-oxygen bound crowns which have strong intake affinity towards alkali and alkaline

earth metal ions, and those of the all-nitrogen bound cyclams, which are strongly bound with heavy-metal cations inside its cavity due to less electronegativity and strong complexing ability of N over O atom. These have important uses as artificial receptors in molecular recognition processes <sup>266</sup> and in some cases, complexation of anions which have close similarity with the ions found in definite biological systems.<sup>267-269</sup> Thus, the introduction of biological entities into the crown ether macromolecules has provided researcher with an even greater insight into biological ionophores, such as, macrolide antibiotics, cyclic peptides etc. <sup>270, 271</sup> These crownbased macrocycles have also an enhanced complexing ability for ammonium salts,<sup>272, 273</sup> through H-bonding <sup>274-277</sup> and for transition-metal ions <sup>273, 278</sup> over the crowns containing only oxygen atoms. An extensive number of aza-crowns have been synthesized; among them, benzo aza-crowns have been studied broadly on its complexation affinity towards main group and also transition metal ions since its discovery in the mid-1970s.<sup>279-282</sup> Surfactant mediated assemblies in solution have great potential applications in routine life. The simplest assembly is termed as micelle and the corresponding surfactant concentration abbreviated as critical micelle concentration (CMC).<sup>283</sup> These micellar properties are affected by influence of several additives, i.e., non-polar and polar organic compounds, small number of electrolytes, etc.<sup>283</sup>. Recently, increasing effort is being emphasized to the study of the assimilation or solubilization of neutral molecules into micelle in aqueous solution. Although, a lot of studies have already been reported on the complexation properties of crowns with various cations, anions and neutral organic molecules, less attention has been devoted on the interaction of crowns with surface active agents <sup>284-288</sup> in both pre and post micellar regime and majority of them (surfactants) are anionic in nature. The inclusion of crown macromolecules to the surfactant solutions during micellization results to the formation of inclusion complexes mediated by crown with oppositely charged counterions of surfactants or simply association with monomeric and aggregated form of surfactants, and as a result, these crowns alter the adsorption of surfactants at interfaces and also influence in bulk micellization process.



Fig. 17. Structures of common crown ethers (from left to the right): 12-crown-4, 15crown-5, 18-crown-6, dibenzo-18-crown-6, diaza-18-crown-4, and, Cyclam (1,4,8,11tetraazacyclotetradecane)

# 10. Uncharged and Charged (Polyelectrolyte) Polymers and Proteins & their interaction with surfactants:

The word '*polymer*' came from a Greek words; *poly*,- 'many' and *mer*,- 'part', suggesting a large molecule or a macromolecule formed by many repeating subunits joined together normally by covalent bonds. This combination process of repeating subunits is called polymerization. These repeating subunits are called monomers. But the monomers sometimes are not at all intact in the polymer chain. This often creates confusion or misconception with the term 'polymer' due to inconsistency of monomers. For example, polyvinyl alcohol is a highly versatile polymer but there is, in fact, no such monomer as vinyl alcohol. To address this inconsistency of monomers in polymer chain, Hermann Staudinger in 1920 introduced the term 'macromolecules'<sup>289</sup> meaning 'large molecules' (macro in Greek means large) for such polymeric compounds and it is now used almost interchangeably with the word polymer. If - A- is the structural unit, then a macromolecule or polymer molecule is represented by:



where *n* is an integer, defined as the degree of polymerization of the macromolecule. Polymer molecules were generally considered as physical assemblies of uncharged monomers, so these are called associated colloids before 1930. The variety of their molecular compositions and also altered physicochemical properties make them useful in many pharmaceutical, industrial, technical and medical purposes. Improvement in formulations have been obtained, much need in industry, by the use of current synthetic methodologies and through the understanding of the molecular interactions in conjugation with polymers and the other components of a care product. The macromolecules generally found in nature including proteins, carbohydrates, nucleic acids are known as bio-macromolecules or biopolymers <sup>290</sup> whereas, widely used plastics, rubbers and adhesives are the synthetic polymers.

Proteins are the functional form of polypeptides. Proteins are biopolymers built from amino acids. Proteins contain more than 50 amino acid residues. There are 20 amino acids that are common to all living organisms on Earth. These are all  $\alpha$ -amino acids having the amine group attached to the (alpha-) carbon atom next to the carboxyl group in conjugation with unique side chains (aliphatic, acyclic, aromatic, containing hydroxyl or sulphur, etc.). All the naturally occurring amino acids are L-amino acids (chiral), with the exception of glycine (achiral). Many of the constituent amino acids can act as either weak acids or bases depending

on pH, or contain polar groups (hydrophilic character) that may be partly dissociated if the side chain is polar or hydrophobic, if it is nonpolar in nature. So, the protein charge can be easily tuned by varying the solution pH. It is seen that above the isoelectric point (pI), the net charge of protein is negative and below it is positive. At their isoelectric point pI, which is the pH at which proteins have zero net charge, proteins adopt their most compact conformations and also less water soluble. The specific function and structure of each protein depends on its amino acid sequence, which is called the primary structure. A polypeptide chain, therefore, has a Nterminal (amine group of first amino acid) and a C-terminal (carboxyl group of last amino acid) section.<sup>29 291-293</sup> A polypeptide chain when assembles into two dimensions, the structure is called secondary structure. Typical secondary structure motives can be classified into α-helices and  $\beta$ -sheets. Folding of these motives into the three-dimensional space results in the fully functional form of protein, called native structure, and the structure is called tertiary structure. The quaternary structure is the assembly of folded proteins into larger functional complexes. Proteins are generally surface active. Proteins can be stabilized by the hydrogen bond, disulphide bridges, electrostatic interaction, complex formation with metal ions, and by the hydrophobic effects among the amino acid residues that favours a folded conformation overcoming the entropy disadvantage. The proteins can undergo both specific and non-specific interactions with different kind of substance, and minor to major structural or configurational changes of protein may arise by such interactions under various environmental constraints, viz., pH, temperature, pressure, additives, etc.

#### **Polymer classification:**

Polymers are categorised according to their source of availability and structure of monomer chain. According to the source of availability, there are three types of polymers as natural, synthetic and semi-synthetic polymers. Carbohydrates (inulin, cellulose, alginate, starch, glycogen), proteins (collagen, silk, keratin), natural rubber and DNA are in the class of natural polymers. Polyethylene, polyvinyl chloride, polystyrene etc., are in the group of synthetic polymers whereas cellulose nitrate, acetate (rayon) are semi-synthetic polymers.

The polymers can be classified on the basis of their chemical structures as shown in Fig 18. Homopolymers comprise of identical bonding linkages to each similar monomer unit. Copolymers are usually indicating two or more different types of monomer units. Furthermore, depending on the arrangement of the types of monomers in the copolymer chain, the following classifications can be shown (Fig.18): (i) In random copolymers, two or more different repeating units are distributed randomly, (ii) Alternating copolymers are comprises of alternating sequences of the different monomers, (iii) In block copolymers, the sequences of monomer are afterwards sequences of another monomer, (iv) Graft copolymers consist of a chain which are formed by one kind of monomers with branches of another type.



Fig. 18. Types of polymers (a) homopolymer (b) random copolymer (c) alternating copolymer (d) block copolymer, and (e) graft copolymer.

On the basis of the ionic charge of the monomeric groups, the polymers can be further classified as: nonionic (polyethylene oxide, polyethylene glycol), anionic (sodium carboxymethylcellulose, polyacrylic acid, sodium alginate, sodium polystyrene sulfonate) and cationic (polyDADMAC) polymers. Charged polymers are called polyelectrolytes. These have both conductive properties in aqueous solution like salts and viscous properties like polymers. Biological molecules such as polypeptides, DNA can be classified as polyelectrolytes. Recently, polyelectrolytes have gained significant interest as thickeners, conditioners, dispersant agents, ion-exchanger, emulsifiers, and clarifying agents. Significant attention has been paid for elucidating the properties of natural polyelectrolytes (e.g, alginate, carboxymethyl cellulose, starch etc.) in the pharmaceutical and food processing industries as their biodegradable and biocompatible properties.

Polymers can also be classified according to their structure. Normally, the constitutional units initially form a linear chain. Cyclic polymer molecules result if the two

ends of a linear polymer molecule are connected. Small amounts of cyclic molecules are often formed during the synthesis of linear chains as by-products. Combinations of linear molecules, with cyclic molecules, and of cyclic macromolecules themselves lead to a great variety of molecular designs. It can be further categorized according to their applications as rubber or elastomer (e.g., natural rubber, BUNA-S), thermosetting polymer (e.g., bakelite), thermoplastic polymer (e.g., polyvinyl chloride), plastic (e.g., nonionic), fiber (e.g., nylon) and resin (e.g., polysulphides).

Rheological and physicochemical properties of polymeric solution are obtained by the configuration of polymer chain depends on the interaction of the monomer blocks with each other and the solvent. Upon dissolution in solvent, the polymer chains implement different forms, such as, an extended configuration, a random coil, or a helical form. The polymeric chains expand in good solvents leading to significant increase in viscosity of the solution. This change in viscosity in solution depends on type of polymer, and charge density of the polymer (in case of ionic polymer or polyelectrolytes), polymer concentration and molecular weight of the polymer. The polymer molecules are mostly stringing of atoms connected to each other by covalent bonds. One can form a polymer that exhibits more than one kind of affinity or interaction by combining different kinds of monomer in the same polymeric species.<sup>294</sup> The study of polymeric solutions can be essential in understanding various physicochemical properties, such as: molecular weight distribution, the charge density of ionizable polymer, polymeric chain configuration, radius of gyration, the degree of association of polymer molecules as well as the effect of other solutes present in the solution on the configuration and characterization of the macromolecule.

The electrostatic interactions between the charges on the polyion chain and those between the polyion and the surrounding counterions play very important roles in determining the behaviour of polyelectrolytes in solution, which are quite distinct from that of the nonpolyelectrolytes (uncharged polymers). The conformations of polyelectrolytes in dilute solutions depend on the fraction of charged groups present on the polymers and the ionic strength of the solution. Weakly charged polyelectrolytes (or macromolecules carrying a small percentage of ionizable groups) in solution can mainly show the interplay between the noncoulombic interactions, viz., van der Waals interaction, hydrogen bonding and other molecular interactions which play an important role in governing their conformations.

Polymers are mixtures of the species of various molecular weights. The knowledge of distribution of molecular weights determines the mechanical strength of polymer and also has

been shown to be essential in many applications, including the flow of melts, adhesion, flocculation, or in aging behaviour. Owing to the difficulties in measuring a distribution of molecular weights in detail, several mathematical forms are frequently used. The individual polymer chains do not all have the same size or mass in any polymer sample. Thus, they have various average molecular weights like number average molecular weight ( $\overline{M_n}$ ), mass average molecular weight ( $\overline{M_w}$ ), and viscosity average molecular weight ( $\overline{M_v}$ ).

They are defined as

$$\overline{M_n} = \frac{\sum_i n_i M_i}{\sum_i n_i} \tag{64}$$

where  $n_i$  is the number of molecules of molecular weight  $M_i$ .

$$\overline{M_{W}} = \frac{\sum_{i} n_{i} M_{i}^{2}}{\sum_{i} n_{i}}$$
(65)

 $\overline{M_w}$  is always greater than  $\overline{M_n}$ , the ratio of  $\overline{M_w}/\overline{M_n}$  known as polydispersity index, gives an idea of molecular weight distribution. Larger values of  $(\overline{M_w}/\overline{M_n}) > 2$  specify a very widespread distribution with substantial amounts of material at both extremes. A monodisperse polymer sample having a unique molecular mass,  $M = \overline{M_n} = \overline{M_w}$  can be measured by osmometry where as  $\overline{M_w}$  can be measured by light scattering experiment. Another useful technique for the determination of molecular mass is the viscosity average molecular mass  $(\overline{M_v})$ .  $\overline{M_v}$  can be defined as:

$$\overline{M_{\nu}} = \left(\frac{\sum_{i} n_{i} M_{i}^{1+\alpha}}{\sum_{i} n_{i} M_{i}}\right)^{\frac{1}{\alpha}}$$
(66)

where ' $\alpha$ ' is constant lying between 0.5 and 2.0. Normally,  $\overline{M_w} > \overline{M_v} > \overline{M_n}$ . For ' $\alpha$ ' = 1, theoretically  $\overline{M_w} = \overline{M_v}$ . For a monodisperse polymer, molecular mass,  $M = \overline{M_n} = \overline{M_w} = \overline{M_v}$ . Solution Properties of Polymer

Viscosity is a convenient method to characterize a polymer solution. This can be attained by measuring the clearance time "t" of a dilute polymer solution with a laminar flow through a capillary in an Ubbelohde viscometer and comparing with the time of flow for the solvent, t<sub>0</sub>. The relative viscosity is obtained from the flow time multiplying with the density of the solution and the solvent. The common nomenclatures in relation to the solution viscosity are given below.

Relative viscosity: 
$$\eta_{rel} = \frac{\eta}{\eta_0} \approx \frac{t\rho}{t\rho_0}$$
 (67)

where,  $\rho$  and  $\rho_0$  are the solution and solvent density, respectively. For fairly dilute solution, its density is considered equivalent to the pure solvent, therefore the relative viscosity definitions are often used in practice.

Specific viscosity: 
$$\eta_{sp} = \frac{\eta - \eta_0}{\eta_0} = \eta_{rel} - 1$$
 (68)

Reduced viscosity:

$$\eta_{red} = \frac{\eta_{sp}}{C} \tag{69}$$

Intrinsic viscosity: 
$$[\eta] = \left(\frac{\eta_{sp}}{c}\right)_{c=0} = \left(\ln\frac{\eta_{rel}}{c}\right)_{c=0}$$
 (70)

where  $\eta_0$  and  $\eta$  denote the measured viscosity coefficients of the pure solvent and the solution, respectively. *C* is the concentration of dilute polymer solution expressed in gm dL<sup>-1</sup>. The specific viscosity is a measure of the thickening effect of the polymer solution as compared to the solvent. This quantity depends on polymer concentration and hence, the reduced viscosity  $(\eta_{red})$  is informative to specify a polymer system. The intrinsic viscosity is expressed in terms of the Huggins equation.<sup>295</sup> Thus,

$$\frac{\eta_{sp}}{c} = [\eta] + k_H[\eta]^2 C \tag{71}$$

The plot of  $\frac{\eta_{sp}}{c}$  vs *C* normally gives a straight line, whose extrapolation to zero polymer concentration gives the intrinsic viscosity, [ $\eta$ ] and from the slope we can determine  $k_H$  which is a constant known as Huggins constant.  $k_H$  is approximately 2.0 for solid uncharged spheres, both in theory <sup>296</sup> and practice <sup>297</sup>. For flexible polymer molecules in good solvents,  $k_H$  is often near to 0.35. Somewhat higher values appear in poor solvents. The intrinsic viscosity gives an idea about the polymer configuration; its lower value suggests globular feature while for higher value, it represents open or non-globular configuration of the polymer.

However, in presence of a polyelectrolyte, we cannot determine  $[\eta]$  in purely aqueous solution using Huggins equation as it is shown that at high polyelectrolyte concentration region, reduced viscosity ( $\eta_{red}$ ) decreases with decreasing concentration of polyelectrolyte (which is similar with the uncharged polymers), while at low polyelectrolyte concentration region,  $\eta_{red}$  levels into a plateau and increases again with decreasing polyelectrolyte concentration. In order to address this problem for determination of  $[\eta]$ , it is recommended to prepare polyelectrolyte in low concentration of salt solution. Under this situation, polyelectrolytes behave like uncharged polymers.

It is observed that all the plots of  $\frac{\eta_{sp}}{C}$  vs. *C* at different solvent media are nicely linear to yield  $[\eta]$  and  $k_{\rm H}$  from the intercept and slope, respectively. The intrinsic viscosity is independent on polymer concentration but depends on the nature of molecular weight of the polymer and solvent. It can be utilised to calculate the viscosity average molecular weight,  $\overline{M_v}$ from the Mark-Houwink equation: <sup>298</sup>

$$[\eta] = K(\overline{M_{\nu}})^{\alpha} \tag{72}$$

where *K* and  $\alpha$  are constants, whose values depend on the nature of polymer-solvent system as well as on the temperature. These constants can conveniently be found for common polymer/solvent combinations in the literature.<sup>299</sup>

In mixed aquo-organic solvent media, the value of  $[\eta]$  is in between aqueous and organic solvent. There, structure is also varied with different mixed solvents and salt medium.<sup>300</sup> Banerjee *et al.*<sup>301</sup> and Dan *et al.*<sup>302</sup> have reported  $[\eta]$  values of different gums and inulin in salt water media, respectively. Magnitude of  $[\eta]$  in salt solution is lower than aqueous solution. It was proposed that in salt solution, polymer has a compact structure and it has elongated structure in mixed solvent medium. Nandi *et al.*<sup>303</sup> have investigated  $[\eta]$  of sodium carboxymethylcellulose in aqueous solution as well as acetonitrile-water medium in presence of different ionic strength of NaCl by 'isoionic dilution' method at different temperatures. It is seen that,  $[\eta]$  value is found larger in aqueous solution in comparison with mixed solvent medium and with increase in temperature.

# **Hydration**

The outer layer of the polymer is protected through hydration; their stability, local viscosity, solubilisation, interaction, etc. are functions of hydration and the vicinal water structure. Water soluble polymers solubilize in water through hydration using their available hydrophilic centres. Different methods such as viscosity, diffusion, infrared spectroscopy, calorimetry, acoustic, light scattering, etc. can be utilized to characterize their hydration behaviour.<sup>304-307</sup> Nuclear magnetic resonance studies have also been suitable. <sup>308</sup> If the hydrated entities are constant shearing stress (as in viscosity) or are under constant influence of compression and rarefaction (as in ultrasound), the method would essentially monitor the strongly attached water molecules. The estimation of hydration by the simple non-equilibrium method of conductometry is based on the concept of obstruction <sup>309</sup> to the ionic transport offered by the hydrated polymers. When obstructed, the ions take a detour, resulting in an increase in the

overall resistance of the solution. They may, however, penetrate the loosely solvated portion of the polymer. This may lead to lowering of hydration that corresponds to the primary hydration envisaged by Frank and Evans. <sup>310</sup>

Based on the above obstruction principle, the hydration of the polymer (or dispersion) of any shape can be quantitatively estimated by the method of conductance on the basis of the following relation: <sup>311</sup>

$$\frac{k'}{k} = 1 - 1.93 \, V_h \, \left(\frac{k'}{k}\right) c \tag{73}$$

where k' and k are the values of specific conductance in the presence and absence of obstructants,  $V_h$  is the hydrated specific volume, and c is the concentration of the obstructant, expressed in g/mL. Therefore, a direct estimate of  $V_h$  is thus possible without assuming any shape. From the known specific volume of the water free or dry material, the extent of hydration can be estimated.

#### **Polymer–Solvent interaction**

The characteristics of polymers in solution are extremely dependent upon the quality of solvent. A dissolved polymer will encounter attractive forces between certain segments of polymer that induce cohesion. Energy must be given to the system to keep away the molecular species from their nearest neighbours. This is entitled as cohesive energy, and is associated with  $\Delta H_{\text{mix}}$  the volume fractions, the volume of mixing, and the cohesive energy densities of the components:  $\Delta H_{mix} = V_{mix}(\delta_1 - \delta_2)^2 \varphi_1 \varphi_2$ (74)

 $V_{mix}$  is termed as the volume of mixing,  $\delta_1$  and  $\varphi_1$  are defined as the solubility parameter and volume fraction of the solvent respectively.  $\delta_2$  and  $\varphi_2$  are the solubility parameter and volume fraction of the polymer respectively. Since  $\Delta H_{mix}$  should be small for spontaneous dissolution to happen, the solubility parameters of the solvent and polymer must be as close in value as possible. In a ideal solvent, the solvent molecules have identical properties to those of the polymer and such the polymer would have analogous preference for a solvent molecule as for another polymer molecule. This results in formation of random configuration of the chains. The opposite is true a poor solvent, and the polymer chains will contract. This will influence the viscosity of solution. When the concentration of polymer in a solvent is suitably low, the polymer-polymer interactions can be ignored. As a result, a single flexible linear polymer solvent contact. This folding can produce a range of structures, such as, unperturbed or perturbed coils, wormlike coils and also structures which resembling Euclidian bodies like spheres.

#### **Self-Assembling of Polymer**

Apart from well-established ionic and nonionic surfactants, some polymers are also capable of undergoing self-assembling process when dissolved in selective solvents. Associative polymer has attracted rigorous interest from both industrial and academic viewpoints due to their wide applications in pharmaceutics and biomedicine.<sup>312</sup> The polymer usually comprises of a hydrophilic group with hydrophobic domains distributed along its backbone. Hence, when the polymer dissolves in water, clusters of hydrophobic domains are formed yielding a network structure. For the end-capped water-soluble polymer, the hydrophobic group is located at both ends of the polymer, with the hydrophilic segments separating them. Such polymer associated with strong hydrophobic segments forms flower-like micelles. <sup>313, 314</sup> An associative polymer represents a class of polymers that possess surfactant-like properties. They are used as thickening agents in environment friendly coating applications. Studies of the self-association of water-soluble block<sup>315, 316</sup> and graft <sup>317, 318</sup> copolymers have been found extensive interest.

The laser light scattering is an efficient technique to investigate the association behaviours of the polymer in dilute solution. Two common approaches can be used, i.e., static light scattering (SLS) <sup>319</sup> and dynamic light scattering (DLS) <sup>320</sup>. Through the study of SLS, the weight average molar mass  $(\overline{M_w})$ , average second-virial coefficient  $(\overline{A_2})$ , the overall geometry (shape) of the scattering species and the average radius of gyration ( $\overline{R_g}$ ) can be obtained. From DLS, the translational diffusion coefficient  $(\overline{D_0})$ , average hydrodynamic radius  $(\overline{R_h})$  and the polymer chain conformation can be determined. For example, DLS has been used to study the random association of hydrophobically modified water-soluble polymers, statistical copolymers, block copolymers composed of elastin-like and poly (ethylene glycol) (PEG) blocks, and multiblock copolymers. Marieta et al.<sup>321</sup> has investigated self-aggregation of a polyelectrolyte having N-alkyl-N, N-dimethyl-N-(2-hydroxypropyl) ammonium chloride based on polysaccharides by using of steady state fluorescence and viscometry techniques. Recently, Yao et al. <sup>318</sup> studied the self-aggregation behaviour and morphology of graft copolymers, oligo (9, 9-dihexyl)-fluorence-graft-poly (ethylene oxide) (OHF-g-PEO) in aqueous solutions by light scattering, steady-state fluorescence spectroscopy, time-resolved fluorescence, and transmission electron microscopy (TEM).

#### **Interaction of Surfactant with Polymer or Protein**

The interaction of polymer or protein with surfactant in aqueous solution has become a very fascinating topic due to the wide range of domestic, pharmaceutical and industrial applications,

such as, detergency, food formulations, paints, drug formulation and delivery, formulation for crop disease control, high-power solid-state batteries, cosmetics, coatings, water purification, enhanced oil recovery, etc.<sup>322</sup> Polymer or protein-surfactant mixtures are fundamental units of almost all biological cells. Frequently, they are used together, in particular, in complex colloidal systems to attain colloidal stability, emulsification or flocculation, structuring and suspending properties as well as rheology. In industrial applications, the surfactants act as detergents or dispersing and wetting agents, and the polymers play the unique role as thickeners in water-based formulations. The solution behaviour of polymer itself, the formation of polymer-surfactant complexes in aqueous solution and the manipulation of surfactant adsorption by polymers are active fields of interest in colloid science. Polymers are generally used as viscosity modifiers. Such a growing demand compels more investigations of polymer-surfactant interaction to enrich the practical as well as fundamental knowledge of colloid chemistry.

Three types of interactions are prevalent in polymer-surfactant systems, viz, (i) selfinteraction among surfactant molecules, (ii) self-interaction among polymer molecules, and (iii) interaction between polymer and surfactant. The first two kinds can be either intermolecular or intramolecular. Depending upon the relative magnitude of the above three interactions, there may arise a number of physicochemical phenomena in polymer-surfactant system, which is a unique property of a particular polymer-surfactant complex. Surfactantpolymer interactions involve a complex balance of factors assisting and retarding association. The dominating forces can be categorized into either dispersion (van der Waals) forces, dipolar interactions (including hydrogen bonding or acid-base), coulombic (electrostatic) attractions as well as repulsions and the hydrophobic effect.<sup>323</sup> While the electrical processes are fairly straightforward involving the interaction of surfactant molecule with the charged species present upon the polymer, the remaining interactions are not easily quantified and can be quite complex. Polymers in particular add their own new twist since they may possess in solution as secondary and tertiary structures that must be altered during the surfactant binding process in order to afford the bound surfactant molecules.<sup>324</sup> Any and all of these changes of the polymers in assistance with surfactants result in major alterations in the macroscopic and microscopic properties of the system. Forces which opposing the association of molecules usually include thermal energy, entropic consideration, and repulsive interactions among the similar electrical charges.<sup>325</sup>

The polymer–surfactant interaction is complex and conspicuous in nature; constant configurational changes can occur. Quantitative understanding of the interaction process can

be thermodynamically achieved as every physical and chemical process is guided by the rules of thermodynamics. Initially, the surfactant monomers get attached to the polymer chain and undergo hydrophobic interaction. Normally, by the interaction of a polymer with an amphiphile, a state of critical aggregation concentration (CAC) appears after that induced small micelles start to form in the system, and get bound to the polymer at specific sites that complete at a concentration called the saturation concentration,  $C_s$ . From that state, amphiphile monomers populate at the interface and start forming normal micelles in solution at the saturation point,  $C_e^*$  (called the extended critical micelle concentration).<sup>326-328</sup> A complete course of oppositely charged polymer-surfactant interaction is schematically presented in Fig. 19. It has been stated that uncharged polymer containing polarizable groups show more or less same interaction pattern with ionic surfactants.<sup>329, 330</sup> The interaction between oppositely charged polymer with surfactants is governed mainly by electrostatic interaction, while for uncharged polymer with charged surfactants mainly hydrophobic interaction play significant role.<sup>326-328</sup> The lower value of CAC than CMC is ascribed to site specific surfactant-polymer interaction by way of elimination of water from the segmental domains of the polymer to induce formation of small micelle aggregates. Determination of NMR chemical shift <sup>331</sup> and polarity at different regions of micellar microphase using fluorescence measurements <sup>332</sup> can provide useful information on the interaction process. Using neutron scattering technique, Cabane <sup>333</sup> has shown the thermodynamics of binding of polyethylene oxide (PEO) with small aggregates of SDS before formation of its free micelles and also predicted the allowed stoichiometry of smaller aggregates of SDS bound to PEO macromolecule.



Fig. 19. Schematic representation for the interaction between a cationic polyelectrolyte with an anionic surfactant in aqueous solution

The exact characteristics of the polymer - surfactant or protein–surfactant complex is variable because they depend on the nature of the macromolecules and the surfactants. If the surfactant has bulky head group, the polymer has rigid backbone or if the polarity of both the surfactant head group and the polymer are identical, then the polymer–surfactant complex formation is less favoured. Neutral polymers interact with both anionic and cationic surfactants, but their mode of interaction is different. Generally, cationic surfactants weakly interact with neutral polymers than anionic surfactants of similar chain length. Due to strong electrostatic attraction polyelectrolytes interact with oppositely charged surfactants, but similarly charged polymer and surfactant interact only when polymer is markedly hydrophobic. Some model systems in this category include aqueous solutions of polyethylene oxide (PEO)-sodium dodecyl sulfate (SDS),<sup>334, 335</sup> polyvinylpyrrolidone (PVP)–SDS,<sup>336</sup> PEO-cetyltrimethylammonium bromide (CTAB) <sup>337</sup> and polyethylene glycol (PEG)-CPC <sup>338</sup>.

In the interaction process between polymer and oppositely charged surfactant, hydrophobicity of the complex further increases leading to their self-aggregation to form coacervates. The coacervates may induce turbidity to the solution, precipitation of the complex, etc. This initial interaction is electrostatic in nature, which is reinforced by hydrophobic interaction between the hydrophobic domains of the polymer and the surfactant tail. Such interaction decreases the degree of residual charge on the polymer, resulting in hydrophobicity of the complex. If the electrostatic interaction is dominant in the polymer–surfactant complex (PS-complex), the peripheral binding of the surfactant monomers onto the oppositely charged peripheral polymer sites leads to coacervation. At a certain surfactant concentration, maximum precipitation of the coacervate takes place. Beyond saturation of the polymer adsorption sites, the surfactant forms free aggregates in the bulk solution. The resolubilization process is assumed to be solubilization of the coacervates, that form in solution before the free aggregates, in the hydrophobic micellar domain. Sometimes, adsorption of surfactant onto the polymer binding sites causes unfolding of the polymer (mostly observed in case of proteins). This unfolding process is driven by increasing surfactant concentration. The unfolding exposes the charged sites, that increase the solubility of the amphiphile adsorbed on the polymer backbone through the increasing degree of solvation, as well as undergoes a second mode of amphiphile adsorption onto the polymer. During this mode of adsorption, the local [surfactant] in the vicinity of the polymer increases below the CMC of free surfactants resulting in smaller aggregates of surfactant wrapping onto the polymer backbone.<sup>339</sup> The second mode of oppositely charged polymer-surfactant interaction, however, comprises the adsorption of both monomeric and aggregated surfactant structures wrapping around the polymer.<sup>326-328</sup>

The interplay between proteins and surfactants has a say on the protein denaturation and received much attention <sup>340, 341</sup> but the process is in general not well understood. Interaction of proteins with the anionic surfactant SDS are mostly found in literature. Proteins studied are lysozyme <sup>342, 343</sup> bovine serum albumin (BSA), <sup>344, 345</sup> trypsin, <sup>346, 347</sup> papain, <sup>348</sup> and bromelain <sup>349</sup> etc. Apart from SDS, different other surfactants (including conventional cationic surfactants, SAILs, gemini surfactants, nonionic surfactants) have been used in past and preceding years <sup>350-359</sup> to elucidate protein-surfactant interactions. Surfactants denature proteins differently than classical denaturants such as guanidine hydrochloride (GdnHCl) and urea. Surfactants interact strongly with protein as compared with other denaturants such as urea and GdnHCl which weakly interact with the protein backbone. Depending on the method of denaturation, the end state may be different; it is typically a completely feature-less random coil with considerable conformational freedom in presence of chemical denaturants, while the thermally denatured state and the acid-denatured state of protein tend to be compact and contain residual secondary structure.<sup>360</sup> Numerous factors influence the interactions between surfactants and proteins. The mode of the interactions with proteins has been found to be both electrostatic and hydrophobic <sup>361</sup> depending on the nature of both proteins and surfactants. Thus, proteins are denatured by surfactants at millimolar concentrations, while urea and GdnHCl denature proteins at molar concentrations. Proteins act as polyelectrolyte depending on the pH of the solution. At isoelectric pH, the overall charge of a protein is 'zero'. Above isoelectric pH, it carries negative charge, and below isoelectric pH, it carries positive charge which facilitates the interaction between oppositely charged species. Interactions between SDS and proteins carrying a positive net charge leading to precipitation of the complex, because of charge neutralization. Often, it is possible to redissolve the precipitated complex by adding excess amount of SDS; however, some protein-surfactant complexes are not readily redissolved.<sup>342</sup>

### Factors influencing the polymer surfactant interaction

Several factors trigger the association of surfactant in presence of polymer in the same way as they do with micellization of the surfactant in the absence of polymer, confirming the similarity of the two processes. Contributing terms for the surfactant in the presence of polymer are: **Specific binding:** electrostatic attraction between the polar moieties of the surfactant and the polymer.

**Nonspecific binding:** hydrophobic part of the polymer protects the micellar core from the aqueous environment and vice versa.

Other factors that play an important role in the interaction are the following:

*Surfactant alkyl chain length*: It is possible to tune the hydrophobicity of a polymer chain by modifying the surfactant's chain length. In a homologous series, the initial binding concentration, CAC decreases with increasing number of alkyl chain carbons (n) of the surfactant binding to the polymer.<sup>362</sup> This same observation has also been found for sodium alginate- ILs (1-alkyl-3-methylimidazolium bromide, C<sub>n</sub>MIMBr, where n = 12, 14 and 16) increasing the alkyl carbon length of IL from 12 to 16.<sup>363</sup> The morphology, size and charge of the polymer–surfactant complex is drastically modified on varying chain length as evidenced when studying hydroxyethyl cellulose with tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB).<sup>364</sup> Neutron reflection illustrates that in the lower concentration regime of sodium polystyrene sulfonate (NaPSS) - alkyl

trimethylammonium bromide (ATAB) interaction, a 20-22 Å 'thin' adsorbed film occupies the interface, but this changes into a 'thick sandwich' layer at higher concentration. However, for ATAB ( $C_{16}$ ), only 'thin' monolayer adsorption occurs at all concentration.<sup>365</sup>

*Types of surfactants*: The interaction between uncharged water – soluble polymers are much more facile with anionic surfactants than with cationic.<sup>366, 367</sup> Dodecylammonium thiocyanate (DA<sup>+</sup>SCN<sup>-</sup>) interacts quite strongly with polyvinylacetate (PVAc), as found from specific viscosity data at low DASCN concentration, whereas the corresponding halides show comparatively weak interaction.<sup>367</sup> Petcova et al. <sup>368</sup> have compared the foam formation and its stability for the investigation of cationic polymer polyvinylamine (PVAm) with anionic surfactant sodium dodecyl sulphate (SDS) and another anionic surfactant sodium dodecyl oxyethylene sulphate (SDP1S) individually. They showed that the ethoxy group in SDP1S enhances the surfactant association with the polyelectrolyte molecules (PVAm) than SDS and consequently, the formation and stabilization of foam decreases from the solution containing PVAm with SDP1S. Interaction between polymer and surfactant having opposite charges is much more complex from a physicochemical point of view as compared to interaction between nonionic polymer with ionic surfactants. The contribution of both electrostatic and hydrophobic interactions interplay in the former, whereas the hydrophobic effect is the deciding factor in the latter. Nonionic polymers and nonionic surfactants show only very weak interactions. One exception is the strong interaction between polyoxyethylated nonionic surfactants and polyacrylic acid.<sup>369</sup>

*Temperature*: Temperature plays a significant role in maintaining system equilibrium. Surface activity of PS-complex may be invariant with temperature, but CAC increases with increase in temperature. Increasing temperature generally induces a high degree of ionization and lower aggregation number.<sup>370</sup>

*Medium*: With addition of alcohol, the dielectric constant of the medium decreases which enhanced stability of the aggregates formed and a close proximity of the head groups over the micelle surface. It also influences the various charge effects involved including counterion dissociation which in turn depends on the size and shape of micelles. Interaction mainly occurs through the penetration of alcohol molecules into micelles formed around the protein. Protein-surfactant interaction studied by potentiometry has been found to increase in presence of alcohol.<sup>371</sup>

*Additives*: Addition of salt can enhance oppositely charged polyelectrolyte-surfactant complex (lower CAC) up to certain increasing concentration, then above a threshold salt concentration, it supresses the complex formation and finally at higher salt concentration, complexation

between oppositely charged polyelectrolyte-surfactant is completely hampered.<sup>372, 373</sup> Such observation has been found when studying the complex formation between NaCMC- DTAB in presence of NaBr. Addition of salt or nonionic surfactant may either induce or screen the polymer-surfactant interaction, will produce either a constant or an accelerated CAC due to reduced monomer concentration with polymer, as manifested in NaCMC-cationic gemini / TX-100 combination.<sup>374</sup> Addition of salt also increases the binding ratio of surfactant to polymer. For PVP/SDS system, addition of 0.1 M NaCl increased the ratio to 0.9 SDS per base mol of PVP from 0.3/1 ratio which is observed in water.<sup>294</sup> The counterions of surfactants modified the water structure differently which influenced the interaction between nonionic polymer with charged hydrophobic surfactants, and it has been reported by Saito and Kitamura <sup>375</sup> that chaotropic (structure - breaking) anions (counterions) tend to increase the tendency of cationic surfactant (mostly for the surfactants containing long chain alkyl group) to associate with uncharged polymer, whereas, kosmotropic (structure-making) anions do the reverse. The organic anions with small hydrophobic groups are quite similar to kosmotropes like chloride ion in the interaction of the polymers and the long- chain cations.

*Molecular Weight of Polymer*: A minimum molecular weight of polymer must be required to ensure complete interaction with surfactant. Molecular weight of polymer depends significantly on polymer architecture.<sup>376</sup> In case of polystyrene sulfonate (PSS), due to rigidity of the chain, they cannot effectively bend around surfactant micelles. SDS interacts differently with polyethylene glycol (PEG) if the PEG molecular weight is greater than equal to 1500: an exothermic interaction at low [SDS]; on the other hand, interaction between PEG-SDS is endothermic at higher [SDS].<sup>377</sup> Francois *et al.*<sup>378</sup> found that the polyethylene oxide

(PEO) - SDS interaction is independent of the PEO molecular weight ranging from 6,000-900,000. It is seen that phase separation is more pronounced in presence of larger alkyl change length and also in presence of higher molecular weight of polymer; specially for oppositely charged polyelectrolyte and surfactant. Increase of molecular weight of polyelectrolyte has the same impact on the polyelectrolyte-surfactant complex as increasing polyelectrolyte concentration and for the both cases, extended critical micelle concentration ( $C_e^*$ ) increases and CAC hardly changes for the same polyelectrolyte-surfactant system. Tseng *et al.* <sup>379</sup> have observed that in presence of oppositely charged polyacrylic acid (PAA) with tetradecyltrimethyl ammonium bromide ( $C_{14}TAB$ ), when PAA molecular weight was less than 5,000, no precipitation is formed due to the aggregation of polyelectrolyte-surfactant complex; while for  $\geq$  130,000, stable aggregates were formed and they are precipitated. *Amount of polymer*: CAC and  $C_e^*$  values depend on polymer concentration; CAC decreases slightly with increasing polymer concentration;  $C_e^*$  on the other hand increases linearly with it. The number of available binding sites increases with increasing polymer concentration, leading to enlarge the interaction region, i.e., the binding of induced small micelles to the polymer completes at higher surfactant concentration. Both the critical concentrations corresponding to the polymer saturation by surfactant micelles (psc or  $C_s$ ) and free micelle formation ( $C_e^*$ ) increases with increasing polymer concentration as expected from the mass balance consideration.

**Polymer Structure and Hydrophobicity:** The polymer flexibility influences the activity to interact with the surfactant molecules. The lack of interaction activity of the polymer, such as, hydroxyethyl cellulose (HEC) may be due to a lower level of macromolecular flexibility,<sup>380</sup> but even the more flexible polysaccharide dextran shows little tendency to interact with SDS and dodecylbenzenesulfonate sodium (DDBS). The influence of macromolecular flexibility is shown by the relatively strong interaction of SDS with amylose (which can undergo a helix-coil transition) and the relatively weak interaction of SDS with amylopectin (which cannot).<sup>381</sup> Fishman and Miller <sup>382</sup> reported that interaction of polymers (derived from starch) towards a cationic surfactant (CTAB) could be induced in highly alkaline solution (pH  $\geq$  12). The same phenomenon is observed with insulin, dextran and starch; this demonstrated the role of the negative charge of the polymers at high pH by way of ionization of their hydroxyl groups.

# The Role of Organic Solvent to Polymer-Surfactant Interaction and Micelle formation

Polymer-surfactant interactions are mostly studied in aqueous medium. The interaction process is highly affected in the presence of organic solvent. In practice (especially in cosmetics and pharmaceuticals), alcohol like additives is frequently used for better solubility, dispersity and durability. Isopropanol is non-toxic and bio-friendly and has safe uses in the formation of emulsion, microemulsion, and other cosmetic formulations.

Polar solvents like methanol, polyols, and acetone increase the CMC. In presence of organic solvent, the solubility of a surfactant increases that is, the solution becomes more hydrophobic. Concomitantly, the dielectric constant of the solvent decreases. Both these factors help to increase the CMC, a process known as the cosolvent effect.<sup>383</sup> However, an opposing effect can occur for middle chain alcohols (e.g. C5–C9), a decrease in the CMC is due to solubilization of these hydrophobic counterparts of large chain alcohols in the micellar palisade

leading to reduce surface charge density on micelle surface and increase in hydrophobic interaction between the surfactants and the added alkanols. This is known as the "cosurfactant effect".<sup>384</sup> Ethanol, propanol and isopropanol bring about both effects: CMC-decrease at low alkanol concentration and CMC-increase at higher concentration. In general, short chain alcohols act as cosolvents; they are localized in the continuous phase and affect the solvent structure around the headgroup.<sup>385</sup> Medium chain alcohols partition between the palisade region and the aqueous solution, whereas long chain alcohols are solubilized into the micellar core. For SDS, a decrease in the CMC with increasing ethanol content is observed at low ethanol concentrations (cosurfactant effect), which is subsequently converted to the cosolvency effect at higher ethanol concentration, that is, with increasing CMC by the increasing amount of ethanol. Hence, the CMC goes through a minimum at some ethanol concentration.<sup>384</sup> Therefore, it will be informative to see what happens if such organic compounds are added to polymersurfactant systems. The driving force for polymer/surfactant complexation is due to the adsorption of polymer segments into the micelle palisade layer <sup>386</sup> shielding part of the hydrophobic core of the micelle from the aqueous phase. This is a more favourable arrangement, as the polymer is inherently more hydrophobic than water, and thus, a decrease in the micellization concentration of the surfactant results. If the solvent polarity is altered, this will cause a change in the effective dielectric constant of the medium, which in turn will have a profound effect on the electrostatic interactions present between the bound micelles. Shirahama et al. <sup>387</sup> observed that the binding affinity of dodecyl pyridinium chloride to poly (styrene sulfonate) decreased with an increase in ethanol content. Griffiths et al. <sup>388</sup> investigated the effect of increasing ethanol concentration on the interaction between the nonionic PVP and the SDS. Recently, Sultana et al. <sup>389</sup> has recently studied the influence of different aqua-organic mixed solvents (9% w/w of acetonitrile, DMF and dioxane) for the interaction of nonionic PVP with tetradecyltrimethylammonium bromide (TTAB) at different temperatures. They showed that CMC<sub>e</sub> of TTAB increases in presence of aqua-organic mixed solvent comparing with pure water medium.

## **Structure of polymer-surfactant complex**

The structure of polymer surfactant complex is still not convincing. Different models have been proposed such as (A) "Necklace-bead" model in which clusters of micelles are stabilized by the polymer <sup>390</sup> Fig. 20 (a and b), (B) "Rod like" prolate ellipsoidal surfactants aggregate with a semi minor axis (the surfactant chain length) <sup>391</sup> (Fig. 20 c), and (C) Flexible capped helical cylindrical micelle with polymer wrapping round the micelle (Fig. 20d). Among these, the

necklace model is best supported by SANS,<sup>392</sup> SAXS,<sup>393</sup> viscometry, <sup>394</sup> and NMR <sup>395</sup>. It has been reported that NMR can distinguish the two possible "necklace and bead" models; in one the surfactant aggregates with polymer wrapping by hydrophobic interaction (Fig. 20a) and in the other the polymer backbone is used with the hydrophobic moiety of micelles (Fig. 20 b).<sup>395</sup>



Fig. 20. Structure of polymer-surfactant complexes (a) and (b) two possible necklace bead structures (c) rod like prolate ellipsoidal and (d) flexible capped helical cylindrical micelle.

# **Techniques for evaluating the Interaction Process between polymer and surfactant:**

Surfactants bind strongly with proteins and polymers, inducing a conformational change. Many experimental methods can be applied to understand the topology and other characteristics of polymer or protein - surfactant interaction, such as ITC for the determination of binding enthalpy,<sup>396</sup> DSC for thermal denaturation of protein,<sup>397</sup> turbidimetry for protein aggregation, fluorimetry for polaritry,<sup>398</sup> NMR for the structure of the complex,<sup>395, 399</sup> circular dichroism and cyclic voltammetry,<sup>400</sup> SANS <sup>401</sup> and viscometry to examine conformational changes upon protein (or polymer) unfolding and denaturation, electrophoretic mobility to determine the number of binding sites in protein etc.<sup>402</sup> Several frequently used techniques to study polymer-surfactant interaction process are presented below in relation to the information derived on the interacting systems.

**Tensiometry:** Commonly used method for quick determination of surface tension ( $\gamma$ ) with significant accuracy is the du Noüy ring detachment method. It is based on the measurement of the force P, required to detach a horizontal platinum ring (of radius R) from the surface of the experimental liquid. The force required to overcome the pull is due to surface tension. So,  $P = 4\pi R\gamma$ , or,  $\gamma = P/4\pi R$ . The precise relation is expressed as,  $\gamma = (P/4\gamma R) \varphi$ , where  $\varphi$  is the Harkins and Jordan correction factor depending on the size of the ring, thickness of the wire, and, density of the liquid etc.<sup>403</sup> The measured  $\gamma$  at different [surfactant] or C when plotted as  $\gamma$  vs. log C produces a decline ending a plateau whose junction is the CMC. For polymer–surfactant interaction, tensiometry can reveal the nature of interaction of the surfactant with polymer both at the interface, and in the bulk. Jones <sup>334</sup> reported two new transitions (denoted by CAC and C<sup>\*</sup><sub>e</sub>) in PEO/ SDS interaction in tensiometric isotherm comparing with the tenssiometric profile of pure SDS in aqueous solution. A more or less general tensiometric profile for neutral polymer -ionic surfactant and surfactant interaction with ionic polymer are shown in Fig. 21.



Fig. 21. Schematic presentation of tensiometric profile of (A) polymer/surfactant interaction (B) Comparison between neutral polymer-surfactant and charged polymer-surfactant interaction.

An additional transition,  $C_s$ , intermediate between CAC and  $C_e^*$  was also observed. It was reported that CAC < CMC <  $C_e^*$ , with CAC pointing the onset of polymer – surfactant interaction, CAC representing the saturation of PEO chain with SDS aggregates and  $C_e^*$  being the extended CMC of SDS in presence of the polymer or protein. Tensiometrically, it was shown that feebly surface-active hydroxyethyl cellulose (HEC) showed a small interaction with SDS, whereas much more surface-active methyl cellulose (MeC) showed pronounced interaction. Lower CAC compared with CMC implies that the adsorbed or aggregated state of the SDS with the polymer represents a more favourable energy state for the surfactant molecules than the regular micelles. It has been observed that CAC is only weakly dependent on polymer concentration in solution, i.e., the concentration of the onset of polymer – surfactant interaction is solely a function of the surfactant concentration for a particular polymer.<sup>334</sup> On the other hand, the value of  $C_e^*$  is directly proportional to the polymer concentration. In case of oppositely charged polyelectrolyte-surfactant system, CAC is lowered by one order of magnitude or more leading to a strong electrostatic driving force. However, the values of CMC and CAC are comparable for systems like PEO–SDS.<sup>404</sup> A point to worth noting is that the polymers containing charge centres essentially along the backbone lead to much lower surface tension in the precipitation zone with surfactant, also, that in some instances, it is not possible to solubilize the stoichiometric precipitation aggregates by addition of excess surfactant, especially if the charge density of the polyelectrolyte is high.<sup>405</sup>

*Conductometry:* Conductometry is a potential method for probing the bulk property of interaction between neutral polymer and an ionic surfactant. The specific conductance ( $\kappa$ ) of a solution depends on several factors, such as, the concentration of the ions in solution, the mobility of the ions, etc. Now, addition of the surfactants in the aqueous phase makes the amphiphilic molecules to dissociate to furnish the amphiphile ions and the counter-ions. On successive additions, the concentration of ions increases and thereby the conductance ( $\kappa$ ) goes on increasing till the CMC is reached. At CMC, a number of monomer ions aggregate to form micelles with adhered counter-ions. Thus, the number of free ions in solution decreases and also the mobility of the aggregates decreases; thereby the rate of increase of  $\kappa$  decreases. Thus, we obtain two straight lines with different slopes before and after CMC. From the cross-section of these two lines, we get the CMC (Fig. 14).<sup>406</sup> Generally, two break points are obtained in case of polymer-surfactant interaction. The break point in the lower concentration range (CAC) can be explained by the loss of free ions of the surfactant from the solution due to addition it upon polymer backbone. The second break (C<sup>\*</sup><sub>e</sub>) corresponds to the formation of free micelles in solution that depends on polymer concentration.

*Microcalorimetry:* ITC (isothermal titration calorimetry) is a versatile, sensitive technique to determine the enthalpy change in polymer surfactant binding process. The heat produced by different physical and chemical processes in the bulk of a solution can provide valuable insights into the origin and nature of polymer – surfactant interactions and the factors that influence them. The processes which give rise to measurable enthalpy changes are (a) demicellization

(b) dilution effect of surfactants (c) conformational changes of polymer and (d) binding interaction (mostly electrostatic and hydrophobic) which gives the most significant and measurable enthalpy change. Bloor *et al.*<sup>406</sup> have studied the SDS–PVP system using ITC and EMF measurements. Olofsson and Wang <sup>407</sup> have also investigated the interaction between uncharged polymers and ionic surfactants using this technique. Majhi *et al.*<sup>174</sup> have used the methods of microcalorimetry, conductometry, fluorimetry and dynamic light scattering (DLS) for the understanding of the interaction of both anionic and cationic surfactants with PVP and other natural and hydrophobically modified polymers and proteins in aqueous medium. Recently, Mal *et al.*<sup>328</sup> have been investigated on the interaction of cetyltrimethylammonium p-toluenesulfonate (CTAT) with NaCMC and hydroxy ethyl cellulose (HEC) by using different physicochemical techniques including ITC.

*Turbidity:* The aggregation of surfactant bound polymer produces turbidity in solution. According to Dubin *et al.*<sup>408</sup> the electrophoretic mobility of such complexes approaches zero in the vicinity of the turbidity maximum. According to their observation, the progressive binding of the micelles to the polymer (which enhances most for oppositely charged polyelectrolytes) eventually leads to charge neutralization; the higher order aggregation of these electrically neutral complexes produces multi-polymer complexes that scattered light strongly. After saturation, the complexes again acquire a net charge, and then dissociation of the complex takes place due to repulsion. Hence, turbidity decreases. Salt effect on the interaction of anionic polyelectrolyte, NaCMC (sodium salt of carboxymethyl cellulose) with cationic Gemini surfactant has been investigated using turbidimetric titration by Wang et al.<sup>374</sup> Turbidimetric experiments on the polymer/surfactant interaction were also cited elsewhere.<sup>328, 409, 410</sup>

*Viscometry:* Solution viscosity is also an important indication to the bulk complexation process because of changes in the conformation of the polymer–surfactant complex in solution. Jones <sup>334</sup> reported a steady increase in the relative viscosity of PEO on adding increasing amount of SDS. A clear change in viscosity is occurred at a concentration about  $C_{e}^{*}$ , but no prominent slope change near cac. These results obviously imply a change in polymer conformation, viz. an enlargement of the polymer coils, on association with the charged surfactant, as reported by Takagi *et al.*<sup>411</sup> and by Nagarajan and Kalpakci <sup>380</sup> for PEO/SDS systems. From rheological analysis, Prud'homme and Uhl <sup>412</sup> demonstrated that coiling of polymer chain is collapsed and viscosity decreases with increasing concentration of SDS, followed by gel formation (network structure formation) and higher viscosity due to coiling follows at higher SDS concentration. Viscosity changes of the carbohydrate polymer inulin on

interaction with alkyl trimethyl ammonium halides has been reported by Dan et al.<sup>413</sup> Similar studies are also found in literature. However, it is seen that, viscosity decreases rapidly with increase in concentration of surfactants in presence of oppositely charged polyelectrolyte-surfactant complex.<sup>414</sup>

*Light Scattering:* Static light scattering can be used in polymer–surfactant systems to obtain information on aggregate size, shape and mass. Dubin and co-worker <sup>415</sup>have made extensive use of static and dynamic light scattering techniques to study aggregate size and the role of micellar surface charge in polymer–surfactant systems. Micellar surface charge density can be varied by using ionic–nonionic mixed surfactant systems. Wang and co-workers <sup>416</sup> used light scattering technique to study the interaction between Fullerene containing polyacryl and Triton-X-100. For DLS study, particle dimension (hydrodynamic diameter) diffusion coefficient and Zeta-potential can be determined. Literature is fairly rich with such information.

*Microscopy:* Visible microscopy is generally not suitable to observe the nm-scale structure of polymer-surfactant complex in bulk solution. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are powerful techniques allowing visual observation of aggregate structures with adequate image enlargement. Spectacular examples include the thread-like structures sometimes observed in micellar and polymer-surfactant system by TEM.<sup>414, 417</sup> The morphological transformations of fullerene containing amphiphilic copolymers (PPA-b-C60) by the addition of nonionic aromatic surfactant (TX-100) were observed by Wang et al.<sup>416</sup>

*Fluorimetry:* A variety of static and dynamic fluorescence techniques have been applied to polymer-surfactant systems. Steady state techniques, including depolarization measurements, give information on such quantities as probe environments, microviscosity, and aggregation number of the aggregates. Time-resolved techniques have become particularly powerful yielding surfactant aggregation number, and polydispersity measurements as well as kinetic information. Both small probe molecules and polymer-anchored probe may be used. For pyrene, the most widely used probe for such studies, the measurement is provided by the ratio of the first to third vibronic fluorescence peaks. Turro and co-workers <sup>418</sup> investigated both PVP/SDS and PEO/SDS systems using pyrene. They actually speculate that an interaction is involved between pyrene and the polymer at the micellar surface. Recently Mal *et al.* <sup>328</sup> have been investigated life time of pyrene when studying the interaction of 0.01g% NaCMC and HEC individually with the increasing concentration of CTAT. They found that average life time vs. [CTAT] shows several break points which one similar with CAC, C<sub>s</sub> and C<sup>\*</sup><sub>e</sub>.

Fluorescence spectroscopy is a powerful technique for the investigation of protein structure, dynamics, and conformations. The intrinsic fluorescence emission from tryptophan residue within proteins is an inherent probe and is sensitive to the microenvironment surrounding the fluorophore residue.<sup>419</sup> Fluorescence spectra are usually used to detect the effect of molecules on proteins, as it is supposed that fluorescence techniques are relatively more sensitive in interpreting small changes at the molecular level.

*UV-visible Spectroscopy:* The main use of UV-vis spectroscopy in polymer–surfactant interactions involve the interpretation of absorbance wavelength shifts of dye which is solubilized in hydrophobic domains of the aggregates. Many such studies are performed in connection with fluorescence measurements. UV–vis spectroscopy is an important tool to explore conformational changes in protein molecules.<sup>420</sup> Proteins generally show absorption maxima between 275 and 280 nm, due to absorbance of the two aromatic amino acids tyrosine (Tyr) and tryptophan (Trp). The absorbance intensity of Trp and Tyr around 280 nm depends on the microenvironment. The exposed residues to solvent and those that are buried have different contributions to the absorption.

*Circular Dichroism:* Circular dichroism (CD) is an authentic method in structural biology that has been used to study proteins and biomolecules since 1960s.<sup>421</sup> This spectroscopic method depends upon the differential absorption of left and right-circularly polarized light by optically active molecules.<sup>421</sup> A molecule shows optically activity (or chirality) if it can rotate the plane of polarized light. In proteins, different optical activity generates due to the presence of Lamino acids and different folding of the polypeptide chain. Far-UV CD spectra, typically in the range 250-190 nm gives the informations of peptide backbone conformation, particularly secondary structure.<sup>422</sup>  $\alpha$ -helix,  $\beta$ -sheet, and random coil structures each gives characteristic shape and magnitude in CD spectrum. From Far-UV CD spectra, it is thus possible to estimate the fraction of secondary structure elements. The information deducted from CD spectra does not provide information about where in the sequence the secondary structures are located, but gives an average of the total content of secondary elements. In the far-UV CD spectral region  $\alpha$ -helical proteins can be characterized by three peaks; two negatives at ~222 and ~208 nm and a stronger positive at ~192 nm. Spectra arising from  $\beta$ -sheets can be characterized by a small negative peak near 217 nm and a positive peak near 195 nm that has approximately half the intensity of the  $\alpha$ -helix peak in this region.<sup>423</sup>  $\beta$ -sheets give rise to considerably less intense signals than helixes and show far more variation in spectral characteristics; the latter is partly attributable to the fact that  $\beta$ -sheets are much more structurally diverse than  $\alpha$ -helices with

strands which may run parallel or anti-parallel to each other, and with sheets displaying differing degrees of twisting. While far UV CD spectroscopy gives information of secondary structure of protein, near UV CD (250-300 nm) can be used to indicate changes in tertiary structure. Aromatic side chains in asymmetric environments have optical activity in folded proteins. Signals in the region from 250-270 nm are attributable to phenylalanine (Phe) residues, signals from 270-290 nm are attributable to Tyr residues, and those from 280-300 nm are attributable to Trp. Disulphide bonds give rise to broad weak signals throughout the near-UV spectrum. A protein can hold a large degree of secondary structure without having a welldefined three-dimensional structure (e.g., molten globule state). In this condition, the signal in the near UV region will be almost zero. Another important class of protein called proteolytic cysteinyl protease class has lesser amount of  $\alpha$ -helix (or  $\alpha+\beta$  class proteins, e.g., papain, bromelain, etc.) structure. Bromelain shows negative ellipticities at 208, 215, and 222 nm in CD spectrum and it is seen that the peak at 208 nm is more intense than that at 222 nm.<sup>424</sup> A significant signal in the near UV CD region is a good sign of a folded protein. In general, the signal in the near-UV region is much weaker than the signal in the far-UV region. Near UV CD thus requires substantial amounts of protein compared to near UV CD.

Other methods which are used to investigate the bulk complexation of proteins with surfactants are DSC for thermal change due to the interaction; fluorimetry for polarity; NMR for structure of complex; SANS for conformational change, and rheology, electrophoresis to understand the internal dynamics and the number of binding sites, etc.

#### **11. Scope and Objectives of the present work**

Self-aggregation of amphiphiles with different types of polymers including biopolymers (proteins) comes well under 'soft colloid' or in general 'soft systems' under differential environmental conditions and in presence of additives. Such investigations have potential implications and applications in pharmaceutical preparations, chemical synthesis, enzymatic reactions, oil recovery, painting, coating, drug encapsulation and delivery, synthesis of nanomaterials, synthetic membrane formation and their pharmaceutical and biological uses, etc. Although amphiphilic aggregation and their interaction with polymer/protein, salts or with other surfactants/ILs (mixed micelle formation) have a long tradition of exploration, their profound uses and applications add upsurge interest to this field, but the exploration is yet challenging because of vast coverage of this field, and scope of availability of numerous amphiphile and polymeric compounds by virtue of isolation, synthesis and chemical modification.

In recent years, ionic liquids (ILs) have generated intense scientific and industrial interests due to their special physicochemical properties. ILs bearing long alkyl chains are emerging as novel surfactants because of their inherent amphiphilic character and are named as surface-active ionic liquids (SAILs). Imidazolium-based SAILs have been most studied in the field of colloid and interface chemistry. It is reported that both cationic and anionic SAILs have more superior surface activity than the corresponding traditional ionic surfactants, which have comparable structures with the same hydrophobic chain. For SAILs, one of the great advantages is that their physicochemical properties which can be designed by reasonable selection of cations, anions, and substituents. Unique physicochemical properties and superior surface activity of SAILs can be exploited as a potential substitute for traditional surfactants in some applications. Recently, the application of ILs in the life sciences is becoming one of the hotspots in the research arena. By considering several utilities of ionic liquids in both industrial and medicinal purpose, investigations have been performed to elucidate the property of micelles made by ILs in combination with various additives (e.g., salts, macrocycles, conventional surfactants, and biopolymers, etc.).

Proteins are abundant and vital in living systems and participate in nearly all biological processes. The function of a protein directly depends on its structure. Since surfactants can change the conformation of the water-soluble proteins, protein– surfactant interactions are being widely studied. The protein – surfactant interaction not only provides the denaturing and renaturing capacity of surfactants on proteins, but also has importance in biological, industrial, cosmetic, and pharmaceutical fields.

Macrocyclic crown ether related compounds are well known and widely synthesized for their applications in biological chemistry for their selective binding with cations, drug delivery, mimic to biological molecules, etc. Surfactants form micelles and solubilize the macrocyclic compounds in its hydrophobic core and form inclusion complex, though the macrocyclic compounds are not soluble in water. Interaction of such types of macrocyclic compound with surfactants has not been studied widely.

In this dissertation, the micellization of surface-active ionic liquid (SAIL), 1-hexadecyl-3methyl imidazolium chloride in conjugation with dodecytrimethylammonium bromide (DTAB) forming mixed micelles in various stoichiometry has been investigated thoroughly by conductometry, tensiometry, spectrofluorimetry methods. Interaction parameters, micellar composition of two surfactants in binary mixture of surfactants, activity coefficient of two components in micellar medium have also been calculated using established theoretical models discussed elsewhere. CMC of pure and mixed surfactants in different stoichiometry, counterion
binding of the micelles and thermodynamics of mixed micellization using regular solution theory (RST) have been studied. Micellization of the same surface-active ionic liquid (1hexadecyl-3-methyl imidazolium chloride) has been investigated in presence of different salts having different valences with variation of temperature and salt concentrations by conductometry, tensiometry, fluorimetry, microcalorimetry and dynamic light scattering methods. One of the motives of this work was to compare the van't Hoff enthalpy (by determining CMC at different temperatures) and the enthalpy by direct calorimetric measurements and found the dissimilarity between the two values. The dissimilarity has also been observed in the CMC order assisted by different anions (counterion of salts) when comparing CMC trend with the Hofmeister series of anions. Micellization of same ionic liquid and a conventional surfactant, 1-hexadecyltriphenylphosphonium bromide individually has been investigated in presence of an oppositely changed bio polyelectrolyte, sodium alginate. Alginate is a biodegradable polymer with less toxic agent. Alginate has several applications in biomedical and food industry due to its enrich gelling property. Change of conformation of polyelectrolyte and point of appearance of turbidity due to charge neutralization on the polyelectrolyte backbone, critical aggregation points (CAC, Cs, C\*e), morphology of polyelectrolyte-surfactant complex, and thermodynamics of micellization in absence and presence of sodium alginate have been predicted by tensiometry, conductometry, fluorimetry, dynamic light scattering, infrared and transmission electron microscopy, etc. in this present study also.

Stem bromelain (BM), a proteolytic enzyme isolated from pineapple (ananus *cosmosus*) stem belongs to cysteine proteinase family. This protein belongs to  $\alpha + \beta$  protein class with 23% helical structure, containing five (5) tryptophan (Trp.) units, whose characteristic absorbance (~280 nm) and emission (~354nm) varies with solvent polarities, determine the exposure of Trps in different environments, mediated by the interaction with surfactants. In this present study, we have used two bile salt surfactants sodium cholate (NaC) and sodium deoxycholate (NaDC) along with two conventional anionic surfactants sodium lauroylsarcosinate (SDDS) and sodium dodecylbenzene sulfonate (SDBS), which interact with BM (0.005%) at phosphate buffer medium of pH 7. Bromelain has various health benefits including sinus problems, reducing inflammation, and improving digestion. Bromelain also improves the condition of osteoarthritis and sometimes also impede the growth of a tumour. Due to this several potential effect, bromelain shows the enormous possibility of research in present times. However, only a limited amount of research work about interaction of bromelain with surfactants have been found in literature so far.

Aza-crown ethers containing nitrogen atoms have been used commonly for the chelation of heavy metal ions and also has potential applications in magnetic resonance imaging (MRI) and positron emission tomography (PET). Benzo aza-crowns have superior host-guest activity comparing with the traditional crowns. In this connection, a comprehensive investigation has been executed on the interaction of a synthesized chromophoric dihydroxy dibenzoaza-crown (1,16-dihydroxy-tetraaza-30-crown-8) with arbitrarily chosen surfactants, conventional cationic DTAB, anionic SDS, cationic gemini (butanediyl-1,4-bis (dimethylcetylammonium bromide),16-4-16), surface active ionic liquid (1-hexadecyl-3-methylimidazolium chloride) and nonionic surfactant (polyoxyethylene sorbitan monostearate, Tween-60] covering all the classes in 15% EtOH-water medium at 298.15 K. Conductometry, tensiometry, UV-Vis spectroscopy, isothermal titration calorimetry, spectrofluorimetry were employed to elucidate the interaction of crown-surfactants both in surface and in bulk. Such type of comprehensive study is seldom found in literature.

This dissertation (thesis) comprises the following sections: Introduction, Five chapters entailing research findings, Summary and Conclusion section and an Appendix containing all the basic data. Photocopies of the published papers are also attached.

## **References:**

- 1. M. J. Rosen and J. T. Kunjappu, *Surfactants and interfacial phenomena*, John Wiley & Sons, 2012.
- K. Morwind, J. P. Koppenhöfer and P. Nüßler, in *Markenmanagement: Grundfragen der identitätsorientierten Markenführung*, eds. H. Meffert, C. Burmann and M. Koers, Gabler Verlag, Wiesbaden, 2002, DOI: 10.1007/978-3-322-92976-1\_20, pp. 477-505.
- 3. K. Sakamoto, R. Lochhead, H. Maibach and Y. Yamashita, *Cosmetic science and technology: theoretical principles and applications*, Elsevier, 2017.
- 4. O. Kaczerewska, R. Martins, J. Figueiredo, S. Loureiro and J. Tedim, *Journal of Hazardous Materials*, 2020, **392**, 122299.
- 5. A. A. Ivanova, A. N. Cheremisin, A. Barifcani, S. Iglauer and C. Phan, *Journal of Molecular Liquids*, 2020, **299**, 112104.
- 6. K. M. Z. Hossain, V. Calabrese, M. A. da Silva, S. J. Bryant, J. Schmitt, J. L. Scott and K. J. Edler, *Carbohydrate Polymers*, 2020, **233**, 115816.
- 7. V. Kumar, N. Pal, A. K. Jangir, D. L. Manyala, D. Varade, A. Mandal and K. Kuperkar, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2020, **588**, 124362.
- 8. S. Mondal, A. Pan, A. Patra, R. K. Mitra and S. Ghosh, Soft matter, 2018, 14, 4185-4193.
- 9. S. Das, S. Ghosh and B. Das, *Journal of Chemical & Engineering Data*, 2018, **63**, 3784-3800.
- 10. A. Saha, A. Mal and S. Ghosh, Journal of Molecular Liquids, 2020, 309, 113084.

- 11. N. Pal, N. Saxena and A. Mandal, Colloid and Polymer Science, 2017, 295, 2261-2277.
- B. Vyas, S. A. Pillai, D. Ray, V. K. Aswal, M.-R. Wang, L.-J. Chen and P. Bahadur, *Journal of Molecular Liquids*, 2020, **300**, 112341.
- 13. A. Ali, U. Farooq, S. Uzair and R. Patel, Journal of Molecular Liquids, 2016, 223, 589-602.
- 14. P. Saha, D. K. Pyne, S. Ghosh, S. Banerjee, S. Das, S. Ghosh, P. Dutta and A. Halder, *RSC advances*, 2018, **8**, 584-595.
- 15. N. Patra, D. Ray, V. K. Aswal and S. Ghosh, ACS omega 2018, 3, 9256-9266.
- 16. V. Singh and R. Tyagi, Colloid Polymer Science 2017, 295, 601-611.
- 17. R. Hu, S. Tang, M. Mpelwa, L. Jin, Z. Jiang, S. Feng and Y. Zheng, *Journal of Dispersion Science and Technology*, 2020, DOI: 10.1080/01932691.2020.1843478, 1-11.
- 18. S. Mondal and S. Ghosh, Chemical Physics Letters, 2021, 762, 138144.
- 19. R. Bordes and K. Holmberg, Advances in Colloid and Interface Science, 2015, 222, 79-91.
- 20. K. Kumar, B. S. Patial and S. Chauhan, *The Journal of Chemical Thermodynamics*, 2015, **82**, 25-33.
- 21. T. Inoue and H. Yamakawa, Journal of Colloid and Interface Science, 2011, 356, 798-802.
- 22. M. Abe, H. Uchiyama, T. Yamaguchi, T. Suzuki, K. Ogino, J. F. Scamehorn and S. D. Christian, Langmuir, 1992, 8, 2147-2151.
- 23. A. Pan, S. S. Mati, B. Naskar, S. C. Bhattacharya and S. P. Moulik, *The Journal of Physical Chemistry B*, 2013, **117**, 7578-7592.
- 24. A. Patist, S. S. Bhagwat, K. W. Penfield, P. Aikens and D. O. Shah, *Journal of Surfactants and Detergents*, 2000, **3**, 53-58.
- 25. A. Kroflič, B. Šarac and M. Bešter-Rogač, *Langmuir*, 2012, **28**, 10363-10371.
- 26. T. Yoshimura, T. Ichinokawa, M. Kaji and K. Esumi, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2006, **273**, 208-212.
- 27. J. A. Kent, in *Riegel's Handbook of Industrial Chemistry*, ed. J. A. Kent, Springer US, Boston, MA, 2003, DOI: 10.1007/0-387-23816-6\_27, pp. 1098-1140.
- M. Howell, (Ed.). Handbook of Detergents, Part D: Formulation (1st ed.). CRC Press. 2005, https://doi.org/10.1201/9781420028713.
- 29. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, D. Bray and J. Watson, *Mol Biol.*,2002.
- 30. J. Maldonado-Valderrama, P. Wilde, A. Macierzanka and A. Mackie, *Advances in Colloid and Interface Science*, 2011, **165**, 36-46.
- 31. E. J. A. Veldhuizen and H. P. Haagsman, *Biochimica et Biophysica Acta (BBA) Biomembranes*, 2000, **1467**, 255-270.
- 32. R. Hayes, G. G. Warr and R. Atkin, Chemical reviews, 2015, 115, 6357-6426.
- 33. S. Gabriel and Weiner, *deutschen chemischen Gesellschaft*, 1888, **21**, 2669-2679.
- 34. P. Walden, Bull. Acad. Imper. Sci., 1914, 1800.
- 35. P. Stepnowski, International Journal of Molecular Sciences 2006, 7, 497-509.
- 36. J. L. Shamshina, P. S. Barber and R. D. Rogers, *Expert Opinion on Drug Delivery*, 2013, **10**, 1367-1381.
- 37. K. M. Docherty and C. F. Kulpa Jr, Green Chemistry, 2005, 7, 185-189.
- 38. K. Bica, P. Gärtner, P. J. Gritsch, A. K. Ressmann, C. Schröder and R. Zirbs, *Chemical Communications*, 2012, **48**, 5013-5015.
- 39. R. D. Rogers and K. R. Seddon, *Science*, 2003, **302**, 792-793.
- 40. H. Srour, H. Rouault, C. C. Santini and Y. Chauvin, *Green Chemistry* 2013, **15**, 1341-1347.

- 41. D. J. Kim, K. H. Oh and J. K. Park, *Green Chemistry* 2014, **16**, 4098-4101.
- 42. G. Damilano, D. Kalebić, K. Binnemans and W. Dehaen, Rsc Advances, 2020, 10, 21071-21081.
- 43. J. Sirieix-Plénet, L. Gaillon and P. Letellier, Talanta, 2004, 63, 979-986.
- 44. Q. Q. Baltazar, J. Chandawalla, K. Sawyer and J. L. Anderson, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2007, **302**, 150-156.
- 45. M. Blesic, A. Lopes, E. Melo, Z. Petrovski, N. V. Plechkova, J. N. Canongia Lopes, K. R. Seddon and L. P. N. Rebelo, *The Journal of Physical Chemistry B*, 2008, **112**, 8645-8650.
- 46. B. Dong, X. Zhao, L. Zheng, J. Zhang, N. Li and T. Inoue, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2008, **317**, 666-672.
- 47. O. A. El Seoud, P. A. R. Pires, T. Abdel-Moghny and E. L. Bastos, *Journal of Colloid and Interface Science*, 2007, **313**, 296-304.
- 48. T. Inoue, H. Ebina, B. Dong and L. Zheng, *Journal of colloid and interface science*, 2007, **314**, 236-241.
- 49. J. Łuczak, J. Hupka, J. Thöming and C. Jungnickel, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2008, **329**, 125-133.
- 50. T. Singh and A. Kumar, The Journal of Physical Chemistry B, 2007, 111, 7843-7851.
- 51. S. L. I. Toh, J. McFarlane, C. Tsouris, D. W. DePaoli, H. Luo and S. Dai, *Solvent Extraction and Ion Exchange*, 2006, **24**, 33-56.
- 52. J. Wang, H. Wang, S. Zhang, H. Zhang and Y. Zhao, *The Journal of Physical Chemistry B*, 2007, **111**, 6181-6188.
- 53. J. Łuczak, C. Jungnickel, M. Joskowska, J. Thöming and J. Hupka, *Journal of Colloid and Interface Science*, 2009, **336**, 111-116.
- 54. S. Dorbritz, W. Ruth and U. Kragl, Advanced Synthesis & Catalysis, 2005, 347, 1273-1279.
- 55. B. Dong, Y. a. Gao, Y. Su, L. Zheng, J. Xu and T. Inoue, *The Journal of Physical Chemistry B*, 2010, **114**, 340-348.
- 56. H. Wang, L. Zhang, J. Wang, Z. Li and S. Zhang, *Chemical Communications*, 2013, **49**, 5222-5224.
- 57. K. Thakkar, B. Bharatiya, V. K. Aswal and P. Bahadur, RSC advances, 2016, 6, 80585-80594.
- 58. P. D. Galgano and O. A. El Seoud, Journal of Colloid and Interface Science, 2011, 361, 186-194.
- 59. A. Pal and M. Saini, Journal of Surfactants and Detergents, 2019, 22, 491-499.
- 60. M. T. Garcia, I. Ribosa, J. J. Gonzalez and F. Comelles, *Journal of Molecular Liquids*, 2020, **318**, 114040.
- 61. F. M. Menger, J. S. Keiper and V. Azov, Langmuir, 2000, 16, 2062-2067.
- 62. T. Yoshimura and K. Esumi, Journal of Colloid and Interface Science, 2004, 276, 231-238.
- 63. L.-H. Lin and Y.-C. Lai, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, **386**, 65-70.
- 64. C. A. Bunton, L. B. Robinson, J. Schaak and M. Stam, *The Journal of Organic Chemistry*, 1971, **36**, 2346-2350.
- 65. F. M. Menger and C. J. J. o. t. A. c. s. Littau, 1991, **113**, 1451-1452.
- 66. R. Renner, "The long and the short of perfluorinated replacements", *Environmental Science & Technology* / january 1, 2006, 12-13.
- 67. M. R. Porter, Handbook of surfactants, Springer, 2013.
- 68. A. R. Sontake and S. M. Wagh, J Chem. Eng. Sci, 2014, 2, 11-14.
- X. Li, R. M. Washenberger, L. E. Scriven, H. T. Davis and R. M. Hill, *Langmuir*, 1999, 15, 2278-2289.

- 70. R. M. Hill, Silicone surfactants, CRC Press, 1999.
- 71. J. McBain, *Trans. Faraday Soc*, 1913, **9**, 99-112.
- 72. R. Schmid, Monatshefte für Chemie / Chemical Monthly, 2001, 132, 1295-1326.
- J. J. Sheng, in *Modern Chemical Enhanced Oil Recovery*, ed. J. J. Sheng, Gulf Professional Publishing, Boston, 2011, DOI: <u>https://doi.org/10.1016/B978-1-85617-745-0.00007-3</u>, pp. 239-335.
- 74. S. Ray and S. Moulik, *Langmuir*, 1994, **10**, 2511-2515.
- R. S. Chaurasiya and H. U. Hebbar, in *Nanoscience in Food and Agriculture 4*, eds. S. Ranjan, N. Dasgupta and E. Lichtfouse, Springer International Publishing, Cham, 2017, DOI: 10.1007/978-3-319-53112-0\_5, pp. 181-211.
- 76. E. P. Melo, M. R. Aires-Barros and J. M. Cabral, *Biotechnology annual review*, 2001, 7, 87-129.
- 77. P. Mukerjee and K. J. Mysels, *Critical micelle concentrations of aqueous surfactant systems*, National Standard reference data system, 1971.
- 78. E. W. Anacker and H. M. Ghose, *Journal of the American Chemical Society*, 1968, **90**, 3161-3166.
- 79. B. Lindman, M. C. Puyal, N. Kamenka, B. Brun and G. J. T. J. o. P. C. Gunnarsson, 1982, **86**, 1702-1711.
- 80. J. Aguiar, P. Carpena, J. A. Molina-Bolívar and C. Carnero Ruiz, *Journal of Colloid and Interface Science*, 2003, **258**, 116-122.
- 81. X. Zhang, J. K. Jackson and H. M. Burt, *Journal of biochemical biophysical methods* 1996, **31**, 145-150.
- 82. S. Das, N. Patra, A. Banerjee, B. Das and S. Ghosh, *Journal of Molecular Liquids*, 2020, **320**, 114497.
- 83. G. S. Hartley, *The colloidal state. 2. Aqueous Solutions of paraffin-chain salts: a study in micelle formation*, Hermann, 1936.
- 84. J. W. McBain and C. Salmon, Journal of the American Chemical Society, 1920, 42, 426-460.
- 85. D. J. Shaw, Introduction to colloid and surface chemistry, Butterworths, 1980.
- 86. F. M. Menger, Accounts of Chemical Research, 1979, 12, 111-117.
- 87. P. Debye and E. Anacker, The Journal of Physical Chemistry, 1951, 55, 644-655.
- 88. W. J. J. o. C. S. Philippoff, 1950, 5, 169-191.
- 89. W. D. Harkins and R. Mittelmann, Journal of Colloid Science, 1949, 4, 367-381.
- 90. S. Liu, Y. I. Gonzalez, D. Danino and E. W. J. M. Kaler, 2005, 38, 2482-2491.
- 91. C. Tanford, The Journal of Physical Chemistry, 1972, 76, 3020-3024.
- 92. R. Salkar, D. Mukesh, S. Samant and C. J. L. Manohar, 1998, 14, 3778-3782.
- 93. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, *Journal of the Chemical Society, Faraday Transactions 2: Molecular Chemical Physics* 1976, **72**, 1525-1568.
- 94. J. N. Israelachvili, Intermolecular and surface forces, Academic press, 2011.
- 95. S. Ghosh, G. B. Ray and S. Mondal, Fluid Phase Equilibria, 2015, 405, 46-54.
- 96. C. Tanford, *The hydrophobic effect: formation of micelles and biological membranes 2d ed*, J. Wiley., 1980.
- 97. E. Sutherland, S. M. Mercer, M. Everist and D. G. Leaist, *Journal of Chemical & Engineering Data*, 2009, **54**, 272-278.
- 98. L. Pérez, A. Pinazo, M. R. Infante and R. Pons, *The Journal of Physical Chemistry B*, 2007, **111**, 11379-11387.

- S. M. F. Tavernier, C. G. Vonk and R. Gijbels, *Journal of Colloid and Interface Science*, 1981, 81, 341-353.
- 100. N. Berclaz, M. Müller, P. Walde and P. L. Luisi, *The Journal of Physical Chemistry B*, 2001, **105**, 1056-1064.
- 101. J. Gustafsson, T. Nylander, M. Almgren and H. Ljusberg-Wahren, *Journal of Colloid and Interface Science*, 1999, **211**, 326-335.
- 102. S. Hayashi and S. Ikeda, The Journal of Physical Chemistry, 1980, 84, 744-751.
- A. S. Rafique, S. Khodaparast, A. S. Poulos, W. N. Sharratt, E. S. Robles and J. T. Cabral, Soft Matter, 2020, 16, 7835-7844.
- 104. H. Hoffmann, G. Platz, H. Rehage and W. Schorr, *Advances in Colloid and Interface Science*, 1982, **17**, 275-298.
- 105. D. Varade, T. Joshi, V. K. Aswal, P. S. Goyal, P. A. Hassan and P. Bahadur, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2005, **259**, 95-101.
- 106. K. S. Schmitz, Introduction to dynamic light scattering by macromolecules, Elsevier, 2012.
- 107. B. Chu, Laser light scattering, 1974, 75, 12150.
- 108. E. Pike, in Photon Correlation Spectroscopy and Velocimetry, Springer, 1977, pp. 3-21.
- 109. J. Stetefeld, S. A. McKenna and T. R. Patel, Biophysical Reviews, 2016, 8, 409-427.
- 110. N. J. Turro and A. Yekta, Journal of the American Chemical Society, 1978, 100, 5951-5952.
- 111. P. P. Infelta, Chemical Physics Letters, 1979, 61, 88-91.
- 112. R. G. Alargova, I. I. Kochijashky, M. L. Sierra and R. Zana, Langmuir, 1998, 14, 5412-5418.
- 113. A. Yekta, M. Aikawa and N. J. Turro, Chemical Physics Letters, 1979, 63, 543-548.
- 114. M. Almgren, Advances in colloid and interface science, 1992, 41, 9-32.
- 115. M. Almgren, J. E. Leofroth and J. Van Stam, *The Journal of Physical Chemistry* 1986, **90**, 4431-4437.
- 116. R. C. Oliver, J. Lipfert, D. A. Fox, R. H. Lo, S. Doniach and L. Columbus, *PLOS ONE*, 2013, **8**, e62488.
- 117. H. Nakahara, A. Nishino, A. Tanaka, Y. Fujita and O. Shibata, *Colloid Polymer Science* 2019, **297**, 183-189.
- 118. D. M. Small, in *The Bile Acids Chemistry, Physiology, and Metabolism*, Springer, 1971, pp. 249-356.
- 119. D. Madenci and S. U. Egelhaaf, *Current Opinion in Colloid & Interface Science*, 2010, **15**, 109-115.
- 120. P. Lianos and R. Zana, Journal of Colloid and Interface Science, 1981, 84, 100-107.
- 121. R. Zana and C. Weill, Journal de Physique Lettres, 1985, 46, 953-960.
- 122. J. F. Scamehorn, Phenomena in mixed surfactant systems. United States: N. p., 1986.
- 123. H. Evans, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1956, 579-586.
- 124. M. Corrin and W. D. Harkins, Journal of the American Chemical Society, 1947, 69, 683-688.
- 125. L. Shedlovsky, C. W. Jakob and M. B. Epstein, *The Journal of Physical Chemistry*, 1963, **67**, 2075-2078.
- 126. R. Zana, Journal of Colloid and Interface Science, 1980, 78, 330-337.
- 127. P. K. Das Gupta and S. P. Moulik, Colloid and Polymer Science, 1989, 267, 246-254.
- 128. M. R. Rahman and N. Islam, Int. J. Sci. Eng. Res, 2015, 6(1), 1508-1516.
- 129. C. Tanford, *Proceedings of the National Academy of Sciences of the United States of America*, 1974, **71**, 1811-1815.

- 130. T. Tadros, in *Encyclopedia of Colloid and Interface Science*, ed. T. Tadros, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, DOI: 10.1007/978-3-642-20665-8\_60, pp. 209-210.
- 131. H. B. Klevens, Journal of the American Oil Chemists Society, 1953, 30, 74-80.
- 132. A. Rodríguez, M. d. M. Graciani and M. L. Moyá, Langmuir, 2008, 24, 12785-12792.
- 133. S. Das, B. Naskar and S. Ghosh, Soft Matter, 2014, 10, 2863-2875.
- 134. B. D. Flockhart, *Journal of Colloid Science*, 1961, **16**, 484-492.
- 135. L. Tennouga, A. Mansri, K. Medjahed, A. Chetouani and I. Warad, *Mater Environ Sci*, 2015, **6**, 2711-2716.
- 136. N. Muller, *Langmuir*, 1993, **9**, 96-100.
- 137. E. Mohajeri and G. D. Noudeh, E-Journal of Chemistry, 2012, 9, 961739.
- 138. S. Kaneshina, O. Shibata, M. Nakamura and M. Tanaka, Colloids and Surfaces, 1983, 6, 73-82.
- 139. K. Hara, H. Kuwabara, O. Kajimoto and K. Bhattacharyya, *Journal of Photochemistry and Photobiology A: Chemistry*, 1999, **124**, 159-162.
- 140. K. Shinoda, T. Yamaguchi and R. J. B. o. t. C. S. o. J. Hori, 1961, 34, 237-241.
- 141. T. Mukhim, J. Dey, S. Das and K. Ismail, *Journal of Colloid and Interface Science*, 2010, **350**, 511-515.
- 142. S. Pal, A. R. Das and S. P. Moulik, Indian journal of biochemistry & biophysics, 1982, **19**, 295-300.
- 143. B. K. Roy and S. P. Moulik, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2002, **203**, 155-166.
- 144. M. Benrraou, B. L. Bales and R. Zana, *The Journal of Physical Chemistry B*, 2003, **107**, 13432-13440.
- 145. P. Mukerjee, Advances in Colloid and Interface Science, 1967, 1, 242-275.
- B. Naskar, A. Dan, S. Ghosh, V. K. Aswal and S. P. Moulik, *Journal of Molecular Liquids*, 2012, 170, 1-10.
- 147. J. Bloor, J. Morrison and C. Rhodes, Journal of pharmaceutical sciences, 1970, 59, 387-391.
- 148. J. H. Clint, Surfactant aggregation, Springer Science & Business Media, 2012.
- 149. M. J. Schick, Nonionic surfactants: physical chemistry, CRC Press, 1987.
- 150. J. L. Williams and N. J. Stein, *Journal of the American Oil Chemists Society*, 1965, **42**, 1054-1056.
- Z. Wang, J.-H. Xu, W. Zhang, B. Zhuang and H. Qi, *Colloids and Surfaces B: Biointerfaces*, 2008, 61, 118-122.
- 152. G. Campese, E. Rodrigues, E. Tambourgi and A. Pessoa Jr, *Brazilian Journal of Chemical Engineering*, 2003, **20**, 335-337.
- 153. G. Mannella, V. La Carrubba and V. J. R. o. S. I. Brucato, 2013, 84, 075118.
- 154. K. Solec, Macromolecules, 1970, 3, 665-673.
- 155. M. Osa, H. Shiraki, U. Morinaga and T. Yoshizaki, Polymer Journal, 2013, 45, 681-684.
- 156. M. M. Alam, S. Mahbub, M. M. Hosen, D. Kumar and M. A. Hoque, *Chemical Papers*, 2021, **75**, 3457-3468.
- 157. J. Gurung and A. K. Pulikkal, *Chemical Engineering Communications*, 2020, **207**, 1462-1473.
- M. J. Hossain, N. H. Al-Shaalan, M. R. Amin, S. Aktar, S. Rana, S. M. Wabaidur, M. A. Rub, M. A. Hoque, S. E. Kabir and A. M. Asiri, *Journal of Chemical & Engineering Data*, 2020, 65, 841-847.
- 159. P. Patidar and A. Bahadur, Journal of Molecular Liquids, 2018, 249, 219-226.
- 160. N. Dave and T. Joshi, Journal of Dispersion Science Technology 2018, 39, 548-551.

- 161. S. Murugesan and R. Iyyasamy, Separation Science Technology 2017, 52, 1929-1937.
- D. Patel, S. Agarwal, D. Ray, K. Kuperkar, V. K. Aswal and P. Bahadur, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126330.
- 163. P. J. Flory, The Journal of chemical physics, 1941, 9, 660-660.
- 164. P. J. Flory, The Journal of chemical physics, 1942, 10, 51-61.
- 165. Å. Norström, European Journal of Clinical Pharmacology, 2005, 60, 915-915.
- 166. G. J. Hirasaki, C. A. Miller and M. Puerto, SPE journal, 2011, 16, 889-907.
- 167. P. Samaddar and K. Sen, Journal of Industrial and Engineering Chemistry, 2014, 20, 1209-1219.
- 168. S. Gunnam, Asian Journal of Pharmaceutics : Free full text articles from Asian J Pharm 2018, 12.
- 169. G. Némethy and H. A. Scheraga, The Journal of Chemical Physics, 1962, 36, 3401-3417.
- 170. J. L. Kavanau, Nature, 1963, 198, 525-530.
- 171. D. Hall and B. Pethica, Journal, 1967, 1, 516-557.
- 172. Y. Moroi, Micelles: theoretical and applied aspects, Springer Science & Business Media, 1992.
- 173. G. Olofsson and W. J. J. o. t. B. C. S. Loh, 2009, 20, 577-593.
- 174. P. R. Majhi and S. P. J. T. J. o. P. C. B. Moulik, 1999, 103, 5977-5983.
- 175. J. Lah, C. Pohar and G. Vesnaver, The Journal of Physical Chemistry B, 2000, 104, 2522-2526.
- 176. G. C. Kresheck, The Journal of Physical Chemistry B, 1998, 102, 6596-6600.
- 177. A. Chatterjee, S. P. Moulik, S. K. Sanyal, B. K. Mishra and P. M. Puri, *The Journal of Physical Chemistry B*, 2001, **105**, 12823-12831.
- 178. S. K. Hait, P. R. Majhi, A. Blume and S. P. Moulik, *The Journal of Physical Chemistry B*, 2003, **107**, 3650-3658.
- 179. J. Enderby and G. Neilson, F. Franks, Plenum Press, New York 1979, 6, 1.
- 180. S. P. Moulik and D. Mitra, in *Recent Trends In Surface And Colloid Science*, World Scientific, 2012, pp. 51-68.
- 181. T. L. Hill, Thermodynamics of Small Systems: Two Volumes Bound as One. 1-2, Dover, 1994.
- 182. D. Hall, Transactions of the Faraday Society, 1970, 66, 1351-1358.
- 183. D. G. Hall, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1972, **68**, 1439-1447.
- 184. D. G. Hall, Journal of the Chemical Society, Faraday Transactions 2: Molecular Chemical Physics 1977, **73**, 897-910.
- 185. J. M. Corkill, J. F. Goodman, T. Walker, J. Wyer and D. Tabor, *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences*, 1969, **312**, 243-255.
- 186. J. Corkill and K. Herrmann, The Journal of Physical Chemistry, 1963, 67, 934-937.
- 187. J. M. Corkhill and J. F. Goodman, Advances in Colloid and Interface Science, 1969, 2, 298-330.
- 188. C. Tanford, The Journal of Physical Chemistry, 1974, 78, 2469-2479.
- 189. R. Nagarajan and E. Ruckenstein, Journal of Colloid and Interface Science, 1977, 60, 221-231.
- 190. M. T. García, I. Ribosa, J. Sanchez Leal and F. Comelles, *Journal of the American Oil Chemists* Society, 1992, **69**, 25-29.
- 191. T. C. G. Kibbey and K. F. Hayes, Environmental Science & Technology, 1997, 31, 1171-1177.
- 192. B. J. Aungst and S. Phang, International Journal of Pharmaceutics, 1995, 117, 95-100.
- 193. M. Noriyuki, N. Yasuko, K. Mariko, M. Shozo and S. Hitoshi, *International Journal of Pharmaceutics*, 1980, **4**, 281-290.
- 194. M. Bergström, Langmuir, 1996, 12, 2454-2463.

- 195. A. Mal, S. Bag, S. Ghosh and S. P. Moulik, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2018, **553**, 633-644.
- 196. R. Dutta, S. Ghosh, P. Banerjee, S. Kundu and N. Sarkar, *Journal of Colloid and Interface Science*, 2017, **490**, 762-773.
- 197. R. M. Hill, K. Ogino and M. Abe, Surfactant science series, 1993, 46, 317.
- 198. M. J. Blandamer, B. Briggs, P. M. Cullis and J. B. Engberts, *Physical Chemistry Chemical Physics* 2000, **2**, 5146-5153.
- 199. S. P. Moulik, M. E. Haque, P. K. Jana and A. R. Das, *The Journal of Physical Chemistry*, 1996, **100**, 701-708.
- N. Azum, A. Z. Naqvi, M. Akram and D. Kabir ud, *Journal of Colloid and Interface Science*, 2008, 328, 429-435.
- 201. P. Parekh, D. Varade, J. Parikh and P. Bahadur, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2011, **385**, 111-120.
- 202. H. Gandhi, D. Varade and P. Bahadur, Tenside, surfactants, detergents, 2002, 39, 16-19.
- S. Mahbub, S. Rana, M. Abdul Rub, M. A. Hoque, S. E. Kabir and A. M. Asiri, *Journal of Chemical & Engineering Data*, 2019, 64, 4376-4389.
- 204. C. Das, T. Chakraborty, S. Ghosh and B. Das, Colloid Journal, 2010, 72, 788-798.
- 205. A. George, S. Vora, A. Dogra, H. Desai and P. Bahadur, *Journal of Surfactants and Detergents*, 1998, **1**, 507-514.
- 206. N. Azum, M. Abdul Rub, A. M. Asiri, H. M. Marwani and M. Akram, *Journal of Saudi Chemical Society*, 2020, **24**, 683-692.
- 207. N. Azum, M. A. Rub and A. M. Asiri, *The Journal of Chemical Thermodynamics*, 2019, **128**, 406-414.
- 208. D. M. Ćirin, M. M. Poša and V. S. Krstonošić, Chemistry Central Journal, 2011, 5, 89.
- 209. A. Mandal, S. Ray and S. Moulik, 1980, 84, 856-859.
- 210. R. K. Mahajan, N. Kaur and M. S. Bakshi, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2005, **255**, 33-39.
- 211. A. Sahu, S. Choudhury, A. Bera, S. Kar, S. Kumar and A. Mandal, *Journal of Dispersion Science and Technology*, 2015, **36**, 1156-1169.
- 212. K. Ogino, N. Tsubaki and M. Abe, Journal of Colloid and Interface Science, 1984, 98, 78-83.
- 213. T. Joshi, J. Mata and P. Bahadur, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2005, **260**, 209-215.
- 214. K. S. Sharma, C. Rodgers, R. M. Palepu and A. K. Rakshit, *Journal of Colloid and Interface Science*, 2003, **268**, 482-488.
- 215. S. Ghosh and T. Chakraborty, The Journal of Physical Chemistry B, 2007, 111, 8080-8088.
- 216. L. Guo, R. H. Colby, M. Y. Lin and G. P. Dado, Journal of Rheology, 2001, 45, 1223-1243.
- 217. H. G. Thomas, A. Lomakin, D. Blankschtein and G. B. Benedek, Langmuir, 1997, 13, 209-218.
- 218. P. Jafari-Chashmi and A. Bagheri, Journal of Molecular Liquids, 2018, 269, 816-823.
- 219. X.-f. Gu, J. Huo, R.-t. Wang, D.-c. Wu and Y.-l. Yan, *Journal of Dispersion Science and Technology*, 2015, **36**, 334-342.
- 220. N. A. Smirnova, A. A. Vanin, E. A. Safonova, I. B. Pukinsky, Y. A. Anufrikov and A. L. Makarov, *Journal of colloid and interface science*, 2009, **336**, 793-802.
- 221. H. Kumar and G. Kaur, Journal of Dispersion Science and Technology, 2021, 42, 970-983.
- 222. X. Wang, R. Wang, Y. Zheng, L. Sun, L. Yu, J. Jiao and R. Wang, *The Journal of Physical Chemistry B*, 2013, **117**, 1886-1895.

- 223. F. Comelles, I. Ribosa, J. J. González and M. T. Garcia, *Journal of Colloid and Interface Science*, 2014, **425**, 44-51.
- 224. R. Vashishat, R. Sanan and R. K. Mahajan, RSC Advances, 2015, 5, 72132-72141.
- 225. R. Patel, A. B. Khan, N. Dohare, M. Maroof Ali and H. K. Rajor, *Journal of Surfactants and Detergents*, 2015, **18**, 719-728.
- 226. A. Pal and A. Yadav, Journal of Molecular Liquids, 2019, 279, 43-50.
- 227. U. Farooq, R. Patel and A. Ali, Journal of Solution Chemistry, 2018, 47, 568-585.
- 228. A. B. Khan, M. Ali, N. A. Malik, A. Ali and R. Patel, *Colloids and Surfaces B: Biointerfaces*, 2013, **112**, 460-465.
- 229. U. Saha, A. Banerjee and B. Das, Journal of Molecular Liquids, 2020, 309, 113164.
- 230. U. Farooq, A. Ali, R. Patel and N. A. Malik, Journal of Molecular Liquids, 2017, 234, 452-462.
- 231. R. Sharma, S. Mahajan and R. K. Mahajan, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2013, **427**, 62-75.
- 232. G. Luo, X. Qi, C. Han, C. Liu and J. Gui, *Journal of Surfactants and Detergents*, 2013, **16**, 531-538.
- 233. A. Pal and R. Punia, Journal of Molecular Liquids, 2019, 296, 111831.
- 234. X. Qi, X. Zhang, G. Luo, C. Han, C. Liu and S. Zhang, *Journal of Dispersion Science and Technology*, 2013, **34**, 125-133.
- 235. A. Pal and R. Punia, Colloid and Polymer Science, 2019, 297, 1541-1557.
- 236. A. K. Tiwari, Sonu and S. K. Saha, The Journal of Chemical Thermodynamics, 2013, 60, 29-40.
- 237. L. Qin and X.-H. J. R. a. Wang, 2017, 7, 51426-51435.
- 238. D. Bhatt, K. Maheria and J. Parikh, *The Journal of Chemical Thermodynamics*, 2014, **74**, 184-192.
- H. Pathan, R. Patil, D. Ray, V. K. Aswal, P. Bahadur and S. Tiwari, *Journal of Molecular Liquids*, 2019, **290**, 111235.
- 240. F. Comelles, I. Ribosa, J. J. González and M. T. Garcia, Langmuir, 2012, 28, 14522-14530.
- 241. T. Misono, H. Sakai, K. Sakai, M. Abe and T. Inoue, *Journal of Colloid and Interface Science*, 2011, **358**, 527-533.
- 242. T. Misono, K. Okada, K. Sakai, M. Abe and H. J. J. o. o. s. Sakai, 2016, 65, 499-506.
- 243. N. Li, S. Zhang, H. Ma and L. Zheng, Langmuir, 2010, 26, 9315-9320.
- 244. J. H. Clint, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1975, **71**, 1327-1334.
- 245. H. Lange and K. Beck, Kolloid-Zeitschrift Zeitschrift Fur Polymere 1973, 251, 424-431.
- 246. H. Lange, Kolloid-Zeitschrift 1953, 131, 96-103.
- 247. K. Shinoda, The Journal of Physical Chemistry, 1954, 58, 541-544.
- Y. Moroi, N. Nishikido, M. Saito and R. Matuura, *Journal of Colloid and Interface Science*, 1975, 52, 356-363.
- 249. D. Rubingh and K. J. v. Mittal, 1979, 1, 337-354.
- 250. N. Turro, P. Kuo, P. Somasundaran and K. Wong, *The Journal of Physical Chemistry* 1986, **90**, 288-291.
- 251. M. J. Rosen and F. Zhao, Journal of Colloid and Interface Science, 1983, 95, 443-452.
- 252. C. Sarmoria, S. Puvvada and D. Blankschtein, Langmuir, 1992, 8, 2690-2697.
- 253. K. Shinoda, The Journal of Physical Chemistry, 1954, 58, 1136-1141.
- 254. F. Tokiwa, Journal of Colloid and Interface Science, 1968, 28, 145-148.

- 255. T. Kato, H. Takeuchi and T. Seimiya, *Journal of Colloid and Interface Science*, 1990, **140**, 253-257.
- 256. A. Makayssi, R. Bury and C. Treiner, Langmuir, 1994, 10, 1359-1365.
- 257. T. R. Desai and S. G. Dixit, Journal of Colloid and Interface Science, 1996, 177, 471-477.
- 258. F. Tokiwa, K. Ohki and I. Kokubo, *Bulletin of the Chemical Society of Japan*, 1968, **41**, 2845-2848.
- B. W. Barry, J. C. Morrison and G. F. J. Russell, *Journal of Colloid and Interface Science*, 1970, 33, 554-561.
- 260. K. Kuriyama, Kolloid-Zeitschrift und Zeitschrift für Polymere, 1962, 180, 55-64.
- 261. J. Corkill, J. Goodman and J. Tate, *Transactions of the Faraday Society*, 1964, **60**, 986-995.
- 262. M. J. Schick and D. J. Manning, *Journal of the American Oil Chemists Society*, 1966, **43**, 133-136.
- 263. N. J. Turro and P. C. C. Lee, The Journal of Physical Chemistry, 1982, 86, 3367-3371.
- 264. N. Muller and H. Simsohn, The Journal of Physical Chemistry, 1971, 75, 942-945.
- 265. G. Sugihara and P. Mukerjee, The Journal of Physical Chemistry, 1981, 85, 1612-1616.
- 266. I. O. Sutherland, Chemical Society Reviews, 1986, 15, 63-91.
- 267. M. W. Hosseini, J. M. Lehn, S. R. Duff, K. Gu and M. P. Mertes, *The Journal of Organic Chemistry*, 1987, **52**, 1662-1666.
- 268. J.-M. Lehn, Science, 1985, 227, 849-856.
- 269. P. Yohannes, M. P. Mertes and K. B. Mertes, *Journal of the American Chemical Society*, 1985, **107**, 8288-8289.
- 270. E. Bayer, Rapp, W., New polymer supports for solid-liquid-phase peptide synthesis, De Gruyter 2019.
- 271. S. Omura, Macrolide antibiotics: chemistry, biology, and practice, Academic press, 2002.
- 272. J. M. Lehn and P. Vierling, Tetrahedron Letters, 1980, 21, 1323-1326.
- 273. R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen and D. Sen, *Chemical Reviews*, 1985, **85**, 271-339.
- 274. S. Kado and K. Kimura, Journal of the American Chemical Society, 2003, 125, 4560-4564.
- 275. R. C. Helgeson, J. M. Timko and D. J. Cram, *Journal of the American Chemical Society* 1973, **95**, 3023-3025.
- 276. G. W. Gokel and B. J. Garcia, Tetrahedron Letters, 1977, 18, 317-320.
- R. M. Izatt, J. S. Bradshaw, M. L. Colter, Y. Nakatsuji, N. O. Spencer, M. F. Brown, G. Arena, P. K. Tse and B. E. Wilson, *The Journal of Organic Chemistry*, 1985, **50**, 4865-4872.
- 278. J. H. Nelson, Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 1980, **10**, 325-326.
- 279. J. Lockhart, A. Robson, M. Thompson, S. D. Furtado, C. Kaura and A. J. J. o. t. C. S. Allan, Perkin Transactions 1, 1973, 577-581.
- 280. J. C. Lockhart and M. E. Thompson, *Journal of the Chemical Society, Perkin Transactions* 1, 1977, DOI: 10.1039/P19770000202, 202-204.
- 281. C. J. Pedersen, Angewandte Chemie International Edition in English, 1988, 27, 1021-1027.
- 282. S. A. Hogberg and D. J. Cram, The Journal of Organic Chemistry, 1975, 40, 151-152.
- 283. S. Das, S. Mondal and S. Ghosh, Journal of Chemical Engineering Data 2013, 58, 2586-2595.
- 284. R. Singh and R. Garg, *E-Journal of Chemistry*, 2010, 7, 578-582.
- 285. R. Garg, R. Singh and S. Mehta, Asian Journal of Research in Chemistry, 2010, 3, 71-77.

- 286. E. Caponetti, D. Chillura-Martino and L. Pedone, Langmuir, 2004, 20, 3854-3862.
- 287. E. Vikingstad and J. Bakken, Journal of Colloid and Interface Science, 1980, 74, 8-15.
- 288. N. Gol'dshleger, I. Kalashnikova, V. Baulin and A. Y. Tsivadze, *Protection of Metals, Physical Chemistry of Surfaces* 2011, **47**, 471-477.
- 289. H. Staudinger, Schweiz. Cherniker Ztg, 1919, 1-5; 28-33; 60-64.
- 290. S. F. Sun, *Physical chemistry of macromolecules: basic principles and issues*, John Wiley & Sons, 2004.
- 291. M. A. Gauthier and H.-A. Klok, Chemical Communications, 2008, issue 23, 2591-2611.
- 292. M. M. Gromiha, Protein bioinformatics: from sequence to function, academic press, 2010.
- 293. K. D. Schwenke, in *Studies in Interface Science*, eds. D. Möbius and R. Miller, Elsevier, 1998, vol. 7, pp. 1-50.
- 294. K. P. Ananthapadmanabhan, Interactions of surfactants with polymers and proteins, CRC Press, 2018.
- 295. M. L. Huggins, Journal of the American Chemical Society, 1942, 64, 2716-2718.
- 296. R. Simha, Journal of Applied physics, 1952, 23, 1020-1024.
- 297. P. Y. Cheng and H. K. Schachman, Journal of Polymer Science, 1955, 16, 19-30.
- 298. R. A. Alberty and F. Daniels, *Physical Chemistry, 5<sup>th</sup>edition*. John Wiley and Sons: New York,, 1979.
- Polymer Handbook, J. Brandrup and E. Immergut, Wiley-Interscience, Chichester, 1989. pp. ix + parts I to VIII.
- 300. I. Yilgor, T. C. Ward, E. Yilgor and G. E. Atilla, Polymer, 2006, 47, 1179-1186.
- 301. P. Banerjee, I. Mukherjee, S. Bhattacharya, S. Datta, S. P. Moulik and D. Sarkar, *Langmuir*, 2009, **25**, 11647-11656.
- 302. A. Dan, S. Ghosh and S. P. Moulik, *Biopolymers: Original Research on Biomolecules*, 2009, **91**, 687-699.
- 303. P. Nandi, A. Bhattarai and B. J. J. o. P. S. P. B. P. P. Das, 2007, 45, 1765-1770.
- 304. A. Silberberg, J. Eliassaf and A. Katchalsky, Journal of Polymer Science, 1957, 23, 259-284.
- 305. H. Kitano, K. Ichikawa, M. Ide, M. Fukuda and W. J. L. Mizuno, 2001, 17, 1889-1895.
- 306. R. J. Robson and E. A. J. T. J. o. P. C. Dennis, 1977, 81, 1075-1078.
- 307. C. Branca, S. Magazu, G. Maisano, F. Migliardo, P. Migliardo and G. Romeo, *The Journal of Physical Chemistry B*, 2002, **106**, 10272-10276.
- 308. Y. Miwa, H. Ishida, M. Tanaka and A. J. J. o. B. S. Mochizuki, Polymer Edition, 2010, **21**, 1911-1924.
- 309. P. Elworthy, A. Florence and A. Rahman, *The Journal of Physical Chemistry*, 1972, **76**, 1763-1767.
- 310. H. S. Frank and M. W. Evans, The Journal of chemical physics, 1945, 13, 507-532.
- 311. B. Geetha and A. B. Mandal, The Journal of chemical physics, 1996, 105, 9649-9656.
- M. Hans, K. Shimoni, D. Danino, S. J. Siegel and A. Lowman, *Biomacromolecules*, 2005, 6, 2708-2717.
- 313. K. Tam, R. Jenkins, M. Winnik and D. Bassett, Macromolecules, 1998, 31, 4149-4159.
- 314. G.-E. Yu, Y.-W. Yang, Z. Yang, D. Attwood, C. Booth and V. M. Nace, *Langmuir*, 1996, **12**, 3404-3412.
- 315. E. Alami, M. Almgren, W. Brown and J. Francois, Macromolecules, 1996, 29, 2229-2243.
- 316. S. Dai, K. Tam and R. Jenkins, European polymer journal, 2000, 36, 2671-2677.

- 317. M. Pitsikalis, J. Woodward, J. W. Mays and N. J. M. Hadjichristidis, 1997, 30, 5384-5389.
- 318. J. H. Yao, K. Y. Mya, X. Li, M. Parameswaran, Q.-H. Xu, K. P. Loh and Z.-K. Chen, *The Journal of Physical Chemistry B*, 2008, **112**, 749-755.
- 319. P. J. Flory, Principles of polymer chemistry, Cornell University Press, 1953.
- 320. W. Brown, Dynamic light scattering: the method and some applications, Clarendon Press, 1993.
- 321. M. Nichifor, S. Lopes, M. Bastos and A. J. T. J. o. P. C. B. Lopes, 2004, 108, 16463-16472.
- 322. B. Kronberg, K. Holmberg and B. Lindman, *Surface chemistry of surfactants and polymers*, John Wiley & Sons, 2014.
- 323. J. Xia, P. L. Dubin and Y. Kim, The Journal of Physical Chemistry, 1992, 96, 6805-6811.
- 324. Q. Qiu, P. Somasundaran and B. A. Pethica, *Langmuir*, 2002, **18**, 3482-3486.
- 325. P. Hansson, The Journal of Physical Chemistry B, 2009, 113, 12903-12915.
- 326. D. Ray, S. Das, R. De and B. Das, Carbohydrate Polymers, 2015, 125, 255-264.
- 327. S. Ghosh, A. Mal, T. Chakraborty, G. C. De and D. G. Marangoni, *Journal of Surface Science and Technology*, 2017, **32**, 107-114.
- 328. A. Mal, A. Saha, G. Dinda and S. Ghosh, Journal of Molecular Liquids, 2020, 299, 112153.
- 329. M. Prasad, R. Palepu and S. P. Moulik, Colloid and Polymer Science, 2006, 284, 871-878.
- 330. N. Sardar, M. Kamil and D. Kabir ud, *Industrial & Engineering Chemistry Research*, 2012, **51**, 1227-1235.
- 331. P. Roscigno, F. Asaro, G. Pellizer, O. Ortona and L. Paduano, Langmuir, 2003, 19, 9638-9644.
- 332. P. Chandar, P. Somasundaran and N. J. Turro, *Macromolecules*, 1988, 21, 950-953.
- 333. B. Cabane and R. Duplessix, Colloids and Surfaces, 1985, 13, 19-33.
- 334. M. N. Jones, Journal of Colloid and Interface Science, 1967, 23, 36-42.
- N. Péron, R. Mészáros, I. Varga and T. Gilányi, *Journal of Colloid and Interface Science*, 2007, 313, 389-397.
- 336. B. Mandal, S. P. Moulik and S. Ghosh, Colloid and Polymer Science, 2014, 292, 2485-2495.
- 337. B. M. Folmer and B. Kronberg, Langmuir, 2000, 16, 5987-5992.
- I. García-Mateos, S. Pérez and M. M. Velázquez, *Journal of Colloid and Interface Science*, 1997, 194, 356-363.
- C. Honda, H. Kamizono, K.-i. Matsumoto and K. Endo, *Journal of Colloid and Interface Science*, 2004, 278, 310-317.
- 340. D. E. Otzen, Biophysical Journal, 2002, 83, 2219-2230.
- 341. P. Sehgal and D. E. Otzen, 2006, 15, 890-899.
- 342. M. D. Lad, V. M. Ledger, B. Briggs, R. J. Green and R. A. Frazier, *Langmuir*, 2003, **19**, 5098-5103.
- 343. J. Narayanan, A. A. Rasheed, J. R. J. J. o. c. Bellare and i. science, 2008, 328, 67-72.
- 344. N. J. Turro, X.-G. Lei, K. Ananthapadmanabhan and M. Aronson, Langmuir, 1995, 11, 2525-2533.
- 345. S. F. Santos, D. Zanette, H. Fischer and R. Itri, *Journal of Colloid and Interface Science*, 2003, **262**, 400-408.
- 346. S. Ghosh and A. Banerjee, *Biomacromolecules*, 2002, 3, 9-16.
- 347. S. Ghosh, Colloids and Surfaces B: Biointerfaces, 2008, 66, 178-186.
- 348. S. Ghosh, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 264, 6-16.
- 349. R. Bhattacharya and D. Bhattacharyya, *Biochimica et Biophysica Acta (BBA) Proteins and Proteomics*, 2009, **1794**, 698-708.

- 350. R. Vashishat, S. Chabba and R. K. Mahajan, *RSC Advances*, 2017, **7**, 13041-13052.
- 351. X. Wang, J. Liu, L. Sun, L. Yu, J. Jiao and R. Wang, *The Journal of Physical Chemistry B*, 2012, **116**, 12479-12488.
- 352. B. Mandal, S. Mondal, A. Pan, S. P. Moulik and S. Ghosh, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2015, **484**, 345-353.
- 353. I. Jha, M. Bisht, N. K. Mogha and P. Venkatesu, *The Journal of Physical Chemistry B*, 2018, **122**, 7522-7529.
- 354. D. Wu, G. Xu, Y. Sun, H. Zhang, H. Mao and Y. Feng, *Biomacromolecules*, 2007, 8, 708-712.
- 355. M. Subramanian, B. S. Sheshadri and M. P. Venkatappa, *The Journal of Biochemistry*, 1984, **95**, 413-421.
- 356. M. Tian, J. Zhu, J. Guo and X. Guo, Journal of Surfactants and Detergents, 2021, 24, 111-119.
- 357. Y. Nozaki, J. A. Reynolds and C. Tanford, Journal of Biological Chemistry, 1974, 249, 4452-4459.
- S. Mondal, M. L. Raposo, G. Prieto and S. Ghosh, *Journal of Chemical & Engineering Data*, 2016, 61, 1221-1228.
- 359. A. Ray and G. J. J. o. t. A. C. S. Nemethy, 1971, 93, 6787-6793.
- 360. A. R. Fersht and V. Daggett, Cell, 2002, 108, 573-582.
- 361. D. E. Otzen, L. Christiansen and M. SchÜLein, Protein Science, 1999, 8, 1878-1887.
- 362. D. Mitra, S. C. Bhattacharya and S. P. Moulik, *The Journal of Physical Chemistry B*, 2008, **112**, 6609-6619.
- 363. D. V. de Freitas, B. L. Kuhn, C. R. Bender, A. M. Furuyama Lima, M. de Freitas Lima, M. J. Tiera, C. L. Kloster, C. P. Frizzo and M. A. Villetti, *Journal of Molecular Liquids*, 2020, **297**, 111734.
- 364. S. Panmai, R. K. Prud'homme, D. G. Peiffer, S. Jockusch and N. J. Turro, *Langmuir*, 2002, **18**, 3860-3864.
- 365. D. Taylor, R. Thomas, P. Li and J. Penfold, Langmuir, 2003, 19, 3712-3719.
- 366. B. Jan, Chemical Society Reviews, 1993, 22, 85-92.
- 367. S. Saito and M. Yukawa, Journal of Colloid and Interface Science, 1969, 30, 211-218.
- 368. R. Petkova, S. Tcholakova and N. D. Denkov, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2013, **438**, 174-185.
- 369. S. Saito, Colloid and Polymer Science, 1979, 257, 266-272.
- 370. K. Hayakawa, JCT Kwak in Cationic Surfactants: Physical Chemistry (D. N. Rubingh and PM Holland, eds.) Surfactant Sci. Ser. No 37, *Journal*, 1991.
- 371. N. Alizadeh, B. Ranjbar and M. Mahmodian, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2003, **212**, 211-218.
- B. Lindman, K. Thalberg, E. Goddard and K. J. C. P. Ananthapadmanabhan (eds.), CRC Press, Boca Raton, FL, 1993, pp. 1-427.
- 373. P. P. Mishra, J. Bhatnagar and A. Datta, *The Journal of Physical Chemistry B*, 2005, **109**, 24225-24230.
- 374. X. Wang, J. Wang, Y. Wang and H. Yan, Langmuir, 2004, 20, 9014-9018.
- 375. B. Cabane and R. Duplessix, J. Phys. France, 1982, 43, 1529-1542.
- R. Mészáros, I. Varga and T. Gilányi, The Journal of Physical Chemistry B, 2005, 109, 13538-13544.
- 377. L. Bernazzani, S. Borsacchi, D. Catalano, P. Gianni, V. Mollica, M. Vitelli, F. Asaro and L. Feruglio, *The Journal of Physical Chemistry B*, 2004, **108**, 8960-8969.
- 378. J. Francois, J. Dayantis and J. Sabbadin, European Polymer Journal, 1985, 21, 165-174.

- 379. H.-W. Tseng, P.-C. Chen, H.-W. Tsui, C.-H. Wang, T.-Y. Hu and L.-J. Chen, *Journal of the Taiwan Institute of Chemical Engineers*, 2018, **92**, 50-57.
- 380. R. Nagarajan and B. Kalpakci, in *Microdomains in Polymer Solutions*, Springer, 1985, pp. 369-381.
- 381. T. Takagi and T. J. B. o. t. C. S. o. J. Isemura, 1960, 33, 437-441.
- 382. M. M. Fishman and R. S. Miller, Journal of Colloid Science, 1960, 15, 232-235.
- 383. J. B. Huang, M. Mao and B. Y. Zhu, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 1999, **155**, 339-348.
- 384. S. Cinelli, G. Onori and A. Santucci, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 1999, **160**, 3-8.
- 385. R. Zana, Advances in Colloid and Interface Science, 1995, 57, 1-64.
- 386. P. C. Griffith, P. Stilbs, A. M. Howe and T. Cosgrove, *Langmuir*, 1996, **12**, 2884-2893.
- 387. K. Shirahama, J. Liu, I. Aoyama and N. Takisawa, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 1999, **147**, 133-138.
- 388. P. C. Griffiths, N. Hirst, A. Paul, S. M. King, R. K. Heenan and R. Farley, *Langmuir*, 2004, **20**, 6904-6913.
- 389. S. Sultana, M. M. Rahman, M. R. Amin, S. Rana, M. A. Hoque, D. Kumar and M. Alfakeer, *Molecular Physics*, 2021, **119**, e1892848.
- K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, *Polymers in Aqueous Solution*, Wiley-Blackwell, 2002.
- 391. J. A. Reynolds and C. Tanford, Journal of Biological Chemistry, 1970, 245, 5161-5165.
- 392. E. Seth and V. K. Aswal, Journal of Macromolecular Science, Part B, 2003, 42, 85-94.
- 393. C. Sun, J. Yang, X. Wu, X. Huang, F. Wang and S. Liu, *Biophysical journal*, 2005, 88, 3518-3524.
- 394. S. Shinagawa, K. Kameyama and T. Takagi, *Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology*, 1993, **1161**, 79-84.
- L. A. Bastardo, J. Iruthayaraj, M. Lundin, A. Dedinaite, A. Vareikis, R. Makuška, A. van der Wal, I. Furó, V. M. Garamus and P. M. Claesson, *Journal of Colloid and Interface Science*, 2007, 312, 21-33.
- 396. J. Kevelam, J. F. L. van Breemen, W. Blokzijl and J. B. F. N. Engberts, *Langmuir*, 1996, **12**, 4709-4717.
- 397. I. Portnaya, U. Cogan, Y. D. Livney, O. Ramon, K. Shimoni, M. Rosenberg and D. Danino, *Journal of Agricultural and Food Chemistry*, 2006, **54**, 5555-5561.
- 398. N. J. Turro, X.-G. Lei, K. P. Ananthapadmanabhan and M. Aronson, *Langmuir*, 1995, **11**, 2525-2533.
- 399. J. Oakes, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1974, **70**, 2200-2209.
- 400. Y. Ding, Y. Shu, L. Ge and R. Guo, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2007, **298**, 163-169.
- 401. C. H. Spink and J. B. Chaires, *Journal of the American Chemical Society*, 1997, **119**, 10920-10928.
- 402. E. Blanco, J. M. Ruso, G. Prieto and F. Sarmiento, *Journal of Colloid and Interface Science*, 2007, **316**, 37-42.
- 403. W. D. Harkins and H. F. Jordan, Journal of the American Chemical Society, 1930, 52, 1751-1772.
- 404. C. D. V. M. Narváez, T. Mazur and V. Sharma, Soft Matter, 2021, 17, 6116-6126.
- 405. E. D. Goddard and R. B. Hannan, *Journal of the American Oil Chemists' Society*, 1977, **54**, 561-566.

- 406. D. M. Bloor, J. F. Holzwarth and E. Wyn-Jones, *Langmuir*, 1995, **11**, 2312-2313.
- 407. G. Wang and G. Olofsson, The Journal of Physical Chemistry B, 1998, 102, 9276-9283.
- 408. D. R. Rigsbee and P. L. Dubin, Langmuir, 1996, 12, 1928-1929.
- 409. T. Chakraborty, I. Chakraborty and S. Ghosh, Langmuir, 2006, 22, 9905-9913.
- 410. P. L. Dubin and R. Oteri, Journal of colloid and interface science, 1983, 95, 453-461.
- 411. T. Takagi, K. Tsujii and K. Shirahama, The Journal of Biochemistry, 1975, 77, 939-947.
- 412. R. K. Prud'homme and J. T. Uhl, Society of Petroleum Engineers Journal, 1984, 24, 431-434.
- 413. A. Dan, S. Ghosh and S. P. Moulik, The Journal of Physical Chemistry B, 2009, 113, 8505-8513.
- 414. N. Plucktaveesak, A. J. Konop and R. H. Colby, *The Journal of Physical Chemistry B*, 2003, **107**, 8166-8171.
- 415. Y. Li, P. L. Dubin, H. A. Havel, S. L. Edwards and H. Dautzenberg, *Macromolecules*, 1995, **28**, 3098-3102.
- 416. C. Wang, P. Ravi and K. C. Tam, *Langmuir*, 2006, **22**, 2927-2930.
- 417. B. Naskar, A. Dan, S. Ghosh and S. P. Moulik, Carbohydrate Polymers, 2010, 81, 700-706.
- 418. N. J. Turro, B. H. Baretz and P. L. Kuo, Macromolecules, 1984, 17, 1321-1324.
- 419. J. R. Lakowicz, *Principles of fluorescence spectroscopy*, Springer science & business media, 2013.
- 420. P. Pirzadeh, A. A. Moosavi-Movahedi, B. Hemmateenejad, F. Ahmad, M. Shamsipur and A. A. Saboury, *Colloids and Surfaces B: Biointerfaces*, 2006, **52**, 31-38.
- 421. L. Whitmore and B. A. Wallace, *Biopolymers: Original Research on Biomolecules*, 2008, **89**, 392-400.
- 422. T. E. Creighton, Proteins: structures and molecular properties, Macmillan, 1993.
- 423. R. W. Woody and A. K. Dunker, *Circular dichroism and the conformational analysis of biomolecules*, 1996, 109-157.
- 424. Y. Jiang, M. Tian, Y. Wang, W. Xu and X. Guo, Journal of Molecular Liquids, 2021, 328, 115439.

# Chapter I

Formation of Mixed Micelle in an Aqueous Mixture of a Surface-Active Ionic Liquid and a Conventional Surfactant: Experiment and Modeling

# Formation of Mixed Micelle in an Aqueous Mixture of a Surface-Active Ionic Liquid and a Conventional Surfactant: Experiment and Modeling ‡

**ABSTRACT:** The aggregation behavior in binary mixtures of two surfactants, 1-hexadecyl-3methylimidazolium chloride and dodecyltrimethylammonium bromide has been investigated in aqueous solutions using conductometric, tensiometric, spectrofluorimetric and Zeta potential measurements. The counterion-binding, aggregation number, and anisotropy of the micellar environment have been ascertained. The results have been analysed on the basis of the theories of Clint, Rubingh, and Motomura. The thermodynamic parameters of the micellization process have been evaluated and discussed. The interfacial adsorptions of the mixed surfactants including their surface excesses and head-group areas have also been evaluated. Existence of an attractive interaction among the constituents of the mixed surfactant systems investigated has been inferred.

#### (# Published in J. Chem. Eng. Data 63 (2018) 3784-3800)

#### **1. INTRODUCTION**

Surfactants find widespread applications in both industry and everyday life.<sup>1-3</sup> Because of the amphiphilic chemical structure, surfactant in an aqueous solution has a preference towards interfacial adsorption at low concentration; whereas beyond a critical concentration, it self-aggregates to form assembled structure whose size, shape and average number of amphiphile per aggregated structure depend on the amphiphile concentration and other physicochemical parameters like temperature, presence of salt, etc. The critical amphiphile concentration required for the onset of the formation of an aggregated structure, referred to as a micelle, is called critical micellar concentration (*cmc*).<sup>4-6</sup>

Mixed surfactant systems almost invariably manifest enhanced interfacial properties (*e. g.*, decreased critical micellar concentration, higher surface activity, etc.) compared to those of their individual components.<sup>7-15</sup> This behavior of mixed surfactants allows their use in low concentrations in cosmetic industries to avoid potential skin irritation.<sup>16,17</sup> It can also be beneficial for the environment as the amount of surfactants released and hence their impact could be substantially reduced.<sup>18</sup> In the pharmaceutical field, the absorption of various drugs in the human body is found to be enhanced by mixed micelles.<sup>19-21</sup> Mixtures of cationic and

anionic surfactants find use in cleansing products to facilitate their dissolution and improved tolerance of water hardness.<sup>22</sup> In view of the remarkable application potential and economic viability of mixed surfactant systems, a significant amount of research work has been devoted for searching and elucidating the physicochemical properties of these systems.

Recent years have witnessed<sup>23-31</sup> an upsurge of interest in the self-aggregation aptitude of a new class of ionic liquids, known as the surface active ionic liquids (ILs). This is because of the possibility of fine-tuning of the hydrophobicity of ionic liquid molecules by varying the length of the alkyl chains, the type of the head-group or the nature and size of the counterions which might permit the modulation of the structure and the delicate dynamics of their micellar aggregates for specific purposes.

The micellar and thermodynamic properties of the imidazolium-based surface active ionic liquids<sup>32,33</sup> and their mixtures with anionic, nonionic, zwitterionic and gemini surfactants have been investigated in detail.<sup>34,35</sup> However, studies involving ILs and cationic surfactants are scarce with the exception of a very few reports.<sup>36,37</sup> In general, mixtures of cationic surfactants have, so far, been paid relatively less attention.<sup>11,33,38</sup>

In this work, the micellar and thermodynamic behavior of the mixed micelles formed in the aqueous mixtures of two cationic surfactants - 1-hexadecyl-3-methylimidazoliumchloride (HDMimCl), and dodecyltrimethylammonium bromide (DTAB) have been investigated in order to shed light on various interactions prevailing in this system. The two surfactants with different lengths of the alkyl groups have been selected such that they differ in their *cmcs* by one order of magnitude capable of producing discernible effects in their mixtures.

#### 2. EXPERIMENTAL SECTION

#### 2.1 Materials

HDMimCl was purchased from Acros Organics and reagent grade DTAB was procured from Sigma Aldrich. These were used as received without any further purification. Their structures are shown in Figure 1. Pyrene was purchased from Sigma Aldrich. Cetylpyridinium chloride (CPC) purchased from Acros Organics was used as a quencher. 1,6-diphenyl-1,3,5-hexatriene (DPH) from Sigma Aldrich was prepared in THF and used without purification. The specifications of the chemicals used in this study are listed in Table 1.



(B) Figure 1. Structure of (A) HDMimCl, (B) DTAB

| Material             | Chemical formula                                                                     | CAS         | Supplier      |                | Purity    |
|----------------------|--------------------------------------------------------------------------------------|-------------|---------------|----------------|-----------|
|                      |                                                                                      |             |               |                |           |
|                      |                                                                                      |             |               |                | fraction) |
| 1-Hexadecyl-3-       | C <sub>20</sub> H <sub>39</sub> ClN <sub>2</sub> .H <sub>2</sub> O                   | 404001-62-3 | Acros         | Organics       | 0.98      |
| methylimidazolium    |                                                                                      |             | (USA)         |                |           |
| chloride monohydrate |                                                                                      |             |               |                |           |
| Pyrene               | $C_{16}H_{10}$                                                                       | 129-00-0    | Sigma-Alo     | Sigma-Aldrich  |           |
| Cetylpyridinium      | $C_{21}H_{38}ClN.H_2O$                                                               | 6004-24-6   | Acros Org     | Acros Organics |           |
| chloride monohydrate |                                                                                      |             |               |                |           |
| 1,6-Diphenyl-1,3,5-  | C <sub>6</sub> H <sub>5</sub> (CH=CH) <sub>3</sub> C <sub>6</sub> H <sub>5</sub>     | 1720-32-7   | Sigma-Aldrich |                | 0.98      |
| hexatriene           |                                                                                      |             |               |                |           |
| Dodecyltrimethyl-    | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>11</sub> N(CH <sub>3</sub> ) <sub>3</sub> Br | 1119-94-4   | Sigma-Aldrich |                | 0.98      |
| ammonium bromide     |                                                                                      |             |               |                |           |
|                      |                                                                                      |             |               |                |           |

### Table 1. Properties of the Materials Used in the Study

#### 2.2 Methods

**2.2.1 Conductometry.** The specific conductivity measurements of the pure surfactants as well as their mixtures were performed on a Thermo scientific conductivity meter, USA (working frequency of 2 kHz as checked against a Pye Unicam PW 9509 conductivity meter). A diptype conductivity cell with a cell constant of 1 cm<sup>-1</sup> was used. The specific conductivity at each mole fraction of the surfactants was measured by successive additions of the stock solutions in

triply distilled water (uncertainty = 1  $\mu$ S.cm<sup>-1</sup>). The temperatures (303.15, 313.15 and 323.15) K with an uncertainty of ± 0.1 K were maintained by a thermostatic water bath.

**2.2.2. Tensiometry.** Surface tension was measured at air/solution interface using a calibrated Krüss (Germany) tensiometer (Model-K8) by duNoüy ring detachment method within an accuracy of  $\pm 0.1$  mN.m<sup>-1</sup> at 313.15  $\pm 0.1$  K.

The tensiometer was connected to a water flow thermostat to maintain the desired temperature equilibration. Prior to each measurement, the ring was heated briefly by holding it above a Bunsen burner until glowing. Duplicate measurements were performed in each case to check the reproducibility. The calibration of the instrument was performed daily prior to the measurement with triply-distilled water-at the experimental temperature available in the literature.<sup>39</sup>

**2.2.3. Zeta potential.** Zeta potential measurements were performed on a Nano ZS Zetasizer (Malvern, UK) at 90<sup>0</sup> scattering angle with a He-Ne laser ( $\lambda = 632.8$  nm) at (298.15 ± 0.1) K. For measurements, at (298.15 ± 0.1) K with 90<sup>0</sup> scattering angle using a gold coated copper electrode in the cell. All experimental solutions were filtered 3 - 4 times through membrane filters (porosity 0.25 µm) to remove dust particles. Zeta Potential of all experimental solutions was measured 3 times and average values are taken.

**2.2.4. Spectrofluorimetry.** Steady state fluorescence experiments were carried out in order to evaluate the aggregation number of the micelles with a Hitachi F-7000 spectrofluorimeter with a 150W xenon lamp at (298.15  $\pm$  0.005) K. Pyrene was used as the probe and its concentration was approximately equal to 0.07 mM in all experiments so as to avoid the interference of pyrene in the micellization processes. Cetylpyridinium chloride (CPC) was used as the quencher. Pyrene fluorescence was measured at 335 nm excitation and 10 nm band pass and emission was monitored between 350-450 nm at 1nm band pass. The quencher solution was added successively into the mixed surfactant solutions with different compositions. Intensity of pyrene without ( $I_0$ ) and with quencher (I) was measured at first vibronic peak of pyrene at 375 nm for the determination of aggregation number of mixed surfactants.

**2.2.5. Fluorescence Anisotropy.** Steady-state fluorescence anisotropy was measured using the probe DPH in a Perkin-Elmer LS 55 (USA) fluorescence spectrophotometer with a Peltier attachment using quartz cell of 1 cm path length at  $(313.15 \pm 0.005)$  K. The concentration of DPH remains constant at 0.001 mM throughout the experiment. Anisotropy measurements were performed with a polarization filter having "L-format" configuration. The anisotropy values were averaged over an integration time of 20s and a maximum number of three measurements were taken for each sample.

#### **3. RESULTS AND DISCUSSION**

#### **3.1. Critical Micellar Concentrations**

The values of the specific conductances ( $\kappa$ ) as a function of surfactant molality (m) for the pure as well as the mixed surfactant solutions having different mole fractions of HDMimCl obtained from conductometry at three desired temperatures are recored in Table 2. A representative plot (Figure 2) shows the concentration dependence of the specific conductance of the aqueous mixtures of HDMimCl and DTAB with varying mole fractions at 303.15 K.

The critical micellar concentrations (*cmc*) were determined from the inflections in the specific conductance vs. surfactant concentration profiles. The characteristic features of the specific conductance-concentration profiles (Figure 2) are the existence of distinct breaks. Below the *cmc*, the addition of surfactant to an aqueous solution causes an increase in the number of charge carriers (the surfactant ions and counterions) and consequently, an increase in the specific conductivity of the solution. Above the cmc, further addition of surfactant increases the micelle concentration while the monomer concentration remains invariant. Since a micelle is much larger that the surfactant monomer, it is transported more slowly through the solution and hence is a less efficient charge carrier. Thus, the rate of increase in the specific conductivity with surfactant concentration above *cmc* is smaller than that below it thus manifesting a break point. The experimental data points below and above the inflection were fitted to two linear equations, and the intersection provided a measure of the cmc of the surfactant system. This procedure is found to be reliable and convenient for the systems under investigation as the slopes of the two linear segments in the pre- and post-micellar regimes of the specific conductance vs. surfactant concentration profiles vary appreciably, thus enabling unambiguous determination of the cmcs. The cmc values of the mixed surfactant solutions in conjunction with those of the pure components at different temperatures thus obtained are collected in Table 3. The cmcs of aqueous HDMimCl and DTAB are found to be in good agreement with those reported in the literature.<sup>40,41</sup> The micellization process depends, in general, on two factors, namely, the electrostatic interactions between the charged head groups of the mixing surfactant components, and the hydrophobic interactions owing to their hydrocarbon tails.<sup>42-46</sup> In the present study, both HDMimCl and DTAB surfactant ions bear positive charges which would try to hinder the formation of mixed micelles. So, in the mixtures studied the first factor opposes mixed micelle formation. The cmc values of the surfactant mixtures are found to fall in between the *cmcs* of the pure components. The hydrophobic interactions predominate over the electrostatic interactions thus favoring the micellization process in the mixed systems.



**Figure 2.** Specific conductance ( $\kappa$ ) vs. molality (*m*) plot of different mole fractions ( $\alpha_1$ ) of surfactants at 303.15 K at 0.1 MPa. The plots have been shifted vertically by 40 µS cm<sup>-1</sup> for clarity of presentation. Error bar is introduced for  $\alpha_1 = 0.9$  in the inset. The error bars for all the mole fractions are same.

#### **3.2.** Counterion Binding

Ionic micelles often bind a considerable fraction of counterions, which can be conveniently quantified from electrochemical measurements. Following the procedure of Evans,<sup>14,15</sup> the degrees of counterion binding (g) have been evaluated (Table 4) from the specific conductance vs. concentration profiles using the following equation:

$$g = 1 - \frac{S_2}{S_1}$$
(1)

where  $S_1$  and  $S_2$  are respectively the pre- and post-micellar slopes obtained from the plots of specific conductance of the surfactant solution as a function of concentration.

### **3.3. Interactions of Surfactants in Micelles**

In order to check whether the mixed surfactant systems studied here behave ideally, the critical micellar concentrations were calculated  $(cmc_{\rm C})$  using the Clint model<sup>47</sup> for the prediction of the *cmc* of a mixed surfactant system with a known stoichiometric composition from a knowledge of the individual *cmc*s of the components by employing the following equation assuming ideal mixing:

$$\frac{1}{cmc_{c}} = \frac{\alpha_{1}}{cmc_{1}} + \frac{\alpha_{2}}{cmc_{2}}$$
(2)

where  $cmc_1$  and  $cmc_2$  are the cmcs of components, respectively and  $\alpha$ -values are their stoichiometric mole fractions. The  $cmc_c$  values thus computed are recorded in Table 3. Eq. 2 reveals the difference between ideal and non-ideal mixtures of surfactants. A lower observed *cmc* value for the mixture, *i.e.*, a negative deviation from Eq. 2 indicates synergistic interactions (attractive interactions) among the mixing components, whereas a positive deviation signifies antagonistic interactions (repulsive interactions).

From the  $cmc_{\rm C}$  values listed in Table 3, it is at once evident that the mixed HDMimCl + DTAB system always yielded an enhanced interfacial property over the entire range of composition within the temperature range (303.15 - 323.15) K, *i.e.*, synergism prevails in this system. This phenomenon may be ascribed to a resultant attractive interaction between the amphiphiles due to non-ideal mixing.

The observed non-ideality can, however, be taken into account by considering the activity coefficients (*f*) of the surfactants into the Clint model,<sup>47</sup> and the *cmc* of the mixture ( $cmc_{mix}$ ) under this situation can be conveniently expressed through the following equation

$$\frac{1}{cmc_{\rm mix}} = \frac{\alpha_1}{f_1 cmc_1} + \frac{\alpha_2}{f_2 cmc_2}$$
(3)

where  $f_1$  and  $f_2$  are the activity coefficients of components 1 and 2, respectively. For ideal cases,  $f_1 = f_2 = 1$ , and Eq. 3 reduces to the ideal form, Eq. 2.

The micellar mole fraction of component 1 ( $X_1$ ), that of component 2 ( $X_2$ ) and molecular interaction parameter of the mixed micelle ( $\beta^R$ ) can be calculated by solving the following coupled equations put forwarded by Rubingh<sup>48</sup> based on regular solution theory (RST)

$$\frac{X_1^2 \ln\left(\frac{\alpha_1 cmc}{X_1 cmc_1}\right)}{X_2^2 \ln\left(\frac{\alpha_2 cmc}{X_2 cmc_2}\right)} = 1$$

$$\beta^{R} = \frac{\ln\left(\frac{\alpha_1 cmc}{X_1 cmc_1}\right)}{X_2^2}$$
(4)
(5)

The values of  $X_1, X_2, \beta^R$ , and  $cmc_{mix}$  have been evaluated by an iterative solution of Eqs. 4 and 5. The parameter  $\beta^R$  is an indicator not only of the degree of interaction between the two surfactants, but also accounts for the deviation from ideality. For ideal mixing of two surfactants,  $\beta^R$  assumes a value of zero. A positive  $\beta^R$  value indicates repulsive (antagonistic) interactions among the mixing components, whereas a negative value of  $\beta^R$  implies an attractive (synergistic) interaction.<sup>7-11</sup>

The calculated values of  $X_1$ ,  $\beta^R$ , and  $cmc_{mix}$  are summarized in Table 3. As expected from the analysis of Table3, the  $\beta^R$  values are negative over the whole range of composition at the investigated temperatures, which indicates that formation of micelle is favored. The present surfactant mixtures, thus, manifest synergism during formation of the mixed micelles. The magnitude of the  $\beta^R$  values increase with the increase in the mole fraction of DTAB for the three investigated temperatures. The extent of inclusion of DTAB monomer into the mixed micelle is low (Table 3) and it is negligible in HDMimCl-rich mixtures. With the increase in the amount of DTAB ( $\alpha_2$ ), the micellar mole fractions of HDMimCl ( $X_1$ ) have not been reduced enough thus resulting in an enhanced synergism in the mixed micelle. According to the RST, the values of the activity coefficients of surfactants 1 and 2 within the mixed micelle ( $f_1$  and  $f_2$ ) can be evaluated from the equations:

$$f_1 = \exp(\beta^{\mathsf{R}} X_2^2) \tag{6}$$

$$f_2 = \exp(\beta^{\mathsf{R}} X_1^2) \tag{7}$$

The values of  $f_1$ , and  $f_2$  as a function of the stoichiometric mole fraction of HDMimCl thus obtained are listed in Table 3. The values of  $f_1$  and  $f_2$  are found to be less than unity over the entire composition range of the present system indicating non-ideal behavior and attractive interactions between the components.

For the present HDMimCl + DTAB system, the population of HDMimCl in the micellar phase  $(X_1)$  is higher at all its stoichiometric proportions  $(\alpha_1)$ . The lower *cmc* value of HDMimCl as compared to DTAB reflects relatively higher affinity of the former towards self-aggregation, which is amply manifested in the above computation. The interaction parameters are found to be negative over the entire composition range at all the temperatures investigated. This implies a strong synergistic interaction in the present surfactant system as also inferred from the Clint model.<sup>47</sup>

The surfactant mole fractions in micelle obtained from the Rubingh's model<sup>48</sup> have been compared with the micellar mole fractions in the ideal state as computed by applying Motomura's approximation<sup>49</sup>

$$X_1(\text{ideal}) = \frac{\alpha_1 cmc_2}{\alpha_1 cmc_2 + \alpha_2 cmc_1}$$
(8)

It is clear from Table 3 that  $X_1$  values are lower than the  $X_1$  (ideal) values for the present mixed surfactant system. This suggests that higher amount of DTAB is present in the micellar phase than that in the ideal mixed state.

A negative value of the interaction parameter ( $\beta^{R}$ ) indicates the existence of attractive interactions between the constituent surfactants in the mixed micelles. Positive values of  $\beta^{R}$ arise when repulsive interactions prevail, while  $\beta^{R}$  values close or equal to zero indicate ideal mixing. In the present study, the  $\beta^{R}$  values are always found to be negative thus demonstrating attractive interactions between the constituents in the mixed micelles. In accordance with the RST, for any given mixed system  $\beta^{R}$  should remain independent of mixture composition which is often not realized in practice. In the present study, the parameter  $\beta^{R}$  was found to be composition dependent at the three temperatures investigated. The non-constancy of  $\beta^{R}$  with mixture composition has also been reported earlier for a variety of surfactant mixtures, manifesting the shortcomings of the Rubingh's approach for binary mixtures.<sup>45, 50-52</sup>

Table 3. Experimental Critical Micellar Concentrations  $(cmc_{mix})$ , Calculated Critical Micellar Concentrations  $(cmc_{mix})$  according to Rubingh, Calculated Critical Micellar Concentrations  $(cmc_{mix})$  according to Clint, Micellar Mole Fractions of HDMimCl  $(X_1)$  according to the Regular Solution Theory (RST) and Motomura Model, the Interaction Parameters of the Mixed Micelle  $(\beta^R)$ , and the Activity Coefficients of HDMimCl  $(f_1)$  and DTAB  $(f_2)$  within the Mixed Micelle according to RST at Different Stoichiometric Mole Fractions of HDMimCl  $(\alpha_1)$  for Aqueous HDMimCl + DTAB systems at (303.15, 313.15, and 323.15 K) at 0.1 MPa<sup>a</sup>

| <i>T</i> /K | $\alpha_1$ | $10^4$ cm c | c <sub>mix</sub> /mol.kg <sup>-1</sup> |       | $X_1$ | $X_1$      | $\beta^{R}_{/kT}$ | $f_1$ | $f_2$ |
|-------------|------------|-------------|----------------------------------------|-------|-------|------------|-------------------|-------|-------|
|             |            | Exptl.      | Rubingh                                | Clint | (RST) | (Motomura) |                   |       |       |
|             | 0.0        | 149.7       |                                        |       |       |            |                   |       |       |
|             | 0.1        | 25.56       | 26.59                                  | 57.64 | 0.558 | 0.654      | -3.35             | 0.51  | 0.35  |
|             | 0.2        | 18.16       | 17.93                                  | 35.69 | 0.635 | 0.809      | -3.25             | 0.64  | 0.27  |
|             | 0.3        | 13.16       | 13.17                                  | 25.85 | 0.669 | 0.879      | -3.66             | 0.66  | 0.19  |
|             | 0.4        | 12.74       | 11.96                                  | 20.26 | 0.728 | 0.919      | -3.12             | 0.79  | 0.19  |
| 303.15      | 0.5        | 11.70       | 10.77                                  | 16.65 | 0.772 | 0.944      | -2.92             | 0.86  | 0.17  |
|             | 0.6        | 11.21       | 10.20                                  | 14.14 | 0.825 | 0.962      | -2.56             | 0.92  | 0.17  |
|             | 0.7        | 10.43       | 9.55                                   | 12.29 | 0.865 | 0.975      | -2.41             | 0.95  | 0.15  |
|             | 0.8        | 9.56        | 8.87                                   | 10.86 | 0.893 | 0.986      | -2.56             | 0.97  | 0.12  |
|             | 0.9        | 9.37        | 9.03                                   | 9.73  | 0.959 | 0.994      | -1.78             | 0.99  | 0.15  |
|             | 1.0        | 8.82        |                                        |       |       |            |                   |       |       |
|             |            |             |                                        |       |       |            |                   |       |       |
|             | 0.0        | 157.5       |                                        |       |       |            |                   |       |       |
|             | 0.1        | 27.03       | 28.03                                  | 60.56 | 0.558 | 0.654      | -3.32             | 0.52  | 0.35  |
|             | 0.2        | 19.46       | 19.04                                  | 37.48 | 0.637 | 0.810      | -3.15             | 0.65  | 0.27  |
|             | 0.3        | 14.05       | 13.98                                  | 27.14 | 0.672 | 0.879      | -3.62             | 0.67  | 0.19  |
|             | 0.4        | 13.91       | 12.88                                  | 21.27 | 0.736 | 0.919      | -2.91             | 0.81  | 0.20  |
| 313.15      | 0.5        | 12.77       | 11.62                                  | 17.49 | 0.783 | 0.945      | -2.69             | 0.88  | 0.19  |
|             | 0.6        | 11.38       | 10.40                                  | 14.85 | 0.813 | 0.963      | -2.79             | 0.91  | 0.15  |
|             | 0.7        | 11.10       | 10.17                                  | 12.40 | 0.872 | 0.975      | -2.35             | 0.96  | 0.16  |
|             | 0.8        | 10.52       | 9.87                                   | 11.40 | 0.921 | 0.986      | -2.12             | 0.99  | 0.17  |
|             | 0.9        | 9.99        | 10.39                                  | 10.22 | 0.972 | 0.994      | -1.38             | 0.99  | 0.27  |
|             | 1.0        | 9.26        |                                        |       |       |            |                   |       |       |
|             |            |             |                                        |       |       |            |                   |       |       |
|             | 0.0        | 166.5       |                                        |       |       |            |                   |       |       |
|             | 0.1        | 28.00       | 27.58                                  | 67.26 | 0.548 | 0.637      | -3.56             | 0.47  | 0.33  |
|             | 0.2        | 19.8        | 19.51                                  | 42.15 | 0.62  | 0.798      | -3.48             | 0.59  | 0.25  |

|        | 0.3 | 16.43 | 16.39 | 30.68 | 0.673 | 0.871 | -3.43 | 0.69 | 0.21 |
|--------|-----|-------|-------|-------|-------|-------|-------|------|------|
|        | 0.4 | 15.99 | 15.95 | 24.12 | 0.735 | 0.913 | -2.77 | 0.82 | 0.22 |
| 323.15 | 0.5 | 14.34 | 14.30 | 19.87 | 0.776 | 0.941 | -2.68 | 0.87 | 0.19 |
|        | 0.6 | 14.20 | 14.17 | 16.90 | 0.846 | 0.959 | -2.04 | 0.95 | 0.22 |
|        | 0.7 | 12.58 | 12.57 | 14.70 | 0.867 | 0.974 | -2.25 | 0.96 | 0.17 |
|        | 0.8 | 12.11 | 12.11 | 13.00 | 0.926 | 0.984 | -1.87 | 0.99 | 0.19 |
|        | 0.9 | 11.18 | 27.58 | 11.66 |       |       |       |      |      |
|        | 1.0 | 10.57 |       |       |       |       |       |      |      |

<sup>*a*</sup> Relative standard uncertainties:  $u_r(cmc_{mix}) = 0.03$ ,  $u_r(\overline{X_1}) = 0.03$ ,  $u_r(\beta^R) = 0.04$ ,  $u_r(f_1) = 0.05$ , and  $u_r(f_2) = 0.05$ .

#### 3.4. Thermodynamics of Micellization

The regular solution theory (RST)<sup>48</sup> has been used to compute the thermodynamic functions of mixing which assumes that the excess entropy of mixing is zero. This theory has been amply used to describe the behavior of a variety of mixed surfactants in aqueous solutions by the researchers.<sup>53-66</sup>

According to this theory, the excess free energy ( $G^{E}$ ), excess enthalpy ( $H^{E}$ ), and enthalpy of micellization ( $\Delta H_{M}$ ) are given by<sup>55,56</sup>

$$G^{\rm E} = H^{\rm E} = \Delta H_{\rm M} = RT \Big[ X_1 \ln(f_1) + X_2 \ln(f_2) \Big]$$
(9)

The excess free energy of micellization represents the deviation from the ideal behavior (  $G^{\rm E} = \Delta G_{\rm M} - \Delta G_{\rm M}^{\rm ideal}$ ). For an ideal mixing, the free energy of micellization, can be given by  $\Delta G_{\rm M}^{\rm ideal} = RT [X_1 \ln(X_1) + X_2 \ln(X_2)]$ (10)

The nonideal free energy of micellization is given by

$$\Delta G_{\rm M} = RT \Big[ X_1 \ln(X_1 f_1) + X_2 \ln(X_2 f_2) \Big] \tag{11}$$

Using the values of the enthalpy of micellization and free energy of micellization, the entropy of micellization can be obtained from

$$\Delta S_{\rm M} = \frac{\Delta H_{\rm M} - \Delta G_{\rm M}}{T} \tag{12}$$

where T is the temperature in absolute scale.

Table 4 demonstrates that the free energy of micellization on a real state ( $\Delta G_{\rm M}$ ) has a negative deviation from the free energy of micellization on an ideal state ( $\Delta G_{\rm M}^{\rm ideal}$ ), favoring the formation of mixed micelle. The negative value of excess free energy of micellization indicates the energetic stabilization accompanied by the mixed micelle formation.<sup>57,58</sup> The

negative values of enthalpy of micellization ( $\Delta H_{\rm M}$ ) shown in Table 4 imply that micellization of HDMimCl + DTAB is an exothermic process in aqueous solutions over the entire temperature range investigated here. This indicates that the total energy change including translational energy loss by the individual surfactants and the heat released by the interaction among the hydrocarbon bonds is less than the energy absorbed due to the destruction of the iceberg structure of water during micellization. Further, the degree of disorderliness increases due to micellization and the entropy change is favourable to the formation of mixed micelle as demonstrated by the positive values of the entropy of micellization ( $\Delta S_{\rm M}$ ), *cf*. Table 4. The contribution of  $T\Delta S_{\rm M}$  towards  $\Delta G_{\rm M}$  is always found to be more than 50% for  $\alpha_1 \ge 0.5$ indicating that micellization in an entropically-driven process for  $\alpha_1 \ge 0.5$  while it becomes an enthalpy-driven process for  $\alpha_1 < 0.5$ . The leading role played by the entropy in the process of mixed micellization has also been reported earlier for other mixed surfactant systems.<sup>59-66</sup> It is also seen that the ratio of  $T\Delta S_{\rm M}$  to  $\Delta G_{\rm M}$  varies with the mixture composition  $\alpha_1$ . This may be ascribed to the variation of the contributions from the electrostatic attraction between the surfactant molecules, the steric effect and molecular repulsion with  $\alpha_1$ .

Table 4. Degrees of Counterion-binding (g), Free Energy of Micellization for Ideal Mixing  $(\Delta G_{\rm M}^{\rm ideal})$ , Non-ideal Free Energy of Micellization  $(\Delta G_{\rm M})$ , Excess Free Energy  $(G_{\rm M}^{\rm E})$ , Non-ideal Enthalpy of Micellization  $(\Delta H_{\rm M})$ , Non-ideal Entropy of Micellization  $(T\Delta S_{\rm M})$ , and  $|T\Delta S_{\rm M} / \Delta G_{\rm M}|$  at Various Stoichiometric Mole Fractions of HDMimCl ( $\alpha_1$ ) for HDMimCl + DTAB Mixed Systems at (303.15, 313.15 and 323.15) K at 0.1 MPa Evaluated from Conductivity Measurement <sup>*a*</sup>

| Т      | $\alpha_1$ | G    | $\Delta G_{ m M}^{ m ideal}$ | $\Delta G_{ m M}$       | $G_{\scriptscriptstyle \mathrm{M}}^{\scriptscriptstyle \mathrm{E}}$ | $\Delta H_{\rm M}$      | $T\Delta S_{\rm M}$     | $T\Delta S_{\rm M} / \Delta G_{\rm M}$ |
|--------|------------|------|------------------------------|-------------------------|---------------------------------------------------------------------|-------------------------|-------------------------|----------------------------------------|
| K      |            |      | (kJ.mol <sup>-1</sup> )      | (kJ.mol <sup>-1</sup> ) | (kJ.mol <sup>-1</sup> )                                             | (kJ.mol <sup>-1</sup> ) | (kJ.mol <sup>-1</sup> ) |                                        |
|        | 0.0        | 0.74 |                              |                         |                                                                     |                         |                         |                                        |
|        | 0.1        | 0.16 | -1.73                        | -3.84                   | -2.11                                                               | -2.11                   | 1.73                    | 0.45                                   |
|        | 0.2        | 0.24 | -1.65                        | -3.57                   | -1.92                                                               | -1.92                   | 1.65                    | 0.46                                   |
|        | 0.3        | 0.29 | -1.60                        | -3.69                   | -2.09                                                               | -2.09                   | 1.60                    | 0.43                                   |
|        | 0.4        | 0.37 | -1.47                        | -3.05                   | -1.58                                                               | -1.58                   | 1.47                    | 0.48                                   |
| 303.15 | 0.5        | 0.45 | -1.35                        | -2.67                   | -1.31                                                               | -1.31                   | 1.36                    | 0.51                                   |
|        | 0.6        | 0.46 | -1.17                        | -2.11                   | -0.94                                                               | -0.94                   | 1.17                    | 0.55                                   |
|        | 0.7        | 0.49 | -0.99                        | -1.73                   | -0.73                                                               | -0.73                   | 1.00                    | 0.58                                   |
|        | 0.8        | 0.50 | -0.86                        | -1.50                   | -0.64                                                               | -0.64                   | 0.86                    | 0.57                                   |
|        | 0.9        | 0.54 | -0.43                        | -0.63                   | -0.20                                                               | -0.20                   | 0.43                    | 0.68                                   |
|        | 1.0        | 0.55 |                              |                         |                                                                     |                         |                         |                                        |
|        | 0.0        | 0.70 |                              |                         |                                                                     |                         |                         |                                        |
|        | 0.1        | 0.18 | -1.79                        | -3.96                   | -2.16                                                               | -2.16                   | 1.80                    | 0.45                                   |
|        | 0.2        | 0.24 | -1.70                        | -3.64                   | -1.93                                                               | -1.93                   | 1.71                    | 0.47                                   |
|        | 0.3        | 0.28 | -1.64                        | -3.76                   | -2.11                                                               | -2.11                   | 1.65                    | 0.44                                   |
|        | 0.4        | 0.40 | -1.50                        | -3.00                   | -1.50                                                               | -1.50                   | 1.50                    | 0.50                                   |
| 313.15 | 0.5        | 0.41 | -1.36                        | -2.57                   | -1.21                                                               | -1.21                   | 1.36                    | 0.53                                   |
|        | 0.6        | 0.45 | -1.25                        | -2.37                   | -1.12                                                               | -1.12                   | 1.25                    | 0.53                                   |
|        | 0.7        | 0.47 | -0.99                        | -1.68                   | -0.69                                                               | -0.68                   | 1.00                    | 0.59                                   |
|        | 0.8        | 0.48 | -0.72                        | -1.12                   | -0.39                                                               | -0.39                   | 0.73                    | 0.65                                   |
|        | 0.9        | 0.52 | -                            | -                       | -                                                                   | -                       | -                       | -                                      |
|        | 1.0        | 0.54 |                              |                         |                                                                     |                         |                         |                                        |
|        | 0          | 0.68 |                              |                         |                                                                     |                         |                         |                                        |
|        | 0.1        | 0.19 | -1.85                        | -4.27                   | -2.42                                                               | -2.42                   | 1.85                    | 0.45                                   |
|        | 0.2        | 0.23 | -1.78                        | -4.06                   | -2.28                                                               | -2.28                   | 1.78                    | 0.46                                   |

|        | 0.3 | 0.28 | -1.69 | -3.73 | -2.03 | -2.03 | 1.70 | 0.43 |
|--------|-----|------|-------|-------|-------|-------|------|------|
|        | 0.4 | 0.42 | -1.55 | -3.03 | -1.48 | -1.48 | 1.55 | 0.48 |
| 323.15 | 0.5 | 0.44 | -1.43 | -2.71 | -1.28 | -1.28 | 1.43 | 0.51 |
|        | 0.6 | 0.47 | -1.15 | -1.89 | -0.74 | -0.74 | 1.15 | 0.55 |
|        | 0.7 | 0.47 | -1.05 | -1.78 | -0.73 | -0.73 | 1.05 | 0.58 |
|        | 0.8 | 0.56 | -0.71 | -1.06 | -0.35 | -0.35 | 0.71 | 0.57 |
|        | 0.9 | 0.53 | -     | -     | -     | -     | -    | -    |
|        | 1.0 | 0.46 |       |       |       |       |      |      |
|        |     |      |       |       |       |       |      |      |

<sup>*a*</sup>Relative standard uncertainty of  $g: u_r(g) = 0.04$ .

#### 3.5. Interfacial properties at air water interface

The *cmc* values can also be calculated from tensiometric data at 313.15 K from the intersection of the two lines before and after the *cmc* as depicted in Figure 3. From Table 5, it is evident that the experimental *cmc* values obtained from surface tension are found to be lower than those computed theoretically (*cmc*<sub>c</sub>); this may be attributed to the synergism in the process of mixed micelle formation. For all the compositions of binary surfactants of HDMimCl and DTAB, several interfacial parameters can be calculated using the Eqs. 13-16 and these have been listed in Table 5. The surface excess ( $\Gamma_{max}$ ) at the air/water interface can be calculated by the Gibbs adsorption equation<sup>67</sup> as given below:

$$\Gamma_{\max} = -\frac{1}{2.303iRT} \lim_{C \to CMC} \left( \frac{\partial \gamma}{\partial \log C} \right) \text{mol.m}^{-2}$$
(13)

The  $\Gamma_{\text{max}}$  appeared in the above equation can be defined as how much the air/water interface can be covered by surfactants reducing the surface tension of water at *cmc* while  $\gamma$  is the surface tension expressed in mN.m<sup>-1</sup> and *i*, *R* and *T* are the number of species per surfactant molecule at air/water interface, universal gas constant and temperature at Kelvin scale respectively.

The number of species (*i*) participating at the air/water interface for various binary combinations of HDMimCl and DTAB can be calculated using the equation,<sup>66</sup>  $i = \sum n_i X_i$ , where  $n_i$  is the number of species of HDMimCl and DTAB individually. For both pure and mixed components, the value of *i* is 2.

The addition of even a very small amount of HDMimCl to DTAB increases the  $\Gamma_{\text{max}}$  values of the mixtures. There are two opposing contributing factors that determine the  $\Gamma_{\text{max}}$  for binary combinations of surfactants:<sup>46</sup> (a) the hydrophobic interactions between the tails of surfactants, (b) the repulsive interactions between the surfactant bulky head groups of same charge. Long chain HDMimCl has the greater surface activity than DTAB, so the  $\Gamma_{\text{max}}$  value of the former is larger than later. The interesting fact is that with the increase in the mole fraction of DTAB, there is an overall increase of  $\Gamma_{\text{max}}$  values and even the value is higher at high mole fractions of DTAB than the individual two components. Probably, with the increasing DTAB content, the bulky head group of HDMimCl decreases at the air/water interface and also synergistic interaction increases as compared to bulk.

The minimum area per surfactant monomer  $(A_{\min})$  can be calculated using the following equation:

$$A_{\min} = \frac{10^{18}}{N_{\rm A} \Gamma_{\rm max}} \,\mathrm{nm}^2 \mathrm{molecule}^{-1} \tag{14}$$

 $A_{\min}$  values has the reverse trend than that of  $\Gamma_{\max}$  as expected. 16-carbon chain IL has the greater hydrophobic interaction at pure state than pure DTAB attributed to the closely packed structure of HDMimCl ( $A_{\min}$ = 0.80) at air/water interface. With the increase of DTAB content, the repulsion between larger imidazolium group decreases,  $A_{\min}$  decreases resulting the formation of closely packed structure.

The efficiency of interfacial adsorption can be predicted using  $pC_{20}$  values. The more efficiency the adsorption, more is the decrease of surface tension by the amphiphiles.  $C_{20}$  values are empirically defined as the reduction of surface tension by the amphiphiles to 20 mN.m<sup>-1</sup>.  $pC_{20}$  value can be calculated using the Eq. 15,

$$pC_{20} = -\log C_{20} \tag{15}$$

From Table 5, it is evident that  $pC_{20}$  values increase with the increase of mole fraction of HDMimCl due to greater surface activity of HDMimCl.

The surface pressure at *cmc* ( $\pi_{cmc}$ ) can be obtained using Eq. 16.

$$\pi_{\rm cmc} = \gamma_0 - \gamma_{\rm cmc} \tag{16}$$

where  $\gamma_0$  and  $\gamma_{cmc}$  are the surface tension of pure solvent and surface tension at *cmc* of the solution of individual and mixed surfactants respectively. The value of  $\pi_{cmc}$  of DTAB is greater than HDMimCl.  $\pi_{cmc}$  values are more or less same for the different mole fractions of surfactants.

The packing parameter (*P*) deals with the micellar geometry predicted by Israelachvili<sup>34</sup> by the following equation:

$$P = \frac{\nu}{l_{\rm c}A} \tag{17}$$

where  $l_c$  is the maximum effective length of hydrophobic tail of a monomer, A is surface area of head group of surfactant monomer and v is the hydrophobic chain volume assuming to be fluid and incompressible. Both  $l_c$  and v of a saturated hydrocarbon chain of carbon number  $C_n$ , can be evaluated using Tanford<sup>69</sup> formulae:

$$l_{\rm c} = (0.154 + 0.1265C_{\rm n})\,\rm nm \tag{18}$$

$$v = (0.0274 + 0.0269C_{\rm n})\,{\rm nm}^3 \tag{19}$$

As the exact determination of the head group area (*A*) of micellar surface is quite difficult,<sup>70</sup>  $A_{\min}$  values obtained from tensiometry were used instead of *A* as stated earlier.<sup>68,70,71</sup> For the binary mixed surfactant system, the modified form of Israelachvili (Eq. 20)<sup>37,68,70-72</sup> was used

$$P_{\rm eff} = \left(\frac{\nu}{l_{\rm c}A_{\rm min}}\right)_{\rm eff} = \frac{\sum \nu_{\rm i}X_{\rm i}}{\left(\sum A_{\rm i}X_{\rm i}\right)l_{\rm c}}$$
(20)

For all stoichiometric mole fractions ( $X_i$ ) of binary mixture of HDMimCl and DTAB,  $l_c$  is equal to value of longer component HDMimCl. It is well documented that for the mixed micellization of ternary alkyl ( $C_{12}$ -,  $C_{14}$ - and  $C_{16}$ -) triphenylphosphonium bromides the value of  $l_c$  to be taken the larger component  $C_{16}$ -triphenylphosphonium bromide<sup>57</sup>.  $A_i$  is equal to the  $A_{min}$  value of individual components of HDMimCl and DTAB. Calculated  $P_{eff}$  values are displayed in Table 5. For spherical micelles,  $P \le 0.333$ ; for nonspherical shape, 0.333 < P < 0.5; for vesicles and bilayers, 0.5 < P < 1; and for inverted structures, P > 1. From Table 5, it is evident that for HDMimCl and DTAB and all the mole fractions of their binary combinations, P < 0.333. So, all the individual and mixed micelle investigated here are spherical in shape.



**Figure 3.** Tensiometric isotherms at various mole fractions of IL and DTAB at 313.15 K at 0.1MPa. Error bar is introduced for  $\alpha_1 = 0$ , separately in the insert. The error bar for all the mole fractions is same.

Table 5. Experimental Critical Micellization Concentration (*cmc*), Calculated Critical Micellization Concentration according to Clint (*cmc*<sub>C</sub>), Surface Pressure at *cmc* ( $\pi_{cmc}$ ), Surface Excess at the Air-water Interface ( $\Gamma_{max}$ ), Minimum Area Per Surfactant Monomer ( $A_{min}$ ), Efficiency of Interfacial Adsorption (*pC*<sub>20</sub>), and Packing Parameter (*P*) for Various Mole fraction of HDMimCl ( $\alpha_1$ ) in HDMimCl + DTAB Mixtures at 313.15 K<sup>*a*</sup>

| $lpha_1$                                         | 1    | 0.9  | 0.8  | 0.7  | 0.6  | 0.5  | 0.4  | 0.3  | 0.2  | 0.1  | 0    |
|--------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| <i>cmc</i> (mmol.kg <sup>-1</sup> )              | 0.89 | 0.97 | 1.06 | 1.11 | 1.21 | 1.46 | 1.78 | 2.24 | 2.48 | 3.15 | 12.9 |
| <i>cmc</i> <sub>c</sub> (mmol.kg <sup>-1</sup> ) | -    | 0.98 | 1.09 | 1.23 | 1.42 | 1.67 | 2.02 | 2.55 | 3.49 | 5.49 | -    |
| $10^{3}\pi_{\rm cmc}~({\rm J.m^{-2}})$           | 28.8 | 31.3 | 29.7 | 30.0 | 30.3 | 31.4 | 29.9 | 31.7 | 32.0 | 32.1 | 32.5 |
| $10^6 \Gamma_{\rm cmc} ({\rm mol.m}^{-2})$       | 2.06 | 1.88 | 1.84 | 2.05 | 2.12 | 2.63 | 2.65 | 2.63 | 2.67 | 2.66 | 1.52 |
| $A_{\min}$                                       | 0.80 | 0.88 | 0.90 | 0.81 | 0.80 | 0.63 | 0.63 | 0.63 | 0.62 | 0.62 | 1.09 |
| (nm <sup>2</sup> .molecule <sup>-1</sup> )       |      |      |      |      |      |      |      |      |      |      |      |
| $pC_{20}$                                        | 3.4  | 3.9  | 3.4  | 3.5  | 3.4  | 3.3  | 3.1  | 3.2  | 3.0  | 2.9  | 2.5  |
| Р                                                | 0.26 | 0.25 | 0.23 | 0.22 | 0.21 | 0.20 | 0.18 | 0.17 | 0.17 | 0.16 | 0.15 |

<sup>*a*</sup>The uncertainty limit of *cmc* (mM),  $\pi_{cmc}$  (J.m<sup>-2</sup>),  $\Gamma_{cmc}$  (mol.m<sup>-2</sup>),  $A_{min}$  (nm<sup>2</sup>.molecule<sup>-1</sup>), and  $pC_{20}$  are  $\pm 4, \pm 3, \pm 5, \pm 5$ , and  $\pm 3$  % respectively.

# **3.6.** Mixture of HDMimCl and DTAB in different mole fractions and effect of temperature

Due to the 16-carbon chain, HDMimCl has the greater surface activity than the DTAB. So in aqueous solution, micellization starts earlier in HDMimCl than the DTAB. *cmc*<sub>c</sub> of HDMimCl is ~1mmol.kg<sup>-1</sup> and for DTAB is ~14mmol.kg<sup>-1</sup> at room temperature. When they are mixed together in definite mole fraction ( $\alpha$ ), the *cmc* of mixed surfactant system decreases dramatically even at a low HDMimCl content ( $\alpha_1 = 0.1$ ). So a strong synergistic interaction is observed in the mixed micellization of DTAB and HDMimCl. The experimental values of *cmcs* for different mole fractions of HDMimCl are listed in Table 3. It is seen that at 303.15K, *cmc* of HDMimCl is 0.882 mmol.kg<sup>-1</sup> and DTAB is 14.97 mmol.kg<sup>-1</sup>, but when mixed together at very low content of HDMimCl ( $\alpha_1 = 0.1$ ), the *cmc* is 2.556 mmol.kg<sup>-1</sup>. The specific conductance ( $\kappa$ ) vs. molality (m) plot at 0.5 mole fraction of HDMimCl for three desired temperatures is displayed in Figure 4. It is observed that *cmc* increases with the increase of [DTAB] as well as with temperatures. For all compositions, it is obvious that with increasing temperatures, *cmc* increases which is listed in Table 3.

#### 3.7. Comparison of Experimental and Theoretical cmcs

The experimental values of *cmcs* are listed for individual and mixed surfactants of different mole fractions in Table 3. Considering Rubingh's RST,<sup>48</sup> the  $X_1$  values were calculated by an iterative method, which were then used to calculate the values of  $f_1$  and  $f_2$  using Eqs. 6 and 7, and hence the values of *cmcs* using Eq. 3. The *cmc* values thus calculated agreed very well with the experimental values. The conclusion is that RST is fairly valid for the mixed micellization of HDMimCl and DTAB. Experimental *cmcs*, along with the *cmcs* calculated by Rubingh and Clint equations are listed in Table 3 and are displayed graphically in Figure 5.



**Figure 4.** Plot of specific conductance vs. concentration for mixtures of DTAB and HDMimCl at 0.5 mole fraction of each at three different temperatures at 0.1 MPa. Error bar is introduced for 323.15 K. The error bar for all the temperatures is same.


**Figure 5.** Plot of *cmc* vs. mole fraction for the mixed micellization of DTAB and HDMimCl: experimental *cmcs* ( $\Box$ ), and calculated from RST ( $\odot$ ) at 303.15 K at 0.1 MPa. Solid line represents *cmcs* calculated form Clint model.Error bar is introduced for experimental *cmc*( $\Box$ ) values.

**3.8.** Determination of various interaction and thermodynamic parameters experimentally HDMimCl is a long chain ionic liquid which forms micelle more easily than does DTAB (Table 3). The extent of incorporation of DTAB monomer into the mixed micelle is low in all the surfactant mixtures investigated (Table 3) and it is found to be negligible when the DTABcontent of the mixtures is low. With the increase in the amount of DTAB, the micellar mole fractions of HDMimCl ( $X_1$ ) would not get reduced enough. So HDMimCl also plays a leading role in DTAB-rich mixtures in the process of micellization. Table 3 and Figure 6 demonstrate that there is a negligible effect of temperature on  $\beta^{R}$ . Degree of counter ion binding (g) is found to increase significantly with the increase in the mole fraction of the HDMimCl at a particular temperature (Table 4) manifesting the formation of micelles at lower surfactant concentration when HDMimCl-content is high. That Cl<sup>-</sup> is more hydrated than Br<sup>-38</sup> is reflected in the higher g value of DTAB compared to HDMimCl in pure state (Table 4). For the case of mixed micelles, both Cl<sup>-</sup> and Br<sup>-</sup> ions are present as counterions. But here, the solvation of the counterions is overshadowed by the compactness and charge density of the micelle with the increase in the HDMimCl-content. The nonideal character of micelle formation is further supported by the difference of  $X_1$  and  $X_1^{ideal}$  (Motomura) values (Table 3). The activity coefficients are found to increase which approach unity for low mole fractions of DTAB at a particular temperature; this is reflected in the lower difference of  $cmc_{mix}$  and  $cmc_{C}$  (Clint) for the high mole fraction of HDMimCl leading to ideality. The g value, in general, decreases from 303.15 K to 313.15 K, but increases slightly at 323.15 K. It is probably due to the fact that at high temperature, the effect of mobility of counterions predominates over the effect of desolvation of counterions.

From Table 4, it is evident that the free energy of micellization ( $\Delta G_{\rm M}$ ) is negative and becomes more negative as the concentration of DTAB in the surfactant mixtures increases over the entire range of the investigated temperatures. The  $\Delta G_{\rm M}$  values are also found to increase as the temperature increases in any given mixture. The negative values of  $\Delta G_{\rm M}$  suggest that the process of micellization in the investigated surfactant mixtures is, in general, spontaneous, and that the process becomes more spontaneous as the DTAB-content increases or as the temperature is elevated. The difference in  $\Delta G_{\rm M}$  and  $\Delta G_{\rm M}^{\rm ideal}$  values is also significant indicating deviation of ideality for the mixed micellar system. We have also obtained a similar trend for the values of  $\Delta H_{\rm M}$  indicating that translational energy loss by monomers and heat generation due to hydrophobic interaction is lesser than the-energy absorbed by breaking the iceberg structure of water during micellization. Olasani et al.43 investigated the interactions of CTAB + DTAB in aqueous medium. The values of  $\Delta G_{\rm M}$  and  $\beta^{\rm R}$  are more negative for CTAB + DTAB system than our system indicating that micellization of HDMimCl + DTAB is less energetically feasible than CTAB+ DTAB system.<sup>43</sup> The values of  $\Delta S_{\rm M}$  for all the HDMimCl + DTAB mixtures are found to be positive, indicating that the degree of disorderliness increases due to micellization and that the entropy change is favourable. The From Table 4 it is apparent that the process of micellization gradually becomes more entropy-driven as the mixtures gets richer in the HDMimCl while enthalpy factor somewhat overrides the entropy-contribution in DTABrich region.



**Figure 6.** Dependence of the interaction parameter ( $\beta^{R}$ ) on the temperature and mole fraction of HDMimCl. Points are fitted with second order polynomial. Error bar is introduced for 303.15 K and error bar of  $\beta^{R}$  for all other temperatures are same.

# **3.9.** Aggregation number (*N*), Zeta potential ( $\xi$ ) and anisotropy (*r*) for different mole fractions of HDMimCl and DTAB in surfactant mixtures

The aggregation number of a micelle can be conveniently determined by measuring the steady-state fluorescence quenching using hydrophobic quencher using the equation<sup>7-11</sup>

$$\ln \frac{I_0}{I} = \frac{[Q]N}{[Surf] - [CMC]}$$
(21)

[*Surf*] is the initial concentration of the surfactant solution (here, 0.05 mol.kg<sup>-1</sup>), [Q] is the concentration of the quencher which is added to the surfactant solution and the plot is presented

in Figure 7. Following Eq. 21, if  $\ln \frac{I_0}{I}$  values are plotted as a function of [Q],

(Figure 8), the aggregation numbers (*N*) of individual components and different mixtures of HDMimCl and DTAB can be determined from the slopes. From Table 6, it is evident that the aggregation number of mixed system increase initially with the increase in the mole fraction of HDMimCl ( $\alpha_1$ ), but further increase of the mole fraction of HDMimCl causes an overall

decrease of aggregation number. When the mole fraction of HDMimCl is low, HDMimCl causes a reduction in the head group repulsions between surfactant monomers of two components. Thus, a large number of surfactant molecules are required to form the micellar aggregates; hence, aggregation number would increase initially. At high mole fractions of HDMimCl, however, it acts as a cosolvent. A cosolvent generally enhances the electrostatic interactions in solution. So, the head groups of HDMimCl prevent large number of surfactant monomers to assemble to form the micellar aggregates. So, the aggregation number decrease afterwards.<sup>36</sup>



**Figure 7.** Quenching of pyrene by CPC at  $\alpha_1 = 0.1$ . Total CPC concentration decreases from 1.46 x 10<sup>-4</sup> M from top to bottom.



**Figure 8.** Plot of  $\ln(I_0/I)$  vs. [Q] for the determination of aggregation number.

| Table 6. Aggregation Number (N), Zeta           | Potential $(\xi)$ and Anisotropy (r) of Mixed |
|-------------------------------------------------|-----------------------------------------------|
| Surfactant System HDMimCl + DTAB as a           | Function of the Stoichiometric Mole Fractions |
| $(\alpha_1)$ of HDMimCl at 298.15K <sup>a</sup> |                                               |

| Mole fraction $(\alpha_1)$                                            | 1     | 0.9   | 0.8   | 0.7   | 0.6   | 0.5    | 0.4   | 0.3               | 0.2   | 0.1   | 0     |
|-----------------------------------------------------------------------|-------|-------|-------|-------|-------|--------|-------|-------------------|-------|-------|-------|
| Aggregation<br>number( <i>N</i> )<br>(0.05mol.kg <sup>-1</sup> )      | 54    | 56    | 59    | 61    | 56    | 57     | 62    | 79                | 70    | 62    | 49    |
| Zeta Potential<br>$(\zeta)/ \text{mV}$<br>$(0.05 \text{mol.kg}^{-1})$ | 32.5  | 34.6  | 46.2  | 47.3  | 35.5  | 36.8   | 29.6  | 24.7              | 19.9  | 5.9   | 28.9  |
| Anisotropy (r)                                                        | 0.045 | 0.041 | 0.039 | 0.038 | 0.032 | 0.03   | 0.029 | 0.025             | 0.028 | 0.026 | 0.025 |
| 6D 1 1                                                                |       |       | ()    |       | 1 (   | ະ<br>ຄ | 02    | $\langle \rangle$ | 0.05  |       |       |

<sup>*a*</sup>Relative standard uncertainties:  $u_r(N) = 0.04$ ,  $u_r(\xi) = 0.03$ ,  $u_r(r) = 0.05$ 

Zeta potential ( $\xi$ ) values are displayed in Table 6. The values of Zeta potential are positive for all the individual and mixed surfactant systems of different mole fractions of HDMimCl and DTAB. From Table 4, it is evident that number of counterion binding of HDMimCl is lower than DTAB. So the adsoption of Br<sup>-</sup> in DTAB micelle is greater than that of Cl<sup>-</sup> in HDMimCl in Stern layer and also the  $\xi$  potential value of DTAB is less than HDMimCl. It is also reported that at higher concentration of DTAB, the counterion binding increases resulting the minimization of  $\xi$  potential.<sup>73</sup> But in the mixture of HDMimCl and DTAB, the situation is quite different. With increase of the mole fraction of DTAB, the degree of counter-ion binding decreases (*cf.* Table 4), so the counterions behave like free salts which decrease the thickness of Gouy-Chapman layer and decrease the  $\xi$  potential with the increase of DTAB. The effect of counter-ion binding for the pure surfactant is overshaded by the increasing salt concentrations with the increase of the mole fraction of DTAB. It is reported that in presence of increasing concentration of electrolytes, the  $\xi$  potential decreases.<sup>73,74</sup> At  $\alpha_1 = 0.9$ , the micelles are mostly formed by HDMimCl and its  $\xi$  potential is comparable with pure HDMimCl. The increasing of  $\xi$  potential with increasing mole fraction of HDMimCl makes the micelles more stable.

The steady state fluorescence anisotropy (r) can be defined by Eq. 22,

$$r = \frac{\left(I_{\nu} - GI_{h}\right)}{\left(I_{\nu} + 2GI_{h}\right)} \tag{22}$$

and the G factor expressed as Eq. 23,

$$G = \frac{I_v}{I_h}$$
(23)

where,  $I_v$  and  $I_h$  are vertically and horizontally polarized emission intensity respectively when the vertically polarized light is used to excite the pure and mixed micelle solutions containing DPH as fluorescent probe. *G* factor relates the sensitivity of the instrument for vertically and horizontally polarized light ratio. The values of *r* mainly detects the restriction of the probe in the micellar environment. With increase of the mole fraction of HDMimCl, the anisotropy and also microviscosity of the micellar environment increase. As HDMimCl increases, the hydrophobicity of the micellar medium increases which restrict the hydrophobic DPH more (Figure 9).



**Figure 9.** Steady state fluorescence anisotropy at different mole fractions of DTAB and HDMimCl at 313.15 K at 0.1 MPa. Error bar is introduced.

#### 4. Conclusions:

Micellization behavior of binary mixtures of 1-hehaxadeyl-3-methylimidazolium chloride (HDMimCl) and dodecyltrimethylammonium bromide (DTAB) was investigated in aqueous solutions using conductometry, tensiometry, spectrofluorimetry along with Zeta potential and fluorescence anisotropy measurements. The regular solution theory (RST) and other thermodynamic models of micellar solutions e.g., Clint's model, Rubingh's model and Motomomura's model were employed to estimate the compositions of the mixed micelle, the parameters characterizing the interactions between the surfactants, the activity coefficients in the mixed micelle, and other parameter relating to micellization. The critical micellar concentrations (cmc) of HDMimCl-DTAB mixtures demonstrate some negative deviation from the ideal behavior, implying a nonideal mixing. Mixed micelles of HDMimCl-DTAB are also characterized by negative interaction parameter values, *i.e.*, the actual mixed micelles are thermodynamically more stable compared to hypothetical ideal state. Thermodynamic parameters indicate that the spontaneous process of micellization is entropically favorable for HDMimCl-rich mixtures while it is enthalpy-driven for DTAB-rich mixtures. The contributions from the electrostatic attraction between the surfactant molecules, the steric effect, and the repulsive molecular interaction vary with the mixture composition. Evaluation of the packing parameter values indicate spherical shape of the micelles formed individual and mixed surfactant solutions. Aggregation number of the mixed micelles initially increase with the increase in the HDMimCl-content followed by a decrease in the HDMimCl-rich region. Hydrophobicity of the mixed micellar solutions increases with the increase in the amount of the HDMimCl in the binary surfactant mixtures.

# References

- 1. J. F. Scamehorn, In Phenomena in Mixed Surfactant Systems, Washington D.C., 1989.
- P. M. Holland, In *Mixed Surfactants Systems*, Holland, P. M., Rubingh, D. N., Eds.; ACS Symposium Series 501; American Chemical Society: Washington D.C., 1992.
- 3. S. Qi, S. Roser, K. J. Edler, C. Pigliacelli, M. Rogerson, I. Weuts, F. V. Dycke, S. Stokbroekx, *Pharm. Res.*, 2013, **30**, 290-302.
- 4. M. R. Molla, M. A. Rub, A. Ahmed, M. A. Hoque, *J. Mol. Liq.*, 2017, **238**, 62-70.
- 5. D. Kumar, M. A. Rub, J. Mol. Liq., 2017, 238, 389-396.
- M. Rahman, M. A. Khan, M. A. Rub, M. A. Hoque, A. M. Asiri, J. Chem. Eng. Data, 2017, 62, 1464-1474.
- 7. S. Ghosh, J. Colloid Interface Sci., 2001, 244, 128-138.
- 8. S. P. Moulik, S. Ghosh, J. Mol. Liq., 1997, 72, 145-161.
- 9. C. Das, T. Chakraborty, S. Ghosh, B. Das, Colloids Polym. Sci., 2008, 286, 1143-1155.
- D. Tikarika, B. Kumar, S. Ghosh, A. K. Tiwari; S. K. Saha, N. Barbero, P. Quagliotto, K. K. Ghosh, J. Nanofluids, 2013, 2, 316-324.
- 11. C. Das, T. Chakraborty, S. Ghosh, B. Das, Colloid J., 2010, 72, 788-798.
- 12. I. M Umlong, K. Ismail, J. Surface Sci. Technol., 2006, 22, 101-117.
- 13. M. Colic, N. Kallay, J. Surface Sci. Technol., 1988, 4, 53-66.
- 14. S. K. Suri, H. S. Randhawa, J. Surface Sci. Technol. 1989, 5, 355-363.
- 15. S. K. Sultana, S. G. T. Bhat, A. K. Rakshit, J. Surface Sci. Technol. 1997, 13, 20-31
- 16. M. T. Garcia, I. Ribosa, L. J. Sanchez, F. Comelles, J. Am Oil Chem. Soc. 1992, 69, 25-29.
- L. D. Rhein, F. A. Simion, R. L. Hall, R. H. Cagan, J. Mattai, H. I. Maibach, *Dermatologica*, 1990, 180, 18-23.
- 18. T. C. G. Kibbey, K. F. Hayes, Environ. Sci. Technol., 1997, 3, 1171-1177.
- 19. B. J. Aungst, S. Phang, Int. J. Pharma., 1995, 117, 95-100.
- 20. N. Muranushi, M. Kinugawa, Y. Nakajima, S. Muranushi, H. Sekaji, (I) *Int. J. Pharma*. 1980 ,4, 271-279.
- 21. N. Muranushi, M. Kinugawa, Y. Nakajima, S. Muranushi, H. Sekaji, (II) Int. J. Pharma. 1980, 4, 281-290.
- 22. K. Ogino, M. Abe, Mixed surfactant systems. Dekker, New York, 1993.
- 23. J. L. Anderson, V. Pino, E. C. Hagberg, V. V. Sheares, D. W. Armstrong, *Chem. Comm.* 2003, **47**, 2444-2445.
- 24. M. Ao, P. Huang, G. Xu, X. Yang, Y. Wang, Colloid Polymer Sci. 2009, 287, 395-402.
- 25. M. Blesic, M. Marques, N. V. Plechkova, K. R. Seddon, L. P. N. Rebelo, A. Lopes, *Green Chem.* 2007, **9**, 481-490.

- 26. A. Cornellas, L. Perez, F. Comelles, I. Robosa, A. Manresa, M. T. Garcia, *J. Colloid Interf. Sci.* 2011, **355**,164-171.
- 27. P. D. Galgano, O. A. El Seoud, J. Colloid Interf. Sci. 2010, 345, 1-11.
- 28. T. Inoue, H. Ebina, B. Dong, L. Zheng, J. Colloid Interf. Sci., 2007, 314, 236-241.
- 29. J. Łuczak, J. Hupka, J. Thoming, C. Jungnickel, *Colloids Surf. A: Physicochem. Eng. Aspects*, 2008, **329**, 125-133.
- 30. T. Singh, A. Kumar, J. Phys. Chem. B, 2007, 111, 7843-7851.
- R. Vanyúr, L. Biczók, Z. Miskolczy, Colloids Surf. A: Physicochem. Eng. Aspects, 2007, 299, 256-261.
- 32. A. Pal, A. Pillania, J. Mol. Liquids 2015, 212, 818-824.
- 33. B. Dong, N. Li, L. Zheng, L. Yu, T. Inoue, *Langmuir* 2007, 23, 4178-4182.
- 34. F. Comelles, I. Ribosa, J. J. Gozalez, M. T. Garcia, J. colloid Interface Sci. 2017, 490, 119 128.
- 35. N. A. Smirnova, E. A. Safonova, Colloid J., 2012, 74, 254-265.
- 36. A. Pal, A. Pillania, Fluid Phase Equilib. 2015, 389, 67-73.
- 37. C. Chadha, G. Singh, G. Singh, H. Kumar, T. S. Kang, RSC Adv. 2016, 6, 38238- 38251.
- 38. T. Chakraborty, S. Ghosh, S. P. Moulik, J. Phys. Chem. B, 2005, 109, 14813-14823.
- 39. N. B. Vargaftik, B. N. Volkov, L. D. Voljak, J. Phys. Chem. Ref. Data, 1983, 12, 817-820.
- 40. E. Junquera, E. Aicart, Langmuir 2002, 18, 9250-9258.
- 41. D. Ray, R. De, B. Das, Carbohydr. Polym., 2014, 113, 208–216.
- 42. A. Kumar, G. Kaur, G. R. Chaudhary, S. K. Mehta, J. Mol. Lig., 2014, 198, 37-43.
- 43. O. S. Esan, M. O. Osundiya, C. O. Aboluwoye, O. Olanrewaju, J. Ige, *ISRN Thermodynamics*, 2013, 1-7.
- 44. Q. Zhou, M. J. Rosen, *Langmuir*, 2003, **19**, 4555-4562.
- 45. M. A. Rub, N. Azum, F. Khan, A. M. Asiri, J. Chem. Thermodyn., 2018, 121, 199-210.
- 46. R. Sharma, S. Mahajan, R. L. Mahajan, *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 2013, **427**, 62–75.
- 47. J. H. Clint, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 1327-1334.
- D. N. Rubingh, Surface concentrations and molecular interactions in binary mixtures of surfactants. In: Mittal KL (ed) Solution chemistry of surfactants, Vol 1. Plenum Press, New York, 1979, 337–359.
- 49. K. Motomura, M. Yamanaka, M. Aratono, Colloid. Polym. Sci., 1984, 262, 948-955.
- 50. M. A. Rub, N. Azum, A. M. Asiri, J. Chem. Eng. Data 2017, 62, 3216-3228.
- 51. A. Rodríguez, M. Mar Graciani, A. J. Moreno-Vargas, M. L. Moyá, *J. Phys. Chem. B*, 2008, **112**, 11942-11949.
- 52. G. B. Ray, I. Chakraborty, S. Ghosh, S. P. Moulik, J. Colloid Interf. Sci., 2007, 307, 543-553.

- E. P. Schulz, J. L. M. Rodriguez, R. M. Minardi, D. B. Miraglia, P. C. Schulz, J Surfact Deterg 2013, 16, 795-803.
- 54. J. M. Hierrezuelo, J. Aguiar, C. C. Ruiz, *Colloids and Surfaces A: Physicochem. Eng. Aspects*, 2005, 264, 29-36.
- 55. Z. H. Ren, J. Huang, Y. C. Zheng, L. Lai, L. L. Hu, J. Chem. Eng. Data, 2017, 62, 1782-1787.
- 56. U. Patel, P. Parekh, N. V. Sastry, V. K. Aswal, P. Bahadur, J. Mol. Liq., 2017, 225, 888-896.
- 57. A. Z. Naqvi, S. Noori, Kabir-ud-Din, *Colloids and Surfaces A: Physicochem. Eng. Aspects* 2015, **477**, 9-18.
- 58. P. Zheng, X. Zhang, J. Fang, W. Shen, J. Chem. Eng. Data, 2016, 61, 979-986.
- 59. M. J. Rosen, J. T. Junkappu, *Surfactants and interfacial phenomena, 4th ed.*; Wiley-Interscience: Hoboken, NL, 2012.
- 60. S. Chauhan, K. Sharma, J. Chem. Thermodyn., 2014, 71, 205-211.
- Z. H. Ren, Y. Luo, Y. C. Zheng, C. J. Wang, D. P. Shi, F. X. Li, *J. Mater. Sci.*, 2015, **50**, 1965-1972.
- Z. H. Ren, J. Huang, Y. Luo, Y. C. Zheng, P. Mei, L. Lai, Y. L. Chang, *J. Ind. Eng. Chem.*, 2016, 36, 263-270.
- 63. Z. H. Ren, Y. Luo, Y. C. Zheng, D. P. Shi, P. Mei, F. S. Li, J. Solution Chem., 2014, 43, 853-869.
- 64. S. Shimizu, P. A. R. Pires, W. Loh, O. A. E. Seoud, Colloid Polym. Sci., 2004, 282, 1026-1032.
- 65. E. Sikorska, D. Wyrzykowski, K. Szutkowski, K. Greber, E. A. Lubecka, I. Zhukov, *J. Therm. Anal. Calorim.*, 2016, **123**, 511-523.
- 66. Z. H. Ren, J. Huang, Y. C. Zheng, L. L. Hu, J. Chem. Eng. Data, 2017, 62, 1782-1787.]
- 67. S. Das, S. Maiti, S. Ghosh, RSC Adv., 2014, 4, 12275-12286.
- 68. G. B. Ray, S. Ghosh, S. P. Moulik, J. Chem. Sci. 2010, 122, 109-117.
- 69. C. Tanford, The Hydrophobic Effect, 2nd ed.; Wiley-Interscience: New York, 1980.
- 70. G. B. Ray, I. Chakraborty, S. Ghosh, S. P. Moulik, C. Holgate, K. Glenn, R. M. Palepu, *J. Phys. Chem.* B, 2007, **111**, 9828-9837.
- 71. S. Ghosh, T. Chakraborty, J. Phys. Chem. B, 2007, 111, 8080-8088.
- 72. J. N. Israelachvili, *In Intermolecular and surface forces (London: Academic Press)*, 2nd ed.; chap. 17, 1991, 370.
- 73. R. Sabate, M. Gallardo, J. Estelrich, Electrophoresis, 2000, 21, 481-485.
- 74. B. Naskar, A. Dey, S. P. Moulik, J Surfact. Deterg. 2013, 16,785-794.

| $\alpha_1 = 1.0$        |                   |                         |                   |                         |                   | $\alpha_1 = 0.9$        |                   |                         |                   |                         |                   |  |
|-------------------------|-------------------|-------------------------|-------------------|-------------------------|-------------------|-------------------------|-------------------|-------------------------|-------------------|-------------------------|-------------------|--|
| Т                       | = 303.15 K        | T = 313.1               | 5 K               | T = 323.15 K            |                   | T = 303.15 K            |                   | T = 313.15 K            |                   | T = 323.15 K            |                   |  |
| <i>m</i>                | <i>K</i>          | <i>m</i>                | K ( C )           | <i>m</i>                | <i>K</i>          | <i>m</i>                | <i>K</i>          | <i>m</i>                | <i>K</i>          | <i>m</i>                | κ<br>( C l)       |  |
| (mol.kg <sup>-1</sup> ) | $(\mu S.cm^{-1})$ |  |
| 0                       | 0                 | 0                       | 0                 | 0                       | 0                 | 0                       | 0                 | 0                       | 0                 | 0                       | 0                 |  |
| 0.00011                 | 12.06             | 0.00011                 | 15.22             | 0.00011                 | 17.15             | 0.00015                 | 16.88             | 0.00015                 | 20.40             | 0.00015                 | 21.58             |  |
| 0.00022                 | 23.39             | 0.00022                 | 29.50             | 0.00022                 | 33.40             | 0.00029                 | 31.88             | 0.00029                 | 39.78             | 0.00029                 | 45.66             |  |
| 0.00033                 | 34.10             | 0.00033                 | 43.20             | 0.00033                 | 49.10             | 0.00044                 | 47.38             | 0.00044                 | 58.98             | 0.00044                 | 68.96             |  |
| 0.00043                 | 44.40             | 0.00043                 | 56.00             | 0.00043                 | 64.00             | 0.00059                 | 63.38             | 0.00059                 | 78.08             | 0.00059                 | 91.06             |  |
| 0.00052                 | 54.10             | 0.00052                 | 68.60             | 0.00052                 | 79.10             | 0.00073                 | 76.78             | 0.00073                 | 96.18             | 0.00073                 | 114.06            |  |
| 0.00062                 | 63.60             | 0.00062                 | 80.30             | 0.00062                 | 92.90             | 0.00087                 | 90.28             | 0.00087                 | 113.18            | 0.00087                 | 135.36            |  |
| 0.00071                 | 72.60             | 0.00071                 | 91.80             | 0.00071                 | 106.1             | 0.00101                 | 99.28             | 0.00101                 | 125.88            | 0.00101                 | 155.26            |  |
| 0.00079                 | 80.90             | 0.00079                 | 102.4             | 0.00079                 | 118.8             | 0.00115                 | 107.28            | 0.00115                 | 136.18            | 0.00115                 | 170.46            |  |
| 0.00088                 | 88.00             | 0.00088                 | 111.8             | 0.00088                 | 133.3             | 0.00129                 | 114.78            | 0.00129                 | 145.48            | 0.00129                 | 183.76            |  |
| 0.00096                 | 93.30             | 0.00096                 | 119.2             | 0.00096                 | 142.9             | 0.00143                 | 121.68            | 0.00143                 | 154.18            | 0.00143                 | 195.06            |  |
| 0.00104                 | 97.70             | 0.00104                 | 125.4             | 0.00104                 | 152.8             | 0.00156                 | 128.18            | 0.00156                 | 162.78            | 0.00156                 | 205.76            |  |
| 0.00112                 | 101.7             | 0.00112                 | 130.7             | 0.00112                 | 161.1             | 0.00169                 | 135.48            | 0.00169                 | 171.18            | 0.00169                 | 216.46            |  |
| 0.00119                 | 105.5             | 0.00119                 | 135.8             | 0.00119                 | 168.2             | 0.00196                 | 148.58            | 0.00196                 | 187.28            | 0.00196                 | 236.96            |  |
| 0.00126                 | 108.8             | 0.00126                 | 140.6             | 0.00126                 | 175.0             | 0.00222                 | 161.38            | 0.00222                 | 202.58            | 0.00222                 | 255.96            |  |
| 0.00133                 | 111.9             | 0.00133                 | 145.1             | 0.00133                 | 180.8             | 0.00248                 | 173.78            | 0.00248                 | 217.18            | 0.00248                 | 274.86            |  |
| 0.00139                 | 115.0             | 0.00139                 | 149.1             | 0.00139                 | 186.2             | 0.00273                 | 186.08            | 0.00273                 | 231.78            | 0.00273                 | 293.66            |  |
| 0.00146                 | 118.3             | 0.00146                 | 153.5             | 0.00146                 | 191.7             | 0.00297                 | 197.08            | 0.00297                 | 246.28            | 0.00297                 | 311.66            |  |
| 0.00153                 | 121.1             | 0.00153                 | 157.3             | 0.00153                 | 197.0             | 0.00321                 | 208.08            | 0.00321                 | 259.68            | 0.00321                 | 327.66            |  |

Table 2. Specific Conductance ( $\kappa$ ) vs. Molality (m) Data in Aqueous HDMimCl + DTAB Solutions for Different Mole fractions of HDMimCl ( $\alpha_1$ ) at (303.15, 313.15, and 323.15) K at 0.1 MPa

|         |        |         | $\alpha_1 = 0.8$ |         |        |         |        | $\alpha_1$ = | = 0.7 |         |        |
|---------|--------|---------|------------------|---------|--------|---------|--------|--------------|-------|---------|--------|
| 0       | 0      | 0       | 0                | 0       | 0      | 0       | 0      | 0            | 0     | 0       | 0      |
| 0.00015 | 15.77  | 0.00015 | 17.05            | 0.00015 | 20.87  | 0.00015 | 15.96  | 0.00015      | 19.18 | 0.00015 | 22.93  |
| 0.00029 | 30.12  | 0.00029 | 35.16            | 0.00029 | 43.29  | 0.00029 | 31.39  | 0.00029      | 37.90 | 0.00029 | 44.93  |
| 0.00044 | 45.32  | 0.00044 | 52.16            | 0.00044 | 64.59  | 0.00044 | 46.89  | 0.00044      | 56.20 | 0.00044 | 66.63  |
| 0.00059 | 60.02  | 0.00059 | 69.56            | 0.00059 | 85.99  | 0.00059 | 61.79  | 0.00059      | 74.20 | 0.00059 | 88.63  |
| 0.00073 | 74.02  | 0.00073 | 85.56            | 0.00073 | 106.49 | 0.00073 | 76.89  | 0.00073      | 90.60 | 0.00073 | 109.43 |
| 0.00087 | 87.62  | 0.00087 | 101.26           | 0.00087 | 127.39 | 0.00087 | 90.99  | 0.00087      | 109.2 | 0.00087 | 129.73 |
| 0.00101 | 97.82  | 0.00101 | 116.36           | 0.00101 | 146.59 | 0.00101 | 101.69 | 0.00101      | 126.1 | 0.00101 | 149.23 |
| 0.00115 | 105.52 | 0.00115 | 128.56           | 0.00115 | 163.09 | 0.00115 | 109.79 | 0.00115      | 138.1 | 0.00115 | 168.23 |
| 0.00129 | 112.22 | 0.00129 | 137.76           | 0.00129 | 175.99 | 0.00129 | 117.59 | 0.00129      | 148.4 | 0.00129 | 183.23 |
| 0.00143 | 119.32 | 0.00143 | 146.96           | 0.00143 | 187.29 | 0.00143 | 124.99 | 0.00143      | 157.7 | 0.00143 | 196.03 |
| 0.00169 | 131.92 | 0.00169 | 162.96           | 0.00169 | 204.49 | 0.00156 | 132.29 | 0.00156      | 166.6 | 0.00156 | 207.83 |
| 0.00196 | 143.52 | 0.00196 | 179.06           | 0.00196 | 222.19 | 0.00169 | 139.39 | 0.00169      | 175.1 | 0.00169 | 218.93 |
| 0.00222 | 154.82 | 0.00222 | 194.26           | 0.00222 | 238.79 | 0.00196 | 153.09 | 0.00222      | 208.1 | 0.00222 | 260.53 |
| 0.00248 | 177.32 | 0.00248 | 208.96           | 0.00248 | 253.79 | 0.00222 | 166.59 | 0.00248      | 224.5 | 0.00248 | 279.83 |
| 0.00273 | 188.92 | 0.00273 | 223.06           | 0.00273 | 270.09 | 0.00248 | 179.09 | 0.00273      | 240.2 | 0.00273 | 299.03 |
| 0.00321 | 210.92 | 0.00297 | 236.96           | 0.00321 | 300.89 | 0.00273 | 191.69 | 0.00321      | 271.3 | 0.00321 | 336.03 |
| 0.00368 | 231.32 | 0.00321 | 250.26           | 0.00368 | 340.89 | 0.00321 | 216.09 |              |       |         |        |
| 0.00412 | 250.52 | 0.00345 | 262.96           | 0.00412 | 362.89 |         |        |              |       |         |        |
| 0.00458 | 268.92 | 0.00368 | 276.06           | 0.00458 | 389.89 |         |        |              |       |         |        |
| 0.00500 | 286.52 | 0.00391 | 287.96           | 0.00500 | 414.89 |         |        |              |       |         |        |
| 0.00561 | 311.52 | 0.00458 | 323.26           | 0.00561 | 449.89 |         |        |              |       |         |        |
| 0.00619 | 334.52 | 0.00521 | 354.26           | 0.00619 | 487.89 |         |        |              |       |         |        |
| 0.00674 | 355.52 | 0.00581 | 384.26           | 0.00674 | 523.89 |         |        |              |       |         |        |
| 0.00727 | 376.52 | 0.00638 | 423.26           | 0.00727 | 554.89 |         |        |              |       |         |        |

|         |       | $\alpha_1$ | = 0.6  |         |        |         |       | $\alpha_1 =$ | = 0.5  |         |        |
|---------|-------|------------|--------|---------|--------|---------|-------|--------------|--------|---------|--------|
| 0       | 0     | 0          | 0      | 0       | 0      | 0       | 0     | 0            | 0      | 0       | 0      |
| 0.00015 | 15.11 | 0.00015    | 17.93  | 0.00015 | 21.09  | 0.00009 | 8.34  | 0.00027      | 32.95  | 0.00015 | 21.41  |
| 0.00029 | 29.60 | 0.00029    | 35.71  | 0.00029 | 41.96  | 0.00019 | 17.98 | 0.00053      | 64.45  | 0.00029 | 43.96  |
| 0.00044 | 44.40 | 0.00044    | 53.91  | 0.00044 | 62.56  | 0.00029 | 27.69 | 0.00078      | 96.75  | 0.00044 | 65.76  |
| 0.00059 | 58.40 | 0.00059    | 72.91  | 0.00059 | 83.86  | 0.00039 | 38.10 | 0.00104      | 126.35 | 0.00059 | 87.06  |
| 0.00073 | 73.20 | 0.00073    | 89.81  | 0.00073 | 104.06 | 0.00049 | 48.30 | 0.00129      | 153.45 | 0.00073 | 107.76 |
| 0.00087 | 86.70 | 0.00087    | 106.71 | 0.00087 | 124.06 | 0.00058 | 57.80 | 0.00154      | 173.45 | 0.00087 | 129.26 |
| 0.00101 | 99.40 | 0.00101    | 124.11 | 0.00101 | 144.36 | 0.00068 | 69.50 | 0.00178      | 191.55 | 0.00101 | 149.66 |
| 0.00115 | 109.3 | 0.00115    | 138.21 | 0.00115 | 162.96 | 0.00077 | 80.30 | 0.00203      | 209.45 | 0.00115 | 169.86 |
| 0.00129 | 117.7 | 0.00129    | 149.41 | 0.00129 | 181.06 | 0.00086 | 89.70 | 0.00226      | 226.75 | 0.00129 | 195.96 |
| 0.00143 | 125.6 | 0.00143    | 159.71 | 0.00143 | 195.36 | 0.00095 | 97.50 | 0.0025       | 244.35 | 0.00143 | 206.96 |
| 0.00169 | 141.3 | 0.00169    | 178.51 | 0.00169 | 213.76 | 0.00104 | 105.4 | 0.00273      | 260.95 | 0.00169 | 232.16 |
| 0.00196 | 155.7 | 0.00196    | 196.91 | 0.00196 | 234.46 | 0.00113 | 111.3 | 0.00296      | 276.85 | 0.00196 | 256.76 |
| 0.00222 | 169.7 | 0.00222    | 214.21 | 0.00222 | 256.26 | 0.00122 | 117.9 | 0.00319      | 293.15 | 0.00222 | 279.96 |
| 0.00248 | 183.6 | 0.00248    | 229.01 | 0.00248 | 274.66 | 0.00131 | 122.2 | 0.00342      | 309.05 | 0.00248 | 302.56 |
| 0.00273 | 197.3 | 0.00273    | 243.71 | 0.00273 | 299.56 | 0.00139 | 126.7 | 0.00386      | 340.05 | 0.00273 | 324.56 |
| 0.00321 | 222.6 | 0.00321    | 272.41 | 0.00321 | 346.96 | 0.00148 | 132.9 | 0.00429      | 369.05 | 0.00345 | 381.56 |
| 0.00368 | 248.1 | 0.00368    | 303.81 | 0.00368 | 380.96 | 0.00165 | 142.7 | 0.00471      | 399.05 | 0.00414 | 443.56 |
| 0.00414 | 269.4 | 0.00414    | 333.81 | 0.00414 | 408.96 | 0.00182 | 152.6 | 0.00512      | 427.05 | 0.00479 | 501.56 |
| 0.00458 | 288.8 | 0.00458    | 357.81 | 0.00458 | 431.96 | 0.00198 | 161.9 | 0.00552      | 454.05 | 0.00541 | 557.56 |
| 0.00500 | 311.4 | 0.00500    | 388.81 | 0.00500 | 456.96 | 0.00214 | 171.9 | 0.00629      | 507.05 | 0.00600 | 606.56 |
| 0.00561 | 341.4 | 0.00561    | 426.81 | 0.00561 | 502.96 | 0.00230 | 181.0 | 0.00703      | 554.05 | 0.00674 | 669.56 |
| 0.00619 | 370.4 | 0.00619    | 453.81 | 0.00619 | 544.96 | 0.00246 | 189.9 | 0.00774      | 602.05 | 0.00744 | 720.56 |
| 0.00674 | 398.4 | 0.00674    | 495.81 | 0.00674 | 582.96 | 0.00276 | 207.3 | 0.00875      | 652.00 | 0.00810 | 778.00 |
| 0.00727 | 423.4 | 0.00727    | 528.81 | 0.00727 | 623.96 | 0.00305 | 224.8 | 0.00939      | 695.00 | 0.00872 | 830.00 |
| 0.00778 | 445.4 | 0.00778    | 557.81 | 0.00778 | 659.96 | 0.00333 | 241.8 | 0.01059      | 772.00 | 0.00931 | 881.00 |
| 0.00843 | 477.4 | 0.00843    | 598.81 | 0.00843 | 698.96 | 0.00361 | 257.4 | 0.01169      | 841.00 | 0.00987 | 924.00 |
| 0.00902 | 507.4 | 0.00902    | 636.81 | 0.00902 | 746.96 | 0.00425 | 293.7 | 0.01273      | 905.00 |         |        |
| 0.00959 | 535.4 | 0.00959    | 665.81 | 0.00959 | 783.96 | 0.00485 | 328.2 | 0.01368      | 962.00 |         |        |
| 0.01000 | 557.4 | 0.01000    | 703.81 | 0.01000 | 814.96 | 0.00540 | 358.2 | 0.01458      | 1013.0 |         |        |
|         |       |            |        |         |        | 0.00639 | 411.2 | 0.01500      | 1089.0 |         |        |
|         |       |            |        |         |        | 0.00726 | 445.2 | 0.01521      | 1102.0 |         |        |
|         |       |            |        |         |        | 0.00802 | 498.0 |              |        |         |        |
|         |       |            |        |         |        | 0.00931 | 560.0 |              |        |         |        |
|         |       |            |        |         |        | 0.01034 | 610.0 |              |        |         |        |
|         |       |            |        |         |        | 0.01118 | 653.0 |              |        |         |        |
|         |       |            |        |         |        | 0.01138 | 662.0 |              |        |         |        |

|         |        |         | $\alpha_1 = 0.4$ |         |        |         |        | $\alpha_1 =$ | 0.3    |         |        |
|---------|--------|---------|------------------|---------|--------|---------|--------|--------------|--------|---------|--------|
| 0       | 0      | 0       | 0                | 0       | 0      | 0       | 0      | 0            | 0      | 0       | 0      |
| 0.00015 | 15.09  | 0.00015 | 17.68            | 0.00015 | 21.43  | 0.00015 | 16.74  | 0.00015      | 20.83  | 0.00015 | 23.16  |
| 0.00029 | 30.54  | 0.00029 | 35.39            | 0.00029 | 43.14  | 0.00029 | 32.46  | 0.00029      | 39.77  | 0.00029 | 45.86  |
| 0.00044 | 45.44  | 0.00044 | 53.39            | 0.00044 | 63.64  | 0.00044 | 47.46  | 0.00044      | 58.97  | 0.00044 | 68.56  |
| 0.00059 | 61.04  | 0.00059 | 71.09            | 0.00059 | 106.64 | 0.00059 | 63.26  | 0.00059      | 77.87  | 0.00059 | 90.86  |
| 0.00073 | 76.54  | 0.00073 | 87.79            | 0.00073 | 127.24 | 0.00073 | 79.46  | 0.00073      | 97.27  | 0.00073 | 113.06 |
| 0.00087 | 90.94  | 0.00087 | 105.19           | 0.00087 | 148.34 | 0.00087 | 94.86  | 0.00087      | 114.77 | 0.00087 | 135.26 |
| 0.00101 | 104.94 | 0.00101 | 122.59           | 0.00101 | 189.14 | 0.00101 | 109.96 | 0.00101      | 132.87 | 0.00101 | 156.76 |
| 0.00115 | 118.14 | 0.00115 | 138.39           | 0.00115 | 208.24 | 0.00115 | 124.96 | 0.00115      | 149.97 | 0.00115 | 178.26 |
| 0.00129 | 129.34 | 0.00129 | 153.39           | 0.00129 | 225.24 | 0.00129 | 137.96 | 0.00129      | 166.77 | 0.00129 | 199.16 |
| 0.00143 | 138.64 | 0.00143 | 167.69           | 0.00143 | 239.94 | 0.00143 | 149.76 | 0.00143      | 183.47 | 0.00143 | 219.96 |
| 0.00169 | 157.34 | 0.00169 | 190.99           | 0.00169 | 260.44 | 0.00156 | 160.76 | 0.00156      | 198.17 | 0.00156 | 240.06 |
| 0.00196 | 175.34 | 0.00196 | 209.09           | 0.00196 | 284.24 | 0.00169 | 171.46 | 0.00169      | 211.97 | 0.00169 | 258.46 |
| 0.00222 | 192.94 | 0.00222 | 228.49           | 0.00222 | 305.34 | 0.00196 | 192.26 | 0.00196      | 237.07 | 0.00196 | 290.36 |
| 0.00248 | 209.64 | 0.00248 | 247.29           | 0.00248 | 329.34 | 0.00222 | 212.16 | 0.00222      | 262.47 | 0.00222 | 319.26 |
| 0.00273 | 226.14 | 0.00273 | 266.99           | 0.00273 | 352.34 | 0.00248 | 231.56 | 0.00248      | 285.97 | 0.00248 | 347.26 |
| 0.00321 | 258.74 | 0.00321 | 305.89           | 0.00321 | 398.34 | 0.00273 | 251.16 | 0.00273      | 310.67 | 0.00273 | 375.26 |
| 0.00368 | 289.74 | 0.00368 | 340.89           | 0.00368 | 441.34 | 0.00297 | 269.86 | 0.00321      | 354.67 | 0.00297 | 401.26 |
| 0.00414 | 320.14 | 0.00414 | 374.89           | 0.00414 | 482.34 |         |        |              |        |         |        |
| 0.00458 | 348.14 | 0.00458 | 409.89           | 0.00458 | 519.34 |         |        |              |        |         |        |
| 0.00500 | 376.14 | 0.00500 | 442.89           | 0.00500 | 553.34 |         |        |              |        |         |        |
| 0.00561 | 414.14 | 0.00561 | 488.89           | 0.00561 | 610.34 |         |        |              |        |         |        |
| 0.00619 | 452.14 | 0.00619 | 531.89           | 0.00619 | 661.34 |         |        |              |        |         |        |
| 0.00674 | 487.14 | 0.00674 | 571.89           | 0.00674 | 711.34 |         |        |              |        |         |        |
| 0.00727 | 519.14 | 0.00727 | 608.89           | 0.00727 | 759.34 |         |        |              |        |         |        |
| 0.00778 | 551.14 | 0.00778 | 646.89           | 0.00778 | 803.34 |         |        |              |        |         |        |
| 0.00842 | 589.14 | 0.00842 | 686.89           | 0.00842 | 859.34 |         |        |              |        |         |        |
| 0.00902 | 624.14 | 0.00902 | 730.89           | 0.00902 | 910.34 |         |        |              |        |         |        |
| 0.00959 | 658.14 | 0.00959 | 766.89           | 0.00959 | 959.34 |         |        |              |        |         |        |
| 0.00993 | 676.14 | 0.00993 | 800.89           | 0.00993 | 988.34 |         |        |              |        |         |        |

|         |        | 0       | $x_1 = 0.2$ |         |        |         |        | $\alpha_1 =$ | 0.1    |         |         |
|---------|--------|---------|-------------|---------|--------|---------|--------|--------------|--------|---------|---------|
| 0       | 0      | 0       | 0           | 0       | 0      | 0       | 0      | 0            | 0      | 0       | 0       |
| 0.00015 | 15.07  | 0.00015 | 18.35       | 0.00015 | 20.01  | 0.00015 | 15.46  | 0.00015      | 17.57  | 0.00015 | 21.16   |
| 0.00029 | 29.94  | 0.00029 | 36.38       | 0.00029 | 41.72  | 0.00029 | 30.42  | 0.00029      | 36.10  | 0.00029 | 43.26   |
| 0.00044 | 45.54  | 0.00044 | 53.58       | 0.00044 | 63.42  | 0.00044 | 45.42  | 0.00044      | 54.30  | 0.00044 | 65.06   |
| 0.00059 | 59.94  | 0.00059 | 72.08       | 0.00059 | 85.02  | 0.00059 | 59.82  | 0.00059      | 73.00  | 0.00059 | 87.06   |
| 0.00073 | 75.14  | 0.00073 | 89.78       | 0.00073 | 105.22 | 0.00073 | 76.02  | 0.00073      | 89.30  | 0.00073 | 107.36  |
| 0.00087 | 89.74  | 0.00087 | 107.18      | 0.00087 | 125.82 | 0.00087 | 90.32  | 0.00087      | 107.9  | 0.00087 | 128.96  |
| 0.00101 | 103.64 | 0.00101 | 124.38      | 0.00101 | 145.72 | 0.00101 | 105.12 | 0.00101      | 125.0  | 0.00101 | 149.06  |
| 0.00115 | 117.84 | 0.00115 | 141.08      | 0.00115 | 165.82 | 0.00115 | 119.92 | 0.00115      | 141.9  | 0.00115 | 170.76  |
| 0.00129 | 131.84 | 0.00129 | 157.48      | 0.00129 | 186.42 | 0.00129 | 134.02 | 0.00129      | 158.6  | 0.00129 | 191.06  |
| 0.00143 | 145.64 | 0.00143 | 174.28      | 0.00143 | 207.02 | 0.00143 | 148.02 | 0.00143      | 174.9  | 0.00143 | 210.76  |
| 0.00169 | 172.34 | 0.00169 | 201.48      | 0.00169 | 238.32 | 0.00169 | 175.92 | 0.00169      | 206.4  | 0.00169 | 238.86  |
| 0.00196 | 194.04 | 0.00196 | 228.18      | 0.00196 | 272.32 | 0.00196 | 201.82 | 0.00196      | 236.3  | 0.00196 | 271.96  |
| 0.00222 | 214.94 | 0.00222 | 252.58      | 0.00222 | 306.02 | 0.00222 | 227.22 | 0.00222      | 263.5  | 0.00222 | 306.66  |
| 0.00248 | 234.84 | 0.00248 | 275.18      | 0.00248 | 332.02 | 0.00248 | 251.32 | 0.00248      | 291.9  | 0.00248 | 340.66  |
| 0.00273 | 255.04 | 0.00273 | 298.18      | 0.00273 | 365.02 | 0.00273 | 275.02 | 0.00273      | 321.4  | 0.00273 | 374.66  |
| 0.00321 | 294.44 | 0.00321 | 347.18      | 0.00321 | 415.02 | 0.00321 | 320.02 | 0.00321      | 374.4  | 0.00321 | 441.66  |
| 0.00368 | 331.44 | 0.00368 | 394.18      | 0.00368 | 468.02 | 0.00368 | 362.02 | 0.00368      | 425.4  | 0.00368 | 501.66  |
| 0.00414 | 366.44 | 0.00414 | 436.18      | 0.00414 | 525.02 | 0.00414 | 403.02 | 0.00414      | 473.4  | 0.00414 | 559.66  |
|         |        |         |             | 0.00458 | 577.02 | 0.00458 | 443.02 | 0.00458      | 519.4  | 0.00458 | 613.66  |
|         |        |         |             | 0.00500 | 627.02 | 0.00500 | 480.02 | 0.00500      | 563.4  | 0.00500 | 667.66  |
|         |        |         |             | 0.00561 | 697.02 | 0.00561 | 534.02 | 0.00561      | 626.4  | 0.00561 | 748.66  |
|         |        |         |             | 0.00619 | 761.02 | 0.00619 | 584.02 | 0.00619      | 684.4  | 0.00619 | 818.66  |
|         |        |         |             | 0.00674 | 822.02 | 0.00674 | 631.02 | 0.00674      | 743.4  | 0.00674 | 887.66  |
|         |        |         |             | 0.00727 | 881.02 | 0.00727 | 674.02 | 0.00727      | 795.4  | 0.00727 | 952.66  |
|         |        |         |             | 0.00778 | 937.02 | 0.00778 | 716.02 | 0.00778      | 846.4  | 0.00778 | 1010.7  |
|         |        |         |             | 0.00842 | 1008.0 | 0.00843 | 769.02 | 0.00843      | 910.4  | 0.00843 | 1093.7  |
|         |        |         |             | 0.00902 | 1073.0 | 0.00902 | 817.02 | 0.00902      | 969.4  | 0.00902 | 1169.66 |
|         |        |         |             | 0.00959 | 1124.0 | 0.00959 | 874.02 | 0.00959      | 1021.4 | 0.00959 | 1241.66 |
|         |        |         |             | 0.01000 | 1168.0 | 0.01000 | 894.02 | 0.01000      | 1062.4 | 0.01000 | 1262.66 |

|         |        | $\alpha_{_1}$ | = 0.0  |         |        |
|---------|--------|---------------|--------|---------|--------|
| 0       | 0      | 0             | 0      | 0       | 0      |
| 0.00178 | 193.71 | 0.00178       | 234.15 | 0.00178 | 281.54 |
| 0.00353 | 374.11 | 0.00353       | 467.05 | 0.00353 | 546.64 |
| 0.00524 | 553.11 | 0.00524       | 668.05 | 0.00524 | 801.64 |
| 0.00692 | 727.11 | 0.00692       | 871.05 | 0.00692 | 1048.6 |
| 0.00857 | 893.11 | 0.00857       | 1070.0 | 0.00857 | 1284.6 |
| 0.01019 | 1055.1 | 0.01019       | 1263.1 | 0.01019 | 1515.6 |
| 0.01178 | 1210.1 | 0.01178       | 1453.1 | 0.01178 | 1741.6 |
| 0.01333 | 1361.1 | 0.01333       | 1633.1 | 0.01333 | 1955.6 |
| 0.01486 | 1491.1 | 0.01486       | 1802.1 | 0.01486 | 2162.6 |
| 0.01636 | 1568.1 | 0.01636       | 1932.1 | 0.01636 | 2343.6 |
| 0.01784 | 1618.1 | 0.01784       | 2009.1 | 0.01789 | 2472.6 |
| 0.01929 | 1661.1 | 0.01929       | 2075.1 | 0.01929 | 2577.6 |
| 0.02071 | 1701.1 | 0.02071       | 2131.1 | 0.02071 | 2652.6 |
| 0.02211 | 1739.1 | 0.02211       | 2186.1 | 0.02211 | 2722.6 |
| 0.02348 | 1776.1 | 0.02348       | 2239.1 | 0.02348 | 2789.6 |
| 0.02483 | 1813.1 | 0.02483       | 2286.1 | 0.02483 | 2851.6 |
| 0.02615 | 1850.1 | 0.02615       | 2336.1 | 0.02615 | 2918.6 |
| 0.02746 | 1885.1 | 0.02746       | 2381.1 | 0.02746 | 2973.6 |
| 0.02874 | 1919.1 | 0.02874       | 2426.1 | 0.02874 | 3036.6 |
| 0.03000 | 1953.1 | 0.03000       | 2467.1 | 0.03000 | 3096.6 |

# Chapter II

Studies on the selfaggregation, interfacial and thermodynamic properties of a surface-active imidazolium-based ionic liquid in aqueous solution: Effects of salt and temperature Studies on the self-aggregation, interfacial and thermodynamic properties of a surfaceactive imidazolium-based ionic liquid in aqueous solution: Effects of salt and temperature<sup>‡</sup>

## ABSTRACT

The influence of four sodium salts (NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub>, and Na<sub>3</sub>PO<sub>4</sub>) on the self-aggregation, interfacial, and thermodynamic properties of a surface-active ionic liquid (1-hexadecyl-3methylimidazolium chloride. C<sub>16</sub>MImCl) has been explored in aqueous solutions by conductometry. tensiometry, spectrofluorimetry, isothermal titration calorimetry and dynamic light scattering (DLS). Analyses of the critical micellar concentration (cmc) values indicate that the anions of the added salts promote the self-aggregation of  $C_{16}$ MImCl in the order:  $Cl^- < Br^- < PO_4^{3-} < SO_4^{2-}$ . Melting of iceberg, in general, governs the process of micellization of aqueous C<sub>16</sub>MImCl in presence of the investigated salts within the investigated temperature range (298.15-318.15 K), while the dehydration of imidazolium head groups takes the leading role below 303.15 K for the C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> system. The results indicate that addition of salt leads to a greater spontaneity of micellization, and that exothermicity prevails in these systems. Differential effect of the salts on the interfacial properties of C<sub>16</sub>MelmCl has been interpreted on the basis of the coupled influence of the electrostatic charge neutralization of surfactants at the interface, and the van der Waals repulsion of surfactant tails and electrostatic repulsion of surfactant head groups. C<sub>16</sub>MeImCI has been shown to form spherical micelles in presence of varying amounts of NaCl, Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub>, while there occurs probably a transition in the micellar geometry from spherical to non-spherical shape when added NaBr concentration exceeds 0.01 mol.kg<sup>-1</sup>. Fluorescence studies demonstrate that a combined quenching mechanism is operative for the quenching of pyrene fluorescence in the investigated C<sub>16</sub>MImCI-salt systems. Micellar aggregation numbers obtained from Steady State Fluorescence Quenching method have always been found be somewhat smaller than those estimated from Time Resolved Fluorescence Quenching method. The order of instability of the C16MImCI-micelles ascertained from Zeta potential measurements conforms to what has been inferred from the cmc values. The hydrodynamic diameters of C16MImCI-micelles. obtained from DLS studies, have been found to increase with increasing salinity of the solutions.

# (*+* Published in *J. Mol. Liq.*, 320 (2020) 114497)

# 1.Introduction

In recent years, considerable attention is being paid to the studies on ionic liquids with surface activity (commonly referred to as surface active ionic liquids) in colloid and interface science. <sup>1-9</sup> Surface active ionic liquids, like conventional surfactants, form self-aggregates <sup>10-18</sup> owing to the balance of hydrophilic and hydrophobic interactions above a particular concentration known as the critical micellar concentration (*cmc*).<sup>19-22</sup> Current interest in the area of surface active ionic liquids stems from the ease of fine-tuning of the hydrophobicity of ionic liquid molecules by varying the length of the hydrocarbon chains, the type of the head-group or the nature and size of the counterions which might permit the modulation of the structure and the delicate dynamics of their self-aggregates for specific purposes. Additives could also result in the modification of the interaction and self-aggregation behavior of surfactants appreciably.<sup>23-</sup> <sup>35</sup> Studies on surfactant solutions in presence of a salt have been shown to provide important insight into various interactions prevailing in these solutions. <sup>32-36</sup> Surfactant-salt mixtures find widespread use in biological, technological, medical formulations, pharmaceuticals, enhanced oil recovery for the purpose of improved solubilization, suspension and dispersion.<sup>2</sup> Various organic and inorganic salts in combination with various surfactants are also used for this purpose. <sup>3-9,14-47</sup> However, there had been, so far, a very few attempts which explored the effect of salts on the self-aggregation properties of surface active ionic liquid solutions. <sup>48-52</sup> Keeping this in view, we have taken up a comprehensive program to investigate the self-aggregation, interfacial, and thermodynamic properties of a surface active ionic liquid (1-hexadecyl-3methylimidazolium chloride) in presence of each of sodium chloride (NaCl), sodium bromide (NaBr), sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>), and sodium phosphate (Na<sub>3</sub>PO<sub>4</sub>) in aqueous solutions. Different experimental techniques e. g., conductometry, tensiometry, spectrofluorimetry, isothermal titration calorimetry and dynamic light scattering methods have been employed to explore the very many facets of micellization behavior of the selected surface active ionic liquid-salt solutions in aqueous media.

# 2. Experimental

#### 2.1. Materials

1-Hexadecyl-3-methylimidazolium chloride (C<sub>16</sub>MImCl) (structure shown in Fig.1), and 1hexadecylpyridinium chloride (CPC) have been purchased from Acros Organics. These were used as received. Reagent grade sodium chloride (NaCl), sodium bromide (NaBr), sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) and sodium phosphate (Na<sub>3</sub>PO<sub>4</sub>, 12H<sub>2</sub>O) were purchased from Sigma Aldrich.Pyrene solutions prepared in ethanol and 1,6-diphenyl-1,3,5-hexatriene (DPH) solutions prepared in tetrahydrofuran (THF), were purchased from Sigma Aldrich, and were used as fluorophore. Triply distilled water with a specific conductance around 0.98 µs.cm<sup>-1</sup> at 298.15 K was used to prepare the different solutions throughout the experiments at different temperatures.



Fig. 1. Structure of 1-hexadecyl-3-methylimidazolium chloride.

#### 2.2. Methods

#### 2.2.1. Conductometry

Measurements on specific conductivities ( $\kappa$ ) have been carried out using an Orion (Thermo Fisher, USA) conductivity meter with a conductivity cell of cell constant 1 cm<sup>-1</sup>, dipped in the experimental solution maintained within 0.05 K of the desired temperature in a thermostatic water bath.

The specific conductances of aqueous  $C_{16}$ MImCl solutions in absence as well as in the presence of the salts (NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub>, and Na<sub>3</sub>PO<sub>4</sub>) have been plotted against the concentration of  $C_{16}$ MImCl (please see the representative Fig. 2). The specific conductance *vs.* surfactant concentration profiles have always been found to reveal inflections. For any given system, the values of the specific conductances above and below the inflection point have been fitted to two separate linear equations, squared correlation coefficient ( $r^2$ ) being always greater than or equal to 0.99, and the intersection of these straight lines provided an estimate of the *cmc* (*cf.* Table 1). As the inflection points for  $C_{16}$ MImCl solutions in presence of salts having higher concentrations obtained by conductometry have been found to be incompatible with those obtained from other experimental techniques employed here to represent the *cmc* values, conductometric determination of *cmc* has been restricted to low-salt solutions.

#### 2.2.2. Tensiometry

Surface tensions at air/water interface have been measured using a calibrated Krüss (Germany) tensiometer by du Noüy ring detachment method with an accuracy of  $\pm$  0.1 mN.m<sup>-1</sup>. The platinum ring has been thoroughly cleaned by water and acetone successively and has been dried in ethanol oxidizing flame before and after each experiment. The tensiometer was connected to a water-flow cryostat in order to maintain the temperature equilibration. The surface tension *vs*. surfactant concentration for aqueous C<sub>16</sub>MImCl-NaCl, C<sub>16</sub>MImCl-NaBr, C<sub>16</sub>MImCl-Na<sub>2</sub>SO<sub>4</sub>, and C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> solutions in presence of varying concentration of the added salts at 298.15 K have been shown in Figs. 3(a) through 3(d). Tensiometry records the threshold surfactant concentration required to saturate the air/solution interface as the *cmc* which has been obtained (listed in Table 1) from a sharp break in these surface tension *vs*. surfactant concentrative plot showing such a break has been shown in Fig. 3(a).

#### 2.2.3. Isothermal titration calorimetry (ITC)

ITC measurements were carried out with GE Microcal ITC 200(Northampton, USA) microcalorimeter. Distilled water was taken as reference in the whole experiments. Surfactant solutions in water and different salt solutions having initial concentrations approximately ten times their *cmc* values measured by conductometry were prepared, taken in syringe and added to the respective solutions initially 0.5 µl, then 2 µl (total 20 additions) with an interval of 120s. The temperature was kept constant at 298.15 K throughout the experiments. ITC experiments directly measure the enthalpy of micellization ( $\Delta H_m^0$ ) (shown in Table 2.) as well as the *cmcs* (*cf.* Table 1) accurately. <sup>10,17,52,58-62</sup>

#### 2.2.4. Flourimetry

Steady-state fluorescence measurements have been made on a Perkin-Elmer LS 55 (USA) fluorescence spectrophotometer with a Peltier attachment using quartz cell of 1 cm path length at 298.15 K. Pyrene has been used as the probe. The excitation of pyrene has been performed at 335 nm with a band pass of 14 nm and emission has been monitored at 371nm ( $I_1$ ) and 384 nm ( $I_3$ ) using a band pass of 4 nm. To determine the micropolarity ( $I_1/I_3$ ), a set of aqueous C<sub>16</sub>MImCl solution in absence and in presence of different salts having varying concentrations have been prepared, where both the surfactant concentration (10 x 10<sup>-3</sup> mol.kg<sup>-1</sup> for micropolarity study, and 12 x 10<sup>-3</sup>mol.kg<sup>-1</sup> for steady-state quenching study) and the pyrene concentration (1x10<sup>-6</sup> mol.kg<sup>-1</sup>) were kept fixed for each of the solution for the measurement. All solutions have been well sonicated and kept for 4-5 hours for equilibrium before irradiation. Experimental ( $I_1/I_3$ ) values have been listed in Table 4.

Steady-state fluorescence anisotropy measurements were performed on the same instrument [Perkin-Elmer LS 55 (USA)] fitted with a polarizer using DPH as probe in a quartz cell of 1 cm path length at 298.15 K. Excitation wavelength has been fixed at 353 nm and emission of DPH has been measured at 437 nm. Initially a measured amount of DPH is added to water or to salt solution taken in a quartz cell and then the stock surfactant solution (having concentration approximately 15 times the *cmc* measured with the above-mentioned techniques) with the same amount of DPH is added to the cuvette. The concentration of the probe has been fixed at 2 x  $10^{-6}$  mol.kg<sup>-1</sup>both in cuvette and in the stock solution. DPH, because of its rod like shape, is used as a fluorescent anisotropic probe as it retains the polarization in the restricted medium. The steady state anisotropy (*r*) can be defined by the following equation 18, 53, 54:

$$r = \frac{I_{\rm v} - GI_{\rm h}}{I_{\rm v} + 2GI_{\rm h}} \tag{1}$$

where  $I_v$  and  $I_h$  are respectively the fluorescence intensities when the emission polarizer parallel and perpendicular to the exiting electromagnetic radiation, and the factor *G*, defined as the ratio of  $I_v$  to  $I_h$ , rectifies the unequal transmission generated by the diffraction gratings of the instrument for the horizontally and vertically polarized lights.

Time-resolved fluorescence decay has been measured in Horiba-Jobin-Yvon Fluoro Cube fluorescence lifetime system by the time-correlated single photon counting (TCSPC) technique. A Nano LED (IBH, UK) at 330 nm has been used as the excitation source for pyrene and the decay emission has been recorded at 374 nm. A TBX photon detection module has been used as the detector. The decay data have been fitted with the help of IBH DAS-6 decay analysis software by nonlinear least square procedure so that the values of residuals ( $\chi^2$ ) do not exceed 1.5. The lamp profile was collected using a dilute aqueous micellar solution of sodium dodecyl sulfate as a scatterer in place of the experimental solution. Pyrene has been used as probe, and its concentration has been fixed at 10<sup>-4</sup> mol. L<sup>-1</sup> so that it cannot form excimer in the micellar region. CPC has been used as the quencher, and final CPC concentration has been kept fixed within 0.3 x 10<sup>-3</sup> mol.kg<sup>-1</sup> to avoid micelle formation of CPC itself in the experimental solutions for both steady state and time resolved experiments. The ratio of ([quencher]/[micelle]) in pyrene-solubilized micellar solution has been kept near unity to ensure the residence of one quencher molecule per micelle, as stated in the earlier literatures. <sup>55-57</sup> The initial concentrations of C<sub>16</sub>MImCl prepared in water and in different salt solutions have been kept fixed at 12 x 10<sup>-3</sup> mol.kg<sup>-1</sup>. Mean (average) fluorescence lifetimes ( $\tau_{av}$ ) for biexponential iterative fittings have been calculated from the pre-exponential factors  $(a_1 \text{ and } a_2)$ and the decay times ( $\tau_1$  and  $\tau_2$ ) by using the following equation:

#### $\tau_{\rm av} = a_1 \tau_1 + a_2 \tau_2$

(2)

## 2.2.5. Dynamic light scattering (DLS) and Zeta potential

DLS measurements have been carried out using a Nano ZS Zetasizer (Malvern, UK) at 90<sup>0</sup> scattering angle with a He-Ne laser having wavelength ( $\lambda$ ) of 632.8 nm at 298.15 K.

Zeta potential measurements have been performed at 298.15 K with 90<sup>o</sup> scattering angle using a gold coated copper electrode in the cell. All experimental solutions (concentration fixed at 10 x 10<sup>-3</sup> mol.kg<sup>-1</sup>) were filtered 3-4 times through membrane filters (porosity 0.25  $\mu$ m) to remove dust particles. The values of Zeta potential have been measured 3 times for all experimental solutions and average values are taken. The values of the hydrodynamic diameter (*D*<sub>h</sub>) and the Zeta potential ( $\zeta$ ) are recorded in Table 4.

#### 3. Results and discussions

#### **3.1.** Critical micellar concentration (*cmc*)

The values of *cmc* of aqueous  $C_{16}$ MImCl solutions in absence of any added salt obtained from conductometry, tensiometry, fluorimetry and isothermal titration calorimetry at 298.15 K in the present study (Table 1) are found to be in good agreement with each other and also with the literature reports. <sup>17,18,63</sup> At the other four temperatures namely, 303.15, 308.15, 313.15 and 318.15 K, the literature *cmc* values obtained from conductometry and tensiometry have been listed in Table 1(a).

#### **3.2.** Degree of counter-ion Binding ( $\beta$ )

Conductivity measurements can be conveniently used to quantify the fraction of counterions that binds with the ionic micelles. Indeed, the degree of counterion binding ( $\beta$ ) can be calculated from the specific conductivity *vs*. concentration profiles of the surfactant solutions by using the following equation:

$$\beta = 1 - \frac{s_2}{s_1} \tag{3}$$

where  $S_1$  and  $S_2$  represent respectively the pre- and postmicellar slopes shown in the conductometric profiles in Fig. 2(b). The  $\beta$  values for the systems C<sub>16</sub>MImCl-NaCl thus obtained are listed in Table 2. It has been observed that these values are found to be strongly dependent on additives and that these increase with increasing salinity (Table 2) caused by changed micelle-counterion interaction in presence of varying concentrations of the added salts.

#### **3.3. Effect of Added Salt on the** *cmc* **of Aqueous** C<sub>16</sub>MImCl

Addition of each of the salt to  $C_{16}$ MImCl solution was found to cause a reduction in the *cmc* value from what is observed in salt-free solution. Further, the higher the amount of the added salt, the more is the reduction in the *cmc*. An interpretation of the observed decrease in the *cmc* values upon addition of a salt may be provided on the basis of a model put forward by Davis and Rideal <sup>64</sup>, later modified by Borwankar and Wasan. <sup>65</sup> This model pictures the Stern layer comprising of the surfactant ions with counterions constituting the diffuse part of the electrical double layer, *i.e.*, the Guoy-Chapman layer. The added salt ions squeeze the electrical double layer and, consequently, induce the shielding of the electrostatic repulsion among the polar head groups; this results in a marked reduction in the *cmc* compared to that of the salt-free system.

Anions have been found to have pronounced influence on the *cmc* of aqueous C<sub>16</sub>MImCl solutions. In particular, in presence of a given amount of an added sodium salt, the values of the *cmc* of C<sub>16</sub>MImCl are found to decrease in the order:  $Cl^->Br^->PO_4^{3-}>SO_4^{2-}(cf.$  Table 1)

indicating that the ability of these ions to promote self-aggregation of  $C_{16}MImCl$  increase in the reverse order:  $SO_4^2 > PO_4^3 - SBr^- > Cl^-$ .

In this context, it would be interesting to examine the relevance of the "Hoffmeister Series" or the "Lyotropic Series" in the light of the effect of the salt ions on the micellization of  $C_{16}$ MImCl in aqueous solutions. The Hoffmeister or the Lyotropic series for the efficiency of the salting out effect of the anions of a lyophilic substance from a colloidal solution which is controlled by ionic hydration follows the order  ${}^{20}$ :SO $_4^{2-}$ >PO $_4^{3-}$ >Cl<sup>-</sup>>Br<sup>-</sup>.

A rationale for the observed trend may be sought by invoking the idea of ionic hydration. Generally, the more the hydration of the ions, the less is their efficacy to neutralize the charges on the micelle surface, and hence the less is the reduction of the *cmc* in their presence. Now, the extent of ionic hydration has been shown to decrease in the order  ${}^{66}$ :PO $_4^{3-}$  > SO $_4^{2-}$ >Cl<sup>-</sup>>Br<sup>-</sup>and hence the *cmc* should follow the order:Br<sup>-</sup><Cl<sup>-</sup><SO $_4^{2-}$  < PO $_4^{3-}$ ,which is not in accordance with the experimental observation here.

In presence of a given concentration of the added electrolytes, the ionic strength of the solution varies in the order:  $PO_4^{3-}>SO_4^{2-}>Cl^- = Br^-$ . This indicates that squeezing of the electrical double layer and consequent shielding of the electrostatic repulsion among the polar head-groups would also follow the same order. Hence the *cmc* of C<sub>16</sub>MImCl should follow the order:  $Cl^- = Br^->SO_4^{2-}>PO_4^{3-}$ . This is also not in accordance with what observed experimentally.

Thus, neither the extent of hydration of the added anions nor the effect of the ionic strength of the added salt solutions could explain the observed order of the *cmc* values of aqueous  $C_{16}$ MImCl in the investigated salt solutions.

The apparent departure from the Hoffmeister series may be a consequence of basic difference between the two processes. Micelle formation is governed simultaneously by the electrostatic and hydrophobic effects, while the salting out of polymers and hydrocolloids is mainly controlled by the dehydration<sup>67</sup> of soluble polymers and hydrocolloids. Hence a strict adherence to this series is not expected for aqueous  $C_{16}$ MImCl in presence of different salts. Such a non-compliance of the Hoffmeister effect has also been reported earlier for other amphiphile-salt solutions.<sup>20, 45</sup>Additional factors must, therefore, be identified to account for the salt effect on micellization: (a) One possible reason for the observed discrepancy may be sought in specific interaction between the added counter-anions and the micelle.<sup>50</sup> The effect of counterion specificity on the physical properties of micelle formation is, however, not well understood yet <sup>68</sup>, (b) Another factor might be the locally varying dielectric constant which has not been taken into account in the theories of micellar solutions. The immediate neighbourhood of the micelle may exhibit a considerably different dielectric constant than the bulk water thus influencing the micelle-counterion interaction, (c) Effect of the added anions on the water structures, *i.e.*, structure-making / structure-breaking capabilities of these ions might also contribute to their relative influences on the micellization behavior in aqueous C<sub>16</sub>MImCl solutions. Further studies are, therefore, required to clarify this aspect.

#### **3.4.** Effect of temperature on *cmc*

Influence of temperature on the *cmc* of aqueous  $C_{16}$  MImClas well as  $C_{16}$  MImCl-salt solutions has been investigated in presence of two different salt concentrations, namely 0.001 and 0.005 mol·kg<sup>-1</sup> and has been demonstrated in Table 1. With the increase in temperature, the *cmc* values in aqueous C<sub>16</sub>MImCl, C<sub>16</sub>MImCl-NaCl, C<sub>16</sub>MImCl-NaBr, and C<sub>16</sub>MImCl-Na<sub>2</sub>SO<sub>4</sub> solutions increase monotonically. For C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> system, on the other hand, the *cmc* is found to pass through a minimum on elevation of temperature. Literature reports on the temperature-dependence of cmc in other amphiphile solutions without or with a minimum are also available. <sup>16,39,45</sup> An explanation may be sought in the differential effect of temperature on the dehydration of the polar head and the apolar tail of the amphiphile which contributes differently to the variation of *cmc* with temperature. There are two opposite factors contributing <sup>16, 39, 45</sup> to this anomaly in the *cmc* trends: (a) the desolvation of water molecules from surfactant hydrophilic groups at lower temperature, leading to earlier micellization, (b) the breakdown of water structure from the surfactant hydrophobic tails, which is unfavourable in the process of micellization at higher temperature.

For aqueous C<sub>16</sub>MImCl as well as for C<sub>16</sub>MImCl-NaCl, C<sub>16</sub>MImCl-NaBr, and C<sub>16</sub>MImCl-Na<sub>2</sub>SO<sub>4</sub> systems, the results indicate that the latter effect (dehydration of hydrophobic tail) predominates within the investigated temperature range, and the *cmc* values of these systems increase with temperature. It can, however, be hypothesized that a minimum could possibly occur at some temperature below 298.15 K where the former effect (dehydration of imidazolium head groups) is expected to be decisive. For C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> system, however, below 303.15 K, the former effect takes the leading role, while beyond this critical temperature the latter effect controls the aggregation process of C<sub>16</sub>MImCl in presence of Na<sub>3</sub>PO<sub>4</sub>.

#### 3.5. Thermodynamics of micellization

- - -

Standard free energy of micellization  $\Delta G_m^0$  can be calculated using the following equation based on the mass action model of micellization<sup>10</sup>:

$$\Delta G_{\rm m}^0 = {\rm RT}(1+\beta){\rm lnx}_{\rm cmc}$$

(4)

where,  $x_{cmc}$  is the *cmc* expressed in terms of mole fraction. The parameter  $\beta$  in the above expression refers to the fraction of free energy required to condense the counter ions onto the monomer head groups during the process of micellization to reduce the repulsion.

The corresponding standard enthalpy of micellization  $(\Delta H_m^0)$  can be obtained from the following equation:

$$\Delta H_m^0 = -RT^2 \left[ \left( 1 + \beta \right) \left( \frac{\partial \ln x_{cmc}}{\partial T} \right)_P - \ln x_{cmc} \left( \frac{\partial \beta}{\partial T} \right)_P \right]$$
(5)

When the  $\beta$  values do not vary appreciably with temperature, Eq. (5), as a first approximation, reduces to

$$\Delta H_m^0 = -RT^2 \left[ (1+\beta) \left( \frac{\partial \ln x_{cmc}}{\partial T} \right)_P \right]$$
(6)

The values of  $(\partial \ln x_{cmc}/\partial T)_p$  were obtained from the slopes of the second order polynomial fitting of  $\ln x_{cmc}$  vs. *T* profiles (shown in Fig. S1, supplementary section). The standard entropy of micellization( $\Delta S^0_m$ ) can then be calculated using the following Gibbs-Helmholtz equation:  $\Delta G^0_m = \Delta H^0_m - T\Delta S^0_m$ (7)

The  $\Delta G_m^0$ ,  $\Delta H_m^0$  and  $\Delta S_m^0$  values for the micellization of aqueous C<sub>16</sub>MImCl solutions in presence of all the salts investigated are shown in Table 2 and Fig. 6.  $\Delta H_m^0$  values for the micellization of C<sub>16</sub>MImCl are always found to be relatively more negative in presence of the added salts than those in salt-free aqueous solution.<sup>63</sup>  $\Delta H_m^0$  values calculated from Eq. 6 are always found to be negative n presence of two different concentrations (0.001 and 0.005 mol·kg<sup>-1</sup>) of all the added salts (Table 1) indicating an exothermic nature of micellization prevailing in these systems. Further, micellization processes become more exothermic in the higher temperature region or in presence of higher salt concentration. The relatively larger negative  $\Delta H_m^0$  values found for 0.005 mol·kg<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub> (cf. Table 2)as a function of temperature as compared to the other salt solutions is probably due to the estimation of  $\Delta H_m^0$  using Eq. (5), as the  $\beta$  values are significantly temperature-dependent in this system (cf. Table 3). There are two factors which might contribute to the enthalpy of micellization and its variation with temperature <sup>16,69</sup>: (a) a positive contribution is attributed to the release of water molecules from hydration layer around the hydrophilic heads and the hydrophobic tails of the amphiphile molecules due to breakdown of the electrostatic attraction of counterions with coions, and secondly, (b) transfer of the hydrophobic tails from aqueous phase to the micellar core and regenerate the H-bonding of water molecules around the micelles leading to negative contribution to $\Delta H_m^0$ . As the temperature increases, the first factor becomes less prominent as the degree of H-bonding around the surfactant monomers diminishes at higher

temperatures. $\Delta H_m^0$  values did not exhibit any specific trend with respect to the added anions except in the high temperature region, where negative  $\Delta H_m^0$  increases in the order: Cl<sup>-</sup>< Br<sup>-</sup> <SO<sub>4</sub><sup>2-</sup>< PO<sub>4</sub><sup>3-</sup>. Micellization of C<sub>16</sub>MImCl is more exothermic in presence of Br<sup>-</sup> than in presence of Cl<sup>-</sup> at the salt concentration of 0.001 mol·kg<sup>-1</sup>throughout the entire investigated temperatures, whereas an opposite trend is observed when added salt concentration is 0.005 mol·kg<sup>-1</sup>upto 313.15 K (*cf.* Table 2, Fig. 6). From Fig. 6(b), it is evident that,  $\Delta H_m^0$  values show a sharp decline ranging from positive to negative values when the micellization is studied at 0.005mol·kg<sup>-1</sup> NaBr compared to its lower concentration. A relatively larger contribution in terms of negative  $\Delta H_m^0$  valueshas been observed in presence of PO<sub>4</sub><sup>3-</sup> at higher temperatures, whereas  $\Delta H_m^0$  values remained almost invariant with temperature in presence of for both salt concentrations investigated (cf. Figs. 6 (a) and 6(b)). The  $\Delta H_m^0$  values in presence of SO<sub>4</sub><sup>2-</sup> are found to be intermediate between those in presence of Cl<sup>-</sup> and PO<sub>4</sub><sup>3-</sup> (cf. Fig.6 (a)). Table 2 demonstrates that the entropy of micellization  $(\Delta S_m^0)$  is in the majority of cases are positive, and that  $\Delta S_m^0$  decreases as the temperature increases. Aqueous C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> solutions exhibit both positive and negative entropy values, with the negative values found at high temperature (cf. Table 2). The positive  $\Delta S_m^0$  values may be attributed <sup>42</sup> to the breakdown of the ice-berg structure due to removal of hydrophobic tail to the micellar core, and to the increase of the degrees of rotational freedom of the hydrophobic tails inside the core. The negative  $\Delta S_m^0$  values could have arisen from the restoration of water structure around the amphiphile, and this effect becomes more important than the above two effects at elevated temperatures. The  $\Delta G_m^0$  values are found to be more negative in presence of electrolytes than those observed in aqueous solutions <sup>63</sup> indicating greater spontaneity of micellization in presence of salts with a concomitant reduction in the cmcs values (cf. Table 2). Improved spontaneity of micellization has also been observed as the salinity of the solutions increases except for C<sub>16</sub>MImCl-Na<sub>2</sub>SO<sub>4</sub> systems in the low temperature regions. The  $\Delta G_m^0$  values in C<sub>16</sub>MImCl-salt solutions are found to be slightly dependent on temperature (C<sub>16</sub>MImCl-Na<sub>2</sub>SO<sub>4</sub> system is an exception) (Table 2, Figs. 6(a)-(b)) probably due to close compensation of  $T\Delta S_m^0$  and  $\Delta H_m^0$  values. A comparison of the  $\Delta H_m^0$  and  $T\Delta S_m^0$  values for  $C_{16}$ MImCl-salt systems indicates that the micellization process is entropy-driven in presence of 0.001 mol·kg<sup>-</sup> <sup>1</sup> NaCl throughout the entire range of temperature, while enthalpy takes the lead in micelle formation in presence of 0.001 mol·kg<sup>-1</sup>NaBr (cf. Table 2). In presence of 0.005 mol·kg<sup>-1</sup>NaCl or NaBr, the micellization is, however, enthalpy driven at the higher temperatures. Similar behavior has also been observed for 0.001 mol.kg<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub> as well as for all concentrations of  $Na_3PO_4$ , where the trivalent additive enhances the enthalpy contribution over entropy contribution significantly (*cf.* Table 2) at higher temperatures during micellization. Finally, it can be stated that, in this present work micellization of  $C_{16}MImCl$  is enthalpy driven at higher temperature, whereas the entropy play significant role at lower temperature, in presence of the investigated salts. Such observation underscoring the importance of both hydrophobic and electrostatic interactions during micellization in presence of added salts has also been reported earlier. <sup>31</sup>

An empirical equation often used  $^{43,44,62,70}$  for correlating  $\Delta H_m^0$  and  $\Delta S_m^0$  to determine the compensation temperature ( $T_{com}$ ) describing the dehydration of hydrophobic part of surfactants,

$$\Delta H_{\rm m}^0 = \Delta H_{\rm m}^{0*} + T_{\rm com} \Delta S_{\rm m}^0 \tag{8}$$

here  $\Delta H_m^{0*}$ , intrinsic enthalpy gain, reflects the solute-solute interaction and it has been described as chemical part for micelle formation in terms of association of the hydrophobic part to the micellar core.  ${}^{43,44,62,70}$  T<sub>com</sub> values have been calculated for C<sub>16</sub>MImCl in presence of different concentration of electrolytes using  $\Delta H_m^0$  vs.  $\Delta S_m^0$  profile (Fig.S2, in the supplementary section), and are summarized in Table 2. The quality fit has always been excellent, the squares of the correlation coefficients lying between 0.98 and 0.99. The compensation temperature for the micellization of aqueous C<sub>16</sub>MeImCl has been reported to be 280 K.  $^{63}$  For the micellization of aqueous C<sub>16</sub>MImCl in presence of the electrolytes investigated here, the compensation temperatures are found to be between 270 and 301 K. It has been suggested earlier that the  $T_{\rm com}$  value in aqueous solution is expected to lie between 270 and 294 K for processes dominated by hydration. <sup>71</sup> The observed values of  $T_{\rm com}$  are, therefore, very close to these values. However, relatively low  $T_{\rm com}$  value observed in presence of 0.001 mol·kg<sup>-1</sup> NaBr (223 K) might be due to the difference of the bulk structural property of the solution from that of the water in this particular system. It is, however, worth mentioning that the linearity of the  $\Delta H_m^0$  vs.  $\Delta S_m^0$  plots should not be over-interpreted <sup>72</sup>, though this linearity is observed quite frequently.



**Fig. 2.** Specific conductance ( $\kappa$ ) vs. concentration of C<sub>16</sub>MImCl in presence of (a) 0.001 mol.kg<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub>, and (b) 0.005mol.kg<sup>-1</sup> NaBr at five different temperatures. Error bars are given at the inset.

#### 3.6. Interfacial properties for the micellization of C<sub>16</sub>MeImCl in presence of salts

The excess surface concentration ( $\Gamma_{max}$ ) and the minimum area per surfactant molecules ( $A_{min}$ ) at the air/water interface have been obtained using the Gibbs adsorption equation <sup>63,73</sup>:

$$\Gamma_{\max} = -\frac{1}{2.303iRT} \lim_{c \to cmc} \left( \frac{\partial \gamma}{\partial \log c} \right)$$
(9)
$$A_{\max} = -\frac{10^{18}}{2} \left( \frac{10^{18}}{\cos c} \right)$$
(10)

$$A_{\min} = \frac{10}{N_{\rm A} \Gamma_{\rm max}} \tag{10}$$

where, i is the number of species per surfactant monomer, R the universal gas constant, N<sub>A</sub> the Avogadro number,  $(\partial \gamma / \partial \log c)$  is the slope of tensiometric isotherm (cf. Fig. 3) at cmc, and, *T* the temperature in Kelvin scale. The values of n have been calculated for the surfactant-salt solutions using the equation put forward by Matijevic and Pethica [74]: i= 1+ cmc/(cmc+m<sub>e</sub>), where, m<sub>e</sub> is the concentration of electrolytes in molality unit. The  $\Gamma_{max}$  and  $A_{min}$  values computed through Eqs. (9) and (10) have been recorded in Table 3. The  $\Gamma_{max}$  values of C<sub>16</sub>MImCl in aqueous solution have been found to be 2.04 at 298.15K. <sup>63</sup> The variations of  $\Gamma_{max}$  of C<sub>16</sub>MImCl in presence of different salts have not always been found to be regular with the molality of the surfactant, revealing sometimes a minimum (Fig. S3 in the supplementary section). Such phenomenon has also been observed for the micellization of CTAB in presence of NaBr at low salt concentration.<sup>75</sup> The calculated  $\Gamma_{max}$  values of C<sub>16</sub>MImCl in presence of MaBr have been found to be greater than that of aqueous solution, while addition of NaCl reveals an opposite trend beyond 0.001 mol.kg<sup>-1</sup>. The reduction of  $\Gamma_{max}$  in presence of higher amount of added NaCl may be attributed to an enhanced repulsion among

the Cl<sup>-</sup> ions at the interface  $^{33}$  thus disfavouring the charge neutralization of C<sub>16</sub>MIm<sup>+</sup>. On the other hand, greater charge neutralization of C<sub>16</sub>MIm<sup>+</sup> ions facilitated by the Br<sup>-</sup> ions leads to larger adsorption of imidazolium head groups with concomitant decrease in A<sub>min</sub>. Two opposing effects have been believed to operate<sup>33</sup> at the air/water interface with increasing ionic strength of the medium: i) electrostatic charge neutralization of surfactants at the interface and compression of the double layer leading to larger adsorption, and ii) van der Walls repulsion of surfactant tails and electrostatic repulsion of surfactant head groups due to incomplete charge neutralization, which slow down the adsorption process. The present observations indicate that when the concentration of added NaCl is low, the second factor predominates, whereas at high concentration of NaCl the first factor controls the adsorption process. The divalent  $SO_4^{2}$  ions can easily neutralize the  $C_{16}MIm^+$  ions at the interface at relatively low concentration (0.001) mol.kg<sup>-1</sup>) and its  $\Gamma_{max}$  value is larger than that in presence of NaBr of identical salinity. PO<sub>4</sub><sup>3-</sup> ions show the same behavior as do the Cl<sup>-</sup> ions (shown in Fig. S3, supplementary section) despite its trivalent character. Higher hydrophobicity of the two larger added anions (over the entire concentration range of  $PO_4^{3-}$  ions, and within a relatively moderate concentration range of SO<sub>4</sub><sup>2-</sup> ions) keeps them apart from the interface with significant lowering of the adsorption of C<sub>16</sub>MIm<sup>+</sup> ions leading to a low  $\Gamma_{\text{max}}$  and a high  $A_{\text{min}}$ .

The geometrical shape of micelles formed in surfactant solutions can be conveniently predicted by a parameter, known as the packing parameter (*P*), defined by Israelachvili as [76]  $P = \frac{v}{l_c A}$ (11)

where v is the volume of the hydrophobic hydrocarbon chain assuming it to be fluid and incompressible,  $l_{\rm C}$  the maximum effective length of that chain, and A the surface area of the surfactant monomer head-group. The values of  $l_{\rm C}$  (in nm) and v (in nm<sup>3</sup>) of a saturated hydrocarbon chain bearing *C*n number of carbon atoms have been calculated using the Tanford formulas with the following equations <sup>77</sup>

$$l_{\rm C} = (0.154 + 0.1265C_{\rm n}) \tag{12}$$

$$\nu = (0.0274 + 0.0269C_{\rm n}) \tag{13}$$

The exact determination of head group area (*A*) on the micellar surface is quite difficult. <sup>78</sup> We have, therefore, used  $A_{\min}$  values (obtained from tensiometry) instead of Ain Eq. 11 as suggested in the literature.<sup>78,79</sup> *P* values, thus obtained are listed in Table 3. For spherical micelles,  $P \le 0.333$ ; for nonspherical shape, 0.333 < P < 0.5; for vesicles and bilayers, 0.5 < P < 1; and for inverted structures, P > 1. From Table 3, it is evident that C<sub>16</sub>MImCl forms spherical micellar aggregates in presence of varying concentrations of NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub>

investigated here, except in presence of  $0.02 \text{ mol.kg}^{-1}$  NaBr. Although the predictions made here is solely based on the validity of the Israelachvili model <sup>76</sup>, a plausible molecular rationale of which could be provided. We may infer that the strong binding tendency of Br<sup>-</sup> ion could convert the spherical micelles of C1<sub>6</sub>Mim<sup>+</sup>ions into rod-like micelles in presence of the highest amount of added NaBr. Compared with Br<sup>-</sup> ions, other added ions are more highly hydrated <sup>66</sup>, and thus are less effective in penetrating and shielding the charge of the surfactant aggregates. Efficient shielding of the charge on the aggregates in presence of 0.02 mol.kg<sup>-1</sup> NaBr by reducing the electrostatic repulsion among the ionic charges on micelles results in a larger reduction of the ionic head-group area, and hence an increase in the *P* value beyond 0.33. That is, only the least hydrated Br<sup>-</sup> ion when present in a large amount can bind the cationic micelle to an amount large enough to stabilize a rod-like micelle.Such salt-induced transition of the shape of ionic micelles has also been observed earlier.<sup>80-82</sup> However, scattering experiments would be useful to provide a direct proof which, at present, is not possible for the lack of facility. We contemplate to take up the matter in a future occasion.

The efficiency of interfacial adsorption of any given amphiphile solution can be conveniently expressed by a parameter  $pC_{20}$  defined as

$$pC_{20} = -\log C_{20} \tag{14}$$

where  $C_{20}$  is the is the concentration of the amphiphile which reduces the surface tension of the solution by 20 mN·m<sup>-1</sup>. The  $pC_{20}$  values for aqueous C<sub>16</sub>MImCl solutions in absence and in the presence of different salt solutions are listed in Table 3. A higher  $pC_{20}$  value is indicative of a higher adsorption efficiency of the surfactant at the interface and more efficiency in reducing the surface tension. The results indicate that addition of salt to aqueous C<sub>16</sub>MImCl solutions leads to a reduction in the adsorption efficiency of the surfactant.

The surface pressure at the *cmc* ( $\pi_{cmc}$ ) was calculated using the following equation

$$\pi_{\rm cmc} = \gamma_0 - \gamma_{\rm cmc} \tag{15}$$

where  $\gamma_0$  and  $\gamma_{cmc}$  are the surface tension of pure solvent and that for the pure and mixed surfactants at their *cmc* respectively. The  $\pi_{cmc}$  values for aqueous C<sub>16</sub>MImCl solutions in absence and in the presence of different salt solutions are recorded in Table 3. This parameter indicates the maximum reduction of surface tension caused by the dissolution of surfactant molecules and hence becomes a measure for the effectiveness of the surfactant to lower the surface tension of the solvent medium. Addition of the investigated salts to the aqueous C<sub>16</sub>MImCl solutions caused an enhancement of the effectiveness of the surfactant in reducing the surface tension compared to the salt-free solutions.



**Fig. 3.** Tensiometric isotherms of aqueous  $C_{16}$ MImCl in presence of (a) NaCl, (b) NaBr, (c) Na<sub>2</sub>SO<sub>4</sub>, and (d) Na<sub>3</sub>PO<sub>4</sub>. The error bars are shown in the inset in each case.

#### **3.7.** Isothermal titration calorimetry (ITC)

All *cmc* values and  $\Delta H_m^0$  values (within the brackets) measured by ITC at 298.15 K for the micellization of C<sub>16</sub>MImCl in presence of different salts are listed in Table 2. Calorimetric titration curves along with the heat-flow results for aqueous C<sub>16</sub>MImCl in absence and in presence of salts at different concentrations have been shown in Fig. 4

Profiles showing the variation of the standard enthalpies of dilution ( $\Delta H^0_{dil}$ ) per mole of surfactant added per injection with the concentration of the C<sub>16</sub>MImCl reveal three distinct regions <sup>17</sup>: one in the premicellar region (I), where dilution of surfactant solution (having

concentration  $\approx 10$  times the *cmc* as mentioned in experimental section), leads to micellar break up into monomers; another in the post micellar region (III), where dilution of both the micelles and free monomers takes place; and one in the middle (II) between the above two regions, where a sharp decrease occurs in the enthalpogram due to the dissociation of a fraction of micelles into free monomers. In particular, these plots are more or less "sigmoidal" in nature and the inflection point in the intermediate region of these enthalpograms provides a measure of the *cmc*. <sup>10, 17, 52, 58-61</sup> The *cmc* values have, however, been more precisely determined from the optimum of the plot of the first derivative of the enthalpy change as a function of the surfactant concentration.<sup>60</sup> In presence of salts both exo and endothermic processes were obtained for the micellization of C<sub>16</sub>MeImCl. In presence of investigated salts, the enthalpograms shown initial increase or decrease in their pattern, and finally become almost constant at high surfactant concentration (*cf.* Fig. 4). The *cmc* values thus obtained agree well with the *cmcs* calculated by other methods, *i.e.*, conductometry, tensiometry and steady state anisotropy techniques. For salt-containing surfactant solutions, these two regions can be identified as the pre- and postmicellar regions respectively.

The intersection of the vertical line passing through the *cmc* and the premicellar line is the initial enthalpy of dilution [ $\Delta H^0_{\text{dil}}$  (initial)] while that of this vertical line with the postmicellar line provides a measure of the final enthalpy of dilution [ $\Delta H^0_{\text{dil}}$  (final)] as shown in Fig. 4. For some investigated systems (0.01 mol.kg<sup>-1</sup> NaBr, 0.001 mol.kg<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub>, and 0.005 mol.kg<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub>), however, the initial enthalpy of micellization was considered to be equal to the heat of the first injection assuming complete demicellization as suggested by Anderson et al. and Chadha et. al.<sup>83-84</sup> The heat change due to micellization ( $\Delta H^0_{\text{obs}}$ ) is then given by the difference between  $\Delta H^0_{\text{dil}}$  (initial) and  $\Delta H^0_{\text{dil}}$  (final) values.

In some of the cases the data obtained here did not represent a plateau in the premicellar region, rather a linear variation of  $\Delta H_{dil}^0$  as a function of surfactant concentration with a definite slope was observed. Similar behavior has also been reported earlier for other surfactant solutions.<sup>58, 59, 85-89</sup> Further, for some solutions the enthalpy values at high concentrations have been found toreach a plateau below zero. These results are in accordance with what observed earlier <sup>10, 52</sup> where for some surface active ionic liquids at high concentrations the enthalpy values have been reported to reach a plateau well above (~ +2.5 kJ.mol<sup>-1</sup>) or below (~ -2.0 kJ.mol<sup>-1</sup>) zero *instead of tending to zero*.

The enthalpies of micellization ( $\Delta H^0_m$ ) can be obtained from the following empirical equation <sup>52, 60</sup>:

$$\Delta H_{\rm m}^0 = \frac{\Delta H_{\rm obs}^0 c_{\rm T}}{c_{\rm T} - cmc} \tag{17}$$

where  $c_T$  is the initial concentration of stock surfactant solution. Micellization of  $C_{16}$ MImCl in aqueous solution is exothermic ( $\Delta H_m^0 = -3.34 \text{ kJ.mol}^{-1}$ ) and the *cmc* has been found to be 0.70 x 10<sup>-3</sup> mol.kg<sup>-1</sup> at 298.15 K. Seoud*etal.*<sup>17</sup> also investigated the micellization of C<sub>16</sub>MImCl and they found a  $\Delta H^0_{\rm m}$  value of -2.75 kJ.mol<sup>-1</sup> and a *cmc*of 0.99 x 10<sup>-3</sup> mol.L<sup>-1</sup>. Thus, there is a good agreement between the values obtained in this study and those reported earlier. Addition of salts greatly influences the thermodynamics of the micellization of  $C_{16}MImCl$  (cf. Fig. 5, Table 2). In presence of 0.001 mol.kg<sup>-1</sup> NaCl, micellization is found to be endothermic ( $\Delta H^0_{\rm m}$ = +0.56 kJ.mol<sup>-1</sup>), while for higher salinity it becomes exothermic, the enthalpy of micellization reaching a plateau within the limits of experimental error (cf. Fig. 5). On the other hand, in presence of the lowest amount of added NaBr, micellization is exothermic ( $\Delta H_m^0 = -3.65$ kJ.mol<sup>-1</sup>)which then becomes endothermic and passes through a maximum  $(+4.16 \text{ kJ.mol}^{-1})$  at 0.01 mol.kg<sup>-1</sup>(Fig. 5).Luczak et al.<sup>52</sup> also observed both positive and negative enthalpy changes during while studying the micellization of 1-decyl-3-methylimidazolium chloride in presence of KBr at 298.15K. Micellization of C<sub>16</sub>MImCl both in presence of Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub> shows overall endothermicity at all electrolyte concentrations, the process being more endothermic in presence of Na<sub>3</sub>PO<sub>4</sub>.Enthalpy of micellization, as discussed in section 3.1, can be enlightened by two compromising factors. It is known that a cavity needs to be formed within the water structure to accommodate the micellar aggregate, and the addition of kosmotropes strengthens the water structure<sup>52</sup>. So, more energy is required to break the water structure in presence of the added kosmotropes compared to the kosmotrope-free situation, and consequently positive contribution to enthalpy factor increases and hence micellization becomes less exothermic in presence of these kosmotropes. Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub> being the higher order kosmotropes produce greater endothermicity than the other two salts (NaCl and NaBr) except an unusual observation in presence of 0.01 mol.kg<sup>-1</sup> NaBr. Due to the higher charge to radius ratio of hydrated Br<sup>-</sup> ion compared to that of the Cl<sup>-</sup> ion, Br<sup>-</sup>ions easily replace Cl<sup>-</sup> ions from the Stern layer of micelle  $^{33}$  due to electrostatic reason and bind more easily with C<sub>16</sub>MIm<sup>+</sup>. The relatively large crowding of Br<sup>-</sup> ions in the Stern layer when NaBr concentration is sufficiently high might progressively destabilize the micelle, and contribute less to negative enthalpy. Beyond a threshold concentration (0.01 mol.kg<sup>-1</sup>) of Br<sup>-</sup>ion, to gain stability, some Cl<sup>-</sup>ions might defuse into the Stern layer, and finally micellization becomes exothermic (Fig.5) at 0.02 mol.kg<sup>-1</sup> salt concentration.  $\Delta H^0_{m}$  values obtained by ITC measurements, however, deviate from those (van't



Hoff enthalpies) obtained from the mass action model (cf. Section 3.1), though the relative trends are the same (cf. Table 2). Similar observations have also been reported earlier  $^{45}$ .




**Fig. 4.** Calorimetric titration curves of  $C_{16}$ MImCl in water and in presence of different salts with four different concentrations (0.001, 0.005, 0.01 and 0.02 mol.kg<sup>-1</sup>). (For each plot: top row (a): raw calorimetric traces (heat flow vs. time), bottom row (b): integration of peaks with thermodynamic parameters).



Fig. 5. Variation of calorimrtric enthalpies ( $\Delta H^0_m$ ) in different C<sub>16</sub>MImCl-salt solutions as a function of salt concentrations at 298.15K. Error bars are given for each



**Fig. 6.** Thermodynamic parameters derived from mass action model using conductometry at different temperatures for the micellization of  $C_{16}$ MImCl in the presence of two different concentrations of the added salts: (a) 0.001 mol.kg<sup>-1</sup>, and (b) 0.005 mol.kg<sup>-1</sup>

### 3.8. Steady state anisotropy(r), steady state and time resolved fluorescence quenching: *cmcs*, micropolarity ( $I_1/I_3$ ), life time ( $\tau$ ), Stern-Volmer quenching constant ( $K_{SV}$ ), and, aggregation number ( $N_a$ )

Fig.7(a) displays the steady state anisotropy (r) values as a function of surfactant molality (m) in presence of the four different salts each having a concentration of 0.001 mol.kg<sup>-1</sup>. The plots show the similar trend: with the addition of surfactant, r values decrease gradually and finally reach a plateau beyond a certain inflection point [54]. The intersection of the two linear profiles above and below that inflection has been identified as the *cmc* (Fig.7 (a)). The solubility of DPH in water as well as in salt solutions is very low. Hence, prior to the addition of surfactant, DPH molecules remain self-aggregated <sup>53,54</sup> impeding their rotational movement which results in a high value of anisotropy. Now, initial addition of surfactant to DPH solutions causes dissolution of the probe molecules leading to a gradual reduction in the anisotropy values. After commencement of surfactant aggregation, DPH molecules enters the hydrophobic micellar core of lower microviscosity<sup>53,54</sup>, and after that anisotropy remains invariant with added surfactant concentration. The *cmc* values obtained from anisotropy measurements agree well with those calculated from conductometric and tensiometric methods (*cf.* Table 1).

The ratio of intensity of the first vibrational peak to that of the third of pyrene ( $I_1/I_3$ ) has been widely used to determine the solvent polarity of pyrene environment <sup>46, 90, 91</sup>. The ratio is 1.87 in water and 0.58 in cyclohexane <sup>92</sup>. The polarity of the pyrene environment increases as the  $I_1/I_3$  ratio increases. Micropolarity ( $I_1/I_3$ ) in the micellar region, which is an indicator of the feasibility of micellization, has been plotted as a function of the concentration of the added salts for all C<sub>16</sub>MeImCl-salt solutions in Fig. 7(b). Pyrene usually gets solubilized near the palisade layer of the micelle accompanied with some water molecules, and micropolarity senses the water penetration in this layer <sup>46, 93</sup>. From Fig.7(b), it is clear that with the increase in salt concentration, micropolarity in the micellar region decreases within the error range, and the ratio  $I_1/I_3$  changes marginally in the second or third decimal place (*cf*. Table 4).The change in the value of  $I_1/I_3$  with increasing salt concentrations in presence of Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub> is, however, found to be relatively higher indicating that micellization of C<sub>16</sub>MImCl becomes more feasible in presence of these salts the more their concentrations.



**Fig. 7. (a)** Steady state fluorescence anisotropy (*r*) vs. concentration of  $C_{16}$ MImCl in presence of different salts (each with a concentration of 0.001 mol.kg<sup>-1</sup>) at 298.15 K. Error bars are shown for the  $C_{16}$ MImCl- Na<sub>2</sub>SO<sub>4</sub> system. (b) A comparative plot of miropolarity (I<sub>1</sub>/I<sub>3</sub>) of micelle (surfactant concentration: 10 x 10<sup>-3</sup> mol.kg<sup>-1</sup>) solubilized pyrene environment vs. concentration of added salts. Error bars are shown.

The fluorescence probe, pyrene, has a lower fluorescence life time than the residence time of CPC (an immobile quencher) <sup>93</sup>. Under these circumstances, the equation based on the proposed kinetic model of Gratzel and Tachiya <sup>94,95</sup> can be transformed into the following form <sup>46,55-57,96,97</sup>

$$I(t) = I(0) \exp\left[-\frac{t}{\tau_0} - n\{1 - \exp\left(-k_{\rm q}t\right)\}\right]$$
(18)

where I(t) and I(0) are the fluorescence intensities of pyrene at time *t* and zero respectively;  $\tau_0$  and  $\tau$  are the pyrene life times in the micellar atmosphere in the absence and in presence of CPC respectively, and  $\tau$  is defined as the reciprocal of the intramolecular first order quenching rate constant ( $k_q$ ) with one quencher molecule in or on the micelle. In Eq. (18), *n* is the ratio of the molal concentration of the quencher [*Q*] added to the surfactant solution to that of the micelle, and is given by

$$n = N_{\rm a} \frac{[Q]}{[S] - cmc} \tag{19}$$

where  $N_a$  is the aggregation number determined from time resolved fluorescence quenching (TRFQ) method, [S] and *cmc* are the initial surfactant concentration (here,  $12 \times 10^{-3} \text{ mol.kg}^{-1}$ ) and corresponding *cmc* (the average values of *cmcs* from Table 1 were used for the determination of  $N_D$ ). The values of *n* have been obtained from a fitting of the Eq.19 by

nonlinear least squares method ( $\chi^2$  test) for each quencher concentration in presence of different salt solutions with the help of IBH DAS-6 decay analysis software stated in the experimental procedure (section 2.2.3). The values of *n* have been kept here within 2 for theoretical consideration <sup>98</sup> and have been taken the average for all quencher concentration in each set of salts.

Aggregation number ( $N_D$ ) has also been calculated from the steady state fluorescence quenching (SSFQ) measurements, assuming static quenching of probe in the micellar medium with the following equation <sup>18, 99-103</sup>:

$$ln\frac{F_0}{F} = \frac{[Q]N_D}{[S]-cmc}$$
(20)

where  $F_0$  and F are the fluorescence intensities of pyrene in absence and in the presence of CPC, respectively. Other terms in Eq. 20 have their usual significance, as already discussed above.

Stern-Volmer equation can be used to determine the equilibrium bimolecular quenching constant ( $K_{SV}$ ) of pyrene by CPC which in case of static quenching takes the following form <sup>104</sup>:

$$\frac{F_0}{F} = 1 + K_{\rm SV}[Q]$$
 (21)

In case of dynamic quenching Eq. (20) may be written as <sup>105</sup>

$$\frac{\tau_0}{<\tau>} = 1 + K_{\rm SV}[Q] = 1 + k_q \tau_0[Q] \tag{22}$$

where  $<\tau>$  and  $k_q$  average lifetime in presence of quencher and the first order intramolecular quenching constant.

Static and Dynamic quenching both show a linear dependence on quencher concentration [Q] when plotted  $F_0/F$  and  $\tau_0/\langle\tau\rangle$  against [Q] respectively. Sometimes static and dynamic can occur simultaneously. Fig. 8(b) compares the  $F_0/F$  vs. [Q] profiles with  $\tau_0/\langle\tau\rangle$  vs. [Q] profiles for some representative  $C_{16}$ MImCl-salt solutions. Upward curvatures (second order polynomial dependence) in the steady state fluorescence quenching plots ( $F_0/F$  vs. [Q]) demonstrate that quenching of pyrene in micellar environment in presence of electrolytes are both static and dynamic in nature. This statement was further proved by the dissimilarly in the values of  $F_0/F$  and  $\tau_0/\langle\tau\rangle$  for the same [Q]. Linear time-resolved fluorescence quenching of pyrene in presence of PVF in presence of PVF. [Q]) accompanied with non-zero slope confirms dynamic quenching of pyrene in presence of CPC in the micellar environment of aqueous  $C_{16}$ MImCl-salt solutions investigated here. So coupled influences of both the dynamic and static quenching have been operated. Such a

combined effect has also been reported earlier where quenching of anthracene fluorescence by CPC in SDS micelle environment has been investigated <sup>105</sup>.

Stern-Volmer constant ( $K_{sv}$ ) values calculated from Eq. (20) have been listed in Table 5. Also included in this table are the  $k_q$  values calculated using the  $K_{sv}$  values along with the unquenched life times ( $\tau_0$ ). In absence of the quencher, the decay curve of pyrene is single-exponential, whereas these are bi-exponential in presence of CPC 55-57,96 for aqueous surfactant and for all surfactant-salt solutions. This means, pyrene can be accessible by CPC in two different regions of micelle. These bi-exponential plots provide two sets of life time values ( $\tau_1$  and  $\tau_2$ ; cf. Table S1). Average life time values ( $\langle \tau \rangle$ ) for all the sets in presence of CPC have been considered here, and are shown in Table S1. Quenching plots [log(count) vs. time] of pyrene in micellar environment of C<sub>16</sub>MImCl by CPC for all the salts (concentration: 0.001 mol.kg<sup>-1</sup>) have been shown in Fig. S4 of the supplementary section. Fig. 8(a) demonstrates the variation of life time as a function of the concentration of the added salts in absence of the quencher. The observed pyrene lifetime (136 ns) agrees fairly well with the literature values of the lifetimes (108-119 ns) in various aqueous cationic micellar solutions<sup>106</sup>. The lifetime reflects the accessibility of chloride ions into the different micelles to quench the pyrene. The present observation thus indicates that pyrene was quenched by the chloride ions in slightly different ways depending on the nature of the surfactant. The life time values in absence of the quencher ( $\tau_0$ ) are found to vary within the range of 99-154 ns for aqueous C<sub>16</sub>MImCl-NaBr solutions, while for aqueous C<sub>16</sub>MImCl-NaCl, C<sub>16</sub>MImCl-Na<sub>2</sub>SO<sub>4</sub>, and C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> systems  $\tau_0$  values are found to be relatively higher (143-160 ns) probably due to an increase in the hydrophobicity in micellar region resulting from the decrease in the micropolarity in the later cases (cf. Table 4). Relative lifetime values of pyrene in micellar media in presence of different electrolytes at 0.02 mol.kg<sup>-</sup> <sup>1</sup> have been shown at the inset of Fig. 8(a). Pyrene while defusing into the micelle in NaBr soluion quenched by Br<sup>-</sup> ions <sup>107</sup> in the vicinity of Stern layer, manifested in lower life time values at high ionic strength of  $Br^{-}$  which was reflected in the high  $K_{sv}$  values with increasing Br<sup>-</sup> (cf. Table 5) comparing with the other salts. The adsorbed Cl<sup>-</sup> ions around  $C_{16}MIm^+$  may be replaced by other anions in presence of different added electrolytes which lead to a varying quenching of the excited state.<sup>107</sup> The variation in lifetime thus indicates that pyrene was quenched in different ways depending on the nature of the added salts.

The values of the Stern-Volmer constants ( $K_{sv}$ ) are always found to be greater than those in <sub>water</sub> (Table 5). Micellar aggregation numbers have been obtained both from SSFQ ( $N_a$ ) and TRFQ ( $N_D$ ) methods, and are listed in Table 5. The aggregation number values obtained with TRFQ

method are always found to be higher than those obtained with the SSFQ method. That the TRFQ method produces higher values of the aggregation numbers of a number of gemini surfactants has also been reported earlier by Tehrani-Bagha *et al.* <sup>106</sup> Addition of any of the investigated salts results in an increase in the aggregation number of C<sub>16</sub>MImCl micelles (*cf.* Table 5). The aggregation numbers of C<sub>16</sub>MImCl micelles in presence of the salts have been found to increase in the order: NaCl  $\approx$  Na<sub>2</sub>SO<sub>4</sub>< NaBr < Na<sub>3</sub>PO<sub>4</sub>. The present study revealed an approximate linear relationship between the aggregation number and the hydrodynamic diameters of C<sub>16</sub>MImCl micelles in presence of NaBr, Na<sub>2</sub>SO<sub>4</sub>, and Na<sub>3</sub>PO<sub>4</sub> while this is not the case in the presence of NaCl indicating that the micelles are less compact in the latter case compared to the former cases.



**Fig. 8.** (a) Life time ( $\tau$ ) of solubilized pyrene in micelle (surfactant concentration: 12 x 10<sup>-3</sup> mol.kg<sup>-1</sup>) in water and in different salt solutions vs. salt concentration. Error bars are also shown. The inset depicts a comparative decay curve of pyrene in micellar medium in presence of different salts each with a concentration of 0.02 mol.kg<sup>-1</sup> without quencher. (b)  $F_0/F$  (black) and  $\tau_0/\tau$  (red) vs. CPC concentration in presence different salts.

#### **3.9.** Zeta potential ( $\zeta$ ) and hydrodynamic radius ( $R_h$ ) from DLS

The Zeta potential ( $\zeta$ ) defines the potential of the diffused electrical double layer of the ionic micellar aggregates. It provides a measure of the extent of electrostatic repulsion between aggregates with like charges in solution. The magnitude of Zeta potential also gives an estimate of the stability of colloidal systems.<sup>108</sup> In the present study, the magnitude of  $\zeta$  has been found to decline for C<sub>16</sub>MImCl micelles as the concentration of each of the added salt increases. The influence of the concentration of the added salt on  $\zeta$  is consistent with the classical electrical double layer theory, according to which an increase in salt concentration causes a reduction of the thickness of the electrical double layer (Gouy-Chapman layer) and consequently there is a

decrease in Zeta potential (*cf.* Table 4 and Fig. 9).The stability of the system decreases with the decrease of  $\zeta$  and it is generally considered that the instability window in terms of  $\zeta$  varies within +30 mV to -30 mV. From Fig. 9, it is evident that the highest  $\zeta$  values are obtained in presence of NaCl and the least in presence of Na<sub>2</sub>SO<sub>4</sub>. Bivalent and trivalent anions have reduced  $\zeta$  significantly as these anions compress electrical double layer more effectively. This trend in  $\zeta$  is similar to that what we find for the *cmc* values in presence of the investigated salts. (cf. Table 1). It is evident from Table 4 and Fig. 9 that the hydrodynamic radius (*R*<sub>h</sub>) of C<sub>16</sub>MImCl micelles increases with the increase of salt concentration. Presence of different salts affect the *R*<sub>h</sub> values of C<sub>16</sub>MImCl micelles differently, and the following sequence of these values have been found in presence of the investigated salts: NaCl > Na<sub>3</sub>PO<sub>4</sub>> NaBr > Na<sub>2</sub>SO<sub>4</sub>. Representative plots of the number (%) vs. size (nm) of the C<sub>16</sub>MImCl micelles in presence of 0.02 mol.kg<sup>-1</sup> of all the salts have been included in the supplementary section (Fig. S5) for better understanding of the size distribution of the micellar aggregates in salt medium.



Fig. 9. Zeta potential ( $\zeta$ ) of C<sub>16</sub>MImCl micelle in water and in different salt solutions (surfactant concentration: 6 x 10<sup>-3</sup> mol.kg<sup>-1</sup>) vs. salt concentration. Error bars are given. At the inset: the hydrodynamic diameter ( $D_h$ ) of micelle (surfactant concentration: 6 x 10<sup>-3</sup> mol.kg<sup>-1</sup>) vs. salt concentration profile. Error bar for one system is given and the error bars for other systems are same.

#### 4. Conclusions

A comprehensive study on the factors affecting the micellization of a surface-active ionic liquid, 1-hexadecyl-3-methylimidazoilium chloride, in presence of different alkali metal salts in aqueous solutions unravelled the nature of the subtle interactions prevailing in these solutions. Since surfactant-salt mixtures have enormous potential in biological, technological,

medical and pharmaceutical formulations, in enhanced oil recovery etc. for the purpose of improved solubilization, suspension and dispersion, it is anticipated that the information obtained here might help modulate the properties of the 1-hexadecyl-3-methylimidazoilium chloride micelles, in particular, and other surface-active ionic liquids in general. This study signifies the importance of conductometry, tensiometry, spectrofluorimetry, isothermal titration calorimetry and dynamic light scattering in conjunction with judicious choice of appropriate theoretical models to elucidate the behaviour of surface-active ionic liquid micellar solutions.

**Table 1.** Critical micellar concentration (*cmc*) of aqueous  $C_{16}$ MImCl in absence and presence of various salts with varying molal concentrations using conductometry (cond.), tensiometry (ST), steady state fluorescence anisotropy (FA), isothermal titration calorimetry (ITC)within the temperature range 298.15 K to 318.15 K<sup>a</sup>

| Added                                               |                                | $10^4 cmc \text{ (mol.kg}^{-1}\text{)}$    |                    |      |                         |         |  |  |  |  |  |
|-----------------------------------------------------|--------------------------------|--------------------------------------------|--------------------|------|-------------------------|---------|--|--|--|--|--|
| salt conc.<br>(mol.kg <sup>-1</sup> )               | <i>T</i> (K)                   | cond.                                      | ST                 | FA   | ITC                     | Average |  |  |  |  |  |
|                                                     | C <sub>16</sub> MimCl in water |                                            |                    |      |                         |         |  |  |  |  |  |
| 0                                                   | 298.15                         | 8.55, 8.76, <sup>a</sup> 8.60 <sup>b</sup> | 8.28, 9.55ª        | 9.06 | 7.70, 9.90 <sup>b</sup> | 8.80    |  |  |  |  |  |
|                                                     | 303.15                         | 9.42, <sup>a</sup> 8.82 <sup>c</sup>       | 9.71ª              | -    | -                       | 9.32    |  |  |  |  |  |
|                                                     | 308.15                         | 9.49, <sup>a</sup> 9.10 <sup>b</sup>       | 10.17 <sup>a</sup> | -    | -                       | 9.59    |  |  |  |  |  |
|                                                     | 313.15                         | 9.95, <sup>a</sup> 9.26 <sup>c</sup>       | 10.93 <sup>a</sup> | -    | -                       | 10.0    |  |  |  |  |  |
|                                                     | 318.15                         | 10.63, <sup>a</sup> 10.10 <sup>b</sup>     | 11.07 <sup>a</sup> | -    | -                       | 10.6    |  |  |  |  |  |
| C <sub>16</sub> MimCl in NaCl solution <sup>d</sup> |                                |                                            |                    |      |                         |         |  |  |  |  |  |
| 0.001                                               | 298.15                         | 5.99                                       | 6.32               | 5.40 | 6.67                    | 6.09    |  |  |  |  |  |
|                                                     | 303.15                         | 6.02                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 308.15                         | 6.40                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 313.15                         | 6.59                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 318.15                         | 7.18                                       | -                  | -    | -                       | -       |  |  |  |  |  |
| 0.005                                               | 298.15                         | 2.29                                       | 1.99               | 2.23 | 2.10                    | 2.15    |  |  |  |  |  |
|                                                     | 303.15                         | 2.68                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 308.15                         | 2.72                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 313.15                         | 2.70                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 318.15                         | 3.37                                       | -                  | -    | -                       | -       |  |  |  |  |  |
| 0.010                                               | 298.15                         | -                                          | 1.32               | 1.09 | 0.60                    | 1.00    |  |  |  |  |  |
| 0.020                                               | 298.15                         | -                                          | 0.91               | 0.91 | 0.54                    | 0.79    |  |  |  |  |  |
|                                                     |                                | C <sub>16</sub> MimCl in                   | NaBr solution      | d    |                         |         |  |  |  |  |  |
| 0.001                                               | 298.15                         | 3.29                                       | 2.97               | 3.39 | 1.10                    | 2.70    |  |  |  |  |  |
|                                                     | 303.15                         | 3.42                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 308.15                         | 3.95                                       | -                  | -    | -                       | -       |  |  |  |  |  |
|                                                     | 313.15                         | 4.60                                       | -                  | -    | -                       | -       |  |  |  |  |  |

|       | 318.15           | 4.94                     | -                                        | -               | -    | -    |
|-------|------------------|--------------------------|------------------------------------------|-----------------|------|------|
| 0.005 | 298.15           | 1.46                     | 1.27                                     | 1.47            | 0.91 | 1.30 |
|       | 303.15           | 1.47                     | -                                        | -               | -    | -    |
|       | 308.15           | 1.48                     | -                                        | -               | -    | -    |
|       | 313.15           | 1.58                     | -                                        | -               | -    | -    |
|       | 318.15           | 1.81                     | -                                        | -               | -    | -    |
| 0.010 | 298.15           | -                        | 1.21                                     | 0.77            | 0.81 | 0.93 |
| 0.020 | 303.15           | -                        | 0.53                                     | 0.48            | 0.45 | 0.49 |
|       |                  | C <sub>16</sub> MimCl in | Na <sub>2</sub> SO <sub>4</sub> solution | on <sup>d</sup> |      |      |
| 0.001 | 298.15           | 1.28                     | 1.01                                     | 1.52            | 0.43 | 1.06 |
|       | 303.15           | 1.31                     | -                                        | -               | -    | -    |
|       | 308.15           | 1.41                     | -                                        | -               | -    | -    |
|       | 313.15           | 1.53                     | -                                        | -               | -    | -    |
|       | 318.15           | 1.70                     | -                                        | -               | -    | -    |
| 0.005 | 298.15           | 1.07                     | 0.58                                     | 0.98            | 0.40 | 0.65 |
|       | 303.15           | 1.25                     | -                                        | -               | -    | -    |
|       | 308.15           | 1.28                     | -                                        | -               | -    | -    |
|       | 313.15           | 1.37                     | -                                        | -               | -    | -    |
|       | 318.15           | -                        | -                                        | -               | -    | -    |
| 0.010 | 298.15           | -                        | 0.51                                     | 0.70            | 0.34 | 0.52 |
| 0.020 | 303.15           | -                        | 0.50                                     | 0.65            | 0.23 | 0.46 |
|       |                  | C <sub>16</sub> MImCl in | Na <sub>3</sub> PO <sub>4</sub> soluti   | on <sup>d</sup> |      |      |
| 0.001 | 298.15           | 2.33                     | 2.20                                     | 2.25            | -    | 2.26 |
|       | 303.15           | 2.29                     | -                                        | -               | -    | -    |
|       | 308.15           | 2.67                     | -                                        | -               | -    | -    |
|       | 313.15           | 3.01                     | -                                        | -               | -    | -    |
|       | 318.15           | 3.46                     | -                                        | -               | -    | -    |
| 0.005 | 298.15           | 1.16                     | 0.90                                     | 1.27            | 0.96 | 1.07 |
|       | 303.15           | 0.87                     | -                                        | -               | -    | -    |
|       | 308.15           | 1.47                     | -                                        | -               | -    | -    |
|       | 313.15           | 1.51                     | -                                        | -               | -    | -    |
|       |                  |                          |                                          | _               | _    | _    |
|       | 318.15           | 1.71                     | -                                        | _               |      |      |
| 0.010 | 318.15<br>298.15 | 1.71<br>-                | - 0.80                                   | 0.81            | 0.57 | 0.73 |

<sup>a</sup>Ref. [63]. <sup>b</sup>Ref. [17]. <sup>c</sup>Ref. [18]. <sup>d</sup>Calculated in this present work.

**Table 2.** Degree of counterion binding ( $\beta$ ), Gibbs free energy of micellization frommass action model ( $\Delta G^{0}_{m}$ ), enthalpy of micellization ( $\Delta H^{0}_{m}$ ) / from ITC (within the bracket), entropy of micellization ( $\Delta S^{0}_{m}$ ), compensation temperature ( $T_{com}$ ), intrinsic enthalpy gain ( $\Delta H^{0}_{m}^{*}$ ) in absence and presence of different salt solutions within the temperature range 298.15 K to 318.15 K<sup>a</sup>

| [Salt]<br>(mol.kg <sup>-1</sup> )           | Т<br>(К)               | β    | ∆G <sup>0</sup> m<br>(kJ.mol <sup>-1</sup> ) | Δ <i>H</i> <sup>0</sup> m<br>(kJ.mol <sup>-1</sup> ) | Δ <i>S</i> <sup>0</sup> m<br>(kJ.mol <sup>-1</sup> .K <sup>-1</sup> ) | T <sub>com</sub><br>(K) | Δ <i>H</i> <sup>0*</sup> m<br>(kJ.mol <sup>-1</sup> ) | $\left \frac{T\Delta S_m^0}{\Delta G_m^0}\right $ |  |  |
|---------------------------------------------|------------------------|------|----------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|-------------------------------------------------------|---------------------------------------------------|--|--|
| C <sub>16</sub> MImCl in water <sup>b</sup> |                        |      |                                              |                                                      |                                                                       |                         |                                                       |                                                   |  |  |
| 0                                           | 298.15                 | 0.50 | -41.04                                       | -6.94                                                | 0.11                                                                  | -                       | -                                                     | -                                                 |  |  |
|                                             | 303.15                 | 0.49 | -41.26                                       | -9.40                                                | 0.10                                                                  | -                       | -                                                     | -                                                 |  |  |
|                                             | 308.15                 | 0.48 | -41.56                                       | -11.99                                               | 0.09                                                                  | -                       | -                                                     | -                                                 |  |  |
|                                             | 313.15                 | 0.47 | -41.74                                       | -14.69                                               | 0.08                                                                  | -                       | -                                                     | -                                                 |  |  |
|                                             | 318.15                 | 0.46 | -41.85                                       | -17.52                                               | 0.07                                                                  | -                       | -                                                     | -                                                 |  |  |
|                                             |                        |      |                                              | C <sub>16</sub> MimCl in                             | NaCl solution <sup>c</sup>                                            |                         |                                                       |                                                   |  |  |
| 0.001                                       | 298.15                 | 0.63 | -46.2                                        | -3.63( <b>0.56</b> )                                 | 0.14                                                                  | -                       | _                                                     | 0.92                                              |  |  |
|                                             | 303.15                 | 0.62 | -46.7                                        | -8.36                                                | 0.13                                                                  | -                       | -                                                     | 0.82                                              |  |  |
|                                             | 308.15                 | 0.59 | -46.3                                        | -13.2                                                | 0.11                                                                  | 278                     | -43.3                                                 | 0.71                                              |  |  |
|                                             | 313.15                 | 0.57 | -46.3                                        | -18.2                                                | 0.09                                                                  | -                       | -                                                     | 0.61                                              |  |  |
|                                             | 318.15                 | 0.56 | -46.4                                        | -23.6                                                | 0.07                                                                  | -                       | -                                                     | 0.49                                              |  |  |
| 0.005                                       | 298 15                 | 0.64 | -50.4                                        | -17 1(-0 67)                                         | 0.11                                                                  | _                       | _                                                     | 0.66                                              |  |  |
| 0.005                                       | 303 15                 | 0.64 | -50.4                                        | -21 5                                                | 0.09                                                                  | _                       | _                                                     | 0.00                                              |  |  |
|                                             | 308.15                 | 0.61 | -50.8                                        | -25.9                                                | 0.08                                                                  | 279                     | -48 4                                                 | 0.37                                              |  |  |
|                                             | 313.15                 | 0.61 | -51.2                                        | -30.6                                                | 0.06                                                                  |                         | 10.1                                                  | 0.40                                              |  |  |
|                                             | 318.15                 | 0.57 | -49.8                                        | -34.9                                                | 0.05                                                                  | -                       | -                                                     | 0.29                                              |  |  |
| 0.010                                       | 298.15                 | -    | -                                            | (-2.62)                                              | -                                                                     | -                       | -                                                     | -                                                 |  |  |
| 0.020                                       | 298.15                 | -    | _                                            | (-2.85)                                              | _                                                                     | -                       | -                                                     | -                                                 |  |  |
|                                             |                        |      |                                              | C <sub>16</sub> MimCl in                             | NaBr solution <sup>c</sup>                                            |                         |                                                       |                                                   |  |  |
| 0.001                                       | <b>2</b> 00 1 <b>5</b> | 0.67 | 10.0                                         |                                                      |                                                                       |                         |                                                       | 0.45                                              |  |  |
| 0.001                                       | 298.15                 | 0.67 | -49.8                                        | -26.1(-3.65)                                         | 0.08                                                                  | -                       | -                                                     | 0.47                                              |  |  |
|                                             | 303.15                 | 0.66 | -50.2                                        | -28.3                                                | 0.07                                                                  | -                       | -                                                     | 0.43                                              |  |  |
|                                             | 308.15                 | 0.64 | -49.8                                        | -30.4                                                | 0.06                                                                  | 223                     | -44.2                                                 | 0.39                                              |  |  |
|                                             | 313.15<br>219.15       | 0.61 | -49.0                                        | -32.3                                                | 0.05                                                                  | -                       | -                                                     | 0.34                                              |  |  |
|                                             | 516.15                 | 0.57 | -40.2                                        | -34.1                                                | 0.04                                                                  | -                       | -                                                     | 0.29                                              |  |  |
| 0.005                                       | 298.15                 | 0.68 | -53.5                                        | 8.57( <b>0.21</b> )                                  | 0.21                                                                  | -                       | -                                                     | 1.00                                              |  |  |
|                                             | 303.15                 | 0.67 | -54.0                                        | -2.79                                                | 0.17                                                                  | 301                     | -53.8                                                 | 0.95                                              |  |  |
|                                             | 308.15                 | 0.66 | -54.5                                        | -14.8                                                | 0.13                                                                  | -                       | -                                                     | 0.73                                              |  |  |
|                                             | 313.15                 | 0.65 | -54.8                                        | -27.4                                                | 0.08                                                                  | -                       | -                                                     | 0.49                                              |  |  |
|                                             | 318.15                 | 0.64 | -54.8                                        | -40.6                                                | 0.04                                                                  | -                       | -                                                     | 0.26                                              |  |  |
| 0.010                                       | 298.15                 | -    | -                                            | (4.16)                                               | -                                                                     | -                       | -                                                     | -                                                 |  |  |
| 0.020                                       | 298.15                 | -    | -                                            | (-1.61)                                              | -                                                                     | -                       | -                                                     | -                                                 |  |  |
|                                             |                        |      | C                                            | C <sub>16</sub> MimCl in Na                          | 2SO4 solution <sup>c</sup>                                            |                         |                                                       |                                                   |  |  |
| 0.001                                       | 298 15                 | 0 79 | -57.6                                        | -8 41(0 65)                                          | 0.16                                                                  | _                       | _                                                     | 0.85                                              |  |  |
| 0.001                                       | 303 15                 | 0.75 | -57.4                                        | -15.2                                                | 0.14                                                                  | _                       | _                                                     | 0.03                                              |  |  |
|                                             | 308.15                 | 0.74 | -57.4                                        | -22.4                                                | 0.11                                                                  | 299.6                   | -57.1                                                 | 0.61                                              |  |  |
|                                             | 313.15                 | 0.71 | -56.9                                        | -29.6                                                | 0.09                                                                  |                         | -                                                     | 0.48                                              |  |  |
|                                             | 318.15                 | 0.78 |                                              | _>                                                   |                                                                       | -                       | -                                                     | 0.34                                              |  |  |
|                                             |                        |      | -59.7                                        | -39.3                                                | 0.06                                                                  |                         |                                                       |                                                   |  |  |
| 0.005                                       | 298 15                 | 0.57 | -51.2                                        | -38 6 <sup>b</sup> ( <b>0 00</b> )                   |                                                                       |                         | _                                                     |                                                   |  |  |
| 0.005                                       | 303 15                 | 0.57 | -52.6                                        | -148 8 <sup>b</sup>                                  |                                                                       |                         | -                                                     |                                                   |  |  |
|                                             | 505.15                 | 0.50 | 52.0                                         | 140.0                                                |                                                                       |                         | -                                                     |                                                   |  |  |

|       | 308.15<br>313.15 | 0.70<br>0.83 | -58.3<br>-61.5 | -266.6 <sup>b</sup><br>-388.3 <sup>b</sup> |                                      |     | -     |      |
|-------|------------------|--------------|----------------|--------------------------------------------|--------------------------------------|-----|-------|------|
| 0.010 | 298.15           | -            | -              | (0.24)                                     |                                      |     | -     |      |
| 0.020 | 298.15           | -            | -              | (0.17)                                     |                                      |     | -     |      |
|       |                  |              | C <sub>1</sub> | 6MimCl in Na3P                             | O <sub>4</sub> solution <sup>c</sup> |     |       |      |
| 0.001 | 298.15           | 0.63         | -50.0          | -10.7                                      | 0.13                                 | -   | -     | 0.78 |
|       | 303.15           | 0.62         | -50.6          | -20.9                                      | 0.09                                 | -   | -     | 0.58 |
|       | 308.15           | 0.61         | -50.5          | -31.7                                      | 0.06                                 | 291 | -49.0 | 0.37 |
|       | 313.15           | 0.56         | -49.2          | -41.9                                      | 0.02                                 | -   | -     | 0.15 |
|       | 318.15           | 0.55         | -49.1          | -53.5                                      | -0.01                                | -   | -     | 0.09 |
| 0.005 | 298.15           | 0.64         | -53.1          | -10.4(2.02)                                | 0.14                                 | -   | -     | 0.80 |
|       | 303.15           | 0.64         | -55.2          | -22.5                                      | 0.11                                 | -   | -     | 0.59 |
|       | 308.15           | 0.54         | -50.6          | -33.2                                      | 0.06                                 | 297 | -53.1 | 0.34 |
|       | 313.15           | 0.65         | -55.0          | -49.4                                      | 0.02                                 | -   | -     | 0.10 |
|       | 318.15           | 0.57         | -52.6          | -60.9                                      | -0.03                                | -   | -     | 0.16 |
| 0.010 | 298.15           | -            | -              | 0.34                                       | -                                    | -   | -     | -    |
| 0.020 | 298.15           | -            | -              | 1.07                                       | -                                    | -   | -     | -    |

<sup>a</sup> $\Delta H^0_{\text{m}}$  calculated using Eq. (5).

 ${}^{b}\Delta H^{0}{}_{m}$ ,  $\Delta S^{0}{}_{m}$ , and  $\Delta G^{0}{}_{m}$  values taken from Ref. [63] for the micellization of C<sub>16</sub>MImCl in water. <sup>c</sup>Calculated in this study

**Table 3.** Surface excess at air/water interface ( $\Gamma_{cmc}$ ), minimum area per surfactant monomer at air/water interface ( $A_{min}$ ), efficiency of interfacial adsorption ( $pC_{20}$ ), surface pressure at the *cmc* ( $\pi_{cmc}$ ), and micellar packing parameters (P) in absence and in presence of different salts with varying concentrations at 298.15 K.

| Added<br>salt                   | [Salt]<br>(mol·kg <sup>-1</sup> ) | 10 <sup>3</sup> π <sub>cmc</sub><br>(J·m <sup>-2</sup> ) | 10 <sup>6</sup> Γ <sub>cmc</sub><br>(mol·m <sup>-2</sup> ) | $A_{\min}(\mathbf{nm}^2 \cdot \mathbf{molecule}^{\cdot 1})$ | <i>pC</i> <sub>20</sub> | Р    |
|---------------------------------|-----------------------------------|----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------|------|
| NaCl                            | 0                                 | 28.7                                                     | 1.95                                                       | 0.85                                                        | 3.40                    | 0.25 |
|                                 | 0.001                             | 30.5                                                     | 1.28                                                       | 1.29                                                        | 1.11                    | 0.16 |
|                                 | 0.005                             | 30.8                                                     | 1.76                                                       | 0.94                                                        | 1.56                    | 0.22 |
|                                 | 0.010                             | 32.8                                                     | 1.82                                                       | 0.91                                                        | 1.47                    | 0.23 |
|                                 | 0.020                             | 33.4                                                     | 1.54                                                       | 1.08                                                        | 2.06                    | 0.19 |
| NaBr                            | 0.001                             | 34.3                                                     | 2.36                                                       | 0.70                                                        | 1.14                    | 0.30 |
|                                 | 0.005                             | 35.6                                                     | 2.53                                                       | 0.66                                                        | 1.58                    | 0.32 |
|                                 | 0.010                             | 37.2                                                     | 2.60                                                       | 0.64                                                        | 1.78                    | 0.33 |
|                                 | 0.020                             | 36.3                                                     | 3.15                                                       | 0.53                                                        | 1.84                    | 0.40 |
| $Na_2SO_4$                      | 0.001                             | 29.0                                                     | 2.28                                                       | 0.72                                                        | 1.52                    | 0.29 |
|                                 | 0.005                             | 31.0                                                     | 1.74                                                       | 0.95                                                        | 1.92                    | 0.19 |
|                                 | 0.010                             | 31.0                                                     | 1.15                                                       | 1.44                                                        | 1.98                    | 0.16 |
|                                 | 0.020                             | 32.7                                                     | 1.90                                                       | 0.87                                                        | 2.00                    | 0.23 |
| Na <sub>3</sub> PO <sub>4</sub> | 0.001                             | 29.7                                                     | 1.15                                                       | 1.15                                                        | 1.55                    | 0.14 |
|                                 | 0.005                             | 31.1                                                     | 1.11                                                       | 1.49                                                        | 1.87                    | 0.14 |
|                                 | 0.010                             | 30.0                                                     | 1.50                                                       | 1.10                                                        | 1.70                    | 0.19 |
|                                 | 0.020                             | 33.0                                                     | 1.39                                                       | 1.19                                                        | 2.02                    | 0.18 |

| Added salt                      | [Salt]<br>(mol·kg <sup>1</sup> ) | <b>R</b> <sub>h</sub> (nm) | ζ<br>(mV)    | <i>I</i> <sub>1</sub> / <i>I</i> <sub>3</sub> |
|---------------------------------|----------------------------------|----------------------------|--------------|-----------------------------------------------|
| NaCl                            | 0                                | -                          | -            | $0.996 \pm 0.0008$                            |
|                                 | 0.001                            | $1.56\pm0.03$              | $57.0 \pm 2$ | $0.996 \pm 0.0009$                            |
|                                 | 0.005                            | $2.42\pm0.02$              | $51.2 \pm 3$ | $0.994 \pm 0.0010$                            |
|                                 | 0.010                            | $2.90\pm0.04$              | $45.2 \pm 2$ | $0.992 \ \pm 0.0008$                          |
|                                 | 0.020                            | $2.80\pm0.02$              | $32.6 \pm 3$ | $0.992 \ \pm 0.0008$                          |
| NaBr                            | 0.001                            | $1.56\pm0.02$              | $54.6 \pm 3$ | $0.996 \pm 0.0010$                            |
|                                 | 0.005                            | $1.81\pm0.04$              | $38.1 \pm 2$ | $0.998 \pm 0.0008$                            |
|                                 | 0.010                            | $2.42\pm0.03$              | $32.2 \pm 2$ | $0.991 \ \pm 0.0007$                          |
|                                 | 0.020                            | $2.42\pm0.04$              | $26.1 \pm 1$ | $0.987 \pm 0.0010$                            |
| $Na_2SO_4$                      | 0.001                            | $1.56\pm0.03$              | $10.3 \pm 2$ | $0.996 \ \pm 0.0008$                          |
|                                 | 0.005                            | $1.95\pm0.02$              | $4.62 \pm 1$ | $0.989 \ \pm 0.0007$                          |
|                                 | 0.010                            | $2.09\pm0.04$              | $3.19\pm0.8$ | $0.978 \ \pm 0.0009$                          |
|                                 | 0.020                            | $2.09\pm0.02$              | $0.14\pm0.5$ | $0.972 \pm 0.0010$                            |
| Na <sub>3</sub> PO <sub>4</sub> | 0.001                            | $1.81\pm0.01$              | $43.6 \pm 3$ | $0.996 \pm 0.0010$                            |
|                                 | 0.005                            | $2.42\pm0.04$              | $12.9\pm2$   | $0.989 \ \pm 0.0007$                          |
|                                 | 0.010                            | $2.42\pm0.02$              | $11.0\pm0.7$ | $0.980 \ \pm 0.0010$                          |
|                                 | 0.020                            | $2.81\pm0.03$              | $10.7\pm0.5$ | $0.973 \pm 0.0009$                            |

**Table 4.** Experimental values of hydrodynamic radius ( $R_h$ ), Zeta potential ( $\zeta$ ) and micropolarity ( $I_1/I_3$ ) in different C<sub>16</sub>MImCl-salt solutions at 298.15K.

**Table 5.** Stern-Volmer quenching constant ( $K_{SV}$ ), bimolecular quenching constant ( $k_q$ ), aggregation number by steady state quenching method ( $N_a$ ) and time resolved fluorescence quenching method ( $N_D$ ) of pyrene of micelle solution (12 x 10<sup>-3</sup> mol.kg<sup>-1</sup>) with CPC at 298.15 K

| Added salt                      | [salt]<br>(mol.kg <sup>-1</sup> ) | 10 <sup>-3</sup> K <sub>sv</sub><br>(mol <sup>-1</sup> .kg) | ${10^{-10}k_{ m Q}\over ({ m s}^{-1})}$ | $N_{\mathrm{a}}$ | $N_{\mathrm{D}}$ |
|---------------------------------|-----------------------------------|-------------------------------------------------------------|-----------------------------------------|------------------|------------------|
| NaCl                            | 0                                 | 0.84                                                        | 0.62                                    | $48 \pm 5$       | 91±4             |
|                                 | 0.001                             | 1.93                                                        | 1.21                                    | $74\pm 5$        | -                |
|                                 | 0.005                             | 2.35                                                        | 1.47                                    | $81 \pm 4$       | 104±6            |
|                                 | 0.010                             | 2.26                                                        | 1.43                                    | -                | 102±6            |
|                                 | 0.020                             | 1.43                                                        | 0.89                                    | $95\pm5$         | 128±4            |
| NaBr                            | 0.001                             | 1.66                                                        | 1.08                                    | -                | $96\pm5$         |
|                                 | 0.005                             | 2.36                                                        | 1.73                                    | -                | 109±5            |
|                                 | 0.010                             | 2.27                                                        | 1.95                                    | -                | 109±5            |
|                                 | 0.020                             | 2.99                                                        | 3.01                                    | -                | 117±7            |
| $Na_2SO_4$                      | 0.001                             | 1.38                                                        | 0.97                                    | $64 \pm 5$       | 93±7             |
|                                 | 0.005                             | 1.52                                                        | 1.05                                    | $74\pm 5$        | 103±6            |
|                                 | 0.010                             | 2.11                                                        | 1.42                                    | $86\pm 6$        | 105±9            |
|                                 | 0.020                             | 2.05                                                        | 1.40                                    | $92\pm4$         | 131±5            |
| Na <sub>3</sub> PO <sub>4</sub> | 0.001                             | 2.10                                                        | 1.35                                    | $61 \pm 5$       | 101±6            |
|                                 | 0.005                             | 1.91                                                        | 1.25                                    | $74\pm4$         | 109±5            |
|                                 | 0.010                             | 2.29                                                        | 1.46                                    | 99± 6            | 110±4            |
|                                 | 0.020                             | 1.88                                                        | 1.25                                    | $117\pm 6$       | 155±8            |

#### **Supplementary Section**

Studies on the self-aggregation, interfacial and thermodynamic properties of a surface active imidazolium-based ionic liquid in aqueous solution: Effects of salt and temperature.

Fig. S1: (dln $X_{cmc}$ /dT) vs. Temperature (T) plot for the micellization of C<sub>16</sub>MImCl in presence two different salt concentrations.



Fig. S2: Enthalpy vs. Entropy compensation plot for the micellization of C<sub>16</sub>MImCl in presence of water and different salt concentrations



Fig. S3:  $\Gamma_{\rm cmc}$  vs. molality (*m*) plot for the micellization of C<sub>16</sub>MImCl in presence different salt concentrations.



Fig. S4: Time resolved quenching of pyrene by CPC in micellar environment of  $C_{16}MImCl$  in presence of different salts (a: NaCl, b: NaBr, c: Na<sub>2</sub>SO<sub>4</sub>, d: Na<sub>3</sub>PO<sub>4</sub>) at 0.001 *m* concentration. Concentrations of CPC [CPC] have been given in the individual plots.



Fig. S5: Intensity (%) vs. size (nm) profile for the micellization of  $C_{16}MImCl$  in presence salts of 0.01 m; a: NaCl, b: NaBr, c: Na<sub>2</sub>SO<sub>4</sub>, d: Na<sub>3</sub>PO<sub>4</sub>



Table S1. Time resolved fluorescence quenching data of pyrene on  $C_{16}MImCl$  solution (12mmolal) with CPC as quencher at 298.15  $\pm$  0.1  $K^a$ 

| m     | Water/Salts                     | [CPC]      | $(\tau_0)/\tau_1$ | <b>b</b> 1    | $	au_2$ | <b>b</b> <sub>2</sub> | <τ>   | $\chi^2$ |
|-------|---------------------------------|------------|-------------------|---------------|---------|-----------------------|-------|----------|
|       |                                 | $10^{-3}m$ | ns                |               | ns      |                       | ns    |          |
|       |                                 | 0.00       | (136)             | 100.0         |         |                       | 136.0 | 1.25     |
| 0     | Water                           | 0.16       | 31.7              | 24.64         | 148.1   | 75.36                 | 119.4 | 1.05     |
|       |                                 | 0.31       | 32.2              | 36.31         | 151.5   | 63.69                 | 108.2 | 1.05     |
|       |                                 | 0          | (160)             | 100.0         |         |                       | 160.0 | 1.13     |
|       | NaCl                            | 0.16       | 29.0              | 31.30         | 155.3   | 68.70                 | 115.8 | 1.17     |
|       |                                 | 0.31       | 31.1              | 39.28         | 146.4   | 60.72                 | 101.1 | 1.11     |
|       |                                 | 0          | (154.4)           | 100.0         |         |                       | 154.4 | 1.17     |
|       | NaBr                            | 0.16       | 32.8              | 25.30         | 157.3   | 74.70                 | 125.8 | 1.05     |
|       |                                 | 0.31       | 31.3              | 40.40         | 145.9   | 59.60                 | 99.61 | 1.10     |
| 0.001 |                                 | 0.00       | (142.6)           | 100           |         |                       | 142.6 | 1.22     |
|       | $Na_2SO_4$                      | 0.16       | 38.24             | 30.90         | 150.8   | 69.10                 | 116.0 | 1.02     |
|       |                                 | 0.31       | 33.08             | 48.46         | 143.3   | 51.54                 | 89.87 | 1.00     |
|       |                                 | 0          | (155.0)           | 100           |         |                       | 155.1 | 1.20     |
|       | Na <sub>3</sub> PO <sub>4</sub> | 0.16       | 36.6              | 29.03         | 154.6   | 70.97                 | 120.3 | 1.06     |
|       |                                 | 0.31       | 31.09             | 44.21         | 141.2   | 55.79                 | 92.50 | 1.07     |
|       | NaCl                            | 0          | (159.6)           | 100.0         |         |                       | 159.6 | 1.05     |
|       |                                 | 0.16       | 36.0              | 24.52         | 154.1   | 75.48                 | 125.1 | 1.06     |
|       |                                 | 0.31       | 28.6              | 45.49         | 144.8   | 54.51                 | 91.92 | 1.05     |
|       | NaBr                            | 0          | (136.8)           | 100.0         |         |                       | 136.8 | 1.08     |
|       |                                 | 0.16       | 35.3              | 30.34         | 132.6   | 69.66                 | 103.0 | 1.09     |
| 0.005 |                                 | 0.31       | 34.0              | 50.25         | 120.9   | 49.75                 | 77.29 | 1.13     |
| 0.005 | $Na_2SO_4$                      | 0          | (144.6)           | 100           |         |                       | 144.6 | 1.16     |
|       |                                 | 0.06       | 85.0              | 35.0          | 155.3   | 65.0                  | 130.7 | 1.03     |
|       | N. 50                           | 0.31       | 33.67             | 51.61         | 133.9   | 48.39                 | 98.44 | 1.02     |
|       | Na <sub>3</sub> PO <sub>4</sub> | 0          | (151.7)           | 100           |         |                       | 151.7 | 1.01     |
|       |                                 | 0.16       | 47.84             | 34.77         | 165.2   | 65.23                 | 124.3 | 1.07     |
|       |                                 | 0.31       | 39.44             | 53.38         | 152.8   | 46.62                 | 92.31 | 1.17     |
|       | NaCl                            | 0          | (157.9)           | 100.0         | 0       |                       | 157.9 | 1.27     |
|       |                                 | 0.16       | 28.9              | 33.61         | 152.2   | 66.39                 | 110.7 | 1.16     |
|       |                                 | 0.31       | 30.5              | 43.80         | 140.9   | 56.20                 | 92.55 | 1.18     |
|       | NaBr                            | 0          | (116.2)           | 100.0         | 0       |                       | 116.2 | 1.14     |
|       |                                 | 0.16       | 36.70             | 33.07         | 112.7   | 66.93                 | 87.57 | 1.11     |
| 0.01  | N. 60                           | 0.31       | 29.3              | 44.76         | 97.55   | 55.24                 | 67.03 | 1.07     |
| 0.01  | $Na_2SO_4$                      | 0          | (148.9)           | 100.0         | 1475    | (1.00                 | 148.9 | 1.07     |
|       |                                 | 0.10       | 41.38             | 51.07         | 147.5   | 04.88                 | 110.5 | 1.08     |
|       | N- DO                           | 0.51       | (15(0))           | 100.0         | 124.7   | 46.75                 | 15.0  | 1.01     |
|       | Na <sub>3</sub> PO <sub>4</sub> | 0 16       | (150.9)           | 22.8          | 160.9   | 66 7                  | 120.9 | 0.99     |
|       |                                 | 0.10       | 45.1<br>24.01     | 33.0<br>17.91 | 120.4   | 52.10                 | 121.7 | 1.15     |
|       |                                 | 0.51       | (150.6)           | 100.0         | 139.4   | 32.19                 | 150.6 | 1.00     |
|       | NaCl                            | 0.16       | 20.8              | 33.45         | 155.7   | 66 55                 | 113.6 | 1.05     |
|       | NaCi                            | 0.10       | 29.0              | 16.46         | 130.1   | 53 54                 | 00.54 | 1.27     |
|       |                                 | 0.51       | (00 /)            | 100.0         | 0       | 55.54                 | 99.40 | 1.10     |
|       | NaBr                            | 0.16       | 27.2              | 20.80         | 91.20   | 70.11                 | 72.06 | 1.17     |
|       | NaDi                            | 0.10       | 27.2              | 19.00         | 73.41   | 50.78                 | 50.06 | 1.07     |
| 0.02  |                                 | 0.51       | (146.4)           | 100           | 13.41   | 30.70                 | 1464  | 1.07     |
| 0.02  | Na-SO.                          | 0.16       | 44 29             | 39.74         | 150.9   | 60.26                 | 108.6 | 1.23     |
|       | 1102004                         | 0.10       | 33.89             | 55 37         | 130.9   | 44 63                 | 77 22 | 1 10     |
|       |                                 | 0.51       | (151.0)           | 100.0         | 150.7   | ++.05                 | 151.0 | 1.12     |
|       | Na <sub>2</sub> PO <sub>4</sub> | 0.16       | 44 07             | 31.78         | 158.6   | 68.22                 | 122.2 | 1.00     |
|       | 1.051 04                        | 0.31       | 39.03             | 50.31         | 148.4   | 49.69                 | 93.37 | 1.03     |
|       | ·                               |            |                   |               |         |                       |       |          |

<sup>a</sup> $\tau_0$  values (within the first bracket) indicate life time when the quencher concentration is 0 mmol.kg<sup>-1</sup>. Standard relative uncertainties ( $u_r$ ):  $u_r(\langle \tau \rangle) = 0.4$ 

#### **References:**

- 1. T. Welton, *Green Chem.*, 2011, **13**, 225.
- 2. M. J. Rosen, Surfactants and interfacial Phenomenon, 3rd ed, John Wiley, New York (2004).
- 3. D. Varade, T. Joshi, V. K. Aswal, P. S. Goyal, P. A. Hassan, P. Bahadur, *Colloids Surf.,* A, 2005, **259**, 95-101.
- 4. B. Dong, X. Zhao, L. Zheng, J. Zhang, N. Li, T. Inoue, *Colloids Surf., A*, 2008, **317**, 666-672.
- 5. N. Vlachy, M. Drechsler, J. M. Verbavatz, D. Touraud, W. Kunz, *J. Colloid Interface Sci.*, 319, **2008**, 542-548.
- 6. M. Sammalkorpi, M. Karttunen, M. Haataja, J. Phys. Chem. B, 2009, 113, 5863-5870.
- 7. A. Jusufi, A. P. Hynninen, M. Haataja, A. Z. Panagiotopoulos, *J. Phys. Chem. B*, 2009, **113**, 6314-6320.
- 8. K. Maiti, D. Mitra, S. Guha, S. P. Moulik, J. Mol. Liq., 2009, 146, 44-51.
- 9. L. Abezgauz, K. Kuperkar, P. A. Hassan, O. Ramon, P. Bahadur, D. Danino, *J. Colloid Interface Sci.*, 2010, **342**, 83-92.
- 10. F. Geng, J. Liu, L. Zheng, L. Yu, Z. Li, G. Li and C. Tung, *J. Chem. Eng. Data*, 2010, **55**, 147-151.
- 11. N. Li, S. Zhang, L. Zheng, B. Dong, X. Li and L. Yu, *Phys. Chem. Chem. Phys.*, 2008, **10** 4375- 4377.
- 12. J. Łuczak, J. Hupka, J. Thöming, C. jungnickel, Colloids Surf. A, 2008, 329, 125-133.
- 13. P. D. Galgano, O. A. E. Seoud, J. Colloid Interface Sci., 2011, 361, 186–194.
- 14. M. Ao, P. Huang, G. Xu, X. Yang, Y. Wang, Colloid. Polym. Sci., 2009, 287, 395-402.
- 15. B. Dong, N. Li, L. Zheng, Li Yu, and T. Inoue, *Langmuir*, 2007, 23, 4178-4182.
- 16. J. Łuczak, C. Jungnickel, M. Joskowska, J. Thöming, J. Hupka, *J. Colloid Interface Sci.*, 2009, **336**, 111-116.
- 17. P. D. Galgano, O. A. E. Seoud, J. Colloid Interface Sci., 2010, 345, 1–11.
- 18. S. Das, S. Ghosh, and B. Das, *J. Chem. Eng. Data*, 2018, **63**, 3784–3800.
- 19. Md. S. Alam, A. Mandal, A. B. Mandal, *J. Chem. Eng. Data*, 2011, 56, 1540-1546.
- 20. B. Naskar, A. Dan, S. Ghosh, V. K. Aswal, S. P. Moulik, J. Mol. Liq., 2012, 170, 1–10.
- 21. G. A. Cookey, C. C. Obunwo, IOSR J. Appl. Chem. (IOSR-JAC), 2014, 7, 34-38.
- 22. M. A. Rub, J. Mol. Liq., 2020, 298, 112049
- 23. S. V. Koroleva, A.I. Victorov, Phys. Chem. Chem. Phys., 2014, 16, 17422-17425.
- 24. Md. Akram, I. A. Bhat, A. K. Berekute, Kabir-ud-Din, J. Ind. Eng. Chem., 2016, 40, 161-167.
- 25. S. Kumar, A. Mandal, Appl. Surf. Sci., 372 (2016) 42-51.
- 26. J. N. Tian, B. Q. Ge, Y. F. Shen, Y. X. U. He, Z. X. Chen, *J. Agric. Food Chem.*, 2016, **64**, 1977-1988.
- 27. E. Feitosa, M. R. S. Brazolinn, R. M. Z. G. Naal, M. P. F. De Moreis Del Lama, J. R. Lopes, W. Loh, M. Vasilescu, *J. Colloid Interface Sci.*, 2006, **299**, 883-889.
- 28. M. Benrraou, B. L. Bales, R. Jana, J. Phys. Chem. B, 2003, 107, 13432-13440.
- 29. G. V. Jensen, R. Lund, J. Gummel, T. Narayanan, and J. S. Pedersen, *Angew. Chem. Int. Ed.* 2014, **53**, 11524-11528.
- 30. H. Hooshyar and R. Sadeghi, J. Chem. Eng. Data, 2015, 60, 983-992.
- 31. Md. M. Alama, S. Rana, M. A. Rub, Md. A. Hoque, S. E. Kabir, A. M. Asiri, *J. Mol. Liq.* 2019, **278**, 86–96.
- 32. J. Mao, J. Tian, W. Zhang, X. Yang, H. Zhang, C. Lin, Y. Zhang, Z. Zhang, J. Zhao, *Colloids Surf., A*, 2019, **578**, 123619.
- 33. G. Para, E. Jarek, P. Warszynski, *Colloids Surf. A*, 2005, **261**, 65–73.
- 34. D. Kumar, S. Hidayathulla, M. A. Rub, J. Mol. Liq. 2018, 271, 254-264.
- S. Mahbub, Md. L. Mia, T. Roy, P. Aktera, A. K. M. R. Uddin, M. A. Rub, Md. A. Hoque, and, A. M. Asiri, *J. Mol. Liq.* 2020, **297**, 111583.
- 36. S. Mahbub, M. A. Rub, Md. A. Hoque, D. Kumar, J Phys Org Chem., 2019, 32, e3967.

- 37. J. Tan, J. Shao, C. Tian, Z. Liao, P. Yan, J. Surfactants Deterg. 2019, 22, 125–130.
- 38. H. Okuda, Colloids Surf., 1987, 27, 187-200.
- 39. H. Demissie, R. Duraisamy, Water Research, 2016, 5, 208-214.
- 40. S. Ozeki, and S. Ikeda, Bull. Chem. Soc. Jpn. 1980, 53, 1832-1836.
- 41. R. Li, Q. Zhang, X. Pei, D. Xie, B. Song, Colloids Surf., A 2020, 585, 124114.
- 42. M. Rahman, M. A. Khan, M. A. Rub, M. A. Hoque, A. M. Asiri, *J. Chem. Eng. Data*, 2017, **62**, 1464–1474.
- 43. O. Owoyomi, J. F. Olorunyomi, O. E. Olaoye, Phys. Chem. Res., 2017, 5, 531-540.
- 44. Md. A. Hoque, Md. R. Molla, Md. R. Amin, Md. M. Alam, Md. F. Hossain, M. A. Rub, *J. Solution Chem.*, 2019, **48**, 105–124.
- 45. I. Chakraborty and S. P. Moulik, J. Phys. Chem. B 2007, 111, 3658-3664.
- 46. N. Patra, D. Ray, V. K. Aswal, and S. Ghosh, ACS Omega. 2018, 31, 9256–9266.
- 47. A. A. Dar, G. M. Rather, S. Ghosh, A. R, Das, J. Colloid Interface Sci., 2008, 32, 572-581.
- 48. A. Pal, M. Saini, J. Surfactants Deterg., 2019, 22, 491-499.
- 49. H. Wang, Q. Feng, J. Wang, and H. Zhang, J. Phys. Chem. B, 2010, 114, 1380–1387.
- 50. E. Ghasemian, M. Najafi, A. A. Rafati, Z. Felegari, J. Chem. Thermodyn., 2010, 42, 962-966.
- 51. H. Kumar and C. Chadha, J. Chem. Eng. Data, 2015, 60, 2937-2950.
- 52. J. Łuczak, M. Markiewicz, J, Thöming, J. Hupka, C. Jungnickel, J. Colloid Interface Sci., 2011, **362**, 415–422.
- 53. U. Subuddhi, A. K. Mishra, Colloids Surf., B 2007, 57, 102–107.
- 54. X. Zhang, J. K. Jackson, H. M. Burt, *Biophys.* 1996, **31**, 145-150.
- 55. A. Malliaris, J. Lang and R. Zana, J. Chem. SOC., Faraday Trans. I 1986, 82, 109-118.
- 56. M. Pisárčik, F. Devínsky, M, Pupák, Open Chem., 2015, 13, 922–931.
- 57. R. G. Alargova, I. I. Kochijashky, M. L. Sierra, and R. Zana, Langmuir, 1998, 14, 5412-5418.
- 58. K. Beyer, D. Leine, A. Blume, Colloids Surf., B, 2006, 49, 31–39.
- 59. W. Loh, C. Brinatti, K. C. Tamb, Biochim. Biophys. Acta, 2016, 1860, 999-1016.
- 60. A. Kessler, B. Zeeb, B. Kranz, O. M. Aguirre, L. Fischer, Rev. Sci. Instrum., 2012, 83, 105104.
- 61. P. R. Majhi and S. P. Moulik, Langmuir, 1998, 14, 3986-3990.
- 62. M. Prasad, I. Chakraborty, A. K. Rakshit, S. P. Moulik, J. Phys. Chem. B, 2006, 110, 9815–9821.
- 63. B. Das, D. Ray, R. De, *Carbohydr. Polym.*, 2014, **113**, 208–216.
- 64. J. T. Davis, E. K. Rideal, Interfacial Phenomena, Academic Press: New York, 1963.
- 65. R. P. Borwankar, D. T. Wasan, Chem. Eng. Sci., 1988, 43, 1323-1337.
- 66. Y. Marcus, J. Chem. Soc., Faraday Trans., 1991, 87, 2995-2999.
- 67. B. Naskar, A. Dan, S. Ghosh, S.P. Moulik, Carbohydr. Polym., 2010, 81, 700–706.
- 68. V. K. Aswal, P. S. Goyal, Phys. ReV. E, 2000, 61, 2947-2953.
- 69. G. Pilcher, M. N. Jones, L. Espada, and H. A. Skinner, J. Chem. Thermodyn., 1969, 1, 381- 392.
- 70. Sk. Md. Ahsan, A. Hossain, M. D. Hoque, Md. A. Khan, M. Abdullah, *Indian J. Chem., Sect A*, 2016, 55,160-169.
- 71. S. B. Sulthana, S. G. T. Bhat, A. K. Rakshit, *Langmuir*, 1997, **13**, 4562–4568.
- 72. R. R. Krug, W. C. Hunter, R. A. Grieger, J. Phys. Chem., 1976, 80, 2335–2341.
- 73. S. Glasstone, Text Book of Physical Chemistry, 2nd ed. Macmillan, London, 1960.
- 74. E. Matijevic, B. Pethica, Trans. Faraday Soc., 1958, 54, 1382–1389.
- 75. G. Gunnarsson, J. Jönsson, and, H. Wennerström, J. Phys. Chem., 1980, 84, 3114–3121.
- J. N. Israelachvili, In Intermolecular and surface forces (London: Academic Press), 2nd ed.; 1991, 17, 370.
- 77. C. Tanford, The Hydrophobic Effect, 2nd ed.; Wiley-Interscience: New York (1980).
- 78. T. Chakraborty, S. Ghosh, Colloid Polym Sci., 2007, 285, 1665–1673.
- 79. S. Ghosh, T. Chakraborty, J. Phys. Chem. B, 2007, 111, 8080-8088.
- 80. S. Ozeki, S. Ikeda, Bull. Chem. Soc. Jpn., 1981, 54, 552-555.

- 81. E.W. Anacker, H.M. Ghose, *Phys. Chem.*,1963, 67, 1713-1716.
- 82. S. Ozeki, S. Ikeda, J. Colloid Interf. Sci., 1982, 87, 424-435.
- 83. S.L. Anderson, D. Rovnyak, and T.G. Strein, *Chirality*, 2016, 28, 290-298.
- 84. C. Chadha, G. Singh, G. Singh, H. Kumar, T.S. Kang, RSC. Adv., 2016, 6, 38238-38251.
- 85. P.A.R. Pires, O. A. El Seoud, Progr Colloid Polym Sci., 2006, 133, 131–141.
- 86. S. Shimizu, P. A. R. Pires, W. Loh, O. A. El Seoud, Colloid Polym Sci., 2004, 282, 1026–1032.
- 87. S. Shimizu, P. A. R. Pires, and O. A. El Seoud, *Langmuir*, 2004, **20**, 9551-9559.
- 88. T. Mehrian, A. de Keizer, A. J. Korteweg, J. Lyklema, Colloids Surf. A, 1993, 71, 255-267.
- K. Bijma, J. B. F. N. Engberts, M. J. Blandamer, P. M. Cullis, P. M. Last, K. D. Irlam, and, L. G. Soldi, J Chem Soc Faraday Trans., 1997, 93, 1579-1584.
- 90. L. Piñeiro, M. Novo, and W. A. Soufi, Colloid Interface Sci., 2015, 215, 1-12.
- 91. S. Das, S. Mondal, S. Ghosh, J. Chem. Eng. Data, 2013, 58, 2586–2595.
- 92. D. C. Dong, M. A. Winnik, Can. J. Chem., 1984, 62, 2560-2565.
- 93. H. Hoffman, R. Nagel, G. Platz and W. Ulbricht, Colloid Polym. Sci., 1976, 254, 812-834
- 94. P. P. Infelta, M. Gratzel and J. K. Thomas, J. Phys. Chem., 1974, 78, 190-195.
- 95. M. Tachiya, Chem. Phys. Lett., 1975, 33, 289-292.
- 96. M. M. Velázquez and Silvia M. B. Costa, *Journal of the Chemical Society, Faraday Transactions*,1990, **86**, 4043-4048.
- 97. L. Wattebled, A. Laschewsky, A. Moussa, J. Habib-Jiwan, Langmuir, 2006, 22, 2551-2557.
- 98. M. Almgren, J. Erik, L. froth, J. V. Stam, J. Phys. Chem., 1986, 90, 4431-4437.
- 99. S. Ghosh, J. Colloid Interface Sci., 2001, 24, 128-138.
- 100. S. P. Moulik, S. Ghosh, J. Mol. Liq., 1997, 72, 145-161.
- 101. C. Das, T. Chakraborty, S. Ghosh, B. Das, Colloid and Polymer Science, 2008, 286, 1143-1155.
- 102. D. Tikarika, B. Kumar, S. Ghosh, A. K. Tiwari, S. K. Saha, N. Barbero, P. Quagliotto, K. K. Ghosh, *J. Nanofluids*, 2013, **2**, 316-324.
- 103. C. Das, T. Chakraborty, S. Ghosh, B. Das, Colloid J., 2010, 72, 788-798.
- 104. J. R. Lakowicz, Principles of Fluorescence Spectroscopy; Plenum: New York, (1999).
- 105. A. R. Soemo and J. E. Pemberton, J. Fluoresc., 2014, 24, 295–299.
- 106. A.R. Tehrani-Bagha, J. Kärnbratt, J.-E. Löfroth, K. Holmberg, *J. Colloid Interface Sci.*, 2012, **376**, 126–132.
- 107. M. Grátzel and J. K. Thomas, JACS, 1973, 95, 6885-6889.
- 108. M. A. Cassidy, G. G. Warr, J. Phys. Chem., 1996, 100, 3237-3240.

# Chapter-III

A Detailed Assessment on The Interaction of Sodium Alginate with A Surface-Active Ionic Liquid and A Conventional Surfactant: A Multi technique Approach

#### A detailed assessment on the interaction of sodium alginate with a surface-active ionic

#### liquid and a conventional surfactant: a multitechnique approach **‡**

#### Abstract:

Investigation has been made on the interaction of a biodegradable anionic polyelectrolyte, sodium alginate (NaAlg) with two oppositely charged cationic surfactants, 1-hexadecyl-3-methyl imidazolium chloride (C<sub>16</sub>MImCl) and 1-hexadecyl triphenylphosphonium bromide (C<sub>16</sub>TPB), former is a Surface-Active Ionic Liquid (SAIL) and latter a conventional surfactant over a wide concentration regime of polyelectrolyte. Dual influence of electrostatic and hydrophobic interactions plays in this investigation when mixing surfactants to oppositely charged polyelectrolyte. A number of different experimental techniques, e.g., conductometry, tensiometry, steady state and time resolved spectrofluorimetry, turbidimetry, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), attenuated total reflection (ATR), high resolution transmission electron microscopy (HR-TEM) and fluorescence microscopy have been implemented to get comprehensive information originated from the interaction of oppositely charged polyelectrolyte and surfactants. Tensiometry study reveals the existence of several conformations of NaAlg influenced by different concentrations of surfactants titrated to it and these are abbreviated as, critical aggregation concentration (cac), saturated concentration of polymersurfactant complex (C<sub>s</sub>) and finally extended critical micelle concentration (C<sub>m</sub>\*) due to aggregation of surfactant itself, appeared in chronological order from low to high concentrations of surfactants. Apart from tensiometry, these above concentrations have been well found and the values are well comparable when investigating polyelectrolyte-surfactant interaction by other physicochemical techniques also. Irreversible phase separation of oppositely charged polyelectrolyte- surfactant complex (PS-complex) occurs at higher polyelectrolyte concentration investigated here for both the surfactants in the vicinity of cac for C<sub>16</sub>MImCl and near C<sub>m<sup>\*1</sup></sub> for C<sub>16</sub>TPB and finally persists after further addition of surfactants above the formation of free micelles. Several bulk and interfacial parameters, viz., Gibbs free energy of micellization ( $\Delta G^{0_m}$ ), enthalpy of micellization ( $\Delta H^{0_m}$ ), entropy of micellization ( $\Delta S^{0_m}$ ), degree of counterion binding ( $\beta$ ), surface excess at cmc ( $\Gamma_{max}$ ), area minimum ( $A_{min}$ ), surface pressure at cmc  $(\pi_{cmc})$ , pC<sub>20</sub>, packing parameter (P), hydrodynamic radius (*t*) and aggregation number (N<sub>a</sub>) of two surfactants both in presence and absence of NaAlg have been calculated for these investigated systems. Characterization of NaAlg, both surfactants and their individual complexes were performed using FTIR-ATR. DLS shows the distribution of size of polymer surfactant complexes over a wide range of surfactant concentrations at a fixed polyelectrolyte concentration, while HR-TEM study reveals not only the size of applomerated clusters of PS-complex and also its shapes. Images of NaAlg-surfactatant complexes were also captured using fluorescence microscopy in solution phase. Strong PS-complex in presence of C<sub>16</sub>MImCl has been reported here over C<sub>16</sub>TPB.

#### (# Published in Phys. Chem. Chem. Phys., 24, (2022) 13738-13762)

#### 1. Introduction:

Surfactants form a specific type of aggregate in both aqueous and non-aqueous solvents at a threshold concentration, called critical micelle concentration  $(cmc)^{1-3}$ . Significant attentions have been paid for decades till now<sup>4-14</sup> on the oppositely charged polyelectrolyte with different conventional surfactant systems for their complexation ability and rich aggregation behaviour

in aqueous solution by considering emerging applications in cosmetic and paint industries, and also in enhanced oil recovery process. This complexation ability originates from the coulombic attraction between the oppositely charged polyions and surfactant monomers as well as the hydrophobic attraction among the apolar chain of surfactants, hydrophobic moieties of polyelectrolytes and tails of surfactants. Recently,<sup>15-19</sup> some interests grow on the interaction of carbohydrate type polyelectrolytes with surface active ionic liquids (SAIL) in aqueous solution<sup>15-19</sup>. Carbohydrate based polymers gain special attraction for their biocompatible, biodegradable and low immunogenic nature<sup>17, 20, 21</sup> and on the other hand, SAILs can improve mechanical, thermal and electrochemical properties of materials in addition with polymers in industrial arenas. For example, ILs have been used as curing agents<sup>22</sup>, modifier of glass temperature transition<sup>23</sup>, conducting agent in polymer electrolytes film<sup>24</sup> as well as building blocks of polymer matrix<sup>25</sup>, as plasticizers for polysaccharides<sup>26</sup> and also as heterogeneous catalyst in conjugation with polyelectrolyte<sup>27</sup>. Moreover, easy tune of hydrophobic moieties and also counterions make the ionic liquids ('designer solvents') attractive in recent scenario over conventional surfactants<sup>28</sup>. Sodium Alginate (NaAlg), an anionic biodegradable polysaccharide has been synthesized from marine brown algae containing 1-4 linked α-Lguluronic (G) and  $\beta$ -D-mannuronic (M) acid residues arranged in an irregular blockwise pattern of varying proportions of GG, MG, and MM blocks., widely used<sup>12, 17, 20, 22, 29</sup> in medical, pharmaceutical industry for the purpose of gelling agents and in food industries as a stabilizer and thickener<sup>21, 29</sup>. This anionic polyelectrolyte (block copolymers) has enormous uses for the production of bio films, bandages, beads, nanoparticles, and microcapsules by recognising its significant biocompatible stable gelling properties<sup>29, 30</sup> which is obtained mainly by incorporation of surfactants and inorganic salts (K<sub>2</sub>CO<sub>3</sub>, CaCO<sub>3</sub> etc.) at much higher NaAlg concentration with different proportions, investigated in previous literatures.<sup>20, 31, 32</sup> Keeping in mind these several uses of NaAlg in medical, pharmaceutical and food industry, a systematic study on the interaction of NaAlg with various surfactants in aqueous solution also with other additives have much needed at wide concentration range of NaAlg both for the purpose of industrial as well as academic interest. Off late, although a significant amount of research work have been devoted to elucidate the physicochemical parameters for another biodegradable polyelectrolyte, sodium carboxymethylcellulose (NaCMC) with imidazolium SAILs in aqueous solution by researchers<sup>16, 18, 19, 33-35</sup>, a comprehensive physicochemical investigation on the interaction of NaAlg with imidazolium ionic liquids in aqueous solution at low to moderately high polyelectrolyte concentration scarcely found in literature<sup>17</sup>.

In this present study, investigation has been performed on the aggregation phenomena and their thermodynamics of a cationic SAIL 1-hexadecyl-3-methylimidazolium chloride ( $C_{16}$ MeImCl), and a conventional surfactant, 1-hexadecyl triphenylphosphonium bromide ( $C_{16}$ TPB) in aqueous solution in absence as well as in presence of NaAlg as a function of polyelectrolyte concentration as probed by tensiometry, conductometry, isothermal titration calorimetry (ITC), steady state and time resolved fluorimetry and dynamic light scattering at 298.15 K. Characterization of NaAlg-surfactant complexes (PS-complex) were performed using FTIR-ATR technique. Fluorescence imaging and high-resolution transmission electron microscopy (HR-TEM) were used for the visual impression of polyelectrolyte surfactant complex (PS-complex) mediated by NaAlg with different surfactants investigated here, and also determining its size and shape. Two surfactants having different head groups and same number of carbon chain have been selected to gain better insight on the effect of different head groups with NaAlg in aqueous solution, also comparing the effect of SAIL to the conventional surfactant on NaAlg.

#### 2. Experimental section:

#### 2.1. Materials and solution preparation:

1-Hexadecyl-3-methylimidazolium chloride monohydrate [C<sub>16</sub>MImCl] was purchased from Acros Organics (Germany) and 1-hexadecyl triphenylphosphoniumbromide (C<sub>16</sub>TPB), 98% has been procured from Alfa Aesar (India), a part of Thermo Fisher Scientific. Alginic acid sodium salt (NaAlg) from brown algae (W201502) was obtained from Sigma Aldrich (USA). All the samples are used without further purification. Structures of polyelectrolyte and surfactants are displayed in Fig. 1. Reagent grade (ACS reagent,  $\geq$ 99.0%) NaCl, fluorescence probe, pyrene (98%), cetylpyridinium chloride (CPC) and 1,6-diphenyl-1,3,5-triene (DPH) were purchased from Sigma Aldrich (USA) and used as received.



All solutions are prepared in triply distilled water of specific conductance ~1.0  $\mu$ S/cm throughout the experiments at 298.15K. Concentration of NaAlg was chosen as 0.001, 0.005 and 0.01% (w/v) in this investigation. Polyelectrolyte concentration was fixed throughout the experiments during the titration of each surfactant to it. All the physicochemical parameters were measured after addition of stock surfactant solution to the corresponding polyelectrolyte solution of same concentration progressively with 5-10 min intervals (in short equilibration time) after proper stirring. No further modifications of any physicochemical properties with time are observed for all polyelectrolyte concentrations.

#### 2.2. Methods:

#### 2.2.1. Tensiometry:

A calibrated Krüss-K8 tensiometer (Germany) was used to determine surface tension at air water interface by du Noüy ring detachment method at 298.15 K. A clean platinum ring was used for this purpose. This ring has been cleaned using deionized water and acetone successively and burned briefly until glowing in ethanol flame prior to each measurement. A measured amount of 5 mL aqueous polyelectrolyte solutions (different % w/v) was taken in a double jacket container attached with a thermostatic water bath to maintain the desired temperature with an accuracy of  $\pm 0.1$  K. Stock surfactant solutions were prepared ~15 times above the cmcs<sup>19, 36-38</sup>; shown in Table 1& Table 2. in respective solvents (different % w/v polyelectrolyte solution) and added to the double jacket container by a Hamiltonian micro syringe and stirred well after each addition and kept for 5 minutes before taken the data. The same procedure has been followed for studying micellization of surfactants in aqueous solution also (cf. Figure. 2A (a) for  $C_{16}MImCl$  and Fig 2B (b) for  $C_{16}TPB$ .). Two or three consecutive readings of surface tension were taken for a particular addition of surfactant into polyelectrolyte solution by a syringe for better reproducibility. Surface tension of distilled water used for preparation of different solutions was found to be 70.8 mN.m<sup>-1</sup> with the precision of  $\pm 1$  mN.m<sup>-1</sup> <sup>1</sup> at 298.15 K. The concentrations of NaAlg in this present study have been chosen (maximum concentration = 0.1 gm/L or,  $4.6 \times 10^{-4}$  mol saccharide unit/L) in such a manner that, NaAlg cannot show significant surface activity adopting extra complexity in tensiograms upon addition of surfactants. It has been observed that, surface activity of NaAlg in aqueous solution does not increase significantly even as high as of its  $2x10^{-3}$  mol saccharide unit/L concentration at 298.15 K<sup>39</sup>. Moreover, such low concentration of NaAlg deducts the possibility of polyionpolyion interaction between the alginate backbones. Representative plots of surface tension  $(\gamma)$ vs. log [surfactant] / mM of two surfactants at different wt% of NaAlg medium with individual inflection points (discussed elsewhere in this manuscript) were shown in Figure.3. Different interfacial parameters in presence and absence of NaAlg for both the surfactants calculated are displayed in Table 3.

#### 2.2.2. Conductometry:

A conductivity meter (304, Systronics, India) equipped with a glass electrode (cell constant 1.0 cm<sup>-1</sup>) was used for the measurement of conductance. Glass electrode was dipped in a double jacket glass container. This glass container was connected with a thermostatic water bath to maintain the solution temperature to a fixed value,  $298.15\pm0.1$ K. Different % w/v of

polyelectrolyte solution (7 mL) kept in the glass container and surfactants prepared in same concentration in respective polyelectrolyte solutions, as those stated in section 2.2.1., were added from a Hamiltonian microsyringe and specific conductance values were measured. The same work has also been performed for studying micellization in aqueous solution for the two surfactants. Cmcs have been measured from the well specified inflection points represented at the specific conductance ( $\kappa$ ) vs. total surfactant concentration plots for two pure surfactants (cf. Figure 2A (b), 2B (b)). Representative plots of specific conductance ( $\mu$ S) vs. [surfactant]/ mM of two surfactants at different wt% of NaAlg medium with individual inflection points (cf. Table 1 and 2, discussed elsewhere in this manuscript) were shown in Figure 4.

#### 2.2.3. Turbidimetry:

Turbidimetry experiment was performed by using a Shimadzu 1601 UV-VIS spectrophotometer (made in Japan) at 298.15  $\pm$  0.1 K. Baseline correction was done using different wt% of NaAlg prepared in deionized water prior to each experiment. Different wt % of NaAlg solution (2.5 mL) was taken in the cuvette for the measurement of transmittance. In the cuvette, surfactants were added using micro syringe and determined % transmittance (% T) between the wavelengths range from 200-800 nm. Plots containing absorbance (100-%T) at 400 nm (average value of wavelength taken) vs. concentration of surfactants with different turbidimetry points in presence of NaAlg were displayed in Fig. 5 and values are shown in Tables 1 and 2.

#### 2.2.4. Spectrofluorimetry:

Steady state spectrofluorimetry technique was carried out using a Perkin-Elmer LS 55 (USA) fluorescence spectrofluorimeter attached with Peltier facility at 298.15K with an accuracy of  $\pm$  0.02K. Measured amount of 2.5 mL solution of different wt% of polyelectrolyte was taken in transparent quartz cuvette and prepared surfactant solution (~15 times above cmc in aqueous solution) in respective wt% of polyelectrolyte was added with a Hamilton micro syringe. Pyrene was used as a fluorescence probe exited at 335 nm with 14 nm band pass, while emission was monitored between wavelength ranges of 350- 550 nm with emission band pass of 4 nm. Pyrene excimer emission (occurred here nearly at 467 nm) along with monomeric vibrational peaks in presence of 0.005% (w/v) NaAlg with variation of concentration of both surfactants have been displayed in Fig. 6A and 6B. Ratio of first (I<sub>1</sub> = 374 nm) to third (I<sub>3</sub> = 384 nm) vibrational peak of pyrene (I<sub>1</sub>/I<sub>3</sub>) vs. [surfactant] in absence and presence of NaAlg

have been represented in Fig. 2A(c), 2B(c) and Fig. 7 (a-f) respectively. Probe concentration  $(1x10^{-4} \text{ mM})$  was kept fixed in both cuvette and syringe.

Time resolved fluorescence experiments have been performed by means of Horiba–Jobin–Yvon Fluoro Cube lifetime arrangement using time-correlated single photon counting (TCSPC) technique at 298.15 K. A Nano LED (IBH, UK) of 330 nm was used as excitation source of pyrene. Emission was monitored at 374 nm corresponding to pyrene first vibronic peak using TBX photon detection module. Decay profiles (at the inset of Fig. 8A and 8B) of pyrene in pure polyelectrolyte and in presence of surfactants titrating into it were fitted and analysed with the support of IBH DAS-6 software by nonlinear least square iterative method to minimize residual values ( $\chi^2$  values close to 1). The experimental procedure was same as those stated in steady state method. Lamp profile was collected using micellar aqueous solution of SDS, which is used as a scatter in place of sample. Average lifetime ( $<\tau$ >) was calculated from the bi exponential iterative fitting in presence of surfactants using the pre-exponential factors ( $a_1$ ,  $a_2$ ) and decay times ( $\tau_1$ ,  $\tau_2$ ) with the assist of following equation:

$$<\tau>=a_1\tau_1+a_2\tau_2$$

(1)

The values of  $a_1$ ,  $a_2$  and  $\tau_1$ ,  $\tau_2$  were given in Table S1 (refer to the supplementary section). Pyrene concentration was fixed to  $1 \times 10^{-4}$  throughout the measurements. Here 0.005 % (w/v) of NaAlg was used for TCSPC measurement.

#### 2.2.5. Isothermal titration calorimetry:

Isothermal Titration Calorimetry (ITC) was executed with the help of a GE, MicroCal ITC<sub>200</sub> (Malvern, UK) microcalorimeter equipped with a thermostatic arrangement. Experimental temperature was maintained at 298.15 K with a precision of  $\pm$  0.02 K. In this investigation, surfactant solutions were prepared 10-15 times above their cmcs (cf. Table 1), those measured by conductometry and tensiometry in aqueous polyelectrolyte solution of different weight fractions. Deionised water and different aqueous % (w/v) NaAlg solution (200 µL) taken in calorimeter cell and surfactant solutions was titrated (initially 0.5 µL, then 2µL; total 20 injections) at a time interval of 120s using a micro syringe. Polyelectrolyte concentrations were fixed both at cell and in the syringe. Raw data were analysed by Origin<sup>TM</sup> 7.0 software in terms of µcal/s vs. Time (min) [such plots regarding both surfactants shown in Fig. 9e & 9f in presence of 0.001% (w/v) NaAlg] after the subtraction of integrated baseline which was performed by taking deionized water in reference cell and polyelectrolytes with different

concentrations at the sample container (cell) prior to each experiment. Enthalpies of micellization ( $\Delta H^0_m$ ) determined (cf. Table.4.) from the normalised integration data plot (kcal.mol<sup>-1</sup> per mole of injectant vs. concentration of surfactant [Surf]; cf. Fig. 9(c) and 9(d)) obtained by the software with assistance of instrument generated data in terms of µcal/s vs. Time (min) (cf. Fig. 9(e) and 9(f)). Cmcs were measured for all the systems from kcal.mol<sup>-1</sup> of injectant vs. [Surf] plots [shown in, Fig. 9] designated by arrow. Cmc values [Table 1 and 2] determined by ITC found well similarities with those obtained by other techniques for two surfactants both in presence and absence of different polyelectrolyte concentrations. ITC profiles of pure surfactants in aqueous solution were displayed in Fig. 2A (d) and 2B (d).

#### 2.2.6. FTIR-ATR spectroscopy:

FT-IR spectra were performed using a Perkin Elmer (model no. spectrum Two) FTIR spectrometer using attenuated total reflectance (ATR) technique. A LiTiO<sub>3</sub> detector has been used to measure spectra. Small amount of samples was taken in diamond plate and pressure was adjusted and performed measurements between the ranges of 500-4000 cm<sup>-1</sup> wavelength. NaAlg, surfactants and NaAlg-surfactant complexes were characterized (shown in Fig. 10A and 10B). To prepare polyelectrolyte surfactant complex, 2mL 0.08% (w/v) of NaAlg has been mixed with 1.28 mL 15 mM surfactants (both C<sub>16</sub>MImCl and C<sub>16</sub>TPB separately in two vials) prepared in 0.01% (w/v) NaAlg. Phase separation occurred after addition and these were well sonicated at room temperature. The resultant polyelectrolyte-surfactant complexes were dried under vacuum.

#### 2.2.7. Viscosity:

Average viscometric molecular weight  $(M_v)$  of NaAlg was determined with the help of an ubbelohde viscometer fitted in a thermostatic water bath at 298.15 K in the medium of 0.1 M NaCl, used as solvent. Using Mark–Houwink equation, viscosity average molecular weight of sodium alginate was found to be 123.19 kDa at 298.15K. Detailed procedure<sup>40-43</sup> and the relevant values for determination of  $M_v$  have been shown in supplementary section (Fig.S1). Ratio of mannuronic (M) to guluronic (G) acid (M/G) was found to be 0.45 obtained <sup>44</sup> from absorption intensity values at 1123 and 1025 cm<sup>-1</sup> respectively in FTIR profile of pure alginate (Fig.10). The intense band at 1025 cm<sup>-1</sup> (Fig.10) clearly suggests that NaAlg used in this study contains high amount of guluronic acid.

#### 2.2.8. Dynamic Light Scattering (DLS):

DLS measurement was performed using a a Nano ZS Zetasizer (Malvern, UK) measuring at  $90^{0}$  angle with an exposure of He-Ne laser having wavelength ( $\lambda$ ) of 632.8 nm at 298.15 K under thermostatic control. Experimental NaAlg solution (0.01% w/v) of 1mL was taken in a fluorescence cell and both surfactants were added using micropipette. Each time the solution was thoroughly mixed after addition of surfactant prior to each measurement. Experiments were repeated twice for reproducibility. Computer generated % Intensity vs. Size (*r*.nm) plots in presence of 0.01% (% w/v) of NaAlg for varying the concentration of both surfactants were presented in Fig. S2 in the supplementary section.

#### 2.2.9. High Resolution (HR) transmission electron microscopy (TEM):

TEM images of sodium alginate associated with surfactants were obtained using a JEOL JEM 2010 (Tokyo, Japan) high resolution transmission electron microscope (HRTEM) operating at 200 kV. One small drop of a solution was prepared in 0.01% (w/v) NaAlg for both the surfactants, where surfactant concentration exceeded individual  $C_m^*$  values. This drop was placed onto a gold-coated copper grid, and it was then kept overnight on dried silica gel prior to the measurement being taken.

#### **2.2.10. Fluorescence microscopy:**

Fluorescence images were taken from Olympus inverted fluorescence microscope (model-IX73: one deck system). DPH was used as a fluorophore, prepared in absolute EtOH and taken in less turbid solutions containing NaAlg (0.01% w/v) and both surfactants individually above 2-3 times of  $C_m^*$ . Final DPH concentration remains 0.1 mM in surfactant containing polymer solutions. DPH containing polyelectrolyte-surfactant solutions were kept overnight prior to measurements. Fluorescence images were taken using FITC filter attached to the instrument with 100X zooming.



Fig. 2A: cmc of  $C_{16}$ MImCl determined by several experimental techniques: Tensiometry (a), Conductometry (b), spectrofluorimetry (c) and ITC (d). Error bar is given in each plot.



Fig. 2B: cmc of  $C_{16}$ TPB determined by several experimental techniques: Tensiometry (at the inset: zoomed view of cmc<sub>2</sub>) (a), Conductometry (b), spectrofluorimetry (c) and ITC (at the inset: zoomed view of cmc<sub>2</sub>) (d). Error bar have been introduced

#### 3. Results and discussions:

## **3.1. Tensiometry:** *Surface active and inactive polyelectrolyte-surfactant complex formation, Effect of polyelectrolyte concentrations, Interfacial and bulk parameters:*

Critical micelle concentration (cmc) of a pure surfactant has been unambiguously determined from surface tension ( $\gamma$ ) vs. log [surfactant] profiles by taking a sharp break point (cf. Fig. 2) which designates the onset of micellization. Surface tension profiles of two pure surfactants have been displayed in Fig. 2A (a) for  $C_{16}MImCl$  and 2B (a) for  $C_{16}TPB$ . The appearance of these two tensiometric profiles of both surfactants differs in the premicellar regions. Existence of second cmc (cmc<sub>2</sub>) for the micellization of  $C_{16}TPB$  have been found earlier<sup>36, 38</sup> by means of conductance measurement. Although cmc2 of C16TPB was not focused by tensiometric technique earlier<sup>38</sup>, here second break (cmc<sub>2</sub>) for pure C<sub>16</sub>TPB may has been obtained after precise investigation and zooming in small changes of surface tension (from 38.8 to 37.4 mN.m<sup>-1</sup>, at the inset of Fig. 2B(a)) in this region after cmc<sub>1</sub>. The second micellar transition (cmc<sub>2</sub>) as the existing micelles those appeared in first inflection region might have undergone secondary aggregation or change in shape and size  $^{45}$ . These small changes in  $\gamma$  may be due to the fact that tensiometric technique (interfacial properties) lost its significance in its lowering regions at high surfactant concentration in the bulk. Besides the found cmc<sub>2</sub> value of C<sub>16</sub>TPB is quite similar to those obtained by the other techniques (viz. conductometry, ITC; cf. Table 2). On the other hand, pure  $C_{16}$ MImCl shows only one sharp break point in the tensiometry profile (Fig. 2A (a)). Apart from tensiometry, pure C<sub>16</sub>MImCl also shows only one inflection point determined by other methods (refer to Table 1). Tensiometric profile of pure C<sub>16</sub>MImCl initially decreases slightly with sparsely surfactant populated at air/water interface, while for C<sub>16</sub>TPB, amphiphile molecules co-operatively get populated from the very low concentration of surfactant.

In presence of polyelectrolyte NaAlg, the situation is quite complex. Tensiograms (Fig 3A & 3B) exhibit several inflection points during studying micellization of both  $C_{16}$ MImCl and  $C_{16}$ TPB respectively in presence of varying concentration (% w/v) of sodium alginate due to strong electrostatic interaction between anionic NaAlg with cationic surfactants in the premicellar regime.


Fig. 3. Tensiometry profiles of (A)  $\gamma$  vs. log ([surfactant]/C) for the micellization of C<sub>16</sub>MImCl; (B) C<sub>16</sub> TPB in presence of different wt% (w/v) of sodium alginate. Each tensiogram has been shifted 10 units upward for better visualization of break points. At the inset: comparative plots of surfactants in aqueous and in presence of different % (w/v) of NaAlg without changing the scale. Error bars are given in surface tension plots (D) Schematic diagram of different species was found due to interaction of oppositely charged polyelectrolyte and surfactants. At the inset of fig 3A & 3B: comparable line diagrams for tensiometric profiles of surfactants in presence and absence of NaAlg without shifting the data towards surface tension axes.

The decreasing pattern of pre micellar regions of surfactants in presence of NaAlg resemble with the alginate free tensiometry profiles (cf. Fig. 2A (a) & 2B(b)) of respective pure surfactants. It has been seen from the inset of Fig. 3A and 3B that, surface tension values decrease rapidly at the low surfactant concentration in presence of NaAlg in contrast with alginate free pure one. The decrement is more produced in 3B in case of  $C_{16}$ TPB at all NaAlg concentration. This initial decrease in surface tension clearly indicates some sort of modification in terms of surface activity of surfactants adopted in presence of sodium alginate. Degen *et. al.* <sup>12</sup> have been shown the significant increase in interfacial thickness due to

formation of thin monolayer at liquid-gas interface upon addition of low concentration of surfactants (CTAB, DTAB and TTAB) on 0.1 g/ml NaAlg aqueous solution as compared with NaAlg free surfactant solution of same surfactant concentrations by X- ray reflectivity technique. The pattern of tensiograms for all alginate concentrations in presence of respective surfactant/NaAlg found to be more or less similar and different for different surfactants investigated here. With addition of C<sub>16</sub>MImCl in 0.001% NaAlg solution surface tension initially decreases followed by a slight hump observed which is associated with another linear rapid decrease in tensiometric profile on further addition of ILs. Initial decrease is mainly attributed to the pure IL adsorption on the air -water interface; then on further addition of  $C_{16}$ MImCl, second decrease in tensiometric profile is observed due to formation surface active NaAlg - C<sub>16</sub>MIm<sup>+</sup> complex owing to electrostatic reason along with monomeric adsorption. This small hump has been reasonably chosen as the threshold concentration corresponding to the onset of surface-active polyelectrolyte-surfactant complex formation at the interface, called critical aggregation concentration (cac). Adsorption of IL on NaAlg backbone at the interface leads to the increase of hydrophobicity of the complex and they preferably populate at Langmurian interface. On further addition of IL, there occurs a large plateau after the formation of surface active anionic NaAlg- C<sub>16</sub>MIm<sup>+</sup> complex. Formation of plateau is attributed to the non-surface active NaAlg-C<sub>16</sub>MIm<sup>+</sup> complex associated with the formation of small micellar aggregates of C<sub>16</sub>MImCl wrapped by alginate backbone (necklace like conformation). This phenomenon is observed at a concentration, called polymer saturation concentration, C<sub>s</sub>, (displayed in Fig. 3A). After that IL molecules again repopulate at air water interface leading to the decrease in the value of surface tension again and finally, free micelle of  $C_{16}$ MImCl is formed after complete saturation of interface at a particular surfactant concentration called extended critical micelle concentration (C<sub>m</sub>\*) just like cmcs of pure surfactants. After that, surface tension does not vary with surfactant concentrations. Formation of large plateau has been stated above was also documented in previous study due to formation of surface-active polyelectrolyte surfactant (IL) complex (AHX/  $C_n$ MImBr system, n = 12, 14, and 16), by de Freitas et. al.<sup>17</sup> at lower polyelectrolyte concentration (0.01 g L<sup>-1</sup> of AHX). Sometimes, maxima have also been reported (previously reported systems, NaCMC/C<sub>16</sub>MImCl<sup>19</sup>, NaCMC/C<sub>n</sub>MImBr (n = 14 and 16)<sup>18</sup>) in this region after cac due to dislodging of polyelectrolyte-surfactant complex from air-water interface to bulk. Unlike 0.001% (w/v) NaAlg, different behaviours were observed in the tensiograms while studying the interaction of IL with higher concentration (0.005% and 0.01%) of NaAlg. From Fig. 3A, it has been seen

that in both 0.005% and 0.01% of NaAlg, addition of IL initially decreases surface tension mildly, beyond which surface active NaAlg-C<sub>16</sub>MIm<sup>+</sup> complex is formed (at cac) leading to stiff nonlinear decrease in surface tension profiles until the completion of non-surface active NaAlg-C<sub>16</sub>MIm<sup>+</sup> complex (at C<sub>S</sub>) at bulk. The nonlinear decrease is also due to the hydrophobic interactions between the NaAlg backbones wrapped with ILs and small micelle-like aggregates of ILs. Such type of appearance in tensiometric profiles of oppositely charged polyelectrolyte and surfactant have been shown by our group<sup>10</sup>. Widths of plateaus were gradually shortened from 0.001% to 0.005% NaAlg concentration and finally remain disappear at 0.01% NaAlg. The disappearance of plateau at high alginate concentration might be attributed to the increase of NaAlg population at the interface leading to increase of the stability of surface active polyelectrolyte-surfactant complex for the greater ease of electrostatic interaction between oppositely charged NaAlg and ILs and hindered the early formation of necklace type conformations at bulk. Screening of small IL aggregates neutralizes the surface charge density of NaAlg backbone leading to appearance of turbidity and finally, increased hydrophobicity due to formation of larger IL aggregates wrapping in NaAlg backbone and also inter chain interaction between NaAlgs leading to coacervation. These coacervates may be partially soluble in micellar medium of IL near Cm\*. At low NaAlg concentration (0.001% w/v) no noticeable turbidity was found during the whole course of addition of IL, whereas, for 0.005 and 0.01% NaAlg, visual coacervates appear after cac and partial phase separation appeared near C<sub>S</sub>. Threshold concentration for the first appearance of coacervate was displayed in the tensiograms of 0.005 and 0.01% NaAlg in conjugation with IL by a both side double headed arrow connecting a solid line between t<sub>1</sub> and t<sub>2</sub> and phase separation zone presented by a dotted curve indicating the symbol p (cf. Fig. 3A). Phase separation in presence of 0.005 and 0.01% NaAlg with IL is transient in nature and converted to complex coacervates after further addition of ILs. We cannot detect the threshold concentrations where maximum turbidity appeared visually which in terms is obtained by turbidimetry measurement (refer to Sec. 3.1). These coacervates were slightly soluble in micellar medium after Cm\* manifested in turbidity profiles (cf. Fig. 5(a), (b) and (c)). Both turbidity and phase separations were appeared at relatively lower IL concentrations when the increase of the concentration of NaAlg from 0.005 to 0.01% (w/v) due to the increased hydrophobicity in solution. The tensiometric profiles of C<sub>16</sub>MImCl in presence of 0.001, 0.005 and 0.01% (w/v) concentrations of NaAlg with the different inflection points, cac, Cs and Cm\* are presented clearly in Fig. 3A.

Addition of C<sub>16</sub>TPB into NaAlg differs appreciably (cf. Fig. 3A) from the profile of C<sub>16</sub>MImCl, especially at low surfactant concentration regime. With the increase of the concentration of  $C_{16}$ TPB, surface tension rapidly decreases initially, after that increases in the tensiometric profiles in presence of 0.001 and 0.005% NaAlg, whereas a large plateau appears in presence of 0.01% NaAlg. Initial surfactant concentrations at which surface tension values increase, are termed here as cac and C<sub>S</sub> respectively. Formation of maximum values of surface tension can be explained in terms of Taylor *et. al.*<sup>46,47</sup> regarding the stability between  $P_{\rm S}$  and  $P'_{\rm S}$  complexes (see Fig. 3D) referred to the surface active polyelectrolyte- surfactant complex and another surface-active polymer-surfactant complex binds on to the underside of Ps complex respectively. As C<sub>16</sub>TPB head groups, containing three bulky phenyl groups, bind weakly to the NaAlg, surface activity due to  $P_{\rm S}$  complex was somewhat compromised comparing with free C<sub>16</sub>TPB monomers adsorption manifested in the absence of decayed tensiometric trends (cf. Fig.3B) after free surfactants adsorption at low surfactant concentration; those present in the tensiograms of  $C_{16}$ MImCl in presence of NaAlg (cf. Fig. 3A). Moreover, instability in  $P_S$ and later  $P'_{S}$  dislodges polyelectrolyte-surfactant complex in bulk from the interface as a consequence of formation of bulk necklace type conformation (stated above), forming maxima at C<sub>s</sub> at 0.001 and 0.005% NaAlg solution. Surplus of polyelectrolytes at 0.01% NaAlg injects little stability in  $P'_{S}$  as the availability of more charged site is introduced with increasing NaAlg concentration, resulting to the formation of large plateau appeared without maximum. Schematic diagram has been displayed compiling all the conformations of NaAlg originated from the interaction with surfactants along with free surfactant aggregates with notations discussed here in Fig. 3C. After complete saturation of NaAlg backbone by means of small micelle like aggregates (at C<sub>5</sub>, cf. Fig. 3B) of C<sub>16</sub>TPB covering, free C<sub>16</sub>TPB again populate at interface up to a certain concentration where free micelle formation (first extended cmc) occurred at C<sub>m</sub><sup>\*1</sup>. This process repeats itself as the increase of free monomer again forms second inflection point corresponding to the formation of another aggregates, which may be changed in shape and size relative to former aggregates, at  $C_m^{*2}$ . The extended second cmcs ( $C_m^{*2}$ ) of C<sub>16</sub>TPB in presence of NaAlg were clearly visible in Fig. 3B. Moreover, it has been seen from Fig. 3B that, the sharp inflections appear in the region of first cmc at low polyelectrolyte concentrations, whereas, at high alginate content, prominent second inflection point  $(C_m^{*2})$ appears. First visible coacervate was appeared during the addition of C<sub>16</sub>TPB to alginate solution after C<sub>m</sub><sup>\*1</sup> in presence of 0.005% NaAlg, whereas turbidity appears near C<sub>m</sub><sup>\*1</sup> at 0.01% alginate concentration. Transient phase separation of polyelectrolyte-surfactant (C<sub>16</sub>TPB)

complex only occurred after  $C_m^{*2}$  in presence of 0.01% of NaAlg. The concentration zone where visual turbidity first appeared was denoted by a curved line of ab. The appearance of late coacervates in presence of  $C_{16}$ TPB as compared with  $C_{16}$ MImCl clearly indicates weak electrostatic interaction operating in the complexation process of NaAlg- $C_{16}$ TPB combination comparing with NaAlg- $C_{16}$ MImCl system. The turbidity that appeared at near  $C_m^{*1}$  for 0.005 and 0.01% NaAlg solution might be slightly soluble in micellar aggregates of  $C_{16}$ TPB. Phase separated complexes comprise of 0.01% NaAlg with  $C_{16}$ TPB are further converted to complex coacervates before  $C_m^{*2}$  on further addition of  $C_{16}$ TPB and are negligible soluble in micellar medium manifested in turbidimetric plots (cf. Fig. 5(f)). Solubilization of these polyelectrolyte-surfactant complexes occurs either in partially dissociated or rearranged form <sup>35</sup> into micellar hydrophobic core. The tensiometric profiles of  $C_{16}$ TPB in presence of 0.001, 0.005 and 0.01% (w/v) concentrations of NaAlg with the different inflection points, cac, Cs and Cm\* are clearly depicted in Fig. 3B.

The appearance of minima and subsequent maxima in the  $\gamma$  isotherms is not a rare phenomenon <sup>48</sup>. The existence of a surface tension peak or a pleautu have also been recorded for the oppositely charged polyelectrolytes-conventional surfactant systems: PDADMAC-SDS system<sup>49</sup> and NaPSS–DTAB system  $^{46,47}$  respectively in between the region of cac and C<sub>s</sub>. This phenomena in case of oppositely charged polyelectrolyte in combination with surfactant also have been explained by Ábraham et al. as the transient states to the pseudo equilibrium isotherm <sup>50</sup>. In fact, the study of oppositely charged polyelectrolyte-surfactant system, PDADMAC-SDS system by Campbell et al.<sup>51</sup> after aging the samples to three days (time dependent investigation) showed the different pattern of surface tension isotherms with time. This observation of Campbell et al. leads to the expiation that the depletion of surface active polyelectrolyte-surfactant complexes take place from interface to balk and settled down in form of precipitation after aging which is manifested in cliff edge peak in surface tension isotherm <sup>51</sup>, which is also reflected in peak height at which surface tension suddenly rises. To defined these types of systems properly Guzman et al. concluded that, it is necessary to leave the mixtures to stabilize for 24-48 hours before taking any measurement<sup>52</sup>. However, in present study, the appearance of maximum in the surface tension isotherms (0.001 and 0.005% NaAlg in presence of  $C_{16}$ TPB) show small in magnitude with absence of significant phase separation in between cac and  $C_s$  and it has been seen that the turbidity values remains more or less constant after aging to 48 hours and no precipitations settled down. Kinetically trapped oppositely charged polyelectrolyte-surfactant complexes sometimes have been formed due to fast mixing of polyelectrolytes with surfactants as a consequence of non-equilibrium mixing as pointed out in previous literature<sup>53</sup>. Moreover, it has also found that, more or less same turbidimetry data was found for the set of solutions at same concentration (which concentration have been studied in surface tension measurements) of surfactants at 0.005% (w/v) of NaAlg by using the both mixing protocols (slow and fast) rule out the possibility of kinetically trapped NaAlg-surfactant complex for the both investigated systems. Similar observation have been found for the mixing of sodium poly[(vinyl alcohol)-co-(vinyl sulfate)] with DTAB not forming any kinetically trapped complex <sup>54</sup>.

The values of cac, Cs and Cm\* as well as pure cmcs are presented in Tables 1 and 2 for C<sub>16</sub>MImCl and C<sub>16</sub>TPB respectively. From Table 1, it has been seen that C<sub>m</sub>\* of C<sub>16</sub>MImCl gradually increases with the increase in proportion of NaAlg as compared with its pure state indicating delayed micellization in presence of NaAlg. This observation has been recorded in previous literatures<sup>10, 13</sup> for oppositely charged polyelectrolyte and cationic surfactants and explained in terms of increase of charge centres with the increasing proportion of polyelectrolyte and consequent increase of the number of surfactant monomers to neutralize them before reaching C<sub>m</sub>\*. For this reason, cac and later C<sub>S</sub> also increase with increasing the concentration of NaAlg during the addition of IL shown in Table 1. On the other hand, a slight decrease in Cm<sup>\*1</sup> and Cm<sup>\*2</sup> values is observed at 0.005% NaAlg in presence of C<sub>16</sub>TPB while comparing  $C_m^*$  by other techniques (cf. Table 2.) discussed in the latter sections. Similar observation has been reported formerly in HTAB + 0.005% NaPSS, TTAB + 0.005% DX and NaPSS, DDGB + 0.005% NaCMC systems by conductometric measurements<sup>55</sup>. Same type of minimum point was also observed while determining Cs at the intermediate NaAlg concentration for C<sub>16</sub>TPB at 0.005% NaAlg solution in this study. Probably, the difference of head groups between  $C_{16}$ MImCl and  $C_{16}$ TPB is responsible for such type of difference during micellization in presence of same wt % of NaAlg, former shows a straight forward increasing pattern in  $C_m^*$  (Table 1) and later a minimum point is found in both  $C_m^*$  (cf. Table 2).

From tensiometric isotherms (cf. Fig. 3A and 3B), the efficiency of surface adsorption of surfactant monomers of both C<sub>16</sub>MImCl and C<sub>16</sub> TPB has been measured at cmc or C<sub>m</sub><sup>\*</sup> in terms of surface excess ( $\Gamma_{cmc}$ ) in presence and absence of NaAlg using Gibbs adsorption equation<sup>17</sup>:  $\Gamma_{cmc} = \frac{1}{2.303nRT} lim_{C \to cmc(C_m^*)} \frac{d\gamma}{dlogc} \text{ mol.m}^{-2}$ (2)

Here, *n* is the number of species dissociated per monomer of surfactants adsorbed at interface. The value of *n* is 2 for both the surfactants. R is the universal gas constant and T is the temperature in Kelvin scale.  $(d\gamma/dlogC)$  was defined as the slope at cmc or  $C_m^*$ .  $(d\gamma/dlogC)$ 

was determined from the tensiograms (cf. Fig. 2A (a), 2B (a) for pure surfactants and Fig. 3 in presence of alginate) by taking  $\gamma$  with corresponding log [surfactant] values up to cmc/ C<sub>m</sub><sup>\*</sup> and fitted them with second order polynomials ( $Y = A + B_1X + B_2X^2$ ) of fairly good R<sup>2</sup> values displayed in the supplementary section (Fig. S3). Coefficients of A, B<sub>1</sub> and B<sub>2</sub> values for all Table S2 (Supplementary Section). In principle, the systems were given in the bulk concentration (c) of surfactants should be replaced by the chemical activity,  $(a)^{56}$ for the corresponding surfactant using the equation,  $a = \gamma C$ , where,  $\gamma$  activity coefficient of corresponding surfactants both in presence and absence of NaAlg in different wt% aqueous solution. It has been stated that, for dilute system, concertation of surfactants must be in the order of  $\sim 1$  mM, while for nonideal system surfactant concertation in the order of  $\sim$ 100 mM <sup>57</sup>. In this present study, investigated surfactant concentration mentioned within the limit of ideal range. Under these circumstances, Eq. 2 can be reasonably used as an approximation as  $\gamma$  nearly independent in this investigated concentration range<sup>58</sup>. In case of  $C_{16}$ TPB, the values of  $\gamma$  have been taken with corresponding log [ $C_{16}$ TPB] values upto cmc<sub>1</sub> for pure C<sub>16</sub>TPB and C<sub>m</sub><sup>\*1</sup> in presence of different wt% of NaAlg for determination of  $\Gamma_{cmc}$  and hence, it has been designated here as  $\Gamma^{1}_{cmc}$  (refer to Table 3). Three bulky triphenyl containing phosphonium groups with relatively less charge density of pure C<sub>16</sub>TPB did not allow it for preferable adsorption on air-solution interface over  $C_{16}MImCl$ , while latter has relatively smaller head group size manifested in lower  $\Gamma_{cmc}$  value of C<sub>16</sub>TPB than C<sub>16</sub>MImCl as seen in Table 3. The values of  $\Gamma_{cmc}$  and  $\Gamma_{cmc}^1$  of both surfactants in presence of NaAlg have lower magnitude while comparing with their pure states shown in Table 3 in aqueous solution. The values of  $\Gamma_{cmc}$  of C<sub>16</sub>MImCl in comparison with NaAlg-free aqueous solution initially decreases rapidly at 0.001% (w/v) NaAlg solution, increases slightly at 0.005% NaAlg solution, beyond which further decrease occurs at 0.01% NaAlg concentration. The same observations have been found in case of C<sub>16</sub>TPB with increasing NaAlg concentration. Initial huge decrement of  $\Gamma_{cmc}$  or  $\Gamma_{cmc}^1$  of C<sub>16</sub>MImCl and C<sub>16</sub>TPB respectively at lower NaAlg concentration (0.001% w/v) is due to lesser population of surfactants present at interface than bulk due to electrostatic interaction of oppositely charged surfactants with NaAlg. However, both increase and decrease occurred at larger extent in  $\Gamma_{cmc}^1$  profile for C<sub>16</sub>TPB over the entire NaAlg concentrations comparing with the same in presence of C<sub>16</sub>MImCl (See Table 3.). The increase in  $\Gamma_{cmc}^1$  or  $\Gamma_{cmc}$  of C<sub>16</sub>TPB and C<sub>16</sub>MImCl respectively at 0.005% (w/v) NaAlg solution, shown in Table 3.; former is due to the increasing adsorption of C<sub>16</sub>TPB<sup>+</sup> monomers at the interface after clearance or depletion of surface active polyelectrolyte surfactant complex

from interface to bulk after  $C_s$  to some extent, and latter is due to the formation of surface active polymer complex in larger extent after cac.

Guzman, Thomas, Eastoe, Penfold, and others <sup>59-64</sup> have been shown that, neutron reflection (NR) and Gibbs surface excess method using surface tension (ST) have given the similar satisfactory results to wide variety of nonionic surfactant, including polymer or polydisperse system in the proximity of cmc or at lower concentration beyond cmc. The consistency of two methods suggests that, the surface have been saturated near completely before cmc. The major discrepancy arises in case of ionic surfactants, especially for anionic surfactant, where, it has been seen that, ST underestimates  $\Gamma_{cmc}$  values in comparison with NR<sup>65</sup>. Moulik et. al.<sup>66</sup> have calculated  $\Gamma_{cmc}$  for ionic surfactants using the second order polynomial fitting of  $\gamma$ -log [Surfactant] plots taking the data of  $\gamma$  from the very beginning (surfactant concentration nearly equal to zero) upto cmc using Gibbs equation (Eq. 2). They found that, taking reliable data for  $\gamma$  values of SDS from another source [Addison and Hutchinson et. al.<sup>67</sup>], calculated  $\Gamma_{cmc}$  using ST method found quite similarly than those found by NR. Although NR have been used as an excellent technique for determination of  $\Gamma_{cmc}$  <sup>59-64</sup>, ST method using polynomial fitting give  $\Gamma_{cmc}$  values which have fair representability to NR for ionic surfactants and they <sup>66</sup> pointed out the apparent discrepancy for determine  $\Gamma_{cmc}$  by NR to ST in terms of impurity present in surfactant or lacuna in measurement of experimental data. So, it is reasonable to use Eq. 2. for determination of  $\Gamma_{cmc}/\Gamma_{cmc}^1$  in absence of NR facility.

Minimum area of surfactant monomers  $(A_{min})$  at air-water interface can be obtained using the following equation:

$$A_{min} = \frac{10^{18}}{N_a \Gamma_{cmc}} nm^2 / \text{ molecule}$$
(3)

A<sub>min</sub> has the reverse order with  $\Gamma_{cmc}$ , as the minimum surface area of surfactants increases; decrease in surface coverage is possible in terms of decrease in  $\Gamma_{cmc}$  and also vice versa. The term  $A_{min}^1$  was denoted for the C<sub>16</sub>TPB in presence and absence of NaAlg whereas A<sub>min</sub> for C<sub>16</sub>MImCl. The values of A<sub>min</sub> and  $A_{min}^1$  have been presented in Table 3.

Efficiency of adsorption of amphiphiles on air-water interface in presence and absence of various wt% (w/v) of NaAlg have been defined by the parameter,  $p^{C_{20}}$ ,

$$p^{C_{20}} = -\log_{10}C_{20} \tag{4}$$

The term  $C_{20}$  has been defined as the concentration at which reduction of surface tension of amphiphiles is 20 mN m<sup>-1</sup>. Higher  $p^{C_{20}}$  values indicate high efficiency of adsorption of amphiphiles at air – water interface and consequently more reduction of surface tension. Higher

 $p^{C_{20}}$  value of pure C<sub>16</sub>TPB compare with C<sub>16</sub>MImCl indicates high efficiency of adsorption of C<sub>16</sub>TPB at air-water interface. From Table 3, it has been seen that, adsorption of both surfactants was overall enhanced in presence of NaAlg and increases at high NaAlg contents. Surface pressure at cmc/ C<sub>m</sub><sup>\*</sup> ( $\pi_{cmc}$ ) can be defined by the expression given below:

$$\pi_{cmc} = \gamma_S - \gamma_{cmc\ (or)C_m^*} \tag{5}$$

where,  $\gamma_S$  is the surface tension of pure solvents (deionised water, different wt% (w/v) of NaAlg in deionised water) and  $\gamma_{cmc\ (or)}c_m^*$  is the surface tension of pure surfactants at *cmc* in aqueous solution or surface tension of surfactants at cmc (C<sub>m</sub><sup>\*</sup>) in presence of varying wt % (w/v) of NaAlg.

The symbol of  $\gamma_{cmc}$  with two superscripts 1 and 2 designate  $\gamma_{cmc}$  at cmc<sub>1</sub> and cmc<sub>2</sub> or Cm<sup>\*1</sup> and Cm<sup>\*2</sup> respectively for surfactants both in pure state and in presence of polyelectrolytes. From Table 3, it is seen that,  $\pi_{cmc}$  denotes the effectiveness of amphiphiles to reduce surface tension of a solvent medium while dissolute in it. The values of  $\pi_{cmc}$  of C<sub>16</sub>MImCl and C<sub>16</sub>TPB in presence and absence of NaAlg have been displayed in Table 3. Superscripts 1 and 2 denote first and second *cmc*s or first and second Cm<sup>\*</sup> respectively whichever is applicable. From Table 3, it is seen that C<sub>16</sub>MImCl is more effective in reducing surface tension at Cm<sup>\*</sup> in its pure state as compared with C<sub>16</sub>TPB in aqueous solution and improved effectiveness in reducing surface tension at Cm<sup>\*</sup> observed in presence of NaAlg for both the surfactants.

The geometrical shape of micelle can be defined by a parameter, called packing parameter (P), which was defined by Israelachvili<sup>68</sup> as,

$$P = \frac{v}{l_c A} \tag{6}$$

v and  $l_c$  were defined as the volume of the hydrocarbon chain of surfactant assuming it to be fluid and incompressible and maximum effective length of that hydrophobic chain, respectively. *A* is the area of the surfactant head groups forming micellar surface at the bulk. As the exact determination of *A* is difficult (depends on several external conditions, viz., temperature, local micropolarity, additives etc.), already stated in our previous literatures <sup>2, 3, <sup>69</sup>, we have approximately used  $A_{min}$  instead of *A* for determination of packing parameters.*v* and  $l_c$  were determined using the following formulae defined by Tanford<sup>70</sup>,</sup>

$$l_c = (0.154 + 0.1265C_n) \,\mathrm{nm} \tag{7}$$

$$v = (0.0274 + 0.0269C_n) \text{ nm}^3 \tag{8}$$

where,  $C_n$  is the no of carbon atoms in saturated hydrocarbon chain of surfactants. It is stated that,  $P \leq 0.333$ , for spherical micelles; for non spherical micelles, 0.333 < P < 0.5; for vesicles and bilayers, 0.5 < P < 1; P > 1, denotes inverted structures. Calculated packing parameter values were presented in Table 3 which clearly indicates the forming micelles are spherical in nature for both C<sub>16</sub>MImCl and C<sub>16</sub>TPB in aqueous solution in presence and absence of different wt% of NaAlg. As  $\Gamma_{cmc}$  and corresponding  $A_{min}$  values are calculated at cmc<sub>1</sub> for pure C<sub>16</sub>TPB and at C<sub>m</sub><sup>\*1</sup> of C<sub>16</sub>TPB in presence of NaAlg, here  $P^1$  is chosen to define packing parameters for C<sub>16</sub>TPB in absence and presence of NaAlg.

# **3.2.** Conductometry; Transportation properties of conformers, Degree of counterion binding and Gibbs free energy of micellization:

Electrical conductance study provides the evidence of different conformers mediated by polyelectrolytes and surfactants in terms of ions transportation properties of charged species. Conductometry profiles of pure surfactants exhibits sharp inflection at cmc (cf. Fig. 2A (b) & 2B (b)). Initially, free monomers increase with the increase of the concentration of surfactants; increase the charged species (both monomers and counterions) to increase electrical conductance progressively which attribute to the steep slope (designated as m<sub>1</sub>) obtained in specific conductance ( $\kappa$ ) vs. concentration profiles (Fig. 2A (b)) in the pre micellar region. In the post micellar regime, free monomers are associated to form micellar aggregates with counterion condensation onto micellar surface; less transportation of relatively bulk micelles results in the decrease in  $\kappa$  attributed to relatively decreasing slope (designated as m<sub>2</sub>) than those obtained in pre micellar regime. Intersection point between two lines (m<sub>1</sub> and m<sub>2</sub>) designates the onset of micellization, called cmc. Degree of counter ion dissociation ( $\alpha$ ) from the micellar surface can be expressed as the ratio of slope of post micellar (m<sub>2</sub>) to pre micellar (m<sub>1</sub>) slope. On the other hand, degree of counter ion binding ( $\beta$ ) can be expressed as  $^{2, 3, 10, 14, 16-19}$ .

$$\beta = 1 - \frac{m_2}{m_1} \tag{9}$$

Only one inflection with two different slopes (m<sub>1</sub> and m<sub>2</sub>; cf. Fig. 2A (b)) was obtained for pure C<sub>16</sub>MImCl. Two inflections with three distinct different slopes of decreasing magnitude were obtained [Fig. 2B (b)] for pure C<sub>16</sub>TPB conductometrically due to the formation of both cmcs, termed as cmc<sub>1</sub> and cmc<sub>2</sub>; first cmc (cmc<sub>1</sub>) is the threshold concentration where the free monomers aggregate to form micelle like structures, while latter inflection point (cmc<sub>2</sub>) may be due to the change in micellar shape and size. Both cmc values of C<sub>16</sub>TPB have been documented in the literature with the help of conductance measurement<sup>36, 38</sup>. Here, both  $\beta_1$  (degree of counterion binding at cmc<sub>1</sub>) and  $\beta_2$  (degree of counterion binding at cmc<sub>2</sub>) have been calculated for C<sub>16</sub>TPB. Degree of counterion binding for C<sub>16</sub>MImCl has been designated as  $\beta$ . The process is same for the determination of  $\beta_1$  and  $\beta_2$  as those applied in the determination of  $\beta$ . The values of cmcs,  $\beta$ ,  $\beta_1$  and  $\beta_2$  for the micellization of both the surfactants in presence and absence of NaAlg have been displayed in Tables 1 and 2.

The plot of  $\kappa$  vs. [surfactant] show several break points apart from cmcs (for polyelectrolyte surfactant complex it has been termed as extended cmc or  $C_m^*$ ) due to the interaction of oppositely charged NaAlg with the surfactants.



Fig. 4. Specific conductance ( $\kappa$ ) vs. concentration of surfactant ([surfactant]), designated by open circle ( $\circ$ ). Plots are presented in a sequential way: a, b and c for titration of C<sub>16</sub>MImCl in presence of 0.001, 0.005 and 0.01 % (w/v) of NaAlg respectively, whereas, d, e and f for titration of C<sub>16</sub>TPB in presence of 0.001, 0.005 1nd 0.01 % (w/v) of NaAlg respectively (At the inset of few diagrams: displaying cac, C<sub>s</sub> or both clearly, whichever obtained). Error bars are given in different plots.

Introduction of  $C_{16}$ MImCl into 0.001% NaAlg solution produces three break points with four distinct slopes of decreasing magnitude (cf. Fig. 4(a)) in conductometric profile. First break point with well-defined variation of specific conductance segments (at the inset of Fig. 4a) in this region, corresponds to cac due to the formation of NaAlg- IL complex (adsorption of  $C_{16}$ MIm<sup>+</sup> on to the anionic backbone of NaAlg) having relatively lesser transport properties

than free surfactant monomers which is attributed to the decrease in slope in  $\kappa$  vs. [C<sub>16</sub>MImCl] profile than the initial one. Faint variation in slope (cf. Fig. 4a) near the second break point (defined as C<sub>S</sub>) proves the necklace type complex which comprises of NaAlg backbone with smaller micellar aggregates of ILs hardly affecting  $\kappa$ ; only the depletion of counterions<sup>10</sup> due to wrapping of micellar aggregates with NaAlg backbone causes little variation in slopes. Beyond C<sub>S</sub>, free micelles are formed by ILs, after prominent third break, called extended critical micelle concentration  $(C_m^*)$  like cmc of pure surfactants. This prominent third break in the vicinity of C<sub>m</sub><sup>\*</sup> appears due to the condensation of depleted counterions onto the micellar surface and follows the formation of less mobile free micellar aggregates of C<sub>16</sub>MImCl. In presence of 0.005 and 0.01% NaAlg in comparison with 0.001% NaAlg, only variation occurred at low concentration of C<sub>16</sub>MImCl. At higher NaAlg concentration (0.005% and 0.01% w/v), initially there is an ascending part with lower slope (figs. 4(b) and 4(c)) observed due to the formation of sufficient amount of C<sub>16</sub>MIm<sup>+</sup> adsorbing onto anionic NaAlg site; the slopes tend to a stiff rise after a certain IL concentration due to the formation of sufficient coacervate. At that time, NaAlg-ILs complexes partially screen out from the solution and free monomer population increases upon further addition of ILs, which in term increases  $\kappa$  stiffly. At higher NaAlg concentrations (0.005, and 0.01%), the first break is denoted as cac (see Figs. 4(b) & 4(c)). In presence of 0.005 and 0.01% NaAlg, no inflection points are observed at the region of  $C_5$  as the increasing population of polyelectrolyte-surfactant complex (small surfactant aggregates wrapping along polyelectrolytes backbone) at high polyelectrolyte content media nullify the counterions depletion effect after C<sub>s</sub>; hardly produce any detectable change in conductometric profiles (cf. Fig. 4(b) and (c)) until free micelles of C<sub>16</sub>MImCl were formed, after the complete saturation of NaAlg backbone leading to phase separation ('p' zone, shown in Fig.3A) at C<sub>m</sub><sup>\*</sup>. The cac values of C<sub>16</sub>MImCl obtained by conductometric method in presence of 0.005 and 0.01% NaAlg were found relatively greater than those determined by tensiometry (Sec. 3.1.). Such observations have been documented in previous literatures<sup>10, 14</sup> investigating the other oppositely charged polyelectrolyte surfactant systems. Possible reason for this disparity is that tensiometric technique detects the onset of formation of surface active NaAlg-C<sub>16</sub>MIm<sup>+</sup> complex earlier, while conductometric technique shows significant change until the turbidity is formed in large amount. The cac values of C<sub>16</sub>MImCl found in conductometric method in presence of 0.005 and 0.01% NaAlg can be compared only with the first turbidity point (T<sub>1</sub>) appeared in Turbidimetric experiments (see. Table1) discussed.

For C<sub>16</sub>TPB, conductometric profile (Fig. 4(d)) in presence of 0.001% NaAlg show three distinct break points with four different slopes, while for the other two concentrations of NaAlg (0.005% and 0.01%), four distinct break points have been observed with five different slopes. First break point in presence of 0.001% of NaAlg in conjugation with C<sub>16</sub>TPB corresponds to  $C_s$ . The break point cac have been not found in presence of 0.001% NaAlg with  $C_{16}$ TPB as the electrostatic interaction between carboxylate anion of NaAlg with  $C_{16}TP^+$  have lesser in magnitude than SAIL in conjugation with NaAlg stated in tensiometry section. From the inset of Fig. 4(d), it is evident that initially  $\kappa$  increases very slightly then increase steadily (reversal of slope in the conductometric profile). Initial slight increase is due to the formation of least amount of less mobile NaAlg-  $C_{16}TP^+$  complex as the interaction of  $C_{16}TP^+$  with NaAlg is somewhat lesser than C<sub>16</sub>MIm<sup>+</sup>. As a result, although negligible amounts of free surfactant monomers along with small micellar aggregates are wrapped along the polymer backbones, but free surfactant monomers were adequate in solution medium to increase  $\kappa$  steadily after C<sub>S</sub>. As [C<sub>16</sub>TPB] increases, conductance increases steadily until free monomers form free micelles; occurring second break in conductometric profile (Fig. 4 (d)) and the corresponding break point is associated with significant change of slopes found in conductometric plot termed as first extended cmc ( $C_m^{*1}$ ). Post micellar slope has slightly lesser in magnitude than pre-micellar slope (Fig. 4(d)) near  $C_m^{*1}$  due to formation of less mobile  $C_{16}$ TPB micelle. After  $C_m^{*1}$ , micelles formed by free monomers change its shape and size upon further addition of C<sub>16</sub>TPB resulting to the formation of third inflection with negligible change in  $\kappa$ . The concentration of C<sub>16</sub>TPB where the third break point is found has been termed as second extended micelle concentration  $(C_m^{*2})$ . At higher alginate concentrations (0.005 and 0.01% w/v), however, surplus polyelectrolytes forced some amount of C<sub>16</sub>TPB monomers to be associated to some extent on to NaAlg backbone leading to formation of cac which appeared to the first break points shown at the inset of Fig. 4(e) and 4(f). Change in slopes below and above cac at 0.01% (w/v) is quite prominent (compare Fig 4(e) and 4(f); shown at the inset of both figures) than those found in 0.005% (w/v) in presence of C<sub>16</sub>TPB clearly indicating feasibility of surfactant head groups attached on to alginate backbone at higher polyelectrolyte content. Reversal of slopes is also found for 0.005 and 0.01% (w/v) of NaAlg in conjugation with  $C_{16}$ TPB near the region of  $C_S$ (shown at the inset of Fig. 4(e) and 4(f)) like Fig. 4(d)). First visual turbidity was appeared in presence of 0.01% and 0.005% NaAlg in conjugation with [C<sub>16</sub>TPB] closed to C<sub>m</sub><sup>\*1</sup> values calculated by tensiometric method (Table 2). The value of C<sub>m</sub><sup>\*1</sup> calculated from the inflections shown in  $\kappa$  vs. [C<sub>16</sub>TPB] profiles (Fig. 4(e) & 4(f)). This was found relatively larger at 0.005

and 0.01% (w/v) than those obtained from tensiometry (shown in Table 2) as the break points were appeared in conductometry until sufficient turbidity formed in the medium leading to change in slope below and after of  $C_m^{*1}$ . The change in slopes in  $\kappa$  vs. [C<sub>16</sub>TPB] profile near  $C_m^{*1}$  is found more prominent at 0.01% (w/v) than 0.005% (w/v) probably due to the formation of maximum coacervates near C<sub>m</sub><sup>\*1</sup> in presence of 0.01% NaAlg upon addition of C<sub>16</sub>TPB which has also been concluded in turbidimetry plot (designated by  $\Phi_m$ ; Fig. 5 (f)) and also displayed in Table 2. The trend for variation in C<sub>m</sub><sup>\*1</sup> with the variation of NaAlg in presence of  $C_{16}$ TPB is consistent with tensiometry (cf. Table 2). From Fig. 5 (f) it is evident that, post micellar slope is found in greater magnitude than premicellar slope (reversal of slopes) in vicinity of C<sub>m</sub><sup>\*2</sup> in presence of 0.01% polyelectrolyte concentration, while reverse is obtained in presence of 0.005% (cf. Fig. 5(e)) in vicinity of Cm<sup>\*2</sup>. The different nature of slopes above and below the Cm<sup>\*2</sup> with increasing the concentration of NaAlg from 0.005 to 0.01% medium clearly indicates the polyelectrolyte assisted change in topology of free surfactant micelles during second micellization process. Like cacs, the values of Cm<sup>\*2</sup> calculated by conductometric method for NaAlg +  $C_{16}$ TPB system are also found larger than those calculated by tensiometry (cf. Table 2).

Degree of counter ion binding ( $\beta$ ) onto micellar surface formed by C<sub>16</sub>MImCl monomers have more or less increasing trend with slight variation upon increase the concentration of NaAlg displayed at the parenthesis (shown in Table 1.). The same observation has been found previously for AHX or ALG/ C<sub>n</sub>MIMBr (n = 12, 14, and 16) system <sup>17</sup>. On the other hand,  $\beta_1$ for C<sub>16</sub>TPB initially increased at 0.001% (w/v) NaAlg comparing with alginate free medium and decreased significantly at high alginate concentrations (0.005 and 0.01%), while  $\beta_2$  was found lower value as compared with alginate free C<sub>16</sub>TPB and also with  $\beta_1$ . Degree of counter ion binding was found larger for C<sub>16</sub>MImCl than compared with C<sub>16</sub>TPB both in pure state as well in all polyelectrolyte concentrations (Table 1). This clearly indicates that chloride ions are partially associated to greater extent onto C<sub>16</sub>MImCl micelles than the bromide ions on to micellar surface of C<sub>16</sub>TPB. Difference of degree of counterion binding onto the two different surfactant micelles manifested in the aggregation number ( $N_{a_4}$  cf. Table 3) both in presence and absence of NaAlg discussed later in this manuscript.

Standard Gibbs free energy of micellization ( $\Delta G_m^0$ ) for the pure surfactants in aqueous medium as well as in presence of different concentrations of NaAlg can be expressed as:

For, free surfactants forming micelles in aqueous medium,

$$\Delta G_m^0 = (1+\beta) RT ln X_{cmc} \tag{10}$$

 $X_{cmc}$  is the cmc in molefraction unit. R is the universal gas constant and T denotes the temperature in Kelvin scale. For C<sub>16</sub>TPB, having two cmcs (cmc<sub>1</sub> and cmc<sub>2</sub>) and corresponding  $\beta_1$  at cmc<sub>1</sub> and  $\beta_2$  at cmc<sub>2</sub>,  $\Delta G_m^0$  be replaced to  $\Delta G_m^0$  (1) and  $\Delta G_m^0$  (2) respectively to the equation 10.

For, surfactants in presence of NaAlg in aqueous medium,

$$\Delta G_m^0 = (1+\beta)RT \ln X_{C_m^*}$$

(11)

For C<sub>16</sub>TPB,  $C_m^*$  is replaced to equation 11 by  $C_m^{*1}$  and  $C_m^{*2}$  and corresponding  $\beta$  by  $\beta_1$  and  $\beta_2$  respectively. The value of  $\Delta G_m^0$  has been replaced by  $\Delta G_m^0$  (1) and  $\Delta G_m^0$  (2) for the first and second micellization to equation 11.

The values of  $\Delta G_m^0$  were displayed for individual pure surfactants and in presence of different wt% (w/v) of NaAlg in Table 4. From Table 4., it is evident that, negative values of  $\Delta G_m^0$  (1) initially increases at 0.005% NaAlg medium (more spontaneous) compared with pure surfactant in aqueous medium for the first micellization of C<sub>16</sub>TPB, beyond which decreases steadily up to 0.01% NaAlg medium. The values of  $\Delta G_m^0(2)$  decrease regularly, i.e., less spontaneous process with increase in polyelectrolyte concentrations for the second micellization process. For C<sub>16</sub>MImCl, micellization process is more spontaneous in presence of NaAlg and spontaneity increases overall at higher concentration of NaAlg (cf. Table 4).

**3.3. Turbidimetry;** Determination of onset and maximum turbidity exactly compare with visual impressions, Solubilization of polyelectrolyte-surfactant complexes in to micellar medium, Effect of polyelectrolyte concentration:

Turbidimetric profiles ((100-T%) vs. [surfactant]) for NaAlg-C<sub>16</sub>MImCl and NaAlg- C<sub>16</sub>TPB were displayed in Fig. 5 (a-c) and Fig. 5(d-f) respectively. T<sub>1</sub>, T<sub>2</sub> and T<sub>m</sub> (displayed in Table 1.) represented here first, second and maximum turbidimetric points respectively that appear from low to high surfactant concentrations of C<sub>16</sub>MImCl chronologically interacting with NaAlg. Alike, C<sub>16</sub>MImCl + NaAlg systems, the notion  $\Phi$  with the subscripts 1, 2 and m also designates the same turbidimetric significance for C<sub>16</sub>TPB + NaAlg systems (cf. Table 2.) from low to high C<sub>16</sub>TPB concentrations respectively.



Fig. 5. Turbidimetric profiles for the interaction of each of  $C_{16}$ MImCl and  $C_{16}$ TPB with different wt % of NaAlg (0.001% (a)/(d), 0.005%(b)/(e) and 0.01%(c)/(f)).

From Fig. 5(a), it is evident that, turbidity (a little bit, maximum turbidity approaches to 12%) increases steeply upto 0.04 mM concentration of  $C_{16}$ MImCl, corresponding to the first inflection point (T<sub>1</sub>); beyond which turbidity slightly increases upto1.07 mM of [C<sub>16</sub>MImCl] (maximum Turbidity point, T<sub>m</sub>) following with slight decrease in turbidity due to slight solubilization of it in micellar environment. From Table 1, it is seen that T<sub>1</sub> in presence of 0.001% (w/v) NaAlg has similarity to cac found by other techniques. In 0.005% NaAlg medium upon addition of C<sub>16</sub>MImCl (cf. Fig. 5 (b)), little turbidity appears different upto 0.167 mM of IL concentration corresponding to first inflection point, T<sub>1</sub>. Then steep increase in turbidity arises in solution medium up to 0.41 mM of surfactant concentration where second inflection point (T<sub>2</sub>) appeared, while for 0.01% (w/v) NaAlg medium, both T<sub>1</sub> and T<sub>2</sub> have the relatively larger turbidity content comparing to the turbidity axes (100-T%) of Fig. 5 (b) with Fig. 5(c). Concentration of C<sub>16</sub>MImCl corresponding to T<sub>1</sub> has the similarity with *cac*, those found by other techniques (cf. Table 1). T<sub>2</sub> values found for the interaction of 0.005 and 0.01% (w/v) in conjugation with C<sub>16</sub>MImCl are relatively lesser than those found in terms of C<sub>5</sub> obtained by

tensiometry (cf. Table 1). For  $C_{16}MImCl + NaAlg$  system, inflections due to maximum turbidity ( $T_m$ ) are relatively greater to the  $C_m^*$  found by other techniques (viz. conductometry, tensiometry and fluorimetry (discussed latter)) and sufficiently larger than  $C_m^*$  found by isothermal titration calorimetry (ITC) measurements (also discussed later) shown in Table 1. Like 0.001% (w/v) NaAlg medium, it is seen that turbidity appeared in solution in presence of 0.005 and 0.01% (w/v) NaAlg are also soluble in micellar environments after  $T_m$  which are found in turbidimetric profiles of Fig. 5(b) and 5(c) respectively. This observation has the similarity with the former studied systems like, NaCMC/CTAB combination in conjugation with NaBr <sup>10</sup>, and NaCMC/  $C_{12}mimBr/$  NaBr <sup>35</sup>.

Turbidimetric profiles in presence of 0.001% and 0.005% NaAlg in conjugation with C<sub>16</sub>TPB (cf. Fig. 5(d) and 5(e)) have the similarity with C<sub>16</sub>MImCl in presence of alginate concentrations. Different inflection points in terms of  $\Phi$  have been shown in Fig. 5(d), (e) and (f) and also recorded in Table 2. For C<sub>16</sub>TPB in presence of 0.001% (w/v) NaAlg (cf. Fig. 5(d)), slight turbidity appeared up to 0.11 mM of [C<sub>16</sub>TPB] corresponding to the first inflection point denoted as  $\Phi_1$  which has the close similarity with  $C_m^{*1}$  found by tensiometry as well as fluorimetry and ITC measurements (cf. Table 2.) under identical condition. After  $\Phi_1$ , turbidity slightly increases to maximum at  $\Phi_m$ . In between  $\Phi_1$  and  $\Phi_m$ , another inflection was found designated as second turbidimetry point ( $\Phi_2$ ). Steep increase in turbidity is observed up to second inflection point ( $\Phi_2$ , cf. Fig. 5(e)) in the solution of 0.005% NaAlg in presence of  $C_{16}$ TPB and intensity of turbidity is found larger as compared with  $C_{16}$ MImCl (cf. Fig. 5(b)) under identical condition. Like 0.001% NaAlg solution in conjugation with  $C_{16}TPB$ ,  $\Phi_1$  value in presence of 0.005% (w/v) NaAlg also has well similarity with  $C_m^{*1}$  values those found by other techniques, like, tensiometry, fluorimetry and ITC (cf. Table 2.). The  $\Phi_2$  values are found in between  $C_m^{\ast 1}$  and  $C_m^{\ast 2}$  those assigned by conductometry and fluorimetry (cf. Table 2.) in presence of 0.001 and 0.005% (w/v) of NaAlg in conjugation with C<sub>16</sub>TPB, whereas  $\Phi_m$  values are found greater than  $C_m^{\ast 2}$  obtained by conductometry (cf. Table.2.). In presence of 0.01% (w/v) NaAlg (Fig.5 (f)), turbidity is found maximum at  $[C_{16}TPB] = 0.44$  mM and even to a greater extent (turbidity approaches to 100%) as compared with other two lower alginate concentrations (0.001 and 0.005% w/v) and also larger than that of the highest alginate concentration (0.01%) in presence of C<sub>16</sub>MImCl. The  $\Phi_1$  value for 0.01% NaAlg + C<sub>16</sub>TPB system is found similar to  $C_S$  obtained by conductometry under similar condition and  $\Phi_m$  is close to  $C_m^{*1}$  assigned by conductometry (Table 2);  $C_m^{*2}$ , calculated by tensiometry, fluorimetry and ITC techniques (Table 2). The maximum turbidity ( $\Phi_m$ ) appeared at relatively lower  $C_{16}$ TPB concentration in presence of 0.01% (w/v) NaAlg due to the greater ease of hydrophobicity assisted by surplus of NaAlg and also by the micelles which wrapped along polyelectrolyte backbones leading to formation of agglomerated complex.

**3.4.** Spectrofluorimetry: Variation of micropolarity (I<sub>1</sub>/I<sub>3</sub>) due to change of local environment of Pyrene, determination of aggregation number of surfactants in presence and absence of different wt% of NaAlg, time resolved study for 0.005% (w/v) of NaAlg in presence of both surfactants titrimetrically:

### 3.4 (a). Steady state fluorimetry:

Fluorescence intensity ratio of first (I<sub>1</sub>) to third (I<sub>3</sub>) vibronic peak of pyrene (I<sub>1</sub>/I<sub>3</sub>) or 'micropolarity index' has been used extensively <sup>71-76</sup> to sense micropolarity in the immediate neighbouring medium of it. For instance, I<sub>1</sub>/I<sub>3</sub> value of pyrene in hydrocarbon solvent is 0.6, for ethanol, it is 1.1 and for water the value is 1.6<sup>76</sup>. The behaviour of pure surfactants in aqueous solution containing fixed pyrene concentration and variation of [surfactant] have been displayed in Fig 2A (c) and 2B (c) for C<sub>16</sub>MImCl and C<sub>16</sub>TPB respectively with the assistance of (I<sub>1</sub>/I<sub>3</sub>) vs. [surfactant] plots. From Fig 2A(c), the observation is initial plateau like appearance at low surfactant concentration, rapid decrease in I<sub>1</sub>/I<sub>3</sub> at intermediate surfactant concentration and following by saturation occurring with nearly same I<sub>1</sub>/I<sub>3</sub> with magnitude less than 1.0 above cmcs, while for C<sub>16</sub>TPB (cf. 2B(c)), rapid decrease in I<sub>1</sub>/I<sub>3</sub> nearly equal to 1.02.



Fig. 6. Fluorescence intensity vs. wavelength profiles of pyrene in presence of 0.005% (w/v) NaAlg in conjugation with different concentrations of C<sub>16</sub>MImCl (A) and C<sub>16</sub>TPB (B).

 $I_1/I_3$  vs.[surfactant] profiles (Fig 2A/2B (c)) for pure surfactants have been fitted with a decreasing sigmoidal Boltzmann equation of sufficiently fair  $R^2$  values ( $R^2 \sim 0.99$ ) and cmcs have been assigned <sup>14, 18, 75</sup> from the middle of sigmoid (indicating by a heavy arrow). Passage of pyrene molecule from aqueous phase to hydrophobic micellar environments show the sigmoid pattern of micropolarity index  $(I_1/I_3)$  of pyrene around cmc as the concentration of surfactant increases. For micellization of pure surfactants, at low surfactant concentrations with few numbers of surfactant monomers, pyrenes are little soluble in aqueous environment but not associated with each other. Increasing concentration of surfactants form some premicellar aggregates form which can draw pyrene molecules to hydrophobic environment (rapid decrease of micropolarity) associated with pyrene excimer formation<sup>77</sup> due to availability of pyrene molecules at close proximity following the formation of free micelles. At high surfactant concentrations, the number of micelles increases in solution and pyrenes were redistributed in each micellar medium, scarcely change micropolarity and also pyrene excimer disappears <sup>77</sup>. Pyrene excimer has been shown in presence of surfactant polyelectrolyte system of oppositely charged species at very low surfactant concentration (even lower than cac) due to migration of pyrene molecules in the hydrophobic domain offered by tails of surfactants attached to the polyelectrolyte backbone <sup>73</sup>. In this way, due to formation of hydrophobic pockets, pyrene molecules come together in pair and increase excimer intensity and consequently, decrease in monomer emission intensity at low surfactant concentration. Here, formation of pyrene excimer for our present system at all NaAlg concentrations below cac. Different pattern observed in fluorescence profiles of pyrene for C<sub>16</sub>MImCl and C<sub>16</sub>TPB in conjugation with NaAlg. We have shown fluorescence intensity vs. wavelength profiles (cf. Fig. 6) compasses in between 350-550 nm in presence of 0.005% (w/v) sodium alginate in conjugation with both C<sub>16</sub>MImCl (cf. Fig 6A) and C<sub>16</sub>TPB (cf. Fig. 6B). Excimer emission (I<sub>E</sub>) was recorded around 467 nm, while first  $(I_1)$  and third  $(I_3)$  monomer peaks appeared at 374 and 385 nm respectively. Profound differences have been observed between Fig. 6A and 6B with increasing concentration of each surfactant. In case of C<sub>16</sub>MImCl (cf. Fig 6A), it is seen that fluorescence intensity initially of pyrene monomer initially drops at 0.012 mM of [C<sub>16</sub>MImCl] with concomitant increase its excimer around 467 nm. After that, monomer emission hardly changes but excimer emission increases significantly upto 0.06 mM [C<sub>16</sub>MImCl] and that concentration is slightly higher than the recorded cac value (cf. Table1.) which is measured by pyrene micropolarity technique. Upon further increase of the concentration of  $C_{16}MImCl$  monomer, emission increases and finally, saturates around 0.81 mM of [C<sub>16</sub>MImCl]. In the range of 0.14 to 0.82, excimer emission shows its nearly constant values and  $C_{s}$  has been recorded (Table 1).

With further increase of [C<sub>16</sub>MImCl] monomer, emission increases significantly and finally saturates with the disappearance of excimer. In case of C<sub>16</sub>TPB monomer, pyrene emission decreases with concomitant increase in excimer up to 0.025 mM of [C<sub>16</sub>TPB]. After that, decrease of monomer emission occurs with decrease in excimer intensity upon further addition of surfactants and finally excimer disappears at sufficiently high surfactant concentration and monomer emission comes to saturation. Continuous decrease in pyrene monomer intensity with increase of concentration of C<sub>16</sub>TPB is possibly due to the quenching of pyrene by three benzene rings attached to tertiary P cation. This quenching of pyrene as the increase of C<sub>16</sub>TPB also manifested in rapid decrease in life time ( $\langle \tau \rangle$ ), cf. Table S1) with increasing concentration of C<sub>16</sub>TPB in presence of 0.005% (w/v) NaAlg medium. Pyrene micropolarity (I<sub>1</sub>/I<sub>3</sub>) has been displayed in Fig. 7 by varying the concentration of both surfactants in presence of different weight % of NaAlg.



Fig. 7. Micropolarity  $(I_1/I_3)$  index vs. concentration of surfactant with different concentrations of NaAlg. Plots were designated as:  $I_1/I_3$  vs.  $[C_{16}MImCl]$  in presence of different wt% of NaAlg (a. 0.001%, b. 0.005% and c. 0.01%) &  $I_1/I_3$  vs.  $[C_{16}TPB]$  in presence of difference wt% of NaAlg (d. 0.001%, e. 0.005% and f. 0.01%). cac, C<sub>S</sub> and C<sub>m</sub><sup>\*</sup>, whichever found, have been designated by dotted lines for both systems. Pyrene excimer emission ( $I_E$ ) has been monitored at 467 nm and monomer emission ( $I_m$ ) monitored at 474 nm corresponding to first vibrational peak of pyrene. Error bars are given

Unlike initial plateau like appearance formed in case of pure C<sub>16</sub>MImCl (Fig. 2A(c)) at low surfactant concentration, initial steady decrease is observed in presence of NaAlg irrespective of concentration end to a nearly equal  $I_1/I_3$  region which persists in presence of 0.01% (w/v) NaAlg (cf. Fig. 7 (c)) upon further addition of C<sub>16</sub>MImCl, but found to be another decreasing in the  $I_1/I_3$  values beyond complete saturation in presence of 0.001% (Fig. 7(a)) and 0.005% (Fig. 7b). From Fig. 7 (a), it is evident that, sigmoid pattern was observed in the second decreasing portion just like micropolarity vs. concentration profiles of pure C<sub>16</sub>MImCl (cf. Fig. 2A(c)), while sigmoidal appearance deviates from ideality in presence 0.005% NaAlg (Fig. 7b) and finally, disappears at high alginate concentration (cf. Fig. 7(c)). First inflections of all the plots (cf. Fig. 7(a), 7(b) and 7(c)) where rapid change occurs are defined as cac; after that, second break point corresponding to C<sub>s</sub> is found in presence of 0.001 and 0.005% NaAlg, whereas no observation of C<sub>S</sub> has found in presence of 0.01% NaAlg. The C<sub>m</sub><sup>\*</sup> value in presence of 0.001% polyelectrolyte is defined from the middle of the second decreasing region (Fig. 7(a)), while it is rather an inflection point found in presence of 0.005 and 0.01% NaAlg. After  $C_m^*$  in presence of 0.005 and 0.01% (w/v) NaAlg in conjugation with  $C_{16}$ MImCl (cf. Fig. 7(b) and 7(c)), slight increase in  $I_1/I_3$  values have been observed which is attributed to sensing of pyrene to polar environment for the formation of coacervate screening out partially from solution. The C<sub>m</sub><sup>\*</sup> values show well similarities for C<sub>16</sub>MImCl in presence of different wt % of alginate with the other methods, such as, conductometry and tensiometry; while, cac and C<sub>s</sub> values are resembled to tensiometry technique (Table 1). On the other hand, sharp decrease has been shown in micropolarity vs. concentration profiles (Fig. 7(d), 7(e) and 7(f)) at the low concentration region of  $C_{16}$ TPB. Middle points of the profiles (cf. Fig. 7(d), 7(e) and 7(f)) have been taken as cac for all the alginate concentrations in presence of C<sub>16</sub>TPB and for second and third inflections designation have been given as  $C_m^{*1}$  and  $C_m^{*2}$  comparing to the tensiometry results (cf. Table 1). For 0.001% NaAlg in presence of C<sub>16</sub>TPB, micropolarity decreases gradually till the formation of second cmc ( $C_m^{*2}$ ), while for other two alginate concentrations saturation occurred near first cmcs ( $C_m^{*1}$ ). From Fig. 7f, it is evident that, slight increase in micropolarity has been occurred after first cmcs (Cm<sup>\*1</sup>) and remain constant near second cmcs  $(C_m^{*2})$ . This slight increase in micropolarity is probably due to the turbidity effect corresponding to the slight change in pyrene microenvironment as displayed in the high alginate content medium. Nearly ideal micropolarity vs. concentration plots were appeared at low alginate concentrations (cf. Fig. 7(a), 7(b) and 7(d)) of both the surfactants as presented by Turro et. al.<sup>76</sup>. A comparative representation (cf. Fig. 7(b) and 7(e)) has been presented in terms

of I<sub>E</sub>/I<sub>m</sub> (ratio of intensity of pyrene excimer to monomer ratio, cf. Fig. 7(b') and 7(e')) along with I<sub>1</sub>/I<sub>3</sub> within the same concentration range of individual surfactants in presence of 0.005% (w/v) of NaAlg. I<sub>E</sub>/I<sub>m</sub> ratio has been used as a tool to determine cac and cmc in previous literature<sup>72</sup>. Initial decrease in micropolarity with corresponding increase in pyrene excimer to monomer ratio  $(I_E/I_m)$  has been occurred and it finally approaches to a peak which is nearly equal to the cac (shown by the dotted line, cf. Fig 7(b) and 7(e)) found in the present study. The appearance of peak near cac is due to the formation of micelle like microdomains which were attached on oppositely charged polyelectrolyte backbones and keep pyrenes to close proximity leading to formation of pyrene excimer (cf. Fig. 6A and 6B). After peak formation, ratio of I<sub>E</sub>/I<sub>m</sub> of pyrene diminishes rapidly, after that a plateau was formed (cf. Fig. 7(b')) upto ~ 1 mM [C<sub>16</sub>MImCl] close to the extended cmc ( $C_m^*$ ) of C<sub>16</sub>MImCl. Further increase [C<sub>16</sub>MImCl], I<sub>E</sub>/I<sub>m</sub> decreases and finally show saturation at high surfactant concentration (cf. Fig. 7(b')). For  $C_{16}$ TPB, in presence of 0.005% (cf. Fig.7e'), a peak is also observed in  $I_E/I_m$ value near cac, beyond which I<sub>E</sub>/I<sub>m</sub> decreases and finally go to saturation near C<sub>m</sub>\*<sup>2</sup>. On the contrary with the earlier observation  $^{72}$ , no peak is formed near  $C_m^*$  for both the surfactants in presence of 0.005% NaAlg.

Mean aggregation number ( $N_a$ ) of both surfactants in absence and presence of NaAlg at different wt % has been determined using steady state fluorescence quenching of pyrene by CPC used as quencher. To perform it, a set of fresh surfactant solutions both in presence and absence of NaAlg has been prepared. 2.5 ml of each solution is taken in a cuvette and CPC is added by means of titration. Concentration of pyrene was fixed both in cuvette and in CPC solution. Intensity of pyrene in absence of quencher has been designated as  $I_0$  and in presence of CPC designated as I are depicted in equation 12,

$$ln\frac{I_0}{I} = \frac{N_a[CPC]}{[surfactant] - cmc(C_m^*)}$$
(12)

Here, [surfactant] is the concentration of surfactant either C<sub>16</sub>MImCl or C<sub>16</sub>TPB prepared in same concentration (~10 mM) both in aqueous and NaAlg solutions. Average values of cmc and C<sub>m</sub>\* have been calculated from Tables 1 and 2 for the calculation of aggregation number for pure C<sub>16</sub>MImCl in aqueous solution and surfactants in presence of different wt% of NaAlg respectively. In case of C<sub>16</sub>TPB, we have used average cmc<sub>2</sub> or C<sub>m</sub><sup>\*2</sup> in the denominator of equation 12. In this context,  $ln \frac{l_0}{l}$  vs. [CPC] profiles (refer to supplementary section, Fig. S4) have been displayed for both surfactants either in pure or in presence of difference wt% of NaAlg. Aggregation numbers  $(N_a)$  have been displayed in Table 3. From this Table, it is evident that,  $N_a$  values of C<sub>16</sub>MImCl increase in presence of NaAlg and later decrease at 0.01 % w/v NaAlg medium. On the other hand, for C<sub>16</sub>MImCl, aggregation number increases with the increase of alginate concentration within the investigated concentration range of polyelectrolyte. Increase of aggregation number of both surfactants in presence of NaAlg is probably due to the increase in hydrophobicity near the micellar surface, while in presence of 0.01% (w/v) NaAlg in conjugation with  $C_{16}$ MImCl lowering in aggregation number may be owing to increase of hydrophilicity near micellar interface leading to effective phase separation of polyelectrolyte-surfactant complex. Moreover, increase in aggregation number for C<sub>16</sub>MImCl both in presence and absence of NaAlg than C<sub>16</sub>TPB probably due to the steric hindrance of three bulky phenyl head groups of C<sub>16</sub>TPB. Loosely packed micelles penetrate some water molecules interior to the micelle<sup>74</sup> of C<sub>16</sub>TPB in comparison with C<sub>16</sub>MImCl manifested in relatively greater micropolarity  $(I_1/I_3)$  in the micellar region of  $C_{16}$ TPB than C<sub>16</sub>MImCl both in aqueous solution (comparing Fig. 2A(c) with 2B(c)) and also in presence of different wt % of NaAlg (comparing Fig. 7a, with 7d; Fig. 7(b) with 7(e) and Fig. 7(c) with 7(f)).

### **3.4 (b). Time resolved fluorimetry:**

Time resolved emission of pyrene may be the indirect tool to determine cac,  $C_5$  and  $C_m^*$  for polyelectrolyte- surfactant systems. Titration of two investigated surfactants was performed at 0.005% (w/v) of NaAlg medium keeping pyrene concentration fixed same as steady state measurements. From Table S1, it is evident that log (count) vs. time (ns) profile (shown at the inset in Fig. 8A and B) for pure NaAlg (0.005% w/v) in conjugation with probe pyrene shows single exponential pattern (single lifetime ( $\tau_1$ ) value is close to 123.5 ns), while in presence of surfactants bi-exponential patterns have been observed (two lifetime values  $\tau_1$  and  $\tau_2$ , cf. Table S1). Average life times ( $<\tau>$ ) vs. concentration of both surfactants ( $C_{16}$ MImCl and  $C_{16}$ TPB) have been displayed in Fig. 8.



Fig. 8.  $\langle \tau \rangle$  vs. [surfactant] profiles in presence of C<sub>16</sub>MImCl (A) and C<sub>16</sub>TPB (B) at 0.005% w/v of NaAlg: at the inset; log (count) vs. time (ns) profiles for respective surfactants. Error bars are included in each diagram.

From Fig. 8A, it is probable that,  $\langle \tau \rangle$  initially decreases from 123.5 ns to 101.8 ns at nearly 0.07 mM of  $[C_{16}MImCl]$  which is close to cac, those calculated by steady state measurement and also by tensiometry for the same system (cf. Table 1). Pyrene excimer was formed due to electrostatic complexation between oppositely charged polyelectrolyte and surfactants forming hydrophobic domains which ensure two pyrene molecules in close proximity. Beyond the minimum, <t>increases to a maximum due to the redistribution of pyrene molecules from one polyelectrolyte- surfactant complex to another and prevents its close proximity. There is again decrease in  $<\tau>$  values after the maximum probably due to some close proximity of pyrene molecules again for the formation of premicellar aggregates on to polyelectrolytes backbone (Cs) following the formation of free micelles of surfactants at  $C_m^*$ . After  $C_m^*$ , both polyelectrolytes and surfactants were diluted and equally distributed among the species formed in the solution due to stabilization of pyrene molecules in hydrophobic domains and finally, increase of [C<sub>16</sub>MImCl] did not change pyrene lifetime. Concentration of C<sub>16</sub>MImCl indicating Cs and Cm\*(cf. Fig. 8A) are quite similar to those found by tensiometry and steady state fluorimetry [cf. Table 1]. On the other hand, increase of [C<sub>16</sub>TPB] stepwise decrease  $\langle \tau \rangle$ gradually (Fig. 8B) and finally remains unchanged (28.6-35.9 ns, cf. Table S1.) after 0.5 mM of [C<sub>16</sub>TPB]. This gradual decrease in  $\langle \tau \rangle$  was probably due to the quenching of pyrene molecules by phenyl moieties of C<sub>16</sub>TPB which overshadowed the effect of pyrene excimer found during the surfactant induced conformational change of NaAlg in presence of C<sub>16</sub>MImCl (cf. Fig. 8A). Several break points were obtained in  $\langle \tau \rangle$  vs. [C<sub>16</sub>TPB] profile (cf. Fig. 8B) and these are designated as C<sub>s</sub>, C<sub>m</sub><sup>\*1</sup> and C<sub>m</sub><sup>\*2</sup> from low to high surfactant concentration corresponding to the similar inflections with those found in tensiometry and cac, C<sub>m</sub><sup>\*1</sup> and C<sub>m</sub><sup>\*2</sup> obtained by steady state measurement (cf. Table 2.).

## **3.5. Isothermal Titration Calorimetry (ITC):** Enthalpy of micellization and Entropy of micellization

ITC plays a very important role to investigate heat changes (standard enthalpy of micellization,  $\Delta H^{0}_{m}$ ) due to conformational changes of polyelectrolyte mediated by oppositely charged surfactants in solution as well as free micelle formation between the surfactant monomers. ITC profiles (heat injection ( $\Delta H^0_{obs}$ ) in kJ.mol<sup>-1</sup> vs. [surfactant]) of pure surfactants have been reported in Fig. 2A (d) for C<sub>16</sub>MImCl and 2B(d) for C<sub>16</sub>TPB respectively. ITC profile for pure surfactants shows sigmoidal pattern and these are fitted with Boltzmann-sigmoidal equation <sup>78</sup> and the values of cmc have been taken <sup>3, 79, 80</sup> from the inflection of fitted plots intermediated of sigmoidal region (designated by the heavy arrows). Evaluation of second cmc (cmc<sub>2</sub>) has been performed for  $C_{16}$ TPB in aqueous solution by zooming the region in between 0.2 - 0.5mM of [C<sub>16</sub>TPB] shown at the inset of Fig. 2B (d). All cmcs for pure surfactants determined by ITC technique have been presented in Tables 1 and 2. Standard enthalpy of micellization  $(\Delta H^0_m)$  of pure surfactants has been calculated by simply taking the subtraction between  $\Delta H^{0}_{\text{final}}$  to  $\Delta H^{0}_{\text{initial}}$  ( $\Delta H^{0}_{\text{m}} = \Delta H^{0}_{\text{final}} - \Delta H^{0}_{\text{initial}}$ ), which are the enthalpy changes at two extremes of sigmoidal profiles shown in Fig. 2A/2B (d). The values of  $\Delta H_m^0$  are calculated by above method have been presented in Table 4. For  $C_{16}$ TPB both values of enthalpy of micellization were obtained and these are designated as  $\Delta H^{0}_{m}(1)$  and  $\Delta H^{0}_{m}$  corresponding to heat change for two micellization for cmc<sub>1</sub> and cmc<sub>2</sub> respectively. From Table 4, it has been seen that  $\Delta H^{0}_{m}(1)$ for  $C_{16}TPB$  is relatively higher in negative magnitude (more exothermic) than  $\Delta H_m^0$  of C<sub>16</sub>MImCl. Bulky head groups containing three phenyl rings of C<sub>16</sub>TPB are easily dehydrated compared to the imidazolium head groups of C<sub>16</sub>MImCl, i.e., less energy has been required to promote  $C_{16}$ TPB comparing with  $C_{16}$ MImCl to aqueous phase into micellar interior, more exothermic the enthalpy of micellization for C<sub>16</sub>TPB. After the formation of first micelle, enthalpy change is negligible for the second one during cmc<sub>2</sub> probably owing to change in micellar shape and size manifested in less negative  $\Delta H_m^0(2)$  value (cf. Table 4.) both in presence and absence of NaAlg in conjugation with  $C_{16}$ TPB. In presence of different wt % of NaAlg, enthalpograms are no longer sigmoid in nature and therefore, the C<sub>m</sub><sup>\*</sup> values have been taken from the intersection points of two linear segments before and after Cm\* shown in Fig. 9

(a) and 9 (b). Although the break point near  $C_m^*$  for  $C_{16}MImCl + 0.01\%$  NaAlg system is not prominent, a sharp breakpoint is also formed (cf. Fig. 9 (a)) before  $C_m^*$  for that system at lower surfactant concentration which was close to  $C_s$  determined tensiometrically. In presence of NaAlg at different wt % solution, enthalpograms resemble to its polyelectrolyte free profiles of pure surfactants (cf. 9(c) and 9 (d)), except the enthalpy values are quite different in between alginate free and alginate containing solution during the course of surfactant additions. Such difference of dilution of micelles clearly indicates there some conformational change of polyelectrolytes <sup>33</sup> as the free surfactant monomer. From Fig. 9(c), it is evident that, almost no change is observed during the titration of  $C_{16}MImCl$  in different wt % solution of NaAlg but change is found to pure  $C_{16}MImCl$  in aqueous solution. At low [NaAlg] the enthalpogram shows more endothermic nature than pure surfactant and also endothermicity persists in post micellar regime. More endothermic contribution at low surfactant concentration is probably due to the electrostatic binding of  $C_{16}MImCl$  on to the backbone of NaAlg with consequent break down of water molecules around NaAlg backbone. Similar observation<sup>33</sup> has been found in for  $C_{16}mimBr$  in 1 g/L NaCMC medium in comparison with  $C_{16}mimBr$  in aqueous solution.









Fig. 9. 9(a). ITC profile for  $C_{16}$ MImCl in presence of different wt% of NaAlg (enthalpograms are shifted to 4 units upward for better representation); 9(b). ITC profile for  $C_{16}$ TPB in presence of different wt% of NaAlg; 9(c) and 9(d). Combined enthalpogram of  $C_{16}$ MImCl and  $C_{16}$ TPB respectively, in presence and absence of NaAlg for comparison purpose; 9 (e) and (f). Raw calorimetric traces (heat flow vs. Time) for  $C_{16}$ MImCl and  $C_{16}$ TPB respectively in presence of 0.001% (w/v) NaAlg medium.

After free micelle formation, no further heat change was observed as the medium contained only micelles, manifested in tending to zero of the enthalpograms (Fig. 9(c)) except for the micellization of pure C<sub>16</sub>MImCl where constant negative heat change has been observed at the post micellar region. It has been reported <sup>78,79</sup> that for some surface active ionic liquid, constant enthalpy values have been observed in post micellar region above and below to zero without tending to zero. Again, enthalpograms of  $C_{16}$ TPB in conjugation with different wt% of NaAlg show less endothermic in nature (Fig. 9(d)) at low [C<sub>16</sub>TPB] when compared with enthalpogram of free C<sub>16</sub>TPB in aqueous solution. This observation clearly indicates the weak binding of oppositely charged  $C_{16}TP^+$  with NaAlg backbone which has been assigned in tensiometry section. Faint inflections (cf. Fig. 9(b)) have been observed at low concentration of C<sub>16</sub>TPB designated as cac displayed in Table 2. Representative diagram of raw calorimetric traces ( $\mu$ cal/s vs. Time (min)) for C<sub>16</sub>MImCl and C<sub>16</sub>TPB in conjugation with 0.001% (w/v) NaAlg has been presented in Fig. 9(e) and 9(f) respectively. Enthalpy of micellization ( $\Delta H_{m}^{0}$ ) for the surfactants in presence of different wt % NaAlg has been calculated by the procedure discussed above for pure surfactants in aqueous solution. The values of cac, C<sub>S</sub> and C<sub>m</sub><sup>\*</sup> are found for the present two surfactants in presence of different wt % of NaAlg by ITC measurement shown in Tables1 and 2. It has been seen from Table 1 that, Cm\* values for C<sub>16</sub>MImCl in aqueous solution and in presence of 0.001 and 0.005% NaAlg media are found comparatively lower than those found in presence of other techniques, while for 0.01% NaAlg medium,  $C_m^*$  is relatively higher than the prediction of other techniques. The values of enthalpy of micellization ( $\Delta H^0_m$ ) for  $C_{16}$ MImCl and  $C_{16}$ TPB in conjugation with NaAlg have been reported in Table 4 denoting exothermic in nature. Two enthalpies of micellization ( $\Delta H^0_m(1)$ , and  $\Delta H^0_m(2)$ ) for  $C_{16}$ TPB corresponding to two cmcs have been presented here in Table 4. This shows that, with increase of the concentration of NaAlg in conjugation with  $C_{16}$ TPB, negative  $\Delta H^0_m(1)$  decreases gradually from -4.31 to -0.31 kJ.mol<sup>-1</sup> at 0.005% NaAlg. Beyond which negative  $\Delta H^0_m(1)$  increases again in presence of 0.01% NaAlg, while negative second enthalpy of micellization ( $\Delta H^0_m(2)$ ) decreases with increase [NaAlg]. On the other hand, negative  $\Delta H^0_m$  decreases from -3.52 to -3.35 at 0.005 % NaAlg concentration in conjugation with  $C_{16}$ MImCl and decreases sharply in presence of 0.01% NaAlg medium. Unlike to the earlier observation for  $C_{16}$ TPB, no minimum is found for the  $\Delta H^0_m$  trending for  $C_{16}$ MImCl within the investigated concentration range of NaAlg (from 0 to 0.01%).

Here, standard entropy of micellization ( $\Delta S^{0}_{m}$ ) has been calculated taking the values of  $\Delta G^{0}_{m}$  which have been discussed in previous section and  $\Delta H^{0}_{m}$  using Gibbs-Helmholtz equation:

$$\Delta G_m^0 = \Delta H_m^0 - T \Delta S_m^0 \tag{13}$$

Micellization of C<sub>16</sub>MImCl and C<sub>16</sub>TPB is spontaneous (positive  $\Delta S^{0}_{m}$ ) shown in Table 4. Positive  $\Delta S^{0}_{m}$  increases (more spontaneous) with increase of NaAlg concentration in presence of C<sub>16</sub>MImCl, while less spontaneous in presence of C<sub>16</sub>TPB for both micellization process (both entropy of micellization designated as  $\Delta S^{0}_{m}(1)$  and  $\Delta S^{0}_{m}(2)$  respectively) with increase of the concentration of NaAlg (cf. Table 4). Contribution of T $\Delta S^{0}_{m}$  over  $\Delta G^{0}_{m}$  has been found  $\geq 90\%$  (cf. Table 4), which indicates micellization of C<sub>16</sub>MImCl and C<sub>16</sub>TPB in presence and absence of different wt % of NaAlg driven by entropy factor.





Fig. 10. Comparative profiles of % transmittance vs. wavenumber (cm<sup>-1</sup>) for C<sub>16</sub>MImCl (A) and C<sub>16</sub>TPB (B). Three panels of each figure have been designated as: lower panel for NaAlg, middle panel for pure surfactant and upper panel for NaAlg-surfactant complex. Complex formation of NaAlg with C<sub>16</sub>MImCl and C<sub>16</sub>TPB has been done in 0.01% (w/v) NaAlg solution.

Characteristic absorption bands of NaAlg (both the lower panel of Fig. 10A and 10B) around 3315, 1594, 1403 and 1025 cm<sup>-1</sup> correspond to stretching of hydroxyl (-OH) group, asymmetric stretching vibration of COO- group, symmetric stretching vibration of COO- group and elongation of C-O-C group in between the two adjacent residues respectively <sup>80-82</sup>.

ATR spectrum of  $C_{16}$ MImCl (middle panel of Fig. 10A) shows characteristics absorption peaks around 3087 and 3054 cm<sup>-1</sup> due to the stretching vibration of aromatic H of imidazolium ring. Strong absorption peaks around 2117 and 2850 cm<sup>-1</sup> are found due to the stretching vibration of alkyl-H in the 16-carbon long chain. Absorption peaks at 1571 and 1472 cm<sup>-1</sup> are due to the vibrations of C=C and C=N of imidazolium ring respectively. Absorption Peaks at 3463 and 1637 cm<sup>-1</sup> are owing to presence of free hydroxyl group (trapped H<sub>2</sub>O molecules due to water of hydration attached to pure C<sub>16</sub>MImCl). Absorption peak at 3410 cm<sup>-1</sup> is due to the H bonded H<sup>...</sup>OH stretching vibration between water molecules <sup>83</sup>.

ATR spectrum of  $C_{16}$ TPB has been shown in Fig. 10B (middle panel). Asymmetric and symmetric stretching vibration of -CH<sub>2</sub> group containing 16-carbon alkyne chain are found

around 2917 and 2849 cm<sup>-1</sup> respectively <sup>84</sup>. Peak around 1435 cm<sup>-1</sup> is due to the -CH<sub>2</sub> bending vibration.

Solid polyelectrolyte-surfactant complexes were formed due to 1:1 charge neutralization between cationic surfactant head groups of surfactants with negatively charged COO- groups on to NaAlg backbone at moderately high surfactant concentration well above CNC (critical neutralization concentration)<sup>85</sup>. ATR spectrum of NaAlg-C<sub>16</sub>MImCl complex has been shown in Fig. 10(A) (upper panel). Absorption peaks at low wavenumber region (<1000 cm<sup>-1</sup>, fingerprint region) are found less intense and sometimes disappeared in complex than those found in pure C<sub>16</sub>MImCl, i.e., pure C<sub>16</sub>MImCl loss its individual identity in complex. Inclusion of new peak at 1033 cm<sup>-1</sup> was found in alginate- $C_{16}$ MImCl complex which was not found in the spectrum of pure  $C_{16}$ MImCl. The intense peak at 1033 cm<sup>-1</sup> is close to the relatively less intense peak of 1025 cm<sup>-1</sup> which is found in pure NaAlg spectrum attributed to elongation of C-O-C of NaAlg requiring higher energy in presence of IL. Intense peak at 1175 cm<sup>-1</sup> found in pure  $C_{16}$ MImCl profile is transformed to less intense peak found at 1166 cm<sup>-1</sup> in presence of NaAlg- $C_{16}$ MImCl complex. Intense peak at 1472 cm<sup>-1</sup> for pure  $C_{16}$ MImCl becomes less intense in presence of C<sub>16</sub>MImCl-NaAlg complex. Peaks at 1571, 1637, 3054, 3087, 3410 and 3463  $cm^{-1}$  found in C<sub>16</sub>MImCl profile remain absent in the profile of NaAlg-C<sub>16</sub>MImCl, while peak at 1597 cm<sup>-1</sup> and the broad peak (peak centre at 3396 cm<sup>-1</sup>) with shifting of values and change in intensities carry the identity of pure NaAlg to the complex comprise of NaAlg-C<sub>16</sub>MImCl. On the other hand, fingerprint region in presence of NaAlg-C<sub>16</sub>TPB complex remains more or less intact comparing with pure  $C_{16}$ TPB. Peak positions at 1111, 2917 and 2849 cm<sup>-1</sup> in presence of pure C<sub>16</sub>TPB (middle panel of Fig. 10B) remain unchanged at the ATR spectrum of complex made by NaAlg +  $C_{16}$ MImCl (upper panel of Fig. 10B) and peak intensity remains same in both the profiles. ATR peak at 1435 cm<sup>-1</sup> for pure  $C_{16}$ TPB changed to slightly high energy peak at 1438 cm<sup>-1</sup> found in complex. Strong absorption peak at 1600 cm<sup>-1</sup> appeared in NaAlg-  $C_{16}$ TPB complex which was seen at 1594 cm<sup>-1</sup> in pure NaAlg profile. Broad peak around 3391 cm<sup>-1</sup> masks the other small intensity peak within 3000-3500 cm<sup>-1</sup> found in case of pure C<sub>16</sub>TPB has observed for the polyelectrolyte-surfactant complex. Overall, it has been said by scrutinizing the comparative ATR- profiles of NaAlg, surfactants and their complexes that formation of complexes have made by inclusion of surfactants to polyelectrolyte backbone.

### 3.7. Dynamic Light Scattering (DLS), HR-TEM and fluorescence microscopy:

We have applied here first mixing procedure <sup>86</sup> when surfactants are added to NaAlg solution for the measurement of hydrodynamic radius (r) of NaAlg-surfactant complex. Diagrams of average hydrodynamic radius (r) vs. [surfactant] have been represented in Fig. 11(A) and 11(B) for C<sub>16</sub>MImCl and C<sub>16</sub>TPB respectively in presence of 0.01% (w/v) of NaAlg.



### Fig. 11. Average hydrodynamic radius (*r*) vs. [surfactant] for C<sub>16</sub>MImCl (A) and C<sub>16</sub>TPB (B) in presence of NaAlg (0.01% w/v). Error bars are given at each diagram.

Wide range of mean hydrodynamic radius (r) distribution has been shown for C<sub>16</sub>MImCl + NaAlg system (Fig. 11(A)) at and above 0.98 mM concentration of  $C_{16}$ MImCl due to existence of several polyelectrolyte-surfactant species present in the medium. Initially, below 0.98 mM, size of free NaAlg (229 -265 nm) decreases upon increase of C<sub>16</sub>MImCl upto 0.18 mM of [C<sub>16</sub>MImCl] probably due to the charge neutralization on polyelectrolyte backbone by positively charged surfactant monomers which in terms decrease intramolecular repulsion in the polyelectrolytes and shrink polyelectrolyte hydrodynamic diameter bound with surfactants. After that, r increases again from 0.3 mM to 0.7 mM due to attachment of small premicellar aggregates containing C<sub>16</sub>MImCl monomers onto NaAlg backbone (necklace conformers). After  $C_m^*$  ([ $C_{16}MImCl$ ]  $\geq 0.98$  mM), three types of distributions present in medium: (i) r > 1001000 nm due to formation of agglomerated species comprise of free micelles of C<sub>16</sub>MImCl intercalated in necklace type conformers of polyelectrolytes., (ii) Complete charge neutralisation of polyelectrolyte is often not found throughout the polyelectrolyte backbone. Such incompletely neutralized polyelectrolytes adsorb on the free micellar surface due to electrostatic reason which is manifested in species formed in solution having radius in between 500 – 1000 nm., and thirdly, (iii) some polyelectrolyte-surfactant complexes break down in solution and absorb in micellar medium forming complex of relatively less hydrodynamic radius (80-140 nm). On the other hand, single size distribution has been observed at different  $[C_{16}TPB]$  in the range between 90 to 250 nm (cf. 11(B)) within the size limit of DLS instrument. Hydrodynamic radii of free NaAlg drop from ~ 230 nm to 127 nm when  $[C_{16}TPB]$ increases from 0 to 0.018 mM. The decrease in r is probably due to charge neutralization in polyelectrolyte chains stated above. Further increase in surfactant concentration from 0.05 mM to 1.6 mM, r hardly changes (95-110 nm) shown in Fig. 11(B). We have not found higher sized species for the interaction of C<sub>16</sub>TPB with NaAlg after C<sub>m</sub><sup>\*</sup>, those found in presence of C<sub>16</sub>MImCl in conjugation with NaAlg. This observation suggests that weak interaction prevailed in presence of NaAlg with C<sub>16</sub>TPB than C<sub>16</sub>MImCl. Same observation has also found by other investigated techniques discussed above. Polydispersity index (PDI) values (cf. Fig. S2) of NaAlg (0.01% w/v)-surfactant interacted complexes are lower than the free NaAlg (0.01% w/v), but the values are within the limit of monodispersity (<0.7). Furthermore, it was seen from Fig. S2 that PDI values of NaAlg + C<sub>16</sub>MImCl systems (even greater at high  $C_{16}MImCl$  concentration) have greater than NaAlg +  $C_{16}TPB$  systems indicating less monodisperse character of NaAlg +  $C_{16}$ MImCl system (multiple size distribution with variation of surfactant concentration) character than C<sub>16</sub>TPB in conjugation with NaAlg. HR- TEM images of polyelectrolyte-surfactant complexes have been shown in Fig. 12.



Fig. 12. Complex formation between NaAlg (0.01% w/v) with C<sub>16</sub>MImCl (A) and C<sub>16</sub>TPB (B).

NaAlg  $(0.01\% \text{ w/v}) + C_{16}\text{MImCl}$  complexes (Fig. 12(A)) show non uniform globular like structure with radius varying between the range of 50-65 nm associated with small globular fragments (10-25 nm). Larger aggregates are not found for NaAlg - C<sub>16</sub>MImCl complex above

100 nm radius, those found using DLS measurement in solution phase. For NaAlg (0.01% w/v) +  $C_{16}$ TPB system (Fig. 12B), complexes look like different morphology, such as, non-uniform unpolished stone shaped coacervates (average radius within the range of 30-45 nm) along with single and fused ring like appearance structure. Average radii of these single and fused ring-shaped complexes (Fig. 12B) are found around 55 and 100 nm respectively. Less aggregated ring-shaped complex has been found in coacervates formed by 0.01% NaAlg with  $C_{16}$ TPB clearly indicating less association of NaAlg with  $C_{16}$ TPB in compared to  $C_{16}$ MImCl.





Fig. 13. Fluorescence microscopy images of polyelectrolyte-surfactant complexes: NaAlg (0.01% w/v) +  $C_{16}$ MImCl (a,b) and NaAlg (0.01%) +  $C_{16}$ TPB (c,d, and e). Scale bar = 10 $\mu$ m.

Non uniform cluster of polyelectrolyte surfactant complexes (NaAlg concentration fixed at 0.01% w/v) in coacervate form of relatively larger size have been found in Fig. 13. Clusters formed by NaAlg with C<sub>16</sub>MImCl are found relatively denser (Fig. 13 (a), (b)) than NaAlg + C<sub>16</sub>TPB system (Fig. 13(c), (d) and (f)) by observing the fluorescence intensity of DPH probes (bright green spots) attached to the micellar aggregates wrapped by NaAlg chains in

agglomerated form. Polyelectrolyte-surfactant clusters are found in different shapes (Fig. 13). As DPH selectively strains the micelles inside the aggregated complexes, free NaAlg structure cannot be detected. No smaller aggregates (< 1000 nm) are observed in fluorescence microscopic study.

Table1. Tabulated values of cmc for pure  $C_{16}$ MImCl in aqueous solution and cac,  $C_S$  and  $C_m^*$  values appeared at different concentrations of  $C_{16}$ MImCl in presence of 0.001, 0.005 and 0.01% (w/v) of NaAlg in aqueous solution by different experimental techniques employed here at 298.15 K.<sup>†</sup>

|         | Conductometry |      |                    | tensiometry |      |                  | fluorimetry |      |                      | ITC |      |                   | Turbidimetry |      |      |
|---------|---------------|------|--------------------|-------------|------|------------------|-------------|------|----------------------|-----|------|-------------------|--------------|------|------|
| [NaAlg] | cac           | Cs   | cmc /              | cac         | Cs   | cmc/             | cac         | Cs   | cmc/C <sub>m</sub> * | cac | Cs   | cmc               | $T_1$        | T2   | Tm   |
| % w/v   | mM            | mМ   | $C_m^*(\beta)$     | mM          | mM   | C <sub>m</sub> * | mM          | mM   | mM                   | mM  | mM   | /C <sub>m</sub> * | mM           | mM   | mM   |
|         |               |      | mM                 |             |      | mM               |             |      |                      |     |      | mM                |              |      |      |
|         |               |      | 0.85(0.51)         |             |      | 0.83             |             |      | 0.72                 |     |      | 0.68              |              |      |      |
| 0       |               |      | 0.876              |             |      | 0.955            |             |      |                      |     |      | 0.99 <sup>b</sup> |              |      |      |
|         |               |      | $(0.50)^{a}$       |             |      | а                |             |      |                      |     |      |                   |              |      |      |
|         |               |      | 0.860 <sup>b</sup> |             |      |                  |             |      |                      |     |      |                   |              |      |      |
| 0.001%  | 0.030         | 0.43 | 0.92(0.57)         | 0.033       | 0.35 | 0.85             | 0.044       | 0.34 | 0.85                 | -   | -    | 0.74              | 0.04         | -    | 1.07 |
| 0.005%  | 0.140         | -    | 1.06(0.61)         | 0.049       | 0.62 | 0.88             | 0.051       | 0.65 | 0.97                 | -   | -    | 0.86              | 0.167        | 0.41 | 1.34 |
| 0.01%   | 0.36          | -    | 1.18(0.59)         | 0.069       | 0.76 | 1.14             | 0.062       | -    | 1.24                 | -   | 0.65 | 1.55              | 0.26         | 0.54 | 1.36 |

a. Ref. [19]

b. Ref. [37]

<sup>\*</sup>Standard uncertainties in terms of cac,  $C_S$  and  $C_m^*$ / cmc are  $\pm$  0.01%,  $\pm$  0.005% and  $\pm$  0.02% respectively.

Table 2. Tabulated values of cmc<sub>1</sub>, and cmc<sub>2</sub> for pure C<sub>16</sub>TPB in aqueous solution and cac, C<sub>s</sub> and C<sub>m</sub><sup>\*1</sup>, C<sub>m</sub><sup>\*2</sup> values appeared at different concentrations of C<sub>16</sub>TPB in presence of 0.001, 0.005 and 0.01% (w/v) of NaAlg in aqueous solution by different experimental techniques employed here at 298.15 K.<sup>†</sup>

|                  | conductometry |          |                                                   |                                                                                   | Tensiometry |       |                            | fluorimetry |       |                                          |       |    | ITC                              | Turbidimetry |          |                |
|------------------|---------------|----------|---------------------------------------------------|-----------------------------------------------------------------------------------|-------------|-------|----------------------------|-------------|-------|------------------------------------------|-------|----|----------------------------------|--------------|----------|----------------|
| [NaAlg]<br>% w/v | Cac<br>mM     | Cs<br>mM | cmc1/cmc2<br>or                                   | $\beta_1/\beta_2$                                                                 | cac         | Cs    | $cmc_1/cmc_2$<br>or        | Cac         | Cs    | cmc <sub>1</sub> /cmc <sub>2</sub><br>or | cac   | Cs | cmc1/cmc2<br>or                  | $\Phi_1$     | $\Phi_2$ | $\Phi_{\rm m}$ |
|                  |               |          | mM                                                |                                                                                   |             |       | $C_{m^{+1}}/C_{m^{+2}}$ mM |             |       | $C_{m}^{-1}/C_{m}^{-2}$ mM               |       |    | $C_{m^{+1}}/C_{m^{+2}}$<br>mM    | mM           | mM       | mM             |
| 0                | -             | -        | 0.16/0.39<br>0·20/0·42°<br>0.14/0.34 <sup>d</sup> | $\begin{array}{c} 0.28 / 0.37 \\ 0.32 / 0.54^{c} \\ 0.308 / 0.52^{d} \end{array}$ |             |       | 0.12/0.31<br>0.24/- °      |             |       | 0.14/-                                   |       |    | 0.12/0.36<br>0.11/- <sup>d</sup> |              |          |                |
| 0.001%           | -             | 0.022    | 0.24/0.67                                         | 0.33/0.18                                                                         | 0.009       | 0.026 | 0.13/0.53                  | 0.013       | 0.023 | 0.14/0.33                                | 0.008 | -  | 0.11/0.41                        | 0.12         | 0.49     | 0.98           |
| 0.005%           | 0.007         | 0.02     | 0.21/0.59                                         | 0.07/0.20                                                                         | 0.011       | 0.025 | 0.10/0.40                  | 0.024       | -     | 0.09/0.30                                | 0.007 | -  | 0.09/0.38                        | 0.11         | 0.29     | 0.91           |
| 0.01%            | 0.009         | 0.117    | 0.43/0.63                                         | 0.02 / -                                                                          | 0.015       | 0.056 | 0.15/0.52                  | 0.026       | -     | 0.16/0.42                                | 0.008 | -  | 0.13/0.42                        | 0.073        | -        | 0.44           |

c. Ref. [38]

d. Ref. [36]

<sup>†</sup>Standard uncertainties of cac,  $C_S$  and  $C_m^*$ / cmc are  $\pm 0.01\%$ ,  $\pm 0.03\%$  and  $\pm 0.02\%$  respectively.

Table 3. Interfacial and bulk parameters of surfactants measured in absence and presence of varying concentration of NaAlg (0.001, 0.005 and 0.01% w/v) in aqueous solution at 298.15 K.<sup>†</sup>

|                 |                                                                      | C <sub>16</sub> TPB                      |                               | C <sub>16</sub> MImCl                                 |       |                          |      |                                                         |                                      |             |                            |       |                          |      |
|-----------------|----------------------------------------------------------------------|------------------------------------------|-------------------------------|-------------------------------------------------------|-------|--------------------------|------|---------------------------------------------------------|--------------------------------------|-------------|----------------------------|-------|--------------------------|------|
| [NaAlg]<br>%w/v | 10 <sup>6</sup> Γ <sub>cmc</sub> <sup>1</sup><br>mol.m <sup>-2</sup> | $\frac{10^3 A_{min}{}^1}{nm^2/molecule}$ | $\pi_{cmc}^{1}/\pi_{cmc}^{2}$ | $\frac{\gamma_{cmc}{}^1/\gamma_{cmc}{}^2}{mN.m^{-1}}$ | P1    | <i>p</i> C <sub>20</sub> | Na   | 10 <sup>6</sup> Γ <sub>cmc</sub><br>mol.m <sup>-2</sup> | $\frac{10^3 A_{min}}{nm^2/molecule}$ | $\pi_{cmc}$ | Ycmc<br>mN.m <sup>-1</sup> | Р     | <i>p</i> C <sub>20</sub> | Na   |
| 0               | 0.93                                                                 | 1.78                                     | 27.6/29.2                     | 39.1/37.5                                             | 0.117 | 1.49                     | 8±5  | 1.15                                                    | 1.46                                 | 30.6        | 36.4                       | 0.144 | 0.58                     | 49±6 |
| 0.001%          | 0.11                                                                 | 15.4                                     | 30.4/34.2                     | 37.3/33.5                                             | 0.013 | 1.93                     | 9±6  | 0.44                                                    | 3.77                                 | 29.0        | 31.3                       | 0.056 | 0.46                     | 60±4 |
| 0.005%          | 0.69                                                                 | 2.40                                     | 29.3/32.8                     | 36.4/32.9                                             | 0.087 | 1.95                     | 16±6 | 0.97                                                    | 1.71                                 | 33.2        | 31.7                       | 0.121 | 0.79                     | 59±5 |
| 0.01%           | 0.04                                                                 | 41.1                                     | 28.1/33.6                     | 37.5/32.0                                             | 0.005 | 1.92                     | 18±5 | 0.93                                                    | 1.79                                 | 32.1        | 30.9                       | 0.115 | 0.91                     | 44±7 |

<sup>†</sup>Standard uncertainties of  $\Gamma_{cmc}$ ,  $A_{min}$ ,  $\pi_{cmc}$  and  $pC_{20}$  are  $\pm 0.04\%$ ,  $\pm 0.04\%$ ,  $\pm 0.02\%$  and  $\pm 0.03\%$  respectively.

Table 4. Thermodynamic parameters for the micellization of  $C_{16}$ MImCl and  $C_{16}$ TPB determined in absence and presence of varying concentrations of NaAlg (0.001, 0.005 and 0.01% w/v) in aqueous solution at 298.15 K.<sup>†</sup>

|         |                                                                                           | C <sub>16</sub> TPB                                                               | C <sub>16</sub> MImCl                                                                            |                                                                   |                                       |                                           |                                                             |                                          |
|---------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------|
| [NaAlg] | $\begin{array}{c} \Delta G^{0}{}_{m}(1)/\Delta G^{0}{}_{m}(2) \\ kJ.mol^{-1} \end{array}$ | $\begin{array}{c} \Delta H^0{}_m(1)/\Delta H^0{}_m(2) \\ kJ.mol^{-1} \end{array}$ | $\begin{array}{c} \Delta S^{0}{}_{m}(1)/\Delta S^{0}{}_{m}(2) \\ kJ.K^{-1}.mol^{-1} \end{array}$ | $\frac{\left \frac{T\Delta S_m^0}{\Delta G_m^0}\right }{(1)/(2)}$ | $\Delta G^{0_m}$ kJ.mol <sup>-1</sup> | $\Delta H^{0}{}_{m}$ kJ.mol <sup>-1</sup> | $\Delta S^{0}_{m}$<br>kJ.K <sup>-1</sup> .mol <sup>-1</sup> | $\frac{ T\Delta S_m^0 }{ \Delta G_m^0 }$ |
| 0       | -40.9/-40.4                                                                               | -4.31/-0.73                                                                       | 0.123/0.133                                                                                      | 0.89/0.98                                                         | -41.8                                 | -3.52                                     | 0.128                                                       | 0.92                                     |
| 0.001%  | -42.3/-34.0                                                                               | -3.03/-0.25                                                                       | 0.132/0.113                                                                                      | 0.92/0.99                                                         | -43.2                                 | -3.47                                     | 0.133                                                       | 0.92                                     |
| 0.005%  | -34.6/-35.1                                                                               | -0.31/-0.25                                                                       | 0.115/0.117                                                                                      | 0.99/0.99                                                         | -43.9                                 | -3.35                                     | 0.136                                                       | 0.93                                     |
| 0.01%   | -31.3/-28.8                                                                               | -2.38/-0.11                                                                       | 0.097/0.096                                                                                      | 0.92/0.99                                                         | -42.8                                 | -0.59                                     | 0.142                                                       | 0.99                                     |

<sup>†</sup>Standard uncertainties of  $\Delta G^{0}_{m}$ ,  $\Delta H^{0}_{m}$  and  $\Delta S^{0}_{m}$  are  $\pm 0.04\%$ ,  $\pm 0.03\%$ ,  $\pm 0.04\%$  respectively
### **Conclusions:**

We have tried to shaded light on the interaction of oppositely charged surfactants with polyelectrolyte probed by different experimental techniques in this manuscript. Difference of head groups of two surfactants is responsible for different extents of interaction with the carboxylate groups of M and G residues of NaAlg. Presence of bulky head groups of C<sub>16</sub>TPB containing triphenyl attached to phosphonium cation makes it less accessible to COO- groups of NaAlg over imidazolium cations of C<sub>16</sub>MImCl, while C<sub>16</sub>TPB enhances hydrophobicity in NaAlg medium forming greater amount of coacervates comparing with C<sub>16</sub>MImCl + NaAlg systems. Existence of second cmc has been found clearly in presence of C<sub>16</sub>TPB in aqueous solution by conductometry, ITC and fluorimetric techniques while, that cmc of C<sub>16</sub>TPB is clearly detectable in presence of higher NaAlg concentration medium by tensiometry and conductometric techniques. Micellization process in presence of both surfactants is exothermic in presence of different wt% of NaAlg and overall decrease in exothermicity is observed with increase of polyelectrolyte concentration. The values of cac, C<sub>S</sub> and C<sub>m</sub><sup>\*</sup> for two surfactants in corporation with different wt% (w/v) of NaAlg are estimated by different experimental techniques which have well similarity to each other. ATR spectra of polyelectrolyte-surfactant complex reveal the incorporation of surfactants into polyelectrolyte. DLS study reveals the hydrodynamic radii of NaAlg-surfactant complexes with variation of surfactant concentrations, while HR-TEM study reveals not only size but also shape of NaAlg-surfactant complexes. Fluorescence microscopy study detects relatively larger aggregates of NaAlg-surfactant complexes.

### **Supplementary Section**

Table S1. Fitting parameters and lifetimes  $(\tau_1, \tau_2 \text{ and } <\tau >)$  for different time resolved decay plots calculated using IBH DAS-6 software by nonlinear least square iterative method in presence of two different surfactants with their different concentrations in presence and absence of 0.005% (w/v) NaAlg.

| [NaAlg] = 0.005% (w/v) |                |                |               |         |                     |      |  |  |  |
|------------------------|----------------|----------------|---------------|---------|---------------------|------|--|--|--|
| [C16MImCl]/ mM         | a <sub>1</sub> | a <sub>2</sub> | $	au_1$       | $	au_2$ | <τ>                 | χ2   |  |  |  |
| 0                      |                |                | 123.5         |         | 123.5               | 1.05 |  |  |  |
| 0.012                  | 13.5           | 86.5           | 32.57         | 124.8   | 112.3               | 1.06 |  |  |  |
| 0.036                  | 16.9           | 83.0           | 36.07         | 124.8   | 109.8               | 1.01 |  |  |  |
| 0.073                  | 23.1           | 76.9           | 39.14         | 120.6   | 101.8               | 0.99 |  |  |  |
| 0.121                  | 34.4           | 65.6           | 64.38         | 163.9   | 129.6               | 0.99 |  |  |  |
| 0.211                  | 35.2           | 64.8           | 75.76         | 192.3   | 151.3               | 1.01 |  |  |  |
| 0.318                  | 30.4           | 69.6           | 70.39         | 180.6   | 147.1               | 1.13 |  |  |  |
| 0.469                  | 29.7           | 70.3           | 69.44         | 170.9   | 140.7               | 1.08 |  |  |  |
| 0.668                  | 37.6           | 62.3           | 74.51         | 180.5   | 140.6               | 1.03 |  |  |  |
| 0.943                  | 27.9           | 72.0           | 67.64         | 161.9   | 135.5               | 0.95 |  |  |  |
| 1.310                  | 11.1           | 88.9           | 52.62         | 163.8   | 151.5               | 1.06 |  |  |  |
| 1.756                  | 17.1           | 82.9           | 83.42         | 184.7   | 167.4               | 1.06 |  |  |  |
| 2.939                  | 4.38           | 95.6           | 55.35         | 170.4   | 165.4               | 1.03 |  |  |  |
| 3.690                  | 9.17           | 90.8           | 81.80         | 175.3   | 166.7               | 0.99 |  |  |  |
| 4.510                  | 3.18           | 96.8           | 40.71         | 170.3   | 166.2               | 1.02 |  |  |  |
| 5.353                  | 6.96           | 93.0           | 82.24         | 174.1   | 167.7               | 1.02 |  |  |  |
|                        |                | [NaAlg] =      | = 0.005% (w/v | 7)      |                     |      |  |  |  |
| $[C_{16}TPB]/mM$       | $a_1$          | $a_2$          | $	au_1$       | $	au_2$ | $	au_{\mathrm{av}}$ | χ2   |  |  |  |
| 0                      |                |                | 123.5         |         | 123.5               | 1.05 |  |  |  |
| 0.005                  | 6.80           | 93.2           | 16.89         | 125.9   | 118.5               | 1.03 |  |  |  |
| 0.017                  | 20.6           | 79.4           | 21.50         | 123.3   | 102.3               | 1.01 |  |  |  |
| 0.032                  | 37.6           | 62.4           | 27.43         | 118.8   | 84.38               | 1.01 |  |  |  |
| 0.058                  | 52.2           | 47.8           | 29.65         | 113.3   | 69.65               | 1.05 |  |  |  |
| 0.097                  | 65.8           | 34.2           | 32.04         | 106.3   | 57.47               | 1.05 |  |  |  |
| 0.146                  | 71.3           | 28.7           | 32.11         | 82.93   | 46.72               | 1.12 |  |  |  |
| 0.232                  | 74.1           | 25.9           | 33.14         | 71.71   | 43.15               | 1.14 |  |  |  |
| 0.338                  | 74.9           | 25.0           | 32.05         | 70.67   | 41.72               | 0.95 |  |  |  |
| 0.446                  | 80.3           | 19.7           | 32.14         | 54.52   | 36.54               | 1.06 |  |  |  |
| 0.555                  | 53.9           | 46.1           | 25.80         | 47.49   | 35.79               | 1.09 |  |  |  |
| 0.695                  | 74.4           | 25.6           | 27.72         | 54.82   | 34.65               | 1.06 |  |  |  |
| 0.852                  | 24.2           | 75.8           | 18.55         | 35.59   | 31.46               | 1.16 |  |  |  |
| 1.025                  | 79.0           | 20.9           | 26.81         | 64.89   | 34.79               | 1.03 |  |  |  |
| 1.220                  | 11.4           | 88.6           | 17.47         | 31.60   | 29.98               | 0.97 |  |  |  |
| 1.424                  | 74.1           | 25.9           | 26.31         | 42.58   | 30.52               | 1.05 |  |  |  |
| 1.707                  | 8.98           | 91.0           | 10.27         | 30.57   | 28.75               | 1.09 |  |  |  |
| 1.965                  | 11.9           | 88.0           | 12.61         | 31.34   | 29.09               | 1.11 |  |  |  |
| 2.274                  | 12.5           | 87.5           | 19.99         | 29.84   | 28.60               | 1.08 |  |  |  |

Table S2. Coefficients of A, B<sub>1</sub> and B<sub>2</sub> values derived from the fitting of  $Y = A + B_1*X + B_2*X^2$  of  $\gamma$  vs. log [surfactant] plots given in Fig. S3.

| [NaAlg] | C <sub>16</sub> 7 | PB    |                |      |       |                |
|---------|-------------------|-------|----------------|------|-------|----------------|
| % w/v   | А                 | B1    | B <sub>2</sub> | А    | B1    | B <sub>2</sub> |
| 0       | 30.4              | -8.67 | 1.16           | 34.8 | -19.8 | -3.94          |
| 0.001   | 41.8              | 7.78  | 5.12           | 37.5 | -7.55 | -0.004         |
| 0.005   | 43.2              | -1.06 | 3.00           | 39.9 | -16.6 | -1.72          |
| 0.01    | 61.9              | 7.49  | 4.86           | 50.8 | -15.6 | -2.53          |

Fig. S1. Plot of reduced viscosity (cm<sup>3</sup>/gm) vs. concentration of alginate (gm/ml) at 298.15 K at a fixed NaCl concentration (0.1 M)  $^{\#}$ 



<sup>#</sup>Intrinsic viscosity  $[\eta]$  of a polyelectrolyte can be determined in salt medium using Huggins equation:

$$\frac{\eta_{sp}}{C_P} = [\eta] + k_{\rm H} [\eta]^2 C_{\rm P}$$

where,  $\eta_{sp}$  is the specific viscosity and C<sub>P</sub> is the concentration of NaAlg (gm/ml). k<sub>H</sub> is the Huggins constant.  $\frac{\eta_{sp}}{C_P}$ , termed as reduced viscosity in cm<sup>3</sup>/g unit. A stock NaAlg solution was prepared in 0.1 M NaCl solution and progressively added to a 0.1 M NaCl solution taken in an ubbelohde viscometer fitted in a thermostatic water bath at 298.15 K and flow times were measured in triplicate after each addition of stock NaAlg. Reduced viscosity vs. concentration of alginate was plotted (shown in above). Intrinsic viscosity determined for NaAlg is 235 cm<sup>3</sup> /gm at 298.15 K and 0.1 M NaCl medium. Average viscometric molecular weight ( $M_{\nu}$ ) of NaAlg was determined using Mark–Houwink equation:

 $[\eta] = K M_v^{\alpha}$ 

K and  $\alpha$  are constants and characteristic of the medium, temperature and polymer. K and  $\alpha$  values are taken from Clementi *et. al.* [41], and Masuelli M. A. *et al.* [42]. K = 0.0023 cm<sup>3</sup>/gm ,  $\alpha = 0.984$ .

Fig.S2. Plot of % Intensity vs. hydrodynamic diameter of pure NaAlg (0.01% w/v) and with varying the concentrations of C<sub>16</sub>MImCl (A) and C<sub>16</sub>TPB (B) added to it. Concentrations of surfactants have been shown at the bottom of each plot. PDI values are given within a bracket beside each figure caption.



Free NaAlg 0.01% (PDI = 0.668)







NaAlg 0.01% + 0.30 mM  $C_{16}$ MImCl (PDI = 0.221)



NaAlg  $0.01\% + 1.42 \text{ mM C}_{16}\text{MImCl} (\text{PDI} = 0.470)$ 



 $NaAlg \ 0.01\% + 3.32 \ mM \ C_{16}MImCl \ (0.490)$ 



NaAlg  $0.01\% + 0.05 \text{ mM C}_{16}$ TPB (PDI = 0.184)







NaAlg 0.01% + 0.89 mM C16TPB (PDI = 0.197)



NaAlg 0.01% + 1.95 mM C16TPB (PDI = 0.150)



NaAlg 0.01% + 2.33 mM C16TPB (PDI = 0.181)

Fig. S3.  $\gamma$  with corresponding log[surfactant] values up to cmc /C<sub>m</sub>\* and fitted them with second order polynomials [a: free C<sub>16</sub>MImCl, b: free C<sub>16</sub>TPB, c: C<sub>16</sub>MImCl + 0.001% (w/v) NaAlg, d: C<sub>16</sub>MImCl + 0.005% (w/v) NaAlg, e: C<sub>16</sub>MImCl + 0.01% (w/v) NaAlg, f: C<sub>16</sub>TPB + 0.001% (w/v) NaAlg, g: C<sub>16</sub>TPB + 0.005% (w/v) NaAlg, h: C<sub>16</sub>TPB + 0.01% (w/v) NaAlg]



Fig. S4. ln  $(I_0/I)$  vs. [CPC] in presence of two different surfactants in presence and absence of NaAlg with varying wt %. Surfactant concentrations have been fixed to ~ 10 mM for each system showing in the legend.



### **References:**

- 1. S. Das, S. Mondal and S. Ghosh, Journal of Chemical & Engineering Data, 2013, 58, 2586-2595.
- 2. S. Das, S. Ghosh and B. Das, *Journal of Chemical & Engineering Data*, 2018, **63**, 3784-3800.
- 3. S. Das, N. Patra, A. Banerjee, B. Das and S. Ghosh, *Journal of Molecular Liquids*, 2020, **320**, 114497.
- 4. E. D. Goddard and R. B. Hannan, *Journal of the American Oil Chemists' Society*, 1977, **54**, 561-566.
- 5. T. Nylander, Y. Samoshina and B. Lindman, *Advances in Colloid and Interface Science*, 2006, **123-126**, 105-123.
- 6. J. C. T. Kwak, *Polymer-surfactant systems*, CRC Press2020.
- 7. E. D. Goddard, Journal of Colloid and Interface Science, 2002, 256, 228-235.
- 8. K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, *Polymers in Aqueous Solution*, Wiley-Blackwell2002.
- 9. K. Kogej, Advances in colloid interface science, 2010, **158**, 68-83.
- 10. T. Chakraborty, I. Chakraborty and S. Ghosh, Langmuir, 2006, 22, 9905-9913.
- 11. A. Dan, S. Ghosh and S. P. Moulik, Carbohydrate polymers, 2010, 80, 44-52.
- 12. P. Degen, M. Paulus, E. Zwar, V. Jakobi, S. Dogan, M. Tolan and H. Rehage, *Surface Interface Analysis*, 2019, **51**, 1051-1058.
- 13. S. Ghosh, A. Mal, T. Chakraborty, G. C. De and D. G. Marangoni, *J Surface Sci Technol*, 2016, **32**, 107-114.
- 14. A. Mal, A. Saha, G. Dinda and S. Ghosh, Journal of Molecular Liquids, 2020, 299, 112153.
- 15. T. Singh, S. Boral, H. Bohidar and A. Kumar, *Journal of Physical Chemistry B*, 2010, **114**, 8441-8448.
- 16. D. Ray, S. Das, R. De and B. Das, J Carbohydrate polymers, 2015, 125, 255-264.
- 17. D. V. de Freitas, B. L. Kuhn, C. R. Bender, A. M. F. Lima, M. de Freitas Lima, M. J. Tiera, C. L. Kloster, C. P. Frizzo and M. A. Villetti, *J Journal of Molecular Liquids*, 2020, **297**, 111734.
- 18. A. Pal and S. Yadav, J Journal of Molecular Liquids, 2017, 241, 584-594.
- 19. B. Das, D. Ray and R. De, Carbohydrate polymers, 2014, 113, 208-216.
- 20. S. Jabeen, O. A. Chat, M. Maswal, U. Ashraf, G. M. Rather and A. A. Dar, *J Carbohydrate polymers*, 2015, **133**, 144-153.
- 21. J. Yang, J. Zhao and Y. Fang, Carbohydrate research, 2008, 343, 719-725.
- 22. M. Ghaemy and S. Sadjady, Journal of applied polymer science, 2006, 100, 2634-2641.
- 23. A. A. Silva, S. Livi, D. B. Netto, B. G. Soares, J. Duchet and J.-F. Gérard, *Polymer*, 2013, **54**, 2123-2129.
- 24. A. Noda and M. Watanabe, *Electrochimica Acta*, 2000, 45, 1265-1270.
- 25. S. Livi, J.-F. Gérard and J. Duchet-Rumeau, Chemical Communications, 2011, 47, 3589-3591.
- 26. A. Sankri, A. Arhaliass, I. Dez, A. C. Gaumont, Y. Grohens, D. Lourdin, I. Pillin, A. Rolland-Sabaté and E. Leroy, *Carbohydrate Polymers*, 2010, **82**, 256-263.
- 27. X. Wu, M. Wang, Y. Xie, C. Chen, K. Li, M. Yuan, X. Zhao and Z. Hou, *J Applied Catalysis A: General*, 2016, **519**, 146-154.
- M. Blesic, M. H. Marques, N. V. Plechkova, K. R. Seddon, L. P. N. Rebelo and A. Lopes, Green Chemistry, 2007, 9, 481-490.
- 29. A. M. Stephen, Food polysaccharides and their applications, CRC press1995.
- 30. A. Haug and B. Larsen, Acta chem. scand, 1967, 21, 691-704.

- 31. L. Lu, X. Liu, L. Dai and Z. Tong, Biomacromolecules, 2005, 6, 2150-2156.
- 32. R. Seale, E. R. Morris and D. A. Rees, *Carbohydrate Research*, 1982, **110**, 101-112.
- 33. J. Liu, Q. Zhang, Y. Huo, M. Zhao, D. Sun, X. Wei, S. Liu and L. Zheng, *J Colloid Polymer Science*, 2012, **290**, 1721-1730.
- G. Singh, G. Singh and T. S. Kang, J Physical Chemistry Chemical Physics, 2018, 20, 18528-18538.
- J. Liu, L. Zheng, D. Sun and X. Wei, Colloids Surfaces A: Physicochemical Engineering Aspects, 2010, 358, 93-100.
- 36. M. Prasad, S. Moulik, A. MacDonald and R. Palepu, *The Journal of Physical Chemistry B*, 2004, **108**, 355-362.
- 37. P. D. Galgano and O. A. El Seoud, Journal of Colloid Interface Science, 2010, 345, 1-11.
- 38. G. Basu Ray, S. Ghosh and S. P. Moulik, Journal of Chemical Sciences, 2010, 122, 109-117.
- 39. V. G. Babak, E. A. Skotnikova, I. G. Lukina, S. Pelletier, P. Hubert and E. Dellacherie, *Journal of colloid and interface science*, 2000, **225**, 505-510.
- 40. Helmiyati and M. Aprilliza, *IOP Conference Series: Materials Science and Engineering*, 2017, **188**, 012019.
- 41. R. Houwink, Journal für Praktische Chemie, 1940, 157, 15-18.
- 42. F. Clementi, M. Mancini and M. Moresi, Journal of food engineering, 1998, 36, 51-62.
- 43. M. A. Masuelli and C. O. Illanes, Open Science Publishing, 2014.
- 44. M. Filippov and R. Kohn, Chem zvesti, 1974, 28, 817-819.
- 45. Y. Shi, H. Q. Luo and N. B. Li, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, **78**, 1403-1407.
- 46. D. Taylor, R. Thomas, J. Hines, K. Humphreys and J. Penfold, Langmuir, 2002, 18, 9783-9791.
- 47. D. J. F. Taylor, R. K. Thomas, P. X. Li and J. Penfold, *Langmuir*, 2003, 19, 3712-3719.
- 48. D. J. F. Taylor, R. K. Thomas and J. Penfold, *Advances in colloid and interface science*, 2007, **132**, 69-110.
- 49. R. A. Campbell, P. A. Ash and C. D. Bain, *Langmuir*, 2007, 23, 3242-3253.
- 50. Á. Ábraham, R. A. Campbell and I. Varga, Langmuir, 2013, 29, 11554-11559.
- 51. R. A. Campbell, A. Angus-Smyth, M. Yanez Arteta, K. Tonigold, T. Nylander and I. Varga, *The Journal of Physical Chemistry Letters*, 2010, **1**, 3021-3026.
- 52. E. Guzmán, S. Llamas, A. Maestro, L. Fernández-Peña, A. Akanno, R. Miller, F. Ortega and R. G. Rubio, *Advances in colloid and interface science*, 2016, **233**, 38-64.
- 53. E. Guzmán, L. Fernández-Peña, F. Ortega and R. G. Rubio, *Current Opinion in Colloid & Interface Science*, 2020, **48**, 91-108.
- 54. K. Bodnár, E. Fegyver, M. s. Nagy and R. b. Mészáros, Langmuir, 2016, 32, 1259-1268.
- 55. M. S. Bakshi and S. Sachar, Colloid Polymer Science, 2004, 282, 993-999.
- 56. C. Wang and H. Morgner, Physical Chemistry Chemical Physics, 2014, 16, 23386-23393.
- 57. L. Martínez-Balbuena, A. Arteaga-Jiménez, E. Hernández-Zapata and C. Márquez-Beltrán, *Advances in colloid and interface science*, 2017, **247**, 178-184.
- 58. K. G. Baikerikar and R. S. Hansen, Langmuir, 1991, 7, 1963-1968.
- 59. S. W. An, J. R. Lu, R. K. Thomas and J. Penfold, *Langmuir*, 1996, **12**, 2446-2453.
- 60. J. D. Hines, R. K. Thomas, P. R. Garrett, G. K. Rennie and J. Penfold, *The Journal of Physical Chemistry B*, 1997, **101**, 9215-9223.
- 61. A. Downer, J. Eastoe, A. R. Pitt, J. Penfold and R. K. Heenan, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 1999, **156**, 33-48.

- G. Andersson, T. Krebs and H. Morgner, *Physical Chemistry Chemical Physics*, 2005, 7, 136-142.
- 63. J. Eastoe, A. Paul, A. Rankin, R. Wat, J. Penfold and J. R. P. Webster, *Langmuir*, 2001, **17**, 7873-7878.
- 64. S. B. Sulthana, S. G. T. Bhat and A. K. Rakshit, *Langmuir*, 1997, 13, 4562-4568.
- 65. H. Xu, P. X. Li, K. Ma, R. K. Thomas, J. Penfold and J. R. Lu, *Langmuir*, 2013, **29**, 9335-9351.
- 66. I. Mukherjee, S. P. Moulik and A. K. Rakshit, *Journal of Colloid and Interface Science*, 2013, **394**, 329-336.
- 67. C. C. Addison and S. K. Hutchinson, J Chem Soc, 1948, 1, 943-948.
- 68. J. N. Israelachvili, Intermolecular and Surface Forces, Elsevier Science2011.
- 69. T. Chakraborty and S. Ghosh, Colloid Polymer Science, 2007, 285, 1665-1673.
- 70. C. Tanford, *The hydrophobic effect : formation of micelles and biological membranes*, New York (N.Y.) : Wiley1980.
- 71. A. A. Dar, A. Garai, A. R. Das and S. Ghosh, *The Journal of Physical Chemistry A*, 2010, **114**, 5083-5091.
- 72. M. G. Neumann, C. C. Schmitt and E. T. Iamazaki, *Carbohydrate research*, 2003, **338**, 1109-1113.
- 73. M. G. Neumann and M. J. Tiera, Pure applied chemistry, 1997, 69, 791-796.
- 74. P. Yan, C. Jin, C. Wang, J. Ye and J.-X. Xiao, *Journal of colloid interface science*, 2005, **282**, 188-192.
- 75. J. Aguiar, P. Carpena, J. Molina-Bolivar and C. C. Ruiz, *Journal of Colloid Interface Science*, 2003, **258**, 116-122.
- 76. N. J. Turro, B. H. Baretz and P. L. Kuo, *Macromolecules*, 1984, 17, 1321-1324.
- 77. L. Piñeiro, M. Novo and W. Al-Soufi, Advances in Colloid and Interface Science, 2015, 215, 1-12.
- 78. F. Geng, J. Liu, L. Zheng, L. Yu, Z. Li, G. Li and C. Tung, *Journal of Chemical & Engineering Data*, 2010, **55**, 147-151.
- 79. J. Łuczak, M. Markiewicz, J. Thöming, J. Hupka and C. Jungnickel, *Journal of Colloid and Interface Science*, 2011, **362**, 415-422.
- 80. R. Pereira, A. Tojeira, D. C. Vaz, A. Mendes and P. Bártolo, *International Journal of Polymer Analysis and Characterization*, 2011, **16**, 449-464.
- 81. M. Aprilliza, Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent, 2017.
- S. Hua, H. Ma, X. Li, H. Yang and A. Wang, International Journal of Biological Macromolecules, 2010, 46, 517-523.
- 83. E. Thomas, D. Thomas, S. Bhuvaneswari, K. P. Vijayalakshmi and B. K. George, *Journal of Molecular Liquids*, 2018, **249**, 404-411.
- S. Li, P. Xing, Y. Hou, J. Yang, X. Yang, B. Wang and A. Hao, *Journal of Molecular Liquids*, 2013, 188, 74-80.
- 85. N. Khan and B. Brettmann, Polymers, 2019, 11, 51.
- A. Naderi, P. M. Claesson, M. Bergström and A. Dedinaite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 83-93.

# **Chapter-IV**

Physicochemical and Spectroscopic Study on the Interaction of a Novel azabenzocrown Dye with Different Surfactants

## Physicochemical and Spectroscopic Study on the Interaction of a Novel Azabenzocrown Dye with Different Surfactants

### Abstract:

Interaction of a novel azabenzocrown ether (H<sub>2</sub>DTC) with different kinds of surfactants such as, conventional anionic (SDS), cationic (DTAB), gemini cationic (16-4-16), ionic liquid (C16MImCI) and nonionic (Tween-60) has been investigated at the wide range of surfactant concentrations (premicellar, micellar and post micellar regime) in 15% (V/V) EtOH-water medium at 298.15 K. Several physicochemical techniques, viz., tensiometry, steady state fluorimetry, UV-VIS spectroscopy was employed. H2DTC show several inflection points in surface tension, steady state fluorimetry and absorption profiles with variation of [surfactant] from very low to high, apart from critical micelle concentration (cmc). Equilibrium binding constants ( $K_b$ ) for the binding of H<sub>2</sub>DTC with micellar environment, partition coefficient values for  $H_2DTC$  ( $K_x$ ) in micellar to solvent phase, molar absorptivity of H<sub>2</sub>DTC in absence ( $\epsilon_0$ ) and presence ( $\epsilon$ ) of micellar solution, Gibbs energy of binding ( $\Delta G_h^0$ ), Gibbs energy of partition  $(\Delta G_n^0)$  for H<sub>2</sub>DTC in solvent to micellar phase have been evaluated in this present study. It has been seen that H<sub>2</sub>DTC strongly binds with micelles of Tween-60 than the anionic and cationic surfactants and correspond Kx values are found higher for micelle medium of non-ionic surfactant. On the other hand,  $\varepsilon$  value of H<sub>2</sub>DTC found lower in micellar Tween-60, whereas, it is found high in cationic and anionic micellar medium comparing with the pure solvent (15% V/V EtOH-water). Negative Gibbs binding and negative values of partition coefficient clearly indicates the spontaneity of both these processes. The binding of H<sub>2</sub>DTC with Tween-60 micelles is greater than the other surfactants.

### 1. Introduction:

An enormous attention has been focused for the synthesis of azacrown compounds in past and preceding years. The azacrowns show intermediate complexation properties in between those crowns bind with only oxygens, which have strong intake affinity towards alkali and alkaline earth metal ions, and those of the all-nitrogen bound cyclams which strongly bind with heavy-metal cations inside in its cavity due to less electronegativity and strong complexing ability of N over O atom. These have important uses as artificial receptors in molecular recognition processes<sup>1</sup> and, in some cases, complexation of anions which have close similarity with the ions participate in definite biological systems.<sup>2-4</sup> Thus, the introduction of biological entities into the crown ether macromolecules has provided researcher an even greater insight into biological ionophores, such as macrolide antibiotics, cyclic peptides etc.<sup>5, 6</sup> These crown based macrocycles have also an enhanced complexing ability for ammonium salts<sup>7, 8</sup> through H-bonding <sup>9-12</sup> and for transition-metal ions <sup>8,13</sup> over the crowns containing only oxygen atom. Extensive numbers of azacrowns have been synthesized; among them, benzoazacrowns have been studied broadly on its complexation affinity towards main group and also transition metal

ions since its discovery in the mid-1970s.<sup>14-17</sup> Surfactant mediated assemblies in solution medium have great potential applications in routine life. The simplest assemble is termed as micelle and the corresponding surfactant concentration abbreviated as critical micelle concentration (cmc).<sup>18</sup> These micellar properties are affected by influence of several additives, i.e, non-polar and polar organic compounds, small amount of electrolytes etc.<sup>18</sup> Recently, increasing effort is being emphasized to the study of the assimilation or solubilization of neutral molecules into micelle in aqueous solution. Although a lot of studies have already reported on the complexation properties of crowns with various cations, anions and neutral organic molecules, less attention has been devoted on the interaction of crowns with surface active agents<sup>19-23</sup> in both pre and post micellar regime and majority of them (surfactants) are anionic in nature. The inclusion of crown macromolecule to the surfactants during micellization results to the formation of inclusion complex mediated by crown cavity with oppositely charged counterions or simply association with monomeric and aggregated form of surfactants with crowns, and as a result, these crowns alter the adsorption of surfactants at interfaces and also influence in bulk micellization. On the other hand, the partition, absorption and emission properties of azacrown are influenced by surfactants in both monomeric and micellar solution. In this connection, a comprehensive investigation has been executed on the interaction of a synthesized chromophoric dihydroxy dibenzoaza-crown (1,16-dihydroxy-tetraaza-30-crown-8) with arbitrarily chosen surfactants [conventional cationic (dodecyltrimethylammonium bromide, DTAB) and anionic (sodiumdodecyl sulfate, SDS), cationic gemini (butanediyl-1,4bis(dimethylcetylammonium bromide),16-4-16), surface active ionic liquid (1-hexadecyl-3methylimidazolium chloride, C<sub>16</sub>MImCl) and non-ionic surfactant (polyoxyethylene sorbitan monostearate, Tween-60] covering all the classes in 15% EtOH-water medium at 298.15K. Tensiometry, UV-VIS spectroscopy and steady state spectrofluorimetry techniques were employed to elucidate the interaction between crown with surfactants both at the surface and in the bulk.

### 2. Experimental Section:

#### 2.1. Materials:

DTAB, Tween-60 (HLB = 14.9), N, N-Dimethylhexadecylamine, 1,4-Dibromobutane, and Ethyl acetate were purchased from Merck (Sigma Aldrich), India and these are used without any further purification. SDS was obtained from SRL, India (assay min 85%) and used as received.  $C_{16}$ MImCl, 98%, monohydrate was purchased from Acros Organics (Germany) and used as received. Acetone (certified ACS) was purchased from Fisher Scientific (Germany).

Absolute Ethanol (EMSURE® ACS, for analysis, was purchased from Merck, Germany) and deionised water with a specific conductance of 0.98  $\mu$ S.cm<sup>-1</sup> were used to prepare the experimental solutions. The gemini surfactant, 16-4-16 was synthesized in our laboratory (See below). H<sub>2</sub>DTC was received as a gifted sample from Dr. Amrita Saha, Department of Chemistry, Jadavpur University. Structures of different surfactants and H<sub>2</sub>DTC have been shown in Fig. 1.

### 2.2. Synthesis of butanediyl-1,4-bis (dimethylcetylammonium bromide) [16-4-16]:

Cationic gemini surfactant, 16-4-16 has been synthesized in our laboratory using the protocol mentioned by Menger et. al. <sup>24</sup> N,N-Dimethylhexadecylamine (2.67 g, 9.93 mmol) was added to a 5 ml dry acetone in a small clean round flask. After that, 1,4-Dibromobutane (1 g, 4.63 mmol) was added drop wise to the flask with continuous starring by a mechanical stirrer and this mixture was finally brought for refluxing for 18 hours. During refluxing, white product was separated out form the solution. After cooling the refluxing mixture, 20 ml acetone was added and continuously stirred followed by decantation of supernatant liquid. This washing procedure was followed 2 - 3 times. After that, crude product was filtered and further washed with cold diethyl ether and dried with a rotary evaporator at moderate temperature. Product was recrystallized with ethanol and ethyl acetate and characterized by <sup>1</sup>H NMR. The calculated Yield was: 1.89 g (54%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>, Fig.S1 in the supplementary)  $\delta$  ppm: 3.25-3.32 (qurt. N(+)-CH<sub>2</sub>) (m, 8H), 3.00 (qurt.N(+)-CH<sub>3</sub>) (s, 12H), 1.65 (spacer-CH<sub>2</sub>-CH<sub>2</sub>-) (m, 4H), 1.24 (long chain-CH<sub>2</sub>) (m, 52H), 0.85 (long chain terminal-CH<sub>3</sub>) (t, 6H, J = 6.5 Hz).

# **2.3.** Determination of molar absorptivity coefficient of H<sub>2</sub>DTC and preparation of experimental Solutions:

Required weighted H<sub>2</sub>DTC was dissolved in 15% EtOH-water under sonication at room temperature until soluble (maximum solubility range: ~ 0.15 mg H<sub>2</sub>DTC in 1 ml 15% EtOHwater). Molar absorptivity of the H<sub>2</sub>DTC ( $\varepsilon_0$ ) in 15% v/v EtOH-water medium was calculated using rearranged Beer-Lambert equation:  $\varepsilon_0 = A/lC$ , where *A*. *l* and *C* represent absorbance at a given wavelength corresponding to maximum absorbance (238, 356 and 423 nm, cf. Fig. S2(a) and S2(b)), the length of cuvette and concentration of H<sub>2</sub>DTC, respectively. The calculated  $\varepsilon_0$ values have been found to be 12000, 2531 and 2867 L mol<sup>-1</sup> cm<sup>-1</sup> at 238, 356 and 423 nm wavelength respectively corresponding to maximum absorbance ( $\lambda_{abs}^{max}$ ) at 298.15K respectively. Detailed discussions have been given in results and discussions section in this

manuscript. Appearance of three absorbance peaks of dye molecules in 15% EtOH-water medium are probably due to  $n \rightarrow \pi^*$  transition between nonbonding electron of N and -N=Cgroup present in H<sub>2</sub>DTC (for  $\lambda_{abs}^{max}$  = 356 and 423 nm; relatively less intensity (cf. Fig. S2(b)) with H- bonding type interaction between phenolic -OH and azo group hamparing  $n \rightarrow \pi^*$ transitions; while relatively lager absorbance intensity is observed at 238 nm probably due to  $\pi \rightarrow \pi^*$  transition. All surfactant solutions were prepared 15 times above their aqueous cmcs <sup>25-43</sup> and also cmc values are evaluated in aqueous solution in the present study by different techniques shown elsewhere (cf. Table 1). Determined cmc values in this work in aqueous solution at 298.15 K are in good agreements with the literatures <sup>25-43</sup>, [Ref. for SDS <sup>25-31</sup>; DTAB <sup>32-39</sup>; 16-4-16<sup>40</sup>; C<sub>16</sub>MImCl<sup>39</sup>; Tween-60<sup>41-43</sup>. All surfactants (same weightage as those taken for aqueous solution for tensiometry and later for spectrometry, 15 times the cmc values those calculated in tensiometric method) were dissolved in 15% EtOH-water both in presence and absence of H<sub>2</sub>DTC and cmc values were evaluated and displayed in Table 1. Respective concentration of H<sub>2</sub>DTC remains fixed both in the solutions containing only H<sub>2</sub>DTC and surfactants with H<sub>2</sub>DTC (Stock Solutions) for all the measurements. All experiments were performed at 298.15 K.



Fig.1. Structure of surfactants & H<sub>2</sub>DTC: SDS (a), DTAB (b),  $C_{16}MImCl$  (c), 16-4-16 (d), Tween-60 (e), and H<sub>2</sub>DTC (f: line structure, f': stick representation of H<sub>2</sub>DTC (optimized)).

#### 3. Methods Employed:

### 3.1. Tensiometry:

A calibrated Krüss-K8 tensiometer (Made in Germany) was used to determine surface tension at air water interface by du Noüy ring detachment method at 298.15K. A clean platinum ring was used for this purpose. This ring has been cleaned using deionized water and acetone successively and burned briefly until glowing in ethanol flame prior to each measurement. Pure ethanol and ethanol (15%) solubilised H<sub>2</sub>DTC (concentration ~ 0.15 mM) were taken in a double jacket container attached with a thermostatic water bath to maintain the desired temperature with an accuracy of  $\pm$  0.1 K. Stock surfactant solutions were added to the double jacket container by a Hamiltonian micro syringe and stirred well after each addition and kept for 5 minutes before taken the data. Two or three consecutive readings of surface tension were taken for a particular addition of surfactant by syringe for better reproducibility. Surface tension of distilled water used for preparation of solution was found to be 70.8 mN.m<sup>-1</sup> with the precision of  $\pm$ 1 mN.m<sup>-1</sup> at 298.15 K. Representative plots of surface tension ( $\gamma$ ) vs. log [surfactant/ mM] were shown in Fig. 2. Several inflection points were identified and those were also verified by other methods (Spectrophotometry (Fig. 3.), and Fluorimetry (Fig. 4.))



Fig.2. Plot of Surface tension ( $\gamma$ ) vs. log ([surf]/ mM): Surfactants in aqueous solution (a), different surfactants employed here in 15% EtOH-water in absence (b), and presence (c) of H<sub>2</sub>DTC. Cmcs and several inflection points (C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub> and C<sub>4</sub>) have been specified.

#### **3.2.** Spectrophotometry:

Spectrophotometry was conducted using a Shimadzu UV-VIS spectrophotometer (made in Japan) attached with a thermostatic water bath to maintain 298.15  $\pm$  0.15 K. Initially, base line was done using the solvent (15% EtOH-water). 2.5 mL of H<sub>2</sub>DTC (~ 0.13 mM) prepared in 15% EtOH-water was taken in a quartz cuvette of 1 cm path length and surfactant solutions

(Prepared in ~15 times above their cmcs those calculated in tensiometry) were prepared in same concentration of  $H_2DTC$ , added with a Hamiltonian micro syringe and spectrum was recorded (cf. Fig.3.).



Fig.3. UV-VIS spectroscopy of H<sub>2</sub>DTC (0.13 mM) upon addition of surfactants: SDS (a), DTAB (b) and C<sub>16</sub>MImCl (c), 16-4-16 (d) and Tween 60 (e) in 15% EtOH-water medium.

### 3.3. Spectrofluorimetry:

A Perkin-Elmer LS 55 (USA) fluorescence spectrofluorometer attached with a Peltier have been used for steady state measurements at 298.15  $\pm$  0.1K. Spectroscopic behaviour of H<sub>2</sub>DTC was observed in 15% EtOH-water at the excitation wavelength of 421 nm with 14 nm band pass. While emission monitored between 450 – 650 nm with a width of 4 nm band pass, emission maxima ( $\lambda_{max}$ ) of H<sub>2</sub>DTC was measured at 527 nm. Surfactants were added using a microsyringe to H<sub>2</sub>DTC and the spectrum was measured (cf. Fig. 4). Same concentration of H<sub>2</sub>DTC and same experimental procedure has been followed that stated in photometry section. Spectra were recorded in Fig.4.



Fig.4. Fluorescence spectra of  $H_2DTC$  (0.09 mM) upon addition of surfactants: DTAB (a),  $C_{16}$ -4- $C_{16}$  (b) and Tween-60 (c) in 15% EtOH-water medium.

### 4. Results and Discussions:

# 4.1. Micellization of surfactants in aqueous, 15% EtOH-water solvent in absence and presence of H<sub>2</sub>DTC by tensiometry

The variation of surface tension ( $\gamma$ ) vs. log [surf] profiles were exhibited in Fig. 2. for different surfactants in aqueous (a), in 15% EtOH-water (b) and in H<sub>2</sub>DTC (0.15 mM) medium dissolved in 15% EtOH-water used as solvent (c). It is well known that amphiphiles residing at the airwater interface reduce  $\gamma$  significantly, and finally, remain invariant of surfactant concentration after the onset of micelle formation (cf. Fig 2a.). The inflection point obtained in the surface tension profiles for surfactants in aqueous solution was shown in Fig. 2a, and that concentration was termed as critical micelle concentration (cmc). Two intersecting linear slopes with different magnitude have been assigned (cf. Fig. 2) in this context and often used <sup>44, 45</sup> to determine cmcs. Cmc values of surfactants in aqueous solution are displayed in Table 1.

Determination of cmc for SDS in aqueous solution is found difficult due to the existence of a minimum (Fig. 2(a)). During the addition of SDS solution in water, initially, surface tension decreases and finally a plateau is appeared followed by a sharp minimum. The minimum appears due to the n-dodecanol impurity <sup>25, 26, 44</sup>, which is more surface active, found mostly in technical grade SDS samples. The more surface active n- dodecanol reduces the surface tension more even after the surface is saturated by SDS and finally, it is solubilised in SDS micelle causing a minimum. Even the minimum point has been reported for laboratory grade SDS ( $\geq$  98% purity) due to auto hydrolysis of SDS forming n- dodecanol during the process of micellization.<sup>25, 44</sup> From the minimum formation to the appearance of plateau is designated in between two dotted lines shown in Fig.2a. Same observation in the tensiometry profile (Fig.2b.) of SDS in 15% EtOH-water is also observed. To determine the cmc of SDS, the convenient concentration is used immediate after the concentration where minimum in  $\gamma$  is observed. Although a number of researchers have taken the minimum point in tensiometry profile to designate cmc in case of SDS, we have adopted the aforesaid method and also found excellent similarities with those obtained from literatures <sup>25-27</sup> and in accord with the cmc determined by spectrometry (Table 1) in this present investigation. In 15% (v/v) ethanol content medium, cmc value of SDS is found to be 5.08mM, lower than that obtained in aqueous solution. This clearly indicates that EtOH wound not act as a cosolvent at its 15% (v/v) volume fraction solution during the micellization of SDS while for the micellization of other cationic surfactants investigated here, increment of cmc is observed (Table 2) in 15% EtOH-water medium comparing with aqueous system (Table 1). The decrease of cmc in presence of SDS at 15% EtOH- water medium would be explained in terms of decrease of interfacial energy between the solvent and micelles by the adsorption of EtOH molecules on micellar surface attributed to greater micelle stability. <sup>46</sup> It has been reported that at its low concentration, EtOH behaves like a cosolvent and at higher concentration, cosurfactant nature predominates and in this consequence, a manifestation of minima in cmc trend <sup>47, 48</sup> is observed for a particular (both anionic and cationic) surfactant at varying EtOH volume fractions.

Cmc of Tween-60 is found around 0.035 mM when studying micellization both in aqueous and 15% EtOH-warer medium. The exact similarity in cmc of Tween-60 in both media is probably due to H- bonding interaction of polyoxyethylene hydrophilic moiety with water molecules and such interaction hinders EtOH molecules to influence the micellization of Tween-60. Similar observation was found by Gokturk et. al. <sup>49</sup>, while micellization of TX100 was investigated in aqueous and ethanol-water medium.

From Fig. 2. It is found that,  $\gamma$  values of surfactants in presence of 15% EtOH-water decreases. The  $\gamma$  values in 15% EtOH-water is found to be 40 – 42 mN.m<sup>-1</sup> without surfactants attributed to the surface activity of the solvent itself. The decrease of surface tension in alcohol-water medium with respect to deionized water is also reported in previous literatures. Surface tension at cmc ( $\gamma_{cmc}$ , cf. Table 3) of surfactants decreases in presence of 15% EtOH-water when compare with aqueous medium.

Presence of slight minima in the tensiometric profile of DTAB and  $C_{16}$ MImCl is also observed and can be explained in terms of intercalation of EtOH molecule into micelles followed by more surface activity of EtOH along with these surfactants.

Interesting observation is obtained in the tensiometric profiles (Fig.2c.) of surfactants, except Tween-60, in presence of 0.15 mM  $H_2DTC$  in 15% EtOH water medium.

Several breaks are obtained in the tensiometric profiles in presence of H<sub>2</sub>DTC except the nonionic Tween. We have termed these break points as C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub> and C<sub>4</sub> (shown in Fig. 2c) from low to high surfactant concentration regions in sequential order. Each point probably has distinct significance. During the addition of surfactants into H<sub>2</sub>DTC solution, the concentration of  $H_2DTC$  is kept constant in both media. Here, monolayer formation is possible at a particular surfactant concentration (termed as C<sub>1</sub>), then an interpretation with H<sub>2</sub>DTC probably occurred at the break point  $(C_2)$ ; after that, micelle formation by the surfactant monomers occurred (that concentration is cmc, here we termed as  $C_3$  for studying of micellization in presence of  $H_2DTC$ ) and finally, termination of the interaction at a particular concentration (C<sub>4</sub>) associated with solubilisation of bound H<sub>2</sub>DTC with surfactants along with EtOH were observed owing to the system coming from surface to the micelle region. In presence of 15% (v/v) ethanol, less population of surfactant monomers has been observed (confirmed by less surface coverage of monomers at cmc, discussed elsewhere in this section) at air-water interface. There is the greater tendency of ethanol molecules to reside on the surface by disruption of the H- bonded structure of water and at the same time, they attract hydrophobic H<sub>2</sub>DTC molecules along with them to the less polar surface by means of some hydrogen bonding interaction. When the surfactants are added to the solution, surface tension gradually decreases as the surfactants reside on the surface replacing some ethanol/water molecules due to its greater surface activity than solvents, until a concentration of surfactants  $(C_1)$  reached when some bulk monomer population facilitate some sort of interaction with H<sub>2</sub>DTC at the bulk. The mode of this interaction is different for different kind of surfactants. Until the completion of interaction mediated by surfactants and H<sub>2</sub>DTC, we obtained a plateau in the tensiogram (Fig. 2c), that means, at that region (from C1 to C2) surfactants do not reside on surface. After C2, further addition of surfactants reduces surface tension and form micelles (at  $C_3$ ) followed by a deep (except for SDS, which shows a plateau (Fig. 3c), here plateau and deep occurred in same region), After that, added surfactant monomers form micelle, increase the aggregation number and at the same time, H<sub>2</sub>DTC is dissolved in micellar region which is associated with EtOH coming from interface, increase the surface tension. Finally, saturation of surface (at C<sub>4</sub>) takes place and the whole process ends to completion and after C<sub>4</sub> there is no noticeable change of surface tension upon further addition of surfactants. The mode of interaction of anionic and cationic surfactants with H<sub>2</sub>DTC is mostly ionic type (non covalent interaction) in nature at premicellar region, as there is not shown any such break except at cmc, while studying micellization of non-ionic Tween-60 in presence of H<sub>2</sub>DTC.

The lone pairs of crown are oriented to the exterior in hydrophilic region, whereas, interior orientation is observed at the hydrophobic region.<sup>50</sup> Anionic surfactant, SDS has Na<sup>+</sup> counterion, which is encapsulated in H<sub>2</sub>DTC cavity at relatively high surfactant concentration, as the increasing hydrophobicity restricts the lone pairs orienting into the cavity of H<sub>2</sub>DTC. The plateau in the tensiometric profile of SDS at its high concentration comparing with other cationic surfactants obtained supports aforesaid explanation with the experimental point of view. Dodecyl sulphate anions interact with Na<sup>+</sup>, those encapsulated by H<sub>2</sub>DTC forming 1:1 SDS-H<sub>2</sub>DTC complex<sup>51</sup> (detailed in sec 4.2,) due to electrostatic reason. Cationic surfactants (DTAB, C<sub>16</sub>MeImCl, and, 16-4-16) with quaternary ammonium head groups have the possibility to interact with the benzene rings through cation- $\pi$  interaction as quaternary ammonium groups cannot be capable of forming H-bonds with N and O atoms. Although cation- $\pi$  interaction predominates in the gas phase, there are few published literatures demonstrating the interaction occurred in solution phase<sup>52</sup> Cation- $\pi$  interaction plays fundamental role for the recognition of quaternary ammonium cations in biological system. <sup>50</sup> As their needs no such orientation of  $H_2DTC$  in terms of lone pairs, that are required for SDS, there is the possibility for cationic surfactants easily binding with  $H_2DTC$  at relatively lower surfactant concentrations (see the values of  $C_1$  and  $C_2$  in Table 1)

Maximum surface excess ( $\Gamma_{max}$ ) at the air/water interface can be calculated using the Gibbs adsorption equation<sup>53</sup> as given below:

$$\Gamma_{max} = -\frac{1}{2.303nRT} \lim_{C \to cmc} \left(\frac{\partial \gamma}{\partial logC}\right) \text{ mol. m}^{-2}$$
(1)

 $\Gamma_{\text{max}}$  can be defined as how much the air/water interface can be covered by surfactants which reduce the surface tension of solvent at cmc,  $\gamma$  is the surface tension in mN.m<sup>-1</sup> unit, *c* is the total surfactant concentration in solution and *n*, *R* and *T* are the number of species per surfactant

molecule at air/water interface, universal gas constant and temperature at Kelvin scale respectively. The number of species (*n*) participating at the air/ water interface for SDS, DTAB and C<sub>16</sub>MeImCl is 2; for 16-4-16 it is 3 and for nonionic surfactant, the value is 1. Variation of  $\gamma$  with the function of log*C* up to the cmc in 15% ethanol-water medium and in presence and absence of H<sub>2</sub>DTC dissolved in 15% ethanol are displayed in Fig. S3 (a) & (b) (in the supplementary section). This can be best fitted by second order polynomial by scrutinizing the regression ( $R^2$  factor, Table S1 in the supplementary section, found good correlation) analysis using the following equation:

$$\gamma = A + B_1 log \mathcal{C} + B_2 (log \mathcal{C})^2 \tag{2}$$

where *C* is the concentration of surfactants. In equation 2, *A*, *B*<sub>1</sub> and *B*<sub>2</sub> values are the constants for particular surfactants outlined in Table S1 (in the supplementary section). These estimated values used to execute  $\Gamma_{max}$  (cf. Table 3.) by taking the first derivative of equation 2 to obtain  $\frac{\partial \gamma}{\partial logc}$  at cmc. From Table 3, it is quite evident that  $\Gamma_{max}$  decreases in presence of 15% EtOH solvent comparing with aqueous medium significantly in presence of all surfactants. This would be explained in terms of association of EtOH on the surface decreasing polarity by destructing water structure at interface. Further slight reduction in presence of H<sub>2</sub>DTC is probably due to association of some H<sub>2</sub>DTC with EtOH by H-bonding type interaction, which further hampered the association of hydrophilic head groups of surfactant monomers to reside on the surface.

Minimum area per surfactant monomer ( $A_{\min}$ ) can be calculated using the following equation <sup>41</sup>:

$$A_{min} = \frac{10^{18}}{N_a \Gamma_{max}} \,\mathrm{nm}^2 \,\mathrm{molecule}^{-1} \tag{3}$$

Surface pressure at cmc ( $\pi_{cmc}$ ) can be obtained using the following equation:

$$\pi_{cmc} = \gamma_0 - \gamma_{cmc} \tag{4}$$

where  $\gamma_0$  and  $\gamma_{cmc}$  are the surface tension values of pure solvent and at cmc of the solution.

Efficiency of interfacial adsorption can be predicted by evaluating  $P^{C_{20}}$  which is defined how much the decrease of  $\gamma$  of the solution by adsorption of the surfactants on the interface.  $C_{20}$ values are defined empirically from the tensiograms (Fig.3) by the reduction of surface tension to 20 mN.m<sup>-1</sup> upon addition of surfactants.  $P^{C_{20}}$  is expressed by the following way:  $P^{C_{20}} = -logC_{20}$  (5) Packing parameter (*P*) deals with the micellar geometry predicted by Israelachvili  $^{54}$  by the following equation:

$$P = \frac{v}{l_c A} \tag{6}$$

where  $l_c$  is the maximum effective length of hydrophobic tail of a monomer, *A* is surface area of head group of surfactant monomer and v is the hydrophobic chain volume assuming to be an incompressible fluid. Both  $l_c$  and v of a saturated hydrocarbon chain of carbon number  $C_n$ , can be evaluated using Tanford formulae <sup>55</sup>:

$$l_c = 0.154 + 0.1265 C_n \text{ nm}$$
<sup>(7)</sup>

$$v = 0.0274 + 0.0269 C_n \text{ nm}^3 \tag{8}$$

 $C_n$  values are 12 for SDS and DTAB, for C<sub>16</sub>MeImCl, 16-4-16 and Tween 60, the values are 16.

As the exact determination of the head group area (*A*) of surfactants on micellar surface is quite difficult,  $A_{min}$  values those obtained from tensiometry have been used instead of *A*. The packing parameter values for the investigated surfactants both in presence and absence of H<sub>2</sub>DTC predicted by empirical equation of Israelachvili <sup>54</sup> is given below:

$$P = \frac{v}{l_c A_{min}} \tag{9}$$

for spherical micelles,  $P \le 0.333$ ; for nonspherical shape, 0.333 < P < 0.5; for vesicles and bilayers, 0.5 < P < 1; and for inverted structures, P > 1.

# **4.2.** Investigation of interaction of surfactants with H<sub>2</sub>DTC in presence of 15% EtOH probed by photometry and fluorimetry

The analysis of UV-VIS spectra of H<sub>2</sub>DTC in presence of different surfactants in 15% v/v EtOH-water medium has been performed by taking  $\lambda_{abs}^{max}$  at 356 nm and 423 nm respectively in this manuscript. H<sub>2</sub>DTC shows significant red shift in the UV-VIS spectra in presence of all cationic surfactants (423 to 428 nm for DTAB (Fig. 3b), 423 to 439 nm for C<sub>16</sub>MImCl (Fig. 3c), and for 16-4-16, the shifting of wave length from 423 to 431 nm (Fig. 3d) after cmc, while relatively less red shift was obtained for SDS (spectral shift from 423 to 427 nm, cf. Fig. 3a) in UV-VIS spectra. On the other hand, in presence of Tween 60, significant blue shift (423 to 416 nm) was observed at post micellar region in the UV-VIS profile (Fig. 3e) when monitoring  $\lambda_{abs}^{max}$  at 423 nm and 356 nm. In presence of cationic surfactants, H<sub>2</sub>DTC absorbance intensity was decrease (except C<sub>16</sub>MImCl, where less decline of absorbance intensity was observed at premicellar region) to a certain value followed by a large increase observed in micellar region when monitoring  $\lambda_{abs}^{max}$  at 423 nm as a function of surfactant concentration (cf. Fig. 3b, c and d). The initial small decrease in absorbance intensity at low concentration of surfactant is attributed to the formation of weakly interacting complex of H<sub>2</sub>DTC with surfactant monomers; after that, increase of surfactant concentration leads to formation of micelle. After micelle formation, weakly bound H2DTC releases free surfactant monomers and bound to micelles due to hydrophobic interaction, resulting increase in absorbance intensity (cf. Fig. 3b, c and d) <sup>56,</sup> <sup>57</sup> associated with red shifting and exciting the intensity of free  $H_2DTC$ . Similar type of observation was reported us in the absorbance spectra of Safranine T by adding surface active ionic liquid.<sup>58</sup> The change of absorbance intensity decreases with increase of concentration of all cationic surfactants at 356 nm of H<sub>2</sub>DTC and decrease in intensity is more pronounced at the post micellar region of these surfactants. In case of SDS, the change of absorbance intensity is negligible though the same type of observation is found for cationic surfactants at 423 nm after cmc of SDS (cf. Fig.3a) and decrease of absorbance intensity is also less pronounced at 356 nm. Strong inclusion complex like, SDS-H<sub>2</sub>DTC (stated earlier in tensiometry section) is mostly present in solvent and hardly allows the formation of free H<sub>2</sub>DTC in solution medium and the binding of H<sub>2</sub>DTC in interior of SDS-micelle. No shifting in wavelength is observed at 356 nm for all cationic and anionic surfactants. Gradual decrease is observed in the H<sub>2</sub>DTC abs. intensity in presence of Tween 60 with concomitant blue shift at 423 nm, while concomitant increase of absorbance intensity is found at 356 nm also with blue shift (spectral shift from 356 to 360 nm, cf. Fig. 3e). All these observations in H<sub>2</sub>DTC spectra in presence of varying concentrations of different surfactants reveal prominent interaction of cationic and non-ionic surfactants with H<sub>2</sub>DTC specially, in the micellar region due to penetration of dye into the micelle interior; while for SDS, a strong inclusion complex probably formed with H<sub>2</sub>DTC at free solvent or at the outer sphere (stren layer) of micelle. Local environment of H<sub>2</sub>DTC decides the shifting of its absorbance maximum at different surfactant solutions with varying surfactant concentrations. The reason for red shifting of H<sub>2</sub>DTC in presence of anionic and cationic surfactants may be explained in terms of less energy gap between nonbonding (n-orbital) and anti-bonding ( $\pi^*$ ) molecular orbitals of H<sub>2</sub>DTC in less polar environment and increase of intensity of H2DTC after cmc of surfactants (both cationic and anionic) due to positioning of dye in micellar core <sup>59</sup> and therefore, solubilizing the dye to micelle leading to more or less same absorbance intensity. Nonionic Tween-60 in presence of H<sub>2</sub>DTC in 15% v/v EtOH-water medium shows isosbestic points at  $\lambda_{abs}^{max} = 318$  and 380 nm at the post micellar region (shown at the inset of Fig. 3e). The blue shifted spectra of H<sub>2</sub>DTC were

obtained at 356 and 423 nm with conjugation of isosbestic point at post micellar region of Tween-60 due to the formation of H – aggregated structure of  $H_2DTC$  in parallel arrangement.<sup>60</sup> Absorbance at 423 nm vs. [surfactants] has been given in Fig. 5.



Fig. 5. absorbance intensity at 423 nm vs. concentration of surfactants profiles of  $H_2DTC$  (0.09 mM) upon addition of surfactants: SDS (a), DTAB (b),  $C_{16}MImCl$  (c),  $C_{16}-4-C_{16}$  (d) and Tween-60 (e) in 15% EtOH-water medium.

Except Tween 60, all the plots in Fig. 5 show a sigmoidal nature in the micellar region which revealed the dynamic equilibrium in terms of partition of H<sub>2</sub>DTC between bulk solution and micellar region. Several inflection points were designated in Fig. 5 and found close similarity those obtained from tensiometry (see Table 3). The decrease of absorbance intensity of H<sub>2</sub>DTC in presence of Tween 60 at all concentration ranges and slight decrease of intensity in presence of cationic and anionic surfactants clearly indicates the interaction of H<sub>2</sub>DTC with different surfactants. The equilibrium reaction for the binding of dye to the micelles can be written as  $^{61}$ :

$$D + S_m \stackrel{K_b}{\leftrightarrow} DS_m \quad (10) \qquad \& \qquad K_b = \frac{[DS_m]}{[D][S_m]} \tag{11}$$

where  $K_b$  is the binding constant,  $DS_m$  and D are the concentrations of bound and free dye (H<sub>2</sub>DTC), respectively, and  $S_m$  is the concentration of micellized surfactant. Binding constant can be determined using the Benesi Hildebrand equation.<sup>62</sup> This equation is used in the following modified form for the dye surfactant micelle system <sup>63</sup>, given below in Eq. 12:

$$\frac{d\left[D\right]_{0}}{A-A_{0}} = \frac{1}{\varepsilon - \varepsilon_{0}} + \frac{1}{(\varepsilon - \varepsilon_{0})K_{b}S_{m}}$$
(12)

where is the total concentration of dye is  $[D]_0$ , d is the optical path length of the solution, A and  $A_0$  are the absorbance values of dye in the presence and absence of surfactant, respectively,  $\varepsilon$  and  $\varepsilon_0$  are the molar absorptivity of dye fully bound to micelles determined in large excess of the micelles and the molar absorptivity of dye in aqueous solution without surfactant, respectively.  $[S_m]$  is equal to the difference between the total surfactant concentration and the cmc of surfactant solution containing dye. In this work, constant concentration of H<sub>2</sub>DTC [0.308 mM] has been maintained throughout the addition of surfactants. The cmc values of each surfactants containing H<sub>2</sub>DTC have been taken by averaging the three methods (tensiometry, spectrophotometry and spectrofluorimetry). The term  $\frac{d[D]_0}{d-A_0}$  was plotted as a function of 1/[S<sub>m</sub>] (shown in Fig. S4) according to Eq. 12 using the absorbance values at the maximum absorption wavelength of the micelle-bound H<sub>2</sub>DTC (at 423 nm) in order to find the  $K_b$  and  $\varepsilon$  (Shown in Table 4). From Table 4, it is evident that binding of H<sub>2</sub>DTC with cationic surfactant micelles are greater than SDS and for non-ionic, maximum binding is observed. Among the cationic micelles, for 16-4-16 gemini, K<sub>b</sub> was observed greater than DTAB and C<sub>16</sub>MImCl. On the other hand, molar extinction coefficient of H<sub>2</sub>DTC in fully bound micellar medium ( $\varepsilon$ ) also shows greater value for cationic surfactants than SDS, and the  $\varepsilon$  values in micellar medium are shown to exceed than the  $\varepsilon_0$  of H<sub>2</sub>DTC found in without micelle bound environment except for Tween -60, where  $\varepsilon$  value of H<sub>2</sub>DTC is minimum even than  $\varepsilon_0$  at 423 nm. Partition coefficient, K<sub>c</sub>, is an important parameter to determine the partition of dye between the micellar and to the solvent phases. It can be calculated from the following equation 64.

$$\frac{1}{A-A_0} = \frac{1}{K_c(A-A_0)^*([D]_0 + [S]_m)} + \frac{1}{(A-A_0)^*}$$
(13)

where  $(A - A_0)^*$  is the differential absorbance at the infinity of surfactant concentration where all H<sub>2</sub>DTC molecules are assumed to be formed aggregates with the surfactant. The  $K_c$  values were obtained from the intercepts and slopes of the plots of  $\frac{1}{A-A_0}$  versus  $1/([D]_0 + [S]_m)$  have been shown in Fig. S5.  $K_c$  is defined as partition constant. Dimensionless partition coefficient,  $K_x$  is defined as the ratio of mole fraction of dye in micellar phase to mole fraction of dye in aqueous phase related with  $K_c$  as  $K_x = K_c \times n_w$ , where  $n_w$  is the molarity of water at 298.15 K representing the number of moles of water per dm<sup>3</sup>. The calculated  $K_c$  and  $K_x$  values are shown in Table 4. From Table 4, it is evident that,  $K_c$  and  $K_x$  values for cationic surfactants are greater than anionic SDS. Among the cationic surfactants, the values of  $K_c$  and  $K_x$  of H<sub>2</sub>DTC are found to be the following increasing order,  $C_{16}$ MImCl > 16-4-16 > DTAB. H<sub>2</sub>DTC shows greater partition in Tween-60 micellar medium than the cationic and anionic micelles (cf. Table 4). Increase in the values of  $K_b$  and  $K_x$  can be attributed to the lower *cmc*, enhanced hydrophobicity and increased affinity of dye towards micelle. <sup>56</sup> Gibbs energies, i.e., the free energy of binding ( $\Delta G_b$ ) and free energy of partition ( $\Delta G_p$ ) can be calculated using the following equations 14 and 15:

$$\Delta G_{\rm b} = -\mathrm{RT}\ln\,K_{\rm b} \tag{14}$$

$$\Delta G_{\rm p} = -\mathrm{RT} \ln K_{\rm p} \tag{15}$$

From Table 4 it is evident that negative  $\Delta G_b$  increases in terms of binding of H<sub>2</sub>DTC with the different surfactant micelles showing the increasing trend, like, SDS < DTAB < C<sub>16</sub>MImCl < 16-4-16 < Tween-60. So, the binding of H<sub>2</sub>DTC with surfactant micelles is spontaneous in the present investigating systems. This trend somewhat changes in the negative  $\Delta G_p$  values [cf. Table 4], showing similar pattern in the case of  $K_c$  and  $K_x$ . It has been seen that, binding of H<sub>2</sub>DTC with the surfactant micelles are more spontaneous than partition of H<sub>2</sub>DTC to the micellar core.

Fluorescence studies reveal the possible environmental transition of H<sub>2</sub>DTC in the surfactant medium at both low and high concentration. It is seen that like absorbance,



Fig.6. Fluorescence intensity at 527 nm vs. concentration of surfactants profiles of  $H_2DTC$  (0.09mM) upon addition of surfactants: SDS (a),  $C_{16}MImCl$  (b), and Tween-60 (c), DTAB (d) and 16-4-16 (e) in 15% EtOH-water medium.

fluorescence intensity of  $H_2DTC$  does not change significantly in case of SDS, but the more profound sigmoidal nature is observed in fluorescence intensity plot [ cf. Fig. 6(a)]. Blue shift in fluorescence spectra is observed for all anionic and cationic surfactants except Tween 60, where a regular decrease in fluorescence intensity were observed, revealing the transfer of  $H_2DTC$  in the hydrophobic core of micelle at high surfactant concentration

### 5. Conclusions:

Interaction of H<sub>2</sub>DTC with different varieties of surfactants has been studied with the help of tensiometry and spectrometry. Binding constant determination using Benesi- Hildebrand equation shows its limitation as both increasing and decreasing patterns of  $\lambda_{max}$  are observed with variation of [surfactant] in absorbance and fluorescence spectroscopy of H<sub>2</sub>DTC. Specific types interaction between the H<sub>2</sub>DTC with different surfactants can only be achieved by other sophisticated experimental techniques, like ITC and also from DFT, will be undertaken as a future scheme.

| Ta | ble 1. Cri                                                                              | tical mice | elle | concenti | ati | on ( | cmc) values o | of differ | ent investigated surfa | actants |
|----|-----------------------------------------------------------------------------------------|------------|------|----------|-----|------|---------------|-----------|------------------------|---------|
| in | aqueous                                                                                 | solution   | at   | 298.15   | K   | by   | tensiometry   | (S.T.),   | spectrophotometry      | (S.P.), |
| sp | spectrofluorimetry (S.F.) and isothermal titration calorimetry (ITC) <sup>a,b,c,d</sup> |            |      |          |     |      |               |           |                        |         |

|                       | Critical micelle concentration / mM                                                                  |                                                                                                                             |                                                                                                                                  |  |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Surfactants           | S.T.                                                                                                 | S.P.                                                                                                                        | S.F.                                                                                                                             |  |  |  |  |  |  |
| SDS                   | 8.45 <sup>a</sup> ,<br>8.10 <sup>[25]b</sup> ,<br>7.98 <sup>[26]b</sup> ,<br>8.60 <sup>[27]b</sup> , | 8.10 <sup>[28]b</sup><br>(p-DMAB probe),<br>8.26 <sup>[29]b</sup><br>7.09 <sup>[35]b</sup><br>(Pyrene absorbance<br>method) | $\begin{array}{c} 7.28 \ ^{[26]b} \\ 8.304 \ ^{[31]b} \\ 7.05 \ ^{[35]b} \end{array} \\ (Pyrene \ I_1/I_3 \ method) \end{array}$ |  |  |  |  |  |  |
|                       | $12.07^{a}$ ,                                                                                        | 15.3 <sup>[35]b</sup>                                                                                                       | 14.9 <sup>[35]b</sup>                                                                                                            |  |  |  |  |  |  |
|                       | 14.6 [32]0                                                                                           | (Pyrene absorbence                                                                                                          | 15.1 <sup>[38]0</sup>                                                                                                            |  |  |  |  |  |  |
| DTAB                  |                                                                                                      | method)                                                                                                                     | (Pyrene $I_1/I_3$ method)                                                                                                        |  |  |  |  |  |  |
| C <sub>16</sub> MImCl | $0.86^{\rm a}$ ,                                                                                     |                                                                                                                             |                                                                                                                                  |  |  |  |  |  |  |
|                       | 0.83 <sup>a</sup>                                                                                    |                                                                                                                             |                                                                                                                                  |  |  |  |  |  |  |
| 16-4-16               | $0.021^{a},$<br>$0.0272^{[40]c},$                                                                    |                                                                                                                             |                                                                                                                                  |  |  |  |  |  |  |
|                       | $0.036^{a}$ ,                                                                                        | 0.0209 <sup>[42]b</sup>                                                                                                     | 0.020 <sup>[43]b</sup>                                                                                                           |  |  |  |  |  |  |
|                       | $0.022^{[41]b}$                                                                                      | (I <sub>2</sub> absorbance method)                                                                                          | (using Safranine-T)                                                                                                              |  |  |  |  |  |  |
| Tween 60              | 0.021 <sup>[42]b</sup>                                                                               | 0.0 <b>0</b> 1.0[43]b                                                                                                       |                                                                                                                                  |  |  |  |  |  |  |
|                       |                                                                                                      | 0.0210[45]0                                                                                                                 |                                                                                                                                  |  |  |  |  |  |  |
|                       |                                                                                                      | (Safranine-T absorbance                                                                                                     |                                                                                                                                  |  |  |  |  |  |  |
|                       |                                                                                                      | method)                                                                                                                     |                                                                                                                                  |  |  |  |  |  |  |

a. Found in this study

b. Taken from literatures. References are given within the parenthesis.

c. cmc at 303.15 K

d. cmc at 300.15K

| surfactants            | solvents           | $\gamma_{cmc}$<br>mN.m <sup>-1</sup> | 10 <sup>6</sup> Г <sub>тах</sub><br>тој.т <sup>-2</sup> | A <sub>min</sub><br>nm <sup>2</sup> .molecule <sup>-1</sup> | $10^{3}\pi_{\rm cmc}$ | n <sup>C</sup> 20 | Р    |
|------------------------|--------------------|--------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-----------------------|-------------------|------|
|                        | water              | 30.6±0.2                             | 2.17                                                    | 0.76                                                        | 42.2                  | 0.287             | 0.27 |
| SDS                    | EtOH               | 29.6±0.3                             | 0.94                                                    | 1.84                                                        | 17.4                  |                   | 0.11 |
|                        | H <sub>2</sub> DTC | 25.2±0.2                             | 0.64                                                    | 2.59                                                        | 21.6                  |                   | 0.08 |
|                        | water              | 38.9±0.3                             | 2.74                                                    | 0.61                                                        | 31.2                  | 0.719             | 0.35 |
| DTAB                   | EtOH               | 29.0±0.5                             | 1.09                                                    | 1.54                                                        | 10.2                  |                   | 0.14 |
|                        | H <sub>2</sub> DTC | 30.0±0.4                             | 0.89                                                    | 1.86                                                        | 11.6                  |                   | 0.11 |
|                        | water              | 35.9±0.3                             | 1.56                                                    | 1.06                                                        | 28.4                  | 0.674             | 0.16 |
| C <sub>16</sub> MeImCl | EtOH               | 34.7±0.3                             | 0.54                                                    | 3.06                                                        | 6.70                  |                   | 0.06 |
|                        | H <sub>2</sub> DTC | 34.3±0.4                             | 0.46                                                    | 3.63                                                        | 0.70                  |                   | 0.05 |
|                        | water              | 48.5±0.3                             | 1.80                                                    | 0.92                                                        | 24.2                  | 1.780             | 0.08 |
| 16-4-16                | EtOH               | 33.5±0.3                             | 0.41                                                    | 4.05                                                        | 7.30                  |                   | 0.04 |
|                        | H <sub>2</sub> DTC | 32.5±0.5                             | 0.66                                                    | 2.50                                                        | 8.70                  |                   | 0.07 |
|                        | water              | 43.1±0.2                             | 0.95                                                    | 1.75                                                        | 27.5                  | 0.993             | 0.12 |
| Tween-60               | EtOH               | 34.8±0.3                             | 0.43                                                    | 3.87                                                        | 12.6                  |                   | 0.05 |
|                        | H <sub>2</sub> DTC | 35.8±0.5                             | 0.26                                                    | 6.47                                                        | 11.5                  |                   | 0.03 |

Table 2. Interfacial properties evaluated from tensiometry measurement for all the surfactants investigated here in aqueous, 15% (v/v) EtOH and in H<sub>2</sub>DTC prepared in 15% (v/v) EtOH at 298.15 $\pm$ 0.1 K.<sup>a</sup>

<sup>a.</sup> Error limits for  $\Gamma_{\text{max}}$ ,  $A_{\text{min}}$ ,  $\pi_{\text{cmc}}$ ,  $p^{C_{20}}$  and P are  $\pm 3$ ,  $\pm 4$ ,  $\pm 3$ ,  $\pm 3$  and  $\pm 4$  % respectively.

|                       | Critical concentrations |       |        |                       |       |                   |                    |       |       |                    |                    |       |       |
|-----------------------|-------------------------|-------|--------|-----------------------|-------|-------------------|--------------------|-------|-------|--------------------|--------------------|-------|-------|
| Courfe stants         | Tensiometry             |       |        |                       |       | Spectrophotometry |                    |       |       | Spectrofluorimetry |                    |       |       |
| Surfactants           | 15%                     |       | $H_2D$ | TC                    |       |                   | H <sub>2</sub> DTC |       |       |                    | H <sub>2</sub> DTC |       |       |
|                       | EtOH                    | PH    |        |                       |       |                   |                    |       |       |                    |                    |       |       |
|                       | cmc                     | $C_1$ | $C_2$  | <b>C</b> <sub>3</sub> | $C_4$ | $C_1$             | $C_2$              | $C_3$ | $C_4$ | $C_1$              | $C_2$              | $C_3$ | $C_4$ |
|                       | (mM)                    |       |        |                       |       |                   |                    |       |       |                    |                    |       |       |
| SDS                   | 5.08                    | 0.841 | 2.08   | 3.36                  | 7.21  | -                 | 1.83               | 2.90  | 5.94  | 0.72               | -                  | -     | 3.11  |
| DTAB                  | 15.75                   | 2.23  | 6.33   | 12.4                  | 15.1  | 2.49              | -                  | 12.7  | 17.4  | -                  | 7.88               | -     | 14.6  |
| C <sub>16</sub> MImCl | 1.15                    | 0.016 | 0.07   | 0.33                  | 0.77  | -                 | -                  | 0.36  | 1.13  | -                  | -                  | 0.57  | 0.95  |
| 16-4-16               | 0.069                   | 0.006 | 0.008  | 0.02                  | 0.03  | -                 | -                  | 0.007 | 0.05  |                    |                    | 0.018 | 0.03  |
| Tween-60              | 0.035                   | -     | -      | -                     | 0.024 | -                 | -                  | -     | 0.025 | _                  |                    | 0.034 |       |

Table 3. Various concentrations (C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub> and C<sub>4</sub>) determined during micellization of surfactants in presence of H<sub>2</sub>DTC solubilised in 15% EtOH-water at 298.15 K from several techniques employed<sup>a</sup>.

a. Error limits for the critical concentrations; within the brackets, the techniques are mentioned:  $\pm 5\%$  (tensiometry),  $\pm 4\%$  (isothermal titration calorimetry),  $\pm 4\%$  (spectrophotometry), and  $\pm 5\%$  (fluorimetry)

Table 4. Molar absorptivity of H<sub>2</sub>DTC in absence ( $\varepsilon_0$ ) and presence ( $\varepsilon$ ) of micellar solution prepared in 15% v/v EtOH-water medium, binding constant ( $K_b$ ), partition constant ( $K_c$ ), partition coefficient ( $K_x$ ), Gibbs energy of binding ( $\Delta G_b^0$ ), Gibbs energy of partition ( $\Delta G_p^0$ ) for H<sub>2</sub>DTC/surfactant system<sup>a</sup>

| Surfactants           | $ \begin{aligned} & \varepsilon_0 \ (M^{-1}.cm^{-1}) \ of \\ & H_2 DTC \ (15\% \ v/v \\ & EtOH-H_2O) \\ & \lambda_{abs}(max) = 423 \\ & nm \end{aligned} $ | $\varepsilon$ (M <sup>-1</sup> .cm <sup>-1</sup> ) of<br>H <sub>2</sub> DTC<br>in micellar solution<br>(15% v/v EtOH-<br>H <sub>2</sub> O)<br>$\lambda_{abs}(max) = 423 \text{ nm}$ | $K_{ m b} 	imes 10^{-3}$ (M <sup>-1</sup> ) | $K_{ m c} 	imes 10^{-2}$ (M <sup>-1</sup> ) | $K_{ m x} 	imes 10^{-4}$ (M <sup>-1</sup> ) | $\Delta G_b^0$ (kJ.mol <sup>-1</sup> ) | $\Delta G_p^0$<br>(kJ.mol <sup>-1</sup> ) |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------|-------------------------------------------|
| SDS                   |                                                                                                                                                            | $2969 \pm 171$                                                                                                                                                                      | $0.02\pm0.004$                              | $0.62\pm0.025$                              | $0.34\pm0.02$                               | -7.63                                  | -10.2                                     |
| DTAB                  |                                                                                                                                                            | $3080 \pm 184$                                                                                                                                                                      | $0.19\pm0.01$                               | $1.79\pm0.072$                              | $0.99\pm0.05$                               | -13.1                                  | -12.9                                     |
| C <sub>16</sub> MImCl | $2867 \pm 172$                                                                                                                                             | $3151 \pm 189$                                                                                                                                                                      | $4.44 \pm 0.22$                             | $15.5\pm0.620$                              | $8.63 \pm 0.43$                             | -20.8                                  | -18.2                                     |
| 16-4-16               | ]                                                                                                                                                          | $3056 \pm 183$                                                                                                                                                                      | $42.8 \pm 2.14$                             | $3.95 \pm 0.178$                            | $2.20 \pm 0.12$                             | -26.4                                  | -14.8                                     |
| Tween-60              |                                                                                                                                                            | $2172 \pm 130$                                                                                                                                                                      | $70.9 \pm 3.50$                             | $18.6 \pm 0.824$                            | $10.3 \pm 0.57$                             | -27.7                                  | -18.7                                     |

a. Error limit for  $\Delta G_b^0$  and  $\Delta G_p^0$  are ±5 and ±6% respectively

### **Supplementary Section**



Fig. S1. <sup>1</sup>H NMR spectra of 16-4-16



Fig. S2 (a). Absorbance Intensity vs. wavelength as a function of concentration of H<sub>2</sub>DTC [H<sub>2</sub>DTC] in mM unit in 15% EtOH-water medium at 298.15K.



Fig. S2 (b): Linear dependence of absorbance intensity vs. concentration of  $H_2DTC$  [H<sub>2</sub>DTC] at different absorbance wavelength in 15% EtOH-water medium at 298.15K.


Fig. S3 (a): Surface tension ( $\gamma$ ) vs. log [C/mM] plots with fitting of experimental data by second order polynomial equation [ $\gamma = A + B_1 logC + B_2 (logC)^2$ ] for different surfactants (a. SDS, b. DTAB, c. C<sub>16</sub>MImCl, d. 16-4-16 and e. Tween-60) at 15% v/v EtOH-water medium in absence of H<sub>2</sub>DTC.



Fig. S3 (b): Surface tension ( $\gamma$ ) vs. log [C/mM] plots with fitting of experimental data by second order polynomial equation [ $\gamma = A + B_1 logC + B_2 (logC)^2$ ] for different surfactants (a. SDS, b. DTAB, c. C<sub>16</sub>MImCl, d. 16-4-16 and e. Tween-60) at 15% v/v EtOH-water medium in presence of H<sub>2</sub>DTC.



Fig. S4: Plot of  $[D]_0/(A-A_0)$  vs.  $1/[S_m]$  for the interaction of H<sub>2</sub>DTC with different surfactants: SDS (Fig.1), DTAB (Fig.2), C<sub>16</sub>MImCl (Fig.3), 16-4-16 (Fig.4) and Tween 60 (Fig. 5).



Fig. S5: Plot of  $1/(A-A_0)$  vs.  $1/([D]_0 + [S_m])$  for the interaction of H<sub>2</sub>DTC with different surfactants in 15% v/v EtOH-water medium at 298.15 K; plots are given for different surfactants: SDS (Fig.1), DTAB (Fig.2), C<sub>16</sub>MImCl (Fig.3), 16-4-16 (Fig.4) and Tween 60 (Fig. 5).

| In presence of 15% v/v EtOH in absence of H <sub>2</sub> DTC |                                                               |                |       |                |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------|----------------|-------|----------------|--|--|--|--|
| Surfactants                                                  | А                                                             | $B_1$          | $B_2$ | $\mathbb{R}^2$ |  |  |  |  |
| SDS                                                          | 45.8                                                          | -20.4          | -2.41 | 0.97           |  |  |  |  |
| DTAB                                                         | 61.4                                                          | -9.58          | -9.43 | 0.99           |  |  |  |  |
| C <sub>16</sub> MImCl                                        | 41.2                                                          | -26.9          | -6.87 | 0.99           |  |  |  |  |
| 16-4-16                                                      | 63.5                                                          | 31.4           | 13.5  | 1.00           |  |  |  |  |
| Tween-60                                                     | -5.98                                                         | -50.8          | -11.8 | 0.99           |  |  |  |  |
| In                                                           | In presence of 15% v/v EtOH in presence of H <sub>2</sub> DTC |                |       |                |  |  |  |  |
| Surfactants                                                  | А                                                             | $\mathbf{B}_2$ | $B_3$ | $\mathbb{R}^2$ |  |  |  |  |
| SDS                                                          | 35.6                                                          | -7.24          | -2.16 | 0.97           |  |  |  |  |
| DTAB                                                         | 38.2                                                          | -5.89          | -2.88 | 0.97           |  |  |  |  |
| C <sub>16</sub> MImCl                                        | 34.1                                                          | -6.25          | -1.41 | 0.99           |  |  |  |  |
| 16-4-16                                                      | 21.4                                                          | -11.1          | -1.54 | 0.94           |  |  |  |  |
| Tween-60                                                     | 18.8                                                          | -13.7          | -2.09 | 0.99           |  |  |  |  |

Table S1. List of Fitting parameters of  $\gamma$  vs. log [surfactant] before cmc for different surfactants in presence of H<sub>2</sub>DTC in 15% EtOH-water medium using second order polynomial.  $\gamma$  vs. log [surfactant] plots where [Surfactants]  $\leq$  cmc were given in Fig. S3 (a) and S3 (b).

# **References:**

- 1. I. O. Sutherland, *Pure and applied chemistry*, 1989, **61**, 1547-1554.
- 2. M. W. Hosseini, J. M. Lehn, S. R. Duff, K. Gu and M. P. Mertes, *The Journal of Organic Chemistry*, 1987, **52**, 1662-1666.
- 3. J. M. Lehn, Inclusion Compounds, 1985, 227, 849-859.
- 4. P. G. Yohannes, M. P. Mertes and K. B. Mertes, *Journal of the American Chemical Society*, 1985, **107**, 8288-8289.
- 5. Proceedings of the Fifth USSR-FRG Symposium on Chemistry of Peptides and Proteins, Odessa, USSR, May 16–20, 1985, De Gruyter 2019.
- 6. S. Omura, *Macrolide antibiotics: chemistry, biology, and practice*, Academic press2002.
- 7. J. M. Lehn and P. Vierling, *Tetrahedron Letters*, 1980, **21**, 1323-1326.
- 8. R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen and D. Sen, *Chemical Reviews*, 1985, **85**, 271-339.
- 9. S. Kado and K. Kimura, Journal of the American Chemical Society, 2003, 125, 4560-4564.
- 10. R. C. Helgeson, J. M. Timko and D. J. Cram, *Journal of the American Chemical Society* 1973, **95**, 3023-3025.
- 11. G. W. Gokel and B. J. Garcia, *Tetrahedron Letters*, 1977, **18**, 317-320.
- 12. J. S. Bradshaw, M. L. Colter, Y. Nakatsuji, N. O. Spencer, M. F. Brown, R. M. Izatt, G. Arena, P. K. Tse, B. E. Wilson and J. D. Lamb, *J. Org. Chem.;(United States)*, 1985, **50**.
- 13. G. Melson, *Coordination chemistry of macrocyclic compounds*, Springer Science & Business Media2012.
- 14. J. Lockhart, A. Robson, M. Thompson, S. D. Furtado, C. Kaura and A. J. J. o. t. C. S. Allan, Perkin Transactions 1, 1973, 577-581.
- 15. J. C. Lockhart and M. E. Thompson, *Journal of the Chemical Society, Perkin Transactions* 1, 1977, 202-204.
- 16. C. J. Pedersen and H. K. Frensdorff, *Angewandte Chemie International Edition in English*, 1972, **11**, 16-25.
- 17. S. A. G. Hogberg and D. J. Cram, *The Journal of Organic Chemistry*, 1975, **40**, 151-152.
- 18. S. Das, S. Mondal and S. Ghosh, *Journal of Chemical Engineering Data* 2013, **58**, 2586-2595.
- 19. R. Singh and R. Garg, *E-Journal of Chemistry*, 2010, **7**, 578-582.
- 20. R. Garg, R. Singh and S. Mehta, Asian Journal of Research in Chemistry, 2010, 3, 71-77.
- 21. E. Caponetti, D. Chillura-Martino and L. Pedone, *Langmuir*, 2004, **20**, 3854-3862.
- 22. E. Vikingstad and J. Bakken, *Journal of Colloid and Interface Science*, 1980, **74**, 8-15.
- 23. N. Gol'dshleger, I. Kalashnikova, V. Baulin and A. Y. Tsivadze, *Protection of Metals, Physical Chemistry of Surfaces* 2011, **47**, 471-477.
- 24. F. M. Menger, J. S. Keiper and V. Azov, *Langmuir*, 2000, **16**, 2062-2067.
- 25. I. M. Umlong and K. Ismail, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2007, **299**, 8-14.
- 26. M. Milanović, V. Krstonošić, L. Dokić, M. Hadnađev and T. Dapčević Hadnađev, *Journal of Surfactants and Detergents*, 2015, **18**, 505-516.
- J. Dey, N. Sultana, S. Kumar, V. K. Aswal, S. Choudhury and K. Ismail, *Rsc Advances*, 2015, 5, 74744-74752.
- 28. H. Demissie and R. Duraisamy, J. Sci. Innov. Res, 2016, 5, 208-214.
- 29. L. J. Waters, T. Hussain and G. M. B. Parkes, *The Journal of Chemical Thermodynamics*, 2012, **53**, 36-41.
- 30. S. Dai, K. C. Tam and L. Li, *Macromolecules*, 2001, **34**, 7049-7055.
- 31. A. M. Khan and S. S. Shah, *Journal of dispersion science and technology*, 2008, **29**, 1401-1407.
- 32. S. K. Shah, S. K. Chatterjee and A. Bhattarai, *Journal of Molecular Liquids*, 2016, **222**, 906-914.

- 33. S. K. Mehta, K. K. Bhasin, R. Chauhan and S. Dham, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2005, **255**, 153-157.
- 34. M. J. Suárez and V. Mosquera, *Physical Chemistry Chemical Physics*, 1999, **1**, 3583-3587.
- 35. G. B. Ray, I. Chakraborty and S. P. Moulik, *Journal of colloid and interface science*, 2006, **294**, 248-254.
- 36. S. P. Stodghill, A. E. Smith and J. H. O'Haver, *Langmuir*, 2004, **20**, 11387-11392.
- 37. W. Tong, Q. Zheng, S. Shao, Q. Lei and W. Fang, *Journal of Chemical & Engineering Data*, 2010, **55**, 3766-3771.
- 38. S. Chauhan, K. Singh, M. S. Chauhan and K. Sharma, *Journal of Molecular Liquids*, 2018, **258**, 163-171.
- 39. S. Das, S. Ghosh and B. Das, *Journal of Chemical & Engineering Data*, 2018, **63**, 3784-3800.
- 40. I. A. Khan, R. Mohammad, M. S. Alam and D. Kabir ud, *Journal of Dispersion Science and Technology*, 2009, **30**, 1486-1493.
- 41. D. M. Ćirin, M. M. Poša and V. S. Krstonošić, *Industrial & engineering chemistry research*, 2012, **51**, 3670-3676.
- 42. S. K. Hait and S. P. Moulik, Journal of Surfactants and Detergents, 2001, 4, 303-309.
- 43. P. K. Khatua, S. Ghosh, S. K. Ghosh and S. C. Bhattacharya, *Journal of dispersion science and technology*, 2005, **25**, 741-748.
- 44. S.-Y. Lin, Y.-Y. Lin, E.-M. Chen, C.-T. Hsu and C.-C. Kwan, *Langmuir*, 1999, **15**, 4370-4376.
- 45. G. Sharma and A. Z. Naqvi, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2011, **385**, 63-71.
- 46. A. F. H. Ward, *Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences*, 1940, **176**, 412-427.
- 47. L. G. Ionescu, L. S. Romanesco and F. Nome, *Surfactants in solution*, 1984, **2**, 789.
- 48. R. Zana, Advances in Colloid and Interface Science, 1995, 57, 1-64.
- 49. S. Göktürk and U. Var, *Curr. Res. Chem*, 2011, **3**, 49-61.
- 50. A. Späth and B. König, *Beilstein journal of organic chemistry*, 2010, **6**, 32.
- 51. E. Caponetti, D. C. Martino, M. A. Floriano, R. Triolo and G. D. Wignall, *Langmuir*, 1995, **11**, 2464-2470.
- 52. J. P. Gallivan and D. A. Dougherty, *Journal of the American Chemical Society*, 2000, **122**, 870-874.
- 53. T. D. Gurkov, D. T. Dimitrova, K. G. Marinova, C. Bilke-Crause, C. Gerber and I. B. Ivanov, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2005, **261**, 29-38.
- 54. J. N. Israelachvili, Intermolecular and surface forces, Academic press2011.
- 55. C. Tanford, *The hydrophobic effect: formation of micelles and biological membranes 2d ed*, J. Wiley.1980.
- 56. S. Irshad, H. Sultana, M. Usman, M. Saeed, N. Akram, A. Yusaf and A. Rehman, *Journal of Molecular Liquids*, 2021, **321**, 114201.
- 57. S. Tunç, O. Duman and B. Kancı, *Dyes and Pigments*, 2012, **94**, 233-238.
- 58. N. Patra, B. Mandal and S. Ghosh, *Industrial & Engineering Chemistry Research*, 2017, **56**, 10044-10052.
- 59. R. Hosseinzadeh, R. Maleki, A. A. Matin and Y. Nikkhahi, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2008, **69**, 1183-1187.
- 60. E. G. McRae and M. Kasha, *The Journal of Chemical Physics*, 1958, **28**, 721-722.
- 61. K. K. Rohatgi-Mukherjee, R. Chaudhuri and B. B. Bhowmik, *Journal of colloid and interface science*, 1985, **106**, 45-50.
- 62. H. A. Benesi and J. H. J. Hildebrand, *Journal of the American Chemical Society*, 1949, **71**, 2703-2707.
- 63. S. Göktürk and M. Tunçay, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, **59**, 1857-1866.
- 64. S. Göktürk and R. Y. Talman, *Journal of solution chemistry*, 2008, **37**, 1709-1723.

# **Chapter-V**

Addressing the Interaction of Stem Bromelain with different anionic Surfactants, below, at and above CMC in Phosphate Buffer at pH 7: Physicochemical, Spectroscopic & Molecular docking Study Addressing the Interaction of Stem Bromelain with different anionic Surfactants, below, at and above the critical micelle concentration (cmc) in Phosphate Buffer at pH 7: Physicochemical, Spectroscopic, & Molecular docking Study

# ABSTRACT

This paper attempts to reveal the interaction and structural stability of stem Bromelain (BM) in presence of two different types of anionic surfactants (one type is bile salts, NaC and NaDC and others are the conventional anionic surfactants, SDDS and SDBS), below, at and above the critical micelle concentration in aqueous phosphate buffer medium (pH 7). Several biophysical techniques have been executed here. Several physicochemical parameters like, surface excess ( $\Gamma_{cmc}$ ), minimum areas of surfactants at air water interface (Amin) are calculated from tensiometry both in absence and presence of BM. Several inflection points ( $C_1$ ,  $C_2$  and  $C_3$ ) have been found in tensiometry profile of surfactants in presence of BM due to the conformational change of BM assisted by surfactants. Similar observation also found in isothermal titration calorimetry (ITC) profiles where the enthalpy of micellization ( $\Delta H^0_{obs}$ ) of surfactants in absence and presence of BM have calculated. Steady state fluorescence spectra at 298 K reveal the quenching of tryptophan emission of BM in presence of bile salts/surfactants with blue shifting below the free micelle formation followed by the determination of binding constant (K<sub>b</sub>) of BM with surfactants, bimolecular quenching constant (k<sub>q</sub>), free energy of binding ( $\Delta G_h^0$ ) of bile salts/surfactants with BM have been calculated exploiting steady state fluorescence technique. It is observed that, the binding of NaC with BM is greater than any other surfactants investigated here, while Stern-Volmer quenching constant (Ksv) is found greater in presence of SDBS. From steady state and time resolved fluorescence study it is observed that static quenching of tryptophan is functional in presence of bile salts/surfactants. Circular Dichroism (CD) study shows the stability of secondary structure of BM in presence of NaC and NaDC below C<sub>3</sub>, while BM lost its structural stability even at very low surfactant concentration of SDDS and SDBS. The molecular docking studies have also been substantiated for better understanding the interaction of BM with the surfactants.

# 1. Introduction:

Proteins are the major and most abundant component of living body contributing in several biological activities. Little change in normal biological environment causes adverse effect to the protein activity, disrupting (denature) protein structure by way of unfolding<sup>1</sup>. The interaction of surfactants with proteins has manifold applications in the field of biology, cosmetic and pharmaceutical industry, medicine etc. by recognizing significant impact of surfactants on physicochemical, rheological and detergency properties <sup>2</sup>. Several studies have been witnessed in past and preceding years for studying the interaction of surfactants with globular proteins in presence and absence of additives <sup>3-21</sup>. Among them, most of the studies reveal that surfactant binds to single protein, unfolds or disrupts native structure of proteins <sup>5,19-23</sup>. The comprehensive physicochemical investigations between globular proteins with surfactants are found very few in literature <sup>2, 9-12,16, 24-30</sup>. In fact, the physicochemical study of proteases (which hydrolyse proteins to amino acid or other compounds) with surfactants have been seen limited in literature <sup>2, 9, 10, 25-26</sup>. Proteases are the new class of proteins used widely

in the detergent industry in conjugation with traditional surfactants for the cleaning and removal of various proteinaceous stains <sup>2, 9, 25</sup>. It is seen that, binding of ionic surfactants is greater than non-ionic surfactants and among ionic surfactants, anionic surfactants (the most studied surfactant, sodium dodecyl sulphate (SDS)) may drastically change the conformation of proteins <sup>1, 31-34</sup>.

Naturally occurring amphiphilic molecules, especially bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) (Scheme 1a) are produced in the human liver and released into duodenum during food intake for the solubilization and absorption of fats <sup>35, 36</sup>. Bile salts aggregation is more complex in nature as compared to that of conventional surfactants which form simple micelles<sup>37</sup>. Several methods have been applied to understand the self-aggregation behaviour of bile salts. The most widely accepted model amongst them, proposed by Small *et. al.* <sup>38, 39</sup> stated the formation of primary aggregates (generally 2–10 monomeric units) at lower bile salts. The hydrophilic groups on the other hand, are believed to be oriented outward in the primary aggregates <sup>38, 39</sup>. However, at higher bile salt concentrations, the primary aggregates get clustered to form secondary aggregates believed to be elongated rodlike morphology <sup>38, 39</sup>. Bile salts have been used in several steps during protein purification process, e.g., selective membrane solubilization, reconstitution of proteins, and, chromatographic separation <sup>40, 41</sup>. Due to the several utilities of bile salts, the interaction of different types of proteins with the bile salt surfactants gain utmost interest although found inadequate in literature <sup>42-46</sup>.

Anionic surfactant namely, sodium dodecyl benzenesulfonate (SDBS) (Scheme 1a) resembles the lipid molecules which is present in biological membranes and thus assisted as model system <sup>47</sup>. Anionic surfactants having similarity with the lipid molecules have the property of amyloidlike fibrils formation in several proteins <sup>48</sup>. Khan *et. al.* reported on investigation <sup>47</sup> that the insulin fibrillation using SDBS probed by the optical spectroscopy and microscopy. Recently, Wajira *et. al.* <sup>49</sup> reported the denaturation effect of SDBS on water and fat adsorption properties of canola protein isolates to improve mechanical and tensile strength of protein-based plastics. Negatively-charged sulfate moiety of SDBS (behave like head group of surfactants) attached to hydrophobic aliphatic chain, contains 18 carbon atoms and also an attachment with a benzene ring. SDBS is commonly used in chemical, biochemical, and industrial applications <sup>50</sup>. Several studied have been reported in recent years regarding the interaction of SDBS with digestive protease Candida rugosa lipase <sup>51</sup>, equine heart haemoglobin <sup>52</sup>, BSA <sup>53</sup> etc. An amino acid based anionic surfactant, Sodium-N-dodecanoyl sarcosinate (SDDS) (Scheme 1a), has numerous commercial and biological utility owing to its capability for the formation of particle emulsions in addition to its low toxicity and fair biodegradability. It can also be recommended for one of the components of tooth paste for controlling dental caries in order to strengthen tooth enamel from acid dissolution by recognising SDDS's upright foaming property <sup>54, 55, 56</sup>. To the best of our knowledge, very few reports have been documented for studying the interaction of SDDS with different proteins; of which the recent documentation have been found in literature <sup>57-59</sup>.

Stem Bromelain (BM), (Scheme 1b) containing a single polypeptide chain, is composed of 212 amino acid residues with a molecular mass of 23.8 kDa specified in previous literature <sup>60</sup>. Bromelain can be extracted from either the pulp, stem, core, or peel of pine apple which is found at huge abundance in tropical and subtropical countries <sup>61</sup>. The structure of BM contains 6 phenylalanine (Phe), 14 tyrosine (Tyr), 5 tryptophan (Trp), 14 tyrosine (Tyr) with 3 disulfide bonds and a single free cysteine (Cys) residue <sup>62</sup>. It is found that optimum pH and temperature required for the activity of BM are in the range of 6.5-8.0 and 55-60°C, respectively<sup>63</sup>. Bromelain has found substantial attention from a wide array of industrial areas, such as, food, cosmetic, dairy, pharmaceutical etc., owing to its proteolytic activity, and high commercial value <sup>64, 65</sup>. Moreover, bromelain shows numerous therapeutic applications, such as, it can be used in the treatment of malignant cell growth, thrombophlebitis, angina pectoris, inhibition of platelet aggregation, digestive problem, osteoarthritis, post-surgical traumas and so on  $^{66-68}$ . In the context of the enormous applications of bromelain, it is supposedly needed to understand the structural stability of BM while encountering with various surfactants both for academic and industrial points of view. Investigations in past and preceding years have been undertaken to elucidate the interaction of BM with cationic surfactants <sup>63, 68</sup>, surface active ionic liquids <sup>60,</sup> <sup>62, 69</sup>, zwitterionic surfactants <sup>70</sup> at different pH media to observe proteolytic activity and surfactant-mediated amyloidogenesis property of BM. To the best of our knowledge, the interaction of BM with anionic surfactants is hardly found in literature <sup>71</sup>. This scenario demands the study of structural stability of BM in presence of different anionic surfactants including bile salt surfactants.

In this present study, our focus to explore the structural aspects of stem bromelain in presence of two bile salt surfactants, NaC and NaDC, two conventional anionic surfactants, SDDS and SDBS and also the investigation of those interactions by the physicochemical and photophysical processes. A comparative study of BM with the different bile salts and surfactants exploiting different techniques viz. tensiometry, isothermal titration calorimetry (ITC), steady state absorption and fluorescence studies, time resolved fluorescence studies, circular dichroism (CD) studies have been carried out to understand the extent of stability of BM in presence of the bile salts and surfactants. Surface excess and area minimum of surfactants in absence and presence of BM, enthalpy of micellization, binding constant, bi molecular quenching constants followed by free energy of binding due to the interaction of BM with the surfactants have calculated and the critical concentrations of surfactants before and after micellization in presence of BM have also compared with the tensiometry and calorimetry data. The nature of quenching is tried to infer by the time resolved fluorescence quenching studies. The molecular docking studies have also been substantiated for better understanding the interaction of BM with the surfactants.

#### 2. Experimental Section:

#### 2.1. Materials and Sample Preparation:

Sodium cholate hydrate, 98% (NaC), sodium deoxycholate (NaDC), sodium dodecyl benzenesulfonate (SDBS), sodiumlauroyl sarcosinate (SDDS) and bromelain (BM) from pineapple stem, B4882 were purchased from Sigma Aldrich. The detailed structures of these compounds are given in scheme 1(a) and (b). These chemicals were used as received without any further purification. Structure of surfactants were drawn by Avogadro software and optimized <sup>72</sup> further to obtain the energy minimized structure (shown in Scheme 1a). Crystal structure of BM are given in Scheme 1(b). Phosphate buffer solution has been prepared at pH 7 using deionised water. Triply distilled water of specific conductance 0.99 µS/cm was used throughout the experiments at 298.15K. For surface tension and isothermal titration calorimetry (ITC) measurements, BM was prepared at the concentration of 20 µM in pH 7 phosphate buffer. BM concentration was kept fixed at 10 µM in pH 7 phosphate buffer for spectrometry. Apart from spectrometry, BM concentration has been taken in 20 µM for the other measurements. Each surfactant was prepared at a surfactant concentration  $\approx 15$  times their cmc in pH 7 phosphate buffer at 298.15 K and have been used as a stock solution. Progressive addition method has been used in the dilution process of BM with that concentrated stock surfactant solutions in different experimental processes employed here. For different temperature variation processes, same surfactant stocks, which are prepared at 298.15 K, have been used assuming negligible expansion and compression of volume of such a low volume of stock solution at higher or lower temperature respectively.

NaDC

**OH**18<sup>2</sup>

17/20 22

ONa



NaC



Scheme. 1(a). Structure of surfactants drawn in Avogadro software



Scheme. 1(b). Crystal structures of Bromelain are obtained from protein data bank [PDB 1D: 1W0Q]

#### 2.2. Methods employed:

### 2.2.1. Tensiometry:

A calibrated Krüss-K8 tensiometer (made in Germany) was cast off to determine surface tension at air water interface by du Noüy ring detachment method at 298.15 K. For this purpose, a platinum ring has been cleaned using deionized water and acetone successively and burned briefly until glowing in ethanol flame prior to experiment. A measured amount of 5 mL BM (20 µM) was prepared in phosphate buffer at pH 7 and taken in a double jacketed glass container attached with a thermostatic water bath to maintain the desired temperature (298.15 K) during experiment with an accuracy of  $\pm 0.1$  K. Stock surfactant solutions, which have been prepared, were added to the double jacketed container having BM by a Hamilton micro syringe and stirred well after each addition and kept for 5 minutes before taken surface tension value. Surface tension of phosphate buffer at pH 7 was found in the range between 65.6 to 70.8 mN.m<sup>-</sup> <sup>1</sup> by considering the experimental error. On the other hand, surface tension value of 0.02 % w/v BM solution at the same pH was found to be 59 to 60 mN.m<sup>-1</sup> (shown in Fig 1.). Relatively, little change in the value of surface tension of BM solution as compared with BM free buffer solution at pH 7 is due to the protease nature of BM (containing less α helix structure of BM) which is not usual for the other proteins containing well existence of  $\alpha$  helix structure <sup>73</sup>. Representative plots of surface tension ( $\gamma$ ) vs. log [surfactant]/ mM of different surfactants in presence and absence of BM in phosphate buffer at pH 7 with individual inflection points (discussed elsewhere in this manuscript) were shown in Fig. 1. Different interfacial parameters in presence and absence of BM for all the surfactants were displayed in Table 1.

#### 2.2.2. Isothermal Titration Calorimetry (ITC):

ITC<sub>200</sub> (Malvern, UK) microcalorimeter was well equipped with a thermostatic arrangement. Experimental temperature was maintained at 298.15 K with a precision of  $\pm$  0.02 K. The concentration of BM for ITC measurements was 20 µM. Enthalpograms for the dilution of surfactants in presence and absence of BM in phosphate buffer medium of pH 7 have been presented in Fig. 2. The solutions of BM were taken in a calorimeter cell and surfactant solutions were added (initially 0.5 µL, then 2µL; total 20 injections) at a time interval of 120s using a micro syringe. Raw data were analysed by Origin<sup>TM</sup> 7.0 software with the help of µcal/s vs. time (min) [given in Fig. 3] after the subtraction of integrated baseline which was performed by taking buffer solution in reference cell at the same experimental temperature. Enthalpies of micellization ( $\Delta H_m^0$ ) were determined (c*f*. Table. 2.) from the normalised integration data plot (kcal.mol<sup>-1</sup> per mole of injectant vs. concentration of surfactant [Surf]; cf. Fig. 2) manually. Cmc values were calculated form enthalpograms and have been presented in Table 2.

## 2.2.3. Specrophotometry:

Spectrophotometry was executed using a Shimadzu UV-vis spectrophotometer (made in Japan) attached with a thermostatic water bath to maintain  $298.15 \pm 0.15$  K. Initially, base line correction was done using pH 7 phosphate buffer solution. Comparative spectra of BM in phosphate buffer at pH 7 in presence of different surfactants above critical micelle concentration have been presented in Fig. 4. BM shows absorbance maximum at 280 nm due to amino acid (AA) residues.

#### 2.2.4. Spectrofluorimetry:

Steady state spectrofluorimetry was carried out using a Perkin-Elmer LS 55 (made in USA) spectrofluorometer attached with Peltier facility at 298.15 K with an accuracy of  $\pm 0.02$  K with excitation band pass fixed at 14 nm and emission band pass at 4 nm. Measured amount of 2.5 mL solution of BM (concentration is 10  $\mu$ M) was taken in a quartz cuvette of 1 cm path length and stock surfactant solutions were added with a Hamilton micro syringe. Maximum emission wavelength of BM was found at 347 nm containing AA acid residues such as tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe). Fluorescence intensity vs. wavelength (nm) of BM in presence of various surfactants were presented in Fig. 5.

Time resolved fluorescence experiments have been performed by means of Horiba–Jobin–Yvon Fluoro Cube lifetime arrangement using time-correlated single photon counting (TCSPC) technique at 298.15 K. A Nano LED (IBH, UK) of 280 nm was used as

excitation source of BM. Emission of BM was monitored at 347 nm using TBX photon detection module. Decay profiles were fitted and analysed with the support of IBH DAS-6 software by nonlinear least square iterative method to minimize residual values ( $\chi^2$  values close to 1). The experimental procedure was same as those stated in steady state method. Lamp profile was collected using micellar aqueous solution of SDS, which is used as a scatter in place of sample. Average lifetime ( $\tau_{av}$ ) was calculated from the bi exponential iterative fitting of BM in presence and absence of surfactants used in this present study with the help of the pre-exponential factors ( $a_1$ ,  $a_2$ ) and decay times ( $\tau_{av}$ ) with the assistance of following equation:  $\tau_{av} = a_1\tau_1 + a_2\tau_2$  (1)

The values of  $a_1$ ,  $a_2$  and  $\tau_1$ ,  $\tau_2$  and  $\tau_{av}$  of BM as a function of surfactant concentration for different surfactants have been presented in Table 4.

#### 2.2.5. Circular Dichroism:

All the Circular Dichroism (CD) spectra were recorded on a Jasco model J-1500 spectrophotometer at 298.15 K. The final specta of BM (5  $\mu$ M in phosphate buffer of pH 7) in absence of surfactants and with the variation of concentration of individual surfactant were obtained by averaging at least three consecutive scans. Baseline was corrected by subtracting the spectrum of the buffer (pH 7) from individual BM spectrum. CD spectra of BM were recorded in both far UV regions (total scanning range from 190 to 300 nm) in presence and absence of surfactants.

#### 2.2.6. Docking Studies:

The crystal structure of BM was obtained from protein data bank (PDB ID: 1W0Q; cf. scheme. 1b) and the associated molecules were removed prior to the docking. The three-dimensional structures of SDBS, SDDS, NaC and NaDC were drawn in Avogadro software<sup>72</sup> and optimized further to obtain the energy minimized structure. All the docking studies between Bromelain and the ligands (surfactants) were carried out using Auto Dock Vina software with centre at x = -0.536; y = 2.928; z = 0.083 and grid size of 54×48×48 Å<sup>74</sup>. The structure with the most the minimum energy value was selected and analysed using UCSF Chimera software<sup>75</sup>.

#### 2.2.7. Accessible surface area (ASA) calculations

The accessible surface area of a protein residue is a measure of the amount of solvent exposure of the residue when the protein is not bound with any molecules. Residues with high ASA are

generally found to lie on the surface of the protein whereas those lying within the core of the protein have low ASA values. When a ligand interacts with the protein, it attaches itself with certain amino acid residues (either through hydrophilic or hydrophobic interaction) thereby reducing the solvent exposure of those residues. Thus, by measuring the change in the accessible surface area ( $\Delta$ ASA) of the residues of the protein, it can be predicted which residues are most prone to interact with the ligand and the ligand binding region of the protein. The accessible surface area (ASA) of BM residues before and after docking with the ligands were obtained using NACCESS software and the change in the surface area values were calculated according to the equation,  $\Delta$ ASA<sub>i</sub> = ASA<sub>free BM</sub> - ASA<sub>BM+ligand(i)</sub>, where i = i<sup>th</sup> ligand.

#### 3. Result and discussions:

#### 3.1. Interfacial and bulk property of surfactants in presence and absence of BM

BM show some surface activity at phosphate buffer of pH 7. (cf. Fig. 2). The study of surface tension of surfactants in phosphate buffer gives a break point which is the normal characteristics of surfactants after a certain concentration, called critical micelle concentration (cmc) (shown in Fig. 1). When surfactants added to BM solution (20  $\mu$ M), the different break points were shown for surfactants in tensiometry profile (cf. Fig. 1) and these break points have been designated here as C<sub>1</sub>, C<sub>2</sub> and C<sub>3</sub>, from low to high surfactant concentrations respectively. C<sub>3</sub> corresponds to free micelles of surfactants having similarity with cmc both in presence and absence of BM. The first point  $(C_1)$  corresponds to the minimum (or the trough) and the second (C<sub>2</sub>) indicated the maximum binding of the induced small surfactant micelles (or the crest) leading to unfolding of the native state of BM <sup>16</sup>. This binding interaction may be due to electrostatic and hydrophobic reason.<sup>3</sup> It is seen from Fig. 1a (NaC) and 1b (NaDC) that,  $\gamma$ values for these two surfactants in presence of BM found well below as compare their BM free counterpart; tend to merge around  $cmc/C_3$ ; after  $cmc/C_3$  both profiles match to each other. In case of SDDS (Fig. 1c) and SDBS (Fig. 1d), y values in presence of BM shows lower at initial surfactant concentration and the values match to the free BM profiles after C1. Initial depression of  $\gamma$  values clearly indicating the surface-active nature of stem bromelain and surface activity retains in presence of NaC and NaDC (Fig. 1a and b) upto cmc confirms the presence of surface-active surfactant - BM complex, while for NaC and NaDC, the depletion of surfaceactive species (BM-surfactant) from air/water surface to bulk at C<sub>1</sub>, result to produce similarity between the BM free and BM containing profiles (Fig. 1c and 1d). All the typical points originating from the interaction of BM with surfactants are displayed in Fig. 2. In presence of NaC all three break points ( $C_1$ ,  $C_2$  and  $C_3$ ) have been found in tensiometry profile, but for SDDS and SDBS only  $C_1$  and  $C_3$  were found in tensiometry (Fig. 1c and 1d). NaDC shows only one inflection point ( $C_3$ ) in tensiometry profile indicating formation of free micelle. All the values of  $C_1$ ,  $C_2$ , cmc /  $C_3$  are presented in Table 1. Although similar inflection points have been reported previously<sup>16</sup> using tensiometry measurement, here the final break points ( $C_3$ ) for all protein surfactant systems (see Table 1) cannot be termed as 'extended cmc', as the value of  $C_3$  is found somewhat lesser than cmc for all surfactants. So, BM acts as an enhancer to reduce cmc of surfactants at this experimental condition and formed micelles incorporated with BM. Similar observation have been reported while studying trypsin in presence of bile salts <sup>45</sup>.

From tensiometric isotherms (cf. Fig. 1), the efficiency of surface adsorption of surfactant monomers (NaC, NaDC, SDDS and SDBS) has been measured at cmc or C<sub>3</sub> in terms of surface excess ( $\Gamma_{C_3}/\Gamma_{cmc}$ ) in presence and absence of BM using Gibbs adsorption equation:

$$\Gamma_{cmc} = \frac{1}{2.303nRT} lim_{C \to cmc(C_3)} \frac{d\gamma}{dlogC} \quad \text{mol.m}^{-2}$$
(2)

here, *n* is the number of species dissociated per monomer of surfactants adsorbing at the airsolution/buffer interface. The value of *n* is 2 for both the surfactants. R is the universal gas constant and T is the temperature in Kelvin scale. The slope at cmc/ C<sub>3</sub> (d $\gamma$ /dlogC) was determined from the tensiograms (cf. Fig. 1) by taking  $\gamma$  with corresponding log[surfactant] values upto cmc/ C<sub>3</sub> and fitted the values with second order polynomials of fairly good R<sup>2</sup>(0.99) values. It is seen from Table 2 that,  $\Gamma_{cmc}$  values of BM-surfactant system are relatively lesser than free surfactants (for NaC, NaDC) in pH-7 buffer medium, while, the reverse has been seen in case of SDDS and SDBS with same concentration of BM comparing with the micellization of SDDS and SDBS in phosphate buffer (pH 7).

Minimum area of surfactant monomers  $(A_{min})$  at air-water interface can be obtained using the following equation:

$$A_{min} = \frac{10^{18}}{N_a \Gamma_{cmc}} nm^2 / \text{ molecule}$$
(3)

A<sub>min</sub> has the reverse order with  $\Gamma_{cmc}$ , as the minimum surface area of surfactants on the surface increases; decrease in surface coverage is possible in terms of decrease in  $\Gamma_{cmc}$  and also vice versa.

The surface pressure at the cmc ( $\pi_{cmc}$ ) was calculated using the following equation  $\pi_{cmc} = \gamma_0 - \gamma_{cmc}$  (4) where  $\gamma_0$  and  $\gamma_{cmc}$  are the surface tension of surfactant in phosphate buffer at pH 7 and that for the surfactant in presence of buffer of pH 7 at the cmc respectively. This parameter indicates the measurement for the effectiveness of the surfactant to lower the surface tension of the solution medium (free buffer and free buffer in presence of BM). It is seen in Fig. 1 that  $\pi_{cmc}$ values of surfactants in presence of BM found lower than the BM free surfactants in aqueous phosphate buffer medium.



Fig. 1. Surface tension profiles (γ vs. log [surfactant]) of NaC (a), NaDC (b), SDDS (c) and SDBS (d) at 298.15 K

Table 1. Critical concentrations (C<sub>1</sub>, C<sub>2</sub> and cmc or C<sub>3</sub>) of surfactants, surface excess at cmc or C<sub>3</sub> ( $\Gamma_{cmc}$  or,  $\Gamma_{C_3}$ ), surface pressure at cmc ( $\pi_{cmc}$ ), area minimum ( $A_{min}$ ) in presence and absence of BM in phosphate buffer of pH 7.0. BM concentration were fixed at 20  $\mu$ M<sup>a</sup>

| Systems   | C <sub>1</sub> | <b>C</b> <sub>2</sub> | cmc/C <sub>3</sub> | $10^{3}\pi_{\rm cmc}$<br>(J.m <sup>-2</sup> ) | 10 <sup>6</sup> Γ <sub>cmc</sub> /<br>10 <sup>6</sup> Γ <sub>C3</sub> (mol.m <sup>-2</sup> ) | A <sub>min</sub><br>(nm <sup>2</sup> .molecule <sup>-1</sup> ) |
|-----------|----------------|-----------------------|--------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| NaC       |                |                       | 11.3               | 21.3                                          | 1.02                                                                                         | 1.63                                                           |
| BM + NaC  | 0.47           | 0.72                  | 9.53               | 15.8                                          | 0.67                                                                                         | 2.47                                                           |
| NaDC      |                |                       | 3.09               | 31.1                                          | 1.34                                                                                         | 1.23                                                           |
| BM + NaDC |                |                       | 2.82               | 18.8                                          | 0.73                                                                                         | 2.26                                                           |
| SDDS      |                |                       | 6.95               | 39.9                                          | 1.46                                                                                         | 1.13                                                           |
| BM + SDDS | 0.59           |                       | 6.19               | 29.5                                          | 1.81                                                                                         | 0.98                                                           |
| SDBS      |                |                       | 0.82               | 42.1                                          | 0.69                                                                                         | 2.56                                                           |
| BM + SDBS | 0.15           |                       | 0.77               | 29.7                                          | 1.71                                                                                         | 0.97                                                           |

<sup>a</sup> Errors in  $C_1 = \pm 3\%$ ,  $C_2 = \pm 3\%$  and  $cmc/C_3 = \pm 5\%$  respectively.

## **3.2. Isothermal titration calorimetry:**

A heat change (standard enthalpy of micellization of surfactant monomers,  $\Delta H^{0}_{obs}$ ) along with the conformational change of bromelain in presence of monomers has been analysed using ITC measurements. ITC profiles (heat injection ( $\Delta H^{0}_{dil}$ ) in kJ.mol<sup>-1</sup> vs. [surfactant] in mM) of pure surfactants in presence and absence of BM in phosphate buffer of pH = 7 have been reported in Figure 2. ITC profiles of surfactants near the vicinity of cmc (pure surfactant in phosphate buffer of pH 7) or C<sub>3</sub> (surfactants in presence of BM in phosphate buffer pH 7) show sigmoid nature and therefore were fitted by Boltzmann-sigmoidal equation<sup>76</sup> and the corresponding cmc/C<sub>3</sub> has been selected from the inflection of the sigmoidal fittings. The same procedure has been presented in previous literature<sup>12</sup>. Standard enthalpy of micellization ( $\Delta H^{0}_{obs}$ ) of pure surfactants in presence and absence of BM has been calculated by simply taking the subtraction between  $\Delta H^{0}_{final}$  to  $\Delta H^{0}_{initial}$  ( $\Delta H^{0}_{obs} = \Delta H^{0}_{final} - \Delta H^{0}_{initial}$ ), which are the enthalpy changes at two extremes of sigmoidal profiles (see Fig. 2). The straight lines were drawn (see in Fig. 2) through the transition region (cmc or C<sub>3</sub>) in the enthalpograms met the pre- and post- cmc / C<sub>3</sub> dilution enthalpy designated by horizontal lines. The vertical distance was considered as the enthalpy for the micellization process ( $\Delta H_{obs}^0$ , given in Table 2)<sup>12</sup>. Apart from NaC, all endothermic enthalpy changed have been observed (documented in Table 2). It is seen that for NaDC, SDDS and SDBS, the  $\Delta H^{0}_{obs}$  values were found more positive in presence of bromelain than their pure states in phosphate buffer at 298.15 K. Exception has been found in the interaction of NaC in presence of BM where exothermic heat change has been observed ( $\Delta H^{0}_{obs}$ = -0.11 kJ.mol<sup>-1</sup>), although NaC in absence of BM shows the positive contribution of enthalpy change during micellization. Enthalpy change during micellization of pure NaC, NaDC, SDDS and SDBS in aqueous solution at 298.15 K has been documented in previous literatures. 77, 56, <sup>78</sup> It is seen that, for NaC and NaDC, the experimental values of  $\Delta H_{obs}^0$  in phosphate buffer (pH = 7) medium were found lower than the values in aqueous solution<sup>77</sup> at 298.15K, but both values are endothermic; whereas for SDDS, the enthalpy change of micellization ( $\Delta H_{obs}^0$ ) is found more or less similar at 298.15 K with same sign <sup>56</sup> in both aqueous and phosphate buffer (pH-7) medium. In case of SDBS, little endothermic heat change was observed in presence of phosphate buffer at pH 7, while exothermic heat change (-1.0 kJ.mol<sup>-1</sup>) was observed previously.<sup>78</sup> Thus, it is obvious that, salinity as well as different nature and charge of surfactant monomers influence enthalpy of micellization by changing the ionic strength of the aqueous solution. Different break points (C1 and C2) at low and intermediated surfactant concentration apart from C<sub>3</sub> in presence of BM in enthalpogram profiles of NaC and SDBS (Fig. 2a and 2d) were found and the values of  $C_1$  and  $C_2$  (Table 2) have similarity with those calculated by tensiometry measurements. It is also seen that C<sub>3</sub> values of surfactants were found lower than the corresponding cmc of pure surfactants in absence of BM calculated by calorimetry (Table 2). Cmc/C<sub>3</sub> values of surfactants in phosphate buffer medium in absence and presence of bromelain were found in fair agreement with those calculated by tensiometry (comparing Table 1 and 2).



Fig. 2. Calorimetric titration curves of surfactants in Phosphate buffer (pH 7) in presence and absence of BM (20  $\mu$ M); surfactants are shown in different diagrams along with their interaction with BM: (a)NaC, (b)NaDC, (c) SDDS& (d)SDBS



Fig. 3. Raw data (calorimetric traces) of ITC for different surfactants in presence and absence of different surfactants (a. NaC, b. NaDC, c. SDDS and d. SDBS). For each diagram (top compartment: calorimetric traces of surfactant in presence of BM, bottom compartment: calorimetric traces of surfactants in pH 7 aqueous phosphate buffer)

Table 2. Table for assessment of critical parameters (C<sub>1</sub>, C<sub>2</sub> and cmc/C<sub>3</sub>) and enthalpy of micellization ( $\Delta H^0_{obs}$ ) of surfactants in presence and absence of BM in phosphate buffer (BM concentration was fixed at 20  $\mu$ M) at pH 7 at 298.15 K<sup>a</sup>.

| Systems   | <b>C</b> <sub>1</sub> | <b>C</b> <sub>2</sub> | C <sub>3</sub> / cmc | $\Delta H^{0}_{obs}$ |
|-----------|-----------------------|-----------------------|----------------------|----------------------|
|           | mМ                    | mМ                    | mМ                   | kJ.mol <sup>-</sup>  |
| NaC       |                       |                       | 11.95                | 0.23                 |
| BM + NaC  | 0.55                  | 2.04                  | 8.58                 | -0.11                |
| NaDC      |                       |                       | 2.52                 | 0.21                 |
| BM + NaDC |                       |                       | 1.83                 | 3.05                 |
| SDDS      |                       |                       | 7.96                 | 1.62                 |
| BM + SDDS |                       |                       | 6.65                 | 5.68                 |
| SDBS      |                       | -                     | 1.02                 | 0.11                 |
| BM + SDBS | 0.048                 | 0.60                  | 1.00                 | 0.82                 |

<sup>a</sup>Errors for the calculation of  $\Delta H^{0}_{obs} = \pm 2\%$ 

#### 3.3.UV-VIS absorbance and fluorescence study

#### 3.3.1. Steady state absorption and emission studies at 298.15 K:

The interaction between the surfactants with biomolecular system could be well understood by the spectroscopic technique, viz., steady state absorption and emission studies at 298.15 K. The absorption spectra of stem bromelain (BM) (10  $\mu$ M) and BM in presence of the varying concentrations of two bile salts, namely, NaC and NaDC and two surfactants, namely SDDS and SDBS were recorded in aqueous phosphate buffer of pH 7 at 298.15 K (**Fig.4**) A characteristic peak at around 280 nm is observed in each case which signifies the involvement of the Trp or Tyr residues in all the interactions. Also, it is observed that in each case, the intensity of the peak at around 280 nm increases with the gradual addition of surfactants (Fig not shown). A representative figure (**Fig. 4**) comprising absorption spectra of free BM and BM in presence of saturating concentration of bile salts and the surfactants respectively with the slight shift of the absorption maxima in all the BM-surfactant complexes. This could be proposed that step by step alteration in the microenvironment occurs due to the interaction of BM with the bile salts and the surfactants. For SDBS, however, the absorption pattern is different indicating the perturbation of the microenvironment which is more sensitive in case of SDBS-bromelain interaction. Also, the  $C_3$  is observed in each case due to the formation of free micelles and this proposition is also justified with the steady state fluorescence studies at 298.15 K (the break points are shown in F vs [surfactant] plots at the inset of Fig. 5) The values of  $C_3$  which have been found by steady state fluorescence techniques for different surfactants in presence of BM show good similarity with those calculated by other techniques (tensiometry, ITC). Apart from  $C_3$ , we also found the other break points in F vs [surfactant] plots for NaC, SDDS and SDBS and the corresponding [surfactant] are found close to the value of  $C_1$ .



Fig. 4. Absorbance spectra of BM in free state and in presence of four different surfactants in buffer solution (pH 7) at 298.15 K

The steady state fluorescence spectra of bromelain in presence of two conventional surfactants and two bile salts have been carried out at 298.15 K (**Fig. 5**) monitoring the intrinsic fluorescence of Trp residue(s). Tyrosine (Tyr) and Phenylalanine (Phe) are also known as the natural fluorophore in proteins. Owing to a larger difference in quantum yield, lifetime and energy transfer from Phe to Tyr and Tyr to Trp for the fluorescence, only Trp molecule is responsible for fluorescence. <sup>79-84</sup>

Our present study on Bromelain is concerned on the interaction of the surfactants and bile salts in presence of five Trp residues (Trp 8, Trp 27, Trp 67, Trp 176 and Trp 180) in Bromelain. Interestingly, the environmental features of the Bromelain help one to find out the differential behaviour of emission of Bromelain in presence of different surfactants and bile salts. The widespread sequence homology of papain suggests that two Trp residues are located near the surface of the molecule and three tryptophans are buried in hydrophobic core of the molecule.<sup>62, 85, 86</sup> The exposure of the buried residues to the protein surface leads to unfolding of the protein.

Steady state fluorescence spectra of intrinsic Trp residue(s) in free stem Bromelain (10  $\mu$ M) at 298.15 K show that  $\lambda_{max}$  of the emission at ~347 nm on excitation at 290 nm clearly matches with the earlier literature data.<sup>62,87</sup> This emission maximum of free Bromelain molecule indicates that the emitting Trp residue(s) are in solvent exposed environment as the solvent exposed Trp residue(s) generally appears around 347 - 350 nm. Our focus is to study the interaction of Bromelain with two bile salts, viz. NaC and NaDC by the fluorescence spectra at 298.15 K shows the appreciable decrement of Trp emission with gradual addition of varying concentrations of both the bile salts, NaC and NaDC (Fig. 5) at 298.15 K in aqueous phosphate buffer of pH 7 at  $\lambda_{exc}$  =290 nm. The  $\lambda_{max}$  value of the emitting Trp residue(s) gradually shifted towards from 347 nm (free Bromelain) to 340 nm (for NaC) and 339 nm (for NaDC) (Fig. 5) clearly indicates the change of microenvironment of Trp residue(s) due to the interaction of NaC and NaDC. The blue shifted emissions of Trp residue(s) in both the cases specifically suggest that the less polar or more hydrophobic environment of Trp residue(s) experience after the interaction with the bile salt molecules.

The interaction of Bromelain with the two surfactants SDDS and SDBS has been also performed to visualize the alteration of the microenvironment of the Trp residue(s) in presence of two surfactants SDDS and SDBS and also compared to that with the bile salts NaC and NaDC respectively.



Fig. 5. Steady state fluorescence spectra of BM in presence of different surfactants (a: NaC, b: NaDC, c: SDDS and d: SDBS) at 298.15 K. Excitation wavelength = 280 nm; excitation and emission band pass = 10 and 5 nm, respectively, for each case. *Inset:* fluorescence area under the curve  $(10^{-4} \text{ x F})$  vs. [surfactant] predicting different break points.

The gradual addition of two surfactants, SDDS and SDBS to the free stem bromelain (10  $\mu$ M) is responsible for quenching of the Trp fluorescence at 298.15 K in both the cases with excitation at 290 nm. (Fig. 5) In both the cases, the fluorescence quenching clearly imposes on the fact that SDDS and SDBS also interact appreciably with the Trp residue(s) of the Bromelain molecule. The  $\lambda_{max}$  of the emission of Trp residues in Bromelain is blue shifted to 343 nm for SDDS molecules inferring that the emitting Trp residue(s) of Bromelain molecule is blue shifted indicating somewhat the alteration of the microenvironment occuring in presence of SDDS molecule. (Fig. 5) Conversely, no peak shift is observed for the interaction of bromelain

with the SDBS molecule indicating no such change in the surrounding environment of emitting Trp residue(s) happening while interaction with the SDBS molecule. (Fig. 5)

The comparative nature of the interactions of stem bromelain with the bile salts and surfactants helps one to reach to the fact that the Trp residue(s) move towards more buried or hydrophobic region in case of bile salts as compared to that with the surfactant SDDS. The further time resolved fluorescence studies and docking studies corroborate with this connection (See next section).

The fluorescence quenching of Trp residue(s) of the bromelain molecule by the bile salts and surfactants is generally analysed by the following Stern-Volmer equation (Eq.2)<sup>79</sup>

 $F_0/F = 1 + K_{SV}[L] = 1 + k_q \tau_0[L]$  (2)

where,  $F_0$  and F are the fluorescence intensities of bromelain in the absence and the presence of the quencher (bile salts and surfactants). K<sub>SV</sub> is the Stern-Volmer quenching constant, [L] is the concentration of quencher compounds, NaC, NaDC, SDDS and SDBS, k<sub>q</sub> is the bimolecular quenching rate constant, and  $\langle \tau_0 \rangle$  is the average fluorophore lifetime in the F<sub>0</sub> and F in Figure 5 are calculated using the area under the emission curve. The K<sub>SV</sub> values for the different surfactant systems in conjugation with stem bromelain are summarized in Table 3.

Table 3. Stern- Volmer Quenching Constant ( $K_{SV}$ ) and Bimolecular Quenching Constant ( $k_q$ ) of the complex of surfactants and the bile salts with the Bromelain molecule in aqueous buffer (pH 7) at 298.15 K.

| Systems<br>(10 µM BM in phosphate<br>buffer pH 7 + surfactants) | $\lambda_{max}(nm)$ | K <sub>SV</sub> (M <sup>-1</sup> ) | $k_q (M^{-1}s^{-1})$    | R <sup>2</sup> |
|-----------------------------------------------------------------|---------------------|------------------------------------|-------------------------|----------------|
| Free BM (10 µM)                                                 | 347                 | -                                  | -                       | -              |
| +NaC (16.27 mM)                                                 | 340                 | 6.00 x 10 <sup>2</sup>             | 1.69 x 10 <sup>11</sup> | 0.975          |
| +NaDC (4.08 mM)                                                 | 339                 | 1.77 x10 <sup>2</sup>              | 0.50 x 10 <sup>11</sup> | 0.962          |
| +SDDS (6.70 mM)                                                 | 343                 | 6.68 x 10 <sup>2</sup>             | 1.89 x10 <sup>11</sup>  | 0.983          |
| +SDBS (0.39 mM)                                                 | 347                 | 30.35 x10 <sup>2</sup>             | 8.59 x10 <sup>11</sup>  | 0.954          |

The fluorescence quenching of bromelain due to binding with bile salts and surfactants could be investigated through static quenching and dynamic quenching processes. The formation of a stable complex between the protein and quencher usually occurs via static quenching process whereas the collisional encounters between the protein and quencher mostly occurs through dynamic quenching process. <sup>79</sup> The linearity of the Stern-Volmer equation may be ascribed to infer on the operational concept of the static and dynamic quenching process. All the bile salt and surfactant complexes with the bromelain molecule show the linear S-V plot indicating that the emitting Trp residue(s) of the proteins which are prompt to response mainly in the static quenching process over the dynamic quenching process <sup>79</sup> (Fig. 6 and Table 3). The fluorescence quenching parameters (Table 3) reveal that the fluorescence quenching is not so much significant for NaDC while it is more appreciable for SDBS. The time-resolved fluorescence studies could also be helpful to realize the nature of fluorescence quenching operational in all the complexes. (see next section, 3.3.2)



Fig. 6. Stern-Volmer (SV) plots for fluorescence quenching of BM with the different concentrations of (a) bile salts (NaC and NaDC) (b) surfactants (SDDS and SDBS) at 298.15 K.  $\lambda_{exc}$ =280 nm, [BM]= 10  $\mu$ M; Excitation band-pass = 10 nm and Emission band-pass = 5 nm.

#### 3.3.2. Time-Resolved Fluorescence Studies at 298.15 K:

To understand the nature of the observed quenching of the fluorescence, the lifetime measurement by time-resolved fluorescence decay technique monitoring the emission maxima of Trp emission was performed at 298 K. The relevant lifetime data for all the complexes of

bromelain with the bile salt and surfactants are provided in Table 4., and Fig. 7 represents one representative decay profile of free BM and BM with varying concentrations of NaC in aqueous buffer of pH 7 at 298.15 K. Free protein shows biexponential decay with good  $\chi^2$  values in aqueous phosphate buffer of pH 7.

The data collected in Table 4 provide that BM is slightly perturbed with increasing concentration of the bile salts and surfactants. In all the cases, a comparatively constant lifetime values of BM are observed (Figure, Table 4) from the fluorescence decay and clearly implies that the static quenching process is predominant over the dynamic quenching process in all the cases.



Fig. 7. Representative time resolved fluorescence decay profile of Free BM (10  $\mu$ M) and its complex with varying concentration of bile salt, NaC in aqueous phosphate buffer (pH 7).  $\lambda_{exc}$ = 280 nm,  $\lambda_{monitor}$  = 335 nm. The excitation and emission band passes are 10 nm each.

However, a characteristic observation has been noted for the BM-NaDC complex where the shorter and longer component values of the lifetime along with the respective percent contribution of both the components keeping the average fluorescence lifetime of protein is almost constant (Table 4). The slight variation in both the component and also percent contribution pointed out (Table 4) that the microenvironment of Trp residue of BM near the binding site of NaDC is perturbed to a greater extent as compared to that of other compounds viz., other bile salt and surfactants. This reflected in the fluorescence quenching study of BM-NaDC complex where the lowest  $K_{SV}$  as well as  $k_q$  value (Table 3) enables one to infer that the contribution of the surrounding environment of NaDC is prompt as compared to that of Trp residue(s) in BM those are responsible for quenching. Docking study also supports to analyse this observable fact.

| Table 4. Singlet state lifetime data of BM (10 $\mu$ M) and its complexes v       | with bile salts and              |
|-----------------------------------------------------------------------------------|----------------------------------|
| surfactants in aqueous phosphate buffer (pH 7) at 298 K where $\lambda_{exc} = 2$ | 280 nm, λ <sub>monitored</sub> = |
| 347 nm.                                                                           |                                  |

| [Bile salts/   | $\tau_1^{a}(ns)$ | $\tau_2^a(ns)$ | $\alpha_1(\%)$ | $\alpha_2(\%)$ | $<\tau>$ (ns)     | $\chi^2$ |  |  |
|----------------|------------------|----------------|----------------|----------------|-------------------|----------|--|--|
| Surfactants]   |                  |                |                |                |                   |          |  |  |
| (mM)           |                  |                |                |                |                   |          |  |  |
|                |                  | Brom           | elain-NaC      |                |                   |          |  |  |
| 0              | 0.48             | 4.43           | 22.88          | 77.12          | 3.53              | 1.01     |  |  |
| 0.15           | 0.51             | 4.61           | 26.54          | 73.46          | 3.52              | 1.11     |  |  |
| 0.29           | 0.45             | 4.54           | 25.44          | 74.56          | 3.50              | 1.05     |  |  |
| 0.58           | 0.53             | 4.59           | 28.21          | 71.79          | 3.44              | 0.99     |  |  |
| 1.02           | 0.59             | 4.49           | 26.87          | 73.13          | 3.44              | 1.23     |  |  |
| 1.74           | 0.55             | 4.55           | 28.08          | 71.92          | 3.43              | 1.11     |  |  |
|                |                  | Brome          | lain-NaDC      |                |                   |          |  |  |
| 0              | 0.48             | 4.43           | 22.88          | 77.12          | $3.53 (= \tau_0)$ | 1.14     |  |  |
| 0.10           | 0.63             | 5.22           | 37.33          | 62.67          | 3.50              | 0.99     |  |  |
| 0.25           | 0.56             | 4.74           | 29.95          | 70.05          | 3.49              | 0.92     |  |  |
| 0.59           | 0.71             | 5.61           | 33.98          | 57.59          | 3.47              | 0.93     |  |  |
| 0.78           | 0.75             | 6.77           | 42.41          | 47.65          | 3.54              | 1.18     |  |  |
| 0.97           | 0.72             | 5.34           | 41.13          | 58.87          | 3.44              | 1.08     |  |  |
|                |                  | Brome          | lain-SDDS      |                |                   |          |  |  |
| 0              | 0.48             | 4.43           | 22.88          | 77.12          | $3.53 (= \tau 0)$ | 1.14     |  |  |
| 0.50           | 0.42             | 4.44           | 20.75          | 79.25          | 3.61              | 1.14     |  |  |
| 1.00           | 0.49             | 4.24           | 20.41          | 79.59          | 3.47              | 1.06     |  |  |
| 1.49           | 0.48             | 4.17           | 19.77          | 80.23          | 3.44              | 1.03     |  |  |
| 2.97           | 0.47             | 4.35           | 21.86          | 78.14          | 3.50              | 1.18     |  |  |
| 5.38           | 0.48             | 4.54           | 24.14          | 75.86          | 3.56              | 1.22     |  |  |
| Bromelain-SDBS |                  |                |                |                |                   |          |  |  |
| 0              | 0.48             | 4.43           | 22.88          | 77.12          | $3.53 (= \tau 0)$ | 1.14     |  |  |
| 0.02           | 0.48             | 4.40           | 22.82          | 77.18          | 3.51              | 1.10     |  |  |
| 0.11           | 0.43             | 4.23           | 21.32          | 78.68          | 3.42              | 1.21     |  |  |
| 0.15           | 0.45             | 4.55           | 22.74          | 77.26          | 3.62              | 1.04     |  |  |
| 0.22           | 0.41             | 4.39           | 21.86          | 78.14          | 3.52              | 1.19     |  |  |
| 0.30           | 0.49             | 4.27           | 17.55          | 82.45          | 3.61              | 1.15     |  |  |

<sup>a</sup> Error in the measurements is  $\pm 0.1$  ns.

#### **3.3.3. Binding Data from Fluorescence Spectra:**

The binding interaction between bromelain with the bile salts and the surfactants are quantitatively analysed by evaluating the binding constants (K<sub>b</sub>) and the associated free-energy change ( $\Delta G_h^0$ ) for the interaction processes (Table 5) by the following Eqs.<sup>79, 88</sup>

$$\log\left[(F_0 - F)/F\right] = \log K_b + n \log[Q] \tag{3}$$

$$\Delta G_b^0 = -RT \ln K_b \tag{4}$$

where  $F_0$  and F represent the corrected fluorescence intensities of bromelain in absence and presence of quencher (bile salts and surfactants) molecule, respectively, T is the temperature in Kelvin scale, R is the universal gas constant, K<sub>b</sub> is the binding constant of all of the complexes of bromelain, n is the number of binding sites,  $F_0$  and F in all of the cases of Fig. 8 are calculated considering the area under the emission curve of the corrected fluorescence spectra. The double-logarithmic plots of log  $[(F_0 - F)/F]$  versus log [Q] of the complexes of bromelain with bile salts and surfactants are presented in Fig 8. The values of K<sub>b</sub> and n along with the correlation coefficients (R<sup>2</sup>) are listed in Table 5.

Several reports of the fluorescence quenching technique (using Eq. 3) are utilised for the determination of binding parameters <sup>79, 88, 89</sup> and the quantitative determination of K<sub>b</sub> and  $\Delta G_b^0$  by the equation (Eq. 3 and 4) depicts the equilibrium between free and bound units when they bind independently to a set of equivalent sites in a macromolecule.

| Systems<br>(10 µM BM in aqueous<br>phosphate buffer at pH<br>7 + surfactants) | K <sub>b</sub> (M <sup>-1</sup> ) | R <sup>2</sup> | Ν    | $\Delta G_b^0$ (kJ.mol <sup>-1</sup> ) |
|-------------------------------------------------------------------------------|-----------------------------------|----------------|------|----------------------------------------|
| NaC                                                                           | 64.4 x 10 <sup>2</sup>            | 0.982          | 1.60 | -21.7                                  |
| NaDC                                                                          | $1.29 \times 10^2$                | 0.995          | 0.94 | -12.1                                  |
| SDDS                                                                          | $2.18 \times 10^2$                | 0.976          | 0.86 | -13.3                                  |
| SDBS                                                                          | 7.34 x 10 <sup>-2</sup>           | 0.981          | 0.82 | -16.4                                  |

Table 5. Binding Parameters of Bromelain (BM)- Surfactants at 298.15 K.



Fig. 8. Representative double logarithmic plot of log  $[(F_0-F)/F]$  vs. log [Surfactant] of BM with the different bile salts/surfactant concentration (A) NaC and NaDC, (B) SDDS and SDBS at 298.15 K where  $\lambda_{exc}$ = 280 nm, [BM]=10  $\mu$ M; Excitation band pass = 10 nm and Emission band pass = 5 nm.

# 3.4. Circular Dichroism study:

Secondary structure of native BM shows two characteristic absorption band in far UV CD spectra, one at 208 nm (sharp band) and another at 222 nm (shallow band) <sup>79, 80</sup> (cf. Fig.10, more clearly shown at the inset of Fig. 9a). These types of bands suggest BM lies in the  $\alpha+\beta$ class of enzymes. The band at 208 nm stands for  $\pi$  to  $\pi^*$  transitions of the  $\alpha$ -helix of native BM, while the band at 222 nm (shallow is due to  $\pi$  to  $\pi^*$  transition for both  $\alpha$ -helix and random coil of the protein. It is seen from Fig. 9 (a) and (b) that, the CD spectra of bromelain in presence of NaC and NaDC show negative ellipticity at all concentration of surfactants. Secondary structure of native BM retains at low and moderate concentration of both NaC and NaDC below their cmc. In presence of NaC, upto 3.46 mM, secondary structure remains intact and also both 208 and 222 nm bands. For NaDC, nearly 1.15 mM, similar observation was noted. This implies that at low surfactant concentration the secondary structure of BM somehow stabilized in comparison with its native state, while near and above cmc of the two surfactants (NaC and NaDC), the band at 208 nm shifts and 222 nm gradually disappears with negative ellipticity (Fig. 9 (a) and (b)). The shifting of 208 nm band with negative ellipticity is ascertained the disruption of secondary structure. It is also seen that the stability of secondary structure of BM is greater in presence of NaC rather NaDC.

The situation is quite different while studying the stability of secondary structure in presence of SDDS and SDBS (Fig. 9 (c) and (d)). Both in presence of SDDS and SDBS at low concentration, secondary structure of BM is stabilized compare with its native form. But after that, at moderate and very high surfactant concentration (near to cmc or above cmc), the negative ellipticity gradually decreases, shifting of 208 nm peak and finally complete disruption of BM secondary structure. At higher concentrations of SDDS and SDBS, a fundamental modification is observed (Fig. 9 (a) and (d)) where simultaneous various kinds of distorted secondary structures such as  $3\pi$ -helix,  $\beta$ -turn, and many other disordered structures can be prominently observed instead of  $\alpha$  and  $\beta$  structures. Similar kind of observations have been reported in previous literatures.



Fig. 9. Far UV- VIS CD-spectra analysis of BM  $(2 \ \mu M)$  in phosphate buffer (pH 7) medium with varying concentration of surfactants: (a) NaC, (b) NaDC, (c) SDDS and (d) SDBS. Final concentration of surfactants was chosen nearly 1.5 times of cmc for NaC and NaDC, while for SDDS and SDBS, the final concentrations were chosen up to cmc in buffer medium.

#### 3.5. Molecular Docking Studies:

Molecular docking studies have been employed to demonstrate the experimental data since the docking study aids to visualize the probable location of the compounds (bile salt surfactants and conventional surfactants) in the surrounding microenvironment of the Trp residue(s) of BM with the significant change in the parameters responsible for the molecular docking studies by the interaction between BM and bile salts/surfactants. The docked pose of BM and surfactants are presented in Fig. 10 (panel A) and the binding energy ( $\Delta G$ ) of bile salts/surfactants with BM have been given in Table 6 and out of 5 Trp residues (Trp8, 27, 67,176 and 180), Trp180 has been found to be closest Trp residue to the different atoms of surfactants (Table 6). Distance of tryptophan residue 180 (Trp 180) of BM from the different atoms of bile salts and surfactants obtained from the docked complexes are provided in Table 7 and shown in Fig. 10 (panel B).

Sodium cholate (NaC) and sodium deoxycholate (NaDC) are amphiphilic molecules which constitute an important constituent of the bile salt. The non-polar steroid part constitutes the hydrophobic part of the molecule whereas the carboxylic part forms the hydrophilic portion of the molecule. NaC binds predominantly in cavity 1 of BM but with much negative binding energy (Table 6) indicating highly stable interaction of the bile salt with BM. This is reflected in the binding constant as well as binding energy value of the BM with the surfactants obtained experimentally. Also, the closest distances of different atoms/groups bile salts from Trp 180 in Table 6 reveals that NaC/NaDC situated much closure to Trp 180 as compared to SDDS/SDBS which are reflected also in change in ASA values (Table 8). Nonpolar amino acid residues like Val (14, 17), Ala (30,33), Ile163 and aromatic residues like Phe29 and Tyr185 lies in close (around 3-4 Å) to the steroid moiety of NaC which stabilizes the interaction through hydrophobic interaction (Table 9, Fig. 11). This has been further supported by the significant changes in the  $\triangle$ ASA values (Table 8), which suggest that these residues are shielded upon interaction with the ligand and are less solvent exposed. The other hydrophobic residues like Trp180, Ile186, Ala136 and Phe140 also lie in close proximity (around 3.5 Å) to the aliphatic chain which may also take part in hydrophobic interaction (Table 7 and 9). Although  $\pi$ -stacking interaction is not possible for NaC/NaDC (unlike SDBS) but the higher  $\Delta A$  SA values of the residues (Table 8) may be accounted due to the greater surface area of NaC/NaDC (82.11 Å<sup>2</sup> / 81.99 Å<sup>2</sup>) over SDBS/SDDS (32.06 Å<sup>2</sup> / 42.04 Å<sup>2</sup>). Greater surface area of the ligand suggests that it would reduce the solvent exposure of the amino acids to a greater extent which also

supports the higher extent of protein ligand binding. In addition, the polar COOH part is can solved with H-bonding with the His158.

The binding energy of NaDC does not vary much as compared to NaC (Table 6), but the overall  $\Delta$ ASA value is slightly higher for NaC than NaDC (Table 8). This may be due to the additional OH functional group in NaC which lies within a H-bond distance of ~4.5 Å from Tyr 185 (Table 9, Fig. 11) thereby reducing the solvent exposure of Tyr somewhat more than that in NaDC. However, the slightly higher stabilization for NaDC may be explained on the basis of hydrophobic interaction with the steroid moiety. Generally, the hydrophobic amino acids prefer to lie in close proximity to the hydrophobic steroid group, but the presence of polar OH group might affect the hydrophobic interaction. Similar situation can be observed for fullerene/fullerenol interaction with RNase A, where the protein ligand interaction is reduced upon addition of OH groups in fullerenol NaC has 3 -OH groups in the steroid part whereas NADC has 2, which makes the interaction more favourable for the former ligand with BM.

| Systems<br>(Bile Salts/<br>Surfactants) | Protein Residue<br>(Trp180) | Atom/ Group of<br>bile salts and<br>surfactants | Distance<br>(Å) | ΔG in<br>(kJ/mole) |
|-----------------------------------------|-----------------------------|-------------------------------------------------|-----------------|--------------------|
| NaC                                     | Cα-(Trp180)                 | H (CH <sub>3</sub> -C21)                        | 4.97            | -41.2              |
| INAC                                    | N indole ring-(Trp180)      | O- (OOC24)                                      | 4.55            |                    |
| NaDC                                    | Cα-(Trp180)                 | H (CH <sub>3</sub> -C21)                        | 6.18            |                    |
| MaDC                                    | N indole ring-(Trp180)      | O- (OOC24)                                      | 4.33            | -41.6              |
| SDDS                                    | Cα-(Trp180)                 | O- (COOH)                                       | 9.23            |                    |
| 5005                                    | N indole ring-(Trp180)      | O- (COOH)                                       | 8.39            | -25.2              |
| SDRS                                    | Cα-(Trp180)                 | C4 (Phe ring)                                   | 10.96           |                    |
| 5005                                    | N indole ring-(Trp180)      | C4 (Phe ring)                                   | 10.95           | -30.7              |

Table 6: Distance of tryptophan residue 180 (Trp 180) of BM from the different atoms of bile salts and surfactants obtained from the docked complexes.
Table.7. Distance of different atoms of bile salts and surfactants and neighbouring different polar and non-polar residues of protein BM within a distance of  $\sim$ 5Å obtained from the docked complexes.

| Systems (Bile<br>Salts/<br>surfactants) | Atom (Protein<br>Residue) | Atom/ group of bile salts and surfactants | Distance (Å) |
|-----------------------------------------|---------------------------|-------------------------------------------|--------------|
|                                         | Cα-(Val17)                | H (OH-C3)                                 | 3.47         |
|                                         | Ca-(Lys18)                | O (OH-C12)                                | 5.57         |
| NaC                                     | Ca-(Phe29)                | H (CH3-C19)                               | 4.11         |
|                                         | Ca-(Ala33)                | H (CH3-C19)                               | 4.09         |
|                                         | Cα-(Val160)               | H (CH3-C18)                               | 3.96         |
|                                         | Cα-(Val17)                | O (OH-C3)                                 | 3.47         |
|                                         | Ca-(Lys18)                | O (OH-C12)                                | 5.40         |
| NaDC                                    | Ca-(Phe29)                | H (CH3-C19)                               | 4.00         |
| NaDC                                    | Ca-(Ala33)                | H (CH3-C19)                               | 4.05         |
|                                         | Cα-(Val160)               | H (CH3-C18)                               | 4.19         |
|                                         | Cα-(Val17)                | N (N-CH3)                                 | 6.04         |
|                                         | Ca-(Lys18)                | N (N-CH3)                                 | 5.89         |
| SDDS                                    | Ca-(Phe29)                | O= (CO-N-CH3)                             | 4.28         |
| 5005                                    | Ca-(Ala33)                | H (C7)                                    | 3.66         |
|                                         | Cα-(Val160)               | N (N-CH3)                                 | 5.92         |
|                                         | Cα-(Tyr185)               | C (C14)                                   | 3.98         |
|                                         | Cα-(Val17)                | H (C15)                                   | 3.04         |
|                                         | Ca-(Lys18)                | O (SO3)                                   | 3.98         |
| SDDS                                    | Ca-(Phe29)                | C1 (Phe ring)                             | 4.44         |
| 3003                                    | Ca-(Ala33)                | HC1 (Phe ring)                            | 4.28         |
|                                         | Cα-(Val160)               | H (C5)                                    | 3.64         |
|                                         | Cα-(Tyr185)               | H (C11)                                   | 3.26         |



Fig.10. Panel A: Docked pose of the complexes of BM with the bile salts and the surfactants with BM: (i) NaC, (ii) NaDC, (iii) SDDS, (iv) SDBS. Panel B: Distances (in Å) obtained from docked poses of Trp residue 180 of BM from the different atoms of bile salts and surfactants. (i)' NaC, (ii)' NaDC, (iii)' SDDS, (iv)' SDBS.

| Protein Residue | NaC                | NADC               | SDDS               | SDBS               |
|-----------------|--------------------|--------------------|--------------------|--------------------|
|                 | $\Delta ASA (Å^2)$ | $\Delta ASA (Å^2)$ | $\Delta ASA (Å^2)$ | $\Delta ASA (Å^2)$ |
| VAL 14          | 5.04               | 5.09               | 6.39               | 5.38               |
| THR 15          | 5.59               | 5.87               | 9.51               | 8.54               |
| SER 16          | 2.70               | 2.71               | 2.68               | 2.68               |
| VAL 17          | 26.62              | 26.61              | 24.45              | 22.48              |
| LYS 18          | 21.56              | 22.41              | 24.20              | 22.89              |
| GLN 20          | 1.20               | 1.35               | 6.64               | 0.67               |
| CYS 26          | 0.23               | 0.20               | 0.92               | 0.26               |
| PHE 29          | 21.55              | 22.04              | 24.60              | 27.81              |
| ALA 30          | 2.56               | 2.57               | 2.74               | 2.74               |
| ILE 32          | -                  | -                  | 0.32               | 0.32               |
| ALA 33          | 17.48              | 17.74              | 22.67              | 21.5               |
| GLU 36          | -                  | -                  | 2.41               | 2.23               |
| GLU 51          | -                  | -                  | 3.40               | 3.40               |
| ALA 136         | 8.78               | 8.46               | -                  | -                  |
| PHE 140         | 8.17               | 8.17               | -                  | 0.28               |
| GLN 141         | 8.33               | 8.29               | -                  | -                  |
| HIS 158         | 30.76              | 29.93              | 15.21              | 10.12              |
| ALA 159         | 2.12               | 2.06               | 2.79               | 2.76               |
| VAL 160         | 30.70              | 30.54              | 19.88              | 32.91              |
| THR 161         | 16.55              | 15.90              | 16.15              | 21.8               |
| ILE 163         | 11.36              | 11.12              | 11.65              | 11.76              |
| TRP 180         | 40.35              | 40.93              | -                  | 9.69               |
| GLY 184         | 17.38              | 17.20              | 11.42              | 15.09              |
| TYR 185         | 17.61              | 14.48              | 19.22              | 21.95              |
| ILE 186         | 6.19               | 6.12               | 1.21               | 13.12              |
| Total           | 302.83             | 299.79             | 228.46             | 260.38             |

Table. 8. The changes in accessible surface area ( $\Delta ASA$ ,  $Å^2$ ) of the amino acid residues of docked complexes of BM with bile salt surfactants and conventional surfactants.

Table 9. Hydrogen bonding distances between bile salts and surfactants and different groups of polar and non-polar residues around tryptophan residue(s) of the docked complexes of protein BM with the bile salts and the surfactants

| Systems<br>(Bile Salts/<br>surfactants) | Protein Residue   | Atom/ Group of bile<br>salts and surfactants | H-Bond<br>Distance*<br>(Å) |
|-----------------------------------------|-------------------|----------------------------------------------|----------------------------|
| NaC                                     | HO-(Tyr185)       | H (OH-C3)                                    | 2.8                        |
| NaC                                     | NH-amide (Val17)  | O (OH-C3)                                    | 3.58                       |
| NaDC                                    | O=C amide (Thr15) | H (OH-C3)                                    | 1.95                       |
| NaDC                                    | O=C amide (Ser16) | Н (ОН-С3)                                    | 3.19                       |
| SDDS                                    | H-N(ε) (His158)   | O- (COOH)                                    | 2.36                       |
|                                         | H-N(ε) (His158)   | O= (COOH)                                    | 2.67                       |
|                                         | HO- (Glu36)       | O (SO <sub>3</sub> )                         | 3.57                       |
| SDBS                                    | HO- (Thr15)       | O (SO <sub>3</sub> )                         | 3.47                       |
|                                         | NH-(Lys18)        | O (SO <sub>3</sub> )                         | 3.32                       |
|                                         | NH-amide (Lys18)  | O (SO <sub>3</sub> )                         | 2.58                       |

\*(Strong H-bond: 1-2 Å; Weak: >3.5Å)



Fig. 11 H-Bonding distances between bile salts and surfactants from the different polar and non-polar residues around tryptophan residue(s) of protein BM of the docked complexes.

SDBS has an aliphatic dodecyl long chain along with a benzene sulfonic moiety which constitutes the hydrophobic part of the molecule. The docked structure of the BM-SDBS shows that the ligand binds to the surface of the protein (Fig. 10, panel A). The docked ligand is placed near the protein in such a way that the hydrophobic amino acid residues like Val14, Val17, Val160, Ile 163, Ile 186 lies at the close proximity near the aliphatic tail within a distance ranging from 1.5 Å (Ile186) to ~3.75 Å (Val17) [Table 7]. In addition, the aromatic amino acid residues like Phe29, Tyr185 and Trp180 is situated with 5 Å distance from the ligand. This suggests that the molecule is stabilized preferentially through hydrophobic interaction between the non-polar amino acid residues. Presence of Phe29 close to the phenyl ring of SDBS highlights the possibility of  $\pi$ -stacking interaction. Accessible surface area calculation (cf. Table 8) clearly shows significant change in surface area ( $\Delta$ ASA) for the non-polar protein residues that these residues become less exposed to the solvent upon binding with the ligand. Apart from the above-mentioned residues, Ala30 and Ala33 shows noticeable

changes in surface area and it lies at a distance of ~4.5 Å from SDBS. However, it can be seen in Fig. 11 that certain polar residue like Thr15, Ser16, Lys18, Glu36 lies near the sulfonic moiety of SDBS out of which Gln36 and Thr15 can be involved in hydrogen bonding with the oxygen atom of  $-SO3^-$  (Table 9). The neighbouring ligands around SDBS indicates that the binding occurs preferentially in cavity-1 of BM with slight involvement of cavity-2 and the stabilization occurs primarily through hydrophobic interaction along with hydrogen bonding between the ligand and protein residues. Out of the five Trp residues in BM, SDBS and SDDS both lie close to Trp180 which can be also seen from the changes in the  $\Delta$ ASA values of Trp180 (see. Table 6 and 8)

The significance of the  $\pi$ -stacking interaction through the phenyl moiety in SDBS can be understood upon comparison with SDDS, since the latter is devoid of any phenyl part within the structure and the binding energy is almost 1.2 times lower as compared to the former (cf. Table 6). The aliphatic chain of SDDS is one carbon shorter than SDBS, but it binds almost in the similar region to SDBS, i.e., in cavity-1 and it stabilized the binding through hydrophobic interaction with the non-polar amino acid residues. As observed from the surface area calculation (Table 8), the  $\triangle$ ASA values for Val17 and Ala33 are somewhat higher for SDDS as compared to SDBS, however the ∆ASA for Phe29, Ile163, Gly184, Tyr185 and Ile186 are significantly lower than the former. This may be due to the lack of phenyl moiety in SDDS which cannot promote sufficient hydrophobic interaction with the amino acid residues of BM, which in turn does not affect the solvent exposure of the residues significantly. One noticeable difference between SDBS and SDDS is the orientation of the ligand while binding to the protein surface since the -SO<sub>3</sub><sup>-</sup> is directed towards OH or NH<sub>2</sub> regions of Glu36, Thr15 and Lys18 whereas sarcosinate part [-N(CH<sub>3</sub>) -CH<sub>2</sub>-COOH] of SDDS faces the opposite side thereby interacting more with Gln20 and His158 which is also supported by the higher  $\Delta$ ASA values of these residues in SDDS over SDBS (Table 8). This change in orientation of the polar part of SDDS may be due to the sarcosinate moiety which consist of a methyl group in addition of CH<sub>2</sub> group which prefer non-polar residues like Val17 (located at a distance of 2.27 Å) and Val160 (distance of around 3.37 Å) (Table 7). In addition, certain degree of stabilization is also obtained from the hydrogen bonding interaction between the SO3<sup>-</sup> group (SDBS) or COO<sup>-</sup> group (SDDS) with the polar residues like Thr15, Lys18, Glu36, His158 (Table 9).

#### **Conclusions:**

In this study, an attempt has been made to elucidate the structural stability of stem bromelain (BM) with the possible interaction it shows two different kinds of anionic surfactant at 298.15 K. The interaction of different surfactants with stem bromelain at all concentration of surfactants: below, at and above of the cmc in phosphate buffer medium (pH 7) was investigated by several physicochemical methods, like, tensiometry and isothermal titration calorimetry. From tensiometry, several physicochemical parameters like, surface excess  $(\Gamma_{cmc})$ , minimum area of surfactants at air water interface  $(A_{min})$  were calculated both in presence and absence of BM. Several inflection points (C1, C2 and C3) have been found in tensiometry profiles of surfactants in conjugation with BM. These break points were found due to the conformational change of BM assisted by surfactants. Similar observation was also found in isothermal titration calorimetry (ITC) profiles.  $\Gamma_{cmc}$  values of BM-surfactant system are relatively lesser than free surfactants (for NaC and NaDC) in pH-7 buffer medium, while, the reverse has been seen in case of SDDS and SDBS with same concentration of BM comparing with the micellization of SDDS and SDBS in phosphate buffer (pH 7). Enthalpy of micellization ( $\Delta H^0_{obs}$ ) of surfactants in presence and absence of BM were calculated. It is seen that for NaDC, SDDS and SDBS, the  $\Delta H_{obs}^0$  values were found more positive in presence of BM than their pure states in phosphate buffer. Exception has been found in the interaction of NaC with BM, where exothermic heat change has been observed ( $\Delta H_{obs}^0 = -0.11 \text{ kJ.mol}^{-1}$ ), whereas, NaC in absence of BM shows the positive contribution of enthalpy change during micellization. Steady state fluorescence revels the quenching of Trp. emission of BM in presence of all surfactants with blue shift below the free micelle formation. Binding constant  $(K_b)$  of BM with surfactants, bimolecular quenching constant  $(k_q)$ , free energy of binding  $(\Delta G_b^0)$ of surfactants with BM were calculated using steady state fluorescence method. It is observed that, the binding of NaC with BM is greater than any other surfactants investigated here, while Stern-Volmer quenching constant (K<sub>SV</sub>) is found greater in presence of SDBS. From steady state and time resolved fluorescence study it is observed that, quenching of tryptophan in presence of surfactants are static in nature. Circular Dichroism (CD) study shows the stability of secondary structure of BM in presence of NaC and NaDC below C<sub>3</sub>, while BM lost its structural stability even at very low surfactant concentration of SDDS and SDBS. Molecular docking studies have been employed to visualize the probable location of the compounds (bile salt surfactants and conventional surfactants) in the surrounding microenvironment of the Trp residue(s) of BM. The binding energy ( $\Delta G$ ) of NaDC with BM does not vary much as compared to NaC, but the energy values are more negative than SDDS and SDBS.

#### **References:**

- 1. D. V. Volkin, 1989. Minimizing protein inactivation. Protein Function. A practical approach, 1-24.
- 2. S. Ghosh, Colloids and Surfaces B: Biointerfaces, 2008, 66, 178–186.
- 3. D. Otzen, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2011, 1814, 562-591.
- 4. K.P. Ananthapadmanabhan, Interactions of Surfactants with Polymers and Proteins, CRC Press Inc., London, 1993 (Chapter 8).
- 5. C. Tanford, The Hydrophobic effect: Formation of Micelles and Biological Membranes, 2nd ed., Wiley–Interscience, New York, 1980 (Chapter 14).
- 6. A.K. Wright, M.R. Thompson, R.L. Miller, *Biochemistry*, 1975, 14, 3224-3228.
- 7. G. Prieto, J.M. del Rio, M.I. Paz Andrade, F. Sarmiento, M.N. Jones, *Int. J. Biol. Macromol.*, 1993, **15**, 343-345.
- 8. J. Greener, B.A. Contestable, M.D. Bale, *Macromolecules*, 1987, **20**, 2490-2498.
- 9. S. Ghosh, Colloids Surf. A: Physicochem. Eng. Aspects, 2005, 264, 6-16.
- 10. S. Ghosh, Colloids Surf. B: Biointerfaces, 2005, 41, 209-216.
- 11. S. Ghosh, J. Surf. Sci. Technol., 2003, 19, 167-182.
- 12. T. Chakraborty, I. Chakraborty, S.P. Moulik, S. Ghosh, J. Phys. Chem. B, 2007, 111, 2736-2746.
- 13. E. L. Gelamo, C. H. T. P. Silva, H. Imasato, and M. Tabak, 2002, 1594, 84-99.
- 14. J. Abedin, S. Mahbub, M. M. Rahman, A. Hoque, D. Kumar, J. M. Khan, and A. M. El-Sherbeeny, 2021, **29**, 279-287.
- 15. G. Singh, T.S. Kang, J. Phys. Chem. B, 2015, 119, 10573–10585.
- B. Mandal, S. Mondal, A. Pan, S.P. Moulik, S. Ghosh, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015, 484, 345–353.
- 17. R. J. Green, T. J. Su, H. Joy, and J. R. Lu., Langmuir, 2000, 16, 5797-5805.
- 18. A. Chakraborty and S. Basak, Colloids and Surfaces B: Biointerfaces., 2008, 63, 83-90.
- 19. W.L. Mattice, J.M. Riser, D.S. Clark, Biochemistry, 1976, 15, 4264-4272.
- 20. J. A. Reynolds, C. Tanford, J. Biol. Chem., 1970, 245, 5161-5165.
- 21. J. A. Reynolds, C. Tanford, Proc. Natl. Acad. Sci., 1970, 66, 1002–1007.
- 22. U Anand, S Mukherjee, Biochimica et Biophysica Acta, 2013, 1830, 5394–5404.
- 23. S. Halder, S Kumari, R. Aggrawal, V. K. Aswal, and S. K. Saha, *Journal of Molecular Liquids* 2017, **243**, 369-379.
- 24. N. Ghosh, R. Mondal, S. Mukherjee, Langmuir, 2005, 31, 1095–1104.
- 25. S. Ghosh, A. Banerjee, *Biomacromolecules*, 2002, 3, 9–16.
- 26. S. Sinha, D, Tikariha, J. Larka, T. Yadav, S. Kumari, S. K. Saha, K. K. Ghosh, *J. Mol. Liq.*, 2016, **218**, 421-428.
- 27. T. Chakraborty, I. Chakraborty, S. P. Moulik, S. Ghosh, Langmuir, 2009, 25, 3062-3074.
- 28. J. Zhu, L. Chen, X. Guo, Colloids and Surfaces A, 2020, 601, 125029.
- P. K. Misra, U. Dash, S. Maharana, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015, 483, 36–44.
- 30. S. Dasmandal, A. Kundu, S. Rudra, A Mahapatra, RSC Adv., 2015, 5, 79107-79118.
- 31. J. Steinhardt, and J. A. Reynolds. *Multiple equilibria in proteins*. Academic Press, 2014.
- 32. C. A. Nelson, J. Biol. Chem., 1971, 246, 3895-3901.
- 33. J. Steinhardt, *Protein-Ligand Interactions*, edited by Horst Sund and Gideon Blauer, Berlin, Boston: De Gruyter, 2019, 422-434.
- 34. M. N. Jones, Chem. Soc. ReV., 1992, 21, 127-136.

- 35. J. M. Ridlon, D. J. Kang, P. B. Hylemon, J. Lipid Res., 2006, 47, 241–259.
- O'Connor, C. J.; Wallace, R. G. Physico-Chemical Behavior of Bile Salts. Adv. Colloid Interface Sci. 1985, 22, 1–111.
- 37. G. Li, L. B. Mc Gown, J. Phys. Chem., 1994, 98, 13711–13719.
- 38. D. M. Small, *In the Bile Salts*; P. P. Nair, D. Kritchevsky, Eds.; Plenum Press: New York, 1971; Vol. 1.
- 39. D. M. Small, S. A. Penkett, D. Chapman, Biochim. Biophys. Acta, 1969, 176, 178-189.
- T. Jones, J. P. Earnest, M. G. McNamee, *In Biological Membranes: Practical Approach*; J. B. C. Findlay, W. H. Evans, Eds.; IRL Press: Oxford, 1987.
- T. Kamataki, K. Maeda, Y. Yamazoe, T. Nagai, R. Kato, *Biochem. Biophys. Res. Commun.* 1981, **103**, 1–7.
- 42. T. Saitoh, T. Fukuda, H. Tani, T. Kamidate, H. Watabane, Anal. Sci., 1996, 12, 569–573.
- 43. N Ghosh, R Mondal, S Mukherjee, Langmuir, 2015, 31, 1095–1104.
- 44. S. De, S. Das, A. Girigoswami, Colloids and Surfaces B: Biointerfaces, 2007, 54, 74-81.
- 45. M. H. Najar, O. A. Chat, P. A. Bhat, M. A. Mir, G. M. Rather, A. A. Dar, *Int. J. Biol. Macromol.*, 2021, **180**, 121–128.
- 46. Z. Yong, D. Yingjie, L. Ming, D. Q. M. Craig, L. Zhengqiang, *J. Colloid Interface Sci.*, 2009, **337**, 322–331.
- 47. J. M. Khan, A. Malik, P. Sen, A. Ahmad, A. Ahmed, A. Atiya, *Int. J. Biol. Macromol.*,2020, **148**, 880–886
- 48. S. Bag, S. Chaudhury, D. Pramanik, S. D. Gupta, S. Dasgupta, Proteins, 2016, 84, 1213–1223.
- 49. W. A. R. Manamperi, S. W. Pryor, J Am Oil Chem Soc, 2012, 89, 541–549.
- 50. V. Sharma, P. C. López, O. Y. Osses, C. R. fuentes, A. Kumar, J. Mol. Liq., 2018, 271, 443-445
- 51. Rui Zhang, Y. Liu, X. Huang, M. Xu, R. Liu, W. Zong, *Sci. Total Environ.*, 2018, **622–623**, 306–315.
- 52. S Mondal, A Banerjee, B Das, J. Mol. Liq., 2010, 301, 112450.
- 53. Y. Liu, Y. Liu, R. Guo, J Solution Chem, 2011, 40, 1140–1152.
- 54. M.R. Infante, A. Pinazo and J. Seguer, Colloids Surf., A, 1997, 49, 123–124
- 55. L. S. Fosdick, Science, 1956, 123, 988–989.
- 56. G.B Ray, S. Ghosh, S.P. Moulik, J. Surfact. Deterg., 2009, 12, 131–143.
- 57. S. Rudra, S. Dasmandal, A. Mahapatra, J. Colloid Interface Sci., 2017, 496, 267-277
- S Mondal, ML Raposo, A Ghosh, G Prieto, Colloids Surf. A: Physicochem. Eng. Asp., 2019, 577, 167–174
- 59. B Mandal, S Ghosh, SP Moulik, New J. Chem., 2016, 40, 4617-4624
- P.K.Kumar, I. Jha, A. Sindhu, P.Venkatesu, I. Bahadur, E. E.Ebenso, J. Mol. Liq., 2020, 295, 111785
- M. Bala, N. A. Ismail, M. Mel, M. S. Jami, H. M. Salleh, A. Amid, Arch. Des Sci., 2012, 65, 369– 399.
- 62. M. Bisht, I. Jha, P. Venkatesu, Chemistry Select, 2016, 1, 3510 3519.
- 63. M Tian, J Zhu, J Guo, X Guo, J Surfact Deterg, 24, 2011, 111–119
- V. Rathnavelu, N. B. Alitheen, S. Sohila, S. Kanagesan, & R. Ramesh, *Biomedical reports*, 2016, 5, 283–288.
- 65. Z. I. M. Arshad, A. Amid, F. Yusof, I. Jaswir, K. Ahmad & S. P. Loke, *Applied Microbiology and Biotechnology*, 2014, **98**, 7283–7297.
- 66. D. MacKay, A. L. Miller, Altern. Med. Rev., 2003, 8, 359-377.

- W. Hu, A. M. Wang, S. Y. Wu, B. Zhang, S. Liu, Y. Bin Gou, J.M. Wang, J. Trauma Inj. Infect. Crit. Care, 2011, 71, 966–972.
- 68. J. Shi, Q. Wang, D. Pan, T. Li & M. Jiang, J. Biomol. Struct. Dyn., 2017, 35, 1529-1546.
- 69. P. K. Kumar, I. Jha, P. Venkatesu, I. Bahadur, E. E. Ebenso, J. Mol. Liq. 2017, 246, 178–186.
- 70. Y. Jiang, M.Tian, Y. Wang, W. Xu, X. Guo, J. Mol. Liq. 2021, 328, 115439.
- 71. R. Bhattacharya, D. Bhattacharyya, *Biochim Biophys Acta*, 2009, **1794**, 698-708.
- 72. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, *J. Cheminf.*, 2012, **4**, 1-17.
- 73. S. Mondal, A. Banerjee, B. Das., J. Mol. Liq., 2020, 301, 112450.
- 74. O. Trott, A. Olson, J. Comput. Chem. 2010, 31, 455-461.
- E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, *J. Comput. Chem.*, 2004, 25, 1605-1612.
- 76. F. Geng, J. Liu, L. Zheng, L. Yu, Z. Li, G. Li and C. Tung, *Journal of Chemical & Engineering Data*, 2010, **55**, 147-151.
- 77. A. Maestre, P. Guardado, M. L. Moya, J. Chem. Eng. Data, 2014, 59, 433-438
- 78. S. K. Hait, P. R. Majhi, A. Blume, and S. P. Moulik, J. Phys. Chem. B, 2003, 107, 3650-3658.
- 79. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
- P. S. Sardar, S. S. Maity, S. Ghosh, J. Chatterjee, T. K. Maiti, S. Dasgupta, *J. Phys. Chem. B*, 2006, **110**, 21349–21356.
- M. Mukherjee, P. S. Sardar, S. K. Ghorai, S. K. Samanta, A. S. Roy, S. Dasgupta, S. Ghosh, J. Photochem. Photobiol., B, 2012, 115, 93–104.
- S. Paul, N. Sepay, S. Sarkar, P. Roy, S. Dasgupta, P. S. Sardar, A. Majhi, *New J. Chem.*, 2017, 41, 15392–15404.
- P. S. Sardar, S. Samanta, S. S. Maity, S. Dasgupta, S. Ghosh, *J. Phys. Chem. B*, 2008, **112**, 3451–3461.
- 84. J. M. Berg, J. L. Tymoczko, L. Stryer, *In Biochemistry*, 5th ed.; Delvin, T. M., Ed.; W. H. Freeman and Co.: New York, 2002.
- A. Ritonja, A. D. Rowan, D. J. Buttle, N. D. Rawlings, V. Turk, & A. J. Barett, *FEBS Lett.*, 1989
   247, 419–424
- 86. S. Habib, M. A. Khan, H. Younus, The Protein J., 2007, 26, 117–124
- 87. S. K. Haq, S. Rasheedi and R. H. Khan, Eur. J. Biochem., 2002, 269, 47–52
- 88. K. A. Connors, *Binding Constants: The Measurements of Molecular Complex Stability*; Wiley: New York, 1987.
- 89. I. M. Klotz, Ann. N. Y. Acad. Sci., 1973, 226, 18-35.
- 90. H.R. Maurer, Cell. Mol. Life Sci., 2001, 58, 1234–1245
- 91. A. Arroyo-Reyna, A. Hernandez-Arana, R. Arreguin-Espinosa, *Biochem. J.*, 1994, **300**, 107–110.

# **Summary and Conclusions**

The interaction and self-aggregation of binary surfactants, 1-hexadecyl-3-methylimidazolium chloride (HDMimCl or can be written as, C<sub>16</sub>MImCl), a Surface Active Ionic Liquid (SAIL) and dodecyltrimethylammonium bromide (DTAB) have been investigated in three desired temperatures (T = 303.15 K, 313.15 K and 323.15 K) and different stoichiometric mole fractions using conductometry, tensiometry, spectrofluorimetry, steady state fluorescence anisotropy and dynamic light scattering (DLS) techniques. From conductometry measurements, the bulk properties, like critical micellar concentrations (cmcs), degree of counterion binding (g), free energy of micellization ( $\Delta G_{\rm M}$ ), enthalpy of micellization ( $\Delta H_{\rm M}$ ) and entropy of micellization ( $\Delta S_{\rm M}$ ) have been evaluated at three different temperatures. With the help of well-established models such as Clint, Rubingh and Motomura, ideal cmc in mixtures (*cmc*), interaction parameters ( $\beta^{R}$ ), micellar mole fraction of components (X) and activity coefficients (f) of components have been calculated theoretically using conductometric cmcs of individual and mixed surfactants. Several interfacial parameters, like surface excess  $(\Gamma_{\text{max}})$ , minimum monomer area  $(A_{\min})$ , surface pressure at cmc  $(\pi_{\text{cmc}})$  and efficiency of adsorption of amphiphiles at air water interface ( $pC_{20}$ ) of mixed and individual components have been calculated using tensiometry at 313.15 K. It is seen that the experimental cmcs of mixed surfactants differ significantly with cmc of individual one from both conductometry and tensiometric measurements. Spectrofluorimetry technique helps to determine the aggregation number (N). Zeta potential ( $\xi$ ) values are calculated at different mole fractions of two investigated surfactants using dynamic light scattering. Spectrofluorimetry technique helps to determine the aggregation number (N) and anisotropy (r) using 1, 6-diphenyl-1, 3, 5-hexatriene (DPH) at different mole fractions of surfactants in both pure and mixed states. Anisotropy of DPH increases with increase of mole fraction of HDMimCl. Both aggregation number and hydrodynamic diameter increase at high DTAB content, while, zeta potential has the more positive value at higher mole fraction of HDMimCl. The critical micellar concentrations (*cmc*) of HDMimCl-DTAB mixtures demonstrate some negative deviation from the ideal behavior, implying a nonideal mixing. Mixed micelles of HDMimCl-DTAB are also characterized by negative interaction parameter values, i.e., the actual mixed micelles are thermodynamically more stable compared to hypothetical ideal state. Thermodynamic parameters indicate that the spontaneous process of micellization is entropically favourable for HDMimCl-rich mixtures while it is enthalpy-driven for DTAB-rich mixtures. The contributions from the electrostatic

attraction between the surfactant molecules, the steric effect, and the repulsive molecular interaction vary with the mixture composition. Evaluation of the packing parameter values indicate spherical shape of the micelles formed individual and mixed surfactant solutions. Aggregation number of the mixed micelles initially increase with the increase in the HDMimCl-content followed by a decrease in the HDMimCl-rich region. Hydrophobicity of the mixed micellar solutions increases with the increase in the amount of the HDMimCl in the binary surfactant mixtures.

The influence of four sodium salts (NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub>, and Na<sub>3</sub>PO<sub>4</sub>) on the selfaggregation, interfacial, and thermodynamic properties of a surface-active ionic liquid (1hexadecyl-3- methylimidazolium chloride,  $C_{16}$ MImCl) has been explored in aqueous solutions by conductometry, tensiometry, spectrofluorimetry, isothermal titration calorimetry and dynamic light scattering (DLS). Analyses of the cmc values indicate that the anions of the added salts promote the self-aggregation of  $C_{16}$ MImCl in the order:  $Cl^{-} < Br^{-} < PO_4^{3-} < SO_4^{2-}$ . Melting of iceberg, in general, governs the process of micellization of aqueous C16MImCl in presence of the investigated salts within the investigated temperature range (298.15 - 318.15 K), while the dehydration of imidazolium head groups takes the leading role below 303.15 K for the C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> system. The results indicate that addition of salt leads to a greater spontaneity of micellization, and that exothermicity prevails in these systems. Differential effect of the salts on the interfacial properties of C<sub>16</sub>MImCl has been interpreted on the basis of the coupled influence of the electrostatic charge neutralization of surfactants at the interface, and the van der Walls repulsion of surfactant tails and electrostatic repulsion of surfactant head groups. C<sub>16</sub>MImCl has been shown to form spherical micelles in presence of varying amounts of NaCl, Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub>, while there occurs probably a transition in the micellar geometry from spherical to non-spherical shape when added NaBr concentration exceeds 0.01 mol.kg<sup>-1</sup>. Fluorescence studies demonstrate that a combined quenching mechanism is operative for the quenching of pyrene fluorescence in the investigated C<sub>16</sub>MImCl-salt systems. Micellar aggregation numbers obtained from Steady State Fluorescence Quenching method (SSFQ) have always been found be somewhat smaller than those estimated from Time Resolved Fluorescence Quenching (TRFQ) method. The order of instability of the C<sub>16</sub>MImCl-micelles ascertained from Zeta potential measurements confirms to what has been inferred from the *cmc* values. The hydrodynamic radii of C<sub>16</sub>MImCl-micelles, obtained from DLS studies, have been found to increase with increasing salinity of the solutions. Bivalent and trivalent anions have reduced  $\zeta$  significantly as these anions compress electrical double layer more effectively. This

trend in  $\zeta$  is similar to that what we find for the *cmc* values in presence of the investigated salts. Presence of different salts affect the  $R_h$  values of C<sub>16</sub>MImCl micelles differently, and the following sequence of these values have been found in presence of the investigated salts: NaCl > Na<sub>3</sub>PO<sub>4</sub>> NaBr > Na<sub>2</sub>SO<sub>4</sub>.

Investigation have been made on the interaction of a biodegradable polyelectrolyte, sodium alginate (NaAlg) with two oppositely charged cationic surfactants, 1-hexadecyl-3methyl imidazolium chloride (C<sub>16</sub>MImCl) and (1-Hexadecyl) triphenylphosphonium bromide  $(C_{16}TPB)$ , while later a conventional surfactant over a wide concentration regime of polyelectrolyte (0.001, 0.005 and 0.01% w/v) at 298.15 K. Dual influence of electrostatic and hydrophobic interactions operates in this investigation when mixing surfactants to oppositely charged polyelectrolyte. A number of different experimental techniques, e.g., conductomery, tensiometry, steady state and time resolved spectrofluorimetry, turbidimetry, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), attenuated total reflection (ATR), high resolution transmission electron microscope (HR-TEM) and fluorescence microscopy have been implemented to get comprehensive information originated from the interaction of oppositely charged poltelectrolyte and surfactants. Tensiometry study reveals the existence of several conformations of NaAlg influenced by different concentrations of surfactants titrated to it and these are abbreviated, critical aggregation concentration (cac), so-called 'neckless' type polymer-surfactant complex ( $C_s$ ) and finally extended critical micelle concentration ( $C_m^*$ ) due to aggregation of surfactant itself, appeared in chronological order from low to high concentration of surfactants. Apart from tensiometry, these above concentrations have been well found and the values are well comparable when investigating polyelectrolyte-surfactant interaction by other physicochemical techniques also. Irreversible phase separation of oppositely charged polyelectrolyte- surfactant complex (PS-complex) occurs at higher polyelectrolyte concentration investigated here for both the surfactants in the vicinity of cac for  $C_{16}$ MImCl and near  $C_m^{*1}$  for  $C_{16}$ TPB and finally remain persist after further addition of surfactants above the formation of free micelles. Several bulk and interfacial parameters, viz., Gibbs free energy of micellization  $(\Delta G_m^0)$ , enthalpy of micellization  $(\Delta H_m^0)$ , entropy of micellization ( $\Delta S_m^0$ ), degree of counterion binding ( $\beta$ ), surface excess at cmc ( $\Gamma_{max}$ ), area minimum (A<sub>min</sub>), surface pressure at cmc ( $\pi_{cmc}$ ), pC<sub>20</sub>, packing parameter (P), hydrodynamic radii (r) and aggregation number ( $N_a$ ) of two surfactants both in presence and absence of NaAlg have been calculated for these investigated systems. Characterization of NaAlg, both surfactants and their individual complexes were performed using FTIR-ATR. DLS show the

distribution of size of polymer surfactant complexes over a wide range of surfactant concentrations at a fixed polyelectrolyte concentration, while HR-TEM study revealed not only the size of agglomerated clusters of PS-complex and also its shapes. Images of NaAlgsurfactant complexes were also captured using fluorescence microscopy in solution phase. Strong PS-complex in presence of  $C_{16}$ MImCl has been reported here over  $C_{16}$ TPB. Presence of bulky head groups of C<sub>16</sub>TPB containing triphenyl attached to phosphonium cation makes it less accessible to COO<sup>-</sup> groups of NaAlg over imidazolium cations of C<sub>16</sub>MImCl, while C<sub>16</sub>TPB enhances hydrophobicity in NaAlg medium forming greater amount of coacervates comparing with  $C_{16}MImCl + NaAlg$  systems. Existence of second *cmc* has been found clearly in presence of C<sub>16</sub>TPB in aqueous solution by conductometry, ITC and fluorimetric techniques while, that cmc of C<sub>16</sub>TPB is clearly detectable in presence of higher NaAlg concentration medium by tensiometry and conductometric techniques. Micellization process in presence of both surfactants is exothermic in presence of different wt% of NaAlg and overall decrease in exothermicity is observed with increase of polyelectrolyte concentration. The values of cac, C<sub>S</sub> and  $C_m^*$  for two surfactants in corporation with different wt% (w/v) of NaAlg are estimated by different experimental techniques which have well similarity to each other. ATR spectra of polyelectrolyte-surfactant complex reveal the incorporation of surfactants into polyelectrolyte.

Interaction of a novel azabenzocrown ether ( $H_2DTC$ ) with different kinds of surfactants such as, conventional anionic (SDS), cationic (DTAB), gemini cationic (16-4-16), ionic liquid (C<sub>16</sub>MImCl) and non-ionic (Tween-60) has been investigated at the wide range of surfactant concentrations (premicellar, micellar and post micellar regime) in 15% (V/V) EtOH-water medium at 298.15 K. Several physicochemical techniques, viz., tensiometry, steady state fluorimetry, UV-VIS spectroscopy was employed. H<sub>2</sub>DTC show several inflection points in surface tension, steady state fluorimetry and absorption profiles with variation of [surfactant] from very low to high, apart from critical micelle concentration (cmc). Equilibrium binding constants ( $K_b$ ) for the binding of H<sub>2</sub>DTC with micellar environment, partition coefficient values for H<sub>2</sub>DTC ( $K_x$ ) in micellar to solvent phase, molar absorptivity of H<sub>2</sub>DTC in absence ( $\varepsilon_0$ ) and presence ( $\varepsilon$ ) of micellar solution, Gibbs energy of binding ( $\Delta G_h^0$ ), Gibbs energy of partition  $(\Delta G_p^0)$  for H<sub>2</sub>DTC in solvent to micellar phase have been evaluated in this present study. It has been seen that H<sub>2</sub>DTC strongly binds with micelles of Tween-60 than the anionic and cationic surfactants and correspond  $K_x$  values are found higher for micelle medium of non-ionic surfactant. On the other hand,  $\varepsilon$  value of H<sub>2</sub>DTC found lower in micellar Tween-60, whereas, it is found high in cationic and anionic micellar medium comparing with the pure solvent (15%

V/V EtOH-water). Negative Gibbs binding and negative values of partition coefficient clearly indicates the spontaneity of both these processes. The binding of H<sub>2</sub>DTC with Tween-60 micelles is greater than the other surfactants.  $K_x$  values for cationic surfactants are greater than anionic SDS. Among the cationic surfactants, the values of  $K_x$  of H<sub>2</sub>DTC are found to be the following increasing order, C<sub>16</sub>MImCl > 16-4-16 > DTAB. H<sub>2</sub>DTC shows greater partition in Tween-60 micellar medium than the cationic and anionic micelles. Increase in the values of  $K_b$  and  $K_x$  for Tween-60 can be attributed to the lower *cmc*, enhanced hydrophobicity and increased affinity of dye towards micelle.

An attempt has been made to elucidate the structural stability of stem bromelain (BM) with the possible interaction it shows two different kinds of anionic surfactant at 298.15 K. The interaction of different surfactants with stem bromelain at all concentration of surfactants: below, at and above of the cmc in phosphate buffer medium (pH 7) was investigated by several physicochemical methods, like, tensiometry and isothermal titration calorimetry. From tensiometry, several physicochemical parameters like, surface excess ( $\Gamma_{cmc}$ ), minimum area of surfactants at air water interface  $(A_{\min})$  were calculated both in presence and absence of BM. Several inflection points (C<sub>1</sub>, C<sub>2</sub> and C<sub>3</sub>) have been found in tensiometry profiles of surfactants in conjugation with BM. These break points were found due to the conformational change of BM assisted by surfactants. Similar observation was also found in isothermal titration calorimetry (ITC) profiles.  $\Gamma_{cmc}$  values of BM-surfactant system are relatively lesser than free surfactants (for NaC and NaDC) in pH-7 buffer medium, while, the reverse has been seen in case of SDDS and SDBS with same concentration of BM comparing with the micellization of SDDS and SDBS in phosphate buffer (pH 7). Enthalpy of micellization ( $\Delta H_{obs}^0$ ) of surfactants in presence and absence of BM were calculated. It is seen that for NaDC, SDDS and SDBS, the  $\Delta H_{obs}^0$  values were found more positive in presence of BM than their pure states in phosphate buffer. Exception has been found in the interaction of NaC with BM, where exothermic heat change has been observed ( $\Delta H^{0}_{obs} = -0.11 \text{ kJ.mol}^{-1}$ ), whereas, NaC in absence of BM shows the positive contribution of enthalpy change during micellization. Steady state fluorescence revels the quenching of Trp. emission of BM in presence of all surfactants with blue shift below the free micelle formation. Binding constant  $(K_b)$  of BM with surfactants, bimolecular quenching constant (k<sub>q</sub>), free energy of binding ( $\Delta G_b^0$ ) of surfactants with BM were calculated using steady state fluorescence method. It is observed that, the binding of NaC with BM is greater than any other surfactants investigated here, while Stern-Volmer quenching constant (K<sub>SV</sub>) is found greater in presence of SDBS. From steady state and time resolved

fluorescence study it is observed that, quenching of tryptophan in presence of surfactants are static in nature. Circular Dichroism (CD) study shows the stability of secondary structure of BM in presence of NaC and NaDC below C<sub>3</sub>, while BM lost its structural stability even at very low surfactant concentration of SDDS and SDBS. Molecular docking studies have been employed to visualize the probable location of the compounds (bile salt surfactants and conventional surfactants) in the surrounding microenvironment of the Trp residue(s) of BM. The binding energy ( $\Delta$ G) of NaDC with BM does not vary much as compared to NaC, but the energy values are more negative than SDDS and SDBS.

# Appendix Basic Data

#### Chapter- I

| 1.1. Data of ln (I <sub>0</sub> /I) with the variation of [CPC] at 298.15K. I <sub>0</sub> and I are the Fl. Intensity |
|------------------------------------------------------------------------------------------------------------------------|
| of Pyrene in absence and presence of CPC at different mole fractions of HDMimCl. Total                                 |
| $[Surf] = 0.05 \text{ mol.kg}^{-1}$                                                                                    |

|                             | ln (I <sub>0</sub> /I) |       |       |       |       |       |       |       |       |
|-----------------------------|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| [CPC]/ mol.kg <sup>-1</sup> | $\alpha_{1}/0.9$       | 0.8   | 0.7   | 0.6   | 0.5   | 0.4   | 0.3   | 0.2   | 0.1   |
| 0                           | 0                      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 2.99x10 <sup>-5</sup>       | 0.022                  | 0.063 | 0.042 | 0.004 | 0.032 | 0.041 | 0.060 | 0.042 | 0.037 |
| 5.94x10 <sup>-5</sup>       | 0.064                  | 0.110 | 0.104 | 0.051 | 0.057 | 0.065 | 0.111 | 0.076 | 0.070 |
| 8.87x10 <sup>-5</sup>       | 0.113                  | 0.162 | 0.147 | 0.094 | 0.100 | 0.103 | 0.163 | 0.124 | 0.100 |
| 1.18x10 <sup>-4</sup>       | 0.162                  | 0.201 | 0.197 | 0.136 | 0.132 | 0.134 | 0.212 | 0.155 | 0.169 |
| 1.46x10 <sup>-4</sup>       | 0.217                  | 0.254 | 0.230 | 0.179 | 0.172 | 0.170 | 0.273 | 0.227 | 0.195 |

## 1.2. Anisotropy data of Pyrene at various mole fractions of HDMimCl $(\alpha_1)$ at 298.15 K

| $\alpha_1$ | Anisotropy (r) |
|------------|----------------|
| 0          | 0.025          |
| 0.1        | 0.026          |
| 0.2        | 0.028          |
| 0.3        | 0.025          |
| 0.4        | 0.029          |
| 0.5        | 0.030          |
| 0.6        | 0.032          |
| 0.7        | 0.038          |
| 0.8        | 0.039          |
| 0.9        | 0.041          |
| 1          | 0.045          |

#### Chapter-II

| 298.15                                                               | 5 K                       | 303.15                                                               | 5 K                       | 308.15 K                                                             |                           | 313.15 K                                                             |                           | 318.15K                                                              |                           |
|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|---------------------------|
| 10 <sup>5</sup><br>[C <sub>16</sub> MImCl] /<br>mol.kg <sup>-1</sup> | κ<br>/µS.cm <sup>-1</sup> | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl]<br>/ mol.kg <sup>-1</sup> | κ<br>/µS.cm <sup>-1</sup> | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl] /<br>mol.kg <sup>-1</sup> | κ<br>/μS.cm <sup>-1</sup> | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl]<br>/ mol.kg <sup>-1</sup> | κ<br>/μS.cm <sup>-1</sup> | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl] /<br>mol.kg <sup>-1</sup> | κ<br>/µS.cm <sup>-1</sup> |
| 0                                                                    | 253                       | 0                                                                    | 280                       | 0                                                                    | 310                       | 0                                                                    | 339                       | 0                                                                    | 370                       |
| 0.3                                                                  | 256                       | 0.23                                                                 | 283                       | 0.3                                                                  | 314                       | 0.3                                                                  | 342                       | 0.3                                                                  | 374                       |
| 0.6                                                                  | 259                       | 0.45                                                                 | 286                       | 0.6                                                                  | 317                       | 0.6                                                                  | 345                       | 0.6                                                                  | 378                       |
| 0.9                                                                  | 262                       | 0.75                                                                 | 290                       | 0.9                                                                  | 320                       | 0.9                                                                  | 348                       | 0.9                                                                  | 382                       |
| 1.19                                                                 | 264                       | 1.04                                                                 | 293                       | 1.19                                                                 | 323                       | 1.19                                                                 | 352                       | 1.19                                                                 | 386                       |
| 1.49                                                                 | 265                       | 1.34                                                                 | 296                       | 1.49                                                                 | 326                       | 1.49                                                                 | 354                       | 1.49                                                                 | 389                       |
| 1.78                                                                 | 266                       | 1.63                                                                 | 297                       | 1.78                                                                 | 327                       | 1.78                                                                 | 356                       | 1.78                                                                 | 392                       |
| 2.07                                                                 | 267                       | 1.92                                                                 | 299                       | 2.07                                                                 | 328                       | 2.07                                                                 | 357                       | 2.07                                                                 | 394                       |
| 2.36                                                                 | 268                       | 2.22                                                                 | 300                       | 2.36                                                                 | 329                       | 2.36                                                                 | 358                       | 2.36                                                                 | 395                       |
| 2.65                                                                 | 269                       | 2.51                                                                 | 301                       | 2.65                                                                 | 330                       | 2.65                                                                 | 359                       | 2.65                                                                 | 396                       |
| 2.94                                                                 | 269                       | 2.8                                                                  | 302                       | 2.94                                                                 | 331                       | 2.94                                                                 | 360                       | 2.94                                                                 | 397                       |
| 3.23                                                                 | 270                       | 3.09                                                                 | 303                       | 3.23                                                                 | 332                       | 3.23                                                                 | 361                       | 3.23                                                                 | 398                       |
| 3.94                                                                 | 271                       | 3.37                                                                 | 304                       | 3.94                                                                 | 334                       | 3.94                                                                 | 363                       | 3.94                                                                 | 400                       |
| 4.65                                                                 | 273                       | 3.66                                                                 | 305                       | 4.65                                                                 | 336                       | 4.65                                                                 | 365                       | 4.65                                                                 | 402                       |
|                                                                      |                           | 4.37                                                                 | 307                       |                                                                      |                           |                                                                      |                           |                                                                      |                           |

# 2.1. Specific conductance ( $\kappa$ ) data with variation of [C<sub>16</sub>MImCl] at different temperatures in presence of 0.001 mol.kg<sup>-1</sup> Na<sub>2</sub>SO<sub>4</sub>

# 2.2. Specific conductance ( $\kappa$ ) data with variation of [C<sub>16</sub>MImCl] at different temperatures in presence of 0.005 mol.kg<sup>-1</sup> NaBr

| 298.1                                                                | 5 K                    | 303.                                                                 | 15 K                   | 308.1                                                                | 5 K                      | 313.1                                                                | 5 K                      | 318.1                                                                | 8.15 K                 |  |
|----------------------------------------------------------------------|------------------------|----------------------------------------------------------------------|------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------|------------------------|--|
| 10 <sup>5</sup><br>[C <sub>16</sub> MImCl]<br>/ mol.kg <sup>-1</sup> | к /µS.cm <sup>-1</sup> | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl]<br>/ mol.kg <sup>-1</sup> | к /µS.cm <sup>-1</sup> | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl]<br>/ mol.kg <sup>-1</sup> | $\kappa / \mu S.cm^{-1}$ | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl]<br>/ mol.kg <sup>-1</sup> | $\kappa / \mu S.cm^{-1}$ | 10 <sup>5</sup><br>[C <sub>16</sub> MImCl]<br>/ mol.kg <sup>-1</sup> | к /µS.cm <sup>-1</sup> |  |
| 0                                                                    | 620                    | 0                                                                    | 623                    | 0                                                                    | 633                      | 0                                                                    | 638                      | 0                                                                    | 640                    |  |
| 2.01                                                                 | 621                    | 2.01                                                                 | 625                    | 2.01                                                                 | 635                      | 2.01                                                                 | 639                      | 2.01                                                                 | 641                    |  |
| 3.34                                                                 | 622                    | 3.34                                                                 | 626                    | 3.34                                                                 | 636                      | 3.34                                                                 | 640                      | 3.34                                                                 | 643                    |  |
| 4.68                                                                 | 623                    | 4.68                                                                 | 627                    | 4.68                                                                 | 637                      | 4.68                                                                 | 641                      | 4.68                                                                 | 644                    |  |
| 6.01                                                                 | 624                    | 6.01                                                                 | 628                    | 6.01                                                                 | 638                      | 6.01                                                                 | 642                      | 6.01                                                                 | 645                    |  |
| 6.68                                                                 | 624                    | 6.68                                                                 | 628                    | 6.68                                                                 | 639                      | 6.68                                                                 | 643                      | 6.68                                                                 | 645                    |  |
| 13.3                                                                 | 628                    | 13.3                                                                 | 633                    | 13.3                                                                 | 644                      | 13.3                                                                 | 648                      | 13.3                                                                 | 651                    |  |
| 19.9                                                                 | 630                    | 19.9                                                                 | 635                    | 19.9                                                                 | 646                      | 19.9                                                                 | 652                      | 19.9                                                                 | 656                    |  |
| 26.4                                                                 | 631                    | 26.4                                                                 | 636                    | 26.4                                                                 | 648                      | 26.4                                                                 | 654                      | 26.4                                                                 | 658                    |  |
| 33                                                                   | 633                    | 33                                                                   | 638                    | 33                                                                   | 650                      | 33                                                                   | 655                      | 33                                                                   | 659                    |  |
| 45.8                                                                 | 635                    | 45.8                                                                 | 641                    | 45.8                                                                 | 653                      | 45.8                                                                 | 659                      | 45.8                                                                 | 663                    |  |
| 64.8                                                                 | 639                    | 64.8                                                                 | 645                    | 64.8                                                                 | 657                      | 64.8                                                                 | 663                      | 64.8                                                                 | 668                    |  |
| 83.5                                                                 | 644                    | 83.5                                                                 | 649                    | 83.5                                                                 | 662                      | 83.5                                                                 | 668                      | 83.5                                                                 | 673                    |  |
| 101.8                                                                | 648                    | 101.8                                                                | 654                    | 101.8                                                                | 667                      | 101.8                                                                | 673                      | 101.8                                                                | 678                    |  |
| 125.6                                                                | 653                    | 125.6                                                                | 659                    | 125.6                                                                | 673                      | 125.6                                                                | 679                      | 125.6                                                                | 685                    |  |

| [NaCl] = 0.00                                     | 1 mol.kg <sup>-1</sup>       | [NaCl] = 0.00                                     | 5 mol.kg <sup>-1</sup>       | [NaCl] = 0.01                                     | l mol.kg <sup>-1</sup> | [NaCl] = 0.0                                      | 2 mol.kg <sup>-1</sup>       |
|---------------------------------------------------|------------------------------|---------------------------------------------------|------------------------------|---------------------------------------------------|------------------------|---------------------------------------------------|------------------------------|
| [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/mN.m^{-1}$     | [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> |
| 0.000                                             | 66.3                         | 0.000                                             | 67.4                         | 0.000                                             | 61.4                   | 0.000                                             | 63.2                         |
| 0.001                                             | 66.5                         | 0.002                                             | 61.4                         | 0.005                                             | 57.1                   | 0.001                                             | 55.0                         |
| 0.003                                             | 61.0                         | 0.004                                             | 56.3                         | 0.014                                             | 53.6                   | 0.003                                             | 48.7                         |
| 0.005                                             | 60.0                         | 0.006                                             | 55.3                         | 0.024                                             | 50.0                   | 0.005                                             | 46.9                         |
| 0.008                                             | 58.1                         | 0.008                                             | 53.0                         | 0.038                                             | 46.7                   | 0.008                                             | 44.0                         |
| 0.012                                             | 57.0                         | 0.012                                             | 50.0                         | 0.062                                             | 42.2                   | 0.012                                             | 41.7                         |
| 0.017                                             | 55.0                         | 0.020                                             | 49.1                         | 0.098                                             | 38.4                   | 0.017                                             | 40.2                         |
| 0.023                                             | 53.5                         | 0.032                                             | 46.9                         | 0.145                                             | 36.5                   | 0.024                                             | 38.2                         |
| 0.030                                             | 51.6                         | 0.044                                             | 45.0                         | 0.239                                             | 36.3                   | 0.034                                             | 36.0                         |
| 0.038                                             | 50.0                         | 0.064                                             | 42.7                         | 0.376                                             | 36.2                   | 0.049                                             | 33.8                         |
| 0.048                                             | 48.9                         | 0.094                                             | 39.8                         |                                                   |                        | 0.069                                             | 31.3                         |
| 0.059                                             | 47.5                         | 0.133                                             | 38.1                         |                                                   |                        | 0.089                                             | 30.3                         |
| 0.074                                             | 46.7                         | 0.192                                             | 36.4                         |                                                   |                        | 0.119                                             | 30.4                         |
| 0.093                                             | 45.4                         | 0.288                                             | 36.2                         |                                                   |                        | 0.169                                             | 30.4                         |
| 0.122                                             | 43.9                         | 0.476                                             | 36.4                         |                                                   |                        | 0.269                                             | 30.7                         |
| 0.169                                             | 41.7                         | 0.748                                             | 36.4                         |                                                   |                        | 0.469                                             | 30.7                         |
| 0.261                                             | 38.8                         | 1.090                                             | 36.5                         |                                                   |                        | 0.669                                             | 31.0                         |
| 0.349                                             | 37.0                         | 1.716                                             | 36.5                         |                                                   |                        | 0.869                                             | 31.2                         |
| 0.434                                             | 36.3                         |                                                   |                              |                                                   |                        | 1.169                                             | 31.0                         |
| 0.632                                             | 35.4                         |                                                   |                              |                                                   |                        |                                                   |                              |
| 0.885                                             | 36.0                         |                                                   |                              |                                                   |                        |                                                   |                              |
| 1.139                                             | 36.3                         |                                                   |                              |                                                   |                        |                                                   |                              |

## 2.3. Tensiometric data of $C_{16}$ MImCl at different [NaCl] at 298.15 K

#### 2.4. Tensiometric data of $C_{16}$ MImCl at different [NaBr] at 298.15 K

| [NaBr] = 0.001                                    | mol.kg <sup>-1</sup>         | [NaBr] = 0.002                                    | 5 mol.kg <sup>-1</sup>       | [NaBr] = 0.01                                     | mol.kg <sup>-1</sup>         | [NaBr] = 0.02                                     | mol.kg <sup>-1</sup>         |
|---------------------------------------------------|------------------------------|---------------------------------------------------|------------------------------|---------------------------------------------------|------------------------------|---------------------------------------------------|------------------------------|
| [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> |
| 0.000                                             | 64.4                         | 0.000                                             | 64.1                         | 0.000                                             | 64.8                         | 0.000                                             | 65.3                         |
| 0.001                                             | 63.9                         | 0.001                                             | 63.1                         | 0.001                                             | 60.1                         | 0.002                                             | 59.9                         |
| 0.002                                             | 61.6                         | 0.002                                             | 62.0                         | 0.001                                             | 58.2                         | 0.006                                             | 53.3                         |
| 0.005                                             | 60.2                         | 0.004                                             | 58.5                         | 0.004                                             | 54.1                         | 0.011                                             | 48.5                         |
| 0.009                                             | 58.7                         | 0.008                                             | 54.9                         | 0.008                                             | 50.9                         | 0.015                                             | 44.3                         |
| 0.015                                             | 55.7                         | 0.013                                             | 50.9                         | 0.013                                             | 46.4                         | 0.020                                             | 42.0                         |
| 0.025                                             | 52.7                         | 0.019                                             | 47.2                         | 0.020                                             | 42.1                         | 0.024                                             | 38.9                         |
| 0.038                                             | 49.4                         | 0.027                                             | 43.9                         | 0.029                                             | 37.7                         | 0.029                                             | 36.5                         |
| 0.055                                             | 47.2                         | 0.036                                             | 40.9                         | 0.039                                             | 35.8                         | 0.034                                             | 33.9                         |
| 0.074                                             | 44.2                         | 0.046                                             | 38.3                         | 0.052                                             | 32.4                         | 0.040                                             | 31.8                         |
| 0.096                                             | 41.4                         | 0.058                                             | 35.2                         | 0.064                                             | 30.8                         | 0.045                                             | 30.0                         |
| 0.121                                             | 39.8                         | 0.076                                             | 32.4                         | 0.080                                             | 28.6                         | 0.054                                             | 28.9                         |
| 0.149                                             | 37.3                         | 0.100                                             | 30.1                         | 0.099                                             | 27.7                         | 0.064                                             | 28.5                         |
| 0.179                                             | 35.2                         | 0.129                                             | 28.5                         | 0.120                                             | 26.9                         | 0.081                                             | 28.4                         |
| 0.215                                             | 32.8                         | 0.163                                             | 28.4                         | 0.147                                             | 26.9                         | 0.102                                             | 28.4                         |
| 0.256                                             | 31.3                         | 0.218                                             | 28.0                         | 0.183                                             | 27.2                         | 0.128                                             | 28.6                         |

| 0.301 | 29.9 | 0.323 | 28.0 | 0.223 | 27.6 | 0.179 | 28.3 |
|-------|------|-------|------|-------|------|-------|------|
| 0.350 | 29.8 |       |      | 0.279 | 27.6 |       |      |
| 0.403 | 29.9 |       |      |       |      |       |      |
| 0.478 | 30.4 |       |      |       |      |       |      |
| 0.574 | 30.5 |       |      |       |      |       |      |
| 0.705 | 30.6 |       |      |       |      |       |      |
| 0.825 | 30.6 |       |      |       |      |       |      |

Fig. 2.5. Tensiometric data of C<sub>16</sub>MImCl at different [Na<sub>2</sub>SO<sub>4</sub>] at 298.15 K

| $[Na_2SO_4] = 0.00$                               | $[Na_2SO_4] = 0.001 \text{ mol.kg}^{-1}$ |                                      | 5 mol.kg <sup>-1</sup>       | $[Na_2SO_4] = 0.01$                  | mol.kg <sup>-1</sup>     | $[Na_2SO_4] = 0.02$                  | mol.kg <sup>-1</sup>         |
|---------------------------------------------------|------------------------------------------|--------------------------------------|------------------------------|--------------------------------------|--------------------------|--------------------------------------|------------------------------|
| [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | γ/<br>mN.m <sup>-1</sup>                 | [C16MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> | [C16MImCl]/<br>mmol.kg <sup>-1</sup> | γ/<br>mN.m <sup>-1</sup> | [C16MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> |
| 0.000                                             |                                          | 0.000                                |                              | 0.000                                |                          | 0.000                                |                              |
| 0.006                                             | 47.9                                     | 0.003                                | 45.2                         | 0.003                                | 46.4                     | 0.001                                | 54.4                         |
| 0.009                                             | 44.3                                     | 0.006                                | 40.3                         | 0.006                                | 41                       | 0.004                                | 48                           |
| 0.012                                             | 42.6                                     | 0.009                                | 37.8                         | 0.009                                | 38.2                     | 0.007                                | 43.2                         |
| 0.018                                             | 39.9                                     | 0.014                                | 35.2                         | 0.015                                | 34.1                     | 0.010                                | 40.3                         |
| 0.024                                             | 38                                       | 0.020                                | 32.9                         | 0.021                                | 31.9                     | 0.014                                | 38.3                         |
| 0.036                                             | 33.6                                     | 0.031                                | 29.1                         | 0.027                                | 31.1                     | 0.020                                | 35.4                         |
| 0.048                                             | 31.7                                     | 0.049                                | 26.2                         | 0.039                                | 28.2                     | 0.027                                | 33.3                         |
| 0.060                                             | 29.9                                     | 0.066                                | 25.3                         | 0.051                                | 25.9                     | 0.036                                | 29.4                         |
| 0.078                                             | 28                                       | 0.088                                | 24.9                         | 0.069                                | 25.9                     | 0.050                                | 27.3                         |
| 0.101                                             | 26.9                                     | 0.116                                | 24.4                         | 0.093                                | 25.6                     | 0.071                                | 27.1                         |
| 0.131                                             | 26.8                                     | 0.173                                | 24.1                         | 0.123                                | 25.2                     | 0.105                                | 27.5                         |
| 0.172                                             | 26.5                                     | 0.284                                | 23.9                         | 0.182                                | 24.4                     | 0.166                                | 27.2                         |
| 0.459                                             | 25.9                                     |                                      |                              | 0.748                                | 25.2                     | 0.630                                | 27.1                         |
| 0.736                                             | 25.6                                     |                                      |                              | 1.272                                | 25                       | 0.962                                | 27.6                         |
| 1.259                                             | 25.6                                     |                                      |                              |                                      |                          |                                      |                              |
| 1.744                                             | 25.6                                     |                                      |                              |                                      |                          |                                      |                              |

| [Na <sub>3</sub> PO <sub>4</sub> ] = 0.00         | $[Na_3PO_4] = 0.001 \text{ mol.kg}^{-1}$ |                                      | $[Na_3PO_4] = 0.005 \text{ mol.kg}^{-1}$ |                                      | mol.kg <sup>-1</sup>         | $[Na_3PO_4] = 0.02 \text{ mol.kg}^{-1}$ |                          |  |
|---------------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------|------------------------------|-----------------------------------------|--------------------------|--|
| [C <sub>16</sub> MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup>             | [C16MImCl]/<br>mmol.kg <sup>-1</sup> | γ/<br>mN.m <sup>-1</sup>                 | [C16MImCl]/<br>mmol.kg <sup>-1</sup> | $\gamma/$ mN.m <sup>-1</sup> | [C16MImCl]/<br>mmol.kg <sup>-1</sup>    | γ/<br>mN.m <sup>-1</sup> |  |
| 0.000                                             | 59.1                                     | 0.000                                | 56.7                                     | 0.000                                | 60.3                         | 0.000                                   | 60.5                     |  |
| 0.002                                             | 50.1                                     | 0.003                                | 48.0                                     | 0.005                                | 51.4                         | 0.003                                   | 47.2                     |  |
| 0.005                                             | 47.8                                     | 0.008                                | 38.9                                     | 0.008                                | 48.2                         | 0.006                                   | 43.2                     |  |
| 0.007                                             | 46.3                                     | 0.013                                | 37.4                                     | 0.013                                | 43.8                         | 0.011                                   | 39.5                     |  |
| 0.012                                             | 44.7                                     | 0.024                                | 32.7                                     | 0.018                                | 41.2                         | 0.017                                   | 37.5                     |  |
| 0.019                                             | 41.4                                     | 0.050                                | 28.0                                     | 0.028                                | 37.7                         | 0.023                                   | 35.0                     |  |
| 0.028                                             | 39.0                                     | 0.076                                | 27.2                                     | 0.043                                | 34.0                         | 0.029                                   | 33.4                     |  |
| 0.040                                             | 37.2                                     | 0.115                                | 25.9                                     | 0.064                                | 31.4                         | 0.034                                   | 31.6                     |  |
| 0.052                                             | 35.7                                     | 0.191                                | 25.7                                     | 0.089                                | 30.1                         | 0.040                                   | 30.2                     |  |
| 0.076                                             | 33.9                                     | 0.318                                | 26.0                                     | 0.139                                | 30.3                         | 0.052                                   | 28.4                     |  |
| 0.111                                             | 32.3                                     | 0.563                                | 26.0                                     | 0.263                                | 30.0                         | 0.063                                   | 27.7                     |  |
| 0.157                                             | 30.8                                     | 1.026                                | 25.9                                     | 0.503                                | 30.1                         | 0.080                                   | 27.5                     |  |
| 0.202                                             | 30.0                                     | 1.858                                | 26.5                                     | 0.958                                | 30.0                         | 0.108                                   | 28.2                     |  |
| 0.314                                             | 29.4                                     |                                      |                                          |                                      |                              | 0.165                                   | 28.2                     |  |
| 0.531                                             | 29.2                                     |                                      |                                          |                                      |                              | 0.304                                   | 28.2                     |  |
| 0.942                                             | 29.0                                     |                                      |                                          |                                      |                              | 0.574                                   | 28.8                     |  |
| 1.323                                             | 28.9                                     |                                      |                                          |                                      |                              | 1.083                                   | 28.7                     |  |
| 1.847                                             | 28.7                                     |                                      |                                          |                                      |                              |                                         |                          |  |
| 2.320                                             | 28.7                                     |                                      |                                          |                                      |                              |                                         |                          |  |

#### 2.6. Tensiometric data of $C_{16}$ MImCl at different [Na<sub>3</sub>PO<sub>4</sub>] at 298.15 K

## 2.7. Calorimetric titration data of C<sub>16</sub>MImCl in different [NaCl] in mol.kg<sup>-1</sup> at 298.15 K

|                   | Demicellization of C <sub>16</sub> MImCl in different [NaCl] in mol.kg <sup>-1</sup> |                                |                                            |                                |                                                           |                                |                                                           |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|--------------------------------|-----------------------------------------------------------|--------------------------------|-----------------------------------------------------------|--|--|--|--|
| 0.0               | 01                                                                                   | 0.005                          |                                            | 0.01                           |                                                           | 0                              | .02                                                       |  |  |  |  |
| [C16MImCl]/<br>mM | $\Delta H_0^{ m m}$ / kJ.mol <sup>-1</sup>                                           | [C <sub>16</sub> MImCl]/<br>mM | $\Delta H_0^{ m m}$ / kJ.mol <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mM | $\Delta H_0^{\mathrm{m}} / \underset{1}{\mathrm{kJ.mol}}$ | [C <sub>16</sub> MImCl]/<br>mM | $\Delta H_0^{\mathrm{m}} / \underset{1}{\mathrm{kJ.mol}}$ |  |  |  |  |
| 0                 |                                                                                      | 0                              |                                            | 0                              |                                                           | 0                              |                                                           |  |  |  |  |
| 0.27              | -0.648                                                                               | 0.075                          | 0.661                                      | 0.006                          | 2.097                                                     | 0.004                          | 1.664                                                     |  |  |  |  |
| 0.35              | -0.646                                                                               | 0.108                          | 0.642                                      | 0.029                          | 1.761                                                     | 0.018                          | 1.649                                                     |  |  |  |  |
| 0.44              | -0.618                                                                               | 0.140                          | 0.585                                      | 0.052                          | 0.956                                                     | 0.033                          | 1.093                                                     |  |  |  |  |
| 0.52              | -0.602                                                                               | 0.172                          | 0.451                                      | 0.075                          | 0.324                                                     | 0.047                          | 0.432                                                     |  |  |  |  |
| 0.60              | -0.585                                                                               | 0.204                          | 0.369                                      | 0.098                          | 0.083                                                     | 0.061                          | 0.091                                                     |  |  |  |  |
| 0.67              | -0.512                                                                               | 0.236                          | 0.286                                      | 0.120                          | -0.364                                                    | 0.075                          | -0.280                                                    |  |  |  |  |
| 0.75              | -0.394                                                                               | 0.267                          | 0.217                                      | 0.142                          | -0.475                                                    | 0.089                          | -0.224                                                    |  |  |  |  |
| 0.83              | -0.322                                                                               | 0.298                          | 0.104                                      | 0.164                          | -0.414                                                    | 0.102                          | -0.160                                                    |  |  |  |  |
| 0.91              | -0.243                                                                               | 0.328                          | 0.027                                      | 0.186                          | -0.540                                                    | 0.129                          | -0.068                                                    |  |  |  |  |
| 0.98              | -0.195                                                                               | 0.358                          | 0.010                                      | 0.207                          | -0.537                                                    | 0.143                          | -0.146                                                    |  |  |  |  |
| 1.06              | -0.128                                                                               | 0.388                          | 0.011                                      | 0.228                          | -0.524                                                    | 0.156                          | -0.178                                                    |  |  |  |  |
| 1.13              | -0.065                                                                               | 0.418                          | 0.005                                      |                                |                                                           |                                |                                                           |  |  |  |  |
| 1.20              | -0.046                                                                               |                                |                                            |                                |                                                           |                                |                                                           |  |  |  |  |
| 1.27              | -0.072                                                                               |                                |                                            |                                |                                                           |                                |                                                           |  |  |  |  |
| 1.35              | -0.058                                                                               |                                |                                            |                                |                                                           |                                |                                                           |  |  |  |  |
| 1.42              | -0.046                                                                               |                                |                                            |                                |                                                           |                                |                                                           |  |  |  |  |

| Demicellization of C <sub>16</sub> MImCl in different [NaBr] in mol.kg <sup>-1</sup> |                                            |               |                                                     |               |                                            |               |                                            |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------|---------------|-----------------------------------------------------|---------------|--------------------------------------------|---------------|--------------------------------------------|--|--|--|--|
| 0.001                                                                                |                                            | 0.005         |                                                     | 0.010         |                                            | 0.020         |                                            |  |  |  |  |
| [C16MImCl]/mM                                                                        | ΔH0 <sup>m</sup> /<br>kJ.mol <sup>-1</sup> | [C16MImCl]/mM | Δ <i>H</i> 0 <sup>m</sup> /<br>kJ.mol <sup>-1</sup> | [C16MImCl]/mM | ΔH0 <sup>m</sup> /<br>kJ.mol <sup>-1</sup> | [C16MImCl]/mM | ΔH0 <sup>m</sup> /<br>kJ.mol <sup>-1</sup> |  |  |  |  |
| 0                                                                                    |                                            | 0             |                                                     | 0             |                                            | 0             |                                            |  |  |  |  |
| 0.060                                                                                | 2.811                                      | 0.005         | 0.455                                               | 0.003         | -3.420                                     | 0.002         | 1.284                                      |  |  |  |  |
| 0.108                                                                                | 1.914                                      | 0.027         | 0.465                                               | 0.017         | -3.489                                     | 0.011         | 1.366                                      |  |  |  |  |
| 0.155                                                                                | 0.527                                      | 0.048         | 0.466                                               | 0.031         | -3.374                                     | 0.019         | 1.606                                      |  |  |  |  |
| 0.201                                                                                | -0.367                                     | 0.069         | 0.509                                               | 0.044         | -2.859                                     | 0.027         | 1.697                                      |  |  |  |  |
| 0.247                                                                                | -0.885                                     | 0.090         | 0.560                                               | 0.070         | -3.105                                     | 0.035         | 1.480                                      |  |  |  |  |
| 0.293                                                                                | -0.859                                     | 0.111         | 0.611                                               | 0.083         | -3.262                                     | 0.043         | 1.203                                      |  |  |  |  |
| 0.338                                                                                | -0.772                                     | 0.131         | 0.604                                               | 0.096         | -1.459                                     | 0.052         | 0.859                                      |  |  |  |  |
| 0.383                                                                                | -0.664                                     | 0.152         | 0.570                                               | 0.109         | 0.301                                      | 0.059         | 0.350                                      |  |  |  |  |
| 0.427                                                                                | -0.655                                     | 0.172         | 0.523                                               | 0.122         | 1.009                                      | 0.067         | 0.127                                      |  |  |  |  |
| 0.471                                                                                | -0.668                                     | 0.192         | 0.468                                               | 0.134         | 1.596                                      | 0.075         | 0.013                                      |  |  |  |  |
| 0.514                                                                                | -0.628                                     | 0.211         | 0.412                                               | 0.146         | 1.437                                      | 0.083         | -0.060                                     |  |  |  |  |
| 0.557                                                                                | -0.641                                     | 0.231         | 0.369                                               | 0.159         | 1.608                                      | 0.090         | -0.123                                     |  |  |  |  |
| 0.599                                                                                | -0.662                                     | 0.250         | 0.329                                               | 0.171         | 1.281                                      | 0.098         | -0.188                                     |  |  |  |  |
| 0.641                                                                                | -0.611                                     | 0.269         | 0.299                                               | 0.183         | 1.800                                      | 0.105         | -0.228                                     |  |  |  |  |
| 0.683                                                                                | -0.574                                     | 0.288         | 0.257                                               | 0.194         | 1.656                                      | 0.113         | -0.271                                     |  |  |  |  |
| 0.724                                                                                | -0.558                                     | 0.306         | 0.213                                               | 0.206         | 1.979                                      | 0.120         | -0.294                                     |  |  |  |  |
| 0.764                                                                                | -0.603                                     | 0.324         | 0.181                                               | 0.218         | 2.442                                      | 0.127         | -0.332                                     |  |  |  |  |
| 0.804                                                                                | -0.617                                     | 0.343         | 0.142                                               | 0.229         | 2.363                                      | 0.134         | -0.356                                     |  |  |  |  |
| 0.843                                                                                | -0.526                                     | 0.361         | 0.126                                               | 0.240         | 1.891                                      | 0.141         | -0.355                                     |  |  |  |  |
|                                                                                      |                                            |               |                                                     |               |                                            | 0.148         | -0.405                                     |  |  |  |  |

#### 2.8. Calorimetric titration data of $C_{16}$ MImCl at different [NaBr] at 298.15 K

## 2.9. Calorimetric titration data of $C_{16}MImCl$ at different $[Na_2SO_4]$ at 298.15 K

| Demicellization of C <sub>16</sub> MImCl in different [Na <sub>2</sub> SO <sub>4</sub> ] in mol.kg <sup>-1</sup> |                                            |                            |                                            |                                                              |       |                            |                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------|--------------------------------------------|--------------------------------------------------------------|-------|----------------------------|-------------------------------------------|--|--|--|
| 0.001                                                                                                            |                                            | 0.005                      |                                            | 0.010                                                        |       | 0.020                      |                                           |  |  |  |
| [C <sub>16</sub> MImCl]/mM                                                                                       | $\Delta H_0^{ m m}$ / kJ.mol <sup>-1</sup> | [C <sub>16</sub> MImCl]/mM | $\Delta H_0^{ m m}$ / kJ.mol <sup>-1</sup> | $[C_{16}MImCl]/mM \qquad \frac{\Delta H_0^m /}{kJ.mol^{-1}}$ |       | [C <sub>16</sub> MImCl]/mM | $\Delta H_0^{ m m}$ /kJ.mol <sup>-1</sup> |  |  |  |
| 0                                                                                                                |                                            | 0                          |                                            | 0                                                            |       | 0                          |                                           |  |  |  |
| 0.018                                                                                                            | -0.470                                     | 0.003                      | 0.176                                      | 0.015                                                        | 0.028 | 0.001                      | 0.207                                     |  |  |  |
| 0.025                                                                                                            | -0.442                                     | 0.024                      | 0.192                                      | 0.019                                                        | 0.037 | 0.012                      | 0.210                                     |  |  |  |
| 0.033                                                                                                            | -0.237                                     | 0.038                      | 0.221                                      | 0.023                                                        | 0.048 | 0.020                      | 0.233                                     |  |  |  |
| 0.036                                                                                                            | -0.022                                     | 0.049                      | 0.249                                      | 0.025                                                        | 0.053 | 0.029                      | 0.334                                     |  |  |  |
| 0.040                                                                                                            | 0.002                                      | 0.060                      | 0.253                                      | 0.029                                                        | 0.100 | 0.043                      | 0.377                                     |  |  |  |
| 0.043                                                                                                            | -0.107                                     | 0.071                      | 0.253                                      | 0.032                                                        | 0.140 | 0.072                      | 0.364                                     |  |  |  |
| 0.047                                                                                                            | 0.079                                      | 0.082                      | 0.248                                      | 0.034                                                        | 0.178 | 0.086                      | 0.357                                     |  |  |  |
| 0.069                                                                                                            | 0.125                                      | 0.093                      | 0.241                                      | 0.038                                                        | 0.201 | 0.101                      | 0.345                                     |  |  |  |
| 0.079                                                                                                            | 0.140                                      | 0.093                      | 0.241                                      | 0.042                                                        | 0.211 | 0.115                      | 0.339                                     |  |  |  |

| 0.083 | 0.165 | 0.103 | 0.238 | 0.046 | 0.216 | 0.129 | 0.329 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.086 | 0.175 | 0.114 | 0.234 | 0.047 | 0.216 | 0.144 | 0.318 |
| 0.094 | 0.167 | 0.125 | 0.228 | 0.051 | 0.211 | 0.158 | 0.304 |
| 0.108 | 0.173 | 0.136 | 0.224 | 0.053 | 0.205 | 0.172 | 0.294 |
| 0.111 | 0.150 | 0.146 | 0.219 | 0.055 | 0.200 | 0.186 | 0.284 |
| 0.133 | 0.186 | 0.157 | 0.214 | 0.059 | 0.187 | 0.200 | 0.275 |
| 0.157 | 0.157 | 0.167 | 0.209 | 0.062 | 0.171 | 0.229 | 0.259 |
| 0.168 | 0.112 | 0.178 | 0.206 | 0.066 | 0.158 | 0.271 | 0.239 |
| 0.171 | 0.106 | 0.191 | 0.199 | 0.070 | 0.142 | 0.299 | 0.222 |
| 0.178 | 0.105 | 0.199 | 0.195 | 0.077 | 0.116 | 0.327 | 0.212 |
| 0.213 | 0.124 | 0.207 | 0.192 | 0.081 | 0.101 |       |       |
| 0.227 | 0.099 | 0.217 | 0.188 | 0.083 | 0.092 |       |       |
| 0.241 | 0.100 | 0.228 | 0.183 | 0.087 | 0.076 |       |       |
| 0.255 | 0.070 | 0.243 | 0.176 | 0.090 | 0.064 |       |       |
|       |       | 0.253 | 0.171 |       |       |       |       |
|       |       | 0.264 | 0.167 |       |       |       |       |
|       |       | 0.274 | 0.162 |       |       |       |       |
|       |       | 0.284 | 0.157 |       |       |       |       |
|       |       | 0.294 | 0.153 |       |       |       |       |
|       |       | 0.305 | 0.149 |       |       |       |       |

#### 2.10. Calorimetric titration data of $C_{16}MImCl$ at different $[Na_3PO_4]$ at 298.15 K

| Demicellization of C <sub>16</sub> MImCl in different [Na <sub>3</sub> PO <sub>4</sub> ] in mol.kg <sup>-1</sup> |                                            |               |                                           |               |                                           |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|-------------------------------------------|---------------|-------------------------------------------|--|--|--|--|--|
| 0.005                                                                                                            |                                            | 0.010         |                                           | 0.020         |                                           |  |  |  |  |  |
| [C16MImCl]/mM                                                                                                    | $\Delta H_0^{ m m}$ / kJ.mol <sup>-1</sup> | [C16MImCl]/mM | $\Delta H_0^{ m m}$ /kJ.mol <sup>-1</sup> | [C16MImCl]/mM | $\Delta H_0^{ m m}$ /kJ.mol <sup>-1</sup> |  |  |  |  |  |
| 0                                                                                                                |                                            | 0             |                                           | 0             |                                           |  |  |  |  |  |
| 0.048                                                                                                            | 2.064                                      | 0.025         | 0.327                                     | 0.022         | -0.081                                    |  |  |  |  |  |
| 0.051                                                                                                            | 2.002                                      | 0.030         | 0.332                                     | 0.029         | -0.023                                    |  |  |  |  |  |
| 0.055                                                                                                            | 1.851                                      | 0.035         | 0.335                                     | 0.036         | -0.011                                    |  |  |  |  |  |
| 0.059                                                                                                            | 2.092                                      | 0.041         | 0.339                                     | 0.040         | 0.021                                     |  |  |  |  |  |
| 0.062                                                                                                            | 2.163                                      | 0.043         | 0.505                                     | 0.047         | 0.074                                     |  |  |  |  |  |
| 0.066                                                                                                            | 2.108                                      | 0.046         | 0.629                                     | 0.051         | 0.287                                     |  |  |  |  |  |
| 0.070                                                                                                            | 2.261                                      | 0.049         | 0.655                                     | 0.054         | 1.173                                     |  |  |  |  |  |
| 0.073                                                                                                            | 2.338                                      | 0.051         | 0.662                                     | 0.058         | 1.260                                     |  |  |  |  |  |
| 0.077                                                                                                            | 2.443                                      | 0.054         | 0.654                                     | 0.061         | 1.306                                     |  |  |  |  |  |
| 0.081                                                                                                            | 2.417                                      | 0.057         | 0.649                                     | 0.068         | 1.350                                     |  |  |  |  |  |
| 0.084                                                                                                            | 2.337                                      | 0.059         | 0.632                                     | 0.076         | 1.333                                     |  |  |  |  |  |
| 0.088                                                                                                            | 2.113                                      | 0.062         | 0.643                                     | 0.083         | 1.330                                     |  |  |  |  |  |
| 0.091                                                                                                            | 2.395                                      | 0.065         | 0.623                                     | 0.090         | 1.275                                     |  |  |  |  |  |
| 0.095                                                                                                            | 3.293                                      | 0.067         | 0.627                                     | 0.101         | 1.214                                     |  |  |  |  |  |
| 0.099                                                                                                            | 3.950                                      | 0.073         | 0.612                                     | 0.108         | 1.167                                     |  |  |  |  |  |
| 0.117                                                                                                            | 3.349                                      | 0.078         | 0.610                                     | 0.118         | 1.114                                     |  |  |  |  |  |
| 0.120                                                                                                            | 3.159                                      | 0.083         | 0.592                                     | 0.125         | 1.038                                     |  |  |  |  |  |

| 0.124 | 2.955 | 0.089 | 0.578 | 0.132 | 1.032 |
|-------|-------|-------|-------|-------|-------|
| 0.128 | 2.586 | 0.094 | 0.579 | 0.143 | 0.968 |
| 0.135 | 2.287 | 0.097 | 0.558 | 0.154 | 0.939 |
| 0.138 | 2.170 | 0.099 | 0.587 | 0.161 | 0.866 |
| 0.142 | 2.069 | 0.102 | 0.542 | 0.168 | 0.857 |
| 0.145 | 1.948 | 0.105 | 0.542 | 0.178 | 0.817 |
| 0.149 | 1.711 | 0.110 | 0.518 | 0.185 | 0.729 |
| 0.153 | 1.404 | 0.112 | 0.523 | 0.192 | 0.723 |
| 0.156 | 1.112 | 0.115 | 0.541 | 0.199 | 0.682 |
| 0.163 | 0.709 | 0.118 | 0.507 | 0.206 | 0.651 |
| 0.167 | 0.507 | 0.120 | 0.481 | 0.213 | 0.626 |
|       |       | 0.126 | 0.499 | 0.220 | 0.603 |
|       |       | 0.131 | 0.477 | 0.227 | 0.555 |
|       |       | 0.134 | 0.464 | 0.234 | 0.532 |
|       |       | 0.139 | 0.458 | 0.241 | 0.538 |
|       |       | 0.144 | 0.449 | 0.247 | 0.431 |
|       |       | 0.149 | 0.440 | 0.254 | 0.371 |
|       |       | 0.154 | 0.428 | 0.261 | 0.334 |
|       |       | 0.160 | 0.417 | 0.268 | 0.336 |
|       |       | 0.165 | 0.404 | 0.275 | 0.316 |
|       |       | 0.170 | 0.389 | 0.282 |       |
|       |       | 0.175 | 0.383 |       |       |
|       |       | 0.180 | 0.367 |       |       |
|       |       | 0.186 | 0.358 |       |       |
|       |       | 0.191 | 0.353 |       |       |
|       |       | 0.196 | 0.343 |       |       |
|       |       | 0.201 | 0.337 |       |       |
|       |       | 0.206 | 0.323 |       |       |
|       |       | 0.211 | 0.300 |       |       |
|       |       | 0.216 | 0.282 |       |       |
|       |       | 0.222 | 0.275 |       |       |
|       |       | 0.227 | 0.256 |       |       |
|       |       | 0.232 | 0.245 |       |       |

2.11. Steady state fluorescence anisotropy (r) vs. concentration of C<sub>16</sub>MImCl in presence of different salts (each with a concentration of 0.001 mol.kg<sup>-1</sup>) at 298.15 K.

|                                                 | $[Salt] = 0.01 \text{ mol.kg}^{-1}$ |                                                 |       |                                                 |       |                                              |       |  |  |  |  |  |
|-------------------------------------------------|-------------------------------------|-------------------------------------------------|-------|-------------------------------------------------|-------|----------------------------------------------|-------|--|--|--|--|--|
| NaCl                                            |                                     | NaBr                                            |       | Na <sub>2</sub> SO <sub>4</sub>                 |       | Na <sub>3</sub> PO <sub>4</sub>              |       |  |  |  |  |  |
| $\frac{10^{3}}{[C_{16}MImCl]} / \\ mol.kg^{-1}$ | r                                   | $\frac{10^{3}}{[C_{16}MImCl]} / \\ mol.kg^{-1}$ | r     | $\frac{10^{3}}{[C_{16}MImCl]} / \\ mol.kg^{-1}$ | r     | $\frac{10^3}{[C_{16}MImCl]}/ \\ mol.kg^{-1}$ | r     |  |  |  |  |  |
| 0                                               | 0.342                               | 0                                               | 0.252 | 0                                               | 0.299 | 0                                            | 0.245 |  |  |  |  |  |
| 0.007                                           | 0.313                               | 0.011                                           | 0.219 | 0.004                                           | 0.310 | 0.006                                        | 0.255 |  |  |  |  |  |
| 0.022                                           | 0.303                               | 0.022                                           | 0.181 | 0.009                                           | 0.336 | 0.017                                        | 0.257 |  |  |  |  |  |
| 0.050                                           | 0.304                               | 0.045                                           | 0.171 | 0.017                                           | 0.301 | 0.029                                        | 0.257 |  |  |  |  |  |
| 0.079                                           | 0.279                               | 0.067                                           | 0.165 | 0.026                                           | 0.306 | 0.044                                        | 0.254 |  |  |  |  |  |
| 0.107                                           | 0.258                               | 0.100                                           | 0.162 | 0.043                                           | 0.295 | 0.067                                        | 0.248 |  |  |  |  |  |
| 0.150                                           | 0.231                               | 0.155                                           | 0.128 | 0.060                                           | 0.283 | 0.090                                        | 0.240 |  |  |  |  |  |
| 0.206                                           | 0.223                               | 0.209                                           | 0.109 | 0.085                                           | 0.248 | 0.113                                        | 0.227 |  |  |  |  |  |
| 0.275                                           | 0.198                               | 0.317                                           | 0.081 | 0.111                                           | 0.230 | 0.147                                        | 0.173 |  |  |  |  |  |
| 0.344                                           | 0.180                               | 0.423                                           | 0.067 | 0.153                                           | 0.206 | 0.204                                        | 0.105 |  |  |  |  |  |
| 0.447                                           | 0.156                               | 0.579                                           | 0.063 | 0.236                                           | 0.192 | 0.261                                        | 0.079 |  |  |  |  |  |
| 0.580                                           | 0.117                               | 0.781                                           | 0.059 | 0.358                                           | 0.188 | 0.317                                        | 0.071 |  |  |  |  |  |
| 0.777                                           | 0.096                               | 1.025                                           | 0.058 | 0.556                                           | 0.181 | 0.372                                        | 0.062 |  |  |  |  |  |
| 1.029                                           | 0.077                               | 1.398                                           | 0.050 | 0.929                                           | 0.181 | 0.455                                        | 0.056 |  |  |  |  |  |
| 1.273                                           | 0.061                               |                                                 |       | 1.276                                           | 0.181 | 0.563                                        | 0.055 |  |  |  |  |  |
| 1.566                                           | 0.060                               |                                                 |       | 1.599                                           | 0.176 | 0.671                                        | 0.053 |  |  |  |  |  |
| 1.846                                           | 0.061                               |                                                 |       | 1.901                                           | 0.177 |                                              |       |  |  |  |  |  |
| 2.370                                           | 0.062                               |                                                 |       | 2.450                                           | 0.176 |                                              |       |  |  |  |  |  |

# 2.12. Time resolved quenching data of Pyrene in presence of different [CPC] in presence of $Na_2SO_4$ and $Na_3PO_4$ (0.001 mol.kg<sup>-1</sup>) at 298.15 K

|           |             | Quenching of 0.001 mol.k | Pyrene in present<br>g <sup>-1</sup> concentration | ce of CPC at<br>of Na <sub>2</sub> SO <sub>4</sub> | Quenching of Pyrene in presence of CPC at 0.001 mol.kg <sup>-1</sup> concentration of Na <sub>3</sub> PO <sub>4</sub> |                                          |                                   |  |
|-----------|-------------|--------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|--|
| Time (ns) | prompt      | [CPC] = 0<br>mmol.kg-1   | [CPC] = 0.16mmol.kg <sup>-1</sup>                  | [CPC] =<br>0.31<br>mmol.kg <sup>-1</sup>           | [CPC] = 0<br>mmol.kg-1                                                                                                | [CPC] =<br>0.16<br>mmol.kg <sup>-1</sup> | [CPC] = 0.31mmol.kg <sup>-1</sup> |  |
|           | log (Count) | log (Count)              | log (Count)                                        | log (Count)                                        | log (Count)                                                                                                           | log (Count)                              | log (Count)                       |  |
| 0.48      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 0.96      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 1.44      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 1.92      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 2.40      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 2.87      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 3.35      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 3.83      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 4.31      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 4.79      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 5.27      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |
| 5.75      | 0           | 0                        | 0                                                  | 0                                                  | 0                                                                                                                     | 0                                        | 0                                 |  |

| 6.23  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|-------|------|------|------|------|------|------|------|
| 6.71  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 7.19  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 7.67  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 8.14  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 8.62  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 9.10  | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| 9.58  | 9    | 6    | 7    | 3    | 0    | 2    | 7    |
| 10.06 | 889  | 357  | 312  | 361  | 236  | 254  | 281  |
| 10.54 | 2160 | 1248 | 1298 | 1362 | 1258 | 1281 | 1267 |
| 11.02 | 893  | 1806 | 1835 | 1877 | 1750 | 1748 | 1882 |
| 11.50 | 158  | 1940 | 1989 | 2003 | 1980 | 2003 | 2001 |
| 11.98 | 39   | 2000 | 2005 | 1945 | 2002 | 1948 | 1961 |
| 12.46 | 10   | 1908 | 1840 | 1890 | 1926 | 1803 | 1793 |
| 12.94 | 2    | 1949 | 1923 | 1786 | 1870 | 1831 | 1843 |
| 13.41 | 1    | 1972 | 1806 | 1807 | 1925 | 1824 | 1781 |
| 13.89 | 1    | 1819 | 1730 | 1742 | 1826 | 1750 | 1724 |
| 14.37 | 0    | 1892 | 1893 | 1759 | 1832 | 1768 | 1692 |
| 14.85 | 0    | 1872 | 1895 | 1715 | 1981 | 1827 | 1767 |
| 15.33 | 0    | 1862 | 1646 | 1598 | 1785 | 1620 | 1705 |
| 15.81 | 0    | 1836 | 1605 | 1533 | 1768 | 1649 | 1614 |
| 16.29 | 1    | 1820 | 1701 | 1583 | 1846 | 1733 | 1583 |
| 16.77 | 0    | 1793 | 1654 | 1502 | 1800 | 1686 | 1495 |
| 17.25 | 0    | 1746 | 1550 | 1457 | 1681 | 1551 | 1466 |
| 17.73 | 0    | 1768 | 1586 | 1519 | 1872 | 1596 | 1516 |
| 18.21 | 0    | 1741 | 1564 | 1455 | 1770 | 1581 | 1476 |
| 18.68 | 0    | 1658 | 1567 | 1367 | 1725 |      | 1412 |
| 19.16 | 0    | 1777 | 1522 | 1445 | 1792 | 1534 | 1393 |
| 19.64 | 0    | 1768 | 1552 | 1420 | 1767 | 1513 |      |
| 20.12 | 0    | 1735 | 1518 | 1360 | 1640 | 1494 | 1391 |
| 20.60 | 0    | 1675 | 1475 | 1372 | 1673 | 1558 | 1355 |
| 21.08 | 0    | 1691 | 1513 | 1252 | 1808 | 1488 | 1319 |
| 21.56 | 0    | 1618 | 1510 | 1264 | 1754 | 1442 | 1274 |
| 22.04 | 0    | 1609 | 1418 | 1284 | 1631 | 1365 | 1191 |
| 22.52 | 1    | 1639 | 1465 | 1246 | 1763 | 1455 | 1306 |
| 23.00 | 0    | 1650 | 1451 | 1233 | 1645 | 1392 | 1259 |
| 23.48 | 0    | 1615 | 1382 | 1241 | 1609 | 1367 | 1176 |
| 23.95 | 0    | 1664 | 1376 | 1211 | 1633 | 1392 | 1246 |
| 24.43 | 0    | 1641 | 1459 | 1146 | 1603 | 1373 | 1233 |
| 24.91 | 0    | 1595 | 1392 | 1111 | 1669 | 1347 | 1087 |
| 25.39 | 0    | 1610 | 1340 | 1154 | 1677 | 1365 | 1136 |
| 25.87 | 0    | 1570 | 1382 | 1193 | 1629 | 1289 | 1165 |
| 26.35 | 0    | 1565 | 1313 | 1077 | 1592 | 1328 | 1005 |
| 26.83 | 0    | 1598 | 1241 | 1104 | 1638 | 1345 | 1142 |

| 27.31 | 0 | 1550 | 1332 | 1088 | 1609 | 1301 | 1135 |
|-------|---|------|------|------|------|------|------|
| 27.79 | 0 | 1516 | 1283 | 1027 | 1426 | 1295 | 1006 |
| 28.27 | 0 | 1471 | 1327 | 1028 | 1619 | 1261 | 1004 |
| 28.74 | 0 | 1535 | 1199 | 973  | 1612 | 1216 | 1055 |
| 29.22 | 0 | 1490 | 1253 | 1020 | 1546 | 1257 | 1007 |
| 29.70 | 0 | 1524 | 1228 | 1005 | 1567 | 1263 | 1008 |
| 30.18 | 0 | 1518 | 1233 | 991  | 1582 | 1208 | 1023 |
| 30.66 | 0 | 1524 | 1284 | 943  | 1568 | 1166 | 958  |
| 31.14 | 0 | 1500 | 1137 | 907  | 1531 | 1118 | 981  |
| 31.62 | 0 | 1509 | 1134 | 924  | 1518 | 1185 | 975  |
| 32.10 | 0 | 1536 | 1136 | 902  | 1466 | 1167 | 950  |
| 32.58 | 0 | 1498 | 1100 | 958  | 1487 | 1075 | 935  |
| 33.06 | 0 | 1434 | 1149 | 909  | 1544 | 1177 | 935  |
| 33.54 | 0 | 1472 | 1146 | 889  | 1482 | 1130 | 940  |
| 34.01 | 0 | 1442 | 1121 | 898  | 1466 | 1141 | 855  |
| 34.49 | 1 | 1374 | 1070 | 837  | 1429 | 1106 | 869  |
| 34.97 | 0 | 1468 | 1102 | 828  | 1414 | 1062 | 854  |
| 35.45 | 0 | 1436 | 1068 | 811  | 1445 | 1053 | 829  |
| 35.93 | 0 | 1432 | 1083 | 805  | 1502 | 1058 | 830  |
| 36.41 | 0 | 1441 | 1074 | 824  | 1442 | 1048 | 831  |
| 36.89 | 0 | 1374 | 1049 | 823  | 1447 | 1057 | 774  |
| 37.37 | 0 | 1354 | 981  | 750  | 1436 | 1033 | 784  |
| 37.85 | 0 |      |      | 756  | 1433 | 1027 | 842  |
| 38.33 | 0 | 1359 | 1032 | 710  | 1417 | 1078 | 824  |
| 39.28 | 0 | 1407 | 1066 | 762  | 1458 | 1067 | 820  |
| 39.76 | 0 | 1393 | 1043 | 709  | 1372 | 1032 | 772  |
| 40.24 | 0 | 1369 | 1011 | 668  | 1395 | 992  | 760  |
| 40.72 | 0 | 1370 | 1000 | 719  | 1401 | 1011 | 816  |
| 41.20 | 0 | 1343 | 953  | 710  |      | 1013 | 744  |
| 41.68 | 0 | 1342 | 947  | 691  | 1344 | 958  | 719  |
| 42.16 | 0 | 1342 | 953  | 659  | 1372 | 981  | 733  |
| 42.64 | 0 | 1334 | 977  | 694  | 1370 | 955  | 730  |
| 43.12 | 0 | 1306 | 999  | 661  | 1299 | 948  | 692  |
| 43.60 | 0 | 1328 | 974  | 673  | 1386 | 942  | 682  |
| 44.08 | 0 | 1256 | 966  | 677  | 1372 | 953  | 662  |
| 44.55 | 0 | 1289 | 922  | 668  | 1272 | 917  | 696  |
| 45.03 | 0 | 1330 | 949  | 649  | 1376 | 989  | 712  |
| 45.51 | 0 | 1329 | 915  | 621  | 1291 | 930  | 678  |
| 45.99 | 0 | 1249 | 915  | 593  | 1399 | 909  | 653  |
| 46.47 | 0 | 1255 | 901  | 618  | 1280 | 886  | 659  |
| 46.95 | 0 | 1234 | 872  | 636  | 1316 | 880  | 635  |
| 47.43 | 0 | 1223 | 882  | 584  | 1324 | 895  | 654  |
| 47.91 | 0 | 1245 | 856  | 560  | 1222 | 857  | 666  |
| 48.39 | 0 | 1255 | 908  | 597  | 1411 | 849  | 635  |

| 48.87 | 0 | 1268 | 910 | 574 | 1308 | 794 | 676 |
|-------|---|------|-----|-----|------|-----|-----|
| 49.35 | 0 | 1255 | 820 | 556 | 1265 | 817 | 659 |
| 49.82 | 0 | 1285 | 856 | 546 | 1265 | 874 | 659 |
| 50.30 | 0 | 1206 | 776 | 559 | 1274 | 828 | 615 |
| 50.78 | 0 | 1271 | 804 | 558 | 1257 | 854 | 606 |
| 51.26 | 0 | 1216 | 847 | 550 | 1281 | 821 | 604 |
| 51.74 | 0 | 1230 | 805 | 513 | 1220 | 877 | 621 |
| 52.22 | 0 | 1105 | 828 | 537 | 1204 | 776 | 595 |
| 52.70 | 0 | 1208 | 823 | 533 | 1246 | 863 | 562 |
| 53.18 | 0 | 1191 | 829 | 560 | 1188 | 771 | 574 |
| 53.66 | 0 | 1144 | 820 | 559 | 1230 | 780 | 578 |
| 54.14 | 0 | 1215 | 774 | 536 | 1256 | 819 | 558 |
| 54.62 | 0 | 1210 | 780 | 536 | 1170 | 795 | 625 |
| 55.09 | 0 | 1184 | 780 | 535 | 1220 | 802 | 575 |
| 55.57 | 0 | 1203 | 787 | 532 | 1258 | 768 | 520 |
| 56.05 | 0 | 1221 | 794 | 491 | 1204 | 772 | 522 |
| 56.53 | 0 | 1096 | 735 | 472 | 1240 | 767 | 549 |
| 57.01 | 0 | 1191 | 760 | 484 | 1191 | 744 | 487 |
| 57.49 | 0 | 1156 | 715 | 461 | 1267 | 742 | 536 |
| 57.97 | 0 | 1201 | 756 | 483 | 1217 | 803 | 478 |
| 58.45 | 0 | 1104 | 740 | 454 | 1215 | 770 | 506 |
| 58.93 | 0 | 1118 | 772 | 435 | 1192 | 747 | 546 |
| 59.41 | 0 | 1148 | 711 | 465 | 1149 | 791 | 528 |
| 59.89 | 0 | 1159 | 708 | 495 | 1209 | 736 | 488 |
| 60.36 | 0 | 1151 | 732 | 471 | 1191 | 762 | 505 |
| 60.84 | 0 | 1115 | 756 | 485 | 1105 | 747 | 521 |
| 61.32 | 0 | 1138 | 717 | 443 | 1194 | 725 | 481 |
| 61.80 | 0 | 1088 | 790 | 450 | 1248 | 726 | 465 |
| 62.28 | 0 | 1098 | 697 | 467 | 1154 | 738 | 503 |
| 62.76 | 0 | 1077 | 687 | 408 | 1164 | 709 | 509 |
| 63.24 | 0 | 1063 | 697 | 416 | 1179 | 737 | 433 |
| 63.72 | 0 | 1161 | 716 | 448 | 1151 | 678 | 479 |
| 64.20 | 1 | 1122 | 686 | 434 | 1175 | 695 | 441 |
| 64.68 | 0 | 1088 | 726 | 416 | 1088 | 691 | 450 |
| 65.16 | 0 | 1137 | 631 | 431 | 1147 | 710 | 460 |
| 65.63 | 0 | 1169 | 659 | 409 | 1121 | 712 | 428 |
| 66.11 | 0 | 1043 | 696 | 417 | 1158 | 725 | 453 |
| 66.59 | 0 | 1116 | 715 | 402 | 1148 | 648 | 416 |
| 67.07 | 0 | 1079 | 626 | 423 | 1109 | 669 | 402 |
| 67.55 | 0 | 1090 | 648 | 400 | 1103 | 641 | 438 |
| 68.03 | 0 | 1092 | 691 | 424 | 1127 | 675 | 442 |
| 68.51 | 0 | 1098 | 667 | 383 | 1113 | 636 | 446 |
| 68.99 | 0 | 1014 | 640 | 378 | 1143 | 686 | 443 |
| 69.47 | 0 | 1033 | 649 | 392 | 1122 | 679 | 419 |

| 69.95 | 0 | 1090 | 630 | 405 | 1031 | 643 | 439 |
|-------|---|------|-----|-----|------|-----|-----|
| 70.43 | 0 | 1038 | 710 | 383 | 1180 | 677 | 440 |
| 70.90 | 0 | 1078 | 618 | 388 | 1076 | 663 | 445 |
| 71.38 | 0 | 1088 | 648 | 329 | 1075 | 618 | 388 |
| 71.86 | 0 | 1094 | 625 | 375 | 1038 | 635 | 415 |
| 72.34 | 0 | 1033 | 659 | 364 | 1164 | 599 | 436 |
| 72.82 | 0 | 997  | 639 | 364 | 1076 | 610 | 412 |
| 73.30 | 0 | 1014 | 585 | 358 | 1051 | 624 | 416 |
| 73.78 | 0 | 1034 | 610 | 360 | 1089 | 638 | 442 |
| 74.26 | 0 | 1029 | 606 | 345 | 1032 | 586 | 394 |
| 74.74 | 0 | 1030 | 577 | 347 | 1082 | 642 | 361 |
| 75.22 | 0 | 1000 | 555 | 352 | 1048 | 603 | 373 |
| 75.70 | 0 | 992  | 622 | 339 | 1071 | 605 | 404 |
| 76.17 | 0 | 973  | 566 | 367 | 1036 | 607 | 360 |
| 76.65 | 0 | 1025 | 579 | 367 | 1028 | 623 | 379 |
| 77.13 | 0 | 996  | 563 | 341 | 1034 | 589 | 367 |
| 77.61 | 0 | 991  | 544 | 329 | 1051 | 573 | 338 |
| 78.09 | 0 | 968  | 514 | 318 | 1009 | 576 | 357 |
| 78.57 | 0 | 957  | 560 | 331 | 960  | 583 | 348 |
| 79.05 | 0 | 924  | 533 | 314 | 1058 | 591 | 371 |
| 79.53 | 0 | 913  | 545 | 346 | 1012 | 572 | 360 |
| 80.01 | 0 | 990  | 550 | 306 | 1006 | 574 | 367 |
| 80.49 | 0 | 950  | 569 | 309 | 1015 | 534 | 379 |
| 80.96 | 0 | 975  | 586 | 289 | 1029 | 551 | 353 |
| 81.44 | 0 | 980  | 530 | 307 | 1003 | 569 | 370 |
| 81.92 | 0 | 994  | 508 | 325 | 955  | 538 | 318 |
| 82.40 | 0 | 920  | 533 | 309 | 987  | 542 | 337 |
| 82.88 | 0 | 928  | 542 | 293 | 1055 | 539 | 338 |
| 83.36 | 0 | 997  | 532 | 284 | 968  | 518 | 348 |
| 83.84 | 0 | 953  | 531 | 292 | 1030 | 547 | 331 |
| 84.32 | 0 | 952  | 524 | 283 | 985  | 541 | 333 |
| 84.80 | 0 | 926  | 539 | 287 | 987  | 564 | 298 |
| 85.28 | 0 | 957  | 527 | 274 | 1016 | 520 | 342 |
| 85.76 | 0 | 920  | 533 | 274 | 1059 | 546 | 322 |
| 86.23 | 0 | 963  | 513 | 294 | 939  | 568 | 340 |
| 86.71 | 0 | 914  | 523 | 284 | 967  | 508 | 331 |
| 87.19 | 0 | 950  | 499 | 294 | 954  | 526 | 309 |
| 87.67 | 0 | 953  | 503 | 278 | 919  | 510 | 326 |
| 88.15 | 0 | 918  | 516 | 270 | 1033 | 543 | 312 |
| 88.63 | 0 | 888  | 509 | 278 | 935  | 539 | 313 |
| 89.11 | 0 | 878  | 492 | 272 | 936  | 487 | 307 |
| 89.59 | 0 | 930  | 511 | 263 | 966  | 502 | 320 |
| 90.07 | 0 | 894  | 497 | 269 | 964  | 492 | 276 |
| 90.55 | 0 | 898  | 465 | 272 | 985  | 483 | 300 |

| 91.03 | 0 | 928 | 505 | 283 | 935 | 535 | 278 |
|-------|---|-----|-----|-----|-----|-----|-----|
| 91.50 | 0 | 882 | 492 | 267 | 928 | 472 | 288 |
| 91.98 | 0 | 887 | 482 | 254 | 954 | 525 | 331 |
| 92.46 | 0 | 862 | 487 | 239 | 912 | 501 | 296 |
| 92.94 | 0 | 899 | 470 | 243 | 888 | 486 | 312 |
| 93.42 | 0 | 908 | 476 | 273 | 916 | 489 | 322 |
| 93.90 | 0 | 893 | 473 | 266 | 958 | 496 | 284 |
| 94.38 | 0 | 876 | 426 | 254 | 962 | 503 | 291 |
| 94.86 | 0 | 815 | 421 | 250 | 904 | 478 | 287 |
| 95.34 | 0 | 865 | 457 | 246 | 898 | 482 | 248 |
| 95.82 | 0 | 887 | 470 | 251 | 919 | 441 | 290 |
| 96.30 | 0 | 854 | 482 | 238 | 922 | 474 | 304 |
| 96.77 | 0 | 869 | 467 | 260 | 829 | 451 | 278 |
| 97.25 | 0 | 846 | 428 | 274 | 846 | 493 | 263 |
| 97.73 | 0 | 859 | 464 | 220 | 902 | 452 | 298 |
| 98.21 | 0 | 865 | 502 | 248 | 869 | 486 | 300 |
| 98.69 | 0 | 884 | 467 | 231 | 940 | 457 | 254 |
| 99.17 | 0 | 853 | 424 | 229 | 868 | 465 | 280 |
| 99.65 | 0 | 770 | 422 | 232 | 903 | 483 | 262 |
| 100.1 | 0 | 882 | 446 | 216 | 870 | 429 | 259 |
| 100.6 | 0 | 897 | 425 | 216 | 927 | 465 | 298 |
| 101.1 | 0 | 798 | 446 | 253 | 886 | 505 | 251 |
| 101.6 | 0 | 819 | 419 | 199 | 873 | 418 | 251 |
| 102.0 | 0 | 792 | 393 | 242 | 883 | 423 | 260 |
| 102.5 | 0 | 846 | 444 | 229 | 867 | 446 | 277 |
| 103.0 | 0 | 857 | 400 | 205 | 903 | 431 | 224 |
| 103.5 | 0 | 816 | 400 | 213 | 875 | 458 | 229 |
| 104.0 | 0 | 838 | 408 | 202 | 891 | 459 | 278 |
| 104.4 | 0 | 775 | 444 | 203 | 836 | 439 | 240 |
| 104.9 | 0 | 779 | 432 | 244 | 841 | 431 | 264 |
| 105.4 | 0 | 744 | 443 | 205 | 886 | 404 | 233 |
| 105.9 | 0 | 820 | 379 | 210 | 854 | 440 | 253 |
| 106.4 | 0 | 857 | 428 | 234 | 872 | 435 | 250 |
| 106.8 | 0 | 734 | 417 | 204 | 842 | 399 | 252 |
| 107.3 | 0 | 804 | 400 | 195 | 856 | 443 | 242 |
| 107.8 | 0 | 767 | 400 | 225 | 849 | 405 | 217 |
| 108.3 | 0 | 748 | 428 | 194 | 879 | 408 | 254 |
| 108.8 | 0 | 763 | 425 | 220 | 829 | 426 | 256 |
| 109.2 | 0 | 771 | 410 | 202 | 863 | 428 | 232 |
| 109.7 | 0 | 771 | 433 | 200 | 822 | 418 | 246 |
| 110.2 | 0 | 760 | 415 | 207 | 862 | 418 | 250 |
| 110.7 | 0 | 800 | 402 | 183 | 836 | 405 | 203 |
| 111.1 | 0 | 764 | 367 | 209 | 832 | 434 | 253 |
| 111.6 | 0 | 767 | 369 | 200 | 824 | 425 | 214 |

| 112.1 | 0 | 811 | 400 | 192 | 842 | 378 | 271 |
|-------|---|-----|-----|-----|-----|-----|-----|
| 112.6 | 0 | 804 | 404 | 179 | 853 | 419 | 243 |
| 113.1 | 0 | 751 | 395 | 195 | 796 | 426 | 247 |
| 113.5 | 0 | 727 | 395 | 204 | 863 | 368 | 196 |
| 114.0 | 0 | 751 | 384 | 208 | 805 | 400 | 250 |
| 114.5 | 0 | 715 | 413 | 187 | 812 | 420 | 224 |
| 115.0 | 0 | 761 | 368 | 179 | 818 | 374 | 238 |
| 115.5 | 0 | 770 | 369 | 196 | 753 | 420 | 219 |
| 115.9 | 0 | 776 | 390 | 187 | 781 | 411 | 199 |
| 116.4 | 0 | 714 | 356 | 169 | 782 | 370 | 218 |
| 116.9 | 0 | 763 | 380 | 161 | 724 | 405 | 205 |
| 117.4 | 0 | 753 | 351 | 174 | 776 | 371 | 185 |
| 117.9 | 0 | 744 | 361 | 177 | 801 | 361 | 219 |
| 118.3 | 0 | 741 | 346 | 185 | 795 | 380 | 234 |
| 118.8 | 0 | 742 | 382 | 179 | 816 | 396 | 199 |
| 119.3 | 0 | 715 | 360 | 148 | 829 | 373 | 218 |
| 119.8 | 0 | 775 | 385 | 169 | 791 | 386 | 202 |
| 120.2 | 0 | 707 | 342 | 167 | 796 | 365 | 197 |
| 120.7 | 0 | 737 | 386 | 163 | 791 | 381 | 219 |
| 121.2 | 0 | 715 | 353 | 186 | 782 | 362 | 214 |
| 121.7 | 0 | 722 | 362 | 172 | 711 | 377 | 212 |
| 122.2 | 0 | 672 | 379 | 168 | 772 | 316 | 203 |
| 122.6 | 0 | 672 | 353 | 142 | 759 | 356 | 205 |
| 123.1 | 0 | 690 | 352 | 186 | 759 | 316 | 201 |
| 123.6 | 0 | 694 | 364 | 172 | 748 | 413 | 208 |
| 124.1 | 0 | 668 | 331 | 165 | 768 | 368 | 202 |
| 124.6 | 0 | 677 | 357 | 170 | 726 | 351 | 200 |
| 125.0 | 0 | 695 | 316 | 153 | 725 | 362 | 186 |
| 125.5 | 0 | 712 | 350 | 166 | 758 | 340 | 200 |
| 126.0 | 0 | 695 | 360 | 168 | 703 | 336 | 221 |
| 126.5 | 0 | 632 | 314 | 185 | 726 | 341 | 184 |
| 127.0 | 0 | 676 | 347 | 138 | 739 | 367 | 200 |
| 127.4 | 0 | 693 | 346 | 161 | 775 | 356 | 200 |
| 127.9 | 0 | 701 | 320 | 149 | 715 | 327 | 184 |
| 128.4 | 0 | 626 | 351 | 155 | 735 | 342 | 177 |
| 128.9 | 0 | 686 | 309 | 161 | 638 | 358 | 186 |
| 129.4 | 0 | 653 | 334 | 142 | 737 | 372 | 187 |
| 129.8 | 0 | 687 | 353 | 150 | 743 | 350 | 184 |
| 130.3 | 0 | 661 | 326 | 145 | 727 | 324 | 159 |
| 130.8 | 0 | 665 | 338 | 149 | 693 | 322 | 164 |
| 131.3 | 0 | 651 | 329 | 136 | 685 | 332 | 188 |
| 131.7 | 0 | 644 | 338 | 130 | 730 | 316 | 162 |
| 132.2 | 0 | 660 | 367 | 144 | 733 | 306 | 165 |
| 132.7 | 0 | 621 | 310 | 160 | 750 | 351 | 166 |

| 133.2 | 0 | 615 | 291 | 150 | 722 | 353 | 191 |
|-------|---|-----|-----|-----|-----|-----|-----|
| 133.7 | 0 | 674 | 319 | 142 | 766 | 344 | 167 |
| 134.1 | 0 | 621 | 300 | 137 | 684 | 309 | 179 |
| 134.6 | 0 | 646 | 297 | 138 | 667 | 297 | 192 |
| 135.1 | 0 | 598 | 313 | 163 | 702 | 343 | 162 |
| 135.6 | 0 | 688 | 292 | 149 | 735 | 300 | 177 |
| 136.1 | 0 | 601 | 305 | 154 | 731 | 328 | 182 |
| 136.5 | 0 | 642 | 288 | 131 | 694 | 322 | 164 |
| 137.0 | 0 | 709 | 311 | 162 | 679 | 317 | 143 |
| 137.5 | 0 | 628 | 302 | 141 | 673 | 309 | 183 |
| 138.0 | 0 | 631 | 293 | 131 | 726 | 310 | 167 |
| 138.5 | 0 | 602 | 313 | 170 | 653 | 304 | 178 |
| 138.9 | 0 | 572 | 302 | 160 | 653 | 283 | 179 |
| 139.4 | 0 | 631 | 329 | 135 | 641 | 328 | 150 |
| 139.9 | 0 | 595 | 300 | 135 | 678 | 350 | 163 |
| 140.4 | 0 | 636 | 320 | 132 | 652 | 321 | 158 |
| 140.9 | 0 | 610 | 277 | 149 | 669 | 306 | 162 |
| 141.3 | 0 | 637 | 306 | 151 | 694 | 291 | 169 |
| 141.8 | 0 | 597 | 281 | 125 | 643 | 289 | 167 |
| 142.3 | 0 | 594 | 305 | 126 | 712 | 270 | 150 |
| 142.8 | 0 | 632 | 320 | 116 | 639 | 305 | 144 |
| 143.2 | 0 | 582 | 297 | 142 | 665 | 308 | 144 |
| 143.7 | 0 | 568 | 300 | 152 | 661 | 302 | 138 |
| 144.2 | 0 | 573 | 269 | 141 | 709 | 322 | 159 |
| 144.7 | 0 | 613 | 293 | 128 | 681 | 296 | 150 |
| 145.2 | 0 | 602 | 280 | 130 | 663 | 301 | 170 |
| 145.6 | 0 | 613 | 267 | 139 | 684 | 298 | 154 |
| 146.1 | 0 | 623 | 275 | 142 | 652 | 310 | 155 |
| 146.6 | 0 | 615 | 269 | 136 | 664 | 283 | 155 |
| 147.1 | 0 | 593 | 257 | 122 | 658 | 294 | 184 |
| 147.6 | 0 | 601 | 280 | 146 | 628 | 290 | 160 |
| 148.0 | 0 | 582 | 271 | 146 | 626 | 311 | 140 |
| 148.5 | 0 | 606 | 285 | 113 | 649 | 300 | 130 |
| 149.0 | 0 | 519 | 301 | 117 | 627 | 292 | 172 |
| 149.5 | 0 | 617 | 282 | 144 | 585 | 301 | 166 |
| 150.0 | 0 | 590 | 268 | 119 | 599 | 274 | 145 |
| 150.4 | 0 | 604 | 241 | 114 | 611 | 286 | 153 |
| 150.9 | 0 | 583 | 273 | 114 | 613 | 267 | 132 |
| 151.4 | 0 | 571 | 298 | 113 | 636 | 266 | 159 |
| 151.9 | 0 | 571 | 284 | 112 | 662 | 282 | 159 |
| 152.3 | 0 | 588 | 266 | 125 | 629 | 279 | 149 |
| 152.8 | 0 | 551 | 273 | 124 | 658 | 301 | 150 |
| 153.3 | 0 | 595 | 247 | 125 | 590 | 245 | 138 |
| 153.8 | 0 | 565 | 264 | 124 | 631 | 276 | 139 |

| 154.3 | 0 | 556 | 264 | 124 | 589 | 273 | 129 |
|-------|---|-----|-----|-----|-----|-----|-----|
| 154.7 | 0 | 539 | 272 | 128 | 624 | 312 | 136 |
| 155.2 | 0 | 548 | 271 | 118 | 613 | 257 | 147 |
| 155.7 | 0 | 567 | 267 | 118 | 582 | 288 | 146 |
| 156.2 | 0 | 548 | 248 | 114 | 632 | 268 | 158 |
| 156.7 | 0 | 583 | 243 | 120 | 594 | 254 | 139 |
| 157.1 | 0 | 498 | 260 | 121 | 587 | 250 | 128 |
| 157.6 | 0 | 563 | 265 | 106 | 620 | 263 | 152 |
| 158.1 | 0 | 552 | 215 | 130 | 625 | 255 | 138 |
| 158.6 | 0 | 543 | 273 | 103 | 641 | 272 | 142 |
| 159.1 | 0 | 573 | 246 | 97  | 592 | 286 | 133 |
| 159.5 | 0 | 532 | 227 | 110 | 598 | 285 | 131 |
| 160.0 | 0 | 565 | 257 | 117 | 568 | 279 | 117 |
| 160.5 | 0 | 551 | 255 | 114 | 568 | 270 | 147 |
| 161.0 | 0 | 524 | 269 | 130 | 626 | 247 | 139 |
| 161.5 | 0 | 551 | 226 | 114 | 556 | 244 | 124 |
| 161.9 | 0 | 557 | 277 | 100 | 577 | 261 | 123 |
| 162.4 | 0 | 480 | 252 | 124 | 610 | 251 | 128 |
| 162.9 | 0 | 466 | 243 | 96  | 614 | 257 | 122 |
| 163.4 | 0 | 531 | 256 | 108 | 570 | 259 | 130 |
| 163.8 | 0 | 522 | 227 | 116 | 554 | 296 | 123 |
| 164.3 | 0 | 485 | 258 | 118 | 548 | 255 | 124 |
| 164.8 | 0 | 534 | 252 | 99  | 560 | 252 | 134 |
| 165.3 | 0 | 469 | 252 | 138 | 594 | 257 | 112 |
| 165.8 | 0 | 500 | 216 | 97  | 564 | 261 | 122 |
| 166.2 | 0 | 526 | 234 | 104 | 578 | 238 | 107 |
| 166.7 | 0 | 529 | 230 | 107 | 568 | 236 | 125 |
| 167.2 | 0 | 514 | 234 | 92  | 542 | 238 | 152 |
| 167.7 | 0 | 483 | 251 | 110 | 527 | 238 | 111 |
| 168.2 | 0 | 509 | 275 | 106 | 591 | 244 | 136 |
| 168.6 | 0 | 527 | 241 | 112 | 536 | 259 | 131 |
| 169.1 | 0 | 526 | 250 | 105 | 563 | 230 | 111 |
| 169.6 | 0 | 515 | 229 | 123 | 544 | 233 | 112 |
| 170.1 | 0 | 502 | 241 | 86  | 539 | 232 | 118 |
| 170.6 | 0 | 494 | 242 | 117 | 563 | 203 | 122 |
| 171.0 | 0 | 504 | 232 | 90  | 530 | 236 | 111 |
| 171.5 | 0 | 512 | 213 | 103 | 545 | 225 | 132 |
| 172.0 | 0 | 464 | 231 | 105 | 546 | 243 | 108 |
| 172.5 | 0 | 473 | 194 | 97  | 579 | 260 | 115 |
| 172.9 | 0 | 494 | 232 | 95  | 517 | 242 | 107 |
| 173.4 | 0 | 471 | 222 | 99  | 587 | 242 | 106 |
| 173.9 | 0 | 503 | 235 | 85  | 561 | 244 | 116 |
| 174.4 | 0 | 485 | 210 | 96  | 560 | 227 | 123 |
| 174.9 | 0 | 504 | 222 | 91  | 541 | 217 | 119 |

| 175.3 | 0 | 468 | 217 | 116 | 545 | 236 | 127 |
|-------|---|-----|-----|-----|-----|-----|-----|
| 175.8 | 0 | 464 | 210 | 116 | 515 | 244 | 119 |
| 176.3 | 0 | 491 | 203 | 83  | 528 | 223 | 116 |
| 176.8 | 0 | 474 | 245 | 100 | 556 | 254 | 110 |
| 177.3 | 0 | 511 | 212 | 86  | 496 | 240 | 116 |
| 177.7 | 0 | 477 | 218 | 90  | 533 | 209 | 114 |
| 178.2 | 0 | 464 | 212 | 101 | 524 | 240 | 103 |
| 178.7 | 0 | 480 | 219 | 96  | 541 | 243 | 107 |
| 179.2 | 0 | 443 | 217 | 85  | 529 | 222 | 119 |
| 179.7 | 0 | 419 | 215 | 95  | 511 | 241 | 124 |
| 180.1 | 0 | 484 | 217 | 96  | 544 | 261 | 130 |
| 180.6 | 0 | 453 | 216 | 98  | 511 | 238 | 114 |
| 181.1 | 0 | 469 | 232 | 98  | 524 | 221 | 122 |
| 181.6 | 0 | 483 | 215 | 109 | 535 | 216 | 106 |
| 182.1 | 0 | 468 | 187 | 92  | 539 | 243 | 120 |
| 182.5 | 0 | 494 | 189 | 91  | 539 | 217 | 113 |
| 183.0 | 0 | 447 | 204 | 81  | 498 | 231 | 101 |
| 183.5 | 0 | 469 | 200 | 113 | 487 | 221 | 94  |
| 184.0 | 0 | 458 | 216 | 95  | 538 | 200 | 104 |
| 184.4 | 0 | 438 | 211 | 98  | 545 | 203 | 98  |
| 184.9 | 0 | 479 | 209 | 100 | 549 | 220 | 94  |
| 185.4 | 0 | 446 | 197 | 92  | 487 | 228 | 98  |
| 185.9 | 0 | 441 | 198 | 101 | 478 | 206 | 111 |
| 186.4 | 0 | 429 | 194 | 91  | 524 | 198 | 106 |
| 186.8 | 0 | 464 | 192 | 92  | 504 | 216 | 105 |
| 187.3 | 0 | 430 | 209 | 91  | 486 | 208 | 83  |
| 187.8 | 0 | 432 | 197 | 81  | 510 | 192 | 105 |
| 188.3 | 0 | 426 | 182 | 78  | 511 | 185 | 84  |
| 188.8 | 0 | 482 | 172 | 83  | 507 | 197 | 100 |
| 189.2 | 0 | 447 | 183 | 88  | 450 | 203 | 110 |
| 189.7 | 1 | 424 | 203 | 77  | 489 | 205 | 96  |
| 190.2 | 0 | 432 | 181 | 88  | 486 | 190 | 101 |
| 190.7 | 0 | 437 | 189 | 74  | 458 | 202 | 96  |
| 191.2 | 0 | 446 | 200 | 71  | 453 | 197 | 116 |
| 191.6 | 0 | 465 | 194 | 82  | 474 | 193 | 89  |
| 192.1 | 0 | 403 | 195 | 96  | 531 | 181 | 96  |
| 192.6 | 0 | 418 | 184 | 84  | 465 | 196 | 103 |
| 193.1 | 0 | 430 | 198 | 86  | 460 | 182 | 94  |
| 193.5 | 0 | 425 | 196 | 85  | 498 | 190 | 100 |
| 194.0 | 0 | 428 | 177 | 95  | 503 | 207 | 81  |
| 194.5 | 0 | 442 | 206 | 86  | 459 | 196 | 114 |
| 195.0 | 0 | 424 | 188 | 100 | 481 | 191 | 107 |
| 195.5 | 0 | 420 | 178 | 67  | 450 | 192 | 94  |
| 195.9 | 0 | 400 | 192 | 69  | 482 | 187 | 85  |

| 196.4 | 0 | 397 | 188 | 84 | 453 | 170 | 101 |
|-------|---|-----|-----|----|-----|-----|-----|
| 196.9 | 0 | 406 | 190 | 70 | 458 | 199 | 106 |
| 197.4 | 0 | 395 | 189 | 79 | 442 | 187 | 85  |
| 197.9 | 0 | 441 | 187 | 81 | 425 | 193 | 96  |
| 198.3 | 0 | 392 | 196 | 78 | 443 | 200 | 82  |
| 198.8 | 0 | 397 | 216 | 96 | 431 | 175 | 98  |
| 199.3 | 0 | 362 | 207 | 71 | 471 | 183 | 96  |
| 199.8 | 0 | 412 | 213 | 69 | 463 | 181 | 94  |
| 200.3 | 0 | 443 | 155 | 75 | 450 | 220 | 100 |
| 200.7 | 0 | 432 | 193 | 82 | 462 | 202 | 87  |
| 201.2 | 0 | 390 | 187 | 95 | 434 | 175 | 93  |
| 201.7 | 0 | 438 | 182 | 67 | 467 | 197 | 80  |
| 202.2 | 0 | 409 | 189 | 80 | 462 | 206 | 97  |
| 202.7 | 0 | 377 | 201 | 84 | 468 | 180 | 94  |
| 203.1 | 0 | 425 | 184 | 84 | 430 | 174 | 86  |
| 203.6 | 0 | 403 | 178 | 77 | 418 | 188 | 92  |
| 204.1 | 0 | 402 | 194 | 76 | 434 | 176 | 101 |
| 204.6 | 0 | 441 | 170 | 90 | 477 | 187 | 100 |
| 205.0 | 0 | 422 | 194 | 70 | 463 | 181 | 91  |
| 205.5 | 0 | 398 | 175 | 74 | 474 | 198 | 81  |
| 206.0 | 0 | 422 | 176 | 62 | 448 | 151 | 83  |
| 206.5 | 0 | 368 | 147 | 75 | 437 | 171 | 73  |
| 207.0 | 0 | 423 | 164 | 77 | 443 | 180 | 80  |
| 207.4 | 0 | 420 | 177 | 93 | 413 | 169 | 85  |
| 207.9 | 0 | 379 | 172 | 69 | 441 | 188 | 86  |
| 208.4 | 0 | 367 | 176 | 70 | 457 | 154 | 88  |
| 208.9 | 0 | 376 | 178 | 63 | 456 | 158 | 82  |
| 209.4 | 0 | 355 | 166 | 64 | 431 | 173 | 82  |
| 209.8 | 0 | 355 | 177 | 86 | 444 | 175 | 76  |
| 210.3 | 0 | 412 | 174 | 69 | 432 | 183 | 93  |
| 210.8 | 0 | 368 | 163 | 78 | 430 | 155 | 83  |
| 211.3 | 0 | 385 | 174 | 61 | 426 | 156 | 80  |
| 211.8 | 0 | 365 | 194 | 76 | 405 | 186 | 82  |
| 212.2 | 0 | 362 | 176 | 66 | 407 | 179 | 105 |
| 212.7 | 0 | 351 | 142 | 58 | 413 | 191 | 83  |
| 213.2 | 0 | 373 | 150 | 69 | 412 | 183 | 83  |
| 213.7 | 0 | 377 | 169 | 62 | 395 | 181 | 85  |
| 214.2 | 0 | 398 | 154 | 63 | 425 | 168 | 84  |
| 214.6 | 0 | 381 | 161 | 64 | 465 | 182 | 78  |
| 215.1 | 0 | 369 | 165 | 74 | 394 | 183 | 81  |
| 215.6 | 0 | 363 | 193 | 76 | 438 | 166 | 98  |
| 216.1 | 0 | 389 | 159 | 66 | 423 | 181 | 90  |
| 216.5 | 0 | 388 | 179 | 65 | 415 | 181 | 79  |
| 217.0 | 0 | 384 | 185 | 77 | 385 | 182 | 80  |
| 217.5 | 0 | 351 | 149 | 74 | 426 | 188 | 89 |
|-------|---|-----|-----|----|-----|-----|----|
| 218.0 | 1 | 349 | 171 | 64 | 430 | 145 | 76 |
| 218.5 | 0 | 347 | 166 | 61 | 417 | 154 | 81 |
| 218.9 | 0 | 372 | 147 | 74 | 389 | 161 | 88 |
| 219.4 | 0 | 353 | 140 | 65 | 388 | 136 | 75 |
| 219.9 | 0 | 331 | 155 | 78 | 413 | 156 | 88 |
| 220.4 | 0 | 344 | 148 | 71 | 406 | 158 | 79 |
| 220.9 | 0 | 373 | 148 | 73 | 373 | 155 | 85 |
| 221.3 | 0 | 353 | 146 | 65 | 395 | 156 | 88 |
| 221.8 | 0 | 369 | 169 | 73 | 418 | 166 | 77 |
| 222.3 | 0 | 362 | 147 | 65 | 393 | 164 | 88 |
| 222.8 | 0 | 360 | 176 | 70 | 417 | 161 | 76 |
| 223.3 | 0 | 366 | 152 | 77 | 400 | 153 | 73 |
| 223.7 | 0 | 346 | 146 | 83 | 374 | 171 | 68 |
| 224.2 | 0 | 337 | 150 | 67 | 364 | 147 | 74 |
| 224.7 | 0 | 342 | 147 | 70 | 392 | 186 | 71 |
| 225.2 | 0 | 388 | 154 | 57 | 403 | 152 | 77 |
| 225.6 | 0 | 320 | 133 | 56 | 400 | 151 | 86 |
| 226.1 | 0 | 380 | 151 | 66 | 413 | 149 | 73 |
| 226.6 | 0 | 325 | 144 | 71 | 356 | 147 | 75 |
| 227.1 | 0 | 369 | 184 | 78 | 385 | 168 | 80 |
| 227.6 | 0 | 319 | 158 | 70 | 390 | 176 | 89 |
| 228.0 | 0 | 338 | 154 | 72 | 395 | 144 | 80 |
| 228.5 | 0 | 333 | 138 | 60 | 389 | 174 | 79 |
| 229.0 | 0 | 319 | 132 | 62 | 404 | 167 | 91 |
| 229.5 | 0 | 360 | 156 | 67 | 380 | 127 | 73 |
| 230.0 | 0 | 339 | 141 | 46 | 387 | 158 | 78 |
| 230.4 | 0 | 352 | 152 | 77 | 380 | 167 | 76 |
| 230.9 | 0 | 320 | 144 | 87 | 376 | 151 | 84 |
| 231.4 | 0 | 343 | 149 | 76 | 373 | 178 | 83 |
| 231.9 | 0 | 314 | 147 | 60 | 343 | 151 | 59 |
| 232.4 | 0 | 340 | 131 | 52 | 392 | 179 | 76 |
| 232.8 | 0 | 309 | 140 | 63 | 392 | 149 | 82 |
| 233.3 | 0 | 334 | 145 | 64 | 382 | 145 | 77 |
| 233.8 | 0 | 323 | 154 | 47 | 374 | 144 | 76 |
| 234.3 | 0 | 328 | 127 | 60 | 373 | 130 | 74 |
| 234.8 | 0 | 321 | 134 | 65 | 340 | 138 | 75 |
| 235.2 | 0 | 311 | 130 | 52 | 345 | 135 | 73 |
| 235.7 | 0 | 333 | 121 | 66 | 373 | 153 | 73 |
| 236.2 | 0 | 334 | 156 | 60 | 347 | 165 | 77 |
| 236.7 | 0 | 310 | 155 | 68 | 380 | 144 | 70 |
| 237.1 | 0 | 305 | 150 | 55 | 373 | 152 | 61 |
| 237.6 | 0 | 333 | 170 | 69 | 355 | 154 | 63 |
| 238.1 | 0 | 313 | 147 | 55 | 372 | 154 | 73 |

| 238.6 | 0 | 315 | 127 | 63 | 353 | 159 | 70 |
|-------|---|-----|-----|----|-----|-----|----|
| 239.1 | 0 | 298 | 139 | 63 | 368 | 139 | 65 |
| 239.5 | 0 | 299 | 102 | 58 | 342 | 184 | 77 |
| 240.0 | 0 | 353 | 135 | 62 | 329 | 139 | 68 |
| 240.5 | 0 | 313 | 136 | 62 | 378 | 132 | 69 |
| 241.0 | 0 | 308 | 150 | 60 | 361 | 135 | 76 |
| 241.5 | 0 | 328 | 134 | 46 | 361 | 145 | 79 |
| 241.9 | 0 | 310 | 127 | 59 | 375 | 136 | 56 |
| 242.4 | 0 | 296 | 127 | 58 | 377 | 146 | 65 |
| 242.9 | 0 | 311 | 134 | 44 | 346 | 126 | 72 |
| 243.4 | 0 | 294 | 141 | 51 | 366 | 138 | 75 |
| 243.9 | 0 | 315 | 154 | 66 | 322 | 128 | 62 |
| 244.3 | 0 | 306 | 137 | 59 | 369 | 142 | 52 |
| 244.8 | 0 | 281 | 120 | 49 | 367 | 119 | 64 |
| 245.3 | 0 | 329 | 135 | 64 | 368 | 128 | 60 |
| 245.8 | 0 | 322 | 150 | 49 | 343 | 125 | 67 |
| 246.2 | 0 | 305 | 122 | 58 | 331 | 137 | 81 |
| 246.7 | 0 | 290 | 121 | 50 | 342 | 141 | 65 |
| 247.2 | 0 | 293 | 135 | 58 | 334 | 164 | 75 |
| 247.7 | 0 | 301 | 152 | 49 | 354 | 139 | 71 |
| 248.2 | 0 | 315 | 119 | 67 | 339 | 137 | 62 |
| 248.6 | 0 | 296 | 124 | 48 | 350 | 152 | 60 |
| 249.1 | 0 | 315 | 146 | 47 | 311 | 133 | 54 |
| 249.6 | 0 | 307 | 121 | 67 | 335 | 154 | 59 |
| 250.1 | 0 | 262 | 120 | 51 | 331 | 110 | 69 |
| 250.6 | 0 | 289 | 106 | 50 | 327 | 136 | 65 |
| 251.0 | 0 | 296 | 121 | 50 | 342 | 131 | 77 |
| 251.5 | 0 | 284 | 138 | 52 | 303 | 135 | 65 |
| 252.0 | 0 | 284 | 125 | 57 | 286 | 130 | 57 |
| 252.5 | 0 | 303 | 128 | 40 | 289 | 124 | 46 |
| 253.0 | 0 | 278 | 119 | 51 | 359 | 157 | 70 |
| 253.4 | 0 | 262 | 121 | 61 | 315 | 124 | 65 |
| 253.9 | 0 | 295 | 134 | 50 | 308 | 128 | 69 |
| 254.4 | 0 | 278 | 124 | 57 | 327 | 137 | 54 |
| 254.9 | 0 | 283 | 121 | 64 | 325 | 120 | 54 |
| 255.4 | 0 | 278 | 115 | 55 | 340 | 151 | 61 |
| 255.8 | 0 | 301 | 142 | 58 | 319 | 125 | 51 |
| 256.3 | 0 | 293 | 145 | 42 | 306 | 128 | 53 |
| 256.8 | 0 | 288 | 114 | 60 | 327 | 127 | 55 |
| 257.3 | 0 | 274 | 113 | 43 | 303 | 134 | 60 |
| 257.7 | 0 | 267 | 120 | 48 | 341 | 107 | 61 |
| 258.2 | 0 | 309 | 112 | 45 | 314 | 123 | 61 |
| 258.7 | 0 | 272 | 114 | 44 | 306 | 140 | 68 |
| 259.2 | 0 | 285 | 123 | 61 | 317 | 128 | 57 |

| 259.7 | 0 | 280 | 128 | 49 | 297 | 117 | 55 |
|-------|---|-----|-----|----|-----|-----|----|
| 260.1 | 0 | 305 | 108 | 46 | 325 | 124 | 57 |
| 260.6 | 0 | 276 | 115 | 50 | 307 | 126 | 59 |
| 261.1 | 0 | 258 | 129 | 50 | 315 | 139 | 46 |
| 261.6 | 0 | 306 | 129 | 54 | 338 | 158 | 74 |
| 262.1 | 0 | 244 | 108 | 46 | 317 | 115 | 61 |
| 262.5 | 0 | 275 | 122 | 45 | 304 | 128 | 62 |
| 263.0 | 0 | 247 | 101 | 51 | 300 | 107 | 67 |
| 263.5 | 0 | 297 | 107 | 50 | 323 | 114 | 51 |
| 264.0 | 0 | 271 | 119 | 43 | 296 | 134 | 63 |
| 264.5 | 0 | 270 | 117 | 47 | 277 | 127 | 54 |
| 264.9 | 0 | 260 | 113 | 46 | 297 | 114 | 51 |
| 265.4 | 0 | 250 | 98  | 36 | 318 | 150 | 57 |
| 265.9 | 0 | 259 | 143 | 58 | 297 | 114 | 68 |
| 266.4 | 0 | 261 | 117 | 47 | 337 | 136 | 54 |
| 266.8 | 0 | 259 | 112 | 54 | 309 | 106 | 55 |
| 267.3 | 0 | 263 | 132 | 46 | 295 | 116 | 62 |
| 267.8 | 0 | 295 | 107 | 51 | 286 | 110 | 55 |
| 268.3 | 0 | 287 | 110 | 49 | 299 | 129 | 53 |
| 268.8 | 0 | 264 | 111 | 42 | 284 | 119 | 55 |
| 269.2 | 0 | 278 | 107 | 42 | 310 | 110 | 52 |
| 269.7 | 0 | 287 | 106 | 44 | 300 | 102 | 57 |
| 270.2 | 0 | 241 | 112 | 35 | 291 | 118 | 53 |
| 270.7 | 0 | 273 | 126 | 57 | 295 | 97  | 63 |
| 271.2 | 0 | 248 | 109 | 45 | 299 | 102 | 55 |
| 271.6 | 0 | 267 | 105 | 47 | 340 | 107 | 59 |
| 272.1 | 0 | 291 | 123 | 37 | 301 | 130 | 52 |
| 272.6 | 0 | 264 | 126 | 42 | 288 | 108 | 65 |
| 273.1 | 0 | 232 | 99  | 43 | 298 | 99  | 49 |
| 273.6 | 0 | 257 | 90  | 57 | 299 | 142 | 50 |
| 274.0 | 0 | 266 | 109 | 60 | 285 | 88  | 63 |
| 274.5 | 0 | 255 | 90  | 40 | 328 | 121 | 53 |
| 275.0 | 0 | 254 | 113 | 46 | 276 | 130 | 48 |
| 275.5 | 0 | 252 | 101 | 41 | 312 | 106 | 48 |
| 276.0 | 0 | 252 | 106 | 38 | 280 | 102 | 45 |
| 276.4 | 0 | 248 | 99  | 42 | 274 | 114 | 54 |
| 276.9 | 0 | 230 | 105 | 47 | 301 | 104 | 53 |
| 277.4 | 0 | 223 | 110 | 48 | 290 | 96  | 46 |
| 277.9 | 0 | 233 | 108 | 37 | 265 | 111 | 44 |
| 278.3 | 0 | 255 | 120 | 41 | 281 | 106 | 49 |
| 278.8 | 0 | 256 | 97  | 55 | 284 | 111 | 45 |
| 279.3 | 0 | 240 | 119 | 47 | 277 | 127 | 57 |
| 279.8 | 0 | 236 | 106 | 45 | 262 | 117 | 46 |
| 280.3 | 0 | 232 | 83  | 33 | 279 | 124 | 57 |

| 280.7 | 0 | 267 | 106 | 42 | 258 | 109 | 40 |
|-------|---|-----|-----|----|-----|-----|----|
| 281.2 | 0 | 260 | 85  | 37 | 298 | 106 | 58 |
| 281.7 | 0 | 239 | 103 | 36 | 266 | 99  | 53 |
| 282.2 | 0 | 263 | 103 | 45 | 291 | 131 | 49 |
| 282.7 | 0 | 227 | 99  | 39 | 289 | 117 | 57 |
| 283.1 | 0 | 248 | 96  | 43 | 289 | 107 | 47 |
| 283.6 | 0 | 240 | 108 | 33 | 269 | 119 | 48 |
| 284.1 | 0 | 233 | 111 | 43 | 279 | 96  | 47 |
| 284.6 | 0 | 236 | 96  | 53 | 298 | 126 | 43 |
| 285.1 | 0 | 250 | 93  | 45 | 264 | 80  | 42 |
| 285.5 | 0 | 227 | 101 | 40 | 285 | 105 | 49 |
| 286.0 | 0 | 247 | 100 | 48 | 261 | 106 | 42 |
| 286.5 | 0 | 236 | 95  | 46 | 262 | 120 | 43 |
| 287.0 | 0 | 260 | 91  | 49 | 253 | 98  | 46 |
| 287.4 | 0 | 201 | 107 | 33 | 260 | 104 | 64 |
| 287.9 | 0 | 252 | 86  | 37 | 300 | 112 | 54 |
| 288.4 | 0 | 239 | 87  | 34 | 246 | 104 | 51 |
| 288.9 | 0 | 252 | 103 | 28 | 259 | 103 | 45 |
| 289.4 | 0 | 227 | 106 | 43 | 266 | 133 | 54 |
| 289.8 | 0 | 221 | 103 | 40 | 281 | 92  | 54 |
| 290.3 | 0 | 227 | 90  | 41 | 271 | 100 | 49 |
| 290.8 | 0 | 216 | 104 | 41 | 245 | 102 | 44 |
| 291.3 | 0 | 204 | 91  | 46 | 268 | 88  | 47 |
| 291.8 | 0 | 223 | 103 | 44 | 243 | 90  | 45 |
| 292.2 | 0 | 206 | 86  | 43 | 261 | 113 | 52 |
| 292.7 | 0 | 209 | 98  | 33 | 252 | 82  | 32 |
| 293.2 | 0 | 243 | 101 | 30 | 279 | 100 | 48 |
| 293.7 | 0 | 218 | 100 | 48 | 263 | 101 | 40 |
| 294.2 | 0 | 217 | 89  | 30 | 235 | 95  | 47 |
| 294.6 | 0 | 231 | 92  | 42 | 230 | 106 | 48 |
| 295.1 | 0 | 237 | 92  | 45 | 266 | 108 | 48 |
| 295.6 | 0 | 239 | 85  | 40 | 252 | 98  | 47 |
| 296.1 | 0 | 194 | 78  | 37 | 242 | 109 | 53 |
| 296.6 | 0 | 218 | 102 | 32 | 245 | 99  | 48 |
| 297.0 | 0 | 181 | 84  | 41 | 244 | 101 | 45 |
| 297.5 | 0 | 200 | 87  | 30 | 251 | 97  | 36 |
| 298.0 | 0 | 232 | 108 | 40 | 256 | 89  | 52 |
| 298.5 | 0 | 225 | 94  | 39 | 262 | 82  | 53 |
| 298.9 | 0 | 246 | 82  | 37 | 248 | 91  | 53 |
| 299.4 | 0 | 192 | 106 | 44 | 265 | 108 | 44 |
| 299.9 | 0 | 227 | 96  | 37 | 258 | 81  | 39 |
| 300.4 | 0 | 199 | 92  | 45 | 246 | 95  | 58 |
| 300.9 | 0 | 245 | 88  | 38 | 270 | 104 | 38 |
| 301.3 | 0 | 223 | 89  | 44 | 256 | 104 | 49 |

| 301.8 | 0 | 204 | 99  | 40 | 250 | 98  | 41 |
|-------|---|-----|-----|----|-----|-----|----|
| 302.3 | 0 | 210 | 81  | 36 | 235 | 96  | 45 |
| 302.8 | 0 | 232 | 82  | 29 | 280 | 97  | 49 |
| 303.3 | 0 | 206 | 82  | 28 | 247 | 97  | 51 |
| 303.7 | 0 | 196 | 92  | 40 | 228 | 108 | 46 |
| 304.2 | 0 | 174 | 97  | 38 | 248 | 86  | 50 |
| 304.7 | 0 | 214 | 95  | 31 | 222 | 114 | 46 |
| 305.2 | 0 | 211 | 87  | 37 | 236 | 114 | 47 |
| 305.7 | 0 | 187 | 95  | 27 | 225 | 92  | 40 |
| 306.1 | 0 | 214 | 99  | 39 | 262 | 115 | 46 |
| 306.6 | 0 | 214 | 73  | 36 | 261 | 97  | 56 |
| 307.1 | 0 | 184 | 81  | 32 | 235 | 105 | 41 |
| 307.6 | 0 | 199 | 103 | 35 | 233 | 95  | 35 |
| 308.1 | 0 | 191 | 77  | 30 | 233 | 97  | 49 |
| 308.5 | 0 | 204 | 91  | 42 | 226 | 101 | 36 |
| 309.0 | 0 | 181 | 94  | 32 | 250 | 87  | 42 |
| 309.5 | 0 | 206 | 98  | 25 | 213 | 94  | 54 |
| 310.0 | 0 | 202 | 74  | 44 | 232 | 86  | 32 |
| 310.4 | 0 | 203 | 64  | 31 | 226 | 94  | 48 |
| 310.9 | 0 | 185 | 86  | 31 | 237 | 80  | 28 |
| 311.4 | 0 | 177 | 70  | 31 | 259 | 81  | 44 |
| 311.9 | 0 | 212 | 73  | 31 | 244 | 85  | 34 |
| 312.4 | 0 | 203 | 81  | 37 | 216 | 89  | 37 |
| 312.8 | 0 | 210 | 82  | 33 | 239 | 86  | 40 |
| 313.3 | 0 | 193 | 75  | 26 | 216 | 87  | 43 |
| 313.8 | 0 | 185 | 107 | 35 | 244 | 94  | 34 |
| 314.3 | 0 | 218 | 92  | 48 | 223 | 89  | 35 |
| 314.8 | 0 | 202 | 71  | 33 | 210 | 85  | 45 |
| 315.2 | 0 | 200 | 68  | 37 | 270 | 95  | 48 |
| 315.7 | 0 | 196 | 82  | 31 | 231 | 91  | 44 |
| 316.2 | 0 | 226 | 69  | 28 | 206 | 75  | 45 |
| 316.7 | 0 | 206 | 78  | 32 | 210 | 102 | 40 |
| 317.2 | 0 | 158 | 86  | 36 | 248 | 88  | 41 |
| 317.6 | 0 | 185 | 96  | 39 | 245 | 70  | 59 |
| 318.1 | 0 | 199 | 99  | 33 | 241 | 82  | 36 |
| 318.6 | 0 | 176 | 78  | 35 | 214 | 83  | 40 |
| 319.1 | 0 | 184 | 81  | 34 | 206 | 78  | 43 |
| 319.5 | 0 | 165 | 69  | 41 | 226 | 93  | 40 |
| 320.0 | 0 | 173 | 83  | 24 | 220 | 84  | 44 |
| 320.5 | 0 | 204 | 78  | 45 | 188 | 71  | 43 |
| 321.0 | 0 | 200 | 103 | 38 | 221 | 90  | 51 |
| 321.5 | 0 | 181 | 58  | 27 | 222 | 100 | 38 |
| 321.9 | 0 | 195 | 80  | 35 | 210 | 89  | 45 |
| 322.4 | 0 | 212 | 75  | 30 | 210 | 74  | 38 |

| 322.9 | 0 | 179 | 76 | 32 | 215 | 100 | 46 |
|-------|---|-----|----|----|-----|-----|----|
| 323.4 | 0 | 176 | 75 | 39 | 216 | 83  | 38 |
| 323.9 | 0 | 184 | 83 | 30 | 200 | 93  | 39 |
| 324.3 | 0 | 183 | 79 | 36 | 202 | 80  | 37 |
| 324.8 | 0 | 180 | 80 | 32 | 191 | 80  | 30 |
| 325.3 | 0 | 180 | 73 | 35 | 211 | 84  | 30 |
| 325.8 | 0 | 184 | 80 | 41 | 199 | 85  | 37 |
| 326.3 | 0 | 178 | 73 | 27 | 191 | 88  | 41 |
| 326.7 | 0 | 176 | 70 | 31 | 194 | 73  | 46 |
| 327.2 | 0 | 175 | 70 | 27 | 239 | 81  | 39 |
| 327.7 | 0 | 190 | 72 | 40 | 209 | 70  | 40 |
| 328.2 | 0 | 172 | 72 | 45 | 218 | 57  | 52 |
| 328.7 | 1 | 173 | 85 | 32 | 196 | 81  | 39 |
| 329.1 | 0 | 206 | 72 | 33 | 204 | 91  | 51 |
| 329.6 | 0 | 184 | 84 | 28 | 199 | 68  | 31 |
| 330.1 | 0 | 166 | 88 | 33 | 206 | 82  | 47 |
| 330.6 | 0 | 171 | 68 | 36 | 216 | 71  | 36 |
| 331.0 | 0 | 179 | 72 | 31 | 230 | 82  | 42 |
| 331.5 | 0 | 185 | 77 | 35 | 212 | 95  | 33 |
| 332.0 | 0 | 167 | 67 | 32 | 216 | 79  | 47 |
| 332.5 | 0 | 189 | 71 | 20 | 214 | 76  | 43 |
| 333.0 | 0 | 177 | 68 | 33 | 223 | 77  | 29 |
| 333.4 | 0 | 176 | 81 | 31 | 226 | 73  | 38 |
| 333.9 | 0 | 166 | 66 | 31 | 191 | 86  | 44 |
| 334.4 | 0 | 171 | 84 | 35 | 230 | 73  | 32 |
| 334.9 | 0 | 189 | 71 | 30 | 199 | 74  | 35 |
| 335.4 | 0 | 174 | 86 | 22 | 172 | 77  | 30 |
| 335.8 | 0 | 167 | 81 | 42 | 196 | 67  | 37 |
| 336.3 | 0 | 157 | 74 | 28 | 197 | 70  | 39 |
| 336.8 | 0 | 153 | 73 | 32 | 213 | 73  | 36 |
| 337.3 | 0 | 188 | 82 | 31 | 207 | 64  | 34 |
| 337.8 | 0 | 155 | 63 | 31 | 186 | 79  | 40 |
| 338.2 | 0 | 168 | 77 | 31 | 194 | 79  | 39 |
| 338.7 | 0 | 155 | 54 | 23 | 207 | 85  | 42 |
| 339.2 | 0 | 184 | 79 | 27 | 175 | 84  | 45 |
| 339.7 | 0 | 171 | 70 | 31 | 170 | 80  | 30 |
| 340.1 | 0 | 148 | 71 | 27 | 204 | 81  | 36 |
| 340.6 | 0 | 149 | 68 | 23 | 186 | 78  | 42 |
| 341.1 | 0 | 163 | 66 | 28 | 182 | 71  | 36 |
| 341.6 | 0 | 170 | 71 | 34 | 187 | 74  | 38 |
| 342.1 | 0 | 178 | 65 | 33 | 175 | 86  | 25 |
| 342.5 | 0 | 141 | 72 | 39 | 203 | 66  | 39 |
| 343.0 | 0 | 161 | 83 | 20 | 184 | 90  | 37 |
| 343.5 | 0 | 179 | 75 | 35 | 192 | 86  | 41 |

| 344.0 | 0 | 142 | 59 | 30 | 202 | 66 | 30 |
|-------|---|-----|----|----|-----|----|----|
| 344.5 | 0 | 158 | 74 | 27 | 194 | 73 | 33 |
| 344.9 | 0 | 170 | 75 | 20 | 192 | 61 | 33 |
| 345.4 | 0 | 146 | 63 | 26 | 169 | 62 | 41 |
| 345.9 | 0 | 148 | 71 | 26 | 187 | 66 | 26 |
| 346.4 | 0 | 172 | 51 | 23 | 192 | 61 | 42 |
| 346.9 | 0 | 156 | 60 | 29 | 199 | 76 | 35 |
| 347.3 | 0 | 158 | 63 | 27 | 198 | 76 | 27 |
| 347.8 | 0 | 152 | 65 | 26 | 192 | 69 | 29 |
| 348.3 | 0 | 168 | 57 | 25 | 201 | 61 | 36 |
| 348.8 | 0 | 157 | 49 | 34 | 221 | 78 | 50 |
| 349.3 | 0 | 159 | 69 | 28 | 160 | 76 | 29 |
| 349.7 | 0 | 160 | 71 | 29 | 182 | 58 | 36 |
| 350.2 | 0 | 155 | 53 | 22 | 190 | 69 | 32 |
| 350.7 | 0 | 150 | 68 | 26 | 186 | 78 | 32 |
| 351.2 | 0 | 166 | 55 | 25 | 205 | 65 | 39 |
| 351.6 | 0 | 173 | 49 | 20 | 170 | 65 | 25 |
| 352.1 | 0 | 169 | 60 | 27 | 188 | 69 | 36 |
| 352.6 | 0 | 161 | 81 | 37 | 178 | 87 | 28 |
| 353.1 | 0 | 147 | 72 | 28 | 171 | 80 | 48 |
| 353.6 | 0 | 135 | 58 | 29 | 173 | 77 | 36 |
| 354.0 | 0 | 144 | 67 | 35 | 174 | 77 | 21 |
| 354.5 | 0 | 130 | 61 | 35 | 167 | 69 | 43 |
| 355.0 | 0 | 136 | 61 | 17 | 199 | 59 | 33 |
| 355.5 | 0 | 144 | 73 | 20 | 169 | 72 | 35 |
| 356.0 | 0 | 128 | 60 | 30 | 197 | 65 | 29 |
| 356.4 | 0 | 159 | 69 | 22 | 181 | 54 | 41 |
| 356.9 | 0 | 142 | 53 | 24 | 180 | 73 | 29 |
| 357.4 | 0 | 140 | 53 | 23 | 182 | 68 | 40 |
| 357.9 | 0 | 143 | 60 | 22 | 199 | 63 | 35 |
| 358.4 | 0 | 165 | 73 | 30 | 179 | 73 | 40 |
| 358.8 | 0 | 121 | 64 | 36 | 184 | 74 | 36 |
| 359.3 | 0 | 136 | 66 | 31 | 160 | 56 | 39 |
| 359.8 | 0 | 160 | 49 | 23 | 162 | 57 | 29 |
| 360.3 | 0 | 153 | 69 | 26 | 171 | 70 | 37 |
| 360.7 | 0 | 150 | 57 | 26 | 169 | 72 | 33 |
| 361.2 | 0 | 142 | 68 | 27 | 171 | 65 | 33 |
| 361.7 | 0 | 145 | 54 | 26 | 164 | 66 | 35 |
| 362.2 | 0 | 140 | 82 | 22 | 152 | 62 | 27 |
| 362.7 | 0 | 148 | 56 | 30 | 152 | 52 | 31 |
| 363.1 | 0 | 141 | 65 | 23 | 213 | 67 | 33 |
| 363.6 | 0 | 135 | 52 | 30 | 157 | 70 | 32 |
| 364.1 | 0 | 129 | 59 | 25 | 188 | 63 | 25 |
| 364.6 | 0 | 139 | 53 | 32 | 172 | 58 | 30 |

|       | - | -   |    | -  | -   | -  |    |
|-------|---|-----|----|----|-----|----|----|
| 365.1 | 0 | 141 | 57 | 31 | 183 | 67 | 23 |
| 365.5 | 0 | 147 | 70 | 21 | 165 | 64 | 29 |
| 366.0 | 0 | 117 | 59 | 16 | 159 | 62 | 28 |
| 366.5 | 0 | 156 | 65 | 27 | 154 | 80 | 22 |
| 367.0 | 0 | 145 | 67 | 17 | 174 | 58 | 33 |
| 367.5 | 0 | 131 | 66 | 30 | 152 | 66 | 37 |
| 367.9 | 0 | 146 | 59 | 25 | 173 | 65 | 42 |
| 368.4 | 0 | 163 | 60 | 16 | 153 | 69 | 23 |
| 368.9 | 0 | 136 | 62 | 17 | 137 | 75 | 31 |
| 369.4 | 0 | 140 | 69 | 13 | 161 | 72 | 28 |
| 369.9 | 0 | 133 | 67 | 24 | 160 | 71 | 22 |
| 370.3 | 0 | 143 | 50 | 27 | 172 | 53 | 33 |
| 370.8 | 0 | 140 | 62 | 20 | 146 | 78 | 26 |
| 371.3 | 0 | 154 | 48 | 30 | 168 | 58 | 32 |
| 371.8 | 0 | 132 | 53 | 24 | 156 | 59 | 34 |
| 372.2 | 0 | 141 | 61 | 23 | 167 | 72 | 29 |
| 372.7 | 0 | 132 | 55 | 19 | 173 | 63 | 29 |
| 373.2 | 0 | 127 | 67 | 18 | 163 | 62 | 29 |
| 373.7 | 0 | 142 | 58 | 31 | 172 | 76 | 28 |
| 374.2 | 0 | 136 | 67 | 23 | 163 | 61 | 31 |
| 374.6 | 0 | 136 | 66 | 18 | 164 | 65 | 18 |
| 375.1 | 0 | 138 | 54 | 25 | 195 | 63 | 28 |
| 375.6 | 0 | 140 | 51 | 23 | 137 | 68 | 30 |
| 376.1 | 0 | 108 | 51 | 22 | 174 | 66 | 25 |
| 376.6 | 0 | 135 | 63 | 25 | 158 | 70 | 32 |
| 377.0 | 0 | 124 | 53 | 25 | 147 | 66 | 31 |
| 377.5 | 0 | 148 | 58 | 23 | 159 | 64 | 23 |
| 378.0 | 0 | 130 | 66 | 22 | 155 | 58 | 22 |
| 378.5 | 0 | 138 | 43 | 29 | 181 | 60 | 22 |
| 379.0 | 0 | 159 | 55 | 19 | 160 | 51 | 27 |
| 379.4 | 0 | 130 | 50 | 25 | 160 | 56 | 21 |
| 379.9 | 0 | 135 | 47 | 22 | 140 | 63 | 24 |
| 380.4 | 0 | 128 | 54 | 22 | 148 | 68 | 40 |
| 380.9 | 0 | 109 | 56 | 15 | 141 | 61 | 17 |
| 381.3 | 0 | 135 | 50 | 18 | 174 | 57 | 33 |
| 381.8 | 0 | 135 | 54 | 20 | 158 | 61 | 32 |
| 382.3 | 0 | 125 | 47 | 30 | 146 | 53 | 23 |
| 382.8 | 0 | 116 | 52 | 30 | 146 | 53 | 26 |
| 383.3 | 0 | 126 | 54 | 24 | 164 | 58 | 22 |
| 383.7 | 0 | 104 | 61 | 19 | 158 | 62 | 28 |
| 384.2 | 0 | 112 | 50 | 17 | 146 | 56 | 33 |
| 384.7 | 0 | 149 | 64 | 23 | 155 | 59 | 27 |
| 385.2 | 0 | 113 | 56 | 26 | 137 | 47 | 19 |
| 385.7 | 0 | 122 | 56 | 23 | 129 | 67 | 33 |
|       | - |     |    |    |     |    |    |

| 386.1 | 0 | 119 | 52 | 17 | 153 | 55 | 23 |
|-------|---|-----|----|----|-----|----|----|
| 386.6 | 0 | 122 | 51 | 16 | 164 | 57 | 33 |
| 387.1 | 0 | 120 | 51 | 19 | 150 | 50 | 35 |
| 387.6 | 0 | 112 | 38 | 20 | 145 | 55 | 25 |
| 388.1 | 0 | 118 | 46 | 26 | 122 | 69 | 24 |
| 388.5 | 0 | 119 | 61 | 21 | 155 | 56 | 33 |
| 389.0 | 0 | 116 | 46 | 18 | 148 | 60 | 19 |
| 389.5 | 0 | 111 | 48 | 16 | 142 | 50 | 35 |
| 390.0 | 0 | 136 | 56 | 17 | 144 | 51 | 27 |
| 390.5 | 0 | 106 | 37 | 20 | 140 | 68 | 27 |
| 390.9 | 0 | 123 | 38 | 20 | 126 | 46 | 36 |
| 391.4 | 0 | 105 | 50 | 24 | 135 | 54 | 25 |
| 391.9 | 0 | 99  | 50 | 21 | 139 | 46 | 34 |
| 392.4 | 0 | 113 | 60 | 18 | 157 | 59 | 37 |
| 392.8 | 0 | 115 | 49 | 32 | 120 | 57 | 34 |
| 393.3 | 0 | 111 | 46 | 15 | 124 | 50 | 17 |
| 393.8 | 0 | 120 | 43 | 20 | 145 | 61 | 29 |
| 394.3 | 0 | 122 | 43 | 22 | 143 | 57 | 21 |
| 394.8 | 0 | 115 | 49 | 18 | 138 | 46 | 24 |
| 395.2 | 0 | 126 | 42 | 23 | 121 | 58 | 20 |
| 395.7 | 0 | 121 | 50 | 18 | 148 | 60 | 24 |
| 396.2 | 0 | 119 | 56 | 18 | 132 | 54 | 23 |
| 396.7 | 0 | 131 | 50 | 20 | 144 | 55 | 25 |
| 397.2 | 0 | 99  | 55 | 20 | 127 | 51 | 26 |
| 397.6 | 0 | 137 | 54 | 18 | 149 | 54 | 24 |
| 398.1 | 0 | 102 | 59 | 25 | 150 | 57 | 23 |
| 398.6 | 0 | 105 | 44 | 24 | 150 | 50 | 21 |
| 399.1 | 0 | 104 | 40 | 21 | 161 | 52 | 20 |
| 399.6 | 0 | 113 | 54 | 32 | 152 | 58 | 28 |
| 400.0 | 0 | 124 | 44 | 15 | 135 | 49 | 26 |
| 400.5 | 0 | 106 | 47 | 19 | 122 | 60 | 29 |
| 401.0 | 0 | 104 | 35 | 19 | 145 | 49 | 28 |
| 401.5 | 0 | 110 | 38 | 22 | 116 | 48 | 26 |
| 402.0 | 0 | 113 | 47 | 21 | 145 | 63 | 18 |
| 402.4 | 0 | 121 | 59 | 17 | 126 | 55 | 18 |
| 402.9 | 0 | 117 | 45 | 21 | 136 | 49 | 24 |
| 403.4 | 0 | 117 | 56 | 23 | 147 | 55 | 17 |
| 403.9 | 0 | 93  | 42 | 11 | 151 | 49 | 20 |
| 404.3 | 0 | 113 | 48 | 18 | 126 | 49 | 25 |
| 404.8 | 0 | 108 | 44 | 13 | 110 | 66 | 22 |
| 405.3 | 0 | 103 | 51 | 23 | 125 | 54 | 27 |
| 405.8 | 0 | 90  | 45 | 19 | 135 | 42 | 27 |
| 406.3 | 0 | 103 | 55 | 17 | 133 | 54 | 35 |
| 406.7 | 0 | 108 | 43 | 22 | 151 | 58 | 29 |

| 407.2 | 0 | 111 | 51 | 15 | 130 | 56 | 21 |
|-------|---|-----|----|----|-----|----|----|
| 407.7 | 0 | 114 | 38 | 21 | 123 | 57 | 22 |
| 408.2 | 0 | 97  | 51 | 25 | 127 | 40 | 30 |
| 408.7 | 0 | 123 | 47 | 27 | 126 | 55 | 23 |
| 409.1 | 0 | 104 | 42 | 23 | 116 | 49 | 19 |
| 409.6 | 0 | 122 | 44 | 16 | 125 | 57 | 21 |
| 410.1 | 0 | 95  | 60 | 17 | 120 | 53 | 26 |
| 410.6 | 0 | 121 | 44 | 15 | 120 | 46 | 17 |
| 411.1 | 0 | 103 | 53 | 17 | 138 | 55 | 13 |
| 411.5 | 0 | 90  | 57 | 29 | 147 | 55 | 20 |
| 412.0 | 0 | 98  | 36 | 18 | 145 | 54 | 24 |
| 412.5 | 0 | 98  | 44 | 17 | 128 | 52 | 25 |
| 413.0 | 0 | 93  | 32 | 13 | 128 | 49 | 29 |
| 413.4 | 0 | 102 | 44 | 21 | 127 | 59 | 21 |
| 413.9 | 0 | 112 | 30 | 16 | 126 | 50 | 10 |
| 414.4 | 0 | 104 | 49 | 24 | 135 | 52 | 25 |
| 414.9 | 0 | 108 | 35 | 17 | 139 | 39 | 17 |
| 415.4 | 0 | 109 | 44 | 30 | 153 | 49 | 30 |
| 415.8 | 0 | 110 | 50 | 15 | 124 | 42 | 30 |
| 416.3 | 0 | 101 | 36 | 17 | 130 | 40 | 29 |
| 416.8 | 0 | 119 | 51 | 16 | 124 | 51 | 22 |
| 417.3 | 0 | 93  | 43 | 16 | 126 | 41 | 21 |
| 417.8 | 0 | 89  | 44 | 17 | 142 | 41 | 21 |
| 418.2 | 0 | 114 | 47 | 10 | 131 | 52 | 19 |
| 418.7 | 0 | 91  | 46 | 22 | 122 | 47 | 15 |
| 419.2 | 0 | 101 | 37 | 12 | 117 | 57 | 19 |
| 419.7 | 0 | 111 | 39 | 16 | 120 | 53 | 19 |
| 420.2 | 0 | 105 | 50 | 15 | 109 | 58 | 19 |
| 420.6 | 0 | 86  | 47 | 15 | 125 | 42 | 22 |
| 421.1 | 0 | 94  | 51 | 23 | 121 | 62 | 24 |
| 421.6 | 0 | 105 | 44 | 13 | 128 | 51 | 14 |
| 422.1 | 0 | 96  | 49 | 14 | 123 | 48 | 23 |
| 422.6 | 0 | 104 | 35 | 14 | 108 | 39 | 14 |
| 423.0 | 0 | 99  | 45 | 16 | 108 | 57 | 25 |
| 423.5 | 0 | 92  | 48 | 14 | 108 | 43 | 23 |
| 424.0 | 0 | 87  | 37 | 12 | 109 | 44 | 24 |
| 424.5 | 0 | 120 | 36 | 20 | 109 | 40 | 20 |
| 424.9 | 0 | 95  | 32 | 16 | 115 | 51 | 23 |
| 425.4 | 0 | 82  | 40 | 13 | 122 | 39 | 20 |
| 425.9 | 0 | 108 | 53 | 12 | 121 | 46 | 18 |
| 426.4 | 0 | 94  | 44 | 9  | 106 | 32 | 19 |
| 426.9 | 0 | 114 | 42 | 16 | 111 | 34 | 19 |
| 427.3 | 0 | 90  | 37 | 15 | 111 | 30 | 18 |
| 427.8 | 0 | 84  | 36 | 15 | 110 | 42 | 18 |

| 428.3 | 0 | 80  | 34 | 11 | 131 | 48 | 16 |
|-------|---|-----|----|----|-----|----|----|
| 428.8 | 0 | 97  | 32 | 18 | 105 | 47 | 19 |
| 429.3 | 0 | 91  | 34 | 14 | 120 | 36 | 13 |
| 429.7 | 0 | 107 | 43 | 12 | 121 | 56 | 29 |
| 430.2 | 0 | 100 | 29 | 14 | 95  | 53 | 24 |
| 430.7 | 0 | 91  | 46 | 20 | 131 | 46 | 23 |
| 431.2 | 0 | 100 | 29 | 10 | 112 | 52 | 21 |
| 431.7 | 0 | 91  | 35 | 12 | 109 | 40 | 22 |
| 432.1 | 0 | 98  | 33 | 15 | 116 | 45 | 25 |
| 432.6 | 0 | 108 | 34 | 17 | 117 | 42 | 20 |
| 433.1 | 0 | 89  | 34 | 22 | 96  | 55 | 13 |
| 433.6 | 0 | 80  | 37 | 13 | 120 | 35 | 27 |
| 434.0 | 0 | 70  | 51 | 18 | 113 | 43 | 9  |
| 434.5 | 0 | 84  | 38 | 10 | 113 | 35 | 18 |
| 435.0 | 0 | 82  | 34 | 12 | 104 | 50 | 14 |
| 435.5 | 0 | 92  | 35 | 17 | 107 | 55 | 25 |
| 436.0 | 0 | 86  | 41 | 11 | 111 | 33 | 14 |
| 436.4 | 0 | 73  | 44 | 15 | 100 | 29 | 22 |
| 436.9 | 0 | 79  | 18 | 11 | 116 | 51 | 31 |
| 437.4 | 0 | 80  | 40 | 11 | 106 | 32 | 13 |
| 437.9 | 0 | 78  | 38 | 17 | 120 | 55 | 22 |
| 438.4 | 0 | 104 | 33 | 20 | 105 | 50 | 24 |
| 438.8 | 0 | 82  | 46 | 14 | 98  | 39 | 26 |
| 439.3 | 0 | 80  | 33 | 10 | 129 | 56 | 17 |
| 439.8 | 0 | 82  | 36 | 8  | 120 | 31 | 21 |
| 440.3 | 0 | 72  | 39 | 29 | 128 | 48 | 14 |
| 440.8 | 0 | 74  | 28 | 10 | 108 | 37 | 18 |
| 441.2 | 0 | 84  | 36 | 22 | 103 | 38 | 18 |
| 441.7 | 0 | 75  | 40 | 14 | 116 | 39 | 16 |
| 442.2 | 0 | 97  | 35 | 22 | 120 | 54 | 25 |
| 442.7 | 0 | 100 | 29 | 18 | 97  | 44 | 18 |
| 443.2 | 0 | 82  | 31 | 14 | 103 | 44 | 12 |
| 443.6 | 0 | 92  | 40 | 14 | 118 | 43 | 27 |
| 444.1 | 0 | 88  | 40 | 13 | 95  | 28 | 18 |
| 444.6 | 0 | 90  | 35 | 8  | 85  | 51 | 14 |
| 445.1 | 0 | 78  | 40 | 15 | 114 | 32 | 19 |
| 445.5 | 0 | 92  | 28 | 20 | 91  | 40 | 21 |
| 446.0 | 0 | 80  | 39 | 16 | 103 | 40 | 15 |
| 446.5 | 0 | 84  | 33 | 10 | 112 | 40 | 13 |
| 447.0 | 0 | 81  | 33 | 15 | 94  | 37 | 14 |
| 447.5 | 0 | 82  | 33 | 20 | 95  | 47 | 13 |
| 447.9 | 0 | 98  | 37 | 15 | 102 | 35 | 19 |
| 448.4 | 0 | 84  | 26 | 13 | 116 | 45 | 20 |
| 448.9 | 0 | 103 | 37 | 23 | 88  | 41 | 14 |

| 449.4 | 0 | 83  | 33 | 13 | 119 | 39 | 18 |
|-------|---|-----|----|----|-----|----|----|
| 449.9 | 0 | 99  | 28 | 9  | 112 | 44 | 14 |
| 450.3 | 0 | 75  | 34 | 11 | 106 | 37 | 18 |
| 450.8 | 0 | 84  | 48 | 14 | 94  | 26 | 15 |
| 451.3 | 0 | 67  | 37 | 16 | 100 | 42 | 21 |
| 451.8 | 0 | 88  | 26 | 14 | 94  | 30 | 16 |
| 452.3 | 0 | 89  | 46 | 11 | 114 | 44 | 24 |
| 452.7 | 0 | 89  | 28 | 17 | 100 | 36 | 23 |
| 453.2 | 0 | 79  | 32 | 17 | 110 | 43 | 21 |
| 453.7 | 0 | 75  | 35 | 19 | 100 | 34 | 13 |
| 454.2 | 0 | 77  | 41 | 10 | 96  | 43 | 19 |
| 454.6 | 0 | 89  | 32 | 13 | 84  | 32 | 14 |
| 455.1 | 0 | 83  | 33 | 12 | 92  | 42 | 15 |
| 455.6 | 0 | 80  | 25 | 16 | 76  | 38 | 16 |
| 456.1 | 0 | 83  | 37 | 17 | 90  | 48 | 14 |
| 456.6 | 0 | 83  | 23 | 22 | 88  | 31 | 18 |
| 457.0 | 0 | 84  | 36 | 14 | 99  | 35 | 13 |
| 457.5 | 0 | 88  | 26 | 15 | 97  | 47 | 24 |
| 458.0 | 0 | 82  | 40 | 14 | 85  | 37 | 21 |
| 458.5 | 0 | 75  | 31 | 16 | 94  | 34 | 13 |
| 459.0 | 0 | 65  | 25 | 10 | 107 | 42 | 15 |
| 459.4 | 0 | 77  | 30 | 12 | 104 | 42 | 19 |
| 459.9 | 0 | 106 | 21 | 14 | 92  | 41 | 24 |
| 460.4 | 0 | 82  | 21 | 8  | 99  | 36 | 24 |
| 460.9 | 0 | 86  | 24 | 13 | 87  | 35 | 18 |
| 461.4 | 0 | 78  | 28 | 12 | 98  | 40 | 18 |
| 461.8 | 0 | 61  | 31 | 12 | 89  | 26 | 20 |
| 462.3 | 0 | 73  | 29 | 12 | 103 | 38 | 18 |
| 462.8 | 0 | 84  | 26 | 14 | 85  | 34 | 15 |
| 463.3 | 0 | 73  | 23 | 13 | 88  | 46 | 13 |
| 463.8 | 0 | 60  | 31 | 5  | 97  | 33 | 19 |
| 464.2 | 0 | 77  | 38 | 10 | 96  | 37 | 14 |
| 464.7 | 0 | 70  | 26 | 10 | 94  | 33 | 14 |
| 465.2 | 0 | 67  | 28 | 8  | 92  | 30 | 17 |
| 465.7 | 0 | 58  | 37 | 11 | 105 | 41 | 14 |
| 466.1 | 0 | 75  | 23 | 14 | 89  | 37 | 13 |
| 466.6 | 0 | 72  | 26 | 25 | 100 | 31 | 24 |
| 467.1 | 0 | 89  | 29 | 15 | 86  | 42 | 12 |
| 467.6 | 0 | 77  | 31 | 14 | 86  | 41 | 12 |
| 468.1 | 0 | 58  | 27 | 15 | 87  | 35 | 10 |
| 468.5 | 0 | 82  | 33 | 16 | 93  | 39 | 16 |
| 469.0 | 0 | 70  | 29 | 9  | 92  | 36 | 11 |
| 469.5 | 0 | 61  | 36 | 10 | 106 | 30 | 13 |
| 470.0 | 0 | 73  | 27 | 20 | 98  | 41 | 18 |

|       |   | r  |    |    |     |    |    |
|-------|---|----|----|----|-----|----|----|
| 470.5 | 0 | 68 | 36 | 14 | 94  | 47 | 12 |
| 470.9 | 0 | 80 | 31 | 8  | 94  | 25 | 23 |
| 471.4 | 0 | 72 | 23 | 14 | 82  | 39 | 11 |
| 471.9 | 0 | 76 | 28 | 19 | 104 | 37 | 20 |
| 472.4 | 0 | 64 | 26 | 12 | 91  | 39 | 16 |
| 472.9 | 0 | 70 | 29 | 19 | 108 | 32 | 18 |
| 473.3 | 0 | 77 | 21 | 10 | 98  | 34 | 15 |
| 473.8 | 0 | 71 | 33 | 13 | 96  | 39 | 13 |
| 474.3 | 0 | 78 | 26 | 7  | 99  | 35 | 13 |
| 474.8 | 0 | 57 | 40 | 9  | 101 | 33 | 19 |
| 475.3 | 0 | 75 | 26 | 12 | 87  | 36 | 19 |
| 475.7 | 0 | 62 | 26 | 16 | 85  | 37 | 13 |
| 476.2 | 0 | 66 | 31 | 14 | 96  | 39 | 14 |
| 476.7 | 0 | 77 | 31 | 14 | 74  | 32 | 13 |
| 477.2 | 0 | 78 | 25 | 7  | 89  | 38 | 14 |
| 477.6 | 0 | 61 | 24 | 19 | 86  | 28 | 13 |
| 478.1 | 0 | 87 | 31 | 12 | 71  | 37 | 15 |
| 478.6 | 0 | 77 | 30 | 14 | 95  | 35 | 14 |
| 479.1 | 0 | 76 | 21 | 12 | 94  | 23 | 10 |
| 479.6 | 0 | 82 | 27 | 10 | 94  | 31 | 18 |
| 480.0 | 0 | 66 | 31 | 11 | 86  | 36 | 10 |
| 480.5 | 0 | 71 | 27 | 14 | 92  | 45 | 13 |
| 481.0 | 0 | 83 | 34 | 18 | 77  | 34 | 9  |
| 481.5 | 0 | 70 | 36 | 10 | 78  | 32 | 15 |
| 482.0 | 0 | 78 | 21 | 3  | 88  | 26 | 13 |
| 482.4 | 0 | 73 | 32 | 13 | 84  | 31 | 21 |
| 482.9 | 0 | 76 | 25 | 13 | 91  | 32 | 10 |
| 483.4 | 0 | 64 | 29 | 15 | 95  | 25 | 11 |
| 483.9 | 0 | 76 | 22 | 13 | 89  | 31 | 13 |
| 484.4 | 0 | 78 | 28 | 14 | 83  | 20 | 20 |
| 484.8 | 0 | 68 | 26 | 8  | 84  | 31 | 20 |
| 485.3 | 0 | 73 | 31 | 7  | 79  | 33 | 9  |
| 485.8 | 0 | 64 | 39 | 14 | 98  | 24 | 12 |
| 486.3 | 0 | 67 | 23 | 4  | 73  | 34 | 16 |
| 486.7 | 0 | 46 | 31 | 7  | 68  | 34 | 9  |
| 487.2 | 0 | 66 | 32 | 9  | 89  | 28 | 13 |
| 487.7 | 0 | 70 | 31 | 7  | 81  | 25 | 18 |
| 488.2 | 0 | 78 | 31 | 13 | 81  | 30 | 15 |
| 488.7 | 0 | 71 | 34 | 14 | 92  | 28 | 14 |
| 489.1 | 0 | 66 | 31 | 11 | 71  | 31 | 16 |
| 489.6 | 0 | 74 | 30 | 11 | 95  | 32 | 14 |
| 490.1 | 0 | 65 | 31 | 13 | 79  | 37 | 11 |
| 490.6 | 0 | 81 | 33 | 12 | 92  | 38 | 23 |
| 491.1 | 0 | 59 | 29 | 14 | 76  | 40 | 15 |
|       |   |    |    |    | ·   | ·  | ·  |

| 491.5 | 0 | 60 | 26 | 13 | 77 | 33 | 17 |
|-------|---|----|----|----|----|----|----|
| 492.0 | 0 | 60 | 17 | 14 | 71 | 24 | 11 |
| 492.5 | 0 | 74 | 31 | 10 | 69 | 19 | 18 |
| 493.0 | 0 | 60 | 29 | 6  | 72 | 27 | 12 |
| 493.5 | 0 | 52 | 15 | 16 | 72 | 36 | 12 |
| 493.9 | 0 | 59 | 17 | 8  | 88 | 54 | 17 |
| 494.4 | 0 | 51 | 23 | 14 | 87 | 34 | 13 |
| 494.9 | 0 | 56 | 29 | 11 | 73 | 33 | 15 |
| 495.4 | 0 | 60 | 20 | 18 | 96 | 20 | 9  |
| 495.9 | 0 | 64 | 34 | 9  | 58 | 34 | 12 |
| 496.3 | 0 | 62 | 21 | 13 | 83 | 30 | 14 |
| 496.8 | 0 | 63 | 28 | 11 | 75 | 30 | 10 |
| 497.3 | 0 | 64 | 22 | 14 | 70 | 31 | 14 |
| 497.8 | 0 | 63 | 26 | 8  | 53 | 33 | 13 |
| 498.2 | 0 | 67 | 24 | 19 | 80 | 29 | 10 |
| 498.7 | 0 | 57 | 30 | 7  | 82 | 23 | 8  |
| 499.2 | 0 | 56 | 19 | 15 | 71 | 25 | 23 |
| 499.7 | 0 | 60 | 31 | 15 | 81 | 22 | 14 |
| 500.2 | 0 | 53 | 25 | 11 | 76 | 31 | 17 |
| 500.6 | 0 | 62 | 30 | 11 | 78 | 29 | 14 |
| 501.1 | 0 | 52 | 25 | 12 | 75 | 21 | 16 |
| 501.6 | 0 | 54 | 18 | 17 | 69 | 33 | 14 |
| 502.1 | 0 | 77 | 18 | 13 | 71 | 24 | 12 |
| 502.6 | 0 | 61 | 30 | 11 | 64 | 33 | 17 |
| 503.0 | 0 | 56 | 26 | 13 | 83 | 38 | 10 |
| 503.5 | 0 | 61 | 18 | 12 | 61 | 31 | 7  |
| 504.0 | 0 | 52 | 15 | 11 | 78 | 18 | 14 |
| 504.5 | 0 | 83 | 28 | 10 | 70 | 28 | 14 |
| 505.0 | 0 | 49 | 25 | 11 | 74 | 18 | 13 |
| 505.4 | 0 | 56 | 28 | 8  | 83 | 25 | 20 |
| 505.9 | 0 | 69 | 16 | 11 | 80 | 23 | 12 |
| 506.4 | 0 | 62 | 16 | 11 | 61 | 26 | 12 |
| 506.9 | 0 | 46 | 27 | 9  | 76 | 30 | 15 |
| 507.3 | 0 | 51 | 21 | 9  | 88 | 34 | 13 |
| 507.8 | 0 | 61 | 32 | 10 | 71 | 30 | 13 |
| 508.3 | 0 | 62 | 22 | 5  | 70 | 32 | 13 |
| 508.8 | 0 | 56 | 23 | 8  | 72 | 21 | 18 |
| 509.3 | 0 | 64 | 31 | 6  | 68 | 30 | 12 |
| 509.7 | 0 | 61 | 18 | 9  | 58 | 25 | 16 |
| 510.2 | 0 | 54 | 27 | 13 | 69 | 24 | 14 |
| 510.7 | 0 | 61 | 17 | 8  | 73 | 26 | 7  |
| 511.2 | 0 | 63 | 26 | 7  | 87 | 23 | 14 |
| 511.7 | 0 | 65 | 28 | 11 | 85 | 22 | 13 |
| 512.1 | 0 | 54 | 26 | 11 | 65 | 32 | 9  |

| 512.6 | 0 | 53 | 29 | 10 | 76 | 29 | 16 |
|-------|---|----|----|----|----|----|----|
| 513.1 | 0 | 66 | 20 | 8  | 83 | 33 | 12 |
| 513.6 | 0 | 56 | 24 | 6  | 70 | 18 | 10 |
| 514.1 | 0 | 54 | 19 | 5  | 50 | 27 | 9  |
| 514.5 | 0 | 63 | 18 | 11 | 75 | 20 | 14 |
| 515.0 | 0 | 47 | 18 | 8  | 75 | 25 | 12 |
| 515.5 | 0 | 69 | 19 | 8  | 67 | 31 | 12 |
| 516.0 | 0 | 41 | 22 | 9  | 63 | 33 | 17 |
| 516.5 | 0 | 50 | 27 | 10 | 74 | 24 | 7  |
| 516.9 | 0 | 56 | 28 | 7  | 60 | 31 | 10 |
| 517.4 | 0 | 59 | 17 | 10 | 65 | 26 | 14 |
| 517.9 | 0 | 49 | 16 | 11 | 56 | 22 | 14 |
| 518.4 | 0 | 48 | 21 | 5  | 61 | 31 | 14 |
| 518.8 | 0 | 59 | 24 | 4  | 48 | 29 | 19 |
| 519.3 | 0 | 61 | 25 | 8  | 69 | 29 | 11 |
| 519.8 | 0 | 45 | 15 | 7  | 66 | 22 | 11 |
| 520.3 | 0 | 49 | 25 | 11 | 67 | 22 | 12 |
| 520.8 | 0 | 51 | 19 | 8  | 68 | 18 | 7  |
| 521.2 | 0 | 51 | 27 | 11 | 64 | 20 | 16 |
| 521.7 | 0 | 51 | 28 | 12 | 71 | 34 | 9  |
| 522.2 | 0 | 48 | 30 | 6  | 75 | 26 | 13 |
| 522.7 | 0 | 47 | 17 | 10 | 74 | 18 | 16 |
| 523.2 | 0 | 54 | 21 | 7  | 71 | 19 | 9  |
| 523.6 | 0 | 52 | 23 | 8  | 66 | 21 | 14 |
| 524.1 | 0 | 41 | 27 | 10 | 55 | 22 | 10 |
| 524.6 | 0 | 57 | 19 | 5  | 66 | 23 | 14 |
| 525.1 | 0 | 58 | 32 | 10 | 69 | 29 | 17 |
| 525.6 | 0 | 51 | 25 | 13 | 71 | 25 | 11 |
| 526.0 | 0 | 62 | 19 | 9  | 64 | 21 | 10 |
| 526.5 | 0 | 44 | 32 | 8  | 78 | 22 | 13 |
| 527.0 | 0 | 57 | 12 | 10 | 68 | 24 | 10 |
| 527.5 | 0 | 46 | 22 | 14 | 71 | 22 | 5  |
| 527.9 | 0 | 45 | 22 | 10 | 67 | 35 | 11 |
| 528.4 | 0 | 44 | 29 | 6  | 72 | 28 | 10 |
| 528.9 | 0 | 54 | 27 | 3  | 70 | 22 | 17 |
| 529.4 | 0 | 52 | 16 | 6  | 76 | 25 | 11 |
| 529.9 | 0 | 32 | 30 | 6  | 69 | 21 | 11 |
| 530.3 | 0 | 46 | 18 | 6  | 49 | 33 | 19 |
| 530.8 | 0 | 53 | 24 | 11 | 54 | 29 | 11 |
| 531.3 | 0 | 42 | 16 | 14 | 64 | 18 | 11 |
| 531.8 | 0 | 50 | 15 | 8  | 59 | 29 | 14 |
| 532.3 | 0 | 47 | 23 | 13 | 44 | 21 | 11 |
| 532.7 | 0 | 53 | 28 | 8  | 51 | 22 | 16 |
| 533.2 | 0 | 44 | 19 | 9  | 63 | 11 | 5  |

| 533.7 | 0 | 44 | 16 | 6  | 63 | 24 | 10 |
|-------|---|----|----|----|----|----|----|
| 534.2 | 0 | 43 | 19 | 9  | 53 | 20 | 15 |
| 534.7 | 0 | 45 | 24 | 4  | 59 | 14 | 11 |
| 535.1 | 0 | 47 | 23 | 8  | 46 | 17 | 13 |
| 535.6 | 0 | 63 | 24 | 10 | 66 | 28 | 11 |
| 536.1 | 0 | 47 | 21 | 9  | 62 | 17 | 9  |
| 536.6 | 0 | 48 | 16 | 12 | 65 | 22 | 12 |
| 537.1 | 0 | 56 | 28 | 4  | 67 | 16 | 11 |
| 537.5 | 0 | 47 | 16 | 6  | 65 | 22 | 6  |
| 538.0 | 0 | 46 | 18 | 7  | 70 | 24 | 10 |
| 538.5 | 0 | 56 | 21 | 7  | 62 | 17 | 11 |
| 539.0 | 0 | 53 | 20 | 7  | 58 | 29 | 8  |
| 539.4 | 0 | 56 | 20 | 9  | 62 | 27 | 10 |
| 539.9 | 0 | 45 | 18 | 4  | 54 | 26 | 9  |
| 540.4 | 0 | 51 | 18 | 13 | 61 | 20 | 13 |
| 540.9 | 0 | 65 | 20 | 6  | 58 | 15 | 19 |
| 541.4 | 0 | 53 | 16 | 11 | 63 | 23 | 10 |
| 541.8 | 0 | 49 | 17 | 15 | 53 | 27 | 6  |
| 542.3 | 0 | 45 | 15 | 7  | 71 | 28 | 11 |
| 542.8 | 0 | 56 | 20 | 9  | 68 | 17 | 8  |
| 543.3 | 0 | 44 | 23 | 12 | 59 | 18 | 8  |
| 543.8 | 0 | 50 | 15 | 7  | 58 | 25 | 8  |
| 544.2 | 0 | 56 | 20 | 8  | 65 | 20 | 15 |
| 544.7 | 0 | 45 | 18 | 4  | 63 | 26 | 12 |
| 545.2 | 0 | 47 | 30 | 9  | 64 | 19 | 18 |
| 545.7 | 0 | 52 | 13 | 9  | 51 | 20 | 13 |
| 546.2 | 0 | 44 | 20 | 8  | 62 | 22 | 11 |
| 546.6 | 0 | 50 | 18 | 3  | 63 | 24 | 12 |
| 547.1 | 0 | 43 | 18 | 9  | 49 | 23 | 7  |
| 547.6 | 0 | 44 | 18 | 5  | 51 | 30 | 6  |
| 548.1 | 0 | 51 | 21 | 7  | 68 | 18 | 11 |
| 548.5 | 0 | 45 | 15 | 10 | 54 | 23 | 10 |
| 549.0 | 0 | 59 | 20 | 5  | 58 | 17 | 12 |
| 549.5 | 0 | 39 | 21 | 8  | 55 | 24 | 6  |
| 550.0 | 0 | 46 | 16 | 5  | 50 | 30 | 10 |
| 550.5 | 0 | 51 | 13 | 8  | 56 | 21 | 7  |
| 550.9 | 0 | 42 | 21 | 7  | 57 | 21 | 10 |
| 551.4 | 0 | 57 | 22 | 9  | 44 | 23 | 17 |
| 551.9 | 0 | 31 | 16 | 9  | 55 | 17 | 10 |
| 552.4 | 0 | 48 | 24 | 6  | 75 | 23 | 14 |
| 552.9 | 0 | 44 | 13 | 6  | 44 | 21 | 7  |
| 553.3 | 0 | 49 | 16 | 6  | 67 | 20 | 14 |
| 553.8 | 0 | 39 | 23 | 5  | 44 | 21 | 7  |
| 554.3 | 0 | 41 | 15 | 6  | 51 | 19 | 11 |

| 554.8 | 0 | 51 | 14 | 8  | 43 | 26 | 9  |
|-------|---|----|----|----|----|----|----|
| 555.3 | 0 | 40 | 12 | 8  | 43 | 14 | 5  |
| 555.7 | 0 | 43 | 21 | 10 | 57 | 21 | 13 |
| 556.2 | 0 | 56 | 16 | 7  | 46 | 22 | 8  |
| 556.7 | 0 | 54 | 16 | 7  | 66 | 23 | 5  |
| 557.2 | 0 | 32 | 15 | 5  | 47 | 23 | 9  |
| 557.7 | 0 | 41 | 19 | 7  | 53 | 21 | 7  |
| 558.1 | 0 | 50 | 18 | 9  | 46 | 18 | 6  |
| 558.6 | 0 | 48 | 18 | 11 | 56 | 23 | 2  |
| 559.1 | 0 | 47 | 19 | 6  | 47 | 16 | 10 |
| 559.6 | 0 | 41 | 14 | 4  | 51 | 20 | 10 |
| 560.0 | 0 | 38 | 13 | 8  | 71 | 15 | 12 |
| 560.5 | 0 | 53 | 11 | 11 | 54 | 25 | 13 |
| 561.0 | 0 | 41 | 15 | 2  | 55 | 21 | 11 |
| 561.5 | 0 | 47 | 17 | 9  | 55 | 18 | 11 |
| 562.0 | 0 | 41 | 22 | 4  | 60 | 18 | 10 |
| 562.4 | 0 | 51 | 23 | 5  | 62 | 12 | 11 |
| 562.9 | 0 | 50 | 16 | 7  | 65 | 16 | 12 |
| 563.4 | 0 | 34 | 21 | 7  | 58 | 19 | 9  |
| 563.9 | 0 | 40 | 17 | 8  | 58 | 17 | 11 |
| 564.4 | 0 | 42 | 20 | 9  | 38 | 20 | 11 |
| 564.8 | 0 | 51 | 15 | 9  | 53 | 14 | 12 |
| 565.3 | 0 | 42 | 19 | 9  | 62 | 29 | 9  |
| 565.8 | 0 | 46 | 19 | 6  | 45 | 25 | 8  |
| 566.3 | 0 | 44 | 17 | 7  | 49 | 33 | 13 |
| 566.8 | 0 | 25 | 10 | 8  | 59 | 19 | 11 |
| 567.2 | 0 | 42 | 8  | 4  | 67 | 17 | 5  |
| 567.7 | 0 | 37 | 23 | 9  | 61 | 28 | 3  |
| 568.2 | 0 | 46 | 19 | 6  | 41 | 17 | 5  |
| 568.7 | 0 | 53 | 15 | 4  | 47 | 22 | 9  |
| 569.2 | 0 | 36 | 16 | 4  | 42 | 24 | 8  |
| 569.6 | 0 | 42 | 14 | 5  | 57 | 25 | 8  |
| 570.1 | 0 | 53 | 20 | 3  | 60 | 22 | 13 |
| 570.6 | 0 | 46 | 15 | 7  | 54 | 26 | 7  |
| 571.1 | 0 | 29 | 18 | 4  | 51 | 6  | 6  |
| 571.5 | 0 | 55 | 11 | 3  | 34 | 11 | 13 |
| 572.0 | 0 | 36 | 15 | 7  | 55 | 17 | 5  |
| 572.5 | 0 | 40 | 20 | 7  | 42 | 15 | 9  |
| 573.0 | 0 | 26 | 14 | 9  | 47 | 19 | 10 |
| 573.5 | 0 | 43 | 21 | 6  | 57 | 26 | 10 |
| 573.9 | 0 | 30 | 16 | 5  | 62 | 20 | 11 |
| 574.4 | 0 | 44 | 16 | 7  | 47 | 21 | 8  |
| 574.9 | 0 | 46 | 16 | 8  | 38 | 21 | 9  |
| 575.4 | 0 | 39 | 17 | 10 | 60 | 31 | 6  |

| 575.9 | 0 | 32 | 14 | 2  | 54 | 12 | 9  |
|-------|---|----|----|----|----|----|----|
| 576.3 | 0 | 36 | 15 | 8  | 44 | 14 | 6  |
| 576.8 | 0 | 24 | 13 | 5  | 44 | 18 | 4  |
| 577.3 | 0 | 37 | 13 | 6  | 42 | 13 | 14 |
| 577.8 | 0 | 37 | 15 | 5  | 48 | 25 | 6  |
| 578.3 | 0 | 33 | 21 | 5  | 56 | 26 | 14 |
| 578.7 | 0 | 43 | 23 | 7  | 33 | 14 | 5  |
| 579.2 | 0 | 27 | 16 | 5  | 41 | 16 | 5  |
| 579.7 | 0 | 41 | 10 | 4  | 37 | 19 | 5  |
| 580.2 | 0 | 38 | 14 | 5  | 39 | 22 | 7  |
| 580.6 | 0 | 34 | 13 | 4  | 39 | 20 | 6  |
| 581.1 | 0 | 36 | 11 | 5  | 44 | 14 | 9  |
| 581.6 | 0 | 39 | 23 | 9  | 45 | 15 | 11 |
| 582.1 | 0 | 35 | 18 | 8  | 48 | 27 | 10 |
| 582.6 | 0 | 36 | 14 | 6  | 53 | 21 | 9  |
| 583.0 | 0 | 34 | 25 | 8  | 36 | 15 | 15 |
| 583.5 | 0 | 36 | 14 | 5  | 42 | 24 | 10 |
| 584.0 | 0 | 30 | 14 | 7  | 36 | 15 | 9  |
| 584.5 | 0 | 42 | 18 | 8  | 58 | 23 | 10 |
| 585.0 | 0 | 44 | 16 | 10 | 56 | 17 | 9  |
| 585.4 | 0 | 39 | 10 | 6  | 44 | 20 | 15 |
| 585.9 | 0 | 42 | 7  | 6  | 48 | 21 | 6  |
| 586.4 | 0 | 32 | 21 | 6  | 49 | 14 | 14 |
| 586.9 | 0 | 36 | 9  | 11 | 36 | 17 | 5  |
| 587.4 | 0 | 34 | 13 | 4  | 46 | 24 | 9  |
| 587.8 | 0 | 38 | 11 | 5  | 43 | 20 | 4  |
| 588.3 | 0 | 37 | 9  | 3  | 52 | 8  | 8  |
| 588.8 | 0 | 34 | 17 | 8  | 52 | 11 | 5  |
| 589.3 | 0 | 33 | 12 | 9  | 49 | 18 | 6  |
| 589.8 | 0 | 30 | 14 | 4  | 52 | 9  | 4  |
| 590.2 | 0 | 27 | 8  | 11 | 42 | 16 | 10 |
| 590.7 | 0 | 31 | 20 | 8  | 48 | 22 | 4  |
| 591.2 | 0 | 30 | 13 | 1  | 35 | 19 | 10 |
| 591.7 | 0 | 39 | 16 | 7  | 33 | 23 | 8  |
| 592.1 | 0 | 25 | 10 | 4  | 32 | 15 | 11 |
| 592.6 | 0 | 34 | 19 | 3  | 38 | 17 | 12 |
| 593.1 | 0 | 45 | 10 | 9  | 50 | 15 | 9  |
| 593.6 | 0 | 24 | 10 | 6  | 35 | 27 | 9  |
| 594.1 | 0 | 45 | 19 | 7  | 44 | 11 | 6  |
| 594.5 | 0 | 35 | 18 | 4  | 49 | 17 | 7  |
| 595.0 | 0 | 28 | 11 | 1  | 43 | 13 | 9  |
| 595.5 | 0 | 37 | 8  | 7  | 47 | 21 | 9  |
| 596.0 | 0 | 33 | 17 | 8  | 44 | 20 | 9  |
| 596.5 | 0 | 40 | 14 | 3  | 42 | 15 | 11 |
|       |   |    |    |    |    |    |    |

| r     |   |    |    | -  |    | -  |    |
|-------|---|----|----|----|----|----|----|
| 596.9 | 0 | 40 | 15 | 4  | 28 | 22 | 11 |
| 597.4 | 0 | 34 | 15 | 9  | 38 | 12 | 13 |
| 597.9 | 0 | 32 | 14 | 7  | 47 | 14 | 9  |
| 598.4 | 0 | 29 | 17 | 12 | 55 | 20 | 7  |
| 598.9 | 0 | 28 | 19 | 8  | 38 | 17 | 6  |
| 599.3 | 0 | 30 | 18 | 8  | 47 | 10 | 7  |
| 599.8 | 0 | 22 | 19 | 7  | 55 | 18 | 10 |
| 600.3 | 0 | 29 | 19 | 8  | 55 | 21 | 8  |
| 600.8 | 0 | 42 | 8  | 5  | 36 | 20 | 9  |
| 601.2 | 0 | 30 | 15 | 6  | 46 | 19 | 5  |
| 601.7 | 0 | 28 | 11 | 5  | 44 | 11 | 11 |
| 602.2 | 0 | 36 | 16 | 5  | 42 | 18 | 6  |
| 602.7 | 0 | 28 | 13 | 4  | 41 | 14 | 4  |
| 603.2 | 0 | 34 | 12 | 6  | 35 | 14 | 10 |
| 603.6 | 0 | 24 | 8  | 11 | 45 | 14 | 10 |
| 604.1 | 0 | 36 | 13 | 3  | 27 | 21 | 3  |
| 604.6 | 0 | 41 | 25 | 8  | 43 | 12 | 2  |
| 605.1 | 0 | 34 | 19 | 4  | 39 | 19 | 12 |
| 605.6 | 0 | 35 | 18 | 5  | 39 | 13 | 8  |
| 606.0 | 0 | 26 | 10 | 2  | 38 | 18 | 5  |
| 606.5 | 0 | 34 | 14 | 7  | 37 | 19 | 6  |
| 607.0 | 0 | 42 | 13 | 7  | 38 | 22 | 6  |
| 607.5 | 0 | 35 | 15 | 3  | 31 | 17 | 6  |
| 608.0 | 0 | 28 | 10 | 3  | 50 | 13 | 6  |
| 608.4 | 0 | 32 | 14 | 7  | 42 | 11 | 4  |
| 608.9 | 0 | 41 | 10 | 4  | 33 | 17 | 10 |
| 609.4 | 0 | 31 | 20 | 3  | 35 | 14 | 5  |
| 609.9 | 0 | 32 | 9  | 4  | 36 | 14 | 5  |
| 610.4 | 0 | 33 | 13 | 2  | 53 | 17 | 6  |
| 610.8 | 0 | 27 | 11 | 8  | 38 | 10 | 9  |
| 611.3 | 0 | 33 | 20 | 3  | 34 | 17 | 12 |
| 611.8 | 0 | 38 | 15 | 2  | 36 | 28 | 3  |
| 612.3 | 0 | 22 | 15 | 8  | 34 | 18 | 8  |
| 612.7 | 0 | 26 | 16 | 4  | 41 | 16 | 6  |
| 613.2 | 0 | 25 | 14 | 8  | 42 | 21 | 9  |
| 613.7 | 0 | 28 | 12 | 5  | 42 | 11 | 7  |
| 614.2 | 0 | 29 | 9  | 6  | 42 | 9  | 8  |
| 614.7 | 0 | 27 | 12 | 3  | 45 | 11 | 10 |
| 615.1 | 0 | 32 | 13 | 8  | 50 | 17 | 11 |
| 615.6 | 0 | 31 | 9  | 8  | 41 | 10 | 6  |
| 616.1 | 0 | 31 | 9  | 6  | 46 | 14 | 5  |
| 616.6 | 0 | 28 | 16 | 5  | 48 | 18 | 6  |
| 617.1 | 0 | 31 | 13 | 5  | 42 | 9  | 8  |
| 617.5 | 0 | 27 | 17 | 6  | 39 | 13 | 6  |

| 618.0 | 0 | 29 | 9  | 1  | 37 | 16 | 6  |
|-------|---|----|----|----|----|----|----|
| 618.5 | 0 | 29 | 13 | 5  | 33 | 18 | 6  |
| 619.0 | 0 | 26 | 8  | 2  | 43 | 11 | 4  |
| 619.5 | 0 | 25 | 9  | 4  | 29 | 24 | 8  |
| 619.9 | 0 | 36 | 14 | 2  | 38 | 17 | 7  |
| 620.4 | 0 | 34 | 7  | 12 | 55 | 24 | 14 |
| 620.9 | 0 | 19 | 14 | 4  | 53 | 12 | 2  |
| 621.4 | 0 | 23 | 10 | 6  | 29 | 15 | 5  |
| 621.8 | 0 | 32 | 12 | 3  | 40 | 13 | 2  |
| 622.3 | 0 | 26 | 14 | 5  | 34 | 11 | 7  |
| 622.8 | 0 | 27 | 13 | 4  | 36 | 13 | 9  |
| 623.3 | 0 | 31 | 18 | 3  | 44 | 12 | 7  |
| 623.8 | 0 | 31 | 7  | 5  | 33 | 8  | 7  |
| 624.2 | 0 | 32 | 16 | 5  | 29 | 13 | 7  |
| 624.7 | 0 | 27 | 11 | 4  | 32 | 10 | 7  |
| 625.2 | 0 | 23 | 15 | 3  | 29 | 19 | 5  |
| 625.7 | 0 | 36 | 11 | 8  | 29 | 9  | 7  |
| 626.2 | 0 | 36 | 9  | 9  | 32 | 14 | 7  |
| 626.6 | 0 | 21 | 15 | 5  | 22 | 16 | 9  |
| 627.1 | 0 | 27 | 14 | 2  | 33 | 9  | 9  |
| 627.6 | 0 | 31 | 9  | 6  | 38 | 19 | 6  |
| 628.1 | 0 | 27 | 11 | 6  | 29 | 14 | 10 |
| 628.6 | 0 | 26 | 10 | 3  | 32 | 19 | 10 |
| 629.0 | 0 | 36 | 15 | 5  | 28 | 12 | 8  |
| 629.5 | 0 | 24 | 11 | 2  | 29 | 19 | 12 |
| 630.0 | 0 | 33 | 17 | 11 | 27 | 17 | 4  |
| 630.5 | 0 | 29 | 9  | 8  | 36 | 25 | 5  |
| 631.0 | 0 | 25 | 6  | 4  | 28 | 13 | 7  |
| 631.4 | 0 | 27 | 9  | 9  | 35 | 14 | 5  |
| 631.9 | 0 | 28 | 12 | 6  | 34 | 10 | 9  |
| 632.4 | 0 | 25 | 10 | 6  | 35 | 17 | 4  |
| 632.9 | 0 | 28 | 13 | 4  | 42 | 14 | 7  |
| 633.3 | 0 | 30 | 18 | 2  | 40 | 14 | 14 |
| 633.8 | 0 | 23 | 17 | 1  | 33 | 10 | 3  |
| 634.3 | 0 | 30 | 12 | 5  | 35 | 13 | 4  |
| 634.8 | 0 | 16 | 7  | 3  | 42 | 9  | 6  |
| 635.3 | 0 | 28 | 7  | 4  | 26 | 15 | 9  |
| 635.7 | 0 | 30 | 10 | 8  | 36 | 16 | 3  |
| 636.2 | 0 | 23 | 12 | 2  | 29 | 9  | 2  |
| 636.7 | 0 | 21 | 12 | 1  | 44 | 19 | 4  |
| 637.2 | 0 | 25 | 10 | 2  | 32 | 13 | 5  |
| 637.7 | 0 | 39 | 13 | 3  | 35 | 10 | 6  |
| 638.1 | 0 | 36 | 18 | 5  | 46 | 19 | 11 |
| 638.6 | 0 | 21 | 7  | 3  | 34 | 16 | 8  |

|       |   | -  |    | - |    |    |    |
|-------|---|----|----|---|----|----|----|
| 639.1 | 0 | 32 | 9  | 6 | 33 | 11 | 4  |
| 639.6 | 0 | 24 | 12 | 1 | 38 | 12 | 6  |
| 640.1 | 0 | 37 | 10 | 3 | 34 | 11 | 8  |
| 640.5 | 0 | 32 | 13 | 5 | 37 | 12 | 6  |
| 641.0 | 0 | 12 | 11 | 3 | 30 | 16 | 6  |
| 641.5 | 0 | 24 | 7  | 4 | 37 | 14 | 9  |
| 642.0 | 0 | 24 | 2  | 7 | 29 | 8  | 4  |
| 642.5 | 0 | 28 | 11 | 5 | 35 | 20 | 8  |
| 642.9 | 0 | 32 | 12 | 5 | 27 | 12 | 7  |
| 643.4 | 0 | 22 | 9  | 2 | 30 | 17 | 6  |
| 643.9 | 0 | 21 | 5  | 5 | 23 | 10 | 10 |
| 644.4 | 0 | 23 | 8  | 2 | 48 | 14 | 7  |
| 644.8 | 0 | 21 | 6  | 2 | 31 | 16 | 12 |
| 645.3 | 0 | 35 | 14 | 3 | 39 | 16 | 4  |
| 645.8 | 0 | 17 | 5  | 2 | 28 | 15 | 4  |
| 646.3 | 0 | 31 | 12 | 9 | 42 | 12 | 7  |
| 646.8 | 0 | 21 | 10 | 8 | 27 | 11 | 9  |
| 647.2 | 0 | 25 | 12 | 5 | 36 | 19 | 5  |
| 647.7 | 0 | 28 | 9  | 3 | 22 | 11 | 5  |
| 648.2 | 0 | 23 | 17 | 6 | 37 | 8  | 7  |
| 648.7 | 0 | 21 | 13 | 6 | 36 | 6  | 5  |
| 649.2 | 0 | 18 | 9  | 7 | 32 | 10 | 5  |
| 649.6 | 0 | 27 | 8  | 3 | 31 | 11 | 4  |
| 650.1 | 0 | 17 | 9  | 4 | 25 | 18 | 8  |
| 650.6 | 0 | 28 | 11 | 3 | 36 | 6  | 4  |
| 651.1 | 0 | 24 | 9  | 4 | 31 | 13 | 8  |
| 651.6 | 0 | 33 | 12 | 5 | 24 | 5  | 7  |
| 652.0 | 0 | 19 | 10 | 2 | 30 | 15 | 10 |
| 652.5 | 0 | 30 | 9  | 5 | 40 | 12 | 5  |
| 653.0 | 0 | 26 | 8  | 4 | 43 | 7  | 7  |
| 653.5 | 0 | 29 | 9  | 5 | 32 | 11 | 5  |
| 653.9 | 0 | 17 | 8  | 2 | 36 | 9  | 4  |
| 654.4 | 0 | 27 | 8  | 4 | 31 | 13 | 8  |
| 654.9 | 0 | 26 | 12 | 3 | 23 | 13 | 4  |
| 655.4 | 0 | 26 | 11 | 3 | 44 | 9  | 3  |
| 655.9 | 0 | 26 | 11 | 4 | 36 | 14 | 7  |
| 656.3 | 0 | 24 | 6  | 8 | 37 | 18 | 10 |
| 656.8 | 0 | 33 | 7  | 1 | 27 | 7  | 8  |
| 657.3 | 0 | 26 | 12 | 6 | 32 | 8  | 5  |
| 657.8 | 0 | 22 | 7  | 7 | 22 | 9  | 3  |
| 658.3 | 0 | 21 | 9  | 6 | 24 | 8  | 5  |
| 658.7 | 0 | 29 | 8  | 1 | 37 | 9  | 5  |
| 659.2 | 0 | 14 | 8  | 6 | 34 | 17 | 6  |
| 659.7 | 0 | 17 | 10 | 7 | 33 | 16 | 5  |
|       |   |    |    |   |    |    |    |

| 660.2 | 0 | 19 | 8  | 5 | 28 | 13 | 1  |
|-------|---|----|----|---|----|----|----|
| 660.7 | 0 | 15 | 7  | 5 | 36 | 18 | 4  |
| 661.1 | 0 | 18 | 10 | 4 | 25 | 9  | 4  |
| 661.6 | 0 | 18 | 8  | 2 | 29 | 7  | 4  |
| 662.1 | 0 | 15 | 12 | 4 | 32 | 14 | 10 |
| 662.6 | 0 | 23 | 11 | 4 | 19 | 12 | 5  |
| 663.1 | 0 | 22 | 9  | 4 | 26 | 11 | 8  |
| 663.5 | 0 | 20 | 6  | 2 | 15 | 10 | 6  |
| 664.0 | 0 | 29 | 12 | 8 | 41 | 13 | 7  |
| 664.5 | 0 | 29 | 14 | 1 | 31 | 12 | 5  |
| 665.0 | 0 | 25 | 10 | 6 | 32 | 13 | 5  |
| 665.4 | 0 | 23 | 10 | 5 | 27 | 15 | 6  |
| 665.9 | 0 | 23 | 9  | 5 | 23 | 11 | 7  |
| 666.4 | 0 | 14 | 9  | 4 | 29 | 6  | 8  |
| 666.9 | 0 | 21 | 8  | 2 | 42 | 10 | 4  |
| 667.4 | 0 | 22 | 9  | 5 | 27 | 7  | 6  |
| 667.8 | 0 | 21 | 8  | 5 | 35 | 14 | 7  |
| 668.3 | 0 | 19 | 13 | 0 | 23 | 7  | 7  |
| 668.8 | 0 | 30 | 11 | 4 | 27 | 8  | 4  |
| 669.3 | 0 | 21 | 8  | 1 | 17 | 15 | 2  |
| 669.8 | 0 | 20 | 8  | 5 | 27 | 8  | 4  |
| 670.2 | 0 | 19 | 12 | 6 | 19 | 7  | 10 |
| 670.7 | 0 | 24 | 8  | 5 | 28 | 7  | 5  |
| 671.2 | 0 | 18 | 8  | 7 | 30 | 14 | 6  |
| 671.7 | 0 | 24 | 8  | 2 | 31 | 9  | 4  |
| 672.2 | 0 | 24 | 12 | 6 | 29 | 9  | 6  |
| 672.6 | 0 | 19 | 9  | 8 | 27 | 8  | 5  |
| 673.1 | 0 | 22 | 9  | 3 | 29 | 11 | 5  |
| 673.6 | 0 | 24 | 11 | 1 | 34 | 6  | 5  |
| 674.1 | 0 | 30 | 7  | 4 | 32 | 10 | 12 |
| 674.5 | 0 | 20 | 6  | 9 | 15 | 9  | 3  |
| 675.0 | 0 | 19 | 7  | 3 | 24 | 10 | 4  |
| 675.5 | 0 | 31 | 4  | 4 | 25 | 12 | 6  |
| 676.0 | 0 | 17 | 5  | 5 | 39 | 9  | 6  |
| 676.5 | 0 | 18 | 12 | 4 | 17 | 11 | 4  |
| 676.9 | 0 | 16 | 9  | 3 | 28 | 10 | 2  |
| 677.4 | 0 | 26 | 8  | 5 | 30 | 7  | 4  |
| 677.9 | 0 | 23 | 7  | 4 | 27 | 15 | 3  |
| 678.4 | 0 | 29 | 14 | 7 | 21 | 11 | 8  |
| 678.9 | 0 | 13 | 12 | 5 | 30 | 14 | 4  |
| 679.3 | 0 | 24 | 8  | 2 | 20 | 7  | 5  |
| 679.8 | 0 | 16 | 8  | 3 | 29 | 7  | 6  |
| 680.3 | 0 | 20 | 9  | 5 | 18 | 10 | 6  |
| 680.8 | 0 | 23 | 9  | 1 | 25 | 9  | 4  |

| 681.3 | 0 | 12 | 7  | 3 | 28 | 12 | 3 |
|-------|---|----|----|---|----|----|---|
| 681.7 | 0 | 27 | 7  | 3 | 25 | 9  | 6 |
| 682.2 | 0 | 18 | 8  | 5 | 30 | 10 | 3 |
| 682.7 | 0 | 23 | 7  | 3 | 21 | 8  | 2 |
| 683.2 | 0 | 12 | 5  | 3 | 30 | 7  | 5 |
| 683.7 | 0 | 23 | 7  | 4 | 33 | 9  | 3 |
| 684.1 | 0 | 19 | 9  | 2 | 21 | 12 | 3 |
| 684.6 | 0 | 22 | 3  | 4 | 29 | 12 | 5 |
| 685.1 | 0 | 28 | 17 | 2 | 29 | 13 | 4 |
| 685.6 | 0 | 17 | 8  | 4 | 19 | 8  | 3 |
| 686.0 | 0 | 15 | 10 | 4 | 28 | 13 | 6 |
| 686.5 | 0 | 26 | 5  | 2 | 23 | 11 | 7 |
| 687.0 | 0 | 24 | 6  | 3 | 29 | 5  | 4 |
| 687.5 | 0 | 18 | 4  | 1 | 29 | 11 | 7 |
| 688.0 | 0 | 23 | 12 | 6 | 21 | 11 | 4 |
| 688.4 | 0 | 14 | 6  | 2 | 25 | 12 | 6 |
| 688.9 | 0 | 15 | 11 | 4 | 30 | 17 | 6 |
| 689.4 | 0 | 25 | 8  | 0 | 25 | 7  | 4 |
| 689.9 | 0 | 16 | 3  | 3 | 28 | 10 | 3 |
| 690.4 | 0 | 18 | 5  | 2 | 22 | 7  | 4 |
| 690.8 | 0 | 18 | 9  | 6 | 24 | 12 | 8 |
| 691.3 | 0 | 21 | 8  | 1 | 23 | 13 | 3 |
| 691.8 | 0 | 21 | 9  | 2 | 29 | 9  | 7 |
| 692.3 | 0 | 13 | 16 | 3 | 21 | 8  | 2 |
| 692.8 | 0 | 21 | 7  | 4 | 24 | 10 | 7 |
| 693.2 | 0 | 29 | 11 | 3 | 23 | 8  | 7 |
| 693.7 | 0 | 19 | 12 | 7 | 18 | 10 | 3 |
| 694.2 | 0 | 14 | 13 | 4 | 19 | 12 | 9 |
| 694.7 | 0 | 20 | 9  | 6 | 35 | 11 | 5 |
| 695.1 | 0 | 17 | 3  | 2 | 26 | 7  | 3 |
| 695.6 | 0 | 18 | 8  | 4 | 20 | 6  | 5 |
| 696.1 | 0 | 21 | 14 | 5 | 16 | 10 | 1 |
| 696.6 | 0 | 16 | 15 | 2 | 32 | 10 | 4 |
| 697.1 | 0 | 22 | 9  | 4 | 25 | 5  | 5 |
| 697.5 | 0 | 18 | 5  | 2 | 27 | 5  | 5 |
| 698.0 | 0 | 14 | 6  | 5 | 26 | 5  | 2 |
| 698.5 | 0 | 17 | 9  | 2 | 14 | 7  | 2 |
| 699.0 | 0 | 15 | 6  | 4 | 23 | 9  | 9 |
| 699.5 | 0 | 13 | 6  | 1 | 20 | 11 | 2 |
| 699.9 | 0 | 13 | 8  | 1 | 19 | 7  | 6 |
| 700.4 | 0 | 18 | 2  | 4 | 20 | 10 | 7 |
| 700.9 | 0 | 17 | 7  | 9 | 28 | 13 | 3 |
| 701.4 | 0 | 19 | 5  | 3 | 15 | 16 | 2 |
| 701.9 | 0 | 12 | 7  | 6 | 21 | 11 | 6 |

| -     |   |    |    |   |    |    |   |
|-------|---|----|----|---|----|----|---|
| 702.3 | 0 | 20 | 8  | 3 | 22 | 7  | 3 |
| 702.8 | 0 | 15 | 2  | 1 | 21 | 4  | 5 |
| 703.3 | 0 | 18 | 7  | 2 | 20 | 14 | 6 |
| 703.8 | 0 | 9  | 9  | 0 | 20 | 10 | 4 |
| 704.3 | 0 | 24 | 11 | 4 | 19 | 8  | 2 |
| 704.7 | 0 | 17 | 10 | 2 | 12 | 9  | 3 |
| 705.2 | 0 | 10 | 8  | 2 | 18 | 10 | 1 |
| 705.7 | 0 | 16 | 7  | 3 | 35 | 5  | 2 |
| 706.2 | 0 | 14 | 4  | 6 | 12 | 12 | 5 |
| 706.6 | 0 | 19 | 7  | 4 | 22 | 15 | 2 |
| 707.1 | 0 | 17 | 10 | 6 | 17 | 11 | 2 |
| 707.6 | 0 | 16 | 6  | 3 | 15 | 9  | 3 |
| 708.1 | 0 | 10 | 8  | 3 | 23 | 9  | 4 |
| 708.6 | 0 | 15 | 8  | 1 | 19 | 10 | 8 |
| 709.0 | 0 | 18 | 8  | 1 | 24 | 5  | 5 |
| 709.5 | 0 | 17 | 6  | 1 | 19 | 11 | 6 |
| 710.0 | 0 | 21 | 5  | 3 | 18 | 9  | 1 |
| 710.5 | 0 | 11 | 9  | 2 | 28 | 6  | 3 |
| 711.0 | 0 | 17 | 7  | 5 | 30 | 5  | 3 |
| 711.4 | 0 | 19 | 7  | 3 | 22 | 6  | 4 |
| 711.9 | 0 | 14 | 8  | 1 | 24 | 12 | 3 |
| 712.4 | 0 | 17 | 8  | 2 | 28 | 11 | 2 |
| 712.9 | 0 | 15 | 12 | 1 | 28 | 8  | 5 |
| 713.4 | 0 | 14 | 6  | 5 | 22 | 6  | 2 |
| 713.8 | 0 | 19 | 6  | 2 | 13 | 6  | 5 |
| 714.3 | 0 | 11 | 6  | 4 | 19 | 7  | 1 |
| 714.8 | 0 | 13 | 6  | 1 | 23 | 8  | 5 |
| 715.3 | 0 | 11 | 8  | 2 | 19 | 6  | 1 |
| 715.7 | 0 | 16 | 6  | 4 | 30 | 6  | 2 |
| 716.2 | 0 | 19 | 4  | 2 | 20 | 4  | 5 |
| 716.7 | 0 | 12 | 10 | 4 | 19 | 7  | 4 |
| 717.2 | 0 | 16 | 2  | 3 | 23 | 5  | 5 |
| 717.7 | 0 | 15 | 6  | 7 | 17 | 9  | 0 |
| 718.1 | 0 | 16 | 8  | 2 | 27 | 7  | 7 |
| 718.6 | 0 | 27 | 11 | 1 | 18 | 3  | 4 |
| 719.1 | 0 | 10 | 7  | 2 | 24 | 11 | 2 |
| 719.6 | 0 | 16 | 8  | 2 | 16 | 5  | 3 |
| 720.1 | 0 | 20 | 6  | 1 | 23 | 6  | 2 |
| 720.5 | 0 | 17 | 4  | 0 | 20 | 9  | 4 |
| 721.0 | 0 | 13 | 7  | 1 | 11 | 11 | 4 |
| 721.5 | 0 | 23 | 9  | 0 | 26 | 6  | 4 |
| 722.0 | 0 | 19 | 6  | 1 | 16 | 6  | 0 |
| 722.5 | 0 | 15 | 6  | 1 | 28 | 4  | 6 |
| 722.9 | 0 | 13 | 6  | 5 | 18 | 11 | 3 |

| 723.4020812136 $723.9$ 014842847 $724.4$ 012922195 $724.9$ 0208129116 $725.3$ 012512867 $725.8$ 026921954 $726.3$ 016562175 $726.8$ 0157218117 $727.2$ 07311463 $727.7$ 023421785 $728.2$ 011532146 $729.2$ 018421262 $729.6$ 09621583 $7301$ 0154123132 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                    |
| 728.7     0     20     8     4     18     7     7       729.2     0     18     4     2     12     6     2       729.6     0     9     6     2     15     8     3       730.1     0     15     4     1     23     13     2                                |
| 729.2 0 18 4 2 12 6 2   729.6 0 9 6 2 15 8 3   730.1 0 15 4 1 23 13 2                                                                                                                                                                                    |
| 729.6     0     9     6     2     15     8     3       730.1     0     15     4     1     23     13     2                                                                                                                                                |
| 7301 0 15 4 1 23 13 2                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                          |
| 730.6 0 13 9 1 22 11 5                                                                                                                                                                                                                                   |
| 731.1 0 25 5 3 19 9 4                                                                                                                                                                                                                                    |
| 731.6 0 12 4 0 19 4 2                                                                                                                                                                                                                                    |
| 732.0 0 15 2 1 16 6 4                                                                                                                                                                                                                                    |
| 732.5 0 13 6 4 16 3 3                                                                                                                                                                                                                                    |
| 733.0 0 24 6 3 20 4 4                                                                                                                                                                                                                                    |
| 733.5 0 19 10 3 28 6 5                                                                                                                                                                                                                                   |
| 734.0 0 13 8 2 22 5 2                                                                                                                                                                                                                                    |
| 734.4 0 20 5 3 17 7 5                                                                                                                                                                                                                                    |
| 734.9 0 11 7 1 18 9 2                                                                                                                                                                                                                                    |
| 735.4 0 17 7 2 13 8 4                                                                                                                                                                                                                                    |
| 735.9 0 19 6 0 12 7 5                                                                                                                                                                                                                                    |
| 736.4 0 14 4 1 12 12 2                                                                                                                                                                                                                                   |
| 736.8 0 12 7 3 19 10 0                                                                                                                                                                                                                                   |
| 737.3 0 14 8 4 27 15 2                                                                                                                                                                                                                                   |
| 737.8 0 25 12 4 23 2 6                                                                                                                                                                                                                                   |
| 738.3 0 19 4 1 19 6 2                                                                                                                                                                                                                                    |
| 738.7 0 15 3 1 14 8 0                                                                                                                                                                                                                                    |
| 739.2 0 16 6 4 22 11 3                                                                                                                                                                                                                                   |
| 739.7 0 15 4 0 18 6 5                                                                                                                                                                                                                                    |
| 740.2 0 14 11 2 13 7 3                                                                                                                                                                                                                                   |
| 740.7 0 13 7 0 14 8 7                                                                                                                                                                                                                                    |
| 741.1 0 12 3 1 25 10 1                                                                                                                                                                                                                                   |
| 741.6 0 14 6 2 9 3 5                                                                                                                                                                                                                                     |
| 742.1 0 14 4 2 24 8 4                                                                                                                                                                                                                                    |
| 742.6 0 10 6 5 23 6 0                                                                                                                                                                                                                                    |
| 743.1 0 12 2 1 20 7 3                                                                                                                                                                                                                                    |
| 743.5 0 14 5 3 17 6 5                                                                                                                                                                                                                                    |
| 744.0 0 15 8 1 16 7 6                                                                                                                                                                                                                                    |

|       |   |    |    |   |    |    | 1 |
|-------|---|----|----|---|----|----|---|
| 744.5 | 0 | 13 | 4  | 1 | 22 | 7  | 5 |
| 745.0 | 0 | 13 | 3  | 2 | 12 | 7  | 0 |
| 745.5 | 0 | 12 | 9  | 4 | 17 | 7  | 2 |
| 745.9 | 0 | 15 | 7  | 0 | 12 | 8  | 5 |
| 746.4 | 0 | 10 | 7  | 4 | 18 | 7  | 4 |
| 746.9 | 0 | 12 | 6  | 0 | 23 | 6  | 3 |
| 747.4 | 0 | 19 | 10 | 4 | 18 | 3  | 1 |
| 747.8 | 0 | 8  | 1  | 0 | 14 | 6  | 3 |
| 748.3 | 0 | 14 | 6  | 3 | 19 | 4  | 3 |
| 748.8 | 0 | 15 | 7  | 2 | 18 | 10 | 1 |
| 749.3 | 0 | 17 | 4  | 3 | 19 | 7  | 6 |
| 749.8 | 0 | 15 | 4  | 3 | 18 | 8  | 4 |
| 750.2 | 0 | 10 | 3  | 2 | 8  | 5  | 2 |
| 750.7 | 0 | 10 | 5  | 4 | 19 | 12 | 4 |
| 751.2 | 0 | 9  | 6  | 5 | 10 | 8  | 1 |
| 751.7 | 0 | 20 | 7  | 2 | 19 | 6  | 0 |
| 752.2 | 0 | 17 | 12 | 5 | 25 | 7  | 4 |
| 752.6 | 0 | 11 | 2  | 2 | 21 | 5  | 5 |
| 753.1 | 0 | 19 | 5  | 4 | 15 | 6  | 0 |
| 753.6 | 0 | 10 | 5  | 2 | 21 | 4  | 2 |
| 754.1 | 0 | 20 | 6  | 2 | 24 | 8  | 7 |
| 754.6 | 0 | 15 | 7  | 3 | 17 | 9  | 2 |
| 755.0 | 0 | 17 | 6  | 1 | 24 | 9  | 1 |
| 755.5 | 0 | 17 | 5  | 2 | 12 | 8  | 2 |
| 756.0 | 0 | 13 | 2  | 4 | 13 | 6  | 5 |
| 756.5 | 0 | 11 | 5  | 3 | 20 | 4  | 0 |
| 757.0 | 0 | 14 | 9  | 1 | 15 | 6  | 5 |
| 757.4 | 0 | 15 | 3  | 2 | 16 | 5  | 3 |
| 757.9 | 0 | 17 | 3  | 2 | 23 | 4  | 1 |
| 758.4 | 0 | 15 | 6  | 1 | 23 | 6  | 1 |
| 758.9 | 0 | 13 | 7  | 4 | 13 | 5  | 4 |
| 759.3 | 0 | 18 | 6  | 2 | 17 | 5  | 0 |
| 759.8 | 0 | 9  | 6  | 1 | 18 | 9  | 3 |
| 760.3 | 0 | 10 | 3  | 4 | 21 | 6  | 2 |
| 760.8 | 0 | 9  | 7  | 2 | 15 | 4  | 1 |
| 761.3 | 0 | 10 | 3  | 0 | 19 | 5  | 3 |
| 761.7 | 0 | 13 | 3  | 3 | 10 | 6  | 5 |
| 762.2 | 0 | 12 | 5  | 0 | 14 | 1  | 2 |
| 762.7 | 0 | 8  | 9  | 2 | 23 | 9  | 3 |
| 763.2 | 0 | 15 | 9  | 0 | 27 | 7  | 1 |
| 763.7 | 0 | 14 | 5  | 0 | 19 | 10 | 8 |
| 764.1 | 0 | 14 | 4  | 5 | 21 | 6  | 2 |
| 764.6 | 0 | 8  | 4  | 1 | 17 | 5  | 3 |
| 765.1 | 0 | 11 | 5  | 2 | 19 | 3  | 6 |

|       | - | -  | 1 |   |    |    |   |
|-------|---|----|---|---|----|----|---|
| 765.6 | 0 | 4  | 9 | 1 | 19 | 5  | 3 |
| 766.1 | 0 | 10 | 5 | 2 | 15 | 8  | 5 |
| 766.5 | 0 | 14 | 5 | 3 | 11 | 8  | 3 |
| 767.0 | 0 | 8  | 5 | 2 | 19 | 3  | 3 |
| 767.5 | 0 | 16 | 2 | 1 | 21 | 5  | 5 |
| 768.0 | 0 | 9  | 2 | 1 | 15 | 5  | 1 |
| 768.4 | 0 | 7  | 6 | 2 | 21 | 3  | 9 |
| 768.9 | 0 | 12 | 7 | 1 | 13 | 10 | 3 |
| 769.4 | 0 | 13 | 2 | 2 | 16 | 7  | 1 |
| 769.9 | 0 | 5  | 6 | 2 | 19 | 5  | 1 |
| 770.4 | 0 | 13 | 3 | 3 | 19 | 5  | 2 |
| 770.8 | 0 | 11 | 6 | 1 | 12 | 3  | 4 |
| 771.3 | 0 | 8  | 3 | 1 | 17 | 2  | 1 |
| 771.8 | 0 | 16 | 3 | 6 | 17 | 6  | 2 |
| 772.3 | 0 | 8  | 3 | 0 | 14 | 8  | 4 |
| 772.8 | 0 | 15 | 8 | 5 | 15 | 5  | 2 |
| 773.2 | 0 | 9  | 5 | 2 | 12 | 6  | 3 |
| 773.7 | 0 | 14 | 7 | 3 | 12 | 4  | 2 |
| 774.2 | 0 | 8  | 3 | 0 | 10 | 8  | 3 |
| 774.7 | 0 | 11 | 3 | 1 | 24 | 6  | 6 |
| 775.2 | 0 | 9  | 3 | 2 | 22 | 5  | 2 |
| 775.6 | 0 | 13 | 3 | 1 | 16 | 8  | 2 |
| 776.1 | 0 | 13 | 8 | 2 | 5  | 6  | 2 |
| 776.6 | 0 | 5  | 4 | 2 | 20 | 5  | 1 |
| 777.1 | 0 | 7  | 3 | 1 | 13 | 6  | 5 |
| 777.6 | 0 | 8  | 2 | 0 | 13 | 5  | 6 |
| 778.0 | 0 | 11 | 6 | 1 | 15 | 4  | 6 |
| 778.5 | 0 | 13 | 5 | 4 | 12 | 7  | 0 |
| 779.0 | 0 | 13 | 5 | 4 | 17 | 8  | 0 |
| 779.5 | 0 | 13 | 4 | 0 | 15 | 5  | 3 |
| 779.9 | 0 | 9  | 1 | 1 | 18 | 3  | 5 |
| 780.4 | 0 | 7  | 5 | 1 | 8  | 7  | 4 |
| 780.9 | 0 | 13 | 6 | 1 | 18 | 2  | 2 |
| 781.4 | 0 | 10 | 9 | 2 | 20 | 3  | 1 |
| 781.9 | 0 | 11 | 6 | 3 | 11 | 2  | 4 |
| 782.3 | 0 | 8  | 5 | 1 | 13 | 6  | 3 |
| 782.8 | 0 | 13 | 1 | 0 | 11 | 6  | 0 |
| 783.3 | 0 | 11 | 6 | 2 | 12 | 4  | 2 |
| 783.8 | 0 | 14 | 1 | 1 | 13 | 11 | 1 |
| 784.3 | 0 | 15 | 4 | 3 | 12 | 12 | 1 |
| 784.7 | 0 | 13 | 4 | 1 | 22 | 3  | 2 |
| 785.2 | 0 | 9  | 2 | 1 | 16 | 9  | 4 |
| 785.7 | 0 | 9  | 6 | 3 | 16 | 9  | 0 |
| 786.2 | 0 | 16 | 5 | 0 | 17 | 3  | 4 |
| l     |   |    |   |   |    |    |   |

| 786.7     0     8     2     7     12     10     1 $787.1$ 0     12     7     2     19     6     2 $787.6$ 0     13     5     1     15     5     2 $788.1$ 0     8     7     2     17     2     4 $788.6$ 0     10     2     2     11     4     3 $789.0$ 0     10     4     5     10     5     1 $790.0$ 0     8     2     1     12     6     2 $790.0$ 0     8     4     2     12     5     3 $791.9$ 0     11     6     3     11     4     2 $792.4$ 0     11     2     4     11     5     1 $793.4$ 0     7     6     1     14     3     0 $794.3$ 0     9      |       |   |    |   |   |    |    |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|----|---|---|----|----|---|
| 787.6   0   12   7   2   19   6   2 $787.6$ 0   13   5   1   15   5   2 $788.6$ 0   10   2   2   11   4   3 $789.6$ 0   10   4   5   10   5   1 $789.5$ 0   7   6   1   9   3   2 $790.0$ 0   8   2   1   12   6   2 $790.0$ 0   8   4   2   12   5   3 $791.0$ 0   9   5   1   19   6   4 $791.4$ 0   8   4   2   12   5   3 $791.9$ 0   11   2   4   11   2   1 $792.4$ 0   11   2   4   11   3   0 $793.8$ 0   12   5   2   20   3   5 $794.8$ 0   6   4                                                                                                        | 786.7 | 0 | 8  | 2 | 7 | 12 | 10 | 1 |
| 787.6   0   13   5   1   15   5   2 $788.1$ 0   8   7   2   11   4   3 $788.6$ 0   10   2   2   11   4   3 $789.0$ 0   10   4   5   10   5   1 $790.5$ 0   10   5   3   15   5   1 $790.5$ 0   10   5   3   15   5   1 $790.5$ 0   10   5   3   15   5   1 $791.9$ 0   8   4   2   12   5   3 $791.9$ 0   11   2   4   11   2   1 $792.4$ 0   11   2   4   11   3   0 $793.8$ 0   12   5   2   20   3   4 $794.3$ 0   9   4   3   12   6   1 $794.3$ 0   16   2 </td <td>787.1</td> <td>0</td> <td>12</td> <td>7</td> <td>2</td> <td>19</td> <td>6</td> <td>2</td> | 787.1 | 0 | 12 | 7 | 2 | 19 | 6  | 2 |
| 788.1   0   8   7   2   17   2   4     788.6   0   10   2   2   11   4   3     789.0   0   10   4   5   10   5   1     789.5   0   7   6   1   9   3   2     790.0   0   8   2   1   12   6   2     790.0   0   8   2   1   12   6   2     791.0   0   9   5   1   19   6   4     791.4   0   8   4   2   12   5   3     791.9   0   11   6   3   11   4   2     792.9   0   8   2   1   11   5   1     793.4   0   7   6   1   14   3   0     793.8   0   16   2   1   16   8   0     794.8   0   6   4   0   10                                                  | 787.6 | 0 | 13 | 5 | 1 | 15 | 5  | 2 |
| 788.6   0   10   2   2   11   4   3     789.0   0   10   4   5   10   5   1     789.5   0   7   6   1   9   3   2     790.0   0   8   2   1   12   6   2     790.5   0   10   5   3   15   5   1     791.4   0   8   4   2   12   5   3     791.9   0   11   6   3   11   4   2     792.4   0   11   2   4   11   2   1     793.8   0   7   6   1   14   3   0     794.3   0   9   4   3   12   6   1     794.8   0   6   4   0   10   3   4     795.3   0   16   2   1   16   8   0     795.4   0   7   2   4                                                     | 788.1 | 0 | 8  | 7 | 2 | 17 | 2  | 4 |
| 789.0010451051 $789.5$ 0761932 $790.0$ 08211262 $790.5$ 010531551 $791.0$ 09511964 $791.4$ 08421253 $791.9$ 011631142 $792.4$ 011241121 $792.9$ 08211151 $793.4$ 07611430 $793.8$ 012522035 $794.3$ 06401034 $795.3$ 016211680 $796.2$ 07641961 $797.7$ 010111420 $797.7$ 010431534 $798.6$ 05611663 $799.1$ 011541835 $797.7$ 010431534 $798.6$ 05611663 $799.6$ 06411850 $80.$                                                                                                                                                                                   | 788.6 | 0 | 10 | 2 | 2 | 11 | 4  | 3 |
| 789.5     0     7     6     1     9     3     2 $790.0$ 0     8     2     1     12     6     2 $790.5$ 0     10     5     3     15     5     1 $791.4$ 0     8     4     2     12     5     3 $791.4$ 0     8     4     2     12     5     3 $791.4$ 0     8     2     1     11     5     1 $792.4$ 0     11     2     4     11     2     1 $793.4$ 0     7     6     1     14     3     0 $793.8$ 0     12     5     2     20     3     4 $795.3$ 0     16     2     1     16     8     0 $796.7$ 0     10     1     1     14     2     0 $796.7$ 0     10        | 789.0 | 0 | 10 | 4 | 5 | 10 | 5  | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 789.5 | 0 | 7  | 6 | 1 | 9  | 3  | 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 790.0 | 0 | 8  | 2 | 1 | 12 | 6  | 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 790.5 | 0 | 10 | 5 | 3 | 15 | 5  | 1 |
| 791.408421253791.9011631142792.4011241121792.9082111151793.407611430793.8012522035794.309431261795.8016211680795.807241350796.207641961796.7010111420797.2011451225797.7010431534798.605611663799.1011541835799.606821974800.509221782801.006821974802.5013421531802.5013821252804.401353119804.40135 <td< td=""><td>791.0</td><td>0</td><td>9</td><td>5</td><td>1</td><td>19</td><td>6</td><td>4</td></td<>                                                                                                                                                       | 791.0 | 0 | 9  | 5 | 1 | 19 | 6  | 4 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 791.4 | 0 | 8  | 4 | 2 | 12 | 5  | 3 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 791.9 | 0 | 11 | 6 | 3 | 11 | 4  | 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 792.4 | 0 | 11 | 2 | 4 | 11 | 2  | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 792.9 | 0 | 8  | 2 | 1 | 11 | 5  | 1 |
| 793.8012522035794.309431261794.806401034795.3016211680795.807241350796.207641961796.7010111420797.2011451225797.7010431534798.2012211522798.605611663799.1011541835799.606411850800.107421732801.006821974801.5012401454802.5013821252802.9013531852804.905501123805.309331284805.806311141806.30322                                                                                                                                                                                                                                                               | 793.4 | 0 | 7  | 6 | 1 | 14 | 3  | 0 |
| 794.309431261 $794.8$ 06401034 $795.3$ 016211680 $795.3$ 07241350 $795.8$ 07241350 $795.8$ 07641961 $796.2$ 07641961 $796.7$ 010111420 $797.2$ 011451225 $797.7$ 010431534 $798.2$ 012211522 $798.6$ 05611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.5$ 012401454 $801.5$ 013821252 $802.9$ 012211370 $803.4$ 08711976 $803.9$ 09211370 $804$                                                                                                                                                                                   | 793.8 | 0 | 12 | 5 | 2 | 20 | 3  | 5 |
| 794.806401034 $795.3$ 016211680 $795.8$ 07241350 $795.8$ 07641961 $796.2$ 07641961 $796.7$ 010111420 $797.2$ 011451225 $797.7$ 010431534 $798.2$ 012211522 $798.6$ 05611663 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.0$ 06821974 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.4$ 013501123 $80$                                                                                                                                                                                   | 794.3 | 0 | 9  | 4 | 3 | 12 | 6  | 1 |
| 795.3016211680795.807241350796.207641961796.7010111420797.2011451225797.7010431534798.2012211522798.605611663799.1011541835799.606411850800.107421732800.509221782801.006821974802.0013421531802.5013821252803.408711976803.909211370804.4013531852805.309331284805.309331284805.306311141806.30322<                                                                                                                                                                                                                                                               | 794.8 | 0 | 6  | 4 | 0 | 10 | 3  | 4 |
| 795.807241350 $796.2$ 07641961 $796.7$ 010111420 $797.2$ 011451225 $797.7$ 010431534 $798.2$ 012211522 $798.6$ 05611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.9$ 05501123 $805.3$ 09331284 $805.8$ 06311141 $80$                                                                                                                                                                                   | 795.3 | 0 | 16 | 2 | 1 | 16 | 8  | 0 |
| 796.207641961 $796.7$ 010111420 $797.2$ 011451225 $797.7$ 010431534 $798.2$ 012211522 $798.6$ 05611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.0$ 06821974 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211370 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 0322952 $806$                                                                                                                                                                                   | 795.8 | 0 | 7  | 2 | 4 | 13 | 5  | 0 |
| 796.7010111420 $797.2$ 011451225 $797.7$ 010431534 $798.2$ 012211522 $798.6$ 05611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.0$ 06821974 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211370 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 012402253 $807.3$ 08521231 </td <td>796.2</td> <td>0</td> <td>7</td> <td>6</td> <td>4</td> <td>19</td> <td>6</td> <td>1</td>                                                                                     | 796.2 | 0 | 7  | 6 | 4 | 19 | 6  | 1 |
| 797.2011451225 $797.7$ 010431534 $798.2$ 012211522 $798.6$ 05611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.0$ 06821974 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 0322952 $806.8$ 012402253 $807.3$ 08521231 <td>796.7</td> <td>0</td> <td>10</td> <td>1</td> <td>1</td> <td>14</td> <td>2</td> <td>0</td>                                                                                           | 796.7 | 0 | 10 | 1 | 1 | 14 | 2  | 0 |
| 797.7010431534 $798.2$ 012211522 $798.6$ 05611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.0$ 06821974 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $805.3$ 09331284 $805.8$ 06311141 $806.8$ 012402253 $807.3$ 08521231                                                                                                                                                                                                                           | 797.2 | 0 | 11 | 4 | 5 | 12 | 2  | 5 |
| 798.2012211522 $798.6$ 05611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.0$ 06821974 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.9$ 05501123 $805.3$ 09331284 $805.8$ 06311141 $806.8$ 012402253 $807.3$ 08521231                                                                                                                                                                                                                            | 797.7 | 0 | 10 | 4 | 3 | 15 | 3  | 4 |
| 798.605611663 $799.1$ 011541835 $799.6$ 06411850 $800.1$ 07421732 $800.5$ 09221782 $801.0$ 06821974 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.9$ 05501123 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 012402253 $807.3$ 08521231                                                                                                                                                                                                                                              | 798.2 | 0 | 12 | 2 | 1 | 15 | 2  | 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 798.6 | 0 | 5  | 6 | 1 | 16 | 6  | 3 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 799.1 | 0 | 11 | 5 | 4 | 18 | 3  | 5 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 799.6 | 0 | 6  | 4 | 1 | 18 | 5  | 0 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800.1 | 0 | 7  | 4 | 2 | 17 | 3  | 2 |
| 801.006821974 $801.5$ 012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.9$ 05501123 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 012402253 $807.3$ 08521231                                                                                                                                                                                                                                                                                                                                    | 800.5 | 0 | 9  | 2 | 2 | 17 | 8  | 2 |
| 801.5012401454 $802.0$ 013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.9$ 05501123 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 012402253 $807.3$ 08521231                                                                                                                                                                                                                                                                                                                                                     | 801.0 | 0 | 6  | 8 | 2 | 19 | 7  | 4 |
| 802.0013421531 $802.5$ 013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.9$ 05501123 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 012402253 $807.3$ 08521231                                                                                                                                                                                                                                                                                                                                                                       | 801.5 | 0 | 12 | 4 | 0 | 14 | 5  | 4 |
| 802.5013821252 $802.9$ 012211324 $803.4$ 08711976 $803.9$ 09211370 $804.4$ 013531852 $804.9$ 05501123 $805.3$ 09331284 $805.8$ 06311141 $806.3$ 012402253 $807.3$ 08521231                                                                                                                                                                                                                                                                                                                                                                                         | 802.0 | 0 | 13 | 4 | 2 | 15 | 3  | 1 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 802.5 | 0 | 13 | 8 | 2 | 12 | 5  | 2 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 802.9 | 0 | 12 | 2 | 1 | 13 | 2  | 4 |
| 803.9   0   9   2   1   13   7   0     804.4   0   13   5   3   18   5   2     804.9   0   5   5   0   11   2   3     805.3   0   9   3   3   12   8   4     805.8   0   6   3   1   11   4   1     806.3   0   3   2   2   9   5   2     806.8   0   12   4   0   22   5   3     807.3   0   8   5   2   12   3   1                                                                                                                                                                                                                                               | 803.4 | 0 | 8  | 7 | 1 | 19 | 7  | 6 |
| 804.4   0   13   5   3   18   5   2     804.9   0   5   5   0   11   2   3     805.3   0   9   3   3   12   8   4     805.8   0   6   3   1   11   4   1     806.3   0   3   2   2   9   5   2     806.8   0   12   4   0   22   5   3     807.3   0   8   5   2   12   3   1                                                                                                                                                                                                                                                                                      | 803.9 | 0 | 9  | 2 | 1 | 13 | 7  | 0 |
| 804.9   0   5   5   0   11   2   3     805.3   0   9   3   3   12   8   4     805.8   0   6   3   1   11   4   1     806.3   0   3   2   2   9   5   2     806.8   0   12   4   0   22   5   3     807.3   0   8   5   2   12   3   1                                                                                                                                                                                                                                                                                                                              | 804.4 | 0 | 13 | 5 | 3 | 18 | 5  | 2 |
| 805.3   0   9   3   3   12   8   4     805.8   0   6   3   1   11   4   1     806.3   0   3   2   2   9   5   2     806.8   0   12   4   0   22   5   3     807.3   0   8   5   2   12   3   1                                                                                                                                                                                                                                                                                                                                                                     | 804.9 | 0 | 5  | 5 | 0 | 11 | 2  | 3 |
| 805.8   0   6   3   1   11   4   1     806.3   0   3   2   2   9   5   2     806.8   0   12   4   0   22   5   3     807.3   0   8   5   2   12   3   1                                                                                                                                                                                                                                                                                                                                                                                                            | 805.3 | 0 | 9  | 3 | 3 | 12 | 8  | 4 |
| 806.3     0     3     2     2     9     5     2       806.8     0     12     4     0     22     5     3       807.3     0     8     5     2     12     3     1                                                                                                                                                                                                                                                                                                                                                                                                     | 805.8 | 0 | 6  | 3 | 1 | 11 | 4  | 1 |
| 806.8     0     12     4     0     22     5     3       807.3     0     8     5     2     12     3     1                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 806.3 | 0 | 3  | 2 | 2 | 9  | 5  | 2 |
| 807.3 0 8 5 2 12 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 806.8 | 0 | 12 | 4 | 0 | 22 | 5  | 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 807.3 | 0 | 8  | 5 | 2 | 12 | 3  | 1 |

| 807.7 | 0 | 10 | 2 | 1 | 15 | 5 | 4 |
|-------|---|----|---|---|----|---|---|
| 808.2 | 0 | 5  | 0 | 2 | 15 | 7 | 3 |
| 808.7 | 0 | 7  | 5 | 1 | 13 | 7 | 4 |
| 809.2 | 0 | 6  | 4 | 1 | 11 | 2 | 0 |
| 809.6 | 0 | 8  | 4 | 1 | 10 | 5 | 3 |
| 810.1 | 0 | 5  | 5 | 4 | 14 | 5 | 3 |
| 810.6 | 0 | 7  | 7 | 2 | 11 | 4 | 3 |
| 811.1 | 0 | 7  | 2 | 4 | 15 | 5 | 3 |
| 811.6 | 0 | 12 | 1 | 1 | 14 | 8 | 3 |
| 812.0 | 0 | 9  | 3 | 1 | 9  | 3 | 4 |
| 812.5 | 0 | 11 | 7 | 1 | 13 | 9 | 2 |
| 813.0 | 0 | 5  | 5 | 2 | 9  | 1 | 2 |
| 813.5 | 0 | 9  | 8 | 2 | 11 | 2 | 3 |
| 814.0 | 0 | 10 | 3 | 0 | 7  | 8 | 1 |
| 814.4 | 0 | 7  | 3 | 0 | 16 | 2 | 3 |
| 814.9 | 0 | 8  | 3 | 1 | 10 | 3 | 1 |
| 815.4 | 0 | 7  | 6 | 0 | 18 | 6 | 1 |
| 815.9 | 0 | 15 | 5 | 1 | 12 | 7 | 3 |
| 816.4 | 0 | 6  | 2 | 0 | 19 | 8 | 3 |
| 816.8 | 0 | 12 | 5 | 1 | 10 | 8 | 2 |
| 817.3 | 0 | 8  | 3 | 1 | 15 | 5 | 3 |
| 817.8 | 0 | 10 | 3 | 0 | 10 | 4 | 3 |
| 818.3 | 0 | 6  | 6 | 1 | 9  | 2 | 3 |
| 818.8 | 0 | 11 | 4 | 1 | 14 | 7 | 1 |
| 819.2 | 0 | 1  | 2 | 2 | 16 | 8 | 1 |
| 819.7 | 0 | 7  | 4 | 2 | 6  | 2 | 4 |
| 820.2 | 0 | 16 | 7 | 1 | 6  | 8 | 5 |
| 820.7 | 0 | 6  | 2 | 5 | 9  | 4 | 3 |
| 821.1 | 0 | 5  | 6 | 2 | 9  | 3 | 2 |
| 821.6 | 0 | 9  | 4 | 3 | 12 | 3 | 3 |
| 822.1 | 0 | 6  | 4 | 0 | 14 | 5 | 1 |
| 822.6 | 0 | 8  | 3 | 3 | 11 | 3 | 1 |
| 823.1 | 0 | 12 | 4 | 2 | 9  | 3 | 0 |
| 823.5 | 0 | 11 | 4 | 4 | 17 | 3 | 2 |
| 824.0 | 0 | 2  | 2 | 0 | 10 | 4 | 2 |
| 824.5 | 0 | 10 | 5 | 5 | 6  | 3 | 1 |
| 825.0 | 0 | 15 | 0 | 0 | 13 | 0 | 0 |
| 825.5 | 0 | 8  | 3 | 1 | 10 | 4 | 2 |
| 825.9 | 0 | 9  | 2 | 0 | 18 | 3 | 3 |
| 826.4 | 0 | 10 | 3 | 0 | 14 | 5 | 0 |
| 826.9 | 0 | 10 | 7 | 3 | 13 | 5 | 2 |
| 827.4 | 0 | 6  | 3 | 2 | 17 | 3 | 1 |
| 827.9 | 0 | 9  | 1 | 0 | 13 | 4 | 3 |
| 828.3 | 0 | 17 | 4 | 1 | 9  | 1 | 3 |

| 828.8 | 0 | 3  | 3 | 1 | 14 | 3 | 0 |
|-------|---|----|---|---|----|---|---|
| 829.3 | 0 | 7  | 1 | 2 | 17 | 3 | 5 |
| 829.8 | 0 | 9  | 3 | 0 | 10 | 3 | 4 |
| 830.3 | 0 | 8  | 2 | 0 | 6  | 4 | 2 |
| 830.7 | 0 | 13 | 1 | 1 | 13 | 5 | 2 |
| 831.2 | 0 | 13 | 1 | 1 | 10 | 5 | 1 |
| 831.7 | 0 | 9  | 2 | 0 | 7  | 6 | 3 |
| 832.2 | 0 | 12 | 6 | 2 | 12 | 7 | 3 |
| 832.6 | 0 | 3  | 1 | 1 | 16 | 3 | 4 |
| 833.1 | 0 | 5  | 3 | 1 | 11 | 7 | 1 |
| 833.6 | 0 | 11 | 2 | 2 | 10 | 2 | 2 |
| 834.1 | 0 | 7  | 2 | 0 | 4  | 4 | 0 |
| 834.6 | 0 | 13 | 4 | 3 | 5  | 2 | 1 |
| 835.0 | 0 | 13 | 4 | 0 | 9  | 3 | 2 |
| 835.5 | 0 | 9  | 4 | 1 | 11 | 5 | 2 |
| 836.0 | 0 | 8  | 2 | 0 | 5  | 2 | 5 |
| 836.5 | 0 | 5  | 3 | 2 | 19 | 3 | 2 |
| 837.0 | 0 | 10 | 2 | 0 | 8  | 3 | 6 |
| 837.4 | 0 | 6  | 8 | 0 | 12 | 6 | 1 |
| 837.9 | 0 | 6  | 1 | 1 | 12 | 2 | 2 |
| 838.4 | 0 | 5  | 3 | 1 | 10 | 4 | 0 |
| 838.9 | 0 | 6  | 7 | 2 | 11 | 6 | 0 |
| 839.4 | 0 | 6  | 1 | 2 | 13 | 7 | 1 |
| 839.8 | 0 | 8  | 2 | 1 | 9  | 6 | 1 |
| 840.3 | 0 | 4  | 4 | 2 | 7  | 1 | 2 |
| 840.8 | 0 | 7  | 4 | 1 | 7  | 6 | 2 |
| 841.3 | 0 | 8  | 5 | 1 | 12 | 3 | 4 |
| 841.7 | 0 | 8  | 3 | 1 | 13 | 4 | 1 |
| 842.2 | 0 | 11 | 2 | 2 | 7  | 6 | 6 |
| 842.7 | 0 | 10 | 4 | 1 | 12 | 4 | 3 |
| 843.2 | 0 | 6  | 1 | 0 | 14 | 4 | 0 |
| 843.7 | 0 | 6  | 3 | 1 | 8  | 3 | 2 |
| 844.1 | 0 | 8  | 3 | 2 | 13 | 2 | 2 |
| 844.6 | 0 | 12 | 2 | 1 | 10 | 5 | 0 |
| 845.1 | 0 | 9  | 5 | 1 | 5  | 6 | 1 |
| 845.6 | 0 | 5  | 5 | 1 | 12 | 1 | 3 |
| 846.1 | 0 | 11 | 4 | 0 | 5  | 3 | 1 |
| 846.5 | 0 | 7  | 0 | 2 | 13 | 2 | 0 |
| 847.0 | 0 | 6  | 3 | 1 | 12 | 4 | 2 |
| 847.5 | 0 | 9  | 0 | 2 | 11 | 5 | 4 |
| 848.0 | 0 | 4  | 6 | 0 | 12 | 5 | 1 |
| 848.5 | 0 | 8  | 1 | 0 | 13 | 9 | 1 |
| 848.9 | 0 | 7  | 4 | 2 | 13 | 7 | 3 |
| 849.4 | 0 | 8  | 0 | 0 | 15 | 5 | 1 |

|       |   |    |   |   |    |   | 1 |
|-------|---|----|---|---|----|---|---|
| 849.9 | 0 | 8  | 3 | 2 | 9  | 5 | 1 |
| 850.4 | 0 | 7  | 6 | 2 | 8  | 1 | 2 |
| 850.9 | 0 | 7  | 4 | 0 | 11 | 6 | 0 |
| 851.3 | 0 | 6  | 2 | 2 | 10 | 2 | 0 |
| 851.8 | 0 | 7  | 1 | 1 | 8  | 5 | 3 |
| 852.3 | 0 | 15 | 4 | 1 | 5  | 8 | 4 |
| 852.8 | 0 | 8  | 5 | 1 | 14 | 5 | 1 |
| 853.2 | 0 | 6  | 4 | 2 | 17 | 4 | 6 |
| 853.7 | 0 | 6  | 1 | 1 | 5  | 4 | 3 |
| 854.2 | 0 | 5  | 2 | 0 | 5  | 6 | 2 |
| 854.7 | 0 | 3  | 3 | 1 | 10 | 2 | 1 |
| 855.2 | 0 | 10 | 1 | 1 | 12 | 5 | 1 |
| 855.6 | 0 | 7  | 4 | 1 | 9  | 6 | 1 |
| 856.1 | 0 | 7  | 2 | 1 | 9  | 3 | 0 |
| 856.6 | 0 | 3  | 1 | 0 | 14 | 8 | 0 |
| 857.1 | 0 | 6  | 3 | 2 | 14 | 5 | 1 |
| 857.6 | 0 | 5  | 0 | 1 | 9  | 3 | 2 |
| 858.0 | 0 | 9  | 2 | 0 | 13 | 8 | 1 |
| 858.5 | 0 | 8  | 4 | 0 | 15 | 3 | 1 |
| 859.0 | 0 | 5  | 1 | 4 | 10 | 7 | 1 |
| 859.5 | 0 | 9  | 3 | 2 | 13 | 3 | 0 |
| 860.0 | 0 | 3  | 2 | 0 | 12 | 3 | 3 |
| 860.4 | 0 | 11 | 5 | 0 | 6  | 5 | 3 |
| 860.9 | 0 | 10 | 2 | 1 | 14 | 2 | 1 |
| 861.4 | 0 | 14 | 2 | 1 | 9  | 3 | 2 |
| 861.9 | 0 | 9  | 0 | 0 | 7  | 4 | 1 |
| 862.3 | 0 | 10 | 2 | 0 | 9  | 4 | 2 |
| 862.8 | 0 | 9  | 5 | 0 | 3  | 2 | 1 |
| 863.3 | 0 | 8  | 3 | 3 | 8  | 3 | 5 |
| 863.8 | 0 | 2  | 4 | 1 | 5  | 6 | 3 |
| 864.3 | 0 | 4  | 1 | 1 | 13 | 4 | 1 |
| 864.7 | 0 | 5  | 3 | 1 | 9  | 2 | 1 |
| 865.2 | 0 | 6  | 7 | 4 | 6  | 2 | 3 |
| 865.7 | 0 | 6  | 0 | 3 | 6  | 3 | 0 |
| 866.2 | 0 | 6  | 3 | 1 | 15 | 3 | 2 |
| 866.7 | 0 | 9  | 3 | 1 | 6  | 3 | 3 |
| 867.1 | 0 | 5  | 5 | 3 | 7  | 1 | 5 |
| 867.6 | 0 | 5  | 2 | 2 | 4  | 3 | 4 |
| 868.1 | 0 | 6  | 0 | 0 | 8  | 4 | 1 |
| 868.6 | 0 | 7  | 3 | 1 | 12 | 6 | 1 |
| 869.1 | 0 | 3  | 4 | 2 | 14 | 2 | 1 |
| 869.5 | 0 | 5  | 5 | 2 | 14 | 1 | 1 |
| 870.0 | 0 | 8  | 4 | 0 | 11 | 1 | 2 |
| 870.5 | 0 | 7  | 2 | 2 | 10 | 6 | 1 |

|       |   |    |   |   |    |   | 1 |
|-------|---|----|---|---|----|---|---|
| 871.0 | 0 | 4  | 4 | 1 | 8  | 2 | 3 |
| 871.5 | 0 | 9  | 2 | 0 | 10 | 3 | 1 |
| 871.9 | 0 | 5  | 0 | 3 | 2  | 4 | 1 |
| 872.4 | 0 | 10 | 5 | 2 | 9  | 1 | 3 |
| 872.9 | 0 | 3  | 6 | 0 | 8  | 2 | 1 |
| 873.4 | 0 | 4  | 2 | 1 | 13 | 4 | 0 |
| 873.8 | 0 | 4  | 5 | 0 | 8  | 1 | 0 |
| 874.3 | 0 | 2  | 3 | 3 | 9  | 2 | 1 |
| 874.8 | 0 | 4  | 4 | 4 | 12 | 6 | 2 |
| 875.3 | 0 | 5  | 2 | 0 | 13 | 4 | 0 |
| 875.8 | 0 | 8  | 0 | 1 | 7  | 1 | 1 |
| 876.2 | 0 | 5  | 0 | 0 | 8  | 2 | 1 |
| 876.7 | 0 | 2  | 1 | 1 | 10 | 7 | 2 |
| 877.2 | 0 | 7  | 1 | 0 | 12 | 3 | 2 |
| 877.7 | 0 | 6  | 2 | 1 | 13 | 3 | 1 |
| 878.2 | 0 | 5  | 2 | 1 | 6  | 2 | 2 |
| 878.6 | 0 | 6  | 1 | 1 | 5  | 3 | 1 |
| 879.1 | 0 | 4  | 4 | 3 | 11 | 0 | 2 |
| 879.6 | 0 | 9  | 4 | 0 | 6  | 3 | 2 |
| 880.1 | 0 | 5  | 4 | 0 | 8  | 2 | 0 |
| 880.6 | 0 | 6  | 3 | 1 | 8  | 0 | 1 |
| 881.0 | 0 | 6  | 1 | 2 | 13 | 9 | 4 |
| 881.5 | 0 | 9  | 1 | 2 | 9  | 1 | 1 |
| 882.0 | 0 | 6  | 3 | 1 | 9  | 8 | 0 |
| 882.5 | 0 | 3  | 3 | 1 | 4  | 3 | 0 |
| 882.9 | 0 | 2  | 2 | 0 | 12 | 3 | 0 |
| 883.4 | 0 | 5  | 4 | 0 | 8  | 1 | 2 |
| 883.9 | 0 | 5  | 1 | 1 | 14 | 3 | 1 |
| 884.4 | 0 | 10 | 2 | 0 | 16 | 6 | 2 |
| 884.9 | 0 | 5  | 2 | 2 | 15 | 3 | 1 |
| 885.3 | 0 | 6  | 1 | 2 | 12 | 1 | 1 |
| 885.8 | 0 | 2  | 7 | 4 | 8  | 4 | 1 |
| 886.3 | 0 | 4  | 2 | 0 | 4  | 2 | 2 |
| 886.8 | 0 | 8  | 2 | 1 | 12 | 2 | 0 |
| 887.3 | 0 | 11 | 2 | 2 | 3  | 1 | 0 |
| 887.7 | 0 | 4  | 0 | 1 | 7  | 1 | 3 |
| 888.2 | 0 | 6  | 1 | 1 | 13 | 6 | 2 |
| 888.7 | 0 | 7  | 2 | 2 | 6  | 2 | 3 |
| 889.2 | 0 | 3  | 2 | 0 | 10 | 2 | 0 |
| 889.7 | 0 | 6  | 4 | 3 | 7  | 5 | 1 |
| 890.1 | 0 | 5  | 2 | 0 | 12 | 2 | 1 |
| 890.6 | 0 | 6  | 3 | 2 | 6  | 3 | 1 |
| 891.1 | 0 | 9  | 1 | 5 | 11 | 4 | 0 |
| 891.6 | 0 | 7  | 0 | 0 | 15 | 5 | 3 |

| 892.1 | 0 | 5  | 2 | 1 | 8  | 5 | 0 |
|-------|---|----|---|---|----|---|---|
| 892.5 | 0 | 8  | 1 | 1 | 5  | 1 | 0 |
| 893.0 | 0 | 5  | 1 | 0 | 5  | 5 | 1 |
| 893.5 | 0 | 8  | 1 | 0 | 6  | 4 | 0 |
| 894.0 | 0 | 4  | 2 | 0 | 9  | 3 | 1 |
| 894.4 | 0 | 6  | 2 | 1 | 5  | 1 | 2 |
| 894.9 | 0 | 9  | 2 | 3 | 6  | 3 | 3 |
| 895.4 | 0 | 4  | 2 | 1 | 5  | 7 | 2 |
| 895.9 | 0 | 5  | 5 | 2 | 11 | 4 | 2 |
| 896.4 | 0 | 3  | 0 | 1 | 10 | 6 | 0 |
| 896.8 | 0 | 8  | 1 | 1 | 8  | 7 | 2 |
| 897.3 | 0 | 2  | 2 | 2 | 7  | 0 | 0 |
| 897.8 | 0 | 7  | 1 | 0 | 5  | 4 | 2 |
| 898.3 | 0 | 3  | 2 | 0 | 11 | 4 | 0 |
| 898.8 | 0 | 5  | 2 | 0 | 6  | 2 | 2 |
| 899.2 | 0 | 3  | 5 | 0 | 4  | 0 | 3 |
| 899.7 | 0 | 6  | 2 | 1 | 12 | 2 | 2 |
| 900.2 | 0 | 4  | 1 | 1 | 8  | 7 | 1 |
| 900.7 | 0 | 5  | 2 | 0 | 3  | 4 | 2 |
| 901.2 | 0 | 7  | 4 | 0 | 8  | 1 | 2 |
| 901.6 | 0 | 10 | 4 | 0 | 8  | 6 | 2 |
| 902.1 | 0 | 2  | 2 | 2 | 12 | 2 | 1 |
| 902.6 | 0 | 10 | 0 | 0 | 9  | 3 | 1 |
| 903.1 | 0 | 8  | 3 | 0 | 8  | 5 | 1 |
| 903.6 | 0 | 8  | 2 | 1 | 5  | 4 | 3 |
| 904.0 | 0 | 6  | 2 | 0 | 9  | 2 | 3 |
| 904.5 | 0 | 2  | 2 | 1 | 2  | 1 | 0 |
| 905.0 | 0 | 6  | 2 | 0 | 3  | 4 | 0 |
| 905.5 | 0 | 8  | 1 | 0 | 11 | 2 | 2 |
| 905.9 | 0 | 5  | 2 | 2 | 9  | 4 | 1 |
| 906.4 | 0 | 7  | 0 | 0 | 5  | 2 | 0 |
| 906.9 | 0 | 9  | 3 | 1 | 7  | 1 | 1 |
| 907.4 | 0 | 6  | 1 | 0 | 8  | 3 | 1 |
| 907.9 | 0 | 6  | 2 | 0 | 10 | 4 | 1 |
| 908.3 | 0 | 1  | 5 | 0 | 5  | 1 | 1 |
| 908.8 | 0 | 2  | 2 | 1 | 6  | 2 | 0 |
| 909.3 | 0 | 5  | 3 | 1 | 4  | 2 | 0 |
| 909.8 | 0 | 7  | 0 | 0 | 7  | 3 | 1 |
| 910.3 | 0 | 5  | 0 | 2 | 3  | 2 | 1 |
| 910.7 | 0 | 4  | 1 | 0 | 3  | 1 | 0 |
| 911.2 | 0 | 5  | 2 | 1 | 7  | 0 | 0 |
| 911.7 | 0 | 8  | 0 | 2 | 7  | 1 | 1 |
| 912.2 | 0 | 3  | 3 | 2 | 5  | 5 | 0 |
| 912.7 | 0 | 7  | 4 | 1 | 7  | 6 | 4 |

| 913.1 | 0 | 4  | 0 | 0 | 5  | 2 | 2 |
|-------|---|----|---|---|----|---|---|
| 913.6 | 0 | 4  | 2 | 1 | 7  | 4 | 2 |
| 914.1 | 0 | 7  | 3 | 0 | 6  | 5 | 1 |
| 914.6 | 0 | 6  | 2 | 2 | 6  | 3 | 1 |
| 915.0 | 0 | 3  | 3 | 1 | 4  | 0 | 0 |
| 915.5 | 0 | 2  | 3 | 1 | 3  | 2 | 0 |
| 916.0 | 0 | 10 | 1 | 0 | 4  | 1 | 0 |
| 916.5 | 0 | 10 | 2 | 2 | 8  | 4 | 3 |
| 917.0 | 0 | 4  | 0 | 1 | 8  | 3 | 1 |
| 917.4 | 0 | 8  | 2 | 1 | 3  | 5 | 1 |
| 917.9 | 0 | 5  | 2 | 0 | 5  | 2 | 1 |
| 918.4 | 0 | 9  | 1 | 1 | 6  | 2 | 1 |
| 918.9 | 0 | 1  | 4 | 1 | 6  | 3 | 3 |
| 919.4 | 0 | 3  | 3 | 1 | 5  | 1 | 1 |
| 919.8 | 0 | 4  | 3 | 0 | 6  | 2 | 2 |
| 920.3 | 0 | 5  | 3 | 2 | 5  | 2 | 2 |
| 920.8 | 0 | 3  | 0 | 1 | 7  | 2 | 1 |
| 921.3 | 0 | 5  | 0 | 1 | 7  | 3 | 1 |
| 921.8 | 0 | 2  | 3 | 0 | 6  | 5 | 2 |
| 922.2 | 0 | 4  | 1 | 1 | 7  | 3 | 1 |
| 922.7 | 0 | 3  | 2 | 0 | 9  | 4 | 0 |
| 923.2 | 0 | 8  | 2 | 1 | 4  | 5 | 2 |
| 923.7 | 0 | 2  | 0 | 2 | 12 | 3 | 1 |
| 924.2 | 0 | 6  | 3 | 0 | 4  | 2 | 1 |
| 924.6 | 0 | 3  | 2 | 3 | 8  | 0 | 1 |
| 925.1 | 0 | 6  | 7 | 0 | 6  | 5 | 1 |
| 925.6 | 0 | 6  | 0 | 0 | 6  | 1 | 1 |
| 926.1 | 0 | 4  | 1 | 0 | 7  | 4 | 0 |
| 926.5 | 0 | 5  | 3 | 1 | 9  | 1 | 0 |
| 927.0 | 0 | 3  | 1 | 3 | 8  | 2 | 0 |
| 927.5 | 0 | 3  | 2 | 0 | 5  | 4 | 2 |
| 928.0 | 0 | 3  | 2 | 3 | 2  | 5 | 4 |
| 928.5 | 0 | 4  | 3 | 1 | 3  | 2 | 1 |
| 928.9 | 0 | 5  | 4 | 0 | 6  | 5 | 1 |
| 929.4 | 0 | 4  | 5 | 1 | 7  | 2 | 1 |
| 929.9 | 0 | 5  | 2 | 2 | 14 | 1 | 2 |
| 930.4 | 0 | 2  | 6 | 3 | 6  | 1 | 3 |
| 930.9 | 0 | 3  | 3 | 0 | 2  | 2 | 0 |
| 931.3 | 0 | 4  | 1 | 2 | 9  | 0 | 2 |
| 931.8 | 0 | 5  | 1 | 0 | 8  | 3 | 1 |
| 932.3 | 0 | 2  | 5 | 2 | 7  | 4 | 3 |
| 932.8 | 0 | 4  | 2 | 0 | 5  | 8 | 1 |
| 933.3 | 0 | 3  | 2 | 0 | 3  | 2 | 1 |
| 933.7 | 0 | 2  | 0 | 0 | 3  | 0 | 3 |

| 934.2 | 0 | 5 | 3 | 1 | 6  | 3 | 1 |
|-------|---|---|---|---|----|---|---|
| 934.7 | 0 | 8 | 3 | 1 | 14 | 4 | 0 |
| 935.2 | 0 | 1 | 2 | 0 | 7  | 4 | 1 |
| 935.6 | 0 | 7 | 3 | 0 | 4  | 1 | 0 |
| 936.1 | 0 | 8 | 4 | 1 | 6  | 4 | 0 |
| 936.6 | 0 | 4 | 0 | 1 | 4  | 1 | 3 |
| 937.1 | 0 | 2 | 1 | 0 | 3  | 1 | 3 |
| 937.6 | 0 | 5 | 2 | 0 | 5  | 2 | 0 |
| 938.0 | 0 | 4 | 1 | 1 | 5  | 4 | 1 |
| 938.5 | 0 | 5 | 3 | 0 | 10 | 0 | 1 |
| 939.0 | 0 | 3 | 1 | 0 | 3  | 2 | 1 |
| 939.5 | 0 | 4 | 0 | 1 | 8  | 2 | 1 |
| 940.0 | 0 | 2 | 1 | 1 | 5  | 3 | 0 |
| 940.4 | 0 | 1 | 0 | 0 | 6  | 1 | 2 |
| 940.9 | 0 | 3 | 4 | 0 | 8  | 0 | 2 |
| 941.4 | 0 | 6 | 3 | 3 | 4  | 2 | 0 |
| 941.9 | 0 | 6 | 1 | 0 | 6  | 2 | 0 |
| 942.4 | 0 | 5 | 2 | 1 | 3  | 0 | 1 |
| 942.8 | 0 | 7 | 3 | 0 | 4  | 1 | 0 |
| 943.3 | 0 | 2 | 1 | 1 | 5  | 4 | 1 |
| 943.8 | 0 | 4 | 0 | 2 | 8  | 4 | 4 |
| 944.3 | 0 | 5 | 4 | 1 | 10 | 1 | 2 |
| 944.8 | 0 | 2 | 1 | 0 | 6  | 2 | 1 |
| 945.2 | 0 | 6 | 0 | 0 | 6  | 0 | 1 |
| 945.7 | 0 | 1 | 4 | 1 | 8  | 2 | 1 |
| 946.2 | 0 | 3 | 1 | 0 | 6  | 1 | 1 |
| 946.7 | 0 | 1 | 2 | 0 | 5  | 1 | 4 |
| 947.1 | 0 | 4 | 2 | 0 | 6  | 4 | 2 |
| 947.6 | 0 | 4 | 0 | 1 | 8  | 1 | 0 |
| 948.1 | 0 | 2 | 4 | 1 | 3  | 0 | 0 |
| 948.6 | 0 | 5 | 1 | 2 | 6  | 4 | 0 |
| 949.1 | 0 | 2 | 0 | 0 | 4  | 3 | 2 |
| 949.5 | 0 | 4 | 2 | 1 | 5  | 2 | 2 |
| 950.0 | 0 | 2 | 1 | 0 | 2  | 1 | 0 |
| 950.5 | 0 | 5 | 0 | 0 | 9  | 2 | 0 |
| 951.0 | 0 | 2 | 0 | 1 | 5  | 2 | 0 |
| 951.5 | 0 | 3 | 2 | 2 | 5  | 0 | 2 |
| 951.9 | 0 | 3 | 1 | 1 | 4  | 1 | 1 |
| 952.4 | 0 | 2 | 1 | 0 | 5  | 2 | 0 |
| 952.9 | 0 | 4 | 4 | 0 | 10 | 3 | 0 |
| 953.4 | 0 | 2 | 0 | 0 | 5  | 1 | 2 |
| 953.9 | 0 | 7 | 1 | 2 | 9  | 7 | 0 |
| 954.3 | 0 | 5 | 2 | 1 | 6  | 0 | 0 |
| 954.8 | 0 | 3 | 0 | 0 | 9  | 0 | 2 |

| 955.3 | 0 | 3 | 0 | 0 | 6  | 1 | 2 |
|-------|---|---|---|---|----|---|---|
| 955.8 | 0 | 2 | 1 | 1 | 9  | 2 | 0 |
| 956.2 | 0 | 2 | 2 | 0 | 6  | 4 | 0 |
| 956.7 | 0 | 2 | 5 | 0 | 3  | 1 | 0 |
| 957.2 | 0 | 4 | 1 | 1 | 6  | 4 | 0 |
| 957.7 | 0 | 1 | 1 | 0 | 5  | 1 | 2 |
| 958.2 | 0 | 6 | 4 | 1 | 4  | 1 | 2 |
| 958.6 | 0 | 5 | 0 | 3 | 4  | 3 | 1 |
| 959.1 | 0 | 8 | 2 | 1 | 6  | 4 | 0 |
| 959.6 | 0 | 4 | 1 | 0 | 7  | 3 | 3 |
| 960.1 | 0 | 0 | 2 | 0 | 3  | 4 | 0 |
| 960.6 | 0 | 4 | 2 | 0 | 4  | 1 | 2 |
| 961.0 | 0 | 3 | 0 | 0 | 6  | 1 | 1 |
| 961.5 | 0 | 2 | 1 | 0 | 5  | 3 | 0 |
| 962.0 | 0 | 1 | 3 | 0 | 5  | 3 | 2 |
| 962.5 | 0 | 2 | 0 | 0 | 3  | 4 | 0 |
| 963.0 | 0 | 2 | 1 | 0 | 7  | 0 | 2 |
| 963.4 | 0 | 4 | 1 | 0 | 9  | 3 | 1 |
| 963.9 | 0 | 3 | 3 | 1 | 7  | 1 | 2 |
| 964.4 | 0 | 2 | 0 | 0 | 5  | 2 | 2 |
| 964.9 | 0 | 6 | 2 | 0 | 9  | 1 | 0 |
| 965.4 | 0 | 4 | 4 | 0 | 5  | 2 | 4 |
| 965.8 | 0 | 3 | 0 | 1 | 6  | 0 | 3 |
| 966.3 | 0 | 5 | 2 | 0 | 11 | 1 | 2 |
| 966.8 | 0 | 1 | 3 | 1 | 6  | 0 | 0 |
| 967.3 | 0 | 2 | 2 | 1 | 7  | 2 | 0 |
| 967.7 | 0 | 1 | 1 | 1 | 6  | 0 | 1 |
| 968.2 | 0 | 2 | 2 | 1 | 6  | 2 | 0 |
| 968.7 | 0 | 2 | 5 | 0 | 6  | 1 | 1 |
| 969.2 | 0 | 4 | 0 | 0 | 5  | 2 | 2 |
| 969.7 | 0 | 5 | 0 | 1 | 5  | 2 | 0 |
| 970.1 | 0 | 4 | 0 | 0 | 4  | 4 | 1 |
| 970.6 | 0 | 4 | 1 | 0 | 7  | 3 | 3 |
| 971.1 | 0 | 8 | 3 | 0 | 8  | 1 | 1 |
| 971.6 | 0 | 4 | 0 | 1 | 7  | 2 | 0 |
| 972.1 | 0 | 4 | 1 | 0 | 2  | 4 | 2 |
| 972.5 | 0 | 4 | 2 | 0 | 5  | 0 | 0 |
| 973.0 | 0 | 9 | 1 | 1 | 5  | 1 | 2 |
| 973.5 | 0 | 5 | 1 | 0 | 7  | 3 | 1 |
| 974.0 | 0 | 3 | 0 | 2 | 8  | 6 | 2 |
| 974.5 | 0 | 4 | 6 | 0 | 8  | 3 | 1 |
| 974.9 | 0 | 1 | 5 | 0 | 6  | 1 | 1 |
| 975.4 | 0 | 3 | 0 | 0 | 8  | 3 | 1 |
| 975.9 | 0 | 3 | 2 | 0 | 1  | 4 | 1 |
| 976.4 | 0 | 4 | 2 | 0 | 6  | 2 | 0 |
| 976.8 | 0 | 6 | 1 | 1 | 10 | 2 | 0 |
|-------|---|---|---|---|----|---|---|
| 977.3 | 0 | 2 | 1 | 0 | 4  | 2 | 1 |
| 977.8 | 0 | 1 | 3 | 1 | 3  | 2 | 3 |
| 978.3 | 0 | 4 | 1 | 0 | 2  | 2 | 0 |
| 978.8 | 0 | 2 | 0 | 0 | 4  | 4 | 0 |
| 979.2 | 0 | 3 | 1 | 1 | 8  | 1 | 2 |
| 979.7 | 0 | 4 | 0 | 0 | 5  | 4 | 2 |
| 980.2 | 0 | 1 | 1 | 0 | 4  | 3 | 1 |
| 980.7 | 0 | 0 | 0 | 0 | 0  | 0 | 0 |
| 981.2 | 0 | 0 | 0 | 0 | 0  | 0 | 0 |

| 2.13. | Data   | table | of | dlnX <sub>cmc</sub> | at | different | salt | concentrations | with | the | variation | of |
|-------|--------|-------|----|---------------------|----|-----------|------|----------------|------|-----|-----------|----|
| temp  | eratur | es    |    |                     |    |           |      |                |      |     |           |    |

| TU     | dlnX <sub>cmc</sub> at different [Salt] with the variation of salt concentration with temperatures |         |         |         |                                 |                                 |                                 |                                 |  |  |  |
|--------|----------------------------------------------------------------------------------------------------|---------|---------|---------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|
| 1/K    | 0.001 m                                                                                            | 0.005 m | 0.001 m | 0.005 m | 0.001 m                         | 0.005m                          | 0.001 m                         | 0.005m                          |  |  |  |
|        | NaCl                                                                                               | NaCl    | NaBr    | nabr    | Na <sub>2</sub> SO <sub>4</sub> | Na <sub>2</sub> SO <sub>4</sub> | Na <sub>3</sub> PO <sub>4</sub> | Na <sub>3</sub> PO <sub>4</sub> |  |  |  |
| 298.15 | -11.43                                                                                             | -12.40  | -12.03  | -12.85  | -12.98                          | -13.16                          | -12.38                          | -13.08                          |  |  |  |
| 303.15 | -11.43                                                                                             | -12.24  | -11.99  | -12.84  | -12.95                          | -13.00                          | -12.39                          | -13.36                          |  |  |  |
| 308.15 | -11.36                                                                                             | -12.22  | -11.85  | -12.83  | -12.88                          | -12.97                          | -12.24                          | -12.84                          |  |  |  |
| 313.15 | -11.33                                                                                             | -12.23  | -11.66  | -12.76  | -12.79                          | -12.90                          | -12.12                          | -12.81                          |  |  |  |
| 318.15 | -11.25                                                                                             | -12.00  | -11.62  | -12.62  | -12.69                          |                                 | -11.98                          | -12.68                          |  |  |  |

# 2.14. Steady state Stern Volmer data of Pyrene with variation of [CPC] concentration at different salt concentrations for NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub> at 298.15 K

| 0.01 mol.kg <sup>-1</sup> NaCl |                   | 0.02 mol.kg <sup>-1</sup> NaBr |         | 0.001 mol               | .kg <sup>-1</sup> Na <sub>2</sub> SO <sub>4</sub> | 0.02 mol.kg <sup>-1</sup> Na <sub>3</sub> PO <sub>4</sub> |                   |  |
|--------------------------------|-------------------|--------------------------------|---------|-------------------------|---------------------------------------------------|-----------------------------------------------------------|-------------------|--|
| 10 <sup>3</sup> [CPC] /        |                   | 10 <sup>3</sup> [CPC] /        |         | 10 <sup>3</sup> [CPC] / |                                                   | 10 <sup>3</sup> [CPC] /                                   |                   |  |
| mol.kg <sup>-1</sup>           | F <sub>0</sub> /F | mol.kg <sup>-1</sup>           | $F_0/F$ | mol.kg <sup>-1</sup>    | F <sub>0</sub> /F                                 | mol.kg <sup>-1</sup>                                      | F <sub>0</sub> /F |  |
| 0                              | 1.00              | 0                              | 1.00    | 0                       | 1.00                                              | 0                                                         | 1.00              |  |
| 0.010                          | 1.02              | 0.010                          | 1.13    | 0.010                   | 1.03                                              | 0.010                                                     | 1.08              |  |
| 0.019                          | 1.02              | 0.020                          | 1.14    | 0.019                   | 1.05                                              | 0.019                                                     | 1.20              |  |
| 0.029                          | 1.08              | 0.029                          | 1.33    | 0.029                   | 1.10                                              | 0.029                                                     | 1.27              |  |
| 0.038                          | 1.15              | 0.038                          | 1.66    | 0.038                   | 1.16                                              | 0.038                                                     | 1.36              |  |
| 0.047                          | 1.22              |                                |         | 0.047                   | 1.22                                              | 0.047                                                     | 1.61              |  |

| 0.01 mol.kg <sup>-1</sup> NaCl |               | 0.02 mol.kg <sup>-1</sup> NaBr |               | 0.001 mol.kg <sup>-1</sup> N | $a_2SO_4$     | 0.02 mol.kg <sup>-1</sup> Na <sub>3</sub> PO <sub>4</sub> |               |  |
|--------------------------------|---------------|--------------------------------|---------------|------------------------------|---------------|-----------------------------------------------------------|---------------|--|
| 10 <sup>3</sup> [CPC] /        |               | 10 <sup>3</sup> [CPC] /        |               | 10 <sup>3</sup> [CPC] /      |               | 10 <sup>3</sup> [CPC] /                                   |               |  |
| mol.kg <sup>-1</sup>           | $\tau_0/\tau$ | mol.kg <sup>-1</sup>           | $\tau_0/\tau$ | mol.kg <sup>-1</sup>         | $\tau_0/\tau$ | mol.kg <sup>-1</sup>                                      | $\tau_0/\tau$ |  |
| 0                              | 1.00          | 0                              | 1.00          | 0                            | 1.00          | 0                                                         | 1.00          |  |
| 0.020                          | 1.01          | 0.010                          | 1.07          | 0.020                        | 1.02          | 0.020                                                     | 1.02          |  |
| 0.038                          | 1.04          | 0.019                          | 1.10          | 0.038                        | 1.04          | 0.038                                                     | 1.06          |  |
| 0.060                          | 1.07          | 0.029                          | 1.14          | 0.060                        | 1.06          | 0.060                                                     | 1.12          |  |
|                                |               | 0.038                          | 1.19          |                              |               |                                                           |               |  |

### 2.15. Time resolved Stern Volmer data of Pyrene with variation of [CPC] concentration at different salt concentrations for NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub> at 298.15 K

### 2.16. Dynamic Light Scattering (DLS) data for C<sub>16</sub>MImCl in presence of different [Salt] for NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub> at 298.15 K

| NaCl /        | 0.01 m              | NaBr          | / 0.01 m            | Na            | Na2SO4/0.01 m       |               | Na <sub>3</sub> PO <sub>4</sub> /0.01 m |  |
|---------------|---------------------|---------------|---------------------|---------------|---------------------|---------------|-----------------------------------------|--|
| Size<br>r(nm) | Mean<br>Intensity %                     |  |
| 0.20          | 0.0                 | 0.20          | 0                   | 0.20          | 0                   | 0.20          | 0                                       |  |
| 0.23          | 0.0                 | 0.23          | 0                   | 0.23          | 0                   | 0.23          | 0                                       |  |
| 0.27          | 0.0                 | 0.27          | 0                   | 0.27          | 0                   | 0.27          | 0                                       |  |
| 0.31          | 0.0                 | 0.31          | 0                   | 0.31          | 0                   | 0.31          | 0                                       |  |
| 0.36          | 0.0                 | 0.36          | 0                   | 0.36          | 0                   | 0.36          | 0                                       |  |
| 0.42          | 0.0                 | 0.42          | 0                   | 0.42          | 0                   | 0.42          | 0                                       |  |
| 0.48          | 0.0                 | 0.48          | 0                   | 0.48          | 0                   | 0.48          | 0                                       |  |
| 0.56          | 0.0                 | 0.56          | 0                   | 0.56          | 0                   | 0.56          | 0                                       |  |
| 0.65          | 0.0                 | 0.65          | 0                   | 0.65          | 0                   | 0.65          | 0                                       |  |
| 0.75          | 0.0                 | 0.75          | 0                   | 0.75          | 0                   | 0.75          | 0                                       |  |
| 0.87          | 0.0                 | 0.87          | 0                   | 0.87          | 0                   | 0.87          | 0                                       |  |
| 1.01          | 0.0                 | 1.01          | 0                   | 1.01          | 0                   | 1.00          | 0                                       |  |
| 1.16          | 0.0                 | 1.16          | 0                   | 1.16          | 0                   | 1.16          | 0                                       |  |
| 1.35          | 4.8                 | 1.35          | 0                   | 1.35          | 0                   | 1.35          | 0                                       |  |
| 1.56          | 27.8                | 1.56          | 0                   | 1.56          | 0                   | 1.56          | 0                                       |  |
| 1.81          | 37.3                | 1.81          | 0.3                 | 1.81          | 3.2                 | 1.81          | 0                                       |  |
| 2.09          | 21.3                | 2.09          | 18.4                | 2.09          | 34.6                | 2.09          | 20.1                                    |  |
| 2.42          | 0.1                 | 2.42          | 34.3                | 2.42          | 35                  | 2.42          | 33.7                                    |  |
| 2.81          | 0.0                 | 2.81          | 32.1                | 2.81          | 0.5                 | 2.81          | 20.5                                    |  |
| 3.25          | 0.0                 | 3.25          | 14.9                | 3.25          | 0                   | 3.25          | 0                                       |  |
| 3.77          | 0.0                 | 3.77          | 0                   | 3.77          | 0                   | 3.76          | 0                                       |  |
| 4.36          | 0.0                 | 4.36          | 0                   | 4.36          | 0                   | 4.36          | 0                                       |  |
| 5.05          | 0.0                 | 5.05          | 0                   | 5.05          | 0                   | 5.05          | 0                                       |  |
| 5.85          | 0.0                 | 5.85          | 0                   | 5.85          | 0                   | 5.85          | 0                                       |  |
| 6.77          | 0.0                 | 6.77          | 0                   | 6.77          | 0                   | 6.77          | 0                                       |  |
| 7.84          | 0.0                 | 7.84          | 0                   | 7.84          | 0                   | 7.84          | 0                                       |  |
| 9.08          | 0.0                 | 9.08          | 0                   | 9.08          | 0                   | 9.08          | 0                                       |  |
| 10.52         | 0.0                 | 10.52         | 0                   | 10.52         | 0                   | 10.52         | 0                                       |  |
| 12.18         | 0.0                 | 12.18         | 0                   | 12.18         | 0                   | 12.18         | 0                                       |  |

| 14.11 | 0.0 | 14.11 | 0 | 14.11 | 0 | 14.11 | 0    |
|-------|-----|-------|---|-------|---|-------|------|
| 16.34 | 0.0 | 16.34 | 0 | 16.34 | 0 | 16.34 | 0    |
| 18.92 | 0.0 | 18.92 | 0 | 18.92 | 0 | 18.92 | 0    |
| 21.91 | 0.0 | 21.91 | 0 | 21.91 | 0 | 21.91 | 0    |
| 25.37 | 0.0 | 25.37 | 0 | 25.37 | 0 | 25.37 | 0    |
| 29.39 | 0.0 | 29.39 | 0 | 29.39 | 0 | 29.39 | 0    |
| 34.03 | 0.0 | 34.03 | 0 | 34.03 | 0 | 34.03 | 0    |
| 39.41 | 0.0 | 39.41 | 0 | 39.41 | 0 | 39.41 | 13.6 |
| 45.64 | 0.0 | 45.64 | 0 | 45.64 | 0 | 45.64 | 12.1 |
| 52.85 | 0.0 | 52.85 | 0 | 52.85 | 0 | 52.85 | 0    |
| 61.21 | 0.0 | 61.21 | 0 | 61.21 | 0 | 61.21 | 0    |
| 70.89 | 0.0 | 70.89 | 0 | 70.89 | 0 | 70.89 | 0    |
| 82.09 | 0.0 | 82.09 | 0 | 82.09 | 0 | 82.09 | 0    |
| 95.07 | 1.5 | 95.07 | 0 | 95.07 | 0 | 95.07 | 0    |
| 110.1 | 4.1 | 110.1 | 0 | 110.1 | 0 | 110.1 | 0    |
| 127.5 | 3.0 | 127.5 | 0 | 127.5 | 0 | 127.5 | 0    |
| 147.7 | 0.0 | 147.7 | 0 | 147.7 | 0 | 147.7 | 0    |
| 171.0 | 0.0 | 171.0 | 0 | 171.0 | 0 | 171.0 | 0    |
| 198.0 | 0.0 | 198.0 | 0 | 198.0 | 0 | 198.0 | 0    |
| 229.3 | 0.0 | 229.3 | 0 | 229.3 | 0 | 229.3 | 0    |
| 265.6 | 0.0 | 265.6 | 0 | 265.6 | 0 | 265.6 | 0    |
| 307.6 | 0.0 | 307.6 | 0 | 307.6 | 0 | 307.6 | 0    |
| 356.2 | 0.0 | 356.2 | 0 | 356.2 | 0 | 356.2 | 0    |
| 412.5 | 0.0 | 412.5 | 0 | 412.5 | 0 | 412.5 | 0    |
| 477.7 | 0.0 | 477.7 | 0 | 477.7 | 0 | 477.7 | 0    |
| 553.2 | 0.0 | 553.2 | 0 | 553.2 | 0 | 553.2 | 0    |
| 640.7 | 0.0 | 640.7 | 0 | 640.7 | 0 | 640.7 | 0    |
| 741.9 | 0.0 | 741.9 | 0 | 741.9 | 0 | 741.9 | 0    |
| 859.2 | 0.0 | 859.2 | 0 | 859.2 | 0 | 859.2 | 0    |
| 995.1 | 0.0 | 995.1 | 0 | 995.1 | 0 | 995.1 | 0    |
| 1152  | 0.0 | 1152  | 0 | 1152  | 0 | 1152  | 0    |
| 1335  | 0.0 | 1335  | 0 | 1335  | 0 | 1335  | 0    |
| 1545  | 0.0 | 1545  | 0 | 1545  | 0 | 1545  | 0    |
| 1790  | 0.0 | 1790  | 0 | 1790  | 0 | 1790  | 0    |
| 2073  | 0.0 | 2073  | 0 | 2073  | 0 | 2073  | 0    |
| 2400  | 0.0 | 2400  | 0 | 2400  | 0 | 2400  | 0    |
| 2780  | 0.0 | 2780  | 0 | 2780  | 0 | 2780  | 0    |
| 3219  | 0.0 | 3219  | 0 | 3219  | 0 | 3219  | 0    |
| 3728  | 0.0 | 3728  | 0 | 3728  | 0 | 3728  | 0    |
| 4317  | 0.0 | 4317  | 0 | 4317  | 0 | 4317  | 0    |
| 5000  | 0.0 | 5000  | 0 | 5000  | 0 | 5000  | 0    |

### Chapter- III

| 3.1. Different experimental data (tensiometry, coductometry, fluorimetry, isotherma   |
|---------------------------------------------------------------------------------------|
| titration calorimetry) with the variation of [C16MImCl] for the determination of cmci |
| aqueous solution at 298.15 K.                                                         |

| Surfacete               | ension               | Conduc                  | tance                 | Fluoresce   | nce       | ITC                      |                      |
|-------------------------|----------------------|-------------------------|-----------------------|-------------|-----------|--------------------------|----------------------|
| [C <sub>16</sub> MImCl] | γ                    | [C <sub>16</sub> MImCl] | K                     | [C16MImCl]/ |           | [C <sub>16</sub> MImCl]/ | $\Delta H^0_m /$     |
| / mM                    | / mN.m <sup>-1</sup> | / mM                    | / µS.cm <sup>-1</sup> | mM          | $I_1/I_3$ | mM                       | kJ.mol <sup>-1</sup> |
| 0                       | 66.5                 | 0                       | 0.91                  | 0           | 1.498     | 0                        |                      |
| 0.003                   | 62.8                 | 0.007                   | 1.55                  | 0.036       | 1.497     | 0.039                    | 1.73                 |
| 0.006                   | 59.8                 | 0.013                   | 2.03                  | 0.095       | 1.481     | 0.194                    | 1.67                 |
| 0.022                   | 55.6                 | 0.020                   | 2.62                  | 0.154       | 1.493     | 0.348                    | 1.55                 |
| 0.091                   | 51.5                 | 0.027                   | 3.21                  | 0.271       | 1.467     | 0.500                    | 1.09                 |
| 0.150                   | 48.9                 | 0.033                   | 3.68                  | 0.386       | 1.457     | 0.651                    | 0.19                 |
| 0.353                   | 43.2                 | 0.040                   | 4.15                  | 0.555       | 1.433     | 0.800                    | -0.60                |
| 0.495                   | 41.0                 | 0.046                   | 5.03                  | 0.720       | 1.410     | 0.948                    | -1.17                |
| 0.634                   | 37.3                 | 0.053                   | 5.42                  | 0.881       | 1.257     | 1.094                    | -1.46                |
| 0.904                   | 35.9                 | 0.060                   | 6.32                  | 1.091       | 1.132     | 1.238                    | -1.69                |
| 1.414                   | 36.5                 | 0.066                   | 6.89                  | 1.344       | 1.128     | 1.382                    | -1.78                |
| 1.889                   | 36.5                 | 0.132                   | 12.88                 | 1.588       | 1.109     | 1.523                    | -1.86                |
| 2.332                   | 36.5                 | 0.197                   | 18.95                 | 1.824       | 1.112     | 1.663                    | -1.92                |
|                         |                      | 0.262                   | 24.81                 | 2.051       | 1.112     | 1.802                    | -1.90                |
|                         |                      | 0.326                   | 30.82                 | 2.271       | 1.113     | 1.938                    | -1.97                |
|                         |                      | 0.390                   | 36.51                 | 2.483       | 1.110     | 2.074                    | -1.95                |
|                         |                      | 0.454                   | 42.16                 | 2.689       | 1.108     | 2.208                    | -1.91                |
|                         |                      | 0.642                   | 59.25                 |             |           | 2.340                    | -1.92                |
|                         |                      | 0.827                   | 75.09                 |             |           | 2.471                    | -1.90                |
|                         |                      | 1.008                   | 85.60                 |             |           | 2.600                    | -1.93                |
|                         |                      | 1.244                   | 96.04                 |             |           |                          |                      |
|                         |                      | 1.809                   | 118.6                 |             |           |                          |                      |
|                         |                      | 2.341                   | 138.3                 |             |           |                          |                      |
|                         |                      | 2.843                   | 156.8                 |             |           |                          |                      |
|                         |                      | 3.317                   | 173.7                 |             |           |                          |                      |
|                         |                      | 3.765                   | 189.1                 |             |           |                          |                      |
|                         |                      | 4.190                   | 203.7                 |             |           |                          |                      |
|                         |                      | 4.592                   | 217.3                 |             |           |                          |                      |
|                         |                      | 4.824                   | 225.0                 |             |           |                          |                      |

# 3.2. Different experimental data (tensiometry, coductometry, fluorimetry, isothermal titration calorimetry) with the variation of $[C_{16}TPB]$ for the determination of cmc at 298.15 K.

| Surfacete              | ension             | Conduct                | ance                | Fluorescence   |           | II                     | ЪС                   |
|------------------------|--------------------|------------------------|---------------------|----------------|-----------|------------------------|----------------------|
| [C <sub>16</sub> TPB]/ | γ/                 | [C <sub>16</sub> TPB]/ | κ/                  | $[C_{16}TPB]/$ |           | [C <sub>16</sub> TPB]/ | $\Delta H^0_m$ /     |
| mM                     | mN.m <sup>-1</sup> | mM                     | µS.cm <sup>-1</sup> | mM             | $I_1/I_3$ | mM                     | kJ.mol <sup>-1</sup> |
| 0                      | 66.5               | 0                      | 5.2                 | 0              | 1.292     | 0                      |                      |
| 0.002                  | 62.6               | 0.002                  | 5.8                 | 0.005          | 1.292     | 0.007                  | 5.717                |
| 0.007                  | 55.1               | 0.007                  | 6.5                 | 0.016          | 1.280     | 0.036                  | 5.741                |
| 0.015                  | 51.5               | 0.014                  | 7.5                 | 0.031          | 1.269     | 0.065                  | 5.186                |
| 0.024                  | 49.1               | 0.023                  | 8.6                 | 0.046          | 1.260     | 0.094                  | 4.302                |
| 0.036                  | 45.4               | 0.035                  | 9.9                 | 0.087          | 1.253     | 0.122                  | 2.941                |
| 0.054                  | 43.7               | 0.058                  | 12.5                | 0.107          | 1.229     | 0.150                  | 2.077                |
| 0.078                  | 41.0               | 0.092                  | 16.7                | 0.132          | 1.199     | 0.178                  | 1.583                |
| 0.108                  | 40.4               | 0.126                  | 21                  | 0.157          | 1.179     | 0.205                  | 1.434                |
| 0.143                  | 39.1               | 0.160                  | 24                  | 0.194          | 1.142     | 0.232                  | 1.276                |
| 0.189                  | 38.8               | 0.193                  | 27                  | 0.230          | 1.119     | 0.259                  | 1.205                |
| 0.246                  | 38.7               | 0.226                  | 31                  | 0.266          | 1.102     | 0.286                  | 1.092                |
| 0.312                  | 37.7               | 0.259                  | 33                  | 0.313          | 1.083     | 0.312                  | 0.901                |
| 0.388                  | 37.5               | 0.292                  | 36                  | 0.383          | 1.070     | 0.338                  | 0.804                |
| 0.472                  | 37.4               | 0.324                  | 38                  | 0.451          | 1.050     | 0.364                  | 0.759                |
|                        |                    | 0.356                  | 41                  | 0.517          | 1.046     | 0.389                  | 0.687                |
|                        |                    | 0.398                  | 43                  | 0.604          | 1.037     | 0.414                  | 0.610                |
|                        |                    | 0.440                  | 46                  | 0.708          | 1.030     | 0.439                  | 0.582                |
|                        |                    | 0.481                  | 49                  | 0.829          | 1.034     | 0.464                  | 0.541                |
|                        |                    | 0.522                  | 51                  | 1.163          | 1.048     | 0.488                  | 0.561                |
|                        |                    | 0.563                  | 54                  | 1.490          | 1.033     |                        |                      |
|                        |                    | 0.608                  | 56                  | 1.639          | 1.049     |                        |                      |
|                        |                    | 0.652                  | 58                  | 1.779          | 1.030     |                        |                      |
|                        |                    | 0.697                  | 61                  | 1.912          | 1.033     |                        |                      |
|                        |                    | 0.740                  | 64                  | 2.037          | 1.037     |                        |                      |
|                        |                    | 0.788                  | 66                  | 2.156          | 1.033     |                        |                      |
|                        |                    | 0.835                  | 68                  | 2.268          | 1.031     |                        |                      |
|                        |                    | 0.881                  | 71                  |                |           |                        |                      |

| 0.001%                         | w/v NaAlg           | 0.005% w/v                  | NaAlg                         | 0.01% w/v      | NaAlg                         |
|--------------------------------|---------------------|-----------------------------|-------------------------------|----------------|-------------------------------|
| [C <sub>16</sub> MImCl]/<br>mM | $\gamma /mN.m^{-1}$ | [C <sub>16</sub> MImCl]/ mM | $\gamma$ / mN.m <sup>-1</sup> | [C16MImCl]/ mM | $\gamma$ / mN.m <sup>-1</sup> |
| 0                              | 65.7                | 0                           | 64.9                          | 0              | 62.4                          |
| 0.003                          | 58.0                | 0.003                       | 60.7                          | 0.003          | 54.4                          |
| 0.006                          | 53.4                | 0.010                       | 55.1                          | 0.006          | 51.4                          |
| 0.012                          | 50.7                | 0.019                       | 53.8                          | 0.012          | 51.3                          |
| 0.022                          | 48.6                | 0.032                       | 51.7                          | 0.025          | 50.2                          |
| 0.034                          | 49.6                | 0.048                       | 50.4                          | 0.044          | 48.8                          |
| 0.049                          | 47.5                | 0.068                       | 48.4                          | 0.068          | 45.3                          |
| 0.113                          | 43.5                | 0.116                       | 44.8                          | 0.093          | 44.0                          |
| 0.143                          | 43.5                | 0.144                       | 43.1                          | 0.124          | 42.6                          |
| 0.180                          | 44.1                | 0.176                       | 41.6                          | 0.170          | 41.3                          |
| 0.278                          | 43.4                | 0.214                       | 38.8                          | 0.230          | 40.0                          |
| 0.343                          | 43.4                | 0.258                       | 37.7                          | 0.321          | 37.9                          |
| 0.420                          | 40.5                | 0.308                       | 36.3                          | 0.439          | 34.5                          |
| 0.507                          | 39.4                | 0.364                       | 35.5                          | 0.585          | 33.0                          |
| 0.607                          | 38.2                | 0.432                       | 35.0                          | 0.756          | 32.7                          |
| 0.720                          | 36.7                | 0.517                       | 34.6                          | 0.951          | 31.6                          |
| 0.845                          | 36.7                | 0.625                       | 34.2                          | 1.168          | 31.0                          |
| 0.981                          | 37.5                | 0.744                       | 33.0                          | 1.404          | 30.9                          |
| 1.141                          | 37.5                | 0.919                       | 32.0                          | 1.658          | 30.7                          |
| 1.349                          | 38.0                | 1.146                       | 31.7                          | 1.926          | 30.6                          |
| 1.601                          | 37.7                | 1.420                       | 31.8                          | 2.276          | 30.5                          |
|                                |                     | 1.684                       | 31.7                          | 2.716          | 30.7                          |
|                                |                     | 2.186                       | 31.7                          | 3.514          | 30.4                          |
|                                |                     |                             |                               | 4.541          | 30.4                          |
|                                |                     |                             |                               | 5.912          | 30.5                          |

### 3.3. Tensiometry data of $C_{16}$ MImCl in presence of different [NaAlg] at 298.15 K.

| 0.001% w/v                | NaAlg                         | 0.005% w/                 | v NaAlg            | 0.01% w/v                 | v NaAlg                       |
|---------------------------|-------------------------------|---------------------------|--------------------|---------------------------|-------------------------------|
| [C <sub>16</sub> TPB]/ mM | $\gamma$ / mN.m <sup>-1</sup> | [C <sub>16</sub> TPB]/ mM | $\gamma/mN.m^{-1}$ | [C <sub>16</sub> TPB]/ mM | $\gamma$ / mN.m <sup>-1</sup> |
| 0                         | 67.7                          | 0                         | 65.7               | 0                         | 65.6                          |
| 0.001                     | 66.4                          | 0.001                     | 62.1               | 0.001                     | 64.3                          |
| 0.003                     | 53.5                          | 0.004                     | 50.8               | 0.003                     | 56.3                          |
| 0.006                     | 49.2                          | 0.007                     | 48.0               | 0.005                     | 49.1                          |
| 0.010                     | 43.3                          | 0.011                     | 45.5               | 0.006                     | 48.0                          |
| 0.015                     | 43.2                          | 0.017                     | 45.0               | 0.009                     | 46.8                          |
| 0.021                     | 46.0                          | 0.025                     | 46.6               | 0.012                     | 45.6                          |
| 0.031                     | 44.6                          | 0.036                     | 41.8               | 0.015                     | 43.5                          |
| 0.065                     | 41.0                          | 0.047                     | 40.4               | 0.026                     | 42.5                          |
| 0.093                     | 38.4                          | 0.060                     | 38.2               | 0.034                     | 41.7                          |
| 0.131                     | 37.3                          | 0.073                     | 36.4               | 0.056                     | 41.9                          |
| 0.177                     | 37.6                          | 0.121                     | 36.5               | 0.074                     | 41.0                          |
| 0.231                     | 37.5                          | 0.154                     | 35.9               | 0.096                     | 39.9                          |
| 0.292                     | 37.7                          | 0.194                     | 36.0               | 0.122                     | 38.4                          |
| 0.360                     | 37.0                          | 0.247                     | 34.6               | 0.152                     | 37.5                          |
| 0.435                     | 37.0                          | 0.311                     | 34.0               | 0.186                     | 38.0                          |
| 0.515                     | 36.0                          | 0.387                     | 32.9               | 0.264                     | 36.8                          |
| 0.666                     | 35.5                          | 0.568                     | 33.4               | 0.312                     | 36.5                          |
| 0.875                     | 35.6                          | 0.673                     | 33.0               | 0.375                     | 34.6                          |
| 1.393                     | 35.2                          | 0.997                     | 33.1               | 0.523                     | 32.0                          |
| 1.671                     | 35.0                          | 1.290                     | 32.1               | 0.628                     | 31.4                          |
| 2.047                     | 34.5                          | 1.639                     | 31.9               | 0.759                     | 31.3                          |
|                           |                               | 2.019                     | 31.6               | 0.912                     | 31.0                          |
|                           |                               | 2.409                     | 31.9               | 1.079                     | 30.9                          |
|                           |                               | 2.843                     | 31.8               | 1.280                     | 30.5                          |
|                           |                               | 3.031                     | 31.6               |                           |                               |

### 3.4. Tensiometry data of $C_{16}$ TPB in presence of different [NaAlg] at 298.15 K

| 0.001%                   | w/v NaAlg              | 0.005% w/v                  | NaAlg                  | 0.01% w/    | v NaAlg                |
|--------------------------|------------------------|-----------------------------|------------------------|-------------|------------------------|
| [C <sub>16</sub> MImCl]/ | 1                      |                             |                        | [C16MImCl]/ |                        |
| mM                       | $\kappa/\mu S.cm^{-1}$ | [C <sub>16</sub> MImCl]/ mM | $\kappa/\mu S.cm^{-1}$ | mM          | $\kappa/\mu S.cm^{-1}$ |
| 0.000                    | 11                     | 0.000                       | 27                     | 0.000       | 39                     |
| 0.005                    | 12                     | 0.004                       | 27                     | 0.004       | 40                     |
| 0.009                    | 13                     | 0.013                       | 28                     | 0.008       | 41                     |
| 0.014                    | 14                     | 0.022                       | 29                     | 0.012       | 41                     |
| 0.021                    | 15                     | 0.031                       | 29                     | 0.020       | 42                     |
| 0.028                    | 16                     | 0.044                       | 30                     | 0.028       | 43                     |
| 0.038                    | 17                     | 0.057                       | 31                     | 0.037       | 44                     |
| 0.049                    | 18                     | 0.070                       | 32                     | 0.049       | 45                     |
| 0.066                    | 20                     | 0.087                       | 33                     | 0.061       | 45                     |
| 0.085                    | 22                     | 0.106                       | 34                     | 0.077       | 46                     |
| 0.108                    | 25                     | 0.128                       | 36                     | 0.097       | 48                     |
| 0.131                    | 28                     | 0.160                       | 37                     | 0.117       | 49                     |
| 0.154                    | 30                     | 0.192                       | 40                     | 0.137       | 51                     |
| 0.178                    | 33                     | 0.224                       | 44                     | 0.157       | 52                     |
| 0.212                    | 37                     | 0.266                       | 49                     | 0.177       | 53                     |
| 0.247                    | 41                     | 0.309                       | 53                     | 0.201       | 55                     |
| 0.281                    | 45                     | 0.350                       | 58                     | 0.229       | 57                     |
| 0.315                    | 49                     | 0.392                       | 62                     | 0.260       | 59                     |
| 0.349                    | 53                     | 0.434                       | 66                     | 0.291       | 61                     |
| 0.394                    | 58                     | 0.475                       | 71                     | 0.323       | 62                     |
| 0.439                    | 63                     | 0.516                       | 75                     | 0.357       | 66                     |
| 0.484                    | 68                     | 0.556                       | 79                     | 0.392       | 67                     |
| 0.551                    | 75                     | 0.607                       | 85                     | 0.431       | 73                     |
| 0.616                    | 81                     | 0.657                       | 90                     | 0.469       | 77                     |
| 0.682                    | 88                     | 0.707                       | 95                     | 0.507       | 81                     |
| 0.768                    | 97                     | 0.767                       | 101                    | 0.554       | 86                     |
| 0.854                    | 106                    | 0.826                       | 107                    | 0.601       | 91                     |
| 0.938                    | 112                    | 0.884                       | 113                    | 0.648       | 95                     |
| 1.043                    | 118                    | 0.942                       | 117                    | 0.703       | 101                    |
| 1.146                    | 123                    | 1.019                       | 124                    | 0.758       | 106                    |
| 1.247                    | 128                    | 1.095                       | 130                    | 0.813       | 111                    |
| 1.348                    | 132                    | 1.170                       | 134                    | 0.876       | 117                    |
| 1.466                    | 138                    | 1.244                       | 137                    | 0.938       | 123                    |
| 1.583                    | 144                    | 1.336                       | 142                    | 1.000       | 129                    |
| 1.698                    | 149                    | 1.426                       | 146                    | 1.140       | 138                    |
| 1.812                    | 153                    | 1.515                       | 150                    | 1.208       | 146                    |
| 1.942                    | 159                    | 1.604                       | 154                    | 1.293       | 150                    |
| 2.069                    | 164                    | 1.691                       | 158                    | 1.377       | 155                    |
| 2.195                    | 170                    | 1.794                       | 162                    | 1.459       | 159                    |
| 2.318                    | 175                    | 1.895                       | 166                    | 1.557       | 163                    |
| 2.457                    | 180                    | 1.995                       | 171                    | 1.653       | 167                    |

### 3.5. Conductometric data for $C_{16}$ MImCl in presence of different [NaAlg] at 298.15 K

| 2.592 | 186 | 2.110 | 176 | 1.748 | 172 |
|-------|-----|-------|-----|-------|-----|
| 2.725 | 191 | 2.223 | 180 | 1.857 | 175 |
| 2.856 | 197 | 2.334 | 185 | 1.964 | 179 |
| 3.000 | 200 | 2.443 | 189 | 2.069 | 184 |
| 3.141 | 210 | 2.565 | 194 | 2.187 | 187 |
| 3.279 | 210 | 2.685 | 199 | 2.303 | 192 |
| 3.429 | 220 | 2.803 | 200 | 2.416 | 198 |
| 3.576 | 220 | 2.919 | 210 | 2.528 | 200 |
| 3.720 | 230 | 3.033 | 210 | 2.637 | 210 |
| 3.997 | 240 | 3.172 | 220 | 2.771 | 210 |
| 4.263 | 250 | 3.308 | 220 | 2.901 | 220 |
| 4.518 | 260 |       |     |       |     |

### 3.6. Conductometric data for $C_{16}TPB$ in presence of different [NaAlg] at 298.15 K

| 0.001% w               | /v NaAlg | 0.005% v               | v/v NaAlg               | 0.01% v                | v/v NaAlg              |
|------------------------|----------|------------------------|-------------------------|------------------------|------------------------|
| [C <sub>16</sub> TPB]/ | κ/       | [C <sub>16</sub> TPB]/ |                         | [C <sub>16</sub> TPB]/ |                        |
| mM                     | µS.cm⁻¹  | mM                     | $\kappa/ \mu S.cm^{-1}$ | mM                     | к∕ µS.cm <sup>-1</sup> |
| 0.000                  | 11       | 0.000                  | 23                      | 0.000                  | 38                     |
| 0.002                  | 11       | 0.002                  | 24                      | 0.002                  | 41                     |
| 0.006                  | 12       | 0.004                  | 24                      | 0.006                  | 42                     |
| 0.012                  | 12       | 0.005                  | 24                      | 0.011                  | 42                     |
| 0.019                  | 13       | 0.009                  | 25                      | 0.018                  | 43                     |
| 0.029                  | 14       | 0.015                  | 25                      | 0.028                  | 43                     |
| 0.043                  | 15       | 0.022                  | 25                      | 0.041                  | 44                     |
| 0.058                  | 17       | 0.031                  | 26                      | 0.060                  | 45                     |
| 0.072                  | 18       | 0.045                  | 27                      | 0.078                  | 46                     |
| 0.086                  | 19       | 0.058                  | 28                      | 0.096                  | 47                     |
| 0.101                  | 21       | 0.076                  | 29                      | 0.114                  | 48                     |
| 0.115                  | 22       | 0.094                  | 30                      | 0.132                  | 49                     |
| 0.129                  | 24       | 0.112                  | 31                      | 0.149                  | 51                     |
| 0.147                  | 26       | 0.134                  | 32                      | 0.176                  | 52                     |
| 0.166                  | 28       | 0.177                  | 34                      | 0.202                  | 54                     |
| 0.184                  | 30       | 0.203                  | 37                      | 0.228                  | 56                     |
| 0.203                  | 32       | 0.229                  | 39                      | 0.254                  | 57                     |
| 0.226                  | 34       | 0.254                  | 40                      | 0.288                  | 60                     |
| 0.248                  | 36       | 0.288                  | 42                      | 0.321                  | 62                     |
| 0.271                  | 38       | 0.321                  | 44                      | 0.363                  | 66                     |
| 0.297                  | 40       | 0.354                  | 46                      | 0.404                  | 70                     |
| 0.324                  | 42       | 0.386                  | 48                      | 0.453                  | 72                     |
| 0.350                  | 44       | 0.422                  | 51                      | 0.500                  | 73                     |
| 0.376                  | 46       | 0.532                  | 57                      | 0.547                  | 75                     |
| 0.407                  | 47       | 0.570                  | 60                      | 0.601                  | 77                     |
| 0.437                  | 49       | 0.608                  | 62                      | 0.654                  | 79                     |
| 0.466                  | 51       | 0.689                  | 66                      | 0.706                  | 82                     |
| 0.500                  | 53       | 0.733                  | 69                      | 0.757                  | 85                     |
| 0.533                  | 55       | 0.818                  | 73                      | 0.811                  | 88                     |
| 0.570                  | 57       | 0.866                  | 76                      | 0.863                  | 91                     |
| 0.606                  | 59       | 0.967                  | 81                      | 0.919                  | 94                     |

| 0.642 | 61  | 1.019 | 84  | 0.973 | 97  |
|-------|-----|-------|-----|-------|-----|
| 0.682 | 64  | 1.070 | 86  | 1.032 | 100 |
| 0.721 | 66  | 1.121 | 88  | 1.091 | 103 |
| 0.760 | 68  | 1.170 | 91  | 1.148 | 106 |
| 0.798 | 70  | 1.225 | 93  | 1.204 | 109 |
| 0.839 | 72  | 1.278 | 96  | 1.258 | 112 |
| 0.880 | 74  | 1.330 | 99  | 1.318 | 115 |
| 0.920 | 76  | 1.381 | 101 | 1.376 | 118 |
| 0.964 | 78  | 1.437 | 103 | 1.433 | 121 |
| 1.006 | 80  | 1.491 | 106 | 1.489 | 124 |
| 1.048 | 82  | 1.545 | 108 | 1.570 | 128 |
| 1.348 | 96  | 1.597 | 111 | 1.648 | 132 |
| 1.392 | 98  | 1.648 | 114 | 1.724 | 136 |
| 1.434 | 100 | 1.698 | 116 | 1.822 | 141 |
| 1.479 | 102 | 1.771 | 119 | 1.916 | 146 |
| 1.524 | 104 | 1.842 | 123 | 2.006 | 150 |
| 1.567 | 106 | 1.933 | 127 | 2.093 | 154 |
| 1.613 | 107 | 2.020 | 131 | 2.176 | 158 |
| 1.658 | 109 | 2.104 | 135 | 2.296 | 164 |
| 1.702 | 111 | 2.185 | 139 |       |     |
| 1.748 | 113 | 2.263 | 142 |       |     |
| 1.793 | 115 |       |     |       |     |
| 1.837 | 117 |       |     |       |     |
| 1.884 | 119 |       |     |       |     |
| 1.929 | 121 |       |     |       |     |
| 1.973 | 123 |       |     |       |     |
| 2.019 | 125 |       |     |       |     |
| 2.065 | 126 |       |     |       |     |
| 2.109 | 128 |       |     |       |     |
| 2.155 | 130 |       |     |       |     |
| 2.200 | 132 |       |     |       |     |
| 2.244 | 133 |       |     |       |     |
| 2.287 | 135 |       |     |       |     |
| 2.330 | 137 |       |     |       |     |
| 2.371 | 139 |       |     |       |     |
| 2.412 | 140 |       |     |       |     |
| 2.452 | 141 |       |     |       |     |

| 0.001% w/v NaA              | Alg    | 0.005% w/v Na. | Alg    | 0.01% w/v Na   | aAlg   |
|-----------------------------|--------|----------------|--------|----------------|--------|
| [C <sub>16</sub> MImCl]/ mM | 100-%T | [C16MImCl]/ mM | 100-%T | [C16MImCl]/ mM | 100-%T |
| 0                           | -0.2   | 0              | 0.2    | 0              | 0.1    |
| 0.013                       | 3.3    | 0.012          | 0.3    | 0.013          | 0.8    |
| 0.044                       | 5.8    | 0.042          | 0.2    | 0.044          | 1.9    |
| 0.106                       | 8.9    | 0.090          | 2.2    | 0.093          | 6.2    |
| 0.167                       | 9.2    | 0.149          | 4.5    | 0.155          | 10.2   |
| 0.228                       | 9.5    | 0.208          | 8.8    | 0.216          | 15.9   |
| 0.289                       | 9.6    | 0.267          | 24.5   | 0.277          | 20.0   |
| 0.379                       | 9.8    | 0.325          | 30.9   | 0.337          | 27.1   |
| 0.468                       | 10.1   | 0.411          | 39.7   | 0.426          | 54.7   |
| 0.585                       | 10.6   | 0.496          | 41.8   | 0.515          | 69.4   |
| 0.757                       | 11.4   | 0.608          | 43.1   | 0.631          | 72.3   |
| 1.035                       | 11.9   | 0.773          | 44.7   | 0.802          | 73.9   |
| 1.407                       | 11.9   | 1.039          | 47.7   | 1.078          | 77.0   |
| 1.907                       | 11.8   | 1.396          | 49.4   | 1.449          | 78.5   |
| 2.810                       | 11.5   | 1.875          | 49.2   | 1.946          | 78.1   |
| 3.600                       | 11.1   | 3.498          | 46.5   | 2.843          | 76.5   |
| 4.300                       | 11.0   | 4.168          | 45.6   | 3.630          | 75.0   |
| 5.208                       | 10.5   | 5.040          | 44.8   | 4.326          | 73.5   |
| 6.438                       | 9.6    | 6.220          | 39.3   | 5.231          | 70.9   |
|                             |        |                |        | 6.455          | 67.2   |

### 3.7. Terbidimetry data for C<sub>16</sub>MImCl in presence of different [NaAlg] at 298.15 K

### 3.8. Terbidimetry data for C<sub>16</sub>MImCl in presence of different [NaAlg] at 298.15 K

| 0.001% w/                | 'v NaAlg | 0.005% w/v  | v NaAlg | 0.01% w/v N              | NaAlg  |
|--------------------------|----------|-------------|---------|--------------------------|--------|
| [C <sub>16</sub> TPB]/mM | 100-%T   | [C16TPB]/mM | 100-%T  | [C <sub>16</sub> TPB]/mM | 100-%T |
| 0.000                    | 1.0      | 0.000       | 0.7     | 0.000                    | 0.7    |
| 0.006                    | 1.6      | 0.008       | 1.6     | 0.005                    | 3.0    |
| 0.014                    | 2.7      | 0.028       | 3.9     | 0.014                    | 7.3    |
| 0.025                    | 9.2      | 0.060       | 8.4     | 0.033                    | 12.9   |
| 0.039                    | 9.9      | 0.100       | 14.0    | 0.056                    | 20.2   |
| 0.056                    | 13.3     | 0.140       | 18.4    | 0.090                    | 27.7   |
| 0.078                    | 16.7     | 0.179       | 30.2    | 0.135                    | 42.5   |
| 0.105                    | 20.8     | 0.218       | 68.5    | 0.190                    | 55.0   |
| 0.133                    | 22.1     | 0.275       | 74.9    | 0.255                    | 66.1   |
| 0.160                    | 22.8     | 0.332       | 77.6    | 0.340                    | 82.5   |
| 0.200                    | 23.1     | 0.408       | 80.5    | 0.441                    | 98.7   |
| 0.252                    | 23.3     | 0.518       | 81.9    | 0.559                    | 99.3   |
| 0.330                    | 23.4     | 0.697       | 84.1    | 0.690                    | 99.5   |
| 0.431                    | 23.9     | 0.936       | 85.8    | 0.831                    | 99.5   |
| 0.552                    | 24.5     | 1.257       | 86.1    | 0.998                    | 99.5   |
| 0.693                    | 25.5     | 1.837       | 85.7    | 1.370                    | 99.5   |
| 0.871                    | 26.3     | 2.345       | 84.6    | 1.689                    | 99.4   |
| 1.079                    | 26.6     | 2.795       | 83.5    | 1.965                    | 99.3   |
| 1.457                    | 26.5     | 3.379       | 81.7    |                          |        |
| 1.942                    | 25.6     | 4.170       | 79.1    |                          |        |

|             |                         |       |       |       |       |       |       | 0.00  | 5% w/v | NaAlg |       |       |       |       |       |       |       |       |
|-------------|-------------------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| wavelength/ | [C <sub>16</sub> MImCl] |       |       |       |       |       |       |       |        |       |       |       |       |       |       |       |       |       |
| nm          | = 0  mM                 | 0.012 | 0.024 | 0.036 | 0.060 | 0.096 | 0.140 | 0.200 | 0.290  | 0.410 | 0.580 | 0.820 | 1.140 | 1.640 | 2.320 | 3.140 | 3.850 | 5.050 |
| 350.0       | 3.27                    | 11.1  | 14.8  | 19.1  | 25.8  | 39.7  | 54.8  | 84.2  | 131.9  | 136.1 | 136.9 | 138.5 | 135.2 | 129.4 | 118.3 | 107.5 | 99.6  | 88.6  |
| 350.5       | 2.78                    | 8.9   | 11.9  | 15.4  | 20.7  | 31.8  | 43.5  | 66.8  | 105.1  | 108.6 | 109.1 | 109.8 | 107.5 | 102.5 | 94.3  | 85.9  | 79.5  | 70.6  |
| 351.0       | 2.33                    | 6.9   | 9.1   | 11.8  | 16.0  | 24.5  | 33.2  | 50.8  | 80.2   | 83.2  | 83.2  | 83.4  | 81.9  | 77.7  | 72.0  | 65.8  | 60.9  | 54.0  |
| 351.5       | 1.93                    | 5.1   | 6.8   | 8.8   | 11.8  | 18.1  | 24.3  | 37.0  | 58.7   | 61.1  | 60.9  | 60.6  | 59.8  | 56.5  | 52.7  | 48.5  | 44.8  | 39.6  |
| 352.0       | 1.60                    | 3.7   | 4.9   | 6.3   | 8.5   | 12.9  | 17.1  | 26.0  | 41.4   | 43.1  | 42.8  | 42.3  | 41.9  | 39.4  | 37.2  | 34.4  | 31.7  | 28.1  |
| 352.5       | 1.35                    | 2.7   | 3.5   | 4.5   | 6.0   | 9.0   | 11.7  | 17.7  | 28.2   | 29.4  | 29.1  | 28.7  | 28.6  | 26.7  | 25.5  | 23.7  | 21.9  | 19.4  |
| 353.0       | 1.18                    | 2.0   | 2.6   | 3.2   | 4.3   | 6.3   | 8.0   | 12.1  | 19.1   | 19.8  | 19.6  | 19.3  | 19.3  | 18.0  | 17.4  | 16.2  | 15.0  | 13.4  |
| 353.5       | 1.09                    | 1.6   | 2.0   | 2.4   | 3.2   | 4.5   | 5.7   | 8.4   | 13.1   | 13.5  | 13.4  | 13.3  | 13.2  | 12.5  | 12.1  | 11.3  | 10.5  | 9.5   |
| 354.0       | 1.05                    | 1.3   | 1.6   | 1.9   | 2.5   | 3.4   | 4.1   | 6.1   | 9.2    | 9.5   | 9.4   | 9.4   | 9.4   | 9.0   | 8.7   | 8.1   | 7.7   | 7.1   |
| 354.5       | 1.06                    | 1.2   | 1.4   | 1.6   | 2.1   | 2.7   | 3.2   | 4.7   | 6.9    | 7.1   | 7.1   | 7.0   | 7.1   | 6.8   | 6.7   | 6.2   | 6.0   | 5.6   |
| 355.0       | 1.11                    | 1.1   | 1.3   | 1.5   | 1.9   | 2.4   | 2.8   | 3.9   | 5.7    | 5.8   | 5.8   | 5.8   | 5.8   | 5.8   | 5.6   | 5.3   | 5.2   | 4.8   |
| 355.5       | 1.18                    | 1.1   | 1.3   | 1.5   | 1.8   | 2.3   | 2.7   | 3.7   | 5.2    | 5.3   | 5.3   | 5.2   | 5.3   | 5.3   | 5.2   | 5.0   | 4.8   | 4.5   |
| 356.0       | 1.28                    | 1.1   | 1.4   | 1.5   | 1.8   | 2.3   | 2.6   | 3.6   | 5.1    | 5.2   | 5.1   | 5.1   | 5.2   | 5.3   | 5.1   | 4.9   | 4.8   | 4.5   |
| 356.5       | 1.38                    | 1.2   | 1.4   | 1.6   | 1.9   | 2.4   | 2.7   | 3.6   | 5.2    | 5.3   | 5.2   | 5.2   | 5.3   | 5.4   | 5.2   | 5.0   | 4.9   | 4.7   |
| 357.0       | 1.50                    | 1.3   | 1.5   | 1.7   | 2.0   | 2.5   | 2.8   | 3.7   | 5.3    | 5.4   | 5.3   | 5.3   | 5.4   | 5.5   | 5.4   | 5.2   | 5.1   | 4.9   |
| 357.5       | 1.64                    | 1.4   | 1.6   | 1.8   | 2.1   | 2.6   | 2.9   | 3.8   | 5.5    | 5.5   | 5.4   | 5.4   | 5.6   | 5.7   | 5.6   | 5.5   | 5.3   | 5.2   |
| 358.0       | 1.80                    | 1.5   | 1.8   | 1.9   | 2.2   | 2.7   | 3.0   | 3.9   | 5.6    | 5.7   | 5.6   | 5.5   | 5.8   | 5.9   | 5.9   | 5.7   | 5.6   | 5.5   |
| 358.5       | 2.00                    | 1.6   | 1.9   | 2.1   | 2.4   | 2.9   | 3.1   | 4.1   | 5.7    | 5.8   | 5.7   | 5.7   | 5.9   | 6.1   | 6.1   | 5.9   | 5.9   | 5.8   |
| 359.0       | 2.25                    | 1.8   | 2.1   | 2.2   | 2.5   | 3.0   | 3.3   | 4.2   | 5.9    | 5.9   | 5.8   | 5.8   | 6.1   | 6.4   | 6.4   | 6.3   | 6.2   | 6.1   |
| 359.5       | 2.57                    | 2.0   | 2.3   | 2.5   | 2.7   | 3.2   | 3.5   | 4.4   | 6.1    | 6.1   | 6.0   | 6.1   | 6.3   | 6.7   | 6.7   | 6.7   | 6.6   | 6.5   |
| 360.0       | 2.99                    | 2.3   | 2.6   | 2.7   | 3.0   | 3.5   | 3.7   | 4.7   | 6.4    | 6.5   | 6.3   | 6.4   | 6.7   | 7.1   | 7.2   | 7.2   | 7.1   | 7.0   |
| 360.5       | 3.51                    | 2.6   | 2.9   | 3.1   | 3.3   | 3.8   | 4.0   | 5.0   | 6.8    | 6.9   | 6.7   | 6.8   | 7.1   | 7.6   | 7.7   | 7.8   | 7.7   | 7.7   |
| 361.0       | 4.14                    | 2.9   | 3.3   | 3.5   | 3.7   | 4.2   | 4.4   | 5.5   | 7.3    | 7.4   | 7.2   | 7.3   | 7.6   | 8.3   | 8.5   | 8.6   | 8.6   | 8.5   |
| 361.5       | 4.89                    | 3.4   | 3.9   | 4.0   | 4.2   | 4.7   | 4.9   | 6.0   | 8.0    | 8.1   | 7.9   | 8.0   | 8.4   | 9.2   | 9.4   | 9.6   | 9.6   | 9.6   |
| 362.0       | 5.76                    | 3.9   | 4.5   | 4.6   | 4.8   | 5.4   | 5.5   | 6.7   | 8.9    | 9.0   | 8.8   | 8.8   | 9.3   | 10.3  | 10.6  | 10.9  | 10.9  | 11.0  |
| 362.5       | 6.74                    | 4.5   | 5.2   | 5.4   | 5.6   | 6.1   | 6.2   | 7.6   | 9.9    | 10.0  | 9.8   | 9.8   | 10.5  | 11.7  | 12.1  | 12.4  | 12.5  | 12.7  |
| 363.0       | 7.80                    | 5.2   | 5.9   | 6.2   | 6.4   | 7.0   | 7.1   | 8.5   | 11.1   | 11.2  | 11.0  | 11.0  | 11.8  | 13.2  | 13.7  | 14.2  | 14.4  | 14.7  |
| 363.5       | 8.93                    | 6.0   | 6.8   | 7.0   | 7.3   | 7.9   | 8.1   | 9.6   | 12.4   | 12.5  | 12.4  | 12.3  | 13.2  | 15.0  | 15.6  | 16.2  | 16.5  | 16.8  |

3.9. Fl. intensity data of Pyrene with variation of [C<sub>16</sub>MImCl] in presence of 0.005% w/v NaAlg at 298.15 K

| 364.0 | 10.08  | 6.8   | 7.6   | 7.9   | 8.3   | 9.0   | 9.1   | 10.8  | 13.9  | 13.9  | 13.8  | 13.7  | 14.8  | 17.0  | 17.7  | 18.4  | 18.8  | 19.2  |
|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 364.5 | 11.21  | 7.6   | 8.5   | 8.8   | 9.2   | 10.1  | 10.2  | 11.9  | 15.3  | 15.4  | 15.3  | 15.2  | 16.5  | 18.9  | 19.8  | 20.6  | 21.1  | 21.6  |
| 365.0 | 12.32  | 8.3   | 9.3   | 9.7   | 10.2  | 11.2  | 11.3  | 13.1  | 16.9  | 17.0  | 16.8  | 16.6  | 18.1  | 20.9  | 22.0  | 22.9  | 23.4  | 24.1  |
| 365.5 | 13.39  | 9.1   | 10.1  | 10.5  | 11.2  | 12.2  | 12.3  | 14.3  | 18.3  | 18.5  | 18.2  | 18.0  | 19.7  | 22.8  | 24.0  | 25.0  | 25.6  | 26.4  |
| 366.0 | 14.54  | 9.9   | 10.9  | 11.4  | 12.2  | 13.3  | 13.3  | 15.4  | 19.7  | 19.8  | 19.6  | 19.3  | 21.1  | 24.7  | 25.9  | 26.9  | 27.6  | 28.6  |
| 366.5 | 15.88  | 10.8  | 11.9  | 12.3  | 13.2  | 14.2  | 14.2  | 16.4  | 21.0  | 21.1  | 20.7  | 20.5  | 22.5  | 26.2  | 27.6  | 28.6  | 29.4  | 30.5  |
| 367.0 | 17.91  | 12.1  | 13.2  | 13.5  | 14.3  | 15.3  | 15.1  | 17.4  | 22.3  | 22.3  | 21.9  | 21.6  | 23.7  | 27.7  | 29.2  | 30.2  | 31.0  | 32.3  |
| 367.5 | 21.01  | 13.9  | 15.0  | 15.3  | 15.8  | 16.7  | 16.3  | 18.6  | 23.8  | 23.6  | 23.3  | 22.9  | 25.1  | 29.4  | 30.9  | 32.0  | 32.9  | 34.2  |
| 368.0 | 25.80  | 16.6  | 17.8  | 17.9  | 18.0  | 18.7  | 18.0  | 20.3  | 25.7  | 25.5  | 25.1  | 24.7  | 27.1  | 31.7  | 33.3  | 34.5  | 35.5  | 36.9  |
| 368.5 | 32.89  | 20.5  | 22.0  | 21.8  | 21.2  | 21.5  | 20.5  | 22.8  | 28.7  | 28.4  | 27.9  | 27.4  | 30.1  | 35.1  | 37.0  | 38.4  | 39.5  | 41.0  |
| 369.0 | 42.72  | 26.0  | 27.9  | 27.2  | 25.8  | 25.8  | 24.3  | 26.7  | 33.1  | 32.8  | 32.3  | 31.7  | 34.7  | 40.4  | 42.8  | 44.5  | 45.9  | 47.5  |
| 369.5 | 55.57  | 33.2  | 35.7  | 34.4  | 32.2  | 31.8  | 29.7  | 32.4  | 39.8  | 39.5  | 38.7  | 38.1  | 41.6  | 48.7  | 51.7  | 53.8  | 55.5  | 57.4  |
| 370.0 | 71.30  | 42.4  | 45.5  | 43.7  | 40.7  | 39.8  | 37.1  | 40.3  | 49.2  | 48.9  | 47.8  | 47.2  | 51.6  | 60.6  | 64.5  | 67.2  | 69.2  | 71.7  |
| 370.5 | 89.25  | 53.1  | 57.1  | 54.9  | 51.1  | 50.0  | 46.5  | 50.6  | 61.7  | 61.3  | 60.0  | 59.3  | 64.8  | 76.5  | 81.6  | 85.2  | 87.7  | 91.0  |
| 371.0 | 108.60 | 65.2  | 70.0  | 67.5  | 63.3  | 62.1  | 58.0  | 63.3  | 77.3  | 76.8  | 75.2  | 74.3  | 81.5  | 96.6  | 103.2 | 107.9 | 111.1 | 115.5 |
| 371.5 | 128.03 | 77.6  | 83.5  | 80.9  | 76.5  | 75.5  | 71.0  | 77.8  | 95.6  | 94.9  | 93.1  | 92.0  | 101.1 | 120.4 | 128.6 | 134.8 | 138.8 | 144.5 |
| 372.0 | 146.19 | 89.9  | 96.6  | 94.2  | 90.1  | 89.8  | 85.0  | 93.6  | 115.7 | 114.7 | 112.7 | 111.3 | 122.8 | 146.6 | 156.8 | 164.6 | 169.5 | 176.9 |
| 372.5 | 161.73 | 100.9 | 108.5 | 106.6 | 103.2 | 103.8 | 98.9  | 109.5 | 136.3 | 135.0 | 132.9 | 131.2 | 145.2 | 173.7 | 185.7 | 195.3 | 201.3 | 210.5 |
| 373.0 | 173.55 | 109.9 | 118.3 | 117.0 | 114.7 | 116.5 | 111.9 | 124.5 | 155.9 | 154.2 | 152.0 | 150.1 | 166.6 | 199.5 | 213.4 | 224.8 | 231.8 | 242.8 |
| 373.5 | 181.05 | 116.2 | 125.2 | 124.9 | 123.8 | 127.2 | 122.9 | 137.4 | 172.8 | 171.0 | 168.5 | 166.7 | 185.4 | 222.0 | 237.7 | 250.7 | 258.7 | 271.2 |
| 374.0 | 184.10 | 119.8 | 129.2 | 129.7 | 130.1 | 135.0 | 131.2 | 147.3 | 185.8 | 184.0 | 181.4 | 179.6 | 200.2 | 239.7 | 256.7 | 271.1 | 279.8 | 293.4 |
| 374.5 | 182.91 | 120.4 | 130.1 | 131.5 | 133.2 | 139.5 | 136.1 | 153.7 | 194.1 | 192.3 | 189.5 | 188.0 | 209.9 | 251.2 | 269.2 | 284.5 | 293.6 | 307.9 |
| 375.0 | 178.34 | 118.7 | 128.4 | 130.4 | 133.3 | 140.8 | 137.7 | 156.2 | 197.3 | 195.8 | 192.7 | 191.6 | 214.1 | 256.1 | 274.6 | 290.4 | 299.5 | 314.2 |
| 375.5 | 171.36 | 115.0 | 124.7 | 127.1 | 130.7 | 139.1 | 136.2 | 155.1 | 195.8 | 194.5 | 191.5 | 190.6 | 213.2 | 255.0 | 273.3 | 289.2 | 298.1 | 312.5 |
| 376.0 | 163.28 | 110.3 | 119.7 | 122.3 | 126.4 | 135.2 | 132.3 | 151.2 | 190.7 | 189.5 | 186.6 | 185.9 | 208.2 | 248.8 | 266.6 | 282.3 | 290.6 | 304.5 |
| 376.5 | 155.03 | 105.2 | 114.1 | 116.7 | 121.1 | 129.8 | 126.9 | 145.4 | 183.3 | 182.1 | 179.5 | 178.8 | 200.4 | 239.4 | 256.4 | 271.3 | 279.2 | 292.5 |
| 377.0 | 147.43 | 100.4 | 108.8 | 111.2 | 115.6 | 123.9 | 121.0 | 138.8 | 175.1 | 173.8 | 171.4 | 170.6 | 191.2 | 228.4 | 244.4 | 258.5 | 266.0 | 278.8 |
| 377.5 | 141.10 | 96.3  | 104.1 | 106.2 | 110.5 | 118.3 | 115.4 | 132.5 | 167.1 | 165.8 | 163.5 | 162.7 | 182.3 | 217.7 | 232.7 | 246.0 | 253.3 | 265.4 |
| 378.0 | 136.36 | 93.2  | 100.4 | 102.4 | 106.3 | 113.6 | 110.7 | 127.2 | 160.6 | 159.2 | 156.8 | 156.1 | 174.6 | 208.5 | 222.7 | 235.4 | 242.6 | 254.1 |
| 378.5 | 133.15 | 91.2  | 97.8  | 99.7  | 103.4 | 110.1 | 107.4 | 123.5 | 156.0 | 154.4 | 152.0 | 151.3 | 169.0 | 201.6 | 215.5 | 227.6 | 234.8 | 245.8 |
| 379.0 | 131.31 | 90.1  | 96.3  | 98.2  | 101.6 | 108.1 | 105.5 | 121.3 | 153.4 | 151.8 | 149.3 | 148.7 | 165.7 | 197.5 | 211.2 | 222.9 | 230.2 | 241.0 |
| 379.5 | 130.51 | 89.8  | 95.6  | 97.6  | 100.8 | 107.4 | 104.8 | 120.6 | 152.7 | 151.0 | 148.4 | 147.9 | 164.5 | 196.0 | 209.7 | 221.3 | 228.6 | 239.1 |

| 380.0 | 130.64 | 90.1  | 95.7  | 97.9  | 101.0 | 107.8 | 105.2 | 121.1 | 153.4 | 151.8 | 149.2 | 148.6 | 165.5 | 196.8 | 210.5 | 222.3 | 229.5 | 239.9 |
|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 380.5 | 131.34 | 90.7  | 96.3  | 98.6  | 102.0 | 109.0 | 106.4 | 122.6 | 155.3 | 153.7 | 151.2 | 150.6 | 167.8 | 199.3 | 213.2 | 225.2 | 232.4 | 242.7 |
| 381.0 | 132.40 | 91.7  | 97.3  | 99.8  | 103.4 | 110.9 | 108.3 | 124.9 | 158.3 | 156.6 | 154.1 | 153.4 | 171.1 | 203.3 | 217.3 | 229.4 | 236.9 | 247.3 |
| 381.5 | 133.56 | 93.0  | 98.5  | 101.2 | 105.3 | 113.3 | 110.8 | 127.9 | 161.9 | 160.3 | 157.8 | 156.9 | 175.5 | 208.3 | 222.5 | 234.9 | 242.5 | 253.2 |
| 382.0 | 134.80 | 94.3  | 100.0 | 102.9 | 107.6 | 116.0 | 113.7 | 131.4 | 166.2 | 164.7 | 162.1 | 161.1 | 180.5 | 214.2 | 228.8 | 241.5 | 249.2 | 260.5 |
| 382.5 | 135.95 | 95.6  | 101.6 | 104.7 | 110.1 | 119.1 | 116.9 | 135.4 | 171.0 | 169.6 | 166.9 | 165.8 | 186.2 | 220.8 | 235.9 | 248.9 | 257.0 | 268.8 |
| 383.0 | 136.95 | 97.0  | 103.2 | 106.5 | 112.7 | 122.2 | 120.4 | 139.6 | 176.3 | 175.0 | 172.2 | 171.0 | 192.3 | 227.9 | 243.7 | 257.0 | 265.5 | 278.0 |
| 383.5 | 137.65 | 98.3  | 104.7 | 108.3 | 115.2 | 125.3 | 123.8 | 143.8 | 181.7 | 180.4 | 177.7 | 176.3 | 198.4 | 235.1 | 251.5 | 265.3 | 274.1 | 287.3 |
| 384.0 | 138.05 | 99.3  | 106.1 | 109.8 | 117.6 | 128.3 | 127.0 | 147.8 | 186.9 | 185.6 | 182.9 | 181.4 | 204.2 | 241.8 | 258.9 | 273.4 | 282.3 | 296.1 |
| 384.5 | 138.28 | 100.1 | 107.3 | 111.1 | 119.5 | 130.8 | 129.7 | 151.2 | 191.4 | 190.2 | 187.6 | 185.9 | 209.3 | 247.8 | 265.3 | 280.5 | 289.4 | 303.6 |
| 385.0 | 138.48 | 100.7 | 108.1 | 112.1 | 121.0 | 132.7 | 131.8 | 153.9 | 195.1 | 193.9 | 191.1 | 189.5 | 213.3 | 252.5 | 270.4 | 286.0 | 295.1 | 309.5 |
| 385.5 | 138.68 | 101.1 | 108.6 | 112.8 | 121.9 | 134.0 | 133.1 | 155.7 | 197.6 | 196.3 | 193.5 | 192.0 | 215.9 | 255.6 | 273.6 | 289.7 | 298.7 | 313.2 |
| 386.0 | 139.15 | 101.6 | 109.1 | 113.3 | 122.4 | 134.8 | 133.8 | 156.7 | 198.9 | 197.7 | 194.8 | 193.3 | 217.2 | 257.2 | 275.3 | 291.6 | 300.3 | 314.9 |
| 386.5 | 140.11 | 102.2 | 109.6 | 113.8 | 122.8 | 135.1 | 134.1 | 157.0 | 199.3 | 198.0 | 194.9 | 193.6 | 217.4 | 257.5 | 275.7 | 291.9 | 300.5 | 315.0 |
| 387.0 | 141.70 | 103.2 | 110.4 | 114.5 | 123.1 | 135.3 | 134.1 | 156.9 | 199.0 | 197.7 | 194.5 | 193.4 | 217.0 | 257.1 | 275.2 | 291.2 | 299.8 | 314.2 |
| 387.5 | 144.09 | 104.6 | 111.6 | 115.5 | 123.7 | 135.5 | 134.2 | 156.7 | 198.6 | 197.2 | 194.0 | 192.9 | 216.5 | 256.6 | 274.6 | 290.3 | 298.7 | 313.3 |
| 388.0 | 147.26 | 106.6 | 113.4 | 117.0 | 124.6 | 136.1 | 134.5 | 156.9 | 198.7 | 197.0 | 193.8 | 192.7 | 216.4 | 256.5 | 274.4 | 289.9 | 298.4 | 313.1 |
| 388.5 | 151.25 | 109.2 | 115.7 | 119.0 | 126.1 | 137.1 | 135.4 | 157.6 | 199.4 | 197.4 | 194.4 | 193.1 | 217.2 | 257.4 | 275.3 | 290.7 | 299.1 | 314.0 |
| 389.0 | 156.12 | 112.3 | 118.6 | 121.6 | 128.2 | 138.8 | 136.8 | 159.2 | 201.0 | 198.9 | 196.0 | 194.6 | 219.1 | 259.6 | 277.5 | 292.8 | 301.4 | 316.3 |
| 389.5 | 161.69 | 115.9 | 122.0 | 124.8 | 130.9 | 141.1 | 139.0 | 161.5 | 203.7 | 201.5 | 198.6 | 197.0 | 222.1 | 263.1 | 281.2 | 296.6 | 305.4 | 320.5 |
| 390.0 | 167.81 | 119.8 | 125.8 | 128.3 | 134.0 | 144.0 | 141.8 | 164.6 | 207.5 | 205.3 | 202.4 | 200.6 | 226.1 | 267.8 | 286.3 | 301.9 | 310.9 | 326.3 |
| 390.5 | 174.23 | 124.0 | 130.0 | 132.2 | 137.7 | 147.6 | 145.1 | 168.4 | 212.1 | 210.0 | 207.0 | 205.2 | 231.1 | 273.8 | 292.8 | 308.6 | 317.9 | 333.5 |
| 391.0 | 180.72 | 128.3 | 134.3 | 136.3 | 141.6 | 151.6 | 148.8 | 172.6 | 217.3 | 215.5 | 212.3 | 210.5 | 236.9 | 280.6 | 300.2 | 316.5 | 326.1 | 341.9 |
| 391.5 | 186.94 | 132.5 | 138.5 | 140.4 | 145.7 | 155.8 | 152.8 | 177.2 | 222.9 | 221.4 | 218.0 | 216.2 | 243.2 | 288.1 | 308.3 | 325.1 | 335.1 | 351.3 |
| 392.0 | 192.41 | 136.3 | 142.5 | 144.2 | 149.6 | 160.0 | 156.8 | 181.9 | 228.9 | 227.3 | 223.8 | 222.0 | 249.7 | 295.9 | 316.5 | 334.2 | 344.3 | 361.2 |
| 392.5 | 196.76 | 139.5 | 145.8 | 147.6 | 153.2 | 164.1 | 160.6 | 186.6 | 234.7 | 233.0 | 229.5 | 227.7 | 256.1 | 303.6 | 324.6 | 343.1 | 353.3 | 371.0 |
| 393.0 | 199.71 | 141.8 | 148.4 | 150.2 | 156.1 | 167.5 | 163.9 | 190.7 | 240.1 | 238.2 | 234.5 | 232.8 | 262.1 | 310.8 | 332.2 | 351.4 | 361.6 | 380.1 |
| 393.5 | 201.01 | 143.0 | 149.9 | 152.0 | 158.3 | 170.2 | 166.4 | 194.2 | 244.6 | 242.4 | 238.6 | 237.1 | 267.2 | 316.9 | 338.5 | 358.5 | 368.6 | 387.9 |
| 394.0 | 200.45 | 143.1 | 150.3 | 152.6 | 159.5 | 171.8 | 168.1 | 196.6 | 247.8 | 245.4 | 241.6 | 240.2 | 271.0 | 321.2 | 343.2 | 363.5 | 373.6 | 393.7 |
| 394.5 | 197.96 | 141.8 | 149.5 | 152.0 | 159.5 | 172.1 | 168.6 | 197.7 | 249.6 | 246.9 | 243.0 | 241.9 | 273.0 | 323.7 | 345.7 | 366.0 | 376.1 | 396.9 |
| 395.0 | 193.69 | 139.2 | 147.4 | 150.0 | 158.2 | 171.1 | 167.7 | 197.1 | 249.4 | 246.5 | 242.8 | 241.9 | 273.0 | 323.6 | 345.7 | 365.7 | 375.9 | 396.9 |
| 395.5 | 187.88 | 135.7 | 144.1 | 147.0 | 155.7 | 168.8 | 165.8 | 195.0 | 247.1 | 244.2 | 240.7 | 240.0 | 270.9 | 320.9 | 342.9 | 362.3 | 372.6 | 393.5 |

| 396.0 | 180.85 | 131.2 | 139.8 | 142.9 | 152.1 | 165.1 | 162.6 | 191.2 | 242.9 | 240.0 | 236.8 | 236.1 | 266.5 | 315.6 | 337.2 | 356.0 | 366.3 | 386.8 |
|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 396.5 | 173.03 | 126.1 | 134.7 | 138.0 | 147.4 | 160.5 | 158.3 | 186.2 | 236.8 | 234.0 | 231.3 | 230.5 | 260.1 | 308.0 | 329.0 | 347.1 | 357.3 | 377.1 |
| 397.0 | 164.87 | 120.7 | 129.0 | 132.5 | 141.9 | 154.9 | 153.0 | 179.9 | 229.2 | 226.6 | 224.3 | 223.3 | 251.9 | 298.5 | 318.5 | 336.0 | 346.0 | 364.9 |
| 397.5 | 156.84 | 115.3 | 123.0 | 126.8 | 136.0 | 148.9 | 147.1 | 172.9 | 220.6 | 218.2 | 216.1 | 215.0 | 242.5 | 287.4 | 306.6 | 323.5 | 333.2 | 350.9 |
| 398.0 | 149.21 | 109.9 | 117.1 | 121.2 | 129.9 | 142.6 | 141.0 | 165.4 | 211.4 | 209.3 | 207.2 | 206.1 | 232.3 | 275.4 | 293.8 | 310.1 | 319.3 | 336.0 |
| 398.5 | 142.18 | 104.9 | 111.4 | 115.7 | 124.1 | 136.4 | 134.7 | 158.0 | 202.0 | 200.1 | 198.1 | 197.1 | 221.9 | 263.3 | 280.8 | 296.5 | 305.1 | 321.0 |
| 399.0 | 135.87 | 100.2 | 106.3 | 110.6 | 118.5 | 130.4 | 128.5 | 150.8 | 192.8 | 191.3 | 189.1 | 188.3 | 211.8 | 251.3 | 268.0 | 283.2 | 291.3 | 306.4 |
| 399.5 | 130.29 | 95.9  | 101.7 | 105.9 | 113.4 | 124.9 | 122.8 | 144.0 | 184.3 | 182.9 | 180.7 | 180.1 | 202.4 | 240.0 | 256.2 | 270.7 | 278.2 | 292.8 |
| 400.0 | 125.35 | 92.1  | 97.6  | 101.8 | 108.9 | 119.9 | 117.7 | 137.9 | 176.6 | 175.4 | 173.0 | 172.5 | 194.0 | 229.7 | 245.2 | 259.2 | 266.2 | 280.4 |
| 400.5 | 121.05 | 88.8  | 94.1  | 98.1  | 104.9 | 115.4 | 113.1 | 132.6 | 169.7 | 168.6 | 166.2 | 165.9 | 186.6 | 220.6 | 235.5 | 248.9 | 255.5 | 269.5 |
| 401.0 | 117.21 | 85.8  | 91.1  | 94.8  | 101.3 | 111.3 | 109.0 | 128.0 | 163.8 | 162.6 | 160.3 | 160.1 | 180.1 | 212.6 | 227.0 | 239.8 | 246.3 | 260.1 |
| 401.5 | 113.80 | 83.3  | 88.5  | 91.9  | 98.2  | 107.8 | 105.5 | 124.0 | 158.8 | 157.6 | 155.4 | 155.1 | 174.5 | 205.8 | 219.7 | 232.0 | 238.5 | 251.9 |
| 402.0 | 110.71 | 81.1  | 86.2  | 89.4  | 95.5  | 104.7 | 102.6 | 120.7 | 154.5 | 153.3 | 151.2 | 150.7 | 169.8 | 199.8 | 213.5 | 225.4 | 231.8 | 244.9 |
| 402.5 | 107.97 | 79.1  | 84.2  | 87.1  | 93.2  | 102.1 | 100.0 | 117.8 | 150.8 | 149.6 | 147.5 | 147.0 | 165.6 | 194.8 | 208.2 | 219.9 | 226.2 | 238.9 |
| 403.0 | 105.51 | 77.3  | 82.5  | 85.1  | 91.2  | 99.7  | 97.8  | 115.3 | 147.6 | 146.5 | 144.3 | 143.8 | 161.9 | 190.4 | 203.7 | 215.2 | 221.4 | 233.7 |
| 403.5 | 103.19 | 75.6  | 80.9  | 83.4  | 89.4  | 97.7  | 95.9  | 113.0 | 144.8 | 143.8 | 141.6 | 141.1 | 158.7 | 186.7 | 199.9 | 211.2 | 217.3 | 229.0 |
| 404.0 | 100.94 | 74.0  | 79.3  | 81.7  | 87.7  | 96.0  | 94.2  | 111.0 | 142.3 | 141.4 | 139.1 | 138.7 | 155.9 | 183.4 | 196.4 | 207.6 | 213.6 | 224.6 |
| 404.5 | 98.89  | 72.6  | 77.9  | 80.2  | 86.3  | 94.4  | 92.6  | 109.0 | 140.0 | 139.2 | 136.9 | 136.5 | 153.3 | 180.5 | 193.3 | 204.2 | 210.1 | 220.8 |
| 405.0 | 96.93  | 71.3  | 76.5  | 78.9  | 84.9  | 93.0  | 91.1  | 107.2 | 137.9 | 137.1 | 134.9 | 134.6 | 150.8 | 177.8 | 190.3 | 200.9 | 206.8 | 217.2 |
| 405.5 | 95.01  | 70.0  | 75.1  | 77.5  | 83.6  | 91.5  | 89.6  | 105.5 | 135.9 | 135.1 | 133.0 | 132.7 | 148.5 | 175.2 | 187.5 | 197.8 | 203.7 | 213.7 |
| 406.0 | 93.20  | 68.8  | 73.7  | 76.4  | 82.3  | 90.2  | 88.2  | 103.9 | 133.9 | 133.1 | 131.2 | 130.7 | 146.3 | 172.7 | 184.6 | 194.7 | 200.4 | 210.4 |
| 406.5 | 91.50  | 67.7  | 72.4  | 75.2  | 81.1  | 88.8  | 86.8  | 102.3 | 131.9 | 131.0 | 129.4 | 128.7 | 144.1 | 170.1 | 181.7 | 191.6 | 197.2 | 207.1 |
| 407.0 | 89.93  | 66.6  | 71.2  | 74.2  | 79.9  | 87.4  | 85.5  | 100.8 | 129.8 | 129.0 | 127.5 | 126.6 | 142.0 | 167.4 | 178.7 | 188.5 | 194.0 | 203.8 |
| 407.5 | 88.50  | 65.6  | 70.1  | 73.1  | 78.8  | 86.0  | 84.2  | 99.2  | 127.8 | 126.9 | 125.7 | 124.6 | 139.9 | 164.7 | 175.8 | 185.4 | 190.8 | 200.3 |
| 408.0 | 87.14  | 64.7  | 69.1  | 72.1  | 77.7  | 84.7  | 82.9  | 97.7  | 125.8 | 124.8 | 123.7 | 122.6 | 137.9 | 161.9 | 172.8 | 182.3 | 187.8 | 196.9 |
| 408.5 | 85.96  | 63.9  | 68.2  | 71.0  | 76.6  | 83.4  | 81.7  | 96.2  | 123.7 | 122.8 | 121.7 | 120.6 | 135.8 | 159.1 | 169.8 | 179.2 | 184.6 | 193.5 |
| 409.0 | 84.98  | 63.2  | 67.5  | 70.2  | 75.6  | 82.2  | 80.5  | 94.7  | 121.8 | 120.8 | 119.7 | 118.7 | 133.8 | 156.4 | 166.7 | 176.0 | 181.5 | 190.3 |
| 409.5 | 84.18  | 62.7  | 66.9  | 69.4  | 74.6  | 81.1  | 79.3  | 93.3  | 120.0 | 118.9 | 117.7 | 117.0 | 131.8 | 153.7 | 163.9 | 172.9 | 178.4 | 187.2 |
| 410.0 | 83.58  | 62.2  | 66.4  | 68.8  | 73.8  | 80.1  | 78.3  | 91.9  | 118.2 | 117.2 | 115.9 | 115.3 | 129.8 | 151.4 | 161.2 | 170.1 | 175.5 | 184.4 |
| 410.5 | 83.18  | 61.9  | 66.0  | 68.3  | 73.1  | 79.2  | 77.4  | 90.7  | 116.6 | 115.7 | 114.1 | 113.7 | 127.9 | 149.2 | 158.8 | 167.5 | 172.6 | 181.8 |
| 411.0 | 82.90  | 61.6  | 65.7  | 68.0  | 72.6  | 78.4  | 76.6  | 89.6  | 115.2 | 114.3 | 112.7 | 112.3 | 126.3 | 147.4 | 156.6 | 165.2 | 170.1 | 179.4 |
| 411.5 | 82.83  | 61.5  | 65.6  | 67.8  | 72.2  | 77.7  | 76.0  | 88.6  | 114.0 | 113.1 | 111.5 | 111.1 | 124.8 | 145.8 | 154.7 | 163.3 | 167.9 | 177.3 |

| 412.0 | 82.82 | 61.3 | 65.5 | 67.7 | 71.9 | 77.2 | 75.5 | 87.8 | 113.0 | 112.1 | 110.5 | 110.1 | 123.6 | 144.4 | 153.1 | 161.6 | 166.1 | 175.5 |
|-------|-------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 412.5 | 82.86 | 61.3 | 65.5 | 67.5 | 71.7 | 76.7 | 75.1 | 87.2 | 112.1 | 111.3 | 109.7 | 109.3 | 122.5 | 143.2 | 151.8 | 160.3 | 164.6 | 173.9 |
| 413.0 | 82.99 | 61.3 | 65.6 | 67.4 | 71.6 | 76.4 | 74.8 | 86.6 | 111.4 | 110.6 | 109.2 | 108.6 | 121.7 | 142.1 | 150.6 | 159.1 | 163.4 | 172.5 |
| 413.5 | 83.16 | 61.5 | 65.7 | 67.4 | 71.6 | 76.3 | 74.6 | 86.1 | 110.8 | 110.0 | 108.8 | 108.2 | 121.0 | 141.1 | 149.7 | 158.2 | 162.3 | 171.3 |
| 414.0 | 83.29 | 61.6 | 65.8 | 67.4 | 71.6 | 76.2 | 74.4 | 85.7 | 110.2 | 109.5 | 108.4 | 107.7 | 120.3 | 140.3 | 148.9 | 157.3 | 161.4 | 170.1 |
| 414.5 | 83.41 | 61.7 | 66.0 | 67.3 | 71.5 | 76.3 | 74.2 | 85.4 | 109.6 | 109.1 | 108.0 | 107.3 | 119.6 | 139.5 | 148.1 | 156.6 | 160.5 | 169.0 |
| 415.0 | 83.32 | 61.8 | 66.1 | 67.4 | 71.5 | 76.3 | 74.0 | 85.0 | 109.2 | 108.7 | 107.7 | 106.9 | 118.9 | 138.7 | 147.3 | 155.8 | 159.7 | 168.1 |
| 415.5 | 83.11 | 61.8 | 66.3 | 67.4 | 71.5 | 76.2 | 73.8 | 84.6 | 108.8 | 108.4 | 107.4 | 106.5 | 118.2 | 138.1 | 146.6 | 155.1 | 158.8 | 167.2 |
| 416.0 | 82.63 | 61.7 | 66.2 | 67.4 | 71.4 | 76.1 | 73.6 | 84.2 | 108.5 | 108.1 | 106.9 | 106.1 | 117.6 | 137.4 | 145.8 | 154.2 | 158.0 | 166.4 |
| 416.5 | 81.92 | 61.5 | 66.1 | 67.4 | 71.3 | 75.9 | 73.4 | 83.8 | 108.2 | 107.8 | 106.5 | 105.7 | 117.1 | 136.7 | 145.0 | 153.2 | 157.2 | 165.6 |
| 417.0 | 81.05 | 61.2 | 65.9 | 67.3 | 71.2 | 75.6 | 73.1 | 83.4 | 107.9 | 107.5 | 106.0 | 105.3 | 116.6 | 136.0 | 144.1 | 152.1 | 156.3 | 164.7 |
| 417.5 | 79.97 | 60.7 | 65.6 | 67.1 | 71.0 | 75.3 | 72.7 | 82.9 | 107.6 | 107.1 | 105.5 | 104.8 | 116.1 | 135.2 | 143.1 | 150.9 | 155.3 | 163.6 |
| 418.0 | 78.70 | 60.1 | 65.0 | 66.7 | 70.7 | 74.9 | 72.1 | 82.2 | 107.0 | 106.5 | 104.9 | 104.1 | 115.4 | 134.1 | 141.9 | 149.6 | 154.2 | 162.1 |
| 418.5 | 77.29 | 59.3 | 64.3 | 66.1 | 70.2 | 74.4 | 71.3 | 81.6 | 106.2 | 105.8 | 104.1 | 103.3 | 114.6 | 132.8 | 140.5 | 148.1 | 152.6 | 160.4 |
| 419.0 | 75.67 | 58.3 | 63.4 | 65.4 | 69.6 | 73.8 | 70.5 | 80.8 | 105.1 | 104.7 | 103.2 | 102.3 | 113.5 | 131.3 | 138.9 | 146.3 | 150.8 | 158.3 |
| 419.5 | 73.91 | 57.2 | 62.4 | 64.6 | 68.9 | 72.9 | 69.5 | 79.8 | 103.8 | 103.5 | 102.0 | 101.1 | 112.1 | 129.4 | 137.0 | 144.3 | 148.5 | 155.8 |
| 420.0 | 71.90 | 55.9 | 61.2 | 63.5 | 67.9 | 71.9 | 68.4 | 78.6 | 102.2 | 102.0 | 100.6 | 99.6  | 110.4 | 127.2 | 134.7 | 141.9 | 145.7 | 152.8 |
| 420.5 | 69.64 | 54.5 | 60.0 | 62.4 | 66.7 | 70.7 | 67.2 | 77.3 | 100.4 | 100.3 | 98.9  | 98.0  | 108.4 | 124.5 | 132.0 | 139.1 | 142.5 | 149.5 |
| 421.0 | 67.25 | 53.0 | 58.6 | 61.2 | 65.5 | 69.3 | 65.9 | 75.7 | 98.3  | 98.3  | 96.8  | 96.0  | 106.0 | 121.5 | 128.8 | 135.7 | 138.7 | 145.6 |
| 421.5 | 64.70 | 51.5 | 57.1 | 59.9 | 64.1 | 67.7 | 64.5 | 73.9 | 96.0  | 96.0  | 94.5  | 93.9  | 103.3 | 118.1 | 125.2 | 131.8 | 134.7 | 141.5 |
| 422.0 | 62.10 | 49.9 | 55.6 | 58.5 | 62.5 | 66.0 | 62.9 | 71.9 | 93.4  | 93.5  | 91.9  | 91.4  | 100.4 | 114.3 | 121.3 | 127.4 | 130.2 | 136.9 |
| 422.5 | 59.53 | 48.4 | 54.1 | 57.2 | 61.0 | 64.2 | 61.2 | 69.7 | 90.7  | 90.7  | 89.1  | 88.7  | 97.2  | 110.3 | 117.0 | 122.8 | 125.5 | 131.9 |
| 423.0 | 57.02 | 46.9 | 52.6 | 55.7 | 59.3 | 62.3 | 59.3 | 67.4 | 87.9  | 87.6  | 86.1  | 85.8  | 93.8  | 106.0 | 112.4 | 117.8 | 120.6 | 126.6 |
| 423.5 | 54.68 | 45.5 | 51.3 | 54.3 | 57.7 | 60.4 | 57.4 | 64.9 | 85.0  | 84.5  | 83.1  | 82.8  | 90.3  | 101.7 | 107.7 | 112.6 | 115.5 | 121.2 |
| 424.0 | 52.45 | 44.0 | 50.0 | 52.9 | 56.2 | 58.5 | 55.4 | 62.4 | 81.9  | 81.4  | 80.1  | 79.7  | 86.8  | 97.3  | 102.9 | 107.4 | 110.3 | 115.5 |
| 424.5 | 50.35 | 42.7 | 48.9 | 51.6 | 54.7 | 56.6 | 53.4 | 60.0 | 78.9  | 78.3  | 77.2  | 76.7  | 83.2  | 92.9  | 98.1  | 102.3 | 105.1 | 110.0 |
| 425.0 | 48.40 | 41.5 | 47.9 | 50.5 | 53.4 | 55.0 | 51.6 | 57.6 | 75.9  | 75.4  | 74.4  | 73.8  | 79.8  | 88.7  | 93.3  | 97.3  | 100.0 | 104.4 |
| 425.5 | 46.54 | 40.4 | 46.9 | 49.6 | 52.2 | 53.5 | 49.9 | 55.4 | 73.1  | 72.6  | 71.8  | 71.1  | 76.6  | 84.7  | 88.8  | 92.6  | 95.1  | 99.2  |
| 426.0 | 44.85 | 39.5 | 46.2 | 48.7 | 51.2 | 52.2 | 48.4 | 53.5 | 70.5  | 70.2  | 69.3  | 68.6  | 73.6  | 80.8  | 84.5  | 88.2  | 90.4  | 94.4  |
| 426.5 | 43.32 | 38.6 | 45.5 | 48.1 | 50.3 | 51.0 | 47.0 | 51.7 | 68.2  | 68.0  | 67.1  | 66.4  | 70.8  | 77.3  | 80.5  | 84.1  | 86.1  | 89.9  |
| 427.0 | 41.95 | 37.8 | 44.9 | 47.6 | 49.6 | 50.0 | 45.8 | 50.3 | 66.2  | 66.0  | 65.1  | 64.5  | 68.3  | 74.1  | 77.0  | 80.4  | 82.2  | 85.9  |
| 427.5 | 40.81 | 37.1 | 44.5 | 47.3 | 49.2 | 49.2 | 44.8 | 49.0 | 64.5  | 64.3  | 63.4  | 62.8  | 66.1  | 71.3  | 73.8  | 77.1  | 78.7  | 82.2  |

| 428.0 | 39.83 | 36.6 | 44.2 | 47.1 | 48.9 | 48.4 | 43.9 | 47.9 | 63.2 | 62.9 | 61.8 | 61.4 | 64.2 | 68.8 | 71.1 | 74.1 | 75.6 | 79.0 |
|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 428.5 | 38.96 | 36.1 | 44.0 | 47.1 | 48.7 | 47.8 | 43.3 | 47.1 | 62.0 | 61.6 | 60.6 | 60.3 | 62.6 | 66.7 | 68.8 | 71.4 | 72.9 | 76.1 |
| 429.0 | 38.19 | 35.7 | 43.9 | 47.2 | 48.7 | 47.4 | 42.8 | 46.3 | 61.0 | 60.6 | 59.6 | 59.2 | 61.2 | 64.9 | 66.7 | 69.1 | 70.4 | 73.5 |
| 429.5 | 37.44 | 35.5 | 44.0 | 47.3 | 48.8 | 47.2 | 42.4 | 45.8 | 60.1 | 59.8 | 58.8 | 58.4 | 60.1 | 63.3 | 65.0 | 67.1 | 68.3 | 71.2 |
| 430.0 | 36.70 | 35.4 | 44.2 | 47.6 | 48.9 | 47.1 | 42.1 | 45.3 | 59.4 | 59.2 | 58.2 | 57.6 | 59.1 | 61.9 | 63.3 | 65.2 | 66.4 | 69.2 |
| 430.5 | 36.00 | 35.3 | 44.4 | 47.9 | 49.2 | 47.2 | 41.9 | 45.0 | 58.8 | 58.7 | 57.8 | 57.0 | 58.3 | 60.6 | 61.8 | 63.5 | 64.7 | 67.4 |
| 431.0 | 35.33 | 35.1 | 44.6 | 48.3 | 49.4 | 47.4 | 41.7 | 44.8 | 58.3 | 58.3 | 57.5 | 56.6 | 57.7 | 59.3 | 60.4 | 62.0 | 63.2 | 65.8 |
| 431.5 | 34.74 | 35.1 | 44.9 | 48.7 | 49.8 | 47.7 | 41.7 | 44.6 | 58.0 | 58.1 | 57.3 | 56.3 | 57.1 | 58.2 | 59.1 | 60.6 | 61.7 | 64.3 |
| 432.0 | 34.19 | 35.0 | 45.1 | 49.2 | 50.2 | 48.0 | 41.6 | 44.4 | 57.7 | 57.9 | 57.2 | 56.1 | 56.6 | 57.2 | 57.8 | 59.3 | 60.4 | 62.9 |
| 432.5 | 33.64 | 35.0 | 45.4 | 49.7 | 50.7 | 48.3 | 41.7 | 44.3 | 57.5 | 57.7 | 57.0 | 55.9 | 56.1 | 56.2 | 56.6 | 58.0 | 59.1 | 61.5 |
| 433.0 | 33.14 | 34.9 | 45.8 | 50.3 | 51.2 | 48.6 | 41.7 | 44.2 | 57.5 | 57.5 | 56.9 | 55.8 | 55.7 | 55.2 | 55.5 | 56.8 | 57.8 | 60.0 |
| 433.5 | 32.70 | 35.0 | 46.2 | 50.8 | 51.8 | 48.9 | 41.8 | 44.1 | 57.5 | 57.4 | 56.7 | 55.8 | 55.3 | 54.4 | 54.5 | 55.6 | 56.6 | 58.6 |
| 434.0 | 32.26 | 35.1 | 46.7 | 51.5 | 52.5 | 49.2 | 42.0 | 44.0 | 57.5 | 57.4 | 56.6 | 55.7 | 54.9 | 53.6 | 53.5 | 54.4 | 55.4 | 57.2 |
| 434.5 | 31.90 | 35.2 | 47.3 | 52.2 | 53.2 | 49.5 | 42.2 | 44.0 | 57.6 | 57.3 | 56.5 | 55.7 | 54.6 | 52.8 | 52.6 | 53.2 | 54.3 | 55.9 |
| 435.0 | 31.58 | 35.4 | 47.9 | 53.0 | 53.9 | 49.9 | 42.4 | 44.1 | 57.6 | 57.2 | 56.6 | 55.8 | 54.4 | 52.1 | 51.7 | 52.1 | 53.2 | 54.5 |
| 435.5 | 31.30 | 35.6 | 48.7 | 53.9 | 54.7 | 50.4 | 42.7 | 44.2 | 57.8 | 57.3 | 56.7 | 55.8 | 54.1 | 51.4 | 50.8 | 51.1 | 52.1 | 53.3 |
| 436.0 | 31.07 | 35.9 | 49.6 | 54.9 | 55.6 | 50.9 | 43.0 | 44.5 | 57.9 | 57.4 | 56.9 | 56.0 | 53.9 | 50.9 | 50.0 | 50.1 | 51.0 | 52.3 |
| 436.5 | 30.83 | 36.2 | 50.5 | 55.9 | 56.4 | 51.6 | 43.4 | 44.7 | 58.1 | 57.7 | 57.2 | 56.2 | 53.8 | 50.3 | 49.2 | 49.2 | 50.1 | 51.3 |
| 437.0 | 30.60 | 36.6 | 51.4 | 57.0 | 57.4 | 52.3 | 43.8 | 45.1 | 58.4 | 58.0 | 57.5 | 56.5 | 53.8 | 49.8 | 48.5 | 48.4 | 49.2 | 50.4 |
| 437.5 | 30.42 | 37.0 | 52.3 | 58.2 | 58.5 | 53.0 | 44.3 | 45.5 | 58.8 | 58.6 | 57.9 | 56.9 | 53.8 | 49.4 | 47.9 | 47.6 | 48.4 | 49.7 |
| 438.0 | 30.24 | 37.4 | 53.2 | 59.4 | 59.6 | 53.8 | 44.8 | 45.9 | 59.3 | 59.3 | 58.4 | 57.3 | 54.0 | 49.0 | 47.3 | 47.0 | 47.7 | 49.1 |
| 438.5 | 30.12 | 37.9 | 54.2 | 60.7 | 60.8 | 54.6 | 45.3 | 46.4 | 59.8 | 60.0 | 58.9 | 57.8 | 54.2 | 48.7 | 46.9 | 46.5 | 47.1 | 48.5 |
| 439.0 | 30.05 | 38.3 | 55.1 | 62.0 | 62.0 | 55.5 | 45.9 | 47.0 | 60.5 | 60.8 | 59.5 | 58.3 | 54.5 | 48.5 | 46.4 | 46.1 | 46.6 | 47.9 |
| 439.5 | 30.01 | 38.8 | 56.1 | 63.4 | 63.3 | 56.5 | 46.5 | 47.6 | 61.1 | 61.5 | 60.2 | 58.9 | 54.9 | 48.4 | 46.1 | 45.7 | 46.1 | 47.5 |
| 440.0 | 29.98 | 39.3 | 57.2 | 64.7 | 64.6 | 57.5 | 47.2 | 48.3 | 61.9 | 62.3 | 61.0 | 59.5 | 55.2 | 48.4 | 45.9 | 45.5 | 45.7 | 47.1 |
| 440.5 | 29.93 | 39.8 | 58.3 | 65.9 | 65.8 | 58.7 | 47.9 | 49.0 | 62.6 | 63.0 | 61.7 | 60.1 | 55.7 | 48.4 | 45.7 | 45.2 | 45.3 | 46.7 |
| 441.0 | 29.84 | 40.4 | 59.4 | 67.2 | 67.1 | 60.0 | 48.6 | 49.7 | 63.4 | 63.7 | 62.5 | 60.8 | 56.1 | 48.5 | 45.6 | 45.0 | 45.0 | 46.3 |
| 441.5 | 29.72 | 40.9 | 60.6 | 68.5 | 68.4 | 61.2 | 49.4 | 50.4 | 64.2 | 64.4 | 63.3 | 61.6 | 56.5 | 48.5 | 45.6 | 44.7 | 44.7 | 45.9 |
| 442.0 | 29.54 | 41.5 | 61.8 | 69.8 | 69.7 | 62.4 | 50.2 | 51.1 | 65.0 | 65.3 | 64.0 | 62.4 | 56.9 | 48.5 | 45.5 | 44.4 | 44.4 | 45.5 |
| 442.5 | 29.35 | 42.0 | 63.0 | 71.2 | 71.0 | 63.5 | 51.0 | 51.7 | 65.9 | 66.1 | 64.7 | 63.2 | 57.3 | 48.5 | 45.4 | 44.1 | 44.2 | 45.2 |
| 443.0 | 29.14 | 42.4 | 64.2 | 72.7 | 72.4 | 64.6 | 51.7 | 52.4 | 66.7 | 67.0 | 65.4 | 64.0 | 57.8 | 48.5 | 45.3 | 43.8 | 43.9 | 44.8 |
| 443.5 | 28.94 | 42.8 | 65.3 | 74.1 | 73.8 | 65.6 | 52.4 | 52.9 | 67.6 | 67.9 | 66.1 | 64.7 | 58.3 | 48.5 | 45.1 | 43.5 | 43.6 | 44.5 |

| 444.0 | 28.69 | 43.1 | 66.5 | 75.6  | 75.2  | 66.6 | 53.2 | 53.5 | 68.4 | 68.7 | 66.9 | 65.4 | 58.8 | 48.5 | 44.8 | 43.2 | 43.3 | 44.1 |
|-------|-------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 444.5 | 28.41 | 43.4 | 67.6 | 77.0  | 76.6  | 67.7 | 53.8 | 54.0 | 69.2 | 69.4 | 67.7 | 66.0 | 59.2 | 48.5 | 44.5 | 42.9 | 43.0 | 43.6 |
| 445.0 | 28.06 | 43.7 | 68.6 | 78.4  | 77.9  | 68.7 | 54.5 | 54.5 | 70.1 | 70.1 | 68.5 | 66.7 | 59.7 | 48.5 | 44.1 | 42.5 | 42.5 | 43.1 |
| 445.5 | 27.70 | 44.0 | 69.7 | 79.8  | 79.2  | 69.7 | 55.1 | 55.0 | 70.8 | 70.6 | 69.2 | 67.4 | 60.2 | 48.4 | 43.7 | 42.1 | 42.0 | 42.5 |
| 446.0 | 27.28 | 44.4 | 70.7 | 81.1  | 80.4  | 70.7 | 55.8 | 55.5 | 71.4 | 71.2 | 69.9 | 68.1 | 60.6 | 48.2 | 43.2 | 41.6 | 41.4 | 41.7 |
| 446.5 | 26.82 | 44.7 | 71.7 | 82.3  | 81.6  | 71.7 | 56.4 | 56.0 | 72.0 | 71.8 | 70.5 | 68.7 | 60.8 | 48.0 | 42.8 | 41.1 | 40.7 | 41.0 |
| 447.0 | 26.32 | 45.0 | 72.6 | 83.6  | 82.8  | 72.6 | 57.0 | 56.5 | 72.6 | 72.4 | 71.1 | 69.3 | 61.0 | 47.6 | 42.3 | 40.4 | 39.8 | 40.1 |
| 447.5 | 25.87 | 45.2 | 73.6 | 84.8  | 84.0  | 73.5 | 57.7 | 57.0 | 73.0 | 72.9 | 71.5 | 69.8 | 61.0 | 47.2 | 41.7 | 39.6 | 38.9 | 39.2 |
| 448.0 | 25.40 | 45.5 | 74.5 | 86.0  | 85.3  | 74.3 | 58.3 | 57.5 | 73.5 | 73.4 | 71.9 | 70.3 | 61.0 | 46.7 | 41.1 | 38.8 | 38.0 | 38.2 |
| 448.5 | 24.92 | 45.7 | 75.6 | 87.2  | 86.5  | 75.2 | 58.9 | 57.9 | 73.9 | 73.8 | 72.3 | 70.6 | 60.8 | 46.1 | 40.3 | 37.8 | 37.0 | 37.2 |
| 449.0 | 24.43 | 45.9 | 76.6 | 88.3  | 87.7  | 76.0 | 59.5 | 58.2 | 74.3 | 74.1 | 72.6 | 70.9 | 60.6 | 45.5 | 39.5 | 36.7 | 35.9 | 36.1 |
| 449.5 | 23.98 | 46.1 | 77.6 | 89.5  | 88.9  | 76.8 | 60.0 | 58.5 | 74.6 | 74.3 | 72.8 | 71.1 | 60.5 | 44.9 | 38.5 | 35.6 | 34.7 | 34.9 |
| 450.0 | 23.53 | 46.3 | 78.6 | 90.7  | 90.0  | 77.6 | 60.4 | 58.8 | 74.9 | 74.5 | 73.1 | 71.4 | 60.3 | 44.2 | 37.6 | 34.4 | 33.5 | 33.7 |
| 450.5 | 23.06 | 46.5 | 79.4 | 91.9  | 90.9  | 78.3 | 60.8 | 59.0 | 75.1 | 74.7 | 73.4 | 71.6 | 60.2 | 43.6 | 36.6 | 33.3 | 32.3 | 32.4 |
| 451.0 | 22.59 | 46.7 | 80.1 | 93.1  | 91.9  | 79.0 | 61.2 | 59.3 | 75.3 | 74.9 | 73.6 | 71.8 | 60.0 | 43.0 | 35.6 | 32.2 | 31.2 | 31.2 |
| 451.5 | 22.18 | 47.0 | 80.8 | 94.2  | 92.9  | 79.6 | 61.7 | 59.6 | 75.6 | 75.2 | 73.8 | 72.0 | 60.0 | 42.5 | 34.7 | 31.1 | 30.1 | 30.1 |
| 452.0 | 21.83 | 47.3 | 81.5 | 95.3  | 93.9  | 80.3 | 62.1 | 59.8 | 75.9 | 75.6 | 74.1 | 72.3 | 59.9 | 41.9 | 33.9 | 30.1 | 29.1 | 29.0 |
| 452.5 | 21.50 | 47.6 | 82.2 | 96.4  | 94.9  | 81.1 | 62.5 | 60.0 | 76.2 | 75.9 | 74.4 | 72.4 | 59.8 | 41.3 | 33.1 | 29.2 | 28.3 | 27.9 |
| 453.0 | 21.19 | 47.9 | 83.0 | 97.4  | 96.0  | 81.8 | 62.9 | 60.3 | 76.6 | 76.2 | 74.8 | 72.6 | 59.8 | 40.6 | 32.4 | 28.4 | 27.5 | 27.0 |
| 453.5 | 20.91 | 48.2 | 83.9 | 98.4  | 97.1  | 82.6 | 63.3 | 60.5 | 77.0 | 76.5 | 75.2 | 72.8 | 59.7 | 40.1 | 31.8 | 27.7 | 26.7 | 26.1 |
| 454.0 | 20.67 | 48.5 | 84.9 | 99.5  | 98.1  | 83.5 | 63.6 | 60.7 | 77.4 | 76.8 | 75.7 | 73.1 | 59.8 | 39.5 | 31.2 | 27.0 | 26.0 | 25.3 |
| 454.5 | 20.42 | 48.8 | 85.8 | 100.5 | 99.2  | 84.3 | 63.9 | 61.0 | 77.9 | 77.1 | 76.2 | 73.4 | 59.9 | 39.1 | 30.7 | 26.3 | 25.3 | 24.5 |
| 455.0 | 20.16 | 49.0 | 86.7 | 101.6 | 100.2 | 85.0 | 64.2 | 61.4 | 78.3 | 77.3 | 76.6 | 73.7 | 60.0 | 38.7 | 30.2 | 25.8 | 24.6 | 23.8 |
| 455.5 | 19.94 | 49.2 | 87.6 | 102.6 | 101.1 | 85.7 | 64.6 | 61.9 | 78.8 | 77.7 | 77.0 | 74.0 | 60.2 | 38.4 | 29.8 | 25.3 | 24.0 | 23.1 |
| 456.0 | 19.76 | 49.5 | 88.5 | 103.5 | 102.1 | 86.3 | 65.0 | 62.3 | 79.1 | 78.2 | 77.3 | 74.5 | 60.4 | 38.2 | 29.4 | 24.8 | 23.4 | 22.5 |
| 456.5 | 19.60 | 49.8 | 89.3 | 104.4 | 103.0 | 87.0 | 65.5 | 62.7 | 79.5 | 78.7 | 77.6 | 74.9 | 60.7 | 38.1 | 29.1 | 24.4 | 22.9 | 22.0 |
| 457.0 | 19.45 | 50.1 | 90.1 | 105.2 | 103.9 | 87.6 | 66.0 | 63.1 | 79.9 | 79.2 | 77.9 | 75.3 | 60.9 | 38.0 | 28.8 | 24.1 | 22.5 | 21.4 |
| 457.5 | 19.30 | 50.4 | 90.9 | 105.9 | 104.7 | 88.2 | 66.5 | 63.4 | 80.2 | 79.7 | 78.2 | 75.7 | 61.1 | 37.9 | 28.5 | 23.7 | 22.1 | 21.0 |
| 458.0 | 19.15 | 50.7 | 91.7 | 106.6 | 105.4 | 88.8 | 66.9 | 63.7 | 80.6 | 80.1 | 78.5 | 76.0 | 61.3 | 37.8 | 28.3 | 23.5 | 21.8 | 20.6 |
| 458.5 | 18.98 | 50.8 | 92.3 | 107.3 | 106.1 | 89.5 | 67.4 | 64.0 | 80.9 | 80.5 | 78.8 | 76.4 | 61.4 | 37.7 | 28.1 | 23.2 | 21.6 | 20.2 |
| 459.0 | 18.78 | 51.0 | 93.0 | 108.0 | 106.7 | 90.1 | 67.8 | 64.3 | 81.3 | 80.9 | 79.3 | 76.7 | 61.6 | 37.7 | 27.9 | 23.0 | 21.4 | 19.9 |
| 459.5 | 18.57 | 51.0 | 93.5 | 108.7 | 107.3 | 90.7 | 68.1 | 64.6 | 81.7 | 81.2 | 79.7 | 77.0 | 61.8 | 37.5 | 27.7 | 22.8 | 21.1 | 19.6 |

| 460.0 | 18.33 | 51.2 | 93.9 | 109.3 | 107.9 | 91.3 | 68.4 | 64.8 | 82.1 | 81.5 | 80.1 | 77.4 | 61.9 | 37.4 | 27.5 | 22.6 | 20.9 | 19.4 |
|-------|-------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 460.5 | 18.11 | 51.3 | 94.3 | 109.9 | 108.4 | 91.8 | 68.6 | 65.0 | 82.4 | 81.9 | 80.4 | 77.8 | 62.0 | 37.4 | 27.2 | 22.4 | 20.7 | 19.2 |
| 461.0 | 17.91 | 51.5 | 94.6 | 110.5 | 108.9 | 92.3 | 68.8 | 65.2 | 82.7 | 82.2 | 80.8 | 78.1 | 62.2 | 37.3 | 26.9 | 22.1 | 20.4 | 19.0 |
| 461.5 | 17.73 | 51.8 | 94.9 | 111.0 | 109.4 | 92.6 | 68.9 | 65.4 | 83.0 | 82.5 | 81.1 | 78.5 | 62.3 | 37.2 | 26.7 | 21.9 | 20.1 | 18.7 |
| 462.0 | 17.57 | 52.0 | 95.3 | 111.5 | 109.9 | 92.9 | 69.1 | 65.5 | 83.2 | 82.7 | 81.3 | 78.8 | 62.4 | 37.2 | 26.5 | 21.6 | 19.8 | 18.5 |
| 462.5 | 17.42 | 52.2 | 95.7 | 111.9 | 110.5 | 93.2 | 69.2 | 65.7 | 83.4 | 82.9 | 81.5 | 79.0 | 62.5 | 37.1 | 26.2 | 21.3 | 19.6 | 18.2 |
| 463.0 | 17.27 | 52.3 | 96.0 | 112.3 | 110.9 | 93.6 | 69.4 | 65.8 | 83.6 | 83.0 | 81.7 | 79.1 | 62.6 | 37.1 | 26.0 | 21.0 | 19.3 | 17.9 |
| 463.5 | 17.12 | 52.3 | 96.3 | 112.6 | 111.4 | 93.9 | 69.5 | 65.9 | 83.8 | 83.2 | 81.8 | 79.2 | 62.7 | 37.0 | 25.8 | 20.8 | 19.1 | 17.6 |
| 464.0 | 16.94 | 52.4 | 96.6 | 112.8 | 111.8 | 94.2 | 69.6 | 66.0 | 83.9 | 83.3 | 81.9 | 79.2 | 62.7 | 36.9 | 25.7 | 20.6 | 18.9 | 17.3 |
| 464.5 | 16.76 | 52.4 | 96.9 | 113.0 | 112.1 | 94.5 | 69.7 | 66.1 | 83.9 | 83.4 | 82.0 | 79.3 | 62.7 | 36.8 | 25.6 | 20.4 | 18.8 | 17.0 |
| 465.0 | 16.58 | 52.5 | 97.1 | 113.2 | 112.4 | 94.7 | 69.8 | 66.1 | 83.9 | 83.5 | 82.0 | 79.2 | 62.6 | 36.7 | 25.5 | 20.2 | 18.6 | 16.8 |
| 465.5 | 16.40 | 52.5 | 97.2 | 113.4 | 112.6 | 94.8 | 69.9 | 66.1 | 83.9 | 83.5 | 82.0 | 79.3 | 62.5 | 36.6 | 25.4 | 20.1 | 18.4 | 16.6 |
| 466.0 | 16.25 | 52.6 | 97.3 | 113.5 | 112.7 | 94.8 | 70.0 | 66.2 | 83.9 | 83.5 | 82.1 | 79.3 | 62.4 | 36.4 | 25.3 | 20.0 | 18.2 | 16.4 |
| 466.5 | 16.08 | 52.6 | 97.4 | 113.5 | 112.8 | 94.7 | 70.0 | 66.2 | 84.0 | 83.5 | 82.1 | 79.3 | 62.2 | 36.3 | 25.2 | 19.9 | 18.0 | 16.3 |
| 467.0 | 15.94 | 52.6 | 97.4 | 113.5 | 112.7 | 94.7 | 70.1 | 66.1 | 84.1 | 83.6 | 82.2 | 79.4 | 62.2 | 36.1 | 25.0 | 19.8 | 17.8 | 16.2 |
| 467.5 | 15.83 | 52.6 | 97.4 | 113.4 | 112.7 | 94.6 | 70.1 | 66.1 | 84.2 | 83.8 | 82.3 | 79.5 | 62.2 | 36.0 | 24.9 | 19.7 | 17.7 | 16.0 |
| 468.0 | 15.70 | 52.6 | 97.3 | 113.3 | 112.7 | 94.5 | 70.1 | 66.1 | 84.3 | 83.9 | 82.4 | 79.6 | 62.2 | 35.8 | 24.7 | 19.6 | 17.5 | 15.9 |
| 468.5 | 15.56 | 52.5 | 97.3 | 113.1 | 112.6 | 94.6 | 70.1 | 66.1 | 84.4 | 84.0 | 82.4 | 79.7 | 62.3 | 35.7 | 24.6 | 19.5 | 17.4 | 15.8 |
| 469.0 | 15.42 | 52.5 | 97.3 | 112.9 | 112.5 | 94.6 | 69.9 | 66.0 | 84.3 | 84.1 | 82.4 | 79.7 | 62.5 | 35.7 | 24.5 | 19.4 | 17.3 | 15.6 |
| 469.5 | 15.28 | 52.4 | 97.3 | 112.8 | 112.3 | 94.6 | 69.7 | 66.0 | 84.2 | 84.1 | 82.3 | 79.6 | 62.5 | 35.6 | 24.3 | 19.3 | 17.2 | 15.5 |
| 470.0 | 15.13 | 52.4 | 97.2 | 112.8 | 112.2 | 94.6 | 69.5 | 65.9 | 84.1 | 84.0 | 82.3 | 79.5 | 62.6 | 35.6 | 24.2 | 19.2 | 17.1 | 15.4 |
| 470.5 | 14.98 | 52.4 | 97.2 | 112.8 | 112.1 | 94.5 | 69.3 | 65.8 | 84.0 | 83.7 | 82.2 | 79.4 | 62.6 | 35.5 | 24.1 | 19.1 | 17.0 | 15.3 |
| 471.0 | 14.80 | 52.4 | 97.0 | 112.8 | 111.9 | 94.3 | 69.2 | 65.7 | 83.8 | 83.4 | 82.0 | 79.2 | 62.4 | 35.5 | 24.0 | 19.0 | 16.9 | 15.2 |
| 471.5 | 14.62 | 52.4 | 96.8 | 112.8 | 111.8 | 94.1 | 69.0 | 65.6 | 83.6 | 83.2 | 82.0 | 79.0 | 62.2 | 35.4 | 23.9 | 18.9 | 16.8 | 15.1 |
| 472.0 | 14.46 | 52.4 | 96.5 | 112.7 | 111.8 | 93.8 | 68.9 | 65.4 | 83.4 | 82.9 | 81.9 | 78.9 | 61.9 | 35.3 | 23.9 | 18.7 | 16.7 | 15.0 |
| 472.5 | 14.28 | 52.3 | 96.2 | 112.5 | 111.6 | 93.5 | 68.8 | 65.3 | 83.2 | 82.7 | 81.7 | 78.8 | 61.6 | 35.2 | 23.8 | 18.6 | 16.6 | 14.8 |
| 473.0 | 14.12 | 52.3 | 95.9 | 112.2 | 111.3 | 93.3 | 68.6 | 65.1 | 83.0 | 82.5 | 81.5 | 78.6 | 61.3 | 35.0 | 23.7 | 18.4 | 16.5 | 14.7 |
| 473.5 | 13.94 | 52.3 | 95.5 | 111.8 | 111.0 | 93.1 | 68.3 | 64.9 | 82.8 | 82.4 | 81.3 | 78.5 | 61.0 | 34.9 | 23.5 | 18.3 | 16.4 | 14.6 |
| 474.0 | 13.78 | 52.2 | 95.3 | 111.4 | 110.6 | 92.9 | 68.1 | 64.8 | 82.5 | 82.2 | 81.1 | 78.4 | 60.8 | 34.7 | 23.4 | 18.1 | 16.3 | 14.4 |
| 474.5 | 13.62 | 52.1 | 95.0 | 111.0 | 110.3 | 92.7 | 67.8 | 64.7 | 82.3 | 82.0 | 80.9 | 78.3 | 60.6 | 34.5 | 23.2 | 17.9 | 16.1 | 14.3 |
| 475.0 | 13.44 | 52.1 | 94.8 | 110.6 | 109.9 | 92.5 | 67.5 | 64.5 | 82.1 | 81.7 | 80.6 | 78.2 | 60.5 | 34.2 | 23.1 | 17.7 | 16.0 | 14.2 |
| 475.5 | 13.26 | 52.0 | 94.6 | 110.2 | 109.5 | 92.3 | 67.3 | 64.3 | 81.8 | 81.5 | 80.4 | 78.0 | 60.3 | 34.0 | 22.9 | 17.5 | 15.8 | 14.0 |

| 476.0 | 13.10 | 51.9 | 94.4 | 109.7 | 109.3 | 92.1 | 67.1 | 64.1 | 81.5 | 81.3 | 80.2 | 77.8 | 60.1 | 33.8 | 22.7 | 17.3 | 15.6 | 13.8 |
|-------|-------|------|------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 476.5 | 12.94 | 51.8 | 94.3 | 109.4 | 109.0 | 91.9 | 67.0 | 63.9 | 81.2 | 81.1 | 79.9 | 77.5 | 59.8 | 33.6 | 22.5 | 17.2 | 15.4 | 13.7 |
| 477.0 | 12.78 | 51.6 | 94.0 | 109.1 | 108.6 | 91.6 | 66.8 | 63.6 | 80.9 | 80.8 | 79.6 | 77.1 | 59.6 | 33.4 | 22.3 | 17.1 | 15.2 | 13.5 |
| 477.5 | 12.62 | 51.4 | 93.6 | 108.8 | 108.3 | 91.3 | 66.5 | 63.2 | 80.5 | 80.5 | 79.3 | 76.6 | 59.3 | 33.2 | 22.1 | 16.9 | 15.0 | 13.3 |
| 478.0 | 12.46 | 51.2 | 93.3 | 108.5 | 107.9 | 91.0 | 66.2 | 62.9 | 80.2 | 80.2 | 78.9 | 76.2 | 59.1 | 33.0 | 21.8 | 16.8 | 14.8 | 13.0 |
| 478.5 | 12.32 | 51.0 | 93.0 | 108.2 | 107.4 | 90.6 | 65.8 | 62.5 | 79.9 | 79.8 | 78.6 | 75.8 | 58.8 | 32.8 | 21.6 | 16.6 | 14.6 | 12.9 |
| 479.0 | 12.16 | 50.7 | 92.7 | 107.9 | 107.1 | 90.1 | 65.5 | 62.1 | 79.5 | 79.4 | 78.3 | 75.4 | 58.6 | 32.5 | 21.4 | 16.5 | 14.4 | 12.7 |
| 479.5 | 11.99 | 50.6 | 92.3 | 107.7 | 106.6 | 89.8 | 65.1 | 61.8 | 79.1 | 79.0 | 78.0 | 75.0 | 58.4 | 32.3 | 21.2 | 16.3 | 14.2 | 12.5 |
| 480.0 | 11.82 | 50.4 | 92.0 | 107.4 | 106.3 | 89.4 | 64.8 | 61.5 | 78.8 | 78.5 | 77.6 | 74.6 | 58.1 | 32.1 | 21.1 | 16.1 | 14.1 | 12.4 |
| 480.5 | 11.68 | 50.4 | 91.6 | 107.0 | 105.9 | 89.0 | 64.6 | 61.2 | 78.4 | 78.1 | 77.2 | 74.2 | 57.8 | 31.9 | 20.9 | 15.9 | 13.9 | 12.2 |
| 481.0 | 11.53 | 50.4 | 91.2 | 106.6 | 105.6 | 88.7 | 64.4 | 61.0 | 78.1 | 77.8 | 76.8 | 73.9 | 57.5 | 31.7 | 20.8 | 15.7 | 13.7 | 12.1 |
| 481.5 | 11.40 | 50.3 | 90.8 | 106.2 | 105.2 | 88.4 | 64.2 | 60.7 | 77.7 | 77.4 | 76.4 | 73.5 | 57.2 | 31.5 | 20.6 | 15.5 | 13.6 | 11.9 |
| 482.0 | 11.27 | 50.3 | 90.4 | 105.7 | 104.8 | 88.1 | 64.0 | 60.4 | 77.3 | 77.1 | 76.0 | 73.2 | 56.8 | 31.4 | 20.4 | 15.3 | 13.4 | 11.8 |
| 482.5 | 11.15 | 50.2 | 90.0 | 105.2 | 104.4 | 87.8 | 63.8 | 60.1 | 77.1 | 76.9 | 75.5 | 72.9 | 56.4 | 31.2 | 20.2 | 15.1 | 13.3 | 11.6 |
| 483.0 | 11.03 | 50.0 | 89.7 | 104.7 | 104.0 | 87.5 | 63.5 | 59.7 | 76.8 | 76.6 | 75.2 | 72.7 | 56.1 | 31.0 | 20.1 | 15.0 | 13.1 | 11.4 |
| 483.5 | 10.89 | 49.8 | 89.4 | 104.1 | 103.7 | 87.1 | 63.2 | 59.3 | 76.5 | 76.3 | 74.8 | 72.5 | 55.9 | 30.9 | 19.9 | 14.9 | 13.0 | 11.3 |
| 484.0 | 10.72 | 49.6 | 89.1 | 103.6 | 103.2 | 86.7 | 62.8 | 58.9 | 76.3 | 76.0 | 74.5 | 72.3 | 55.6 | 30.7 | 19.7 | 14.8 | 12.9 | 11.1 |
| 484.5 | 10.57 | 49.4 | 88.8 | 103.2 | 102.8 | 86.3 | 62.4 | 58.6 | 76.0 | 75.7 | 74.2 | 72.1 | 55.4 | 30.6 | 19.6 | 14.7 | 12.8 | 11.0 |
| 485.0 | 10.41 | 49.2 | 88.5 | 102.8 | 102.3 | 85.8 | 62.0 | 58.3 | 75.7 | 75.3 | 73.9 | 71.8 | 55.1 | 30.4 | 19.4 | 14.6 | 12.8 | 10.9 |
| 485.5 | 10.27 | 49.0 | 88.0 | 102.3 | 101.8 | 85.4 | 61.7 | 58.0 | 75.2 | 74.9 | 73.7 | 71.5 | 54.8 | 30.3 | 19.3 | 14.5 | 12.7 | 10.8 |
| 486.0 | 10.13 | 48.8 | 87.5 | 101.9 | 101.3 | 85.1 | 61.3 | 57.7 | 74.8 | 74.5 | 73.4 | 71.1 | 54.5 | 30.2 | 19.2 | 14.3 | 12.6 | 10.6 |
| 486.5 | 10.04 | 48.7 | 86.9 | 101.5 | 100.7 | 84.7 | 61.0 | 57.4 | 74.3 | 74.0 | 73.1 | 70.8 | 54.2 | 30.0 | 19.0 | 14.2 | 12.5 | 10.5 |
| 487.0 | 9.98  | 48.5 | 86.4 | 101.0 | 100.2 | 84.4 | 60.7 | 57.2 | 73.9 | 73.6 | 72.8 | 70.4 | 53.9 | 29.8 | 18.9 | 14.1 | 12.4 | 10.4 |
| 487.5 | 9.94  | 48.4 | 85.9 | 100.5 | 99.8  | 84.1 | 60.4 | 56.9 | 73.5 | 73.1 | 72.5 | 69.9 | 53.7 | 29.5 | 18.9 | 14.0 | 12.2 | 10.3 |
| 488.0 | 9.88  | 48.2 | 85.4 | 100.1 | 99.3  | 83.7 | 60.0 | 56.6 | 73.1 | 72.6 | 72.1 | 69.6 | 53.4 | 29.3 | 18.8 | 13.9 | 12.1 | 10.2 |
| 488.5 | 9.81  | 48.1 | 85.0 | 99.7  | 98.9  | 83.3 | 59.6 | 56.4 | 72.8 | 72.2 | 71.7 | 69.2 | 53.2 | 29.1 | 18.6 | 13.8 | 11.9 | 10.1 |
| 489.0 | 9.74  | 48.0 | 84.7 | 99.3  | 98.5  | 82.8 | 59.1 | 56.1 | 72.5 | 71.8 | 71.3 | 68.8 | 52.9 | 28.9 | 18.5 | 13.7 | 11.8 | 10.0 |
| 489.5 | 9.64  | 47.8 | 84.5 | 98.9  | 98.1  | 82.3 | 58.8 | 55.9 | 72.2 | 71.5 | 70.8 | 68.4 | 52.6 | 28.7 | 18.4 | 13.6 | 11.7 | 9.9  |
| 490.0 | 9.53  | 47.7 | 84.1 | 98.5  | 97.6  | 81.9 | 58.4 | 55.5 | 71.9 | 71.1 | 70.4 | 68.1 | 52.3 | 28.6 | 18.2 | 13.5 | 11.7 | 9.8  |
| 490.5 | 9.44  | 47.5 | 83.7 | 98.1  | 97.1  | 81.5 | 58.2 | 55.1 | 71.5 | 70.8 | 70.0 | 67.8 | 52.0 | 28.4 | 18.0 | 13.3 | 11.6 | 9.7  |
| 491.0 | 9.35  | 47.4 | 83.3 | 97.6  | 96.6  | 81.2 | 57.9 | 54.8 | 71.1 | 70.5 | 69.6 | 67.5 | 51.6 | 28.3 | 17.8 | 13.2 | 11.5 | 9.6  |
| 491.5 | 9.30  | 47.2 | 82.8 | 97.1  | 96.2  | 80.9 | 57.6 | 54.4 | 70.6 | 70.2 | 69.2 | 67.1 | 51.3 | 28.1 | 17.7 | 13.1 | 11.4 | 9.5  |

| 492.0 | 9.25 | 47.1 | 82.3 | 96.7 | 95.7 | 80.6 | 57.3 | 54.1 | 70.1 | 69.9 | 68.9 | 66.7 | 50.9 | 27.8 | 17.6 | 13.0 | 11.2 | 9.4 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| 492.5 | 9.21 | 46.9 | 81.8 | 96.2 | 95.2 | 80.3 | 57.0 | 53.7 | 69.7 | 69.6 | 68.6 | 66.3 | 50.6 | 27.6 | 17.4 | 12.9 | 11.1 | 9.4 |
| 493.0 | 9.19 | 46.8 | 81.4 | 95.7 | 94.7 | 79.9 | 56.7 | 53.4 | 69.3 | 69.3 | 68.2 | 65.9 | 50.3 | 27.4 | 17.4 | 12.8 | 11.0 | 9.3 |
| 493.5 | 9.15 | 46.6 | 81.0 | 95.3 | 94.1 | 79.5 | 56.3 | 53.1 | 69.0 | 69.0 | 67.8 | 65.5 | 50.0 | 27.1 | 17.3 | 12.7 | 10.9 | 9.3 |
| 494.0 | 9.09 | 46.4 | 80.6 | 94.8 | 93.6 | 79.1 | 56.0 | 52.8 | 68.6 | 68.7 | 67.4 | 65.1 | 49.8 | 27.0 | 17.2 | 12.6 | 10.9 | 9.3 |
| 494.5 | 9.01 | 46.2 | 80.3 | 94.3 | 93.1 | 78.6 | 55.7 | 52.5 | 68.3 | 68.3 | 67.0 | 64.8 | 49.6 | 26.8 | 17.0 | 12.5 | 10.8 | 9.2 |
| 495.0 | 8.92 | 45.9 | 79.9 | 93.7 | 92.6 | 78.2 | 55.5 | 52.2 | 68.0 | 67.9 | 66.6 | 64.6 | 49.4 | 26.7 | 16.9 | 12.5 | 10.7 | 9.2 |
| 495.5 | 8.82 | 45.6 | 79.5 | 93.2 | 92.1 | 77.7 | 55.2 | 52.0 | 67.6 | 67.5 | 66.2 | 64.3 | 49.2 | 26.6 | 16.8 | 12.4 | 10.7 | 9.1 |
| 496.0 | 8.71 | 45.3 | 79.1 | 92.5 | 91.7 | 77.3 | 54.9 | 51.7 | 67.2 | 67.1 | 65.9 | 64.0 | 48.9 | 26.5 | 16.7 | 12.4 | 10.6 | 9.0 |
| 496.5 | 8.61 | 45.0 | 78.7 | 91.9 | 91.2 | 76.8 | 54.6 | 51.5 | 66.7 | 66.7 | 65.6 | 63.6 | 48.7 | 26.4 | 16.7 | 12.3 | 10.5 | 8.9 |
| 497.0 | 8.53 | 44.8 | 78.3 | 91.3 | 90.7 | 76.3 | 54.2 | 51.2 | 66.3 | 66.4 | 65.4 | 63.3 | 48.3 | 26.2 | 16.6 | 12.3 | 10.4 | 8.8 |
| 497.5 | 8.47 | 44.5 | 77.9 | 90.8 | 90.2 | 75.8 | 53.9 | 51.0 | 65.9 | 66.2 | 65.2 | 62.9 | 48.0 | 26.1 | 16.5 | 12.2 | 10.3 | 8.7 |
| 498.0 | 8.40 | 44.3 | 77.5 | 90.3 | 89.7 | 75.3 | 53.5 | 50.7 | 65.5 | 65.8 | 65.0 | 62.5 | 47.6 | 25.9 | 16.4 | 12.1 | 10.3 | 8.7 |
| 498.5 | 8.33 | 44.0 | 77.1 | 90.0 | 89.1 | 74.8 | 53.1 | 50.3 | 65.2 | 65.4 | 64.7 | 62.2 | 47.3 | 25.7 | 16.3 | 12.0 | 10.2 | 8.6 |
| 499.0 | 8.27 | 43.7 | 76.7 | 89.6 | 88.5 | 74.3 | 52.8 | 50.0 | 64.8 | 65.0 | 64.4 | 61.8 | 47.0 | 25.5 | 16.1 | 11.9 | 10.2 | 8.5 |
| 499.5 | 8.20 | 43.4 | 76.4 | 89.2 | 88.0 | 73.8 | 52.4 | 49.6 | 64.4 | 64.5 | 63.9 | 61.5 | 46.8 | 25.3 | 15.9 | 11.7 | 10.2 | 8.5 |
| 500.0 | 8.12 | 43.1 | 75.9 | 88.8 | 87.5 | 73.3 | 52.1 | 49.2 | 64.0 | 64.0 | 63.5 | 61.1 | 46.5 | 25.1 | 15.8 | 11.6 | 10.1 | 8.4 |
| 500.5 | 8.05 | 42.8 | 75.4 | 88.3 | 87.0 | 72.8 | 51.8 | 48.8 | 63.6 | 63.4 | 62.9 | 60.7 | 46.2 | 24.9 | 15.6 | 11.5 | 10.0 | 8.3 |
| 501.0 | 7.98 | 42.6 | 75.0 | 87.6 | 86.5 | 72.4 | 51.5 | 48.4 | 63.2 | 63.0 | 62.3 | 60.3 | 45.9 | 24.7 | 15.5 | 11.5 | 9.9  | 8.2 |
| 501.5 | 7.94 | 42.3 | 74.5 | 87.0 | 86.0 | 71.9 | 51.2 | 48.2 | 62.8 | 62.5 | 61.8 | 59.7 | 45.6 | 24.6 | 15.3 | 11.4 | 9.8  | 8.1 |
| 502.0 | 7.89 | 42.1 | 74.0 | 86.3 | 85.4 | 71.5 | 50.9 | 47.9 | 62.4 | 62.1 | 61.3 | 59.2 | 45.3 | 24.4 | 15.3 | 11.4 | 9.7  | 8.1 |
| 502.5 | 7.85 | 41.9 | 73.6 | 85.6 | 84.9 | 71.1 | 50.5 | 47.6 | 62.2 | 61.7 | 60.9 | 58.6 | 44.9 | 24.3 | 15.2 | 11.3 | 9.6  | 8.0 |
| 503.0 | 7.82 | 41.6 | 73.1 | 84.9 | 84.2 | 70.7 | 50.1 | 47.3 | 61.8 | 61.3 | 60.5 | 58.2 | 44.6 | 24.1 | 15.1 | 11.2 | 9.5  | 8.0 |
| 503.5 | 7.77 | 41.4 | 72.6 | 84.2 | 83.5 | 70.3 | 49.7 | 47.1 | 61.4 | 60.8 | 60.1 | 57.8 | 44.3 | 24.0 | 15.1 | 11.1 | 9.4  | 7.9 |
| 504.0 | 7.72 | 41.1 | 72.0 | 83.7 | 82.9 | 69.9 | 49.2 | 46.8 | 61.0 | 60.4 | 59.8 | 57.4 | 44.0 | 23.8 | 14.9 | 11.0 | 9.3  | 7.8 |
| 504.5 | 7.66 | 40.9 | 71.4 | 83.1 | 82.3 | 69.5 | 48.8 | 46.4 | 60.6 | 59.9 | 59.3 | 57.2 | 43.7 | 23.7 | 14.8 | 10.9 | 9.3  | 7.8 |
| 505.0 | 7.59 | 40.6 | 70.8 | 82.6 | 81.7 | 69.0 | 48.3 | 46.1 | 60.1 | 59.5 | 58.9 | 56.9 | 43.4 | 23.6 | 14.7 | 10.7 | 9.3  | 7.7 |
| 505.5 | 7.51 | 40.3 | 70.1 | 82.0 | 81.1 | 68.6 | 47.8 | 45.8 | 59.5 | 59.2 | 58.4 | 56.6 | 43.1 | 23.4 | 14.6 | 10.6 | 9.2  | 7.6 |
| 506.0 | 7.42 | 40.1 | 69.5 | 81.4 | 80.6 | 68.1 | 47.5 | 45.4 | 59.0 | 58.9 | 58.0 | 56.3 | 42.8 | 23.3 | 14.4 | 10.6 | 9.1  | 7.6 |
| 506.5 | 7.32 | 39.8 | 68.8 | 80.8 | 80.1 | 67.5 | 47.1 | 45.1 | 58.4 | 58.5 | 57.5 | 55.9 | 42.5 | 23.1 | 14.3 | 10.5 | 9.0  | 7.5 |
| 507.0 | 7.22 | 39.4 | 68.2 | 80.1 | 79.4 | 66.9 | 46.7 | 44.7 | 57.9 | 58.2 | 57.1 | 55.5 | 42.1 | 22.9 | 14.2 | 10.5 | 8.9  | 7.4 |
| 507.5 | 7.12 | 39.1 | 67.7 | 79.4 | 78.8 | 66.2 | 46.4 | 44.3 | 57.4 | 57.7 | 56.7 | 55.1 | 41.7 | 22.7 | 14.1 | 10.5 | 8.8  | 7.4 |

| 508.0 | 7.01 | 38.7 | 67.1 | 78.8 | 78.1 | 65.6 | 46.1 | 44.0 | 56.9 | 57.1 | 56.2 | 54.5 | 41.4 | 22.5 | 14.0 | 10.4 | 8.7 | 7.3 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|
| 508.5 | 6.92 | 38.3 | 66.6 | 78.1 | 77.5 | 65.0 | 45.8 | 43.6 | 56.5 | 56.6 | 55.8 | 54.0 | 41.0 | 22.2 | 13.9 | 10.4 | 8.6 | 7.2 |
| 509.0 | 6.82 | 38.0 | 66.1 | 77.4 | 76.8 | 64.4 | 45.4 | 43.3 | 56.0 | 55.9 | 55.3 | 53.5 | 40.6 | 22.0 | 13.8 | 10.3 | 8.6 | 7.2 |
| 509.5 | 6.72 | 37.6 | 65.6 | 76.8 | 76.1 | 63.9 | 45.0 | 42.9 | 55.5 | 55.4 | 54.8 | 53.0 | 40.2 | 21.9 | 13.7 | 10.2 | 8.5 | 7.1 |
| 510.0 | 6.62 | 37.3 | 65.1 | 76.1 | 75.4 | 63.3 | 44.6 | 42.5 | 55.1 | 54.8 | 54.3 | 52.5 | 39.9 | 21.7 | 13.5 | 10.1 | 8.5 | 7.1 |
| 510.5 | 6.53 | 36.9 | 64.5 | 75.3 | 74.7 | 62.7 | 44.1 | 42.0 | 54.6 | 54.4 | 53.8 | 52.1 | 39.5 | 21.6 | 13.4 | 10.0 | 8.4 | 7.0 |
| 511.0 | 6.44 | 36.6 | 63.9 | 74.6 | 74.0 | 62.1 | 43.7 | 41.5 | 54.1 | 54.0 | 53.3 | 51.6 | 39.2 | 21.4 | 13.3 | 9.9  | 8.4 | 7.0 |
| 511.5 | 6.37 | 36.2 | 63.3 | 73.8 | 73.1 | 61.5 | 43.2 | 40.9 | 53.6 | 53.6 | 52.8 | 51.1 | 38.9 | 21.2 | 13.1 | 9.8  | 8.3 | 6.9 |
| 512.0 | 6.31 | 35.9 | 62.7 | 73.0 | 72.2 | 60.8 | 42.7 | 40.4 | 53.0 | 53.2 | 52.2 | 50.6 | 38.6 | 21.0 | 13.0 | 9.7  | 8.2 | 6.8 |
| 512.5 | 6.25 | 35.6 | 62.0 | 72.3 | 71.4 | 60.2 | 42.2 | 39.9 | 52.5 | 52.8 | 51.7 | 50.2 | 38.2 | 20.8 | 12.8 | 9.6  | 8.1 | 6.8 |
| 513.0 | 6.20 | 35.2 | 61.3 | 71.5 | 70.6 | 59.5 | 41.7 | 39.4 | 51.9 | 52.3 | 51.1 | 49.7 | 37.9 | 20.6 | 12.7 | 9.4  | 8.0 | 6.7 |
| 513.5 | 6.12 | 34.9 | 60.6 | 70.8 | 69.8 | 58.9 | 41.2 | 39.0 | 51.3 | 51.7 | 50.7 | 49.2 | 37.5 | 20.4 | 12.6 | 9.3  | 7.9 | 6.6 |
| 514.0 | 6.04 | 34.5 | 59.9 | 70.1 | 69.0 | 58.2 | 40.7 | 38.6 | 50.8 | 51.1 | 50.3 | 48.8 | 37.2 | 20.2 | 12.5 | 9.2  | 7.8 | 6.5 |
| 514.5 | 5.96 | 34.2 | 59.2 | 69.3 | 68.3 | 57.5 | 40.3 | 38.3 | 50.2 | 50.4 | 49.8 | 48.4 | 36.8 | 20.1 | 12.4 | 9.1  | 7.8 | 6.5 |
| 515.0 | 5.87 | 33.9 | 58.5 | 68.5 | 67.6 | 56.8 | 39.9 | 38.0 | 49.7 | 49.9 | 49.3 | 47.9 | 36.4 | 19.9 | 12.2 | 9.0  | 7.7 | 6.4 |
| 515.5 | 5.78 | 33.5 | 57.8 | 67.7 | 67.0 | 56.1 | 39.4 | 37.6 | 49.1 | 49.3 | 48.9 | 47.4 | 36.1 | 19.7 | 12.0 | 8.9  | 7.7 | 6.3 |
| 516.0 | 5.70 | 33.1 | 57.2 | 66.9 | 66.2 | 55.4 | 39.0 | 37.2 | 48.6 | 48.7 | 48.4 | 46.9 | 35.6 | 19.5 | 11.9 | 8.9  | 7.6 | 6.2 |
| 516.5 | 5.62 | 32.7 | 56.5 | 66.1 | 65.5 | 54.6 | 38.5 | 36.7 | 48.1 | 48.2 | 47.8 | 46.4 | 35.2 | 19.3 | 11.7 | 8.8  | 7.5 | 6.2 |
| 517.0 | 5.56 | 32.3 | 55.8 | 65.3 | 64.7 | 53.9 | 38.0 | 36.2 | 47.6 | 47.8 | 47.2 | 45.9 | 34.7 | 19.1 | 11.6 | 8.8  | 7.4 | 6.1 |
| 517.5 | 5.47 | 31.9 | 55.0 | 64.6 | 63.8 | 53.2 | 37.5 | 35.8 | 47.0 | 47.3 | 46.6 | 45.3 | 34.3 | 18.8 | 11.4 | 8.7  | 7.3 | 6.1 |
| 518.0 | 5.37 | 31.4 | 54.3 | 63.8 | 62.9 | 52.5 | 37.0 | 35.3 | 46.5 | 46.8 | 46.0 | 44.7 | 33.9 | 18.6 | 11.3 | 8.6  | 7.2 | 6.0 |
| 518.5 | 5.28 | 31.0 | 53.6 | 63.0 | 62.0 | 51.8 | 36.5 | 34.8 | 45.9 | 46.2 | 45.3 | 44.1 | 33.6 | 18.4 | 11.2 | 8.5  | 7.1 | 6.0 |
| 519.0 | 5.18 | 30.6 | 52.9 | 62.2 | 61.1 | 51.1 | 36.0 | 34.4 | 45.3 | 45.6 | 44.7 | 43.6 | 33.2 | 18.1 | 11.1 | 8.4  | 7.0 | 5.9 |
| 519.5 | 5.10 | 30.2 | 52.2 | 61.4 | 60.2 | 50.4 | 35.6 | 34.0 | 44.7 | 45.0 | 44.1 | 43.0 | 32.9 | 17.9 | 11.0 | 8.2  | 7.0 | 5.9 |
| 520.0 | 5.03 | 29.8 | 51.5 | 60.5 | 59.4 | 49.8 | 35.2 | 33.6 | 44.1 | 44.3 | 43.6 | 42.5 | 32.5 | 17.6 | 10.9 | 8.1  | 6.9 | 5.8 |
| 520.5 | 4.97 | 29.4 | 50.8 | 59.6 | 58.7 | 49.2 | 34.7 | 33.2 | 43.5 | 43.7 | 43.2 | 42.0 | 32.1 | 17.4 | 10.8 | 8.0  | 6.8 | 5.7 |
| 521.0 | 4.91 | 29.1 | 50.1 | 58.7 | 57.9 | 48.6 | 34.2 | 32.8 | 42.9 | 43.1 | 42.7 | 41.5 | 31.7 | 17.2 | 10.7 | 7.9  | 6.8 | 5.7 |
| 521.5 | 4.85 | 28.7 | 49.4 | 57.7 | 57.1 | 47.9 | 33.7 | 32.3 | 42.3 | 42.6 | 42.2 | 41.0 | 31.2 | 17.0 | 10.5 | 7.8  | 6.7 | 5.6 |
| 522.0 | 4.78 | 28.2 | 48.6 | 56.8 | 56.3 | 47.2 | 33.2 | 31.8 | 41.8 | 42.0 | 41.7 | 40.5 | 30.7 | 16.9 | 10.4 | 7.7  | 6.6 | 5.6 |
| 522.5 | 4.71 | 27.8 | 47.8 | 55.9 | 55.4 | 46.6 | 32.7 | 31.3 | 41.2 | 41.4 | 41.2 | 39.9 | 30.3 | 16.7 | 10.3 | 7.6  | 6.5 | 5.5 |
| 523.0 | 4.63 | 27.4 | 47.0 | 55.0 | 54.5 | 45.9 | 32.1 | 30.7 | 40.6 | 40.9 | 40.5 | 39.4 | 29.8 | 16.5 | 10.2 | 7.5  | 6.4 | 5.4 |
| 523.5 | 4.57 | 27.0 | 46.2 | 54.2 | 53.6 | 45.1 | 31.6 | 30.2 | 39.9 | 40.3 | 39.9 | 38.8 | 29.4 | 16.3 | 10.1 | 7.4  | 6.3 | 5.4 |

| 524.0 | 4.51 | 26.7 | 45.5 | 53.3 | 52.8 | 44.4 | 31.1 | 29.8 | 39.3 | 39.7 | 39.3 | 38.2 | 29.0 | 16.1 | 9.9 | 7.3 | 6.2 | 5.3 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|
| 524.5 | 4.45 | 26.3 | 44.9 | 52.6 | 52.1 | 43.6 | 30.5 | 29.3 | 38.7 | 39.1 | 38.7 | 37.7 | 28.6 | 15.8 | 9.8 | 7.2 | 6.2 | 5.2 |
| 525.0 | 4.40 | 26.0 | 44.3 | 51.8 | 51.3 | 42.9 | 30.0 | 28.8 | 38.1 | 38.5 | 38.0 | 37.1 | 28.2 | 15.6 | 9.7 | 7.1 | 6.1 | 5.1 |
| 525.5 | 4.33 | 25.7 | 43.6 | 51.1 | 50.5 | 42.2 | 29.5 | 28.4 | 37.6 | 38.0 | 37.4 | 36.5 | 27.8 | 15.4 | 9.6 | 7.0 | 6.0 | 5.0 |
| 526.0 | 4.25 | 25.3 | 42.9 | 50.3 | 49.6 | 41.5 | 29.0 | 28.0 | 37.0 | 37.4 | 36.8 | 36.0 | 27.3 | 15.2 | 9.4 | 7.0 | 6.0 | 5.0 |
| 526.5 | 4.17 | 24.9 | 42.2 | 49.5 | 48.7 | 40.8 | 28.5 | 27.6 | 36.5 | 36.8 | 36.2 | 35.4 | 26.9 | 14.9 | 9.3 | 6.9 | 5.9 | 4.9 |
| 527.0 | 4.08 | 24.5 | 41.5 | 48.6 | 47.8 | 40.2 | 28.0 | 27.2 | 36.0 | 36.2 | 35.6 | 34.9 | 26.5 | 14.8 | 9.2 | 6.8 | 5.8 | 4.8 |
| 527.5 | 4.01 | 24.1 | 40.7 | 47.7 | 46.8 | 39.5 | 27.6 | 26.8 | 35.4 | 35.7 | 35.0 | 34.3 | 26.1 | 14.6 | 9.0 | 6.7 | 5.7 | 4.8 |
| 528.0 | 3.94 | 23.6 | 40.0 | 46.7 | 45.9 | 38.8 | 27.2 | 26.3 | 34.8 | 35.1 | 34.5 | 33.8 | 25.6 | 14.4 | 8.9 | 6.7 | 5.6 | 4.7 |
| 528.5 | 3.88 | 23.2 | 39.2 | 45.9 | 45.1 | 38.1 | 26.8 | 25.9 | 34.3 | 34.5 | 33.9 | 33.2 | 25.2 | 14.1 | 8.7 | 6.6 | 5.6 | 4.7 |
| 529.0 | 3.82 | 22.8 | 38.5 | 45.0 | 44.4 | 37.4 | 26.3 | 25.4 | 33.7 | 33.9 | 33.4 | 32.7 | 24.8 | 13.9 | 8.6 | 6.5 | 5.5 | 4.6 |
| 529.5 | 3.76 | 22.5 | 37.8 | 44.2 | 43.7 | 36.7 | 25.9 | 24.9 | 33.1 | 33.3 | 32.9 | 32.1 | 24.5 | 13.6 | 8.5 | 6.5 | 5.5 | 4.6 |
| 530.0 | 3.71 | 22.1 | 37.1 | 43.4 | 42.9 | 35.9 | 25.4 | 24.4 | 32.4 | 32.8 | 32.3 | 31.5 | 24.0 | 13.4 | 8.4 | 6.4 | 5.4 | 4.5 |
| 530.5 | 3.65 | 21.8 | 36.5 | 42.7 | 42.2 | 35.2 | 24.9 | 23.9 | 31.8 | 32.2 | 31.8 | 30.9 | 23.7 | 13.2 | 8.3 | 6.3 | 5.3 | 4.5 |
| 531.0 | 3.58 | 21.4 | 35.8 | 41.9 | 41.5 | 34.5 | 24.4 | 23.5 | 31.2 | 31.7 | 31.3 | 30.3 | 23.3 | 13.0 | 8.2 | 6.2 | 5.3 | 4.5 |
| 531.5 | 3.52 | 21.1 | 35.2 | 41.2 | 40.7 | 33.8 | 23.9 | 23.1 | 30.6 | 31.2 | 30.7 | 29.7 | 22.9 | 12.8 | 8.1 | 6.1 | 5.2 | 4.4 |
| 532.0 | 3.46 | 20.7 | 34.5 | 40.5 | 39.9 | 33.2 | 23.4 | 22.7 | 30.0 | 30.6 | 30.1 | 29.2 | 22.5 | 12.5 | 7.9 | 6.0 | 5.1 | 4.3 |
| 532.5 | 3.40 | 20.4 | 33.9 | 39.7 | 39.1 | 32.7 | 22.9 | 22.3 | 29.5 | 30.0 | 29.6 | 28.7 | 22.1 | 12.3 | 7.8 | 5.9 | 5.0 | 4.2 |
| 533.0 | 3.33 | 20.1 | 33.3 | 39.0 | 38.4 | 32.2 | 22.5 | 21.9 | 28.9 | 29.4 | 29.0 | 28.2 | 21.7 | 12.1 | 7.7 | 5.8 | 4.9 | 4.2 |
| 533.5 | 3.24 | 19.7 | 32.7 | 38.3 | 37.7 | 31.7 | 22.1 | 21.6 | 28.4 | 28.8 | 28.4 | 27.7 | 21.2 | 11.9 | 7.6 | 5.7 | 4.8 | 4.1 |
| 534.0 | 3.17 | 19.4 | 32.0 | 37.6 | 36.9 | 31.1 | 21.7 | 21.2 | 27.9 | 28.2 | 27.9 | 27.2 | 20.8 | 11.6 | 7.4 | 5.7 | 4.7 | 4.0 |
| 534.5 | 3.10 | 19.0 | 31.4 | 36.8 | 36.2 | 30.6 | 21.4 | 20.7 | 27.4 | 27.6 | 27.4 | 26.7 | 20.4 | 11.4 | 7.3 | 5.6 | 4.7 | 3.9 |
| 535.0 | 3.04 | 18.6 | 30.8 | 36.1 | 35.5 | 30.0 | 21.0 | 20.3 | 26.9 | 27.0 | 26.9 | 26.2 | 20.0 | 11.2 | 7.2 | 5.5 | 4.6 | 3.9 |
| 535.5 | 2.99 | 18.3 | 30.2 | 35.3 | 34.7 | 29.5 | 20.7 | 20.0 | 26.4 | 26.5 | 26.4 | 25.7 | 19.7 | 11.0 | 7.0 | 5.4 | 4.6 | 3.8 |
| 536.0 | 2.96 | 17.9 | 29.5 | 34.6 | 34.0 | 28.9 | 20.3 | 19.6 | 25.9 | 26.0 | 26.0 | 25.2 | 19.4 | 10.8 | 6.9 | 5.3 | 4.5 | 3.8 |
| 536.5 | 2.93 | 17.5 | 28.9 | 33.9 | 33.4 | 28.3 | 20.0 | 19.3 | 25.4 | 25.5 | 25.6 | 24.7 | 19.1 | 10.6 | 6.8 | 5.2 | 4.5 | 3.8 |
| 537.0 | 2.91 | 17.2 | 28.3 | 33.2 | 32.7 | 27.7 | 19.7 | 19.0 | 25.0 | 25.1 | 25.1 | 24.2 | 18.8 | 10.4 | 6.7 | 5.1 | 4.4 | 3.7 |
| 537.5 | 2.87 | 16.9 | 27.7 | 32.5 | 32.1 | 27.1 | 19.3 | 18.7 | 24.6 | 24.7 | 24.7 | 23.8 | 18.5 | 10.2 | 6.6 | 5.1 | 4.4 | 3.7 |
| 538.0 | 2.83 | 16.6 | 27.2 | 31.9 | 31.5 | 26.5 | 19.0 | 18.4 | 24.1 | 24.4 | 24.2 | 23.3 | 18.2 | 10.0 | 6.5 | 5.0 | 4.3 | 3.6 |
| 538.5 | 2.78 | 16.3 | 26.7 | 31.3 | 31.0 | 26.0 | 18.6 | 18.1 | 23.7 | 24.0 | 23.8 | 22.9 | 17.9 | 9.9  | 6.4 | 5.0 | 4.3 | 3.5 |
| 539.0 | 2.74 | 16.0 | 26.2 | 30.7 | 30.4 | 25.4 | 18.3 | 17.8 | 23.3 | 23.6 | 23.4 | 22.5 | 17.6 | 9.8  | 6.3 | 4.9 | 4.2 | 3.5 |
| 539.5 | 2.68 | 15.7 | 25.7 | 30.1 | 29.8 | 24.9 | 17.9 | 17.5 | 22.9 | 23.2 | 23.0 | 22.1 | 17.3 | 9.6  | 6.1 | 4.9 | 4.1 | 3.4 |

| 540.0 | 2.62 | 15.3 | 25.2 | 29.6 | 29.3 | 24.4 | 17.6 | 17.2 | 22.5 | 22.8 | 22.6 | 21.7 | 17.0 | 9.5 | 6.0 | 4.8 | 4.0 | 3.4 |
|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|
| 540.5 | 2.56 | 15.0 | 24.7 | 29.0 | 28.7 | 23.9 | 17.3 | 16.9 | 22.1 | 22.3 | 22.2 | 21.3 | 16.7 | 9.4 | 5.9 | 4.7 | 4.0 | 3.4 |
| 541.0 | 2.50 | 14.6 | 24.2 | 28.4 | 28.1 | 23.5 | 17.0 | 16.5 | 21.7 | 21.8 | 21.8 | 20.9 | 16.4 | 9.2 | 5.9 | 4.6 | 3.9 | 3.3 |
| 541.5 | 2.44 | 14.4 | 23.7 | 27.9 | 27.5 | 23.0 | 16.6 | 16.2 | 21.3 | 21.4 | 21.4 | 20.5 | 16.1 | 9.0 | 5.8 | 4.5 | 3.8 | 3.3 |
| 542.0 | 2.41 | 14.1 | 23.2 | 27.3 | 26.9 | 22.6 | 16.3 | 15.9 | 20.9 | 21.0 | 21.0 | 20.2 | 15.8 | 8.9 | 5.7 | 4.4 | 3.8 | 3.3 |
| 542.5 | 2.38 | 13.9 | 22.8 | 26.7 | 26.3 | 22.1 | 16.0 | 15.6 | 20.5 | 20.6 | 20.6 | 19.9 | 15.5 | 8.7 | 5.7 | 4.4 | 3.7 | 3.2 |
| 543.0 | 2.37 | 13.7 | 22.3 | 26.1 | 25.8 | 21.7 | 15.7 | 15.3 | 20.1 | 20.2 | 20.2 | 19.6 | 15.2 | 8.5 | 5.6 | 4.3 | 3.7 | 3.2 |
| 543.5 | 2.35 | 13.5 | 21.9 | 25.6 | 25.3 | 21.2 | 15.3 | 15.0 | 19.7 | 19.9 | 19.9 | 19.3 | 14.9 | 8.4 | 5.5 | 4.2 | 3.7 | 3.1 |
| 544.0 | 2.33 | 13.2 | 21.4 | 25.1 | 24.8 | 20.8 | 15.0 | 14.7 | 19.4 | 19.5 | 19.6 | 19.0 | 14.6 | 8.2 | 5.5 | 4.2 | 3.6 | 3.1 |
| 544.5 | 2.30 | 13.0 | 21.0 | 24.6 | 24.4 | 20.4 | 14.7 | 14.5 | 19.1 | 19.2 | 19.2 | 18.7 | 14.3 | 8.1 | 5.4 | 4.1 | 3.6 | 3.0 |
| 545.0 | 2.26 | 12.7 | 20.6 | 24.2 | 23.9 | 20.0 | 14.4 | 14.2 | 18.7 | 18.9 | 18.9 | 18.4 | 14.0 | 8.0 | 5.3 | 4.1 | 3.5 | 3.0 |
| 545.5 | 2.20 | 12.4 | 20.2 | 23.8 | 23.5 | 19.8 | 14.1 | 13.9 | 18.4 | 18.6 | 18.5 | 18.0 | 13.8 | 7.8 | 5.2 | 4.0 | 3.5 | 3.0 |
| 546.0 | 2.16 | 12.1 | 19.9 | 23.3 | 23.1 | 19.5 | 13.9 | 13.7 | 18.1 | 18.2 | 18.2 | 17.7 | 13.6 | 7.7 | 5.1 | 3.9 | 3.4 | 2.9 |
| 546.5 | 2.11 | 11.9 | 19.5 | 22.9 | 22.6 | 19.2 | 13.7 | 13.4 | 17.8 | 17.9 | 17.8 | 17.3 | 13.3 | 7.5 | 5.1 | 3.9 | 3.4 | 2.9 |
| 547.0 | 2.07 | 11.6 | 19.2 | 22.5 | 22.1 | 19.0 | 13.4 | 13.2 | 17.6 | 17.5 | 17.4 | 17.0 | 13.1 | 7.4 | 5.0 | 3.9 | 3.3 | 2.8 |
| 547.5 | 2.03 | 11.5 | 18.9 | 22.1 | 21.6 | 18.6 | 13.1 | 13.0 | 17.3 | 17.2 | 17.1 | 16.6 | 12.9 | 7.3 | 4.9 | 3.8 | 3.3 | 2.8 |
| 548.0 | 1.99 | 11.3 | 18.6 | 21.6 | 21.2 | 18.3 | 12.9 | 12.7 | 17.0 | 16.9 | 16.8 | 16.3 | 12.7 | 7.2 | 4.9 | 3.8 | 3.3 | 2.7 |
| 548.5 | 1.95 | 11.1 | 18.3 | 21.2 | 20.8 | 17.9 | 12.7 | 12.5 | 16.7 | 16.6 | 16.5 | 16.1 | 12.4 | 7.1 | 4.7 | 3.7 | 3.2 | 2.7 |
| 549.0 | 1.91 | 10.9 | 17.8 | 20.7 | 20.6 | 17.6 | 12.5 | 12.2 | 16.3 | 16.3 | 16.2 | 15.8 | 12.2 | 7.1 | 4.6 | 3.7 | 3.2 | 2.7 |
| 549.5 | 1.86 | 10.6 | 17.3 | 20.4 | 20.5 | 17.2 | 12.3 | 12.0 | 15.8 | 16.0 | 15.9 | 15.6 | 11.9 | 7.1 | 4.4 | 3.6 | 3.1 | 2.8 |
| 550.0 | 1.81 | 10.2 | 16.7 | 20.1 | 20.5 | 16.8 | 12.2 | 11.7 | 15.3 | 15.6 | 15.5 | 15.3 | 11.6 | 7.1 | 4.2 | 3.5 | 3.0 | 2.9 |
| 550.5 | 1.77 | 9.8  | 16.0 | 19.9 | 20.7 | 16.5 | 12.2 | 11.5 | 14.7 | 15.3 | 15.2 | 15.1 | 11.3 | 7.1 | 4.0 | 3.4 | 2.9 | 3.0 |
|       |      |      |      |      |      |      |      |      |      |      |      |      |      |     |     |     |     |     |

| 0.001%<br>NaA                   | w/v<br>lg | 0.005%<br>NaAlg                | w/v<br>g  | 0.01%<br>NaA                    | w/v<br>lg                      | 0.001%<br>NaA                | ó w∕v<br>∆lg | 0.005%<br>NaAl               | w/v<br>lg | 0.01% v<br>NaAlg             | v/v<br>g  |
|---------------------------------|-----------|--------------------------------|-----------|---------------------------------|--------------------------------|------------------------------|--------------|------------------------------|-----------|------------------------------|-----------|
| [C <sub>16</sub> MImCl]<br>/ mM | $I_1/I_3$ | [C <sub>16</sub> MImCl]/<br>mM | $I_1/I_3$ | [C <sub>16</sub> MImCl]<br>/ mM | I <sub>1</sub> /I <sub>3</sub> | [C <sub>16</sub> TPB]/<br>mM | $I_1/I_3$    | [C <sub>16</sub> TPB]/<br>mM | $I_1/I_3$ | [C <sub>16</sub> TPB]/<br>mM | $I_1/I_3$ |
| 0                               | 1.33      | 0                              | 1.34      | 0                               | 1.35                           | 0                            | 1.35         | 0                            | 1.34      | 0                            | 1.32      |
| 0.02                            | 1.18      | 0.01                           | 1.19      | 0.01                            | 1.12                           | 0.004                        | 1.27         | 0.005                        | 1.27      | 0.004                        | 1.29      |
| 0.03                            | 1.18      | 0.02                           | 1.14      | 0.03                            | 1.03                           | 0.008                        | 1.28         | 0.011                        | 1.20      | 0.009                        | 1.26      |
| 0.05                            | 1.14      | 0.04                           | 1.08      | 0.04                            | 0.99                           | 0.013                        | 1.26         | 0.017                        | 1.16      | 0.018                        | 1.23      |
| 0.06                            | 1.15      | 0.06                           | 1.04      | 0.06                            | 0.97                           | 0.019                        | 1.24         | 0.024                        | 1.12      | 0.031                        | 1.20      |
| 0.08                            | 1.12      | 0.07                           | 1.02      | 0.08                            | 0.95                           | 0.025                        | 1.19         | 0.033                        | 1.09      | 0.049                        | 1.17      |
| 0.10                            | 1.12      | 0.10                           | 0.98      | 0.10                            | 0.96                           | 0.032                        | 1.18         | 0.045                        | 1.06      | 0.111                        | 1.16      |
| 0.13                            | 1.12      | 0.12                           | 0.98      | 0.12                            | 0.95                           | 0.038                        | 1.16         | 0.060                        | 1.04      | 0.162                        | 1.15      |
| 0.16                            | 1.13      | 0.15                           | 0.97      | 0.15                            | 0.96                           | 0.045                        | 1.15         | 0.078                        | 1.02      | 0.229                        | 1.15      |
| 0.19                            | 1.13      | 0.18                           | 0.97      | 0.20                            | 0.95                           | 0.052                        | 1.14         | 0.098                        | 1.00      | 0.318                        | 1.15      |
| 0.23                            | 1.12      | 0.21                           | 0.98      | 0.26                            | 0.95                           | 0.06                         | 1.13         | 0.122                        | 1.00      | 0.418                        | 1.16      |
| 0.28                            | 1.11      | 0.25                           | 0.98      | 0.41                            | 0.95                           | 0.071                        | 1.13         | 0.148                        | 0.99      | 0.528                        | 1.16      |
| 0.34                            | 1.12      | 0.37                           | 0.99      | 0.53                            | 0.95                           | 0.079                        | 1.13         | 0.177                        | 0.99      | 0.653                        | 1.16      |
| 0.40                            | 1.10      | 0.41                           | 0.99      | 0.70                            | 0.95                           | 0.089                        | 1.13         | 0.211                        | 0.98      | 0.783                        | 1.16      |
| 0.48                            | 1.10      | 0.53                           | 0.99      | 0.92                            | 0.95                           | 0.104                        | 1.12         | 0.250                        | 1.00      |                              |           |
| 0.57                            | 1.10      | 0.58                           | 0.99      | 1.25                            | 0.95                           | 0.118                        | 1.12         | 0.295                        | 1.00      |                              |           |
| 0.69                            | 1.11      | 0.94                           | 0.90      | 1.66                            | 0.95                           | 0.148                        | 1.11         | 0.345                        | 1.01      |                              |           |
| 0.80                            | 1.06      | 1.16                           | 0.92      | 2.14                            | 0.96                           | 0.164                        | 1.11         | 0.399                        | 1.00      |                              |           |
| 0.91                            | 1.06      | 1.71                           | 0.95      | 2.58                            | 0.97                           | 0.181                        | 1.10         |                              |           |                              |           |
| 1.02                            | 1.04      | 2.08                           | 0.96      | 3.00                            | 0.97                           | 0.198                        | 1.10         |                              |           |                              |           |
| 1.13                            | 1.04      | 3.14                           | 0.99      | 3.39                            | 0.97                           | 0.215                        | 1.08         |                              |           |                              |           |
| 1.23                            | 1.03      | 4.66                           | 0.99      | 3.76                            | 0.97                           | 0.261                        | 1.08         |                              |           |                              |           |
| 1.44                            | 1.04      | 5.48                           | 0.99      | 4.11                            | 0.97                           | 0.294                        | 1.07         |                              |           |                              |           |
| 1.74                            | 1.04      |                                |           | 4.75                            | 0.96                           | 0.335                        | 1.06         |                              |           |                              |           |
| 2.12                            | 1.03      |                                |           |                                 |                                | 0.383                        | 1.04         |                              |           |                              |           |
| 2.57                            | 1.02      |                                |           |                                 |                                | 0.446                        | 1.04         |                              |           |                              |           |
| 3.18                            | 1.03      |                                |           |                                 |                                | 0.521                        | 1.03         |                              |           |                              |           |
| 3.92                            | 1.02      |                                |           |                                 |                                | 0.594                        | 1.03         |                              |           |                              |           |
| 4.57                            | 1.02      |                                |           |                                 |                                |                              |              |                              |           |                              |           |

# 3.10. Micropolarity $(I_1/I_3)$ values of pyrene with variation of [Surf] at different NaAlg concentration at 298.15 K

# 3.11. Micropolarity $(I_1/I_3)$ values of pyrene with variation of [Surf] in aqueous medium at 298.15 K

| [C <sub>16</sub> MImCl]/ mM | $I_{E}/I_{m}$ | [C16TPB]/mM | $I_E/I_m$ |
|-----------------------------|---------------|-------------|-----------|
| 0                           | 0.115         | 0           | 0.095     |
| 0.012                       | 0.531         | 0.004       | 0.215     |
| 0.024                       | 0.919         | 0.007       | 0.305     |
| 0.036                       | 1.036         | 0.015       | 0.427     |
| 0.060                       | 0.961         | 0.025       | 0.493     |
| 0.096                       | 0.740         | 0.040       | 0.474     |
| 0.144                       | 0.554         | 0.058       | 0.438     |
| 0.203                       | 0.449         | 0.093       | 0.364     |
| 0.291                       | 0.452         | 0.162       | 0.296     |
| 0.406                       | 0.452         | 0.261       | 0.288     |
| 0.576                       | 0.451         | 0.387       | 0.262     |
| 0.824                       | 0.440         |             |           |
| 1.141                       | 0.305         |             |           |
| 1.640                       | 0.150         |             |           |
| 2.325                       | 0.097         |             |           |
| 3.136                       | 0.073         |             |           |
| 3.851                       | 0.063         |             |           |
| 5.052                       | 0.055         |             |           |

| 0.00                         | )5% w/v | v NaAlg            |       |
|------------------------------|---------|--------------------|-------|
| [C <sub>16</sub> MImCl] / mM | <7>     | $[C_{16}TPB] / mM$ | <7>   |
| 0                            | 122.3   | 0                  | 124.7 |
| 0.01                         | 112.3   | 0.0048             | 118.6 |
| 0.04                         | 109.8   | 0.0168             | 102.3 |
| 0.07                         | 101.8   | 0.0317             | 84.4  |
| 0.12                         | 129.6   | 0.0585             | 69.7  |
| 0.21                         | 151.3   | 0.0968             | 57.5  |
| 0.32                         | 147.1   | 0.1463             | 46.7  |
| 0.47                         | 140.8   | 0.2320             | 43.1  |
| 0.67                         | 140.6   | 0.3378             | 41.7  |
| 0.94                         | 135.5   | 0.4458             | 36.5  |
| 1.31                         | 151.5   | 0.5559             | 35.8  |
| 1.76                         | 167.4   | 0.6949             | 34.7  |
| 2.94                         | 165.4   | 0.8522             | 31.5  |
| 3.69                         | 166.7   | 1.0249             | 34.8  |
| 4.51                         | 166.2   | 1.2207             | 30.0  |
| 5.35                         | 167.7   | 1.4248             | 30.5  |

3.12. Average lifetime ( $\langle \tau \rangle$ ) of Pyrene in presence and absence of C<sub>16</sub>MImCl and C<sub>16</sub>TPB (variation of surfactant concentrations) in 0.005% w/v NaAlg solution at 298.15 K.

3.13. Average hydrodynamic radius (*r*) of Pyrene in presence and absence of  $C_{16}$ MImCl and  $C_{16}$ TPB (variation of surfactant concentrations) in 0.005% w/v NaAlg solution at 298.15 K.

| [C <sub>16</sub> MImCl] /<br>mM | Hydrodyn<br>presend | namic radius (r) i<br>ce of 0.01% w/v | n nm unit in<br>of NaAlg |
|---------------------------------|---------------------|---------------------------------------|--------------------------|
| 111111                          | < 500 nm            | 500-1000 nm                           | >500 nm                  |
| 0                               | 265.6               | -                                     | -                        |
| 0.030                           | 110.1               | -                                     | -                        |
| 0.089                           | 110.1               | -                                     | _                        |
| 0.178                           | 95.07               | -                                     | -                        |
| 0.294                           | 127.5               | -                                     | _                        |
| 0.436                           |                     | 694                                   |                          |
| 0.645                           |                     |                                       | 1931                     |
| 0.980                           |                     | 927                                   | 2780                     |
| 1.423                           | 127.5               | 742                                   | 2780                     |
| 2.010                           |                     | 641                                   | 2780                     |
| 2.548                           |                     | 553                                   | 2780                     |
| 3.322                           |                     | 742                                   | 2780                     |
| 4.164                           | 82.09               | 742                                   | 2780                     |
| 4.892                           | 138                 | 995                                   | 2780                     |
| 6.090                           |                     |                                       | 1545                     |
|                                 |                     |                                       |                          |

| 0.01% w/v NaA              | Alg           |
|----------------------------|---------------|
| [C <sub>16</sub> TPB] / mM | <i>r /</i> nm |
| 0                          | 229           |
| 0.018                      | 127.5         |
| 0.054                      | 110           |
| 0.098                      | 110           |
| 0.184                      | 110           |
| 0.347                      | 110           |
| 0.569                      | 95.07         |
| 0.891                      | 95.07         |
| 1.265                      | 110           |
| 1.608                      | 110           |
| 1.949                      | 118.7         |
| 2.335                      | 110           |
| 2.702                      | 95.1          |

| 0.001% w/v NaA              | lg                                                               | 0.005% w/v NaAlg |                                            | 0.01% w/v NaA  | lg                                                               |
|-----------------------------|------------------------------------------------------------------|------------------|--------------------------------------------|----------------|------------------------------------------------------------------|
| [C <sub>16</sub> MImCl]/ mM | $\begin{array}{c} \Delta H^0{}_{obs} \\ kJ.mol^{-1} \end{array}$ | [C16MImCl]/ mM   | $\Delta H^0_{obs}$<br>kJ.mol <sup>-1</sup> | [C16MImCl]/ mM | $\begin{array}{c} \Delta H^0{}_{obs} \\ kJ.mol^{-1} \end{array}$ |
| 0                           |                                                                  | 0                |                                            | 0              |                                                                  |
| 0.211                       | 4.152                                                            | 0.038            | 4.195                                      | 0.040          | 4.196                                                            |
| 0.378                       | 3.307                                                            | 0.188            | 3.851                                      | 0.199          | 3.523                                                            |
| 0.543                       | 1.948                                                            | 0.337            | 3.292                                      | 0.357          | 2.646                                                            |
| 0.707                       | 1.387                                                            | 0.484            | 2.687                                      | 0.513          | 1.745                                                            |
| 0.869                       | 1.135                                                            | 0.629            | 1.880                                      | 0.667          | 1.295                                                            |
| 1.030                       | 0.967                                                            | 0.774            | 1.351                                      | 0.820          | 1.170                                                            |
| 1.188                       | 0.858                                                            | 0.916            | 1.064                                      | 0.971          | 1.129                                                            |
| 1.345                       | 0.769                                                            | 1.058            | 0.909                                      | 1.121          | 0.986                                                            |
| 1.501                       | 0.702                                                            | 1.197            | 0.778                                      | 1.269          | 0.928                                                            |
| 1.654                       | 0.616                                                            | 1.336            | 0.698                                      | 1.416          | 0.759                                                            |
| 1.806                       | 0.582                                                            | 1.473            | 0.633                                      | 1.561          | 0.755                                                            |
| 1.957                       | 0.542                                                            | 1.608            | 0.604                                      | 1.705          | 0.644                                                            |
| 2.106                       | 0.504                                                            | 1.742            | 0.570                                      | 1.847          | 0.618                                                            |
| 2.253                       | 0.436                                                            | 1.874            | 0.551                                      | 1.987          | 0.579                                                            |
| 2.398                       | 0.441                                                            | 2.005            | 0.493                                      | 2.126          | 0.487                                                            |
| 2.542                       | 0.458                                                            | 2.135            | 0.446                                      | 2.263          | 0.510                                                            |
| 2.684                       | 0.377                                                            | 2.263            | 0.409                                      | 2.399          | 0.505                                                            |
| 2.824                       | 0.364                                                            | 2.389            | 0.392                                      | 2.533          | 0.505                                                            |
|                             |                                                                  | 2.514            | 0.339                                      | 2.665          | 0.453                                                            |
|                             |                                                                  | 2.638            |                                            | 2.796          |                                                                  |

### 3.14. Calorimetric data of $[C_{16}MImCl]$ at different concentration of NaAlg at 298.15 K.

| 0.001% w/v N | JaAlg              | 0.005% w/    | v NaAlg            | 0.01% w/v N               | aAlg               |
|--------------|--------------------|--------------|--------------------|---------------------------|--------------------|
| [C16TPB]/ mM | $\Delta H^0_{obs}$ | [C16TPB]/ mM | $\Delta H^0_{obs}$ | [C <sub>16</sub> TPB]/ mM | $\Delta H^0_{obs}$ |
| 0.000        |                    | 0.000        |                    | 0.000                     |                    |
| 0.008        | 3.144              | 0.008        | 1.546              | 0.008                     | 1.266              |
| 0.041        | 3.375              | 0.038        | 1.700              | 0.039                     | 1.513              |
| 0.073        | 2.311              | 0.069        | 1.595              | 0.070                     | 0.883              |
| 0.105        | 1.207              | 0.099        | 1.610              | 0.101                     | 0.138              |
| 0.136        | 0.335              | 0.128        | 1.352              | 0.131                     | -0.418             |
| 0.167        | 0.259              | 0.158        | 1.342              | 0.161                     | -0.652             |
| 0.198        | 0.171              | 0.187        | 1.257              | 0.191                     | -0.656             |
| 0.229        | 0.045              | 0.216        | 1.245              | 0.221                     | -0.660             |
| 0.259        | -0.168             | 0.244        | 1.079              | 0.250                     | -0.913             |
| 0.289        | -0.349             | 0.273        | 1.014              | 0.279                     | -0.897             |
| 0.319        | -0.523             | 0.301        | 0.834              | 0.307                     | -1.032             |
| 0.348        | -0.647             | 0.328        | 0.834              | 0.336                     | -0.946             |
| 0.377        | -0.347             | 0.356        | 1.043              | 0.363                     | -1.052             |
| 0.406        | -0.456             | 0.383        | 0.912              | 0.391                     | -1.056             |
| 0.434        | -0.607             | 0.409        | 0.786              | 0.418                     | -1.124             |
| 0.462        | -0.657             | 0.436        | 0.789              | 0.445                     | -1.125             |
| 0.490        | -0.601             | 0.462        | 0.811              | 0.472                     | -1.100             |
| 0.517        | -0.711             | 0.488        | 0.756              | 0.499                     | -1 119             |
| 0.544        | -0.660             | 0.513        | 0.751              | 0.525                     | -1.137             |
| 0.571        | -0.685             | 0.538        | 0.657              | 0.550                     | -1.026             |

### 3.15. Calorimetric data of $[C_{16}TPB]$ at different concentration of NaAlg at 298.15 K.

# 3.16. Quenching of pyrene by [CPC] at aqueous micellar solution (both $C_{16}$ MImCl and $C_{16}$ TPB) in presence and absence of NaAlg (0.001, 0.005 and 0.01 % w/v) at 298.15 K.

| Quenchir                 | ng of pyrene          | by CPC in presence                         | e of aqueous          | s micellar and micel          | lar solution          | in presence of NaA             | lg                    |  |
|--------------------------|-----------------------|--------------------------------------------|-----------------------|-------------------------------|-----------------------|--------------------------------|-----------------------|--|
| C16MImCl in              | ı water               | C16MImCl in 0.0<br>NaAlg                   | 01% w/v               | C16MImCl in 0.0<br>NaAlg      | 05% w/v               | C16MImCl in 0.01% w/v<br>NaAlg |                       |  |
| [CPC]/ mM                | ln(Io/I)              | [CPC]/ mM                                  | ln(I <sub>0</sub> /I) | [CPC]/ mM                     | ln(I <sub>0</sub> /I) | [CPC]/ mM                      | ln(I <sub>0</sub> /I) |  |
| 0.000                    | 0.000                 | 0.000                                      | 0.000                 | 0.000                         | 0.000                 | 0.000                          | 0.000                 |  |
| 0.008                    | 0.006                 | 0.001                                      | 0.011                 | 0.001                         | 0.012                 | 0.008                          | 0.004                 |  |
| 0.014                    | 0.064                 | 0.004                                      | 0.032                 | 0.004                         | 0.030                 | 0.014                          | 0.035                 |  |
| 0.020                    | 0.102                 | 0.008                                      | 0.053                 | 0.008                         | 0.052                 | 0.020                          | 0.085                 |  |
| 0.027                    | 0.135                 | 0.014                                      | 0.092                 | 0.014                         | 0.087                 | 0.027                          | 0.126                 |  |
| 0.034                    | 0.195                 | 0.020                                      | 0.141                 | 0.020                         | 0.149                 | 0.034                          | 0.170                 |  |
|                          |                       | 0.027                                      | 0.171                 | 0.027                         | 0.173                 |                                |                       |  |
|                          |                       | 0.034                                      | 0.205                 | 0.034                         | 0.219                 |                                |                       |  |
| C <sub>16</sub> TPB in v | water                 | C <sub>16</sub> TPB in 0.001% w/v<br>NaAlg |                       | C16TPB in 0.005% w/v<br>NaAlg |                       | C16TPB in 0.01% w/v<br>NaAlg   |                       |  |
| [CPC]/ mM                | ln(I <sub>0</sub> /I) | [CPC]/ mM                                  | ln(I <sub>0</sub> /I) | [CPC]/ mM                     | ln(I <sub>0</sub> /I) | [CPC]/ mM                      | ln(I <sub>0</sub> /I) |  |
| 0.000                    | 0.000                 | 0.000                                      | 0.000                 | 0.000                         | 0.000                 | 0.000                          | 0.000                 |  |
| 0.034                    | 0.001                 | 0.027                                      | 0.016                 | 0.008                         | 0.077                 | 0.008                          | 0.047                 |  |
| 0.040                    | 0.011                 | 0.034                                      | 0.015                 | 0.027                         | 0.106                 | 0.027                          | 0.077                 |  |
| 0.053                    | 0.037                 | 0.053                                      | 0.015                 | 0.034                         | 0.082                 | 0.034                          | 0.096                 |  |
| 0.066                    | 0.054                 | 0.072                                      | 0.056                 | 0.053                         | 0.106                 | 0.053                          | 0.109                 |  |
| 0.078                    | 0.079                 | 0.091                                      | 0.091                 | 0.072                         | 0.124                 | 0.072                          | 0.131                 |  |
|                          |                       | 0.109                                      | 0.106                 | 0.091                         | 0.143                 | 0.091                          | 0.205                 |  |
|                          |                       |                                            |                       | 0.109                         | 0.162                 | 0.109                          | 0.179                 |  |

3.17. Specific viscosities of NaAlg with variation of its concentration in 0.1 M NaCl solution at 298.15 K

| [NaAlg] /<br>gm.mol <sup>-1</sup> | specific viscosity<br>(cm <sup>3</sup> /g) |
|-----------------------------------|--------------------------------------------|
| 0.010                             | 606                                        |
| 0.009                             | 562                                        |
| 0.008                             | 533                                        |
| 0.007                             | 509                                        |
| 0.007                             | 480                                        |
| 0.006                             | 431                                        |
| 0.004                             | 396                                        |

# 3.18. Hydrodynamic radius data vs. Mean Intensity in conjugation with NaAlg with $C_{16}MImCl$ . Different concentrations of $C_{16}MImCl$ have been used.

г

| Hydrody | namic radius of N   | NaAlg ([NaAlg] = 0.01% | 6 w/v) in pure state and | in presence of different | [C16MImCl] in mM       |
|---------|---------------------|------------------------|--------------------------|--------------------------|------------------------|
|         | Pure Na Ala         | $[C_{16}MImCl] = 0.09$ | $[C_{16}MImCl] = 0.30$   | $[C_{16}MImCl] = 1.42$   | $[C_{16}MImCl] = 3.32$ |
| r/nm    | Mean<br>Intensity % | Mean Intensity %       | Mean Intensity %         | Mean Intensity %         | Mean Intensity %       |
| 0.20    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.23    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.27    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.31    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.36    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.42    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.48    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.56    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.65    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.75    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 0.87    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 1.01    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 1.16    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 1.35    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 1.56    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 1.81    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 2.09    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 2.42    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 2.81    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 3.25    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 3.77    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 4.36    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 5.05    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 5.85    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 6.77    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 7.84    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 9.08    | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 10.52   | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 12.18   | 0.0                 | 0.0                    | 0.0                      | 0.0                      | 0.0                    |
| 14.11   | 0.0                 | 0.1                    | 0.0                      | 0.0                      | 0.0                    |
| 16.34   | 0.0                 | 0.3                    | 0.0                      | 0.0                      | 0.0                    |
| 18.92   | 0.0                 | 0.3                    | 0.0                      | 0.0                      | 0.0                    |
| 21.91   | 0.0                 | 0.3                    | 0.5                      | 0.0                      | 0.0                    |
| 25.37   | 0.0                 | 0.2                    | 1.2                      | 0.0                      | 0.0                    |
| 29.39   | 0.0                 | 0.3                    | 1.7                      | 0.0                      | 0.0                    |
| 34.03   | 0.0                 | 0.8                    | 2.1                      | 0.0                      | 0.0                    |
| 39.41   | 0.0                 | 1.7                    | 2.3                      | 0.0                      | 0.0                    |
| 45.64   | 0.0                 | 3.1                    | 2.7                      | 0.0                      | 0.0                    |

| 52.85  | 0.0                    | 4.9                      | 3.5                      | 0.0                       | 0.0                    |
|--------|------------------------|--------------------------|--------------------------|---------------------------|------------------------|
| 61.21  | 0.7                    | 6.8                      | 4.8                      | 0.0                       | 0.0                    |
| 70.89  | 1.8                    | 8.5                      | 6.5                      | 0.0                       | 0.0                    |
| 82.09  | 2.9                    | 9.9                      | 8.3                      | 0.2                       | 0.0                    |
| 95.07  | 3.8                    | 10.7                     | 10.0                     | 0.7                       | 0.0                    |
| 110.1  | 0 4.6                  | 10.8                     | 11.0                     | 1.2                       | 0.0                    |
| 127.5  | 0 5.6                  | 10.3                     | 11.3                     | 1.5                       | 0.0                    |
| 147.7  | 0 7.2                  | 9.2                      | 10.6                     | 1.4                       | 0.0                    |
| 171.0  | 9.3                    | 7.6                      | 9.0                      | 1.0                       | 0.0                    |
| 198.0  | 0 11.5                 | 5.9                      | 6.9                      | 0.4                       | 0.0                    |
| 229.3  | 0 13.1                 | 4.1                      | 4.5                      | 0.0                       | 0.0                    |
| 265.6  | 0 13.4                 | 2.5                      | 2.4                      | 0.0                       | 0.0                    |
| 307.6  | 0 11.8                 | 1.3                      | 0.8                      | 0.3                       | 0.0                    |
| 356.2  | 0 8.5                  | 0.5                      | 0.1                      | 1.4                       | 2.0                    |
| 412.5  | 0 4.6                  | 0.1                      | 0.0                      | 3.6                       | 6.1                    |
| 477.7  | 0 1.3                  | 0.0                      | 0.0                      | 6.3                       | 10.8                   |
| 553.2  | 0.0                    | 0.0                      | 0.0                      | 9.0                       | 14.5                   |
| 640.7  | 0.0                    | 0.0                      | 0.0                      | 11.0                      | 15.6                   |
| 741.9  | 0.0                    | 0.0                      | 0.0                      | 11.7                      | 13.9                   |
| 859.2  | 0 0.0                  | 0.0                      | 0.0                      | 10.8                      | 10.0                   |
| 995.1  | 0 0.0                  | 0.0                      | 0.0                      | 8.5                       | 5.3                    |
| 1152.0 | 0.0                    | 0.0                      | 0.0                      | 5.4                       | 1.7                    |
| 1335.0 | 0.0                    | 0.0                      | 0.0                      | 2.5                       | 0.0                    |
| 1545.0 | 0.0                    | 0.0                      | 0.0                      | 0.8                       | 0.0                    |
| 1790.0 | 0.0                    | 0.0                      | 0.0                      | 0.9                       | 0.0                    |
| 2073.0 | 0.0                    | 0.0                      | 0.0                      | 3.1                       | 1.5                    |
| 2400.0 | 0.0                    | 0.0                      | 0.0                      | 6.9                       | 6.0                    |
| 2780.0 | 0.0                    | 0.0                      | 0.0                      | 11.3                      | 12.8                   |
| 3219.0 | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 3728.0 | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 4317.0 | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 5000.0 | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| Hyd    | lrodynamic radius of   | NaAlg ( $[NaAlg] = 0.01$ | % w/v) in pure state and | d in presence of differer | t [C16TPB] in mM       |
|        | $[C_{16}TPB] = 0.05$   | $[C_{16}TPB] =$          | $[C_{16}TPB] = 0.89$     | $[C_{16}TPB] = 1.95$      | $[C_{16}TPB] = 2.33$   |
| r.nm   | mM<br>Mean Intensity % | 0.18mM                   | mM<br>Mean Intensity %   | mM<br>Mean Intensity %    | mM<br>Mean Intensity % |
| 0.20   |                        |                          |                          |                           |                        |
| 0.20   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.23   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.27   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.31   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.36   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.42   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.48   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.56   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |
| 0.65   | 0.0                    | 0.0                      | 0.0                      | 0.0                       | 0.0                    |

| 0.75  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
|-------|------|------|------|------|------|
| 0.87  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 1.01  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 1.16  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 1.35  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 1.56  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 1.81  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 2.09  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 2.42  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 2.81  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 3.25  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 3.77  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 4.36  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 5.05  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 5.85  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 6.77  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 7.84  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 9.08  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 10.52 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 12.18 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 14.11 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 16.34 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 18.92 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 21.91 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 25.37 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 29.39 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 34.03 | 0.0  | 0.0  | 0.0  | 0.1  | 0.0  |
| 39.41 | 0.0  | 0.3  | 0.7  | 0.7  | 0.1  |
| 45.64 | 0.8  | 1.6  | 2.4  | 1.8  | 1.1  |
| 52.85 | 2.5  | 3.8  | 5.0  | 3.4  | 2.9  |
| 61.21 | 5.0  | 6.5  | 7.9  | 5.4  | 5.3  |
| 70.89 | 7.7  | 9.3  | 10.4 | 7.6  | 7.9  |
| 82.09 | 10.2 | 11.5 | 12.0 | 9.7  | 10.2 |
| 95.07 | 11.9 | 12.8 | 12.7 | 11.3 | 11.9 |
| 110.1 | 12.6 | 13.0 | 12.3 | 12.2 | 12.7 |
| 127.5 | 12.3 | 12.1 | 11.0 | 12.2 | 12.5 |
| 147.7 | 11.1 | 10.3 | 9.1  | 11.3 | 11.3 |
| 171.0 | 9.3  | 8.0  | 6.8  | 9.4  | 9.4  |
| 198.0 | 7.1  | 5.5  | 4.5  | 7.1  | 7.0  |
| 229.3 | 4.8  | 3.3  | 2.6  | 4.6  | 4.5  |
| 265.6 | 2.8  | 1.6  | 1.1  | 2.3  | 2.3  |
| 307.6 | 1.4  | 0.5  | 0.3  | 0.8  | 0.8  |
| 356.2 | 0.4  | 0.0  | 0.0  | 0.0  | 0.1  |
| 412.5 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |

| 477.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|-------|-----|-----|-----|-----|-----|
| 553.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 640.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 741.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 859.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 995.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1152  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1335  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1545  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 1790  | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 |
| 2073  | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 |
| 2400  | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
| 2780  | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 |
| 3219  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 3728  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 4317  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 5000  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

### Chapter –IV

## 4.1. Tensiometry data for SDS, DTAB, $\rm C_{16}MImCl,$ 16-4-16 and Tween-60 in aqueous medium at 298.15 K

|              | Surface tension in aqueous solution |               |                               |                                |                                 |                  |                               |                    |                                 |  |  |
|--------------|-------------------------------------|---------------|-------------------------------|--------------------------------|---------------------------------|------------------|-------------------------------|--------------------|---------------------------------|--|--|
| [SDS]/<br>mM | $\gamma$ / mN.m <sup>-1</sup>       | [DTAB]/<br>mM | $\gamma$ / mN.m <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mM | $\gamma \ / \ mN.m^{\text{-1}}$ | [16-4-16]/<br>mM | $\gamma$ / mN.m <sup>-1</sup> | [Tween-<br>60]/ mM | $\gamma \ / \ mN.m^{\text{-1}}$ |  |  |
| 0.00         | 72.8                                | 0.00          | 70.1                          | 0.00                           | 70.6                            | 0.000            | 69.8                          | 0.000              | 70.6                            |  |  |
| 0.05         | 68.0                                | 0.43          | 63.4                          | 0.01                           | 67.6                            | 0.005            | 63.4                          | 0.009              | 48.4                            |  |  |
| 0.09         | 67.2                                | 1.07          | 61.4                          | 0.02                           | 66.6                            | 0.008            | 57.8                          | 0.017              | 47.0                            |  |  |
| 0.16         | 62.8                                | 2.13          | 58.0                          | 0.03                           | 65.9                            | 0.015            | 51.6                          | 0.024              | 45.0                            |  |  |
| 0.26         | 58.2                                | 3.82          | 53.0                          | 0.06                           | 63.4                            | 0.025            | 48.2                          | 0.035              | 43.1                            |  |  |
| 0.38         | 54.8                                | 6.30          | 46.4                          | 0.11                           | 61.4                            | 0.040            | 47.5                          | 0.060              | 42.4                            |  |  |
| 0.52         | 52.8                                | 10.33         | 41.4                          | 0.17                           | 58.2                            | 0.064            | 48.0                          | 0.103              | 40.9                            |  |  |
| 0.68         | 48.8                                | 14.22         | 38.9                          | 0.28                           | 54.7                            | 0.103            | 47.6                          | 0.189              | 40.2                            |  |  |
| 0.86         | 46.8                                | 18.01         | 40.1                          | 0.45                           | 49.4                            | 0.152            | 46.7                          | 0.358              | 39.5                            |  |  |
| 1.09         | 45.2                                | 21.68         | 40.1                          | 0.67                           | 44.6                            | 0.248            | 46.4                          | 0.608              | 39.2                            |  |  |
| 1.54         | 37.8                                |               |                               | 0.93                           | 42.7                            | 0.391            | 45.8                          | 1.013              | 38.9                            |  |  |
| 2.21         | 36.0                                |               |                               | 1.31                           | 41.9                            |                  |                               |                    |                                 |  |  |
| 3.28         | 32.4                                |               |                               | 1.80                           | 42.1                            |                  |                               |                    |                                 |  |  |
| 4.82         | 29.0                                |               |                               | 2.68                           | 41.6                            |                  |                               |                    |                                 |  |  |
| 6.74         | 27.0                                |               |                               | 4.18                           | 41.3                            |                  |                               |                    |                                 |  |  |
| 8.45         | 30.6                                |               |                               | 5.41                           | 41.2                            |                  |                               |                    |                                 |  |  |
| 13.24        | 35.2                                |               |                               |                                |                                 |                  |                               |                    |                                 |  |  |
| 18.30        | 36.6                                |               |                               |                                |                                 |                  |                               |                    |                                 |  |  |
| 23.25        | 37.2                                |               |                               |                                |                                 |                  |                               |                    |                                 |  |  |

|              | Surface tension in 15% v/v EtOH medium |               |                               |                  |                      |                                |                      |                    |                               |  |  |
|--------------|----------------------------------------|---------------|-------------------------------|------------------|----------------------|--------------------------------|----------------------|--------------------|-------------------------------|--|--|
| [SDS]/<br>mM | $\gamma$ / mN.m <sup>-1</sup>          | [DTAB]/<br>mM | $\gamma$ / mN.m <sup>-1</sup> | [16-4-16]/<br>mM | $\gamma / mN.m^{-1}$ | [C <sub>16</sub> MImCl]/<br>mM | $\gamma / mN.m^{-1}$ | [Tween-<br>60]/ mM | $\gamma$ / mN.m <sup>-1</sup> |  |  |
| 0.000        | 41.0                                   | 0.00          | 41.0                          | 0.000            | 40.8                 | 0.000                          | 41.4                 | 0.00               | 41.0                          |  |  |
| 0.036        | 41.2                                   | 0.07          | 40.8                          | 0.001            | 40.7                 | 0.006                          | 40.9                 | 0.01               | 38.9                          |  |  |
| 0.107        | 41.0                                   | 0.20          | 40.7                          | 0.002            | 40.5                 | 0.019                          | 40.8                 | 0.01               | 37.5                          |  |  |
| 0.213        | 40.2                                   | 0.41          | 40.7                          | 0.004            | 40.4                 | 0.037                          | 40.5                 | 0.02               | 36.3                          |  |  |
| 0.355        | 39.1                                   | 0.74          | 39.9                          | 0.007            | 36.5                 | 0.068                          | 39.3                 | 0.03               | 34.9                          |  |  |
| 0.531        | 36.0                                   | 1.14          | 37.9                          | 0.020            | 35.4                 | 0.172                          | 37.9                 | 0.06               | 34.3                          |  |  |
| 0.778        | 32.9                                   | 1.61          | 37.1                          | 0.032            | 34.6                 | 0.335                          | 36.9                 | 0.09               | 34.2                          |  |  |
| 1.058        | 29.4                                   | 2.27          | 34.9                          | 0.040            | 33.9                 | 0.453                          | 36.3                 | 0.14               | 34.0                          |  |  |
| 1.406        | 28.1                                   | 3.06          | 34.6                          | 0.049            | 33.5                 | 0.599                          | 34.9                 |                    |                               |  |  |
| 1.923        | 27.9                                   | 4.03          | 32.8                          | 0.070            | 33                   | 0.769                          | 34.6                 |                    |                               |  |  |
| 2.436        | 26.9                                   | 5.32          | 31.4                          | 0.083            | 32.9                 | 0.964                          | 34.7                 |                    |                               |  |  |
| 3.112        | 25.5                                   | 6.89          | 29.5                          | 0.097            | 32.8                 | 1.206                          | 35.0                 |                    |                               |  |  |
| 5.087        | 29.6                                   | 10.84         | 27.6                          |                  |                      | 1.959                          | 35.0                 |                    |                               |  |  |
| 6.677        | 32.1                                   | 13.18         | 29.1                          |                  |                      | 2.638                          | 34.9                 |                    |                               |  |  |
| 8.970        | 32.9                                   | 15.73         | 30.3                          |                  |                      |                                |                      |                    |                               |  |  |
| 11.870       | 33.4                                   | 18.47         | 30.3                          |                  |                      |                                |                      |                    |                               |  |  |
| 18.419       | 33.3                                   | 23.66         | 30.0                          |                  |                      |                                |                      |                    |                               |  |  |
| 27.205       | 33.5                                   | 30.81         | 29.6                          |                  |                      |                                |                      |                    |                               |  |  |
| 32.728       | 32.7                                   | 39.33         | 29.8                          |                  |                      |                                |                      |                    |                               |  |  |
|              |                                        | 48.60         | 29.6                          |                  |                      |                                |                      |                    |                               |  |  |

# 4.2. Tensiometry data for SDS, DTAB, C $_{16}\rm MImCl,$ 16-4-16 and Tween-60 in 15% EtOH-water medium at 298.15 K

# 4.3. Tensiometry data for SDS, DTAB, $C_{16}MImCl,\,16\mbox{-}4\mbox{-}16$ and Tween-60 in 15% EtOH-water medium in presence of $H_2DTC$ at 298.15 K

|              | Surface tension in 15% v/v EtOH medium in presence of $H_2 DTC$ |               |                          |                  |                               |                                |                          |                   |                      |  |  |
|--------------|-----------------------------------------------------------------|---------------|--------------------------|------------------|-------------------------------|--------------------------------|--------------------------|-------------------|----------------------|--|--|
| [SDS]/<br>mM | $\gamma \ / \ mN.m^{-1}$                                        | [DTAB]/<br>mM | $\gamma \ / \ mN.m^{-1}$ | [16-4-16]/<br>mM | $\gamma$ / mN.m <sup>-1</sup> | [C <sub>16</sub> MImCl]/<br>mM | $\gamma \ / \ mN.m^{-1}$ | [Tween-60]/<br>mM | $\gamma / mN.m^{-1}$ |  |  |
| 0.000        | 40.7                                                            | 0.00          | 40.4                     | 0.000            | 40.7                          | 0.000                          | 40.7                     | 0.000             | 42.1                 |  |  |
| 0.038        | 40.9                                                            | 0.04          | 41.0                     | 0.001            | 41.3                          | 0.002                          | 41.8                     | 0.003             | 40.9                 |  |  |
| 0.115        | 40.3                                                            | 0.12          | 41.2                     | 0.002            | 41.5                          | 0.007                          | 41.9                     | 0.009             | 37.8                 |  |  |
| 0.231        | 34.1                                                            | 0.27          | 41.1                     | 0.004            | 38.2                          | 0.016                          | 38.8                     | 0.015             | 37.4                 |  |  |
| 0.384        | 29.7                                                            | 0.51          | 39.9                     | 0.006            | 34.1                          | 0.030                          | 38.5                     | 0.024             | 36.0                 |  |  |
| 0.575        | 26.2                                                            | 0.82          | 38.8                     | 0.008            | 34.0                          | 0.048                          | 38.4                     | 0.036             | 36.0                 |  |  |
| 0.841        | 24.6                                                            | 1.21          | 37.8                     | 0.011            | 32.4                          | 0.070                          | 38.1                     | 0.051             | 35.8                 |  |  |
| 1.144        | 24.4                                                            | 1.67          | 36.6                     | 0.014            | 31.3                          | 0.142                          | 36.6                     | 0.081             | 36.1                 |  |  |
| 1.520        | 24.2                                                            | 2.21          | 33.7                     | 0.017            | 31.5                          | 0.212                          | 35.8                     | 0.140             | 36.1                 |  |  |
| 2.079        | 23.8                                                            | 2.83          | 32.4                     | 0.020            | 32.6                          | 0.234                          | 34.4                     |                   |                      |  |  |
| 2.634        | 24.2                                                            | 3.51          | 33.5                     | 0.024            | 33.0                          | 0.278                          | 33.7                     |                   |                      |  |  |
| 3.364        | 25.2                                                            | 4.26          | 34.0                     | 0.029            | 33.1                          | 0.329                          | 34.3                     |                   |                      |  |  |

| 4.264 | 26.3 | 6.35  | 33.1 | 0.04 | 34.0 | 0.364 | 35.0 |  |
|-------|------|-------|------|------|------|-------|------|--|
| 5.500 | 28.0 | 8.17  | 28.2 | 0.04 | 34.2 | 0.469 | 35.8 |  |
| 7.219 | 30.1 | 9.95  | 27.0 | 0.06 | 34.5 | 0.552 | 36.6 |  |
| 9.698 | 30.2 | 12.40 | 30.1 | 0.08 | 34.5 | 0.654 | 37.0 |  |
|       |      | 15.11 | 30.7 | 0.12 | 33.3 | 0.774 | 38.1 |  |
|       |      | 26.41 | 30.2 |      |      | 1.809 | 38.6 |  |
|       |      | 29.30 | 30.2 |      |      |       |      |  |

### 4.4. Absorbance data of $H_2DTC$ at different SDS concentration at 298.15 K

| absorbance of H2DTC in different wavelength upon addition of different concentration of SDS in mM unit |             |      |      |      |      |      |       |       |
|--------------------------------------------------------------------------------------------------------|-------------|------|------|------|------|------|-------|-------|
| Wavelength/ nm                                                                                         | [SDS]= 0 mM | 0.19 | 0.67 | 1.83 | 4.03 | 7.78 | 12.78 | 22.42 |
| 300.0                                                                                                  | 0.22        | 0.22 | 0.22 | 0.21 | 0.19 | 0.18 | 0.19  | 0.19  |
| 300.5                                                                                                  | 0.22        | 0.22 | 0.22 | 0.21 | 0.19 | 0.18 | 0.19  | 0.19  |
| 301.0                                                                                                  | 0.22        | 0.22 | 0.22 | 0.21 | 0.19 | 0.18 | 0.18  | 0.19  |
| 301.5                                                                                                  | 0.22        | 0.22 | 0.22 | 0.21 | 0.19 | 0.18 | 0.18  | 0.19  |
| 302.0                                                                                                  | 0.21        | 0.22 | 0.22 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 302.5                                                                                                  | 0.22        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 303.0                                                                                                  | 0.22        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 303.5                                                                                                  | 0.21        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 304.0                                                                                                  | 0.21        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 304.5                                                                                                  | 0.22        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 305.0                                                                                                  | 0.21        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 305.5                                                                                                  | 0.21        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 306.0                                                                                                  | 0.22        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 306.5                                                                                                  | 0.22        | 0.22 | 0.22 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 307.0                                                                                                  | 0.22        | 0.22 | 0.22 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 307.5                                                                                                  | 0.21        | 0.22 | 0.22 | 0.20 | 0.18 | 0.18 | 0.19  | 0.19  |
| 308.0                                                                                                  | 0.22        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.20  |
| 308.5                                                                                                  | 0.22        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 309.0                                                                                                  | 0.22        | 0.22 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 309.5                                                                                                  | 0.22        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 310.0                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 310.5                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 311.0                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 311.5                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 312.0                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 312.5                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 313.0                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 313.5                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 314.0                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 314.5                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.18 | 0.18  | 0.19  |
| 315.0                                                                                                  | 0.21        | 0.21 | 0.21 | 0.20 | 0.18 | 0.17 | 0.18  | 0.19  |
| 315.5                                                                                                  | 0.21        | 0.21 | 0.20 | 0.20 | 0.18 | 0.17 | 0.18  | 0.19  |
| 316.0                                                                                                  | 0.20        | 0.21 | 0.20 | 0.20 | 0.17 | 0.18 | 0.18  | 0.19  |
| 316.5                                                                                                  | 0.20        | 0.21 | 0.20 | 0.19 | 0.17 | 0.18 | 0.18  | 0.19  |
| 317.0                                                                                                  | 0.20        | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.17  | 0.19  |
| 317.5                                                                                                  | 0.20        | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18  | 0.19  |
| 318.0                                                                                                  | 0.20        | 0.21 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18  | 0.19  |
| 318.5                                                                                                  | 0.20        | 0.21 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18  | 0.18  |
|       |      |      |      |      | 1    |      |      |      |
|-------|------|------|------|------|------|------|------|------|
| 319.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18 | 0.19 |
| 319.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18 | 0.19 |
| 320.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18 | 0.19 |
| 320.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.17 | 0.19 |
| 321.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.17 | 0.18 |
| 321.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18 | 0.18 |
| 322.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18 | 0.18 |
| 322.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18 | 0.18 |
| 323.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.18 | 0.18 |
| 323.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.17 | 0.17 | 0.18 |
| 324.0 | 0.20 | 0.20 | 0.20 | 0.18 | 0.17 | 0.17 | 0.17 | 0.18 |
| 324.5 | 0.20 | 0.20 | 0.20 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 325.0 | 0.20 | 0.19 | 0.20 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 325.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.18 |
| 326.0 | 0.19 | 0.20 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 326.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 327.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.18 |
| 327.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.18 |
| 328.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 328.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 329.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 329.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 330.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 330.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 331.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.18 |
| 331.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.18 |
| 332.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.18 |
| 332.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.18 |
| 333.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.18 |
| 333.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 334.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.19 |
| 334.5 | 0.20 | 0.19 | 0.19 | 0.18 | 0.16 | 0.16 | 0.17 | 0.19 |
| 335.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 335.5 | 0.19 | 0.20 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 336.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 336.5 | 0.20 | 0.20 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 337.0 | 0.20 | 0.20 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 337.5 | 0.20 | 0.20 | 0.19 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 338.0 | 0.19 | 0.20 | 0.19 | 0.18 | 0.17 | 0.17 | 0.17 | 0.19 |
| 338.5 | 0.19 | 0.20 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.19 |
| 339.0 | 0.20 | 0.20 | 0.19 | 0.18 | 0.16 | 0.17 | 0.18 | 0.19 |
| 339.5 | 0.20 | 0.20 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.19 |
| 340.0 | 0.20 | 0.20 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.20 |
| 340.5 | 0.20 | 0.20 | 0.20 | 0.18 | 0.16 | 0.17 | 0.18 | 0.20 |
| 341.0 | 0.19 | 0.19 | 0.19 | 0.17 | 0.16 | 0.17 | 0.18 | 0.20 |
| 341.5 | 0.18 | 0.18 | 0.19 | 0.17 | 0.16 | 0.17 | 0.18 | 0.19 |
| 342.0 | 0.19 | 0.19 | 0.18 | 0.18 | 0.16 | 0.17 | 0.18 | 0.19 |
| 342.5 | 0.19 | 0.19 | 0.18 | 0.18 | 0.16 | 0.17 | 0.17 | 0.19 |
| 343.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.16 | 0.17 | 0.18 | 0.19 |
| 343.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.17 | 0.16 | 0.18 | 0.20 |
| 344.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.20 |
| 344.5 | 0.18 | 0.19 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.20 |
| 345.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.20 |

| 345.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.20 |
|-------|------|------|------|------|------|------|------|------|
| 346.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.17 | 0.17 | 0.18 | 0.20 |
| 346.5 | 0.19 | 0.20 | 0.19 | 0.19 | 0.17 | 0.17 | 0.18 | 0.20 |
| 347.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.18 | 0.18 | 0.21 |
| 347.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.18 | 0.18 | 0.21 |
| 348.0 | 0.20 | 0.20 | 0.19 | 0.18 | 0.17 | 0.18 | 0.18 | 0.21 |
| 348.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.18 | 0.18 | 0.19 | 0.21 |
| 349.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.18 | 0.18 | 0.19 | 0.21 |
| 349.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.18 | 0.18 | 0.19 | 0.21 |
| 350.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.17 | 0.18 | 0.19 | 0.21 |
| 350.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.18 | 0.18 | 0.19 | 0.22 |
| 351.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.18 | 0.18 | 0.20 | 0.22 |
| 351.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.18 | 0.19 | 0.19 | 0.22 |
| 352.0 | 0.20 | 0.20 | 0.20 | 0.19 | 0.18 | 0.19 | 0.19 | 0.22 |
| 352.5 | 0.20 | 0.20 | 0.20 | 0.20 | 0.18 | 0.19 | 0.20 | 0.22 |
| 353.0 | 0.21 | 0.21 | 0.20 | 0.20 | 0.18 | 0.19 | 0.20 | 0.22 |
| 353.5 | 0.21 | 0.21 | 0.20 | 0.20 | 0.18 | 0.19 | 0.20 | 0.22 |
| 354.0 | 0.21 | 0.21 | 0.20 | 0.20 | 0.18 | 0.19 | 0.20 | 0.22 |
| 354.5 | 0.21 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 355.0 | 0.21 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 355.5 | 0.21 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 356.0 | 0.21 | 0.21 | 0.21 | 0.20 | 0.10 | 0.19 | 0.20 | 0.22 |
| 356.5 | 0.21 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 357.0 | 0.21 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 357.5 | 0.21 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 358.0 | 0.21 | 0.22 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.23 |
| 358.5 | 0.21 | 0.22 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.23 |
| 359.0 | 0.22 | 0.21 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 359.5 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.23 |
| 360.0 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.23 |
| 360.5 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.23 |
| 361.0 | 0.22 | 0.21 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.23 |
| 361.5 | 0.22 | 0.21 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 362.0 | 0.22 | 0.21 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 362.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 363.0 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.20 | 0.20 | 0.25 |
| 363.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.20 | 0.20 | 0.25 |
| 364.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 364.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.21 | 0.23 |
| 265.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 265.5 | 0.22 | 0.22 | 0.22 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 303.3 | 0.22 | 0.22 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.22 |
| 300.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 300.3 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 307.0 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 367.5 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 368.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 308.3 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 369.0 | 0.22 | 0.22 | 0.22 | 0.20 | 0.19 | 0.19 | 0.20 | 0.21 |
| 369.5 | 0.22 | 0.22 | 0.21 | 0.20 | 0.19 | 0.19 | 0.20 | 0.21 |
| 370.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.21 |
| 370.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19 | 0.19 | 0.20 | 0.22 |
| 371.0 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.19 | 0.20 | 0.21 |
| 371.5 | 0.22 | 0.22 | 0.21 | 0.21 | 0.19 | 0.19 | 0.19 | 0.21 |

|       |      |      |      |      | 1        |      |      |      |
|-------|------|------|------|------|----------|------|------|------|
| 372.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.19 | 0.21 |
| 372.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.20 | 0.21 |
| 373.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.20 | 0.21 |
| 373.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.20 | 0.21 |
| 374.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.20 | 0.21 |
| 374.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.20 | 0.21 |
| 375.0 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.20 | 0.21 |
| 375.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.19     | 0.19 | 0.20 | 0.21 |
| 376.0 | 0.22 | 0.23 | 0.22 | 0.21 | 0.20     | 0.19 | 0.19 | 0.21 |
| 376.5 | 0.22 | 0.23 | 0.22 | 0.21 | 0.20     | 0.19 | 0.19 | 0.21 |
| 377.0 | 0.23 | 0.23 | 0.22 | 0.21 | 0.19     | 0.19 | 0.19 | 0.21 |
| 377.5 | 0.23 | 0.23 | 0.22 | 0.21 | 0.20     | 0.19 | 0.20 | 0.21 |
| 378.0 | 0.23 | 0.23 | 0.22 | 0.21 | 0.20     | 0.20 | 0.20 | 0.21 |
| 378.5 | 0.23 | 0.23 | 0.22 | 0.22 | 0.20     | 0.19 | 0.20 | 0.21 |
| 379.0 | 0.23 | 0.23 | 0.23 | 0.22 | 0.20     | 0.19 | 0.20 | 0.21 |
| 379.5 | 0.23 | 0.23 | 0.23 | 0.22 | 0.20     | 0.19 | 0.20 | 0.21 |
| 380.0 | 0.23 | 0.23 | 0.23 | 0.22 | 0.20     | 0.20 | 0.20 | 0.21 |
| 380.5 | 0.23 | 0.23 | 0.23 | 0.22 | 0.20     | 0.20 | 0.20 | 0.21 |
| 381.0 | 0.25 | 0.23 | 0.23 | 0.22 | 0.20     | 0.20 | 0.20 | 0.21 |
| 381.5 | 0.24 | 0.24 | 0.23 | 0.22 | 0.20     | 0.20 | 0.20 | 0.21 |
| 382.0 | 0.24 | 0.24 | 0.23 | 0.22 | 0.21     | 0.20 | 0.20 | 0.21 |
| 382.5 | 0.24 | 0.24 | 0.24 | 0.23 | 0.21     | 0.20 | 0.20 | 0.21 |
| 383.0 | 0.24 | 0.24 | 0.24 | 0.23 | 0.21     | 0.20 | 0.20 | 0.21 |
| 383.5 | 0.24 | 0.24 | 0.24 | 0.23 | 0.21     | 0.20 | 0.21 | 0.21 |
| 384.0 | 0.24 | 0.24 | 0.24 | 0.23 | 0.21     | 0.21 | 0.21 | 0.22 |
| 384.5 | 0.25 | 0.24 | 0.24 | 0.23 | 0.22     | 0.21 | 0.21 | 0.22 |
| 385.0 | 0.25 | 0.25 | 0.24 | 0.24 | 0.22     | 0.21 | 0.21 | 0.22 |
| 385.5 | 0.25 | 0.25 | 0.25 | 0.24 | 0.22     | 0.21 | 0.21 | 0.22 |
| 386.0 | 0.25 | 0.25 | 0.25 | 0.24 | 0.22     | 0.21 | 0.22 | 0.22 |
| 386.5 | 0.25 | 0.25 | 0.25 | 0.24 | 0.22     | 0.22 | 0.22 | 0.23 |
| 387.0 | 0.26 | 0.26 | 0.26 | 0.25 | 0.23     | 0.22 | 0.22 | 0.23 |
| 387.5 | 0.26 | 0.26 | 0.26 | 0.25 | 0.23     | 0.22 | 0.23 | 0.23 |
| 388.0 | 0.26 | 0.26 | 0.26 | 0.25 | 0.23     | 0.23 | 0.23 | 0.23 |
| 388.5 | 0.27 | 0.26 | 0.26 | 0.25 | 0.23     | 0.23 | 0.23 | 0.24 |
| 389.0 | 0.27 | 0.27 | 0.26 | 0.25 | 0.24     | 0.23 | 0.23 | 0.24 |
| 389.5 | 0.27 | 0.27 | 0.27 | 0.26 | 0.24     | 0.23 | 0.23 | 0.24 |
| 390.0 | 0.27 | 0.27 | 0.27 | 0.26 | 0.24     | 0.24 | 0.24 | 0.25 |
| 390.5 | 0.28 | 0.28 | 0.27 | 0.26 | 0.24     | 0.24 | 0.24 | 0.25 |
| 391.0 | 0.28 | 0.28 | 0.28 | 0.27 | 0.25     | 0.24 | 0.24 | 0.25 |
| 391.5 | 0.28 | 0.28 | 0.28 | 0.27 | 0.25     | 0.24 | 0.25 | 0.25 |
| 392.0 | 0.28 | 0.28 | 0.28 | 0.27 | 0.25     | 0.25 | 0.25 | 0.25 |
| 392.5 | 0.28 | 0.28 | 0.28 | 0.27 | 0.26     | 0.25 | 0.25 | 0.26 |
| 393.0 | 0.29 | 0.29 | 0.28 | 0.28 | 0.26     | 0.25 | 0.25 | 0.26 |
| 393.5 | 0.29 | 0.29 | 0.29 | 0.28 | 0.26     | 0.26 | 0.26 | 0.26 |
| 394.0 | 0.29 | 0.29 | 0.29 | 0.28 | 0.26     | 0.26 | 0.26 | 0.20 |
| 394.5 | 0.30 | 0.30 | 0.29 | 0.28 | 0.27     | 0.26 | 0.26 | 0.27 |
| 395.0 | 0.30 | 0.30 | 0.29 | 0.20 | 0.27     | 0.26 | 0.20 | 0.27 |
| 395.5 | 0.30 | 0.30 | 0.30 | 0.29 | 0.27     | 0.27 | 0.27 | 0.27 |
| 396.0 | 0.30 | 0.30 | 0.30 | 0.29 | 0.27     | 0.27 | 0.27 | 0.28 |
| 396.5 | 0.31 | 0.31 | 0.30 | 0.29 | 0.28     | 0.27 | 0.27 | 0.28 |
| 397.0 | 0.31 | 0.31 | 0.30 | 0.30 | 0.28     | 0.27 | 0.28 | 0.28 |
| 397.5 | 0.31 | 0.31 | 0.31 | 0.30 | 0.28     | 0.28 | 0.28 | 0.29 |
| 398.0 | 0.31 | 0.31 | 0.31 | 0.30 | 0.29     | 0.28 | 0.28 | 0.29 |
|       | 0.01 | 5.51 | 0.01 | 5.50 | <u> </u> | 5.20 | 5.20 | 5.27 |

| 398.5 | 0.32 | 0.32 | 0.31 | 0.30 | 0.29 | 0.28 | 0.29 | 0.29 |
|-------|------|------|------|------|------|------|------|------|
| 399.0 | 0.32 | 0.32 | 0.32 | 0.31 | 0.29 | 0.29 | 0.29 | 0.30 |
| 399.5 | 0.32 | 0.32 | 0.32 | 0.31 | 0.30 | 0.29 | 0.29 | 0.30 |
| 400.0 | 0.32 | 0.32 | 0.32 | 0.31 | 0.30 | 0.30 | 0.30 | 0.30 |
| 400.5 | 0.33 | 0.33 | 0.32 | 0.32 | 0.30 | 0.30 | 0.30 | 0.30 |
| 401.0 | 0.33 | 0.33 | 0.33 | 0.32 | 0.30 | 0.30 | 0.30 | 0.31 |
| 401.5 | 0.33 | 0.33 | 0.33 | 0.32 | 0.31 | 0.30 | 0.30 | 0.31 |
| 402.0 | 0.33 | 0.33 | 0.33 | 0.32 | 0.31 | 0.30 | 0.31 | 0.32 |
| 402.5 | 0.34 | 0.34 | 0.33 | 0.33 | 0.31 | 0.31 | 0.31 | 0.32 |
| 403.0 | 0.34 | 0.34 | 0.34 | 0.33 | 0.31 | 0.31 | 0.31 | 0.32 |
| 403.5 | 0.34 | 0.34 | 0.34 | 0.33 | 0.32 | 0.31 | 0.32 | 0.32 |
| 404.0 | 0.34 | 0.34 | 0.34 | 0.33 | 0.32 | 0.32 | 0.32 | 0.33 |
| 404.5 | 0.35 | 0.35 | 0.34 | 0.33 | 0.32 | 0.32 | 0.32 | 0.33 |
| 405.0 | 0.35 | 0.35 | 0.35 | 0.34 | 0.32 | 0.32 | 0.33 | 0.33 |
| 405.5 | 0.35 | 0.35 | 0.35 | 0.34 | 0.33 | 0.33 | 0.33 | 0.34 |
| 406.0 | 0.35 | 0.35 | 0.35 | 0.34 | 0.33 | 0.33 | 0.33 | 0.34 |
| 406.5 | 0.35 | 0.35 | 0.35 | 0.34 | 0.33 | 0.33 | 0.33 | 0.34 |
| 407.0 | 0.36 | 0.36 | 0.35 | 0.35 | 0.34 | 0.33 | 0.34 | 0.35 |
| 407.5 | 0.36 | 0.36 | 0.36 | 0.35 | 0.34 | 0.34 | 0.34 | 0.35 |
| 408.0 | 0.36 | 0.36 | 0.36 | 0.35 | 0.34 | 0.34 | 0.34 | 0.35 |
| 408.5 | 0.36 | 0.36 | 0.36 | 0.35 | 0.34 | 0.34 | 0.35 | 0.35 |
| 409.0 | 0.36 | 0.36 | 0.36 | 0.36 | 0.34 | 0.34 | 0.35 | 0.36 |
| 409.5 | 0.36 | 0.37 | 0.36 | 0.36 | 0.35 | 0.35 | 0.35 | 0.36 |
| 410.0 | 0.37 | 0.37 | 0.37 | 0.36 | 0.35 | 0.35 | 0.35 | 0.36 |
| 410.5 | 0.37 | 0.37 | 0.37 | 0.36 | 0.35 | 0.35 | 0.36 | 0.36 |
| 411.0 | 0.37 | 0.37 | 0.37 | 0.36 | 0.35 | 0.36 | 0.36 | 0.37 |
| 411.5 | 0.37 | 0.37 | 0.37 | 0.36 | 0.35 | 0.36 | 0.36 | 0.37 |
| 412.0 | 0.37 | 0.37 | 0.37 | 0.36 | 0.36 | 0.36 | 0.36 | 0.37 |
| 412.5 | 0.37 | 0.37 | 0.37 | 0.37 | 0.36 | 0.36 | 0.37 | 0.37 |
| 413.0 | 0.38 | 0.37 | 0.37 | 0.37 | 0.36 | 0.36 | 0.37 | 0.38 |
| 413.5 | 0.38 | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.37 | 0.38 |
| 414.0 | 0.38 | 0.38 | 0.37 | 0.37 | 0.36 | 0.37 | 0.37 | 0.38 |
| 414.5 | 0.38 | 0.38 | 0.38 | 0.37 | 0.36 | 0.37 | 0.37 | 0.38 |
| 415.0 | 0.38 | 0.38 | 0.38 | 0.37 | 0.37 | 0.37 | 0.37 | 0.39 |
| 415.5 | 0.38 | 0.38 | 0.38 | 0.37 | 0.37 | 0.37 | 0.38 | 0.39 |
| 416.0 | 0.38 | 0.38 | 0.38 | 0.37 | 0.37 | 0.37 | 0.38 | 0.39 |
| 416.5 | 0.38 | 0.38 | 0.38 | 0.37 | 0.37 | 0.38 | 0.38 | 0.39 |
| 417.0 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.38 | 0.39 |
| 417.5 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.38 | 0.39 |
| 418.0 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 418.5 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 419.0 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 419.5 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 420.0 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 420.5 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 421.0 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 421.5 | 0.38 | 0.38 | 0.38 | 0.38 | 0.37 | 0.38 | 0.39 | 0.40 |
| 422.0 | 0.38 | 0.38 | 0.38 | 0.37 | 0.37 | 0.38 | 0.39 | 0.40 |
| 422.5 | 0.38 | 0.38 | 0.38 | 0.37 | 0.37 | 0.38 | 0.39 | 0.40 |
| 423.0 | 0.38 | 0.37 | 0.38 | 0.37 | 0.37 | 0.38 | 0.39 | 0.40 |
| 423.5 | 0.38 | 0.37 | 0.37 | 0.37 | 0.37 | 0.38 | 0.39 | 0.40 |
| 424.0 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.38 | 0.39 | 0.40 |
| 424.5 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.38 | 0.39 | 0.40 |

| 425.0 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.29 | 0.29 | 0.40 |
|-------|------|------|------|------|------|------|------|------|
| 425.5 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.38 | 0.38 | 0.40 |
| 426.0 | 0.37 | 0.37 | 0.37 | 0.30 | 0.37 | 0.38 | 0.38 | 0.39 |
| 426.5 | 0.37 | 0.37 | 0.37 | 0.30 | 0.30 | 0.38 | 0.38 | 0.39 |
| 420.5 | 0.37 | 0.30 | 0.30 | 0.30 | 0.30 | 0.37 | 0.38 | 0.39 |
| 427.0 | 0.36 | 0.30 | 0.30 | 0.30 | 0.30 | 0.37 | 0.38 | 0.39 |
| 427.3 | 0.36 | 0.30 | 0.30 | 0.30 | 0.30 | 0.37 | 0.38 | 0.39 |
| 428.0 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.37 | 0.37 | 0.39 |
| 428.5 | 0.36 | 0.36 | 0.36 | 0.35 | 0.36 | 0.37 | 0.37 | 0.38 |
| 429.0 | 0.36 | 0.35 | 0.35 | 0.55 | 0.35 | 0.30 | 0.37 | 0.38 |
| 429.0 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.36 | 0.37 | 0.38 |
| 430.0 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.36 | 0.37 | 0.38 |
| 430.5 | 0.35 | 0.35 | 0.35 | 0.34 | 0.35 | 0.36 | 0.36 | 0.37 |
| 431.0 | 0.35 | 0.35 | 0.35 | 0.34 | 0.34 | 0.36 | 0.36 | 0.37 |
| 431.3 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.35 | 0.36 | 0.37 |
| 432.0 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.35 | 0.35 | 0.37 |
| 432.5 | 0.34 | 0.34 | 0.34 | 0.33 | 0.34 | 0.35 | 0.35 | 0.36 |
| 433.0 | 0.34 | 0.33 | 0.33 | 0.33 | 0.33 | 0.34 | 0.35 | 0.36 |
| 433.3 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.34 | 0.35 | 0.36 |
| 434.0 | 0.33 | 0.33 | 0.33 | 0.32 | 0.33 | 0.34 | 0.34 | 0.35 |
| 434.5 | 0.33 | 0.33 | 0.33 | 0.32 | 0.32 | 0.33 | 0.34 | 0.35 |
| 435.0 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.33 | 0.34 | 0.35 |
| 435.5 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.33 | 0.33 | 0.34 |
| 436.0 | 0.32 | 0.32 | 0.32 | 0.31 | 0.31 | 0.32 | 0.33 | 0.34 |
| 436.5 | 0.32 | 0.31 | 0.31 | 0.31 | 0.31 | 0.32 | 0.32 | 0.34 |
| 437.0 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.32 | 0.32 | 0.33 |
| 437.5 | 0.31 | 0.31 | 0.31 | 0.30 | 0.30 | 0.31 | 0.32 | 0.33 |
| 438.0 | 0.31 | 0.30 | 0.30 | 0.30 | 0.30 | 0.31 | 0.31 | 0.32 |
| 438.5 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.31 | 0.32 |
| 439.0 | 0.30 | 0.30 | 0.30 | 0.29 | 0.29 | 0.30 | 0.31 | 0.32 |
| 439.5 | 0.30 | 0.29 | 0.29 | 0.29 | 0.29 | 0.30 | 0.30 | 0.31 |
| 440.0 | 0.29 | 0.29 | 0.29 | 0.28 | 0.28 | 0.29 | 0.30 | 0.31 |
| 440.5 | 0.29 | 0.29 | 0.28 | 0.28 | 0.28 | 0.29 | 0.29 | 0.30 |
| 441.0 | 0.29 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.29 | 0.30 |
| 441.5 | 0.28 | 0.28 | 0.28 | 0.27 | 0.27 | 0.28 | 0.28 | 0.30 |
| 442.0 | 0.28 | 0.28 | 0.27 | 0.27 | 0.27 | 0.28 | 0.28 | 0.29 |
| 442.5 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.28 | 0.29 |
| 443.0 | 0.27 | 0.27 | 0.27 | 0.26 | 0.26 | 0.27 | 0.27 | 0.28 |
| 445.5 | 0.27 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.27 | 0.28 |
| 444.0 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.26 | 0.26 | 0.27 |
| 444.5 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.26 | 0.26 | 0.27 |
| 445.0 | 0.26 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.26 | 0.27 |
| 445.5 | 0.25 | 0.25 | 0.25 | 0.24 | 0.24 | 0.25 | 0.25 | 0.26 |
| 440.0 | 0.25 | 0.25 | 0.24 | 0.24 | 0.24 | 0.24 | 0.25 | 0.26 |
| 440.5 | 0.25 | 0.24 | 0.24 | 0.24 | 0.23 | 0.24 | 0.24 | 0.25 |
| 447.0 | 0.24 | 0.24 | 0.24 | 0.23 | 0.23 | 0.23 | 0.24 | 0.25 |
| 44/.5 | 0.24 | 0.23 | 0.23 | 0.23 | 0.22 | 0.23 | 0.23 | 0.24 |
| 448.0 | 0.23 | 0.23 | 0.23 | 0.22 | 0.22 | 0.23 | 0.23 | 0.24 |
| 448.5 | 0.23 | 0.23 | 0.23 | 0.22 | 0.22 | 0.22 | 0.23 | 0.24 |
| 449.0 | 0.23 | 0.22 | 0.22 | 0.22 | 0.21 | 0.22 | 0.22 | 0.23 |
| 449.5 | 0.22 | 0.22 | 0.22 | 0.21 | 0.21 | 0.21 | 0.22 | 0.23 |
| 450.0 | 0.22 | 0.22 | 0.21 | 0.21 | 0.20 | 0.21 | 0.21 | 0.22 |
| 450.5 | 0.22 | 0.21 | 0.21 | 0.20 | 0.20 | 0.21 | 0.21 | 0.22 |
| 451.0 | 0.21 | 0.21 | 0.21 | 0.20 | 0.20 | 0.20 | 0.21 | 0.22 |

| 451.5 | 0.21 | 0.21 | 0.20 | 0.20 | 0.10 | 0.20 | 0.20 | 0.21 |
|-------|------|------|------|------|------|------|------|------|
| 452.0 | 0.21 | 0.21 | 0.20 | 0.20 | 0.19 | 0.20 | 0.20 | 0.21 |
| 452.5 | 0.20 | 0.20 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.21 |
| 453.0 | 0.20 | 0.19 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.20 |
| 453.5 | 0.10 | 0.19 | 0.19 | 0.19 | 0.18 | 0.19 | 0.19 | 0.20 |
| 454.0 | 0.19 | 0.19 | 0.19 | 0.18 | 0.13 | 0.18 | 0.19 | 0.19 |
| 454.5 | 0.19 | 0.19 | 0.19 | 0.18 | 0.17 | 0.18 | 0.18 | 0.19 |
| 455.0 | 0.19 | 0.18 | 0.18 | 0.18 | 0.17 | 0.10 | 0.18 | 0.19 |
| 455.5 | 0.18 | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 | 0.13 | 0.18 |
| 456.0 | 0.18 | 0.10 | 0.17 | 0.17 | 0.16 | 0.17 | 0.17 | 0.18 |
| 456.5 | 0.10 | 0.17 | 0.17 | 0.17 | 0.16 | 0.17 | 0.17 | 0.10 |
| 457.0 | 0.17 | 0.17 | 0.17 | 0.16 | 0.15 | 0.16 | 0.16 | 0.17 |
| 457.5 | 0.17 | 0.16 | 0.16 | 0.15 | 0.15 | 0.15 | 0.16 | 0.16 |
| 458.0 | 0.16 | 0.16 | 0.16 | 0.15 | 0.15 | 0.15 | 0.15 | 0.16 |
| 458.5 | 0.16 | 0.16 | 0.16 | 0.15 | 0.14 | 0.15 | 0.15 | 0.16 |
| 459.0 | 0.16 | 0.16 | 0.15 | 0.15 | 0.14 | 0.14 | 0.15 | 0.15 |
| 459.5 | 0.16 | 0.15 | 0.15 | 0.14 | 0.14 | 0.14 | 0.14 | 0.15 |
| 460.0 | 0.15 | 0.15 | 0.15 | 0.14 | 0.13 | 0.14 | 0.14 | 0.15 |
| 460.5 | 0.15 | 0.15 | 0.14 | 0.14 | 0.13 | 0.13 | 0.14 | 0.14 |
| 461.0 | 0.15 | 0.14 | 0.14 | 0.13 | 0.13 | 0.13 | 0.13 | 0.14 |
| 461.5 | 0.14 | 0.14 | 0.14 | 0.13 | 0.12 | 0.13 | 0.13 | 0.14 |
| 462.0 | 0.14 | 0.14 | 0.14 | 0.13 | 0.12 | 0.13 | 0.13 | 0.13 |
| 462.5 | 0.14 | 0.14 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 |
| 463.0 | 0.14 | 0.13 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.13 |
| 463.5 | 0.13 | 0.13 | 0.13 | 0.12 | 0.11 | 0.12 | 0.12 | 0.12 |
| 464.0 | 0.13 | 0.13 | 0.12 | 0.12 | 0.11 | 0.11 | 0.12 | 0.12 |
| 464.5 | 0.13 | 0.12 | 0.12 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 |
| 465.0 | 0.12 | 0.12 | 0.12 | 0.11 | 0.10 | 0.11 | 0.11 | 0.12 |
| 465.5 | 0.12 | 0.12 | 0.12 | 0.11 | 0.10 | 0.10 | 0.11 | 0.11 |
| 466.0 | 0.12 | 0.12 | 0.11 | 0.11 | 0.10 | 0.10 | 0.10 | 0.11 |
| 466.5 | 0.12 | 0.11 | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.11 |
| 467.0 | 0.11 | 0.11 | 0.11 | 0.10 | 0.09 | 0.10 | 0.10 | 0.10 |
| 467.5 | 0.11 | 0.11 | 0.11 | 0.10 | 0.09 | 0.09 | 0.09 | 0.10 |
| 468.0 | 0.11 | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.10 |
| 468.5 | 0.11 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 |
| 469.0 | 0.10 | 0.10 | 0.10 | 0.09 | 0.08 | 0.09 | 0.09 | 0.09 |
| 469.5 | 0.10 | 0.10 | 0.10 | 0.09 | 0.08 | 0.08 | 0.08 | 0.09 |
| 470.0 | 0.10 | 0.10 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 |
| 470.5 | 0.10 | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
| 471.0 | 0.09 | 0.09 | 0.09 | 0.08 | 0.07 | 0.07 | 0.08 | 0.08 |
| 471.5 | 0.09 | 0.09 | 0.09 | 0.08 | 0.07 | 0.07 | 0.07 | 0.08 |
| 472.0 | 0.09 | 0.09 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 |
| 472.5 | 0.09 | 0.09 | 0.08 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 |
| 473.0 | 0.09 | 0.08 | 0.08 | 0.07 | 0.06 | 0.07 | 0.07 | 0.07 |
| 473.5 | 0.08 | 0.08 | 0.08 | 0.07 | 0.06 | 0.06 | 0.06 | 0.07 |
| 474.0 | 0.08 | 0.08 | 0.08 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 |
| 474.5 | 0.08 | 0.08 | 0.07 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 |
| 475.0 | 0.08 | 0.08 | 0.07 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
| 475.5 | 0.08 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 | 0.06 |
| 476.0 | 0.07 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 |
| 476.5 | 0.07 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 |
| 477.0 | 0.07 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 |
| 477.5 | 0.07 | 0.07 | 0.06 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |

| 478.0 | 0.07 | 0.07 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.05 |
|-------|------|------|------|------|------|------|------|------|
| 478.5 | 0.07 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 |
| 479.0 | 0.06 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 |
| 479.5 | 0.06 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 |
| 480.0 | 0.06 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 | 0.04 |
| 480.5 | 0.06 | 0.06 | 0.05 | 0.05 | 0.04 | 0.04 | 0.03 | 0.04 |
| 481.0 | 0.06 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
| 481.5 | 0.06 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
| 482.0 | 0.06 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
| 482.5 | 0.05 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
| 483.0 | 0.05 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
| 483.5 | 0.05 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 |
| 484.0 | 0.05 | 0.05 | 0.05 | 0.04 | 0.03 | 0.03 | 0.02 | 0.03 |
| 484.5 | 0.05 | 0.05 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 |
| 485.0 | 0.05 | 0.05 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 485.5 | 0.05 | 0.05 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 486.0 | 0.05 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 486.5 | 0.05 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 487.0 | 0.05 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 487.5 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 488.0 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
| 488.5 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 |
| 489.0 | 0.04 | 0.04 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 |
| 489.5 | 0.04 | 0.04 | 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 |
| 490.0 | 0.04 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 490.5 | 0.04 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 491.0 | 0.04 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 491.5 | 0.04 | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 492.0 | 0.04 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 492.5 | 0.04 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 493.0 | 0.04 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 493.5 | 0.04 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 494.0 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 |
| 494.5 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 |
| 495.0 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 |
| 495.5 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 |
| 496.0 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 |
| 496.5 | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 |
| 497.0 | 0.03 | 0.03 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
| 497.5 | 0.03 | 0.03 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
| 498.0 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| 498.5 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| 499.0 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| 499.5 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
| 500.0 | 0.03 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |

## Table 4.5 Absorvance data of $H_2DTC$ in presence of [Surfactant] in 15% v/v EtOH-water medium

| absorbance of H <sub>2</sub> DTC with variation of surfactant concentrations in 15% v/v EtOH-water medium |            |           |            |                     |            |              |            |                |            |  |
|-----------------------------------------------------------------------------------------------------------|------------|-----------|------------|---------------------|------------|--------------|------------|----------------|------------|--|
| SI                                                                                                        | DS         | DT        | AB         | C <sub>16</sub> MIm | Cl         | 16-4         | 16         | Tween-         | 50         |  |
| [SDS]/ mM                                                                                                 | absorbance | [DTAB]/mM | absorbance | [C16MImCl]/mM       | absorbance | [16-4-16]/mM | absorbance | [Tween-60]/ mM | absorbance |  |
| 0.000                                                                                                     | 0.382      | 0.0000    | 0.463      | 0.0000              | 0.455      | 0.00000      | 0.404      | 0.0000         | 0.463      |  |
| 0.048                                                                                                     | 0.383      | 0.1196    | 0.444      | 0.0142              | 0.452      | 0.00047      | 0.399      | 0.0006         | 0.457      |  |
| 0.121                                                                                                     | 0.382      | 0.3584    | 0.438      | 0.0425              | 0.455      | 0.00140      | 0.397      | 0.0016         | 0.450      |  |
| 0.193                                                                                                     | 0.381      | 0.7150    | 0.437      | 0.085               | 0.456      | 0.00280      | 0.393      | 0.0029         | 0.445      |  |
| 0.290                                                                                                     | 0.382      | 1.1879    | 0.432      | 0.155               | 0.456      | 0.00465      | 0.391      | 0.0044         | 0.440      |  |
| 0.433                                                                                                     | 0.380      | 1.775     | 0.430      | 0.224               | 0.457      | 0.00695      | 0.391      | 0.0068         | 0.431      |  |
| 0.671                                                                                                     | 0.380      | 2.646     | 0.426      | 0.361               | 0.457      | 0.01036      | 0.393      | 0.0106         | 0.418      |  |
| 1.025                                                                                                     | 0.378      | 4.077     | 0.427      | 0.496               | 0.460      | 0.01596      | 0.396      | 0.0143         | 0.403      |  |
| 1.374                                                                                                     | 0.378      | 6.033     | 0.427      | 0.693               | 0.468      | 0.024        | 0.403      | 0.026          | 0.384      |  |
| 1.834                                                                                                     | 0.376      | 9.003     | 0.427      | 0.885               | 0.480      | 0.034        | 0.410      | 0.037          | 0.359      |  |
| 2.510                                                                                                     | 0.370      | 12.860    | 0.436      | 1.134               | 0.493      | 0.048        | 0.420      | 0.050          | 0.339      |  |
| 3.171                                                                                                     | 0.370      | 17.453    | 0.468      | 1.375               | 0.502      | 0.066        | 0.427      | 0.078          | 0.301      |  |
| 4.029                                                                                                     | 0.373      | 22.400    | 0.495      | 1.721               | 0.514      | 0.083        | 0.440      | 0.123          | 0.248      |  |
| 5.066                                                                                                     | 0.377      | 27.789    | 0.508      | 2.051               | 0.522      | 0.108        | 0.446      |                |            |  |
| 6.261                                                                                                     | 0.380      | 33.467    | 0.515      | 2.467               | 0.526      | 0.137        | 0.450      |                |            |  |
| 7.777                                                                                                     | 0.381      | 40.262    | 0.517      | 2.953               | 0.532      | 0.163        | 0.453      |                |            |  |
| 9.557                                                                                                     | 0.383      | 49.085    | 0.516      | 3.618               | 0.539      | 0.217        | 0.452      |                |            |  |
| 11.221                                                                                                    | 0.386      |           |            | 4.403               | 0.541      |              |            |                |            |  |
| 12.780                                                                                                    | 0.386      |           |            | 5.406               | 0.545      |              |            |                |            |  |
| 15.620                                                                                                    | 0.391      |           |            |                     |            |              |            |                |            |  |
| 20.396                                                                                                    | 0.394      |           |            |                     |            |              |            |                |            |  |
| 22.423                                                                                                    | 0.397      |           |            |                     |            |              |            |                |            |  |

| Em             | ission of H | 2DTC in pre | esence of di | fferent [16- | 4-16] in 159 | % v/v EtOH | -water med | lium  |       |
|----------------|-------------|-------------|--------------|--------------|--------------|------------|------------|-------|-------|
| wavelength/ nm | 0.000       | 0.001       | 0.005        | 0.010        | 0.024        | 0.045      | 0.079      | 1.400 | 2.270 |
| 450            | 0.474       | 0.442       | 0.431        | 0.358        | 0.256        | 0.268      | 0.270      | 0.279 | 0.263 |
| 450.5          | 0.477       | 0.446       | 0.439        | 0.373        | 0.286        | 0.275      | 0.275      | 0.291 | 0.301 |
| 451            | 0.485       | 0.454       | 0.449        | 0.386        | 0.312        | 0.285      | 0.283      | 0.304 | 0.335 |
| 451.5          | 0.499       | 0.465       | 0.463        | 0.401        | 0.333        | 0.299      | 0.296      | 0.318 | 0.363 |
| 452            | 0.520       | 0.485       | 0.479        | 0.419        | 0.350        | 0.315      | 0.315      | 0.336 | 0.383 |
| 452.5          | 0.547       | 0.513       | 0.498        | 0.440        | 0.366        | 0.334      | 0.338      | 0.355 | 0.399 |
| 453            | 0.578       | 0.546       | 0.523        | 0.461        | 0.379        | 0.356      | 0.359      | 0.373 | 0.412 |
| 453.5          | 0.613       | 0.583       | 0.550        | 0.483        | 0.393        | 0.377      | 0.377      | 0.391 | 0.424 |
| 454            | 0.650       | 0.620       | 0.580        | 0.510        | 0.412        | 0.395      | 0.390      | 0.407 | 0.436 |
| 454.5          | 0.691       | 0.659       | 0.611        | 0.540        | 0.433        | 0.412      | 0.403      | 0.424 | 0.451 |
| 455            | 0.736       | 0.699       | 0.646        | 0.570        | 0.456        | 0.426      | 0.416      | 0.440 | 0.471 |
| 455.5          | 0.785       | 0.740       | 0.688        | 0.605        | 0.481        | 0.442      | 0.431      | 0.460 | 0.497 |
| 456            | 0.837       | 0.785       | 0.736        | 0.642        | 0.509        | 0.458      | 0.452      | 0.483 | 0.525 |
| 456.5          | 0.891       | 0.838       | 0.786        | 0.682        | 0.539        | 0.478      | 0.477      | 0.513 | 0.560 |
| 457            | 0.943       | 0.897       | 0.841        | 0.722        | 0.570        | 0.503      | 0.506      | 0.547 | 0.601 |
| 457.5          | 0.995       | 0.959       | 0.897        | 0.764        | 0.603        | 0.537      | 0.537      | 0.584 | 0.647 |
| 458            | 1.049       | 1.022       | 0.954        | 0.808        | 0.641        | 0.574      | 0.571      | 0.623 | 0.692 |
| 458.5          | 1.106       | 1.088       | 1.009        | 0.855        | 0.681        | 0.619      | 0.609      | 0.666 | 0.735 |
| 459            | 1.169       | 1.155       | 1.061        | 0.901        | 0.723        | 0.663      | 0.652      | 0.710 | 0.776 |
| 459.5          | 1.241       | 1.224       | 1.117        | 0.952        | 0.765        | 0.711      | 0.700      | 0.758 | 0.819 |
| 460            | 1.323       | 1.294       | 1.183        | 1.007        | 0.813        | 0.759      | 0.754      | 0.807 | 0.860 |
| 460.5          | 1.415       | 1.373       | 1.255        | 1.066        | 0.867        | 0.809      | 0.812      | 0.862 | 0.910 |
| 461            | 1.507       | 1.462       | 1.339        | 1.132        | 0.920        | 0.862      | 0.875      | 0.923 | 0.970 |
| 461.5          | 1.602       | 1.561       | 1.429        | 1.204        | 0.978        | 0.921      | 0.935      | 0.988 | 1.040 |
| 462            | 1.699       | 1.666       | 1.526        | 1.285        | 1.042        | 0.981      | 0.994      | 1.054 | 1.121 |
| 462.5          | 1.796       | 1.776       | 1.630        | 1.373        | 1.113        | 1.045      | 1.053      | 1.125 | 1.211 |
| 463            | 1.897       | 1.889       | 1.737        | 1.469        | 1.188        | 1.110      | 1.115      | 1.200 | 1.307 |
| 463.5          | 2.005       | 2.008       | 1.845        | 1.569        | 1.263        | 1.176      | 1.182      | 1.282 | 1.410 |
| 464            | 2.121       | 2.125       | 1.956        | 1.672        | 1.343        | 1.247      | 1.253      | 1.371 | 1.513 |
| 464.5          | 2.249       | 2.244       | 2.068        | 1.776        | 1.428        | 1.324      | 1.332      | 1.468 | 1.615 |
| 465            | 2.391       | 2.366       | 2.192        | 1.885        | 1.515        | 1.409      | 1.425      | 1.577 | 1.719 |
| 465.5          | 2.544       | 2.497       | 2.321        | 1.997        | 1.605        | 1.502      | 1.524      | 1.694 | 1.821 |
| 466            | 2.707       | 2.640       | 2.453        | 2.116        | 1.700        | 1.599      | 1.632      | 1.813 | 1.935 |
| 466.5          | 2.873       | 2.791       | 2.592        | 2.236        | 1.808        | 1.701      | 1.748      | 1.929 | 2.058 |
| 467            | 3.048       | 2.952       | 2.745        | 2.367        | 1.920        | 1.806      | 1.867      | 2.049 | 2.192 |
| 467.5          | 3.225       | 3.128       | 2.907        | 2.501        | 2.037        | 1.911      | 1.996      | 2.169 | 2.344 |
| 468            | 3.407       | 3.314       | 3.077        | 2.635        | 2.164        | 2.022      | 2.126      | 2.292 | 2.513 |
| 468.5          | 3.591       | 3.513       | 3.245        | 2.770        | 2.295        | 2.140      | 2.261      | 2.423 | 2.694 |
| 469            | 3.784       | 3.716       | 3.430        | 2.914        | 2.430        | 2.269      | 2.404      | 2.569 | 2.887 |
| 469.5          | 3.989       | 3.925       | 3.624        | 3.069        | 2.561        | 2.412      | 2.554      | 2.736 | 3.083 |

4.6. Steady state emission data of  $H_2DTC$  at different concentrations of 16-4-16 at 298.15 K

| 470   | 4.208  | 4.144  | 3.821  | 3.237  | 2.703  | 2.564  | 2.713  | 2.925  | 3.296  |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 470.5 | 4.437  | 4.365  | 4.025  | 3.411  | 2.860  | 2.728  | 2.885  | 3.129  | 3.515  |
| 471   | 4.683  | 4.595  | 4.241  | 3.609  | 3.026  | 2.912  | 3.067  | 3.352  | 3.740  |
| 471.5 | 4.941  | 4.838  | 4.480  | 3.824  | 3.204  | 3.103  | 3.258  | 3.589  | 3.980  |
| 472   | 5.227  | 5.102  | 4.738  | 4.050  | 3.403  | 3.306  | 3.462  | 3.844  | 4.243  |
| 472.5 | 5.533  | 5.390  | 5.003  | 4.286  | 3.621  | 3.514  | 3.676  | 4.111  | 4.533  |
| 473   | 5.856  | 5.703  | 5.293  | 4.535  | 3.854  | 3.731  | 3.899  | 4.389  | 4.841  |
| 473.5 | 6.196  | 6.029  | 5.600  | 4.799  | 4.085  | 3.956  | 4.135  | 4.677  | 5.167  |
| 474   | 6.548  | 6.377  | 5.918  | 5.080  | 4.321  | 4.185  | 4.392  | 4.981  | 5.524  |
| 474.5 | 6.911  | 6.735  | 6.241  | 5.371  | 4.566  | 4.417  | 4.672  | 5.298  | 5.896  |
| 475   | 7.284  | 7.105  | 6.581  | 5.690  | 4.817  | 4.677  | 4.981  | 5.628  | 6.287  |
| 475.5 | 7.659  | 7.481  | 6.938  | 6.026  | 5.074  | 4.953  | 5.313  | 5.968  | 6.694  |
| 476   | 8.063  | 7.873  | 7.322  | 6.369  | 5.343  | 5.251  | 5.671  | 6.332  | 7.118  |
| 476.5 | 8.498  | 8.292  | 7.720  | 6.718  | 5.642  | 5.565  | 6.048  | 6.726  | 7.581  |
| 477   | 8.958  | 8.747  | 8.144  | 7.065  | 5.963  | 5.899  | 6.442  | 7.149  | 8.074  |
| 477.5 | 9.448  | 9.225  | 8.591  | 7.424  | 6.297  | 6.249  | 6.845  | 7.597  | 8.591  |
| 478   | 9.961  | 9.733  | 9.056  | 7.799  | 6.645  | 6.611  | 7.265  | 8.074  | 9.152  |
| 478.5 | 10.505 | 10.274 | 9.534  | 8.195  | 7.008  | 6.971  | 7.689  | 8.590  | 9.743  |
| 479   | 11.069 | 10.835 | 10.037 | 8.633  | 7.393  | 7.357  | 8.130  | 9.130  | 10.374 |
| 479.5 | 11.636 | 11.402 | 10.552 | 9.108  | 7.791  | 7.761  | 8.581  | 9.697  | 11.035 |
| 480   | 12.233 | 11.975 | 11.103 | 9.607  | 8.204  | 8.193  | 9.063  | 10.285 | 11.715 |
| 480.5 | 12.852 | 12.578 | 11.676 | 10.131 | 8.644  | 8.640  | 9.574  | 10.901 | 12.429 |
| 481   | 13.495 | 13.213 | 12.272 | 10.659 | 9.103  | 9.117  | 10.120 | 11.543 | 13.192 |
| 481.5 | 14.166 | 13.868 | 12.894 | 11.198 | 9.590  | 9.619  | 10.691 | 12.210 | 13.979 |
| 482   | 14.849 | 14.542 | 13.539 | 11.740 | 10.091 | 10.157 | 11.296 | 12.907 | 14.796 |
| 482.5 | 15.568 | 15.252 | 14.200 | 12.293 | 10.598 | 10.709 | 11.924 | 13.656 | 15.633 |
| 483   | 16.330 | 15.998 | 14.893 | 12.873 | 11.131 | 11.281 | 12.584 | 14.442 | 16.511 |
| 483.5 | 17.123 | 16.777 | 15.603 | 13.479 | 11.694 | 11.876 | 13.266 | 15.274 | 17.451 |
| 484   | 17.970 | 17.577 | 16.351 | 14.121 | 12.278 | 12.497 | 13.973 | 16.139 | 18.432 |
| 484.5 | 18.852 | 18.407 | 17.138 | 14.800 | 12.889 | 13.126 | 14.710 | 17.043 | 19.464 |
| 485   | 19.774 | 19.284 | 17.952 | 15.517 | 13.531 | 13.769 | 15.481 | 17.989 | 20.577 |
| 485.5 | 20.739 | 20.213 | 18.795 | 16.268 | 14.211 | 14.433 | 16.293 | 18.964 | 21.770 |
| 486   | 21.714 | 21.177 | 19.668 | 17.049 | 14.911 | 15.136 | 17.137 | 19.986 | 23.033 |
| 486.5 | 22.714 | 22.182 | 20.572 | 17.853 | 15.611 | 15.872 | 18.008 | 21.053 | 24.340 |
| 487   | 23.755 | 23.220 | 21.507 | 18.690 | 16.325 | 16.628 | 18.920 | 22.153 | 25.683 |
| 487.5 | 24.827 | 24.299 | 22.461 | 19.525 | 17.063 | 17.428 | 19.876 | 23.325 | 27.086 |
| 488   | 25.928 | 25.395 | 23.440 | 20.389 | 17.815 | 18.276 | 20.875 | 24.547 | 28.506 |
| 488.5 | 27.036 | 26.508 | 24.465 | 21.269 | 18.575 | 19.152 | 21.908 | 25.815 | 29.939 |
| 489   | 28.172 | 27.644 | 25.515 | 22.177 | 19.362 | 20.049 | 22.972 | 27.125 | 31.404 |
| 489.5 | 29.343 | 28.803 | 26.591 | 23.114 | 20.194 | 20.971 | 24.079 | 28.456 | 32.914 |
| 490   | 30.557 | 29.991 | 27.708 | 24.108 | 21.070 | 21.939 | 25.226 | 29.841 | 34.504 |
| 490.5 | 31.813 | 31.209 | 28.879 | 25.143 | 21.984 | 22.939 | 26.397 | 31.269 | 36.160 |
| 491   | 33.142 | 32.461 | 30.098 | 26.242 | 22.946 | 23.968 | 27.590 | 32.728 | 37.867 |
| 491.5 | 34.549 | 33.788 | 31.356 | 27.347 | 23.978 | 25.037 | 28.828 | 34.269 | 39.689 |

| 492   | 36.018  | 35.176  | 32.644  | 28.486 | 25.071 | 26.156 | 30.124  | 35.867  | 41.592  |
|-------|---------|---------|---------|--------|--------|--------|---------|---------|---------|
| 492.5 | 37.534  | 36.627  | 33.993  | 29.650 | 26.190 | 27.320 | 31.464  | 37.550  | 43.575  |
| 493   | 39.069  | 38.116  | 35.367  | 30.835 | 27.331 | 28.509 | 32.839  | 39.296  | 45.604  |
| 493.5 | 40.604  | 39.652  | 36.754  | 32.024 | 28.491 | 29.722 | 34.275  | 41.067  | 47.681  |
| 494   | 42.156  | 41.215  | 38.156  | 33.257 | 29.656 | 30.958 | 35.770  | 42.884  | 49.816  |
| 494.5 | 43.730  | 42.799  | 39.596  | 34.512 | 30.813 | 32.213 | 37.320  | 44.761  | 52.013  |
| 495   | 45.337  | 44.367  | 41.080  | 35.822 | 31.952 | 33.476 | 38.907  | 46.660  | 54.238  |
| 495.5 | 47.022  | 45.989  | 42.601  | 37.175 | 33.112 | 34.759 | 40.533  | 48.601  | 56.539  |
| 496   | 48.752  | 47.623  | 44.123  | 38.552 | 34.310 | 36.070 | 42.189  | 50.556  | 58.909  |
| 496.5 | 50.572  | 49.300  | 45.697  | 39.987 | 35.546 | 37.437 | 43.877  | 52.585  | 61.346  |
| 497   | 52.411  | 50.995  | 47.296  | 41.447 | 36.819 | 38.858 | 45.588  | 54.684  | 63.831  |
| 497.5 | 54.250  | 52.753  | 48.935  | 42.909 | 38.132 | 40.327 | 47.341  | 56.822  | 66.403  |
| 498   | 56.076  | 54.556  | 50.588  | 44.406 | 39.487 | 41.834 | 49.126  | 58.978  | 69.052  |
| 498.5 | 57.926  | 56.394  | 52.279  | 45.910 | 40.879 | 43.378 | 50.957  | 61.209  | 71.805  |
| 499   | 59.787  | 58.238  | 54.007  | 47.421 | 42.289 | 44.955 | 52.833  | 63.528  | 74.613  |
| 499.5 | 61.698  | 60.144  | 55.776  | 48.989 | 43.722 | 46.540 | 54.763  | 65.917  | 77.483  |
| 500   | 63.644  | 62.047  | 57.555  | 50.565 | 45.190 | 48.135 | 56.691  | 68.327  | 80.382  |
| 500.5 | 65.701  | 63.994  | 59.383  | 52.186 | 46.678 | 49.773 | 58.638  | 70.795  | 83.278  |
| 501   | 67.793  | 65.971  | 61.253  | 53.838 | 48.168 | 51.429 | 60.593  | 73.307  | 86.179  |
| 501.5 | 69.954  | 68.017  | 63.191  | 55.528 | 49.683 | 53.129 | 62.614  | 75.875  | 89.151  |
| 502   | 72.085  | 70.116  | 65.158  | 57.261 | 51.243 | 54.874 | 64.666  | 78.429  | 92.169  |
| 502.5 | 74.257  | 72.264  | 67.153  | 58.985 | 52.832 | 56.639 | 66.732  | 81.027  | 95.232  |
| 503   | 76.431  | 74.456  | 69.168  | 60.671 | 54.436 | 58.414 | 68.829  | 83.697  | 98.370  |
| 503.5 | 78.661  | 76.724  | 71.227  | 62.385 | 56.052 | 60.179 | 71.013  | 86.409  | 101.621 |
| 504   | 80.896  | 78.971  | 73.292  | 64.101 | 57.713 | 61.946 | 73.217  | 89.110  | 104.920 |
| 504.5 | 83.229  | 81.244  | 75.335  | 65.820 | 59.399 | 63.747 | 75.459  | 91.849  | 108.185 |
| 505   | 85.565  | 83.536  | 77.370  | 67.548 | 61.051 | 65.563 | 77.675  | 94.576  | 111.387 |
| 505.5 | 87.960  | 85.848  | 79.418  | 69.333 | 62.682 | 67.398 | 79.928  | 97.328  | 114.602 |
| 506   | 90.295  | 88.180  | 81.451  | 71.194 | 64.326 | 69.285 | 82.218  | 100.074 | 117.810 |
| 506.5 | 92.633  | 90.502  | 83.498  | 73.070 | 65.990 | 71.182 | 84.484  | 102.838 | 120.997 |
| 507   | 94.918  | 92.793  | 85.550  | 74.952 | 67.636 | 73.078 | 86.707  | 105.642 | 124.167 |
| 507.5 | 97.218  | 95.077  | 87.632  | 76.854 | 69.264 | 74.932 | 88.941  | 108.471 | 127.422 |
| 508   | 99.495  | 97.304  | 89.749  | 78.787 | 70.922 | 76.767 | 91.157  | 111.283 | 130.727 |
| 508.5 | 101.828 | 99.531  | 91.852  | 80.690 | 72.613 | 78.562 | 93.382  | 114.122 | 134.045 |
| 509   | 104.152 | 101.755 | 93.963  | 82.549 | 74.286 | 80.345 | 95.561  | 116.916 | 137.279 |
| 509.5 | 106.524 | 104.011 | 96.120  | 84.426 | 75.916 | 82.129 | 97.725  | 119.648 | 140.511 |
| 510   | 108.854 | 106.308 | 98.250  | 86.318 | 77.556 | 83.975 | 99.911  | 122.266 | 143.700 |
| 510.5 | 111.202 | 108.624 | 100.363 | 88.140 | 79.230 | 85.858 | 102.079 | 124.802 | 146.863 |
| 511   | 113.477 | 110.866 | 102.415 | 89.925 | 80.878 | 87.739 | 104.202 | 127.271 | 149.883 |
| 511.5 | 115.745 | 113.033 | 104.435 | 91.649 | 82.484 | 89.562 | 106.268 | 129.656 | 152.854 |
| 512   | 117.930 | 115.082 | 106.442 | 93.330 | 84.021 | 91.343 | 108.258 | 131.999 | 155.754 |
| 512.5 | 120.131 | 117.058 | 108.362 | 94.942 | 85.525 | 92.988 | 110.246 | 134.329 | 158.575 |
| 513   | 122.288 | 118.953 | 110.191 | 96.505 | 86.991 | 94.536 | 112.207 | 136.625 | 161.277 |
| 513.5 | 124.418 | 120.830 | 112.060 | 98.066 | 88.383 | 95.997 | 114.112 | 138.908 | 163.909 |

| 514   | 126.481 | 122.737 | 113.870 | 99.667  | 89.771  | 97.436  | 115.949 | 141.149 | 166.409 |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 514.5 | 128.524 | 124.694 | 115.653 | 101.246 | 91.171  | 98.888  | 117.761 | 143.356 | 168.889 |
| 515   | 130.501 | 126.654 | 117.426 | 102.837 | 92.585  | 100.354 | 119.557 | 145.496 | 171.251 |
| 515.5 | 132.450 | 128.616 | 119.188 | 104.387 | 94.050  | 101.793 | 121.283 | 147.505 | 173.597 |
| 516   | 134.312 | 130.509 | 120.992 | 105.886 | 95.489  | 103.211 | 122.864 | 149.404 | 175.917 |
| 516.5 | 136.147 | 132.331 | 122.701 | 107.335 | 96.858  | 104.558 | 124.338 | 151.245 | 178.142 |
| 517   | 137.883 | 134.045 | 124.302 | 108.732 | 98.144  | 105.839 | 125.767 | 152.981 | 180.339 |
| 517.5 | 139.565 | 135.757 | 125.890 | 110.077 | 99.316  | 107.042 | 127.148 | 154.671 | 182.514 |
| 518   | 141.178 | 137.412 | 127.398 | 111.388 | 100.367 | 108.192 | 128.407 | 156.341 | 184.552 |
| 518.5 | 142.751 | 139.043 | 128.816 | 112.643 | 101.306 | 109.347 | 129.603 | 157.970 | 186.491 |
| 519   | 144.277 | 140.635 | 130.158 | 113.873 | 102.140 | 110.478 | 130.806 | 159.509 | 188.260 |
| 519.5 | 145.816 | 142.223 | 131.398 | 115.051 | 102.973 | 111.568 | 132.015 | 160.906 | 189.923 |
| 520   | 147.316 | 143.738 | 132.619 | 116.155 | 103.806 | 112.554 | 133.112 | 162.138 | 191.392 |
| 520.5 | 148.801 | 145.116 | 133.701 | 117.185 | 104.629 | 113.406 | 134.079 | 163.281 | 192.589 |
| 521   | 150.194 | 146.333 | 134.703 | 118.170 | 105.439 | 114.158 | 135.026 | 164.268 | 193.681 |
| 521.5 | 151.493 | 147.511 | 135.625 | 119.084 | 106.283 | 114.830 | 135.945 | 165.085 | 194.617 |
| 522   | 152.627 | 148.534 | 136.486 | 119.915 | 107.103 | 115.403 | 136.772 | 165.826 | 195.447 |
| 522.5 | 153.637 | 149.465 | 137.295 | 120.675 | 107.844 | 115.938 | 137.494 | 166.529 | 196.232 |
| 523   | 154.463 | 150.323 | 138.050 | 121.379 | 108.444 | 116.422 | 138.170 | 167.134 | 197.023 |
| 523.5 | 155.131 | 151.117 | 138.779 | 122.005 | 108.918 | 116.908 | 138.808 | 167.620 | 197.816 |
| 524   | 155.685 | 151.883 | 139.518 | 122.543 | 109.315 | 117.366 | 139.362 | 167.995 | 198.448 |
| 524.5 | 156.154 | 152.524 | 140.159 | 123.003 | 109.634 | 117.736 | 139.738 | 168.289 | 198.836 |
| 525   | 156.576 | 153.019 | 140.793 | 123.375 | 109.856 | 118.016 | 139.998 | 168.529 | 199.088 |
| 525.5 | 156.975 | 153.512 | 141.316 | 123.671 | 110.058 | 118.241 | 140.146 | 168.624 | 199.057 |
| 526   | 157.298 | 153.865 | 141.734 | 123.893 | 110.235 | 118.390 | 140.190 | 168.635 | 198.791 |
| 526.5 | 157.656 | 154.140 | 142.046 | 124.014 | 110.385 | 118.494 | 140.102 | 168.577 | 198.405 |
| 527   | 157.938 | 154.330 | 142.221 | 124.095 | 110.504 | 118.505 | 139.941 | 168.412 | 198.025 |
| 527.5 | 158.120 | 154.447 | 142.295 | 124.121 | 110.524 | 118.444 | 139.734 | 168.127 | 197.696 |
| 528   | 158.232 | 154.528 | 142.241 | 124.086 | 110.444 | 118.317 | 139.488 | 167.804 | 197.337 |
| 528.5 | 158.163 | 154.471 | 142.028 | 124.021 | 110.289 | 118.134 | 139.155 | 167.391 | 196.884 |
| 529   | 157.993 | 154.300 | 141.786 | 123.918 | 110.071 | 117.836 | 138.747 | 166.934 | 196.410 |
| 529.5 | 157.727 | 154.042 | 141.490 | 123.723 | 109.772 | 117.512 | 138.283 | 166.392 | 195.752 |
| 530   | 157.308 | 153.678 | 141.120 | 123.459 | 109.426 | 117.106 | 137.771 | 165.748 | 194.871 |
| 530.5 | 156.863 | 153.233 | 140.712 | 123.070 | 109.012 | 116.671 | 137.196 | 164.988 | 193.843 |
| 531   | 156.359 | 152.709 | 140.291 | 122.648 | 108.599 | 116.209 | 136.548 | 164.043 | 192.759 |
| 531.5 | 155.826 | 152.125 | 139.856 | 122.188 | 108.130 | 115.698 | 135.837 | 162.966 | 191.601 |
| 532   | 155.323 | 151.527 | 139.363 | 121.672 | 107.614 | 115.131 | 135.056 | 161.862 | 190.413 |
| 532.5 | 154.745 | 150.885 | 138.780 | 121.130 | 107.023 | 114.585 | 134.234 | 160.734 | 189.171 |
| 533   | 154.124 | 150.176 | 138.143 | 120.578 | 106.411 | 113.936 | 133.319 | 159.648 | 187.900 |
| 533.5 | 153.452 | 149.382 | 137.449 | 120.011 | 105.790 | 113.270 | 132.374 | 158.576 | 186.581 |
| 534   | 152.689 | 148.516 | 136.651 | 119.429 | 105.118 | 112.517 | 131.440 | 157.496 | 185.148 |
| 534.5 | 151.833 | 147.583 | 135.754 | 118.715 | 104.391 | 111.720 | 130.516 | 156.391 | 183.649 |
| 535   | 150.854 | 146.572 | 134.844 | 117.944 | 103.663 | 110.903 | 129.543 | 155.163 | 182.121 |
| 535.5 | 149.817 | 145.488 | 133.939 | 117.142 | 102.953 | 110.058 | 128.566 | 153.845 | 180.490 |

| 536   | 148.765 | 144.379 | 132.982 | 116.289 | 102.264 | 109.171 | 127.504 | 152.458 | 178.830 |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 536.5 | 147.669 | 143.311 | 132.023 | 115.384 | 101.543 | 108.318 | 126.425 | 151.039 | 177.161 |
| 537   | 146.529 | 142.235 | 131.035 | 114.416 | 100.778 | 107.435 | 125.285 | 149.627 | 175.468 |
| 537.5 | 145.322 | 141.167 | 130.048 | 113.457 | 100.039 | 106.576 | 124.138 | 148.243 | 173.810 |
| 538   | 144.076 | 140.093 | 129.005 | 112.484 | 99.268  | 105.671 | 123.007 | 146.835 | 172.154 |
| 538.5 | 142.747 | 139.007 | 127.875 | 111.434 | 98.457  | 104.729 | 121.934 | 145.441 | 170.480 |
| 539   | 141.342 | 137.913 | 126.707 | 110.347 | 97.609  | 103.712 | 120.869 | 144.027 | 168.786 |
| 539.5 | 139.948 | 136.741 | 125.542 | 109.281 | 96.742  | 102.634 | 119.865 | 142.580 | 167.043 |
| 540   | 138.608 | 135.482 | 124.291 | 108.252 | 95.829  | 101.502 | 118.772 | 141.090 | 165.266 |
| 540.5 | 137.337 | 134.214 | 123.091 | 107.299 | 94.891  | 100.333 | 117.589 | 139.556 | 163.484 |
| 541   | 136.097 | 132.824 | 121.880 | 106.332 | 93.876  | 99.167  | 116.299 | 138.050 | 161.601 |
| 541.5 | 134.831 | 131.409 | 120.690 | 105.423 | 92.852  | 98.059  | 114.970 | 136.591 | 159.749 |
| 542   | 133.552 | 129.941 | 119.521 | 104.474 | 91.787  | 97.001  | 113.586 | 135.133 | 157.941 |
| 542.5 | 132.189 | 128.447 | 118.316 | 103.452 | 90.699  | 96.007  | 112.237 | 133.696 | 156.167 |
| 543   | 130.736 | 127.003 | 117.049 | 102.303 | 89.655  | 95.014  | 110.874 | 132.259 | 154.383 |
| 543.5 | 129.184 | 125.588 | 115.810 | 101.083 | 88.683  | 94.026  | 109.588 | 130.786 | 152.631 |
| 544   | 127.654 | 124.194 | 114.488 | 99.789  | 87.728  | 93.016  | 108.343 | 129.303 | 150.899 |
| 544.5 | 126.164 | 122.841 | 113.164 | 98.531  | 86.812  | 91.938  | 107.100 | 127.785 | 149.179 |
| 545   | 124.730 | 121.463 | 111.742 | 97.279  | 85.890  | 90.807  | 105.860 | 126.262 | 147.347 |
| 545.5 | 123.320 | 120.110 | 110.330 | 96.117  | 84.935  | 89.707  | 104.678 | 124.746 | 145.451 |
| 546   | 121.959 | 118.692 | 108.937 | 94.962  | 83.925  | 88.637  | 103.473 | 123.231 | 143.553 |
| 546.5 | 120.598 | 117.215 | 107.558 | 93.871  | 82.842  | 87.589  | 102.317 | 121.729 | 141.640 |
| 547   | 119.207 | 115.742 | 106.184 | 92.795  | 81.758  | 86.554  | 101.119 | 120.241 | 139.685 |
| 547.5 | 117.717 | 114.260 | 104.882 | 91.694  | 80.675  | 85.521  | 99.896  | 118.749 | 137.795 |
| 548   | 116.201 | 112.793 | 103.615 | 90.535  | 79.614  | 84.494  | 98.650  | 117.295 | 136.015 |
| 548.5 | 114.678 | 111.297 | 102.359 | 89.382  | 78.592  | 83.471  | 97.343  | 115.830 | 134.322 |
| 549   | 113.137 | 109.808 | 101.046 | 88.212  | 77.608  | 82.411  | 96.024  | 114.366 | 132.669 |
| 549.5 | 111.569 | 108.343 | 99.752  | 87.061  | 76.656  | 81.374  | 94.699  | 112.905 | 131.009 |
| 550   | 110.002 | 106.887 | 98.428  | 85.860  | 75.691  | 80.345  | 93.347  | 111.435 | 129.343 |
| 550.5 | 108.450 | 105.436 | 97.083  | 84.684  | 74.722  | 79.301  | 92.077  | 109.961 | 127.639 |
| 551   | 106.920 | 104.034 | 95.704  | 83.574  | 73.782  | 78.268  | 90.857  | 108.474 | 125.860 |
| 551.5 | 105.405 | 102.629 | 94.318  | 82.477  | 72.823  | 77.193  | 89.666  | 106.955 | 124.058 |
| 552   | 103.926 | 101.262 | 92.976  | 81.356  | 71.870  | 76.130  | 88.514  | 105.475 | 122.300 |
| 552.5 | 102.482 | 99.859  | 91.652  | 80.250  | 70.926  | 75.063  | 87.324  | 104.039 | 120.536 |
| 553   | 101.048 | 98.429  | 90.313  | 79.169  | 69.997  | 73.995  | 86.162  | 102.586 | 118.847 |
| 553.5 | 99.642  | 96.920  | 89.028  | 78.091  | 69.055  | 72.958  | 84.966  | 101.132 | 117.163 |
| 554   | 98.215  | 95.392  | 87.763  | 76.924  | 68.072  | 71.932  | 83.725  | 99.702  | 115.462 |
| 554.5 | 96.771  | 93.887  | 86.529  | 75.694  | 67.090  | 70.910  | 82.506  | 98.235  | 113.771 |
| 555   | 95.297  | 92.410  | 85.307  | 74.494  | 66.131  | 69.918  | 81.297  | 96.741  | 112.056 |
| 555.5 | 93.804  | 90.971  | 84.063  | 73.317  | 65.153  | 68.872  | 80.087  | 95.184  | 110.315 |
| 556   | 92.313  | 89.592  | 82.811  | 72.127  | 64.152  | 67.853  | 78.906  | 93.649  | 108.600 |
| 556.5 | 90.827  | 88.280  | 81.540  | 70.980  | 63.130  | 66.853  | 77.728  | 92.211  | 106.834 |
| 557   | 89.347  | 86.996  | 80.246  | 69.910  | 62.136  | 65.874  | 76.574  | 90.776  | 105.131 |
| 557.5 | 87.932  | 85.637  | 78.960  | 68.928  | 61.135  | 64.910  | 75.400  | 89.373  | 103.488 |

| 558   | 86.532 | 84.263 | 77.673 | 67.924 | 60.139 | 63.934 | 74.181 | 88.034 | 101.824 |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 558.5 | 85.142 | 82.888 | 76.448 | 66.868 | 59.165 | 62.954 | 72.970 | 86.705 | 100.162 |
| 559   | 83.761 | 81.466 | 75.250 | 65.793 | 58.264 | 61.983 | 71.772 | 85.344 | 98.505  |
| 559.5 | 82.395 | 80.025 | 74.048 | 64.700 | 57.393 | 60.974 | 70.574 | 83.940 | 96.821  |
| 560   | 81.054 | 78.594 | 72.842 | 63.544 | 56.530 | 59.964 | 69.388 | 82.511 | 95.169  |
| 560.5 | 79.686 | 77.218 | 71.628 | 62.383 | 55.625 | 58.984 | 68.227 | 81.134 | 93.449  |
| 561   | 78.280 | 75.879 | 70.419 | 61.260 | 54.717 | 58.021 | 67.079 | 79.749 | 91.717  |
| 561.5 | 76.891 | 74.538 | 69.208 | 60.250 | 53.769 | 57.043 | 65.928 | 78.341 | 90.048  |
| 562   | 75.497 | 73.210 | 67.959 | 59.302 | 52.793 | 56.046 | 64.771 | 76.967 | 88.390  |
| 562.5 | 74.142 | 71.923 | 66.743 | 58.353 | 51.798 | 55.046 | 63.620 | 75.614 | 86.726  |
| 563   | 72.790 | 70.603 | 65.518 | 57.429 | 50.853 | 54.036 | 62.482 | 74.201 | 85.119  |
| 563.5 | 71.469 | 69.230 | 64.256 | 56.503 | 49.943 | 53.023 | 61.339 | 72.755 | 83.504  |
| 564   | 70.182 | 67.840 | 63.002 | 55.533 | 49.086 | 51.990 | 60.177 | 71.276 | 81.906  |
| 564.5 | 68.866 | 66.449 | 61.746 | 54.498 | 48.241 | 51.006 | 59.017 | 69.819 | 80.288  |
| 565   | 67.512 | 65.054 | 60.481 | 53.366 | 47.381 | 50.047 | 57.848 | 68.389 | 78.622  |
| 565.5 | 66.125 | 63.687 | 59.244 | 52.239 | 46.532 | 49.087 | 56.687 | 66.989 | 76.979  |
| 566   | 64.712 | 62.364 | 58.004 | 51.153 | 45.665 | 48.126 | 55.544 | 65.619 | 75.350  |
| 566.5 | 63.366 | 61.104 | 56.823 | 50.053 | 44.772 | 47.190 | 54.427 | 64.319 | 73.714  |
| 567   | 62.042 | 59.913 | 55.672 | 49.015 | 43.880 | 46.250 | 53.366 | 63.024 | 72.158  |
| 567.5 | 60.763 | 58.731 | 54.514 | 48.034 | 42.998 | 45.323 | 52.317 | 61.742 | 70.645  |
| 568   | 59.533 | 57.585 | 53.401 | 47.139 | 42.138 | 44.404 | 51.282 | 60.446 | 69.152  |
| 568.5 | 58.347 | 56.444 | 52.323 | 46.284 | 41.306 | 43.522 | 50.246 | 59.146 | 67.710  |
| 569   | 57.161 | 55.256 | 51.264 | 45.387 | 40.452 | 42.661 | 49.220 | 57.879 | 66.294  |
| 569.5 | 55.944 | 54.059 | 50.252 | 44.493 | 39.623 | 41.811 | 48.197 | 56.639 | 64.903  |
| 570   | 54.671 | 52.868 | 49.237 | 43.611 | 38.803 | 40.963 | 47.164 | 55.397 | 63.539  |
| 570.5 | 53.434 | 51.689 | 48.244 | 42.699 | 37.996 | 40.149 | 46.139 | 54.191 | 62.151  |
| 571   | 52.231 | 50.532 | 47.251 | 41.775 | 37.192 | 39.352 | 45.156 | 53.052 | 60.793  |
| 571.5 | 51.071 | 49.411 | 46.242 | 40.845 | 36.431 | 38.567 | 44.191 | 51.936 | 59.467  |
| 572   | 49.947 | 48.325 | 45.232 | 39.947 | 35.680 | 37.800 | 43.242 | 50.838 | 58.133  |
| 572.5 | 48.865 | 47.305 | 44.233 | 39.099 | 34.959 | 37.052 | 42.299 | 49.741 | 56.817  |
| 573   | 47.825 | 46.297 | 43.229 | 38.267 | 34.225 | 36.306 | 41.380 | 48.678 | 55.549  |
| 573.5 | 46.800 | 45.301 | 42.262 | 37.472 | 33.516 | 35.573 | 40.500 | 47.647 | 54.312  |
| 574   | 45.774 | 44.333 | 41.308 | 36.698 | 32.828 | 34.826 | 39.644 | 46.605 | 53.117  |
| 574.5 | 44.766 | 43.397 | 40.387 | 35.949 | 32.141 | 34.104 | 38.794 | 45.567 | 51.929  |
| 575   | 43.785 | 42.455 | 39.491 | 35.211 | 31.469 | 33.389 | 37.970 | 44.577 | 50.764  |
| 575.5 | 42.835 | 41.527 | 38.623 | 34.476 | 30.838 | 32.675 | 37.182 | 43.604 | 49.626  |
| 576   | 41.896 | 40.593 | 37.776 | 33.720 | 30.234 | 31.968 | 36.425 | 42.650 | 48.493  |
| 576.5 | 40.944 | 39.689 | 36.922 | 32.964 | 29.644 | 31.269 | 35.675 | 41.709 | 47.376  |
| 577   | 39.997 | 38.785 | 36.066 | 32.204 | 29.038 | 30.568 | 34.934 | 40.815 | 46.298  |
| 577.5 | 39.061 | 37.898 | 35.238 | 31.454 | 28.432 | 29.887 | 34.200 | 39.952 | 45.253  |
| 578   | 38.146 | 37.028 | 34.415 | 30.717 | 27.845 | 29.219 | 33.481 | 39.085 | 44.237  |
| 578.5 | 37.261 | 36.199 | 33.622 | 30.023 | 27.248 | 28.592 | 32.745 | 38.230 | 43.238  |
| 579   | 36.398 | 35.382 | 32.862 | 29.367 | 26.654 | 28.001 | 31.998 | 37.405 | 42.272  |
| 579.5 | 35.574 | 34.588 | 32.138 | 28.766 | 26.069 | 27.442 | 31.258 | 36.584 | 41.346  |

| 580   | 34.795 | 33.796 | 31.446 | 28.189 | 25.513 | 26.905 | 30.557 | 35.760 | 40.435 |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 580.5 | 34.023 | 33.032 | 30.797 | 27.631 | 24.955 | 26.374 | 29.895 | 34.944 | 39.535 |
| 581   | 33.267 | 32.276 | 30.181 | 27.077 | 24.417 | 25.839 | 29.275 | 34.169 | 38.657 |
| 581.5 | 32.510 | 31.540 | 29.580 | 26.516 | 23.877 | 25.311 | 28.692 | 33.432 | 37.818 |
| 582   | 31.762 | 30.835 | 28.975 | 25.935 | 23.373 | 24.776 | 28.155 | 32.711 | 36.998 |
| 582.5 | 31.050 | 30.172 | 28.359 | 25.370 | 22.891 | 24.249 | 27.626 | 32.013 | 36.191 |
| 583   | 30.359 | 29.539 | 27.739 | 24.810 | 22.454 | 23.733 | 27.086 | 31.340 | 35.386 |
| 583.5 | 29.677 | 28.908 | 27.106 | 24.281 | 22.023 | 23.220 | 26.531 | 30.679 | 34.615 |
| 584   | 29.022 | 28.271 | 26.447 | 23.770 | 21.627 | 22.722 | 25.972 | 30.004 | 33.875 |
| 584.5 | 28.378 | 27.651 | 25.792 | 23.277 | 21.211 | 22.231 | 25.398 | 29.330 | 33.142 |
| 585   | 27.754 | 27.020 | 25.182 | 22.786 | 20.804 | 21.735 | 24.826 | 28.671 | 32.418 |
| 585.5 | 27.112 | 26.379 | 24.595 | 22.292 | 20.368 | 21.262 | 24.264 | 28.036 | 31.718 |
| 586   | 26.459 | 25.744 | 24.035 | 21.761 | 19.914 | 20.818 | 23.709 | 27.420 | 31.021 |
| 586.5 | 25.834 | 25.119 | 23.500 | 21.244 | 19.460 | 20.385 | 23.177 | 26.826 | 30.334 |
| 587   | 25.231 | 24.515 | 22.999 | 20.732 | 19.028 | 19.967 | 22.658 | 26.258 | 29.627 |
| 587.5 | 24.627 | 23.918 | 22.513 | 20.250 | 18.603 | 19.560 | 22.153 | 25.706 | 28.915 |
| 588   | 24.039 | 23.325 | 22.006 | 19.799 | 18.209 | 19.171 | 21.667 | 25.150 | 28.240 |
| 588.5 | 23.456 | 22.760 | 21.492 | 19.375 | 17.828 | 18.780 | 21.190 | 24.591 | 27.584 |
| 589   | 22.914 | 22.214 | 21.006 | 18.982 | 17.480 | 18.370 | 20.719 | 24.033 | 26.960 |
| 589.5 | 22.372 | 21.698 | 20.530 | 18.609 | 17.132 | 17.969 | 20.277 | 23.472 | 26.373 |
| 590   | 21.844 | 21.211 | 20.064 | 18.212 | 16.790 | 17.590 | 19.851 | 22.937 | 25.820 |
| 590.5 | 21.321 | 20.738 | 19.602 | 17.814 | 16.446 | 17.225 | 19.431 | 22.412 | 25.300 |
| 591   | 20.826 | 20.284 | 19.154 | 17.407 | 16.115 | 16.870 | 19.015 | 21.913 | 24.796 |
| 591.5 | 20.341 | 19.835 | 18.719 | 17.008 | 15.781 | 16.525 | 18.614 | 21.440 | 24.255 |
| 592   | 19.858 | 19.381 | 18.301 | 16.614 | 15.446 | 16.198 | 18.221 | 20.972 | 23.719 |
| 592.5 | 19.378 | 18.933 | 17.882 | 16.220 | 15.122 | 15.872 | 17.825 | 20.509 | 23.167 |
| 593   | 18.919 | 18.473 | 17.479 | 15.847 | 14.810 | 15.549 | 17.433 | 20.067 | 22.611 |
| 593.5 | 18.450 | 18.028 | 17.096 | 15.495 | 14.506 | 15.223 | 17.070 | 19.616 | 22.053 |
| 594   | 18.000 | 17.619 | 16.726 | 15.151 | 14.211 | 14.912 | 16.725 | 19.193 | 21.512 |
| 594.5 | 17.567 | 17.228 | 16.366 | 14.831 | 13.920 | 14.606 | 16.381 | 18.778 | 20.995 |
| 595   | 17.163 | 16.856 | 16.005 | 14.530 | 13.642 | 14.307 | 16.044 | 18.386 | 20.515 |
| 595.5 | 16.799 | 16.499 | 15.641 | 14.253 | 13.379 | 14.023 | 15.727 | 18.010 | 20.037 |
| 596   | 16.450 | 16.142 | 15.288 | 13.998 | 13.116 | 13.757 | 15.426 | 17.637 | 19.593 |
| 596.5 | 16.114 | 15.784 | 14.940 | 13.735 | 12.845 | 13.483 | 15.113 | 17.266 | 19.174 |
| 597   | 15.785 | 15.415 | 14.597 | 13.469 | 12.572 | 13.214 | 14.803 | 16.899 | 18.778 |
| 597.5 | 15.430 | 15.043 | 14.264 | 13.195 | 12.299 | 12.948 | 14.493 | 16.518 | 18.382 |
| 598   | 15.062 | 14.675 | 13.935 | 12.900 | 12.021 | 12.677 | 14.178 | 16.159 | 17.996 |
| 598.5 | 14.692 | 14.307 | 13.621 | 12.592 | 11.736 | 12.403 | 13.847 | 15.793 | 17.609 |
| 599   | 14.321 | 13.955 | 13.309 | 12.278 | 11.452 | 12.134 | 13.514 | 15.451 | 17.228 |
| 599.5 | 13.976 | 13.627 | 12.994 | 11.975 | 11.200 | 11.873 | 13.189 | 15.126 | 16.839 |
| 600   | 13.646 | 13.315 | 12.689 | 11.689 | 10.977 | 11.624 | 12.891 | 14.804 | 16.458 |
| 600.5 | 13.343 | 13.018 | 12.398 | 11.406 | 10.760 | 11.371 | 12.599 | 14.494 | 16.098 |
| 601   | 13.062 | 12.735 | 12.120 | 11.145 | 10.561 | 11.124 | 12.348 | 14.187 | 15.748 |
| 601.5 | 12.796 | 12.472 | 11.851 | 10.902 | 10.381 | 10.888 | 12.114 | 13.872 | 15.402 |

| 602   | 12.521 | 12.209 | 11.594 | 10.675 | 10.204 | 10.661 | 11.886 | 13.571 | 15.061 |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 602.5 | 12.249 | 11.939 | 11.351 | 10.459 | 10.024 | 10.442 | 11.657 | 13.267 | 14.720 |
| 603   | 11.982 | 11.666 | 11.108 | 10.254 | 9.829  | 10.229 | 11.434 | 12.979 | 14.392 |
| 603.5 | 11.716 | 11.400 | 10.872 | 10.065 | 9.640  | 10.019 | 11.198 | 12.702 | 14.072 |
| 604   | 11.448 | 11.137 | 10.636 | 9.879  | 9.448  | 9.834  | 10.968 | 12.427 | 13.771 |
| 604.5 | 11.173 | 10.869 | 10.405 | 9.675  | 9.247  | 9.658  | 10.731 | 12.168 | 13.503 |
| 605   | 10.903 | 10.602 | 10.181 | 9.472  | 9.043  | 9.484  | 10.515 | 11.935 | 13.242 |
| 605.5 | 10.646 | 10.363 | 9.962  | 9.268  | 8.843  | 9.311  | 10.305 | 11.699 | 12.981 |
| 606   | 10.388 | 10.129 | 9.748  | 9.069  | 8.642  | 9.137  | 10.089 | 11.464 | 12.716 |
| 606.5 | 10.127 | 9.896  | 9.537  | 8.873  | 8.445  | 8.956  | 9.880  | 11.231 | 12.436 |
| 607   | 9.882  | 9.674  | 9.312  | 8.684  | 8.251  | 8.778  | 9.689  | 10.996 | 12.151 |
| 607.5 | 9.647  | 9.468  | 9.088  | 8.514  | 8.072  | 8.584  | 9.498  | 10.756 | 11.853 |
| 608   | 9.425  | 9.274  | 8.866  | 8.340  | 7.895  | 8.403  | 9.309  | 10.513 | 11.560 |
| 608.5 | 9.203  | 9.080  | 8.642  | 8.155  | 7.733  | 8.224  | 9.118  | 10.264 | 11.291 |
| 609   | 8.988  | 8.876  | 8.425  | 7.964  | 7.586  | 8.051  | 8.936  | 10.036 | 11.035 |
| 609.5 | 8.790  | 8.688  | 8.216  | 7.774  | 7.444  | 7.883  | 8.758  | 9.810  | 10.784 |
| 610   | 8.597  | 8.494  | 8.019  | 7.582  | 7.304  | 7.718  | 8.566  | 9.587  | 10.538 |
| 610.5 | 8.402  | 8.293  | 7.840  | 7.389  | 7.159  | 7.552  | 8.380  | 9.375  | 10.295 |
| 611   | 8.205  | 8.086  | 7.665  | 7.204  | 7.013  | 7.396  | 8.204  | 9.160  | 10.057 |
| 611.5 | 8.015  | 7.874  | 7.500  | 7.037  | 6.872  | 7.231  | 8.029  | 8.947  | 9.814  |
| 612   | 7.832  | 7.677  | 7.351  | 6.877  | 6.721  | 7.076  | 7.850  | 8.740  | 9.574  |
| 612.5 | 7.645  | 7.481  | 7.200  | 6.727  | 6.577  | 6.924  | 7.669  | 8.533  | 9.342  |
| 613   | 7.472  | 7.288  | 7.049  | 6.573  | 6.450  | 6.779  | 7.486  | 8.344  | 9.125  |
| 613.5 | 7.307  | 7.107  | 6.886  | 6.433  | 6.325  | 6.645  | 7.314  | 8.162  | 8.914  |
| 614   | 7.145  | 6.934  | 6.709  | 6.305  | 6.207  | 6.513  | 7.137  | 7.989  | 8.713  |
| 614.5 | 6.987  | 6.772  | 6.531  | 6.168  | 6.093  | 6.376  | 6.966  | 7.835  | 8.527  |
| 615   | 6.820  | 6.617  | 6.350  | 6.029  | 5.975  | 6.241  | 6.811  | 7.676  | 8.355  |
| 615.5 | 6.648  | 6.460  | 6.161  | 5.897  | 5.850  | 6.104  | 6.665  | 7.506  | 8.180  |
| 616   | 6.474  | 6.318  | 5.993  | 5.758  | 5.718  | 5.975  | 6.516  | 7.331  | 8.003  |
| 616.5 | 6.297  | 6.170  | 5.844  | 5.620  | 5.587  | 5.845  | 6.364  | 7.151  | 7.817  |
| 617   | 6.129  | 6.027  | 5.714  | 5.466  | 5.467  | 5.713  | 6.210  | 6.967  | 7.630  |
| 617.5 | 5.964  | 5.878  | 5.593  | 5.318  | 5.348  | 5.596  | 6.064  | 6.778  | 7.440  |
| 618   | 5.810  | 5.720  | 5.474  | 5.184  | 5.236  | 5.479  | 5.924  | 6.598  | 7.249  |
| 618.5 | 5.665  | 5.571  | 5.364  | 5.048  | 5.128  | 5.363  | 5.789  | 6.440  | 7.067  |
| 619   | 5.529  | 5.427  | 5.253  | 4.921  | 5.015  | 5.242  | 5.664  | 6.292  | 6.904  |
| 619.5 | 5.394  | 5.284  | 5.130  | 4.808  | 4.892  | 5.117  | 5.548  | 6.148  | 6.746  |
| 620   | 5.264  | 5.151  | 5.010  | 4.703  | 4.767  | 4.994  | 5.435  | 6.014  | 6.594  |
| 620.5 | 5.136  | 5.022  | 4.891  | 4.606  | 4.646  | 4.872  | 5.318  | 5.887  | 6.446  |
| 621   | 5.012  | 4.912  | 4.773  | 4.503  | 4.528  | 4.746  | 5.199  | 5.757  | 6.295  |
| 621.5 | 4.890  | 4.805  | 4.654  | 4.399  | 4.412  | 4.632  | 5.086  | 5.620  | 6.135  |
| 622   | 4.774  | 4.696  | 4.533  | 4.302  | 4.295  | 4.525  | 4.975  | 5.480  | 5.973  |
| 622.5 | 4.654  | 4.585  | 4.419  | 4.205  | 4.185  | 4.426  | 4.859  | 5.346  | 5.806  |
| 623   | 4.539  | 4.466  | 4.310  | 4.107  | 4.082  | 4.324  | 4.743  | 5.219  | 5.654  |
| 623.5 | 4.425  | 4.356  | 4.200  | 4.012  | 3.982  | 4.223  | 4.628  | 5.099  | 5.503  |

| 624   | 4.316 | 4.243 | 4.100 | 3.918 | 3.886 | 4.127 | 4.522 | 4.980 | 5.363 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 624.5 | 4.212 | 4.137 | 4.001 | 3.828 | 3.807 | 4.032 | 4.412 | 4.865 | 5.241 |
| 625   | 4.111 | 4.040 | 3.902 | 3.734 | 3.735 | 3.937 | 4.301 | 4.755 | 5.128 |
| 625.5 | 4.018 | 3.944 | 3.802 | 3.637 | 3.667 | 3.847 | 4.203 | 4.639 | 5.013 |
| 626   | 3.930 | 3.851 | 3.705 | 3.534 | 3.590 | 3.757 | 4.111 | 4.521 | 4.903 |
| 626.5 | 3.837 | 3.753 | 3.608 | 3.440 | 3.514 | 3.672 | 4.025 | 4.400 | 4.788 |
| 627   | 3.744 | 3.645 | 3.518 | 3.356 | 3.431 | 3.587 | 3.938 | 4.281 | 4.675 |
| 627.5 | 3.649 | 3.548 | 3.430 | 3.273 | 3.345 | 3.502 | 3.843 | 4.174 | 4.555 |
| 628   | 3.551 | 3.445 | 3.355 | 3.192 | 3.255 | 3.421 | 3.753 | 4.070 | 4.432 |
| 628.5 | 3.453 | 3.349 | 3.272 | 3.118 | 3.174 | 3.341 | 3.660 | 3.971 | 4.315 |
| 629   | 3.355 | 3.262 | 3.190 | 3.047 | 3.097 | 3.266 | 3.559 | 3.879 | 4.203 |
| 629.5 | 3.264 | 3.180 | 3.104 | 2.974 | 3.027 | 3.197 | 3.463 | 3.787 | 4.087 |
| 630   | 3.174 | 3.110 | 3.015 | 2.897 | 2.952 | 3.124 | 3.368 | 3.695 | 3.973 |
| 630.5 | 3.085 | 3.044 | 2.920 | 2.822 | 2.880 | 3.052 | 3.275 | 3.596 | 3.858 |
| 631   | 3.005 | 2.973 | 2.831 | 2.757 | 2.801 | 2.976 | 3.190 | 3.494 | 3.749 |
| 631.5 | 2.924 | 2.907 | 2.744 | 2.691 | 2.730 | 2.900 | 3.102 | 3.404 | 3.645 |
| 632   | 2.845 | 2.836 | 2.669 | 2.623 | 2.661 | 2.820 | 3.021 | 3.317 | 3.548 |
| 632.5 | 2.766 | 2.767 | 2.593 | 2.562 | 2.599 | 2.740 | 2.945 | 3.237 | 3.457 |
| 633   | 2.693 | 2.691 | 2.526 | 2.508 | 2.541 | 2.669 | 2.871 | 3.163 | 3.378 |
| 633.5 | 2.630 | 2.610 | 2.466 | 2.454 | 2.486 | 2.603 | 2.803 | 3.091 | 3.305 |
| 634   | 2.565 | 2.533 | 2.406 | 2.401 | 2.429 | 2.536 | 2.738 | 3.019 | 3.233 |
| 634.5 | 2.504 | 2.456 | 2.343 | 2.345 | 2.376 | 2.474 | 2.673 | 2.945 | 3.157 |
| 635   | 2.451 | 2.382 | 2.287 | 2.294 | 2.319 | 2.414 | 2.614 | 2.864 | 3.077 |
| 635.5 | 2.396 | 2.311 | 2.230 | 2.235 | 2.263 | 2.359 | 2.551 | 2.783 | 2.999 |
| 636   | 2.340 | 2.248 | 2.172 | 2.171 | 2.208 | 2.297 | 2.488 | 2.705 | 2.920 |
| 636.5 | 2.279 | 2.196 | 2.111 | 2.105 | 2.153 | 2.234 | 2.419 | 2.636 | 2.840 |
| 637   | 2.213 | 2.144 | 2.051 | 2.043 | 2.095 | 2.182 | 2.349 | 2.573 | 2.762 |
| 637.5 | 2.150 | 2.091 | 1.999 | 1.983 | 2.041 | 2.132 | 2.282 | 2.519 | 2.690 |
| 638   | 2.088 | 2.043 | 1.947 | 1.927 | 1.982 | 2.085 | 2.219 | 2.466 | 2.621 |
| 638.5 | 2.027 | 1.993 | 1.896 | 1.875 | 1.927 | 2.040 | 2.160 | 2.408 | 2.552 |
| 639   | 1.973 | 1.942 | 1.851 | 1.833 | 1.877 | 2.001 | 2.107 | 2.347 | 2.483 |
| 639.5 | 1.920 | 1.887 | 1.810 | 1.792 | 1.832 | 1.964 | 2.061 | 2.280 | 2.417 |
| 640   | 1.870 | 1.833 | 1.764 | 1.751 | 1.788 | 1.918 | 2.016 | 2.208 | 2.350 |

| ]             | Fl. Intensity of H2DTC with variation of surfactant concentrations in 15% v/v EtOH-water medium |               |         |               |             |               |            |               |             |  |
|---------------|-------------------------------------------------------------------------------------------------|---------------|---------|---------------|-------------|---------------|------------|---------------|-------------|--|
| Fl. Intensity | [SDS]/                                                                                          | Fl. Intensity | [DTAB]/ | Fl. Intensity | [C16MImCl]/ | Fl. Intensity | [16-4 16]/ | Fl. Intensity | [Tween-60]/ |  |
| (a.u.)        | mM                                                                                              | (a.u.)        | mM      | (a.u.)        | mM          | (a.u.)        | mM         | (a.u.)        | mM          |  |
| 0             | 139.15                                                                                          | 0.000         | 185.74  | 0.000         | 221.90      | 0.0000        | 158.03     | 0             | 169.34      |  |
| 0.0486        | 140.13                                                                                          | 0.120         | 185.66  | 0.018         | 222.47      | 0.0005        | 156.77     | 0.0003        | 176.63      |  |
| 0.1457        | 140.02                                                                                          | 0.358         | 185.72  | 0.055         | 220.42      | 0.0014        | 154.39     | 0.0010        | 177.29      |  |
| 0.2906        | 139.77                                                                                          | 0.715         | 185.09  | 0.110         | 218.56      | 0.0028        | 147.07     | 0.0016        | 177.46      |  |
| 0.4829        | 140.19                                                                                          | 1.306         | 188.76  | 0.182         | 215.49      | 0.0047        | 142.25     | 0.0025        | 177.75      |  |
| 0.7214        | 139.70                                                                                          | 2.473         | 186.81  | 0.271         | 211.88      | 0.0070        | 135.08     | 0.0038        | 176.22      |  |
| 1.0757        | 139.96                                                                                          | 4.753         | 189.19  | 0.447         | 206.51      | 0.0104        | 124.10     | 0.0054        | 175.60      |  |
| 1.5417        | 140.86                                                                                          | 8.044         | 192.43  | 0.619         | 202.83      | 0.0160        | 114.87     | 0.0085        | 169.85      |  |
| 2.2273        | 142.70                                                                                          | 12.207        | 209.65  | 0.951         | 202.20      | 0.025         | 110.51     | 0.014         | 165.84      |  |
| 3.1170        | 144.74                                                                                          | 17.078        | 247.49  | 1.422         | 207.23      | 0.033         | 111.30     | 0.023         | 153.94      |  |
| 4.1919        | 147.01                                                                                          | 21.616        | 263.86  | 1.864         | 218.92      | 0.045         | 118.47     | 0.034         | 133.84      |  |
| 5.2275        | 147.71                                                                                          | 25.853        | 274.18  | 2.412         | 227.23      | 0.061         | 128.97     | 0.047         | 126.18      |  |
| 6.4213        | 148.47                                                                                          | 29.819        | 279.21  | 3.039         | 235.20      | 0.079         | 139.83     | 0.065         | 109.76      |  |
| 7.7509        | 148.82                                                                                          | 33.539        | 282.94  | 3.609         | 242.35      | 0.104         | 155.52     | 0.086         | 88.00       |  |
| 9.1930        | 148.59                                                                                          | 37.035        | 284.13  | 4.130         | 248.19      | 0.141         | 168.26     | 0.104         | 74.00       |  |
| 10.7245       | 148.45                                                                                          | 41.901        | 287.43  | 4.832         | 254.48      | 0.184         | 185.40     | 0.129         | 49.83       |  |
| 12.3231       | 147.33                                                                                          | 49.139        | 288.15  | 5.453         | 259.80      | 0.228         | 197.85     | 0.149         | 35.44       |  |
| 13.8228       | 147.55                                                                                          | 56.638        | 292.66  | 6.007         | 263.13      |               |            |               |             |  |
| 16.5603       | 145.71                                                                                          | 65.053        | 298.42  | 6.503         | 266.26      |               |            |               |             |  |

## 4.7. Fl. Intensity data for $\rm H_2DTC$ with variation of surfactant concentrations at 298.15 K

## 4.8. Absorbance data for $\rm H_2DTC$ with variation of its concentrations in 15% EtOH-water medium at 298.15 K

|                | [H <sub>2</sub> DTC] / mM |       |       |       |       |       |       |       |  |  |  |
|----------------|---------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| Wavelength/ nm | 0.042                     | 0.045 | 0.048 | 0.05  | 0.056 | 0.061 | 0.07  | 0.082 |  |  |  |
| 200            | 0.431                     | 0.463 | 0.493 | 0.523 | 0.583 | 0.641 | 0.730 | 0.857 |  |  |  |
| 200.5          | 0.429                     | 0.462 | 0.491 | 0.522 | 0.582 | 0.639 | 0.729 | 0.854 |  |  |  |
| 201            | 0.426                     | 0.458 | 0.486 | 0.517 | 0.578 | 0.634 | 0.724 | 0.849 |  |  |  |
| 201.5          | 0.422                     | 0.454 | 0.482 | 0.513 | 0.573 | 0.629 | 0.718 | 0.844 |  |  |  |
| 202            | 0.418                     | 0.450 | 0.478 | 0.508 | 0.567 | 0.623 | 0.713 | 0.837 |  |  |  |
| 202.5          | 0.413                     | 0.444 | 0.472 | 0.502 | 0.561 | 0.617 | 0.706 | 0.830 |  |  |  |
| 203            | 0.408                     | 0.439 | 0.466 | 0.497 | 0.555 | 0.611 | 0.698 | 0.823 |  |  |  |
| 203.5          | 0.403                     | 0.434 | 0.461 | 0.491 | 0.549 | 0.605 | 0.691 | 0.814 |  |  |  |
| 204            | 0.398                     | 0.429 | 0.456 | 0.485 | 0.543 | 0.598 | 0.683 | 0.805 |  |  |  |
| 204.5          | 0.392                     | 0.423 | 0.450 | 0.479 | 0.537 | 0.591 | 0.675 | 0.797 |  |  |  |
| 205            | 0.387                     | 0.417 | 0.444 | 0.473 | 0.530 | 0.584 | 0.668 | 0.789 |  |  |  |
| 205.5          | 0.382                     | 0.411 | 0.438 | 0.467 | 0.523 | 0.576 | 0.660 | 0.780 |  |  |  |
| 206            | 0.377                     | 0.406 | 0.432 | 0.460 | 0.517 | 0.569 | 0.653 | 0.772 |  |  |  |
| 206.5          | 0.372                     | 0.401 | 0.427 | 0.455 | 0.511 | 0.563 | 0.646 | 0.764 |  |  |  |
| 207            | 0.368                     | 0.396 | 0.422 | 0.450 | 0.505 | 0.558 | 0.639 | 0.757 |  |  |  |
| 207.5          | 0.363                     | 0.392 | 0.417 | 0.444 | 0.500 | 0.552 | 0.633 | 0.750 |  |  |  |
| 208            | 0.359                     | 0.388 | 0.412 | 0.440 | 0.494 | 0.547 | 0.627 | 0.744 |  |  |  |
| 208.5          | 0.356                     | 0.384 | 0.408 | 0.435 | 0.490 | 0.542 | 0.622 | 0.738 |  |  |  |
| 209            | 0.353                     | 0.380 | 0.405 | 0.432 | 0.487 | 0.538 | 0.618 | 0.734 |  |  |  |
| 209.5          | 0.350                     | 0.378 | 0.402 | 0.429 | 0.483 | 0.535 | 0.615 | 0.730 |  |  |  |
| 210            | 0.348                     | 0.375 | 0.399 | 0.426 | 0.480 | 0.531 | 0.611 | 0.726 |  |  |  |
| 210.5          | 0.345                     | 0.372 | 0.396 | 0.422 | 0.477 | 0.528 | 0.608 | 0.724 |  |  |  |
| 211            | 0.343                     | 0.370 | 0.394 | 0.420 | 0.474 | 0.526 | 0.606 | 0.721 |  |  |  |
| 211.5          | 0.342                     | 0.368 | 0.392 | 0.418 | 0.472 | 0.524 | 0.604 | 0.720 |  |  |  |

| 212   | 0.340 | 0.366 | 0.390 | 0.417 | 0.470 | 0.522 | 0.602 | 0.719 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 212.5 | 0.339 | 0.365 | 0.389 | 0.415 | 0.469 | 0.521 | 0.602 | 0.718 |
| 213   | 0.339 | 0.364 | 0.388 | 0.415 | 0.469 | 0.521 | 0.602 | 0.719 |
| 213.5 | 0.338 | 0.364 | 0.388 | 0.414 | 0.469 | 0.521 | 0.602 | 0.720 |
| 214   | 0.338 | 0.364 | 0.388 | 0.414 | 0.469 | 0.521 | 0.603 | 0.722 |
| 214.5 | 0.339 | 0.364 | 0.388 | 0.415 | 0.470 | 0.523 | 0.604 | 0.724 |
| 215   | 0.339 | 0.365 | 0.389 | 0.416 | 0.471 | 0.524 | 0.606 | 0.727 |
| 215.5 | 0.340 | 0.366 | 0.390 | 0.417 | 0.473 | 0.526 | 0.609 | 0.730 |
| 216   | 0.341 | 0.367 | 0.391 | 0.419 | 0.474 | 0.528 | 0.611 | 0.734 |
| 216.5 | 0.342 | 0.368 | 0.393 | 0.420 | 0.476 | 0.531 | 0.615 | 0.738 |
| 217   | 0.343 | 0.370 | 0.395 | 0.422 | 0.479 | 0.533 | 0.618 | 0.742 |
| 217.5 | 0.345 | 0.372 | 0.397 | 0.424 | 0.481 | 0.536 | 0.621 | 0.747 |
| 218   | 0.347 | 0.374 | 0.399 | 0.427 | 0.484 | 0.540 | 0.625 | 0.751 |
| 218.5 | 0.349 | 0.376 | 0.401 | 0.429 | 0.487 | 0.543 | 0.629 | 0.756 |
| 219   | 0.350 | 0.378 | 0.403 | 0.432 | 0.490 | 0.546 | 0.633 | 0.762 |
| 219.5 | 0.352 | 0.380 | 0.406 | 0.434 | 0.493 | 0.549 | 0.637 | 0.767 |
| 220   | 0.354 | 0.382 | 0.408 | 0.437 | 0.496 | 0.553 | 0.641 | 0.771 |
| 220.5 | 0.357 | 0.385 | 0.411 | 0.440 | 0.499 | 0.557 | 0.645 | 0.777 |
| 221   | 0.359 | 0.387 | 0.414 | 0.443 | 0.503 | 0.560 | 0.650 | 0.782 |
| 221.5 | 0.361 | 0.390 | 0.417 | 0.446 | 0.506 | 0.564 | 0.654 | 0.787 |
| 222   | 0.363 | 0.392 | 0.419 | 0.449 | 0.510 | 0.568 | 0.659 | 0.793 |
| 222.5 | 0.365 | 0.395 | 0.422 | 0.452 | 0.513 | 0.572 | 0.663 | 0.798 |
| 223   | 0.368 | 0.397 | 0.425 | 0.455 | 0.517 | 0.576 | 0.667 | 0.803 |
| 223.5 | 0.370 | 0.400 | 0.428 | 0.458 | 0.520 | 0.579 | 0.672 | 0.808 |
| 224   | 0.372 | 0.403 | 0.431 | 0.461 | 0.524 | 0.583 | 0.677 | 0.813 |
| 224.5 | 0.375 | 0.406 | 0.434 | 0.464 | 0.527 | 0.587 | 0.681 | 0.818 |
| 225   | 0.377 | 0.408 | 0.437 | 0.468 | 0.531 | 0.591 | 0.686 | 0.823 |
| 225.5 | 0.380 | 0.411 | 0.440 | 0.471 | 0.535 | 0.595 | 0.690 | 0.829 |
| 226   | 0.382 | 0.414 | 0.443 | 0.475 | 0.539 | 0.599 | 0.695 | 0.834 |
| 226.5 | 0.385 | 0.418 | 0.447 | 0.479 | 0.543 | 0.604 | 0.700 | 0.840 |
| 227   | 0.388 | 0.421 | 0.450 | 0.482 | 0.547 | 0.608 | 0.705 | 0.845 |
| 227.5 | 0.391 | 0.424 | 0.454 | 0.486 | 0.551 | 0.613 | 0.710 | 0.850 |
| 228   | 0.394 | 0.428 | 0.458 | 0.490 | 0.556 | 0.617 | 0.715 | 0.856 |
| 228.5 | 0.397 | 0.431 | 0.461 | 0.494 | 0.560 | 0.622 | 0.720 | 0.862 |
| 229   | 0.400 | 0.435 | 0.465 | 0.498 | 0.564 | 0.626 | 0.726 | 0.868 |
| 229.5 | 0.403 | 0.438 | 0.469 | 0.502 | 0.568 | 0.631 | 0.731 | 0.873 |
| 230   | 0.406 | 0.442 | 0.473 | 0.507 | 0.573 | 0.636 | 0.736 | 0.879 |
| 230.5 | 0.409 | 0.446 | 0.477 | 0.511 | 0.578 | 0.641 | 0.742 | 0.885 |
| 231   | 0.413 | 0.449 | 0.481 | 0.515 | 0.582 | 0.646 | 0.747 | 0.891 |
| 231.5 | 0.416 | 0.453 | 0.485 | 0.520 | 0.587 | 0.651 | 0.753 | 0.897 |
| 232   | 0.420 | 0.457 | 0.489 | 0.524 | 0.592 | 0.656 | 0.759 | 0.903 |
| 232.5 | 0.423 | 0.461 | 0.493 | 0.528 | 0.596 | 0.661 | 0.764 | 0.909 |
| 233   | 0.426 | 0.464 | 0.497 | 0.532 | 0.600 | 0.665 | 0.769 | 0.914 |
| 233.5 | 0.429 | 0.468 | 0.500 | 0.536 | 0.604 | 0.669 | 0.774 | 0.919 |
| 234   | 0.432 | 0.471 | 0.504 | 0.539 | 0.608 | 0.674 | 0.778 | 0.924 |
| 234.5 | 0.435 | 0.474 | 0.507 | 0.542 | 0.612 | 0.677 | 0.782 | 0.929 |
| 235   | 0.438 | 0.477 | 0.510 | 0.546 | 0.615 | 0.681 | 0.786 | 0.933 |
| 235.5 | 0.440 | 0.479 | 0.513 | 0.549 | 0.618 | 0.684 | 0.790 | 0.937 |
| 236   | 0.442 | 0.482 | 0.515 | 0.551 | 0.621 | 0.687 | 0.793 | 0.940 |
| 236.5 | 0.444 | 0.484 | 0.518 | 0.554 | 0.623 | 0.690 | 0.796 | 0.943 |
| 237   | 0.446 | 0.486 | 0.520 | 0.556 | 0.626 | 0.693 | 0.799 | 0.946 |
| 237.5 | 0.448 | 0.488 | 0.522 | 0.558 | 0.628 | 0.695 | 0.801 | 0.948 |
| 238   | 0.449 | 0.489 | 0.523 | 0.559 | 0.629 | 0.696 | 0.802 | 0.950 |
| 238.5 | 0.450 | 0.490 | 0.524 | 0.560 | 0.630 | 0.697 | 0.803 | 0.950 |
| 239   | 0.451 | 0.490 | 0.524 | 0.560 | 0.630 | 0.09/ | 0.803 | 0.950 |
| 239.3 | 0.450 | 0.490 | 0.524 | 0.500 | 0.630 | 0.090 | 0.802 | 0.949 |
| 240   | 0.430 | 0.409 | 0.525 | 0.559 | 0.028 | 0.093 | 0.800 | 0.940 |
| 240.3 | 0.448 | 0.400 | 0.521 | 0.557 | 0.020 | 0.092 | 0.797 | 0.942 |
| 241   | 0.440 | 0.400 | 0.519 | 0.554 | 0.023 | 0.000 | 0.792 | 0.930 |
| 241.3 | 0.444 | 0.482 | 0.510 | 0.551 | 0.619 | 0.679 | 0.780 | 0.929 |
| 242   | 0.441 | 0.479 | 0.511 | 0.540 | 0.013 | 0.078 | 0.779 | 0.920 |
| 242.3 | 0.437 | 0.474 | 0.500 | 0.541 | 0.007 | 0.671 | 0.771 | 0.911 |
| 243   | 0.432 | 0.409 | 0.301 | 0.555 | 0.502 | 0.003 | 0.702 | 0.900 |
| 243.3 | 0.427 | 0.404 | 0.490 | 0.328 | 0.393 | 0.055 | 0.752 | 0.000 |

| 244   | 0.422 | 0.458 | 0.488 | 0.522 | 0.585 | 0.646 | 0.741 | 0.875 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 244.5 | 0.416 | 0.451 | 0.481 | 0.514 | 0.577 | 0.636 | 0.730 | 0.862 |
| 245   | 0.410 | 0.445 | 0.474 | 0.506 | 0.568 | 0.626 | 0.719 | 0.848 |
| 245.5 | 0.404 | 0.438 | 0.467 | 0.499 | 0.559 | 0.616 | 0.707 | 0.834 |
| 246   | 0.398 | 0.431 | 0.459 | 0.491 | 0.550 | 0.606 | 0.695 | 0.819 |
| 246.5 | 0.392 | 0.424 | 0.452 | 0.482 | 0.540 | 0.596 | 0.683 | 0.805 |
| 247   | 0.385 | 0.417 | 0.444 | 0.474 | 0.531 | 0.585 | 0.670 | 0.790 |
| 247.5 | 0.379 | 0.409 | 0.436 | 0.466 | 0.522 | 0.575 | 0.658 | 0.776 |
| 248   | 0.372 | 0.403 | 0.429 | 0.457 | 0.512 | 0.565 | 0.647 | 0.761 |
| 248.5 | 0.366 | 0.396 | 0.421 | 0.449 | 0.503 | 0.555 | 0.635 | 0.748 |
| 249   | 0.360 | 0.389 | 0.414 | 0.441 | 0.494 | 0.546 | 0.624 | 0.735 |
| 249.5 | 0.354 | 0.382 | 0.406 | 0.434 | 0.486 | 0.536 | 0.613 | 0.722 |
| 250   | 0.347 | 0.375 | 0.399 | 0.426 | 0.477 | 0.526 | 0.603 | 0.709 |
| 250.5 | 0.341 | 0.368 | 0.392 | 0.418 | 0.468 | 0.517 | 0.592 | 0.696 |
| 251   | 0.335 | 0.361 | 0.385 | 0.410 | 0.460 | 0.508 | 0.582 | 0.684 |
| 251.5 | 0.329 | 0.355 | 0.378 | 0.403 | 0.452 | 0.499 | 0.572 | 0.673 |
| 252   | 0.323 | 0.349 | 0.371 | 0.396 | 0.444 | 0.491 | 0.562 | 0.661 |
| 252.5 | 0.318 | 0.343 | 0.365 | 0.389 | 0.436 | 0.482 | 0.553 | 0.651 |
| 253   | 0.313 | 0.337 | 0.359 | 0.383 | 0.429 | 0.474 | 0.544 | 0.641 |
| 253.5 | 0.307 | 0.332 | 0.353 | 0.376 | 0.422 | 0.467 | 0.536 | 0.632 |
| 254   | 0.302 | 0.326 | 0.347 | 0.370 | 0.416 | 0.460 | 0.528 | 0.623 |
| 254.5 | 0.298 | 0.321 | 0.342 | 0.365 | 0.410 | 0.453 | 0.520 | 0.614 |
| 255   | 0.294 | 0.317 | 0.337 | 0.360 | 0.404 | 0.447 | 0.514 | 0.607 |
| 255.5 | 0.290 | 0.313 | 0.333 | 0.355 | 0.398 | 0.442 | 0.507 | 0.599 |
| 256   | 0.286 | 0.309 | 0.328 | 0.351 | 0.394 | 0.436 | 0.501 | 0.593 |
| 256.5 | 0.283 | 0.305 | 0.325 | 0.347 | 0.389 | 0.431 | 0.496 | 0.587 |
| 257   | 0.280 | 0.301 | 0.321 | 0.343 | 0.385 | 0.427 | 0.491 | 0.582 |
| 257.5 | 0.276 | 0.298 | 0.318 | 0.339 | 0.381 | 0.423 | 0.487 | 0.577 |
| 258   | 0.274 | 0.295 | 0.315 | 0.336 | 0.378 | 0.419 | 0.482 | 0.572 |
| 258.5 | 0.271 | 0.293 | 0.312 | 0.333 | 0.374 | 0.415 | 0.478 | 0.568 |
| 259   | 0.269 | 0.290 | 0.309 | 0.330 | 0.371 | 0.412 | 0.475 | 0.563 |
| 259.5 | 0.267 | 0.288 | 0.307 | 0.327 | 0.368 | 0.409 | 0.471 | 0.560 |
| 260   | 0.265 | 0.286 | 0.305 | 0.325 | 0.365 | 0.406 | 0.468 | 0.556 |
| 260.5 | 0.263 | 0.284 | 0.302 | 0.323 | 0.363 | 0.403 | 0.465 | 0.553 |
| 261   | 0.261 | 0.282 | 0.300 | 0.321 | 0.361 | 0.401 | 0.463 | 0.550 |
| 261.5 | 0.259 | 0.280 | 0.298 | 0.319 | 0.359 | 0.399 | 0.460 | 0.548 |
| 262   | 0.258 | 0.279 | 0.297 | 0.317 | 0.357 | 0.397 | 0.458 | 0.545 |
| 262.5 | 0.256 | 0.277 | 0.295 | 0.315 | 0.355 | 0.394 | 0.455 | 0.542 |
| 263   | 0.255 | 0.275 | 0.293 | 0.313 | 0.353 | 0.392 | 0.453 | 0.540 |
| 263.5 | 0.253 | 0.273 | 0.292 | 0.312 | 0.351 | 0.390 | 0.451 | 0.537 |
| 264   | 0.252 | 0.272 | 0.290 | 0.310 | 0.349 | 0.388 | 0.448 | 0.535 |
| 264.5 | 0.250 | 0.270 | 0.288 | 0.308 | 0.346 | 0.385 | 0.446 | 0.532 |
| 265   | 0.248 | 0.268 | 0.286 | 0.306 | 0.344 | 0.383 | 0.443 | 0.529 |
| 265.5 | 0.247 | 0.266 | 0.284 | 0.304 | 0.342 | 0.381 | 0.440 | 0.526 |
| 266   | 0.245 | 0.265 | 0.282 | 0.302 | 0.340 | 0.378 | 0.438 | 0.522 |
| 266.5 | 0.243 | 0.262 | 0.280 | 0.299 | 0.337 | 0.375 | 0.434 | 0.518 |
| 267   | 0.241 | 0.260 | 0.278 | 0.297 | 0.334 | 0.372 | 0.431 | 0.514 |
| 267.5 | 0.239 | 0.258 | 0.275 | 0.294 | 0.331 | 0.369 | 0.427 | 0.510 |
| 268   | 0.237 | 0.256 | 0.273 | 0.291 | 0.328 | 0.366 | 0.423 | 0.506 |
| 268.5 | 0.234 | 0.253 | 0.270 | 0.288 | 0.325 | 0.362 | 0.419 | 0.501 |
| 269   | 0.232 | 0.250 | 0.267 | 0.285 | 0.322 | 0.358 | 0.415 | 0.496 |
| 269.5 | 0.229 | 0.248 | 0.264 | 0.282 | 0.318 | 0.354 | 0.410 | 0.491 |
| 270   | 0.227 | 0.245 | 0.261 | 0.279 | 0.315 | 0.351 | 0.406 | 0.486 |
| 270.5 | 0.224 | 0.242 | 0.258 | 0.276 | 0.311 | 0.347 | 0.401 | 0.480 |
| 271   | 0.222 | 0.239 | 0.255 | 0.273 | 0.307 | 0.343 | 0.397 | 0.475 |
| 271.5 | 0.219 | 0.236 | 0.252 | 0.269 | 0.304 | 0.339 | 0.392 | 0.469 |
| 272   | 0.216 | 0.233 | 0.249 | 0.266 | 0.300 | 0.334 | 0.387 | 0.464 |
| 272.5 | 0.213 | 0.230 | 0.246 | 0.263 | 0.296 | 0.330 | 0.382 | 0.458 |
| 273   | 0.210 | 0.227 | 0.242 | 0.259 | 0.292 | 0.326 | 0.377 | 0.452 |
| 273.5 | 0.207 | 0.224 | 0.239 | 0.255 | 0.288 | 0.321 | 0.371 | 0.446 |
| 274   | 0.204 | 0.221 | 0.235 | 0.252 | 0.284 | 0.317 | 0.366 | 0.440 |
| 274.5 | 0.202 | 0.217 | 0.232 | 0.248 | 0.280 | 0.312 | 0.361 | 0.433 |
| 275   | 0.198 | 0.214 | 0.228 | 0.245 | 0.276 | 0.308 | 0.356 | 0.427 |
| 275.5 | 0.195 | 0.211 | 0.225 | 0.241 | 0.272 | 0.303 | 0.351 | 0.421 |

| 276   | 0.193 | 0.207 | 0.221 | 0.237 | 0.268 | 0.298 | 0.345 | 0.414 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 276.5 | 0.189 | 0.204 | 0.218 | 0.233 | 0.263 | 0.294 | 0.340 | 0.407 |
| 277   | 0.186 | 0.201 | 0.214 | 0.229 | 0.259 | 0.289 | 0.335 | 0.401 |
| 277.5 | 0.183 | 0.198 | 0.211 | 0.226 | 0.255 | 0.284 | 0.329 | 0.394 |
| 278   | 0.180 | 0.194 | 0.207 | 0.222 | 0.251 | 0.280 | 0.324 | 0.388 |
| 278.5 | 0.177 | 0.191 | 0.204 | 0.218 | 0.246 | 0.275 | 0.319 | 0.381 |
| 279   | 0.174 | 0.188 | 0.200 | 0.215 | 0.242 | 0.271 | 0.313 | 0.375 |
| 279.5 | 0.171 | 0.184 | 0.197 | 0.211 | 0.238 | 0.266 | 0.308 | 0.368 |
| 280   | 0.168 | 0.181 | 0.193 | 0.207 | 0.234 | 0.261 | 0.303 | 0.361 |
| 280.5 | 0.165 | 0.178 | 0.190 | 0.203 | 0.229 | 0.257 | 0.297 | 0.355 |
| 281   | 0.162 | 0.174 | 0.186 | 0.199 | 0.225 | 0.252 | 0.291 | 0.348 |
| 281.5 | 0.159 | 0.171 | 0.182 | 0.196 | 0.221 | 0.247 | 0.286 | 0.342 |
| 282   | 0.155 | 0.168 | 0.179 | 0.192 | 0.217 | 0.242 | 0.280 | 0.335 |
| 282.5 | 0.152 | 0.165 | 0.176 | 0.188 | 0.213 | 0.238 | 0.275 | 0.329 |
| 283   | 0.150 | 0.161 | 0.172 | 0.185 | 0.209 | 0.233 | 0.270 | 0.323 |
| 283.5 | 0.147 | 0.158 | 0.168 | 0.181 | 0.204 | 0.229 | 0.265 | 0.317 |
| 284   | 0.143 | 0.155 | 0.165 | 0.177 | 0.200 | 0.224 | 0.259 | 0.310 |
| 284.5 | 0.140 | 0.151 | 0.161 | 0.173 | 0.196 | 0.219 | 0.254 | 0.303 |
| 285   | 0.137 | 0.148 | 0.158 | 0.169 | 0.191 | 0.214 | 0.248 | 0.297 |
| 285.5 | 0.134 | 0.144 | 0.154 | 0.166 | 0.187 | 0.209 | 0.243 | 0.290 |
| 286   | 0.131 | 0.141 | 0.151 | 0.162 | 0.183 | 0.205 | 0.238 | 0.284 |
| 286.5 | 0.128 | 0.138 | 0.148 | 0.158 | 0.179 | 0.201 | 0.233 | 0.278 |
| 287   | 0.125 | 0.135 | 0.145 | 0.155 | 0.175 | 0.196 | 0.228 | 0.272 |
| 287.5 | 0.122 | 0.132 | 0.141 | 0.152 | 0.171 | 0.192 | 0.223 | 0.267 |
| 288   | 0.119 | 0.129 | 0.138 | 0.148 | 0.168 | 0.188 | 0.218 | 0.261 |
| 288.5 | 0.117 | 0.126 | 0.135 | 0.145 | 0.164 | 0.184 | 0.214 | 0.256 |
| 289   | 0.114 | 0.124 | 0.132 | 0.142 | 0.161 | 0.180 | 0.209 | 0.250 |
| 289.5 | 0.112 | 0.121 | 0.130 | 0.139 | 0.157 | 0.177 | 0.205 | 0.245 |
| 290   | 0.109 | 0.119 | 0.127 | 0.137 | 0.154 | 0.173 | 0.201 | 0.241 |
| 290.5 | 0.107 | 0.117 | 0.125 | 0.134 | 0.151 | 0.170 | 0.197 | 0.236 |
| 291   | 0.105 | 0.114 | 0.122 | 0.131 | 0.149 | 0.167 | 0.194 | 0.232 |
| 291.5 | 0.103 | 0.112 | 0.120 | 0.129 | 0.146 | 0.164 | 0.191 | 0.228 |
| 292   | 0.101 | 0.110 | 0.118 | 0.127 | 0.144 | 0.161 | 0.187 | 0.224 |
| 292.5 | 0.099 | 0.108 | 0.116 | 0.125 | 0.141 | 0.159 | 0.184 | 0.220 |
| 293   | 0.098 | 0.107 | 0.114 | 0.123 | 0.139 | 0.156 | 0.181 | 0.217 |
| 293.5 | 0.096 | 0.105 | 0.112 | 0.121 | 0.137 | 0.154 | 0.179 | 0.214 |
| 294   | 0.095 | 0.103 | 0.111 | 0.119 | 0.135 | 0.151 | 0.176 | 0.211 |
| 294.5 | 0.093 | 0.102 | 0.109 | 0.118 | 0.133 | 0.150 | 0.174 | 0.208 |
| 295   | 0.092 | 0.100 | 0.108 | 0.116 | 0.132 | 0.148 | 0.172 | 0.206 |
| 295.5 | 0.091 | 0.099 | 0.106 | 0.115 | 0.130 | 0.146 | 0.170 | 0.204 |
| 296   | 0.090 | 0.098 | 0.105 | 0.114 | 0.129 | 0.145 | 0.168 | 0.202 |
| 290.5 | 0.089 | 0.097 | 0.104 | 0.112 | 0.127 | 0.143 | 0.166 | 0.200 |
| 297   | 0.088 | 0.096 | 0.103 | 0.111 | 0.126 | 0.142 | 0.165 | 0.198 |
| 297.3 | 0.087 | 0.093 | 0.102 | 0.110 | 0.123 | 0.141 | 0.163 | 0.196 |
| 270   | 0.000 | 0.094 | 0.101 | 0.109 | 0.124 | 0.139 | 0.102 | 0.194 |
| 230.3 | 0.084 | 0.094 | 0.101 | 0.108 | 0.123 | 0.130 | 0.101 | 0.195 |
| 299   | 0.004 | 0.093 | 0.100 | 0.100 | 0.122 | 0.137 | 0.150 | 0.192 |
| 300   | 0.004 | 0.092 | 0.099 | 0.107 | 0.121 | 0.135 | 0.159 | 0.190 |
| 300 5 | 0.083 | 0.091 | 0.097 | 0.100 | 0.120 | 0.133 | 0.156 | 0.189 |
| 301   | 0.082 | 0.090 | 0.097 | 0.105 | 0.120 | 0 134 | 0.156 | 0.187 |
| 301.5 | 0.082 | 0.090 | 0.096 | 0.103 | 0.119 | 0.133 | 0.155 | 0.186 |
| 302   | 0.081 | 0.090 | 0.096 | 0.104 | 0.117 | 0.132 | 0.155 | 0.185 |
| 302.5 | 0.080 | 0.088 | 0.095 | 0.103 | 0.117 | 0.131 | 0.153 | 0.183 |
| 303   | 0.080 | 0.088 | 0.094 | 0.102 | 0.116 | 0.130 | 0.152 | 0.182 |
| 303.5 | 0.079 | 0.087 | 0.094 | 0.101 | 0.115 | 0.130 | 0.151 | 0.181 |
| 304   | 0.079 | 0.087 | 0.093 | 0.101 | 0.115 | 0.129 | 0.150 | 0.180 |
| 304.5 | 0.078 | 0.086 | 0.093 | 0.100 | 0.114 | 0.128 | 0.150 | 0.179 |
| 305   | 0.078 | 0.086 | 0.092 | 0.099 | 0.113 | 0.127 | 0.149 | 0.178 |
| 305.5 | 0.077 | 0.085 | 0.091 | 0.099 | 0.112 | 0.127 | 0.148 | 0.177 |
| 306   | 0.076 | 0.083 | 0.090 | 0.097 | 0.110 | 0.125 | 0.146 | 0.175 |
| 306.5 | 0.074 | 0.082 | 0.088 | 0.095 | 0.109 | 0.123 | 0.144 | 0.173 |
| 307   | 0.074 | 0.081 | 0.088 | 0.095 | 0.108 | 0.122 | 0.143 | 0.172 |
| 307.5 | 0.073 | 0.081 | 0.087 | 0.094 | 0.107 | 0.121 | 0.142 | 0.171 |
|       |       |       |       |       |       |       |       |       |

| 308   | 0.073 | 0.080 | 0.086 | 0.094 | 0.107 | 0.120 | 0.141 | 0.170 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 308.5 | 0.072 | 0.080 | 0.086 | 0.093 | 0.106 | 0.120 | 0.140 | 0.169 |
| 309   | 0.071 | 0.079 | 0.085 | 0.092 | 0.105 | 0.119 | 0.139 | 0.168 |
| 309.5 | 0.071 | 0.078 | 0.084 | 0.092 | 0.104 | 0.118 | 0.138 | 0.166 |
| 310   | 0.070 | 0.078 | 0.084 | 0.091 | 0.104 | 0.117 | 0.137 | 0.165 |
| 310.5 | 0.070 | 0.077 | 0.083 | 0.090 | 0.103 | 0.116 | 0.137 | 0.164 |
| 311   | 0.069 | 0.077 | 0.083 | 0.090 | 0.102 | 0.116 | 0.136 | 0.163 |
| 311.5 | 0.069 | 0.076 | 0.082 | 0.089 | 0.102 | 0.115 | 0.135 | 0.162 |
| 312   | 0.068 | 0.076 | 0.082 | 0.089 | 0.101 | 0.114 | 0.134 | 0.161 |
| 312.5 | 0.068 | 0.075 | 0.081 | 0.088 | 0.100 | 0.113 | 0.133 | 0.160 |
| 313   | 0.067 | 0.075 | 0.081 | 0.087 | 0.099 | 0.113 | 0.132 | 0.159 |
| 313.5 | 0.067 | 0.074 | 0.080 | 0.087 | 0.099 | 0.112 | 0.131 | 0.158 |
| 314   | 0.067 | 0.074 | 0.079 | 0.086 | 0.098 | 0.111 | 0.130 | 0.157 |
| 314.5 | 0.066 | 0.073 | 0.079 | 0.086 | 0.098 | 0.110 | 0.130 | 0.156 |
| 315   | 0.066 | 0.073 | 0.079 | 0.085 | 0.097 | 0.110 | 0.129 | 0.155 |
| 315.5 | 0.065 | 0.072 | 0.078 | 0.085 | 0.097 | 0.109 | 0.128 | 0.154 |
| 316   | 0.065 | 0.072 | 0.078 | 0.084 | 0.096 | 0.109 | 0.127 | 0.153 |
| 316.5 | 0.065 | 0.072 | 0.077 | 0.084 | 0.096 | 0.108 | 0.127 | 0.152 |
| 317   | 0.064 | 0.071 | 0.077 | 0.083 | 0.095 | 0.108 | 0.126 | 0.152 |
| 317.5 | 0.064 | 0.071 | 0.077 | 0.083 | 0.095 | 0.107 | 0.125 | 0.151 |
| 318   | 0.064 | 0.071 | 0.076 | 0.083 | 0.094 | 0.107 | 0.125 | 0.150 |
| 318.5 | 0.063 | 0.070 | 0.076 | 0.083 | 0.094 | 0.106 | 0.125 | 0.150 |
| 319   | 0.063 | 0.070 | 0.076 | 0.082 | 0.094 | 0.106 | 0.124 | 0.149 |
| 319.5 | 0.063 | 0.070 | 0.076 | 0.082 | 0.094 | 0.106 | 0.124 | 0.149 |
| 320   | 0.063 | 0.070 | 0.075 | 0.082 | 0.094 | 0.106 | 0.124 | 0.149 |
| 320.5 | 0.063 | 0.070 | 0.075 | 0.082 | 0.093 | 0.105 | 0.123 | 0.149 |
| 321   | 0.063 | 0.070 | 0.075 | 0.082 | 0.093 | 0.105 | 0.123 | 0.148 |
| 321.5 | 0.063 | 0.070 | 0.075 | 0.082 | 0.093 | 0.105 | 0.123 | 0.148 |
| 322   | 0.063 | 0.070 | 0.075 | 0.082 | 0.093 | 0.105 | 0.123 | 0.148 |
| 322.5 | 0.063 | 0.070 | 0.075 | 0.082 | 0.093 | 0.106 | 0.123 | 0.148 |
| 323   | 0.063 | 0.070 | 0.076 | 0.082 | 0.094 | 0.106 | 0.123 | 0.148 |
| 323.5 | 0.063 | 0.070 | 0.076 | 0.082 | 0.094 | 0.106 | 0.124 | 0.148 |
| 324   | 0.064 | 0.070 | 0.076 | 0.082 | 0.094 | 0.106 | 0.124 | 0.148 |
| 324.5 | 0.064 | 0.071 | 0.076 | 0.083 | 0.094 | 0.106 | 0.124 | 0.149 |
| 325   | 0.064 | 0.071 | 0.076 | 0.083 | 0.094 | 0.106 | 0.124 | 0.149 |
| 325.5 | 0.064 | 0.071 | 0.077 | 0.083 | 0.095 | 0.107 | 0.125 | 0.150 |
| 326   | 0.064 | 0.072 | 0.077 | 0.084 | 0.095 | 0.107 | 0.125 | 0.150 |
| 326.5 | 0.065 | 0.072 | 0.078 | 0.084 | 0.096 | 0.108 | 0.125 | 0.150 |
| 327   | 0.065 | 0.072 | 0.078 | 0.084 | 0.096 | 0.108 | 0.126 | 0.151 |
| 327.5 | 0.066 | 0.073 | 0.078 | 0.085 | 0.096 | 0.109 | 0.127 | 0.151 |
| 328   | 0.066 | 0.073 | 0.079 | 0.085 | 0.097 | 0.109 | 0.127 | 0.152 |
| 328.5 | 0.066 | 0.073 | 0.079 | 0.086 | 0.098 | 0.110 | 0.128 | 0.153 |
| 329   | 0.067 | 0.074 | 0.080 | 0.086 | 0.098 | 0.110 | 0.128 | 0.154 |
| 329.5 | 0.067 | 0.074 | 0.080 | 0.087 | 0.099 | 0.111 | 0.129 | 0.155 |
| 330   | 0.068 | 0.075 | 0.081 | 0.088 | 0.099 | 0.112 | 0.130 | 0.155 |
| 221   | 0.068 | 0.076 | 0.081 | 0.088 | 0.100 | 0.113 | 0.131 | 0.150 |
| 221 5 | 0.069 | 0.077 | 0.082 | 0.089 | 0.101 | 0.113 | 0.132 | 0.157 |
| 331.3 | 0.069 | 0.077 | 0.083 | 0.089 | 0.101 | 0.114 | 0.133 | 0.158 |
| 222.5 | 0.070 | 0.079 | 0.083 | 0.090 | 0.102 | 0.115 | 0.133 | 0.159 |
| 222   | 0.070 | 0.078 | 0.084 | 0.091 | 0.105 | 0.110 | 0.134 | 0.100 |
| 222 5 | 0.071 | 0.079 | 0.005 | 0.092 | 0.104 | 0.110 | 0.135 | 0.101 |
| 333.5 | 0.072 | 0.079 | 0.085 | 0.092 | 0.104 | 0.117 | 0.130 | 0.162 |
| 334 5 | 0.072 | 0.000 | 0.000 | 0.075 | 0.105 | 0.110 | 0.137 | 0.105 |
| 334.5 | 0.073 | 0.000 | 0.087 | 0.094 | 0.100 | 0.119 | 0.130 | 0.104 |
| 335 5 | 0.073 | 0.001 | 0.089 | 0.094 | 0.107 | 0.120 | 0.139 | 0.167 |
| 336   | 0.074 | 0.082 | 0.089 | 0.095 | 0.100 | 0.121 | 0 141 | 0.168 |
| 336.5 | 0.075 | 0.083 | 0.000 | 0.097 | 0.109 | 0.122 | 0.143 | 0.169 |
| 337   | 0.076 | 0.084 | 0.090 | 0.098 | 0.110 | 0.123 | 0.144 | 0.171 |
| 337 5 | 0.077 | 0.084 | 0.091 | 0.099 | 0.111 | 0.125 | 0.145 | 0.172 |
| 338   | 0.077 | 0.085 | 0.092 | 0.099 | 0.112 | 0.125 | 0.146 | 0.173 |
| 338.5 | 0.078 | 0.086 | 0.093 | 0.100 | 0.112 | 0.127 | 0.147 | 0.174 |
| 339   | 0.079 | 0.087 | 0.094 | 0.101 | 0.114 | 0.128 | 0.148 | 0.176 |
| 339.5 | 0.079 | 0.088 | 0.094 | 0.102 | 0.115 | 0.129 | 0.149 | 0.177 |
|       |       |       |       |       | -     | -     | -     |       |

| 340   | 0.080 | 0.089 | 0.095 | 0.103 | 0.116 | 0.130 | 0.150 | 0.178 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 340.5 | 0.081 | 0.089 | 0.096 | 0.104 | 0.117 | 0.131 | 0.151 | 0.179 |
| 341   | 0.083 | 0.092 | 0.099 | 0.107 | 0.120 | 0.134 | 0.154 | 0.183 |
| 341.5 | 0.086 | 0.095 | 0.102 | 0.110 | 0.123 | 0.137 | 0.158 | 0.187 |
| 342   | 0.087 | 0.096 | 0.102 | 0.110 | 0.123 | 0.138 | 0.159 | 0.188 |
| 342.5 | 0.088 | 0.096 | 0.102 | 0.111 | 0.124 | 0.130 | 0.160 | 0.190 |
| 343   | 0.089 | 0.097 | 0.103 | 0.112 | 0.125 | 0.140 | 0.161 | 0.190 |
| 343.5 | 0.089 | 0.097 | 0.104 | 0.112 | 0.120 | 0.141 | 0.162 | 0.191 |
| 244   | 0.089 | 0.098 | 0.105 | 0.113 | 0.127 | 0.141 | 0.162 | 0.192 |
| 244 5 | 0.090 | 0.099 | 0.100 | 0.114 | 0.128 | 0.142 | 0.104 | 0.194 |
| 245   | 0.090 | 0.099 | 0.107 | 0.115 | 0.129 | 0.145 | 0.105 | 0.195 |
| 245 5 | 0.091 | 0.100 | 0.107 | 0.115 | 0.130 | 0.145 | 0.100 | 0.190 |
| 345.5 | 0.092 | 0.101 | 0.108 | 0.116 | 0.130 | 0.146 | 0.16/ | 0.197 |
| 346   | 0.092 | 0.102 | 0.109 | 0.117 | 0.131 | 0.146 | 0.168 | 0.198 |
| 346.5 | 0.093 | 0.102 | 0.110 | 0.118 | 0.132 | 0.147 | 0.169 | 0.200 |
| 347   | 0.094 | 0.103 | 0.110 | 0.119 | 0.133 | 0.148 | 0.170 | 0.201 |
| 347.5 | 0.094 | 0.104 | 0.111 | 0.120 | 0.134 | 0.149 | 0.171 | 0.202 |
| 348   | 0.095 | 0.104 | 0.111 | 0.120 | 0.134 | 0.150 | 0.172 | 0.203 |
| 348.5 | 0.095 | 0.105 | 0.112 | 0.121 | 0.135 | 0.151 | 0.173 | 0.204 |
| 349   | 0.096 | 0.105 | 0.113 | 0.121 | 0.136 | 0.151 | 0.174 | 0.205 |
| 349.5 | 0.096 | 0.106 | 0.113 | 0.122 | 0.136 | 0.152 | 0.174 | 0.206 |
| 350   | 0.097 | 0.106 | 0.114 | 0.123 | 0.137 | 0.153 | 0.175 | 0.207 |
| 350.5 | 0.097 | 0.107 | 0.114 | 0.123 | 0.138 | 0.153 | 0.176 | 0.208 |
| 351   | 0.097 | 0.107 | 0.115 | 0.124 | 0.138 | 0.154 | 0.177 | 0.208 |
| 351.5 | 0.098 | 0.107 | 0.115 | 0.124 | 0.139 | 0.154 | 0.177 | 0.209 |
| 352   | 0.098 | 0.108 | 0.115 | 0.124 | 0.139 | 0.155 | 0.177 | 0.209 |
| 352.5 | 0.098 | 0.108 | 0.116 | 0.125 | 0.139 | 0.155 | 0.178 | 0.210 |
| 353   | 0.099 | 0.108 | 0.116 | 0.125 | 0.140 | 0.155 | 0.178 | 0.210 |
| 353.5 | 0.099 | 0.109 | 0.116 | 0.125 | 0.140 | 0.156 | 0.179 | 0.211 |
| 354   | 0.099 | 0.109 | 0.116 | 0.125 | 0.140 | 0.156 | 0.179 | 0.211 |
| 354.5 | 0.099 | 0.109 | 0.116 | 0.126 | 0.140 | 0.156 | 0.179 | 0.211 |
| 355   | 0.099 | 0.109 | 0.116 | 0.126 | 0.140 | 0.156 | 0.179 | 0.211 |
| 355.5 | 0.099 | 0.109 | 0.117 | 0.126 | 0.140 | 0.156 | 0.179 | 0.211 |
| 356   | 0.099 | 0.109 | 0.117 | 0.126 | 0.140 | 0.156 | 0.179 | 0.212 |
| 356.5 | 0.099 | 0.109 | 0.116 | 0.126 | 0.140 | 0.156 | 0.179 | 0.211 |
| 357   | 0.099 | 0.109 | 0.116 | 0.125 | 0.140 | 0.156 | 0.179 | 0.211 |
| 357.5 | 0.099 | 0.109 | 0.116 | 0.125 | 0.140 | 0.156 | 0.179 | 0.211 |
| 358   | 0.099 | 0.109 | 0.116 | 0.125 | 0.140 | 0.156 | 0.179 | 0.211 |
| 358.5 | 0.099 | 0.108 | 0.116 | 0.125 | 0.140 | 0.155 | 0.178 | 0.210 |
| 359   | 0.098 | 0.108 | 0.116 | 0.125 | 0.139 | 0.155 | 0.178 | 0.210 |
| 359.5 | 0.098 | 0.108 | 0.115 | 0.125 | 0.139 | 0.155 | 0.170 | 0.209 |
| 360   | 0.098 | 0.100 | 0.115 | 0.124 | 0.139 | 0.155 | 0.177 | 0.209 |
| 360.5 | 0.090 | 0.107 | 0.115 | 0.124 | 0.138 | 0.154 | 0.176 | 0.209 |
| 361   | 0.097 | 0.107 | 0.113 | 0.123 | 0.130 | 0.153 | 0.176 | 0.200 |
| 361.5 | 0.097 | 0.107 | 0.114 | 0.123 | 0.137 | 0.153 | 0.175 | 0.207 |
| 362   | 0.096 | 0.106 | 0.114 | 0.122 | 0.137 | 0.152 | 0.173 | 0.207 |
| 362 5 | 0.090 | 0.100 | 0.113 | 0.122 | 0.130 | 0.152 | 0.174 | 0.200 |
| 363   | 0.095 | 0.103 | 0.112 | 0.121 | 0.133 | 0.150 | 0.172 | 0.203 |
| 262 5 | 0.095 | 0.104 | 0.112 | 0.120 | 0.134 | 0.130 | 0.172 | 0.203 |
| 264   | 0.094 | 0.104 | 0.111 | 0.120 | 0.134 | 0.149 | 0.171 | 0.203 |
| 261 5 | 0.094 | 0.105 | 0.110 | 0.119 | 0.133 | 0.140 | 0.170 | 0.201 |
| 365   | 0.093 | 0.102 | 0.109 | 0.110 | 0.132 | 0.14/ | 0.109 | 0.200 |
| 265 5 | 0.092 | 0.101 | 0.109 | 0.11/ | 0.131 | 0.140 | 0.108 | 0.199 |
| 303.3 | 0.091 | 0.100 | 0.108 | 0.116 | 0.130 | 0.145 | 0.10/ | 0.197 |
| 266 5 | 0.091 | 0.099 | 0.10/ | 0.115 | 0.129 | 0.144 | 0.103 | 0.190 |
| 300.3 | 0.090 | 0.099 | 0.100 | 0.114 | 0.128 | 0.145 | 0.104 | 0.194 |
| 30/   | 0.089 | 0.098 | 0.105 | 0.113 | 0.126 | 0.141 | 0.162 | 0.195 |
| 367.5 | 0.088 | 0.097 | 0.104 | 0.112 | 0.125 | 0.140 | 0.161 | 0.191 |
| 368   | 0.087 | 0.096 | 0.103 | 0.111 | 0.124 | 0.139 | 0.160 | 0.189 |
| 368.5 | 0.086 | 0.095 | 0.102 | 0.110 | 0.123 | 0.138 | 0.158 | 0.188 |
| 369   | 0.085 | 0.094 | 0.100 | 0.109 | 0.122 | 0.136 | 0.157 | 0.186 |
| 369.5 | 0.084 | 0.093 | 0.099 | 0.107 | 0.120 | 0.135 | 0.155 | 0.184 |
| 370   | 0.083 | 0.092 | 0.098 | 0.106 | 0.119 | 0.133 | 0.153 | 0.182 |
| 370.5 | 0.083 | 0.091 | 0.097 | 0.105 | 0.118 | 0.132 | 0.152 | 0.181 |
| 371   | 0.082 | 0.090 | 0.096 | 0.104 | 0.116 | 0.130 | 0.150 | 0.179 |
| 371.5 | 0.081 | 0.089 | 0.095 | 0.103 | 0.115 | 0.129 | 0.149 | 0.177 |

| 372   | 0.080 | 0.088 | 0.094 | 0.101 | 0.114 | 0.128 | 0.147 | 0.175 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 372.5 | 0.079 | 0.086 | 0.093 | 0.100 | 0.112 | 0.126 | 0.146 | 0.173 |
| 373   | 0.078 | 0.085 | 0.091 | 0.099 | 0.111 | 0.125 | 0.144 | 0.172 |
| 373.5 | 0.077 | 0.084 | 0.090 | 0.098 | 0.110 | 0.123 | 0.142 | 0.170 |
| 374   | 0.076 | 0.083 | 0.089 | 0.096 | 0.108 | 0.122 | 0.141 | 0.168 |
| 374.5 | 0.075 | 0.082 | 0.088 | 0.095 | 0.107 | 0.120 | 0.139 | 0.166 |
| 375   | 0.074 | 0.081 | 0.087 | 0.094 | 0.106 | 0.119 | 0.137 | 0.164 |
| 375.5 | 0.073 | 0.080 | 0.086 | 0.093 | 0.104 | 0.117 | 0.136 | 0.163 |
| 376   | 0.072 | 0.000 | 0.084 | 0.093 | 0.103 | 0.116 | 0.130 | 0.161 |
| 376.5 | 0.072 | 0.079 | 0.004 | 0.090 | 0.103 | 0.110 | 0.134 | 0.159 |
| 370.5 | 0.070 | 0.076 | 0.082 | 0.090 | 0.100 | 0.113 | 0.135 | 0.157 |
| 377 5 | 0.070 | 0.076 | 0.081 | 0.089 | 0.099 | 0.112 | 0.130 | 0.156 |
| 378   | 0.007 | 0.075 | 0.081 | 0.087 | 0.099 | 0.112 | 0.130 | 0.150 |
| 378 5 | 0.008 | 0.073 | 0.030 | 0.087 | 0.098 | 0.110 | 0.128 | 0.152 |
| 378.5 | 0.007 | 0.074 | 0.079 | 0.085 | 0.097 | 0.109 | 0.127 | 0.152 |
| 270.5 | 0.000 | 0.073 | 0.078 | 0.083 | 0.093 | 0.103 | 0.125 | 0.151 |
| 379.5 | 0.005 | 0.072 | 0.077 | 0.084 | 0.094 | 0.107 | 0.124 | 0.130 |
| 280.5 | 0.003 | 0.071 | 0.076 | 0.083 | 0.093 | 0.106 | 0.123 | 0.148 |
| 201   | 0.004 | 0.070 | 0.075 | 0.082 | 0.092 | 0.103 | 0.122 | 0.147 |
| 381   | 0.063 | 0.070 | 0.075 | 0.081 | 0.092 | 0.104 | 0.121 | 0.146 |
| 381.5 | 0.063 | 0.069 | 0.074 | 0.080 | 0.091 | 0.103 | 0.120 | 0.145 |
| 382   | 0.062 | 0.068 | 0.073 | 0.079 | 0.090 | 0.102 | 0.119 | 0.144 |
| 382.5 | 0.061 | 0.068 | 0.073 | 0.079 | 0.089 | 0.101 | 0.118 | 0.143 |
| 383   | 0.061 | 0.067 | 0.072 | 0.078 | 0.088 | 0.100 | 0.117 | 0.142 |
| 383.5 | 0.060 | 0.066 | 0.071 | 0.077 | 0.087 | 0.099 | 0.116 | 0.141 |
| 384   | 0.060 | 0.066 | 0.070 | 0.077 | 0.087 | 0.099 | 0.115 | 0.140 |
| 384.5 | 0.059 | 0.065 | 0.070 | 0.076 | 0.086 | 0.098 | 0.115 | 0.139 |
| 385   | 0.059 | 0.065 | 0.069 | 0.076 | 0.086 | 0.097 | 0.114 | 0.139 |
| 385.5 | 0.058 | 0.064 | 0.069 | 0.075 | 0.085 | 0.097 | 0.113 | 0.138 |
| 386   | 0.058 | 0.064 | 0.068 | 0.075 | 0.084 | 0.096 | 0.113 | 0.137 |
| 386.5 | 0.058 | 0.063 | 0.068 | 0.074 | 0.084 | 0.096 | 0.112 | 0.137 |
| 387   | 0.057 | 0.063 | 0.068 | 0.074 | 0.083 | 0.095 | 0.112 | 0.136 |
| 387.5 | 0.057 | 0.063 | 0.067 | 0.073 | 0.083 | 0.095 | 0.111 | 0.136 |
| 388   | 0.057 | 0.062 | 0.067 | 0.073 | 0.083 | 0.095 | 0.111 | 0.136 |
| 388.5 | 0.056 | 0.062 | 0.067 | 0.073 | 0.082 | 0.094 | 0.111 | 0.135 |
| 389   | 0.056 | 0.062 | 0.066 | 0.072 | 0.082 | 0.094 | 0.110 | 0.135 |
| 389.5 | 0.056 | 0.062 | 0.066 | 0.072 | 0.082 | 0.094 | 0.110 | 0.135 |
| 390   | 0.056 | 0.061 | 0.066 | 0.072 | 0.082 | 0.093 | 0.110 | 0.135 |
| 390.5 | 0.056 | 0.061 | 0.066 | 0.072 | 0.081 | 0.093 | 0.110 | 0.135 |
| 391   | 0.056 | 0.061 | 0.066 | 0.072 | 0.081 | 0.093 | 0.110 | 0.135 |
| 391.5 | 0.056 | 0.061 | 0.065 | 0.072 | 0.081 | 0.093 | 0.110 | 0.135 |
| 392   | 0.055 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.109 | 0.135 |
| 392.5 | 0.055 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.109 | 0.135 |
| 393   | 0.055 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.110 | 0.135 |
| 393.5 | 0.055 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.110 | 0.135 |
| 394   | 0.055 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.110 | 0.135 |
| 394.5 | 0.055 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.110 | 0.136 |
| 395   | 0.055 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.110 | 0.136 |
| 395.5 | 0.056 | 0.061 | 0.065 | 0.071 | 0.081 | 0.093 | 0.110 | 0.136 |
| 396   | 0.056 | 0.061 | 0.065 | 0.071 | 0.081 | 0.094 | 0.110 | 0.137 |
| 396.5 | 0.056 | 0.061 | 0.065 | 0.072 | 0.082 | 0.094 | 0.111 | 0.137 |
| 397   | 0.056 | 0.061 | 0.065 | 0.072 | 0.082 | 0.094 | 0.111 | 0.137 |
| 397.5 | 0.056 | 0.061 | 0.066 | 0.072 | 0.082 | 0.094 | 0.111 | 0.138 |
| 398   | 0.056 | 0.061 | 0.066 | 0.072 | 0.082 | 0.094 | 0.112 | 0.138 |
| 398.5 | 0.056 | 0.061 | 0.066 | 0.072 | 0.082 | 0.095 | 0.112 | 0.139 |
| 399   | 0.056 | 0.061 | 0.066 | 0.072 | 0.082 | 0.095 | 0.112 | 0.139 |
| 399.5 | 0.056 | 0.062 | 0.066 | 0.072 | 0.083 | 0.095 | 0.113 | 0.140 |
| 400   | 0.057 | 0.062 | 0.066 | 0.073 | 0.083 | 0.096 | 0.113 | 0.141 |
| 400.5 | 0.057 | 0.062 | 0.067 | 0.073 | 0.083 | 0.096 | 0.114 | 0.141 |
| 401   | 0.057 | 0.062 | 0.067 | 0.073 | 0.083 | 0.096 | 0.114 | 0.142 |
| 401.5 | 0.057 | 0.062 | 0.067 | 0.073 | 0.084 | 0.097 | 0.115 | 0.143 |
| 402   | 0.057 | 0.063 | 0.067 | 0.074 | 0.084 | 0.097 | 0.115 | 0.143 |
| 402.5 | 0.058 | 0.063 | 0.068 | 0.074 | 0.084 | 0.098 | 0.116 | 0.144 |
| 403   | 0.058 | 0.063 | 0.068 | 0.074 | 0.085 | 0.098 | 0.116 | 0.145 |
| 403.5 | 0.058 | 0.064 | 0.068 | 0.075 | 0.085 | 0.099 | 0.117 | 0.146 |

| 404   | 0.059 | 0.064 | 0.069 | 0.075 | 0.086 | 0.099 | 0.118 | 0.147 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 404.5 | 0.059 | 0.064 | 0.069 | 0.076 | 0.086 | 0.100 | 0.118 | 0.148 |
| 405   | 0.059 | 0.065 | 0.069 | 0.076 | 0.087 | 0.100 | 0.119 | 0.148 |
| 405.5 | 0.060 | 0.065 | 0.070 | 0.076 | 0.087 | 0.101 | 0.120 | 0.150 |
| 406   | 0.060 | 0.065 | 0.070 | 0.077 | 0.088 | 0.102 | 0.121 | 0.150 |
| 406.5 | 0.060 | 0.066 | 0.071 | 0.077 | 0.088 | 0.102 | 0.122 | 0.151 |
| 407   | 0.061 | 0.066 | 0.071 | 0.078 | 0.089 | 0.103 | 0.122 | 0.152 |
| 407.5 | 0.061 | 0.067 | 0.072 | 0.078 | 0.089 | 0.104 | 0.123 | 0.154 |
| 408   | 0.062 | 0.067 | 0.072 | 0.079 | 0.090 | 0.104 | 0.124 | 0.155 |
| 408.5 | 0.062 | 0.067 | 0.072 | 0.079 | 0.091 | 0.105 | 0.125 | 0.156 |
| 409   | 0.063 | 0.068 | 0.073 | 0.080 | 0.091 | 0.106 | 0.126 | 0.157 |
| 409.5 | 0.063 | 0.068 | 0.073 | 0.080 | 0.092 | 0.106 | 0.127 | 0.158 |
| 410   | 0.063 | 0.069 | 0.074 | 0.081 | 0.092 | 0.107 | 0.127 | 0.159 |
| 410.5 | 0.064 | 0.069 | 0.074 | 0.081 | 0.093 | 0.108 | 0.128 | 0.160 |
| 411   | 0.064 | 0.070 | 0.075 | 0.082 | 0.094 | 0.109 | 0.129 | 0.161 |
| 411.5 | 0.065 | 0.070 | 0.075 | 0.082 | 0.094 | 0.109 | 0.130 | 0.162 |
| 412   | 0.065 | 0.071 | 0.076 | 0.083 | 0.095 | 0.110 | 0.131 | 0.164 |
| 412.5 | 0.066 | 0.071 | 0.076 | 0.083 | 0.095 | 0.111 | 0.132 | 0.165 |
| 413   | 0.067 | 0.072 | 0.077 | 0.085 | 0.097 | 0.112 | 0.133 | 0.167 |
| 413.5 | 0.067 | 0.073 | 0.078 | 0.085 | 0.098 | 0.113 | 0.135 | 0.168 |
| 414   | 0.067 | 0.073 | 0.078 | 0.086 | 0.098 | 0.114 | 0.135 | 0.169 |
| 414.5 | 0.067 | 0.073 | 0.078 | 0.086 | 0.098 | 0.114 | 0.136 | 0.170 |
| 415   | 0.068 | 0.073 | 0.079 | 0.086 | 0.099 | 0.115 | 0.137 | 0.171 |
| 415.5 | 0.068 | 0.074 | 0.079 | 0.087 | 0.099 | 0.115 | 0.138 | 0.172 |
| 416   | 0.069 | 0.074 | 0.080 | 0.087 | 0.100 | 0.116 | 0.138 | 0.173 |
| 416.5 | 0.068 | 0.074 | 0.080 | 0.087 | 0.100 | 0.116 | 0.139 | 0.174 |
| 417   | 0.068 | 0.074 | 0.080 | 0.087 | 0.100 | 0.117 | 0.139 | 0.174 |
| 417.5 | 0.069 | 0.075 | 0.080 | 0.088 | 0.101 | 0.117 | 0.140 | 0.176 |
| 418   | 0.069 | 0.075 | 0.081 | 0.089 | 0.102 | 0.118 | 0.141 | 0.177 |
| 418.5 | 0.070 | 0.076 | 0.081 | 0.089 | 0.102 | 0.119 | 0.142 | 0.178 |
| 419   | 0.070 | 0.076 | 0.082 | 0.089 | 0.103 | 0.120 | 0.143 | 0.179 |
| 419.5 | 0.071 | 0.077 | 0.082 | 0.090 | 0.104 | 0.120 | 0.144 | 0.180 |
| 420   | 0.071 | 0.077 | 0.083 | 0.091 | 0.104 | 0.121 | 0.145 | 0.181 |
| 420.5 | 0.071 | 0.077 | 0.083 | 0.091 | 0.104 | 0.122 | 0.146 | 0.182 |
| 421   | 0.072 | 0.078 | 0.084 | 0.092 | 0.105 | 0.122 | 0.146 | 0.183 |
| 421.5 | 0.072 | 0.078 | 0.084 | 0.092 | 0.106 | 0.123 | 0.147 | 0.184 |
| 422   | 0.073 | 0.079 | 0.084 | 0.092 | 0.106 | 0.123 | 0.148 | 0.185 |
| 422.5 | 0.073 | 0.079 | 0.085 | 0.093 | 0.107 | 0.124 | 0.148 | 0.186 |
| 423   | 0.073 | 0.079 | 0.085 | 0.093 | 0.107 | 0.125 | 0.149 | 0.187 |
| 423.5 | 0.074 | 0.080 | 0.086 | 0.094 | 0.108 | 0.125 | 0.150 | 0.188 |
| 424   | 0.074 | 0.080 | 0.086 | 0.094 | 0.108 | 0.126 | 0.150 | 0.189 |
| 424.5 | 0.074 | 0.080 | 0.086 | 0.095 | 0.109 | 0.126 | 0.151 | 0.189 |
| 425   | 0.075 | 0.081 | 0.087 | 0.095 | 0.109 | 0.127 | 0.152 | 0.190 |
| 425.5 | 0.075 | 0.081 | 0.087 | 0.095 | 0.109 | 0.127 | 0.152 | 0.191 |
| 426   | 0.075 | 0.081 | 0.087 | 0.096 | 0.110 | 0.128 | 0.153 | 0.192 |
| 426.5 | 0.075 | 0.082 | 0.088 | 0.096 | 0.110 | 0.128 | 0.153 | 0.192 |
| 427   | 0.076 | 0.082 | 0.088 | 0.096 | 0.110 | 0.129 | 0.154 | 0.193 |
| 427.5 | 0.076 | 0.082 | 0.088 | 0.097 | 0.111 | 0.129 | 0.154 | 0.193 |
| 428   | 0.076 | 0.082 | 0.088 | 0.097 | 0.111 | 0.129 | 0.155 | 0.194 |
| 428.5 | 0.076 | 0.082 | 0.089 | 0.097 | 0.111 | 0.129 | 0.155 | 0.194 |
| 429   | 0.076 | 0.083 | 0.089 | 0.097 | 0.111 | 0.130 | 0.155 | 0.195 |
| 429.5 | 0.077 | 0.083 | 0.089 | 0.097 | 0.112 | 0.130 | 0.155 | 0.195 |
| 430   | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.130 | 0.156 | 0.196 |
| 430.5 | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.130 | 0.156 | 0.196 |
| 431   | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.196 |
| 431.5 | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.196 |
| 432   | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.196 |
| 432.5 | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.197 |
| 433   | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.157 | 0.197 |
| 433.5 | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.197 |
| 434   | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.196 |
| 434.5 | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.196 |
| 435   | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.131 | 0.156 | 0.196 |
| 435.5 | 0.077 | 0.083 | 0.089 | 0.098 | 0.112 | 0.130 | 0.156 | 0.196 |

| 436   | 0.077 | 0.083 | 0.089 | 0.097 | 0.112 | 0.130 | 0.156 | 0.196 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 436.5 | 0.076 | 0.083 | 0.089 | 0.097 | 0.112 | 0.130 | 0.156 | 0.195 |
| 437   | 0.076 | 0.082 | 0.089 | 0.097 | 0.111 | 0.130 | 0.155 | 0.195 |
| 437.5 | 0.076 | 0.082 | 0.088 | 0.097 | 0.111 | 0.129 | 0.155 | 0 194 |
| 438   | 0.076 | 0.082 | 0.088 | 0.096 | 0.111 | 0.129 | 0.155 | 0.194 |
| 438 5 | 0.076 | 0.082 | 0.088 | 0.096 | 0.110 | 0.129 | 0.154 | 0.193 |
| 439   | 0.075 | 0.081 | 0.088 | 0.096 | 0.110 | 0.129 | 0.153 | 0.193 |
| 430.5 | 0.075 | 0.081 | 0.000 | 0.095 | 0.110 | 0.128 | 0.153 | 0.193 |
| 439.5 | 0.075 | 0.081 | 0.087 | 0.095 | 0.109 | 0.128 | 0.153 | 0.192 |
| 440   | 0.073 | 0.081 | 0.087 | 0.093 | 0.109 | 0.127 | 0.152 | 0.191 |
| 440.3 | 0.074 | 0.080 | 0.086 | 0.094 | 0.109 | 0.120 | 0.151 | 0.190 |
| 441   | 0.074 | 0.080 | 0.086 | 0.094 | 0.108 | 0.120 | 0.151 | 0.190 |
| 441.5 | 0.074 | 0.080 | 0.086 | 0.094 | 0.108 | 0.125 | 0.130 | 0.189 |
| 442   | 0.073 | 0.079 | 0.085 | 0.093 | 0.107 | 0.125 | 0.149 | 0.188 |
| 442.5 | 0.073 | 0.079 | 0.084 | 0.093 | 0.106 | 0.124 | 0.149 | 0.187 |
| 443   | 0.072 | 0.078 | 0.084 | 0.092 | 0.106 | 0.123 | 0.148 | 0.186 |
| 443.5 | 0.072 | 0.078 | 0.083 | 0.091 | 0.105 | 0.122 | 0.147 | 0.184 |
| 444   | 0.071 | 0.077 | 0.083 | 0.091 | 0.104 | 0.122 | 0.146 | 0.183 |
| 444.5 | 0.071 | 0.077 | 0.082 | 0.090 | 0.104 | 0.121 | 0.145 | 0.182 |
| 445   | 0.070 | 0.076 | 0.082 | 0.090 | 0.103 | 0.120 | 0.144 | 0.181 |
| 445.5 | 0.070 | 0.075 | 0.081 | 0.089 | 0.102 | 0.119 | 0.143 | 0.179 |
| 446   | 0.069 | 0.075 | 0.080 | 0.088 | 0.101 | 0.118 | 0.141 | 0.178 |
| 446.5 | 0.068 | 0.074 | 0.080 | 0.087 | 0.100 | 0.117 | 0.140 | 0.176 |
| 447   | 0.068 | 0.073 | 0.079 | 0.086 | 0.099 | 0.116 | 0.139 | 0.175 |
| 447.5 | 0.067 | 0.073 | 0.078 | 0.086 | 0.098 | 0.115 | 0.138 | 0.173 |
| 448   | 0.066 | 0.072 | 0.077 | 0.085 | 0.097 | 0.114 | 0.136 | 0.172 |
| 448.5 | 0.066 | 0.071 | 0.077 | 0.084 | 0.096 | 0.113 | 0.135 | 0.170 |
| 449   | 0.065 | 0.070 | 0.076 | 0.083 | 0.095 | 0.112 | 0.134 | 0.168 |
| 449.5 | 0.064 | 0.070 | 0.075 | 0.082 | 0.094 | 0.110 | 0.132 | 0.167 |
| 450   | 0.063 | 0.069 | 0.074 | 0.081 | 0.094 | 0.109 | 0.131 | 0.165 |
| 450.5 | 0.063 | 0.068 | 0.073 | 0.081 | 0.092 | 0.108 | 0.130 | 0.163 |
| 451   | 0.062 | 0.067 | 0.073 | 0.080 | 0.091 | 0.107 | 0.128 | 0.161 |
| 451.5 | 0.061 | 0.067 | 0.072 | 0.079 | 0.090 | 0.106 | 0.127 | 0.160 |
| 452   | 0.061 | 0.066 | 0.071 | 0.078 | 0.089 | 0.104 | 0.125 | 0.158 |
| 452.5 | 0.060 | 0.065 | 0.070 | 0.077 | 0.088 | 0.103 | 0.124 | 0.156 |
| 453   | 0.059 | 0.064 | 0.069 | 0.076 | 0.087 | 0.102 | 0.122 | 0.154 |
| 453.5 | 0.058 | 0.063 | 0.068 | 0.075 | 0.086 | 0.100 | 0.121 | 0.152 |
| 454   | 0.057 | 0.063 | 0.067 | 0.074 | 0.085 | 0.099 | 0.119 | 0.151 |
| 454.5 | 0.057 | 0.062 | 0.066 | 0.073 | 0.084 | 0.098 | 0.118 | 0.149 |
| 455   | 0.056 | 0.061 | 0.066 | 0.072 | 0.083 | 0.097 | 0.116 | 0.147 |
| 455.5 | 0.055 | 0.060 | 0.065 | 0.071 | 0.082 | 0.096 | 0.115 | 0.145 |
| 456   | 0.055 | 0.059 | 0.064 | 0.070 | 0.081 | 0.094 | 0.114 | 0.143 |
| 456.5 | 0.054 | 0.058 | 0.063 | 0.069 | 0.080 | 0.093 | 0.112 | 0.141 |
| 457   | 0.053 | 0.058 | 0.062 | 0.068 | 0.078 | 0.092 | 0.110 | 0.139 |
| 457.5 | 0.052 | 0.057 | 0.061 | 0.067 | 0.077 | 0.091 | 0.109 | 0.137 |
| 458   | 0.051 | 0.056 | 0.060 | 0.066 | 0.076 | 0.089 | 0.107 | 0.135 |
| 458.5 | 0.051 | 0.055 | 0.059 | 0.065 | 0.075 | 0.088 | 0.106 | 0.134 |
| 459   | 0.050 | 0.054 | 0.058 | 0.064 | 0.074 | 0.087 | 0.104 | 0.132 |
| 459.5 | 0.049 | 0.053 | 0.058 | 0.063 | 0.073 | 0.085 | 0.103 | 0.130 |
| 460   | 0.048 | 0.052 | 0.057 | 0.063 | 0.072 | 0.084 | 0.101 | 0.128 |
| 460.5 | 0.047 | 0.052 | 0.056 | 0.062 | 0.071 | 0.083 | 0.100 | 0.126 |
| 461   | 0.047 | 0.051 | 0.055 | 0.061 | 0.070 | 0.082 | 0.098 | 0.124 |
| 461.5 | 0.046 | 0.050 | 0.054 | 0.060 | 0.068 | 0.080 | 0.097 | 0.122 |
| 462   | 0.045 | 0.049 | 0.053 | 0.059 | 0.067 | 0.079 | 0.095 | 0.120 |
| 462.5 | 0.044 | 0.048 | 0.052 | 0.058 | 0.066 | 0.078 | 0.093 | 0.118 |
| 463   | 0.043 | 0.047 | 0.051 | 0.057 | 0.065 | 0.076 | 0.092 | 0.116 |
| 463.5 | 0.043 | 0.047 | 0.050 | 0.056 | 0.064 | 0.075 | 0.090 | 0.114 |
| 464   | 0.042 | 0.046 | 0.050 | 0.055 | 0.063 | 0.075 | 0.089 | 0.117 |
| 464 5 | 0.041 | 0.045 | 0.020 | 0.054 | 0.003 | 0.073 | 0.007 | 0.112 |
| 465   | 0.040 | 0.044 | 0.049 | 0.054 | 0.002 | 0.073 | 0.007 | 0.100 |
| 465.5 | 0.040 | 0.043 | 0.047 | 0.052 | 0.001 | 0.071 | 0.084 | 0.107 |
| 466   | 0.040 | 0.043 | 0.047 | 0.052 | 0.000 | 0.070 | 0.004 | 0.107 |
| 400   | 0.039 | 0.042 | 0.040 | 0.051 | 0.039 | 0.009 | 0.005 | 0.103 |
| 467   | 0.030 | 0.042 | 0.043 | 0.050 | 0.057 | 0.007 | 0.001 | 0.105 |
| 407   | 0.037 | 0.041 | 0.044 | 0.049 | 0.050 | 0.000 | 0.000 | 0.101 |
| 407.5 | 0.050 | 0.040 | 0.043 | 0.040 | 0.055 | 0.005 | 0.078 | 0.077 |

| 468   | 0.036 | 0.039 | 0.042 | 0.047 | 0.054 | 0.064 | 0.077 | 0.097 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 468.5 | 0.035 | 0.038 | 0.042 | 0.046 | 0.053 | 0.063 | 0.076 | 0.096 |
| 469   | 0.034 | 0.037 | 0.041 | 0.045 | 0.052 | 0.061 | 0.074 | 0.094 |
| 469.5 | 0.033 | 0.037 | 0.040 | 0.044 | 0.051 | 0.060 | 0.072 | 0.092 |
| 470   | 0.033 | 0.036 | 0.039 | 0.043 | 0.050 | 0.059 | 0.071 | 0.090 |
| 470.5 | 0.032 | 0.035 | 0.038 | 0.042 | 0.049 | 0.058 | 0.069 | 0.088 |
| 471   | 0.031 | 0.034 | 0.037 | 0.042 | 0.048 | 0.056 | 0.068 | 0.086 |
| 471.5 | 0.030 | 0.034 | 0.036 | 0.041 | 0.047 | 0.055 | 0.067 | 0.085 |
| 472   | 0.030 | 0.033 | 0.036 | 0.040 | 0.046 | 0.054 | 0.065 | 0.083 |
| 472.5 | 0.029 | 0.032 | 0.035 | 0.039 | 0.045 | 0.053 | 0.064 | 0.081 |
| 473   | 0.028 | 0.031 | 0.034 | 0.038 | 0.044 | 0.052 | 0.063 | 0.080 |
| 473.5 | 0.028 | 0.031 | 0.033 | 0.037 | 0.043 | 0.051 | 0.061 | 0.078 |
| 474   | 0.027 | 0.030 | 0.033 | 0.036 | 0.042 | 0.050 | 0.060 | 0.076 |
| 474.5 | 0.026 | 0.029 | 0.032 | 0.036 | 0.041 | 0.049 | 0.059 | 0.075 |
| 475   | 0.026 | 0.029 | 0.031 | 0.035 | 0.040 | 0.048 | 0.057 | 0.073 |
| 475.5 | 0.025 | 0.028 | 0.030 | 0.034 | 0.039 | 0.047 | 0.056 | 0.072 |
| 476   | 0.025 | 0.027 | 0.030 | 0.033 | 0.038 | 0.046 | 0.055 | 0.070 |
| 476.5 | 0.024 | 0.027 | 0.029 | 0.032 | 0.038 | 0.045 | 0.054 | 0.069 |
| 477   | 0.023 | 0.026 | 0.028 | 0.032 | 0.037 | 0.044 | 0.053 | 0.067 |
| 477.5 | 0.023 | 0.025 | 0.028 | 0.031 | 0.036 | 0.043 | 0.052 | 0.066 |
| 478   | 0.022 | 0.025 | 0.027 | 0.030 | 0.035 | 0.042 | 0.050 | 0.064 |
| 478.5 | 0.022 | 0.024 | 0.026 | 0.030 | 0.034 | 0.041 | 0.049 | 0.063 |
| 479   | 0.021 | 0.024 | 0.026 | 0.029 | 0.033 | 0.040 | 0.048 | 0.062 |
| 479.5 | 0.021 | 0.023 | 0.025 | 0.028 | 0.033 | 0.039 | 0.047 | 0.061 |
| 480   | 0.020 | 0.022 | 0.025 | 0.028 | 0.032 | 0.038 | 0.046 | 0.059 |
| 480.5 | 0.020 | 0.022 | 0.024 | 0.027 | 0.031 | 0.037 | 0.045 | 0.058 |
| 481   | 0.019 | 0.021 | 0.023 | 0.026 | 0.031 | 0.036 | 0.044 | 0.057 |
| 481.5 | 0.018 | 0.021 | 0.023 | 0.026 | 0.030 | 0.036 | 0.043 | 0.056 |
| 482   | 0.018 | 0.020 | 0.022 | 0.025 | 0.029 | 0.035 | 0.042 | 0.054 |
| 482.5 | 0.017 | 0.020 | 0.022 | 0.025 | 0.029 | 0.034 | 0.042 | 0.053 |
| 483   | 0.017 | 0.019 | 0.021 | 0.024 | 0.028 | 0.033 | 0.041 | 0.052 |
| 483.5 | 0.017 | 0.019 | 0.021 | 0.024 | 0.027 | 0.033 | 0.040 | 0.051 |
| 484   | 0.016 | 0.018 | 0.020 | 0.023 | 0.027 | 0.032 | 0.039 | 0.050 |
| 484.5 | 0.016 | 0.018 | 0.020 | 0.023 | 0.026 | 0.031 | 0.038 | 0.049 |
| 485   | 0.016 | 0.017 | 0.019 | 0.022 | 0.026 | 0.031 | 0.038 | 0.048 |
| 485.5 | 0.015 | 0.017 | 0.019 | 0.022 | 0.025 | 0.030 | 0.037 | 0.047 |
| 486   | 0.015 | 0.017 | 0.018 | 0.021 | 0.025 | 0.030 | 0.036 | 0.046 |
| 486.5 | 0.014 | 0.016 | 0.018 | 0.021 | 0.024 | 0.029 | 0.035 | 0.046 |
| 487   | 0.014 | 0.016 | 0.018 | 0.020 | 0.024 | 0.028 | 0.035 | 0.045 |
| 487.5 | 0.014 | 0.016 | 0.017 | 0.020 | 0.023 | 0.028 | 0.034 | 0.044 |
| 488   | 0.013 | 0.015 | 0.017 | 0.020 | 0.023 | 0.027 | 0.033 | 0.043 |
| 488.5 | 0.013 | 0.015 | 0.017 | 0.019 | 0.022 | 0.027 | 0.033 | 0.042 |
| 489   | 0.013 | 0.015 | 0.016 | 0.019 | 0.022 | 0.026 | 0.032 | 0.042 |
| 489.5 | 0.012 | 0.014 | 0.016 | 0.018 | 0.021 | 0.026 | 0.032 | 0.041 |
| 490   | 0.012 | 0.014 | 0.016 | 0.018 | 0.021 | 0.025 | 0.031 | 0.040 |
| 490.5 | 0.012 | 0.014 | 0.015 | 0.018 | 0.020 | 0.025 | 0.030 | 0.039 |
| 491   | 0.011 | 0.013 | 0.015 | 0.017 | 0.020 | 0.024 | 0.030 | 0.039 |
| 491.5 | 0.011 | 0.013 | 0.014 | 0.017 | 0.020 | 0.024 | 0.029 | 0.038 |
| 492   | 0.011 | 0.013 | 0.014 | 0.016 | 0.019 | 0.024 | 0.029 | 0.037 |
| 492.5 | 0.011 | 0.012 | 0.014 | 0.016 | 0.019 | 0.023 | 0.028 | 0.037 |
| 493   | 0.010 | 0.012 | 0.014 | 0.016 | 0.019 | 0.023 | 0.028 | 0.036 |
| 493.5 | 0.010 | 0.012 | 0.013 | 0.016 | 0.018 | 0.022 | 0.027 | 0.036 |
| 494   | 0.010 | 0.012 | 0.013 | 0.015 | 0.018 | 0.022 | 0.027 | 0.035 |
| 494.5 | 0.010 | 0.011 | 0.013 | 0.015 | 0.018 | 0.021 | 0.026 | 0.035 |
| 495   | 0.010 | 0.011 | 0.013 | 0.015 | 0.017 | 0.021 | 0.026 | 0.034 |
| 495.5 | 0.009 | 0.011 | 0.012 | 0.014 | 0.017 | 0.021 | 0.026 | 0.033 |
| 490   | 0.009 | 0.011 | 0.012 | 0.014 | 0.017 | 0.020 | 0.025 | 0.033 |
| 490.3 | 0.009 | 0.010 | 0.012 | 0.014 | 0.016 | 0.020 | 0.025 | 0.032 |
| 497   | 0.009 | 0.010 | 0.012 | 0.014 | 0.016 | 0.020 | 0.025 | 0.032 |
| 497.5 | 0.008 | 0.010 | 0.011 | 0.013 | 0.016 | 0.019 | 0.024 | 0.031 |
| 498   | 0.008 | 0.010 | 0.011 | 0.013 | 0.015 | 0.019 | 0.024 | 0.031 |
| 498.5 | 0.008 | 0.010 | 0.011 | 0.013 | 0.015 | 0.019 | 0.023 | 0.030 |
| 499   | 0.008 | 0.009 | 0.011 | 0.013 | 0.015 | 0.018 | 0.023 | 0.030 |
| 499.3 | 0.008 | 0.009 | 0.010 | 0.012 | 0.015 | 0.018 | 0.023 | 0.030 |

| 500   | 0.007 | 0.009 | 0.010 | 0.012 | 0.014 | 0.018 | 0.022 | 0.029 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 500.5 | 0.007 | 0.009 | 0.010 | 0.012 | 0.014 | 0.018 | 0.022 | 0.029 |
| 501   | 0.007 | 0.009 | 0.010 | 0.012 | 0.014 | 0.017 | 0.021 | 0.028 |
| 501.5 | 0.007 | 0.008 | 0.010 | 0.012 | 0.014 | 0.017 | 0.021 | 0.028 |
| 502   | 0.007 | 0.008 | 0.010 | 0.011 | 0.013 | 0.017 | 0.021 | 0.027 |
| 502.5 | 0.007 | 0.008 | 0.009 | 0.011 | 0.013 | 0.016 | 0.021 | 0.027 |
| 503   | 0.006 | 0.008 | 0.009 | 0.011 | 0.013 | 0.016 | 0.020 | 0.027 |
| 503.5 | 0.006 | 0.008 | 0.009 | 0.011 | 0.013 | 0.016 | 0.020 | 0.026 |
| 504   | 0.006 | 0.008 | 0.009 | 0.010 | 0.013 | 0.016 | 0.020 | 0.026 |
| 504.5 | 0.006 | 0.007 | 0.009 | 0.010 | 0.012 | 0.016 | 0.019 | 0.026 |
| 505   | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 | 0.015 | 0.019 | 0.025 |
| 505.5 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 | 0.015 | 0.019 | 0.025 |
| 506   | 0.005 | 0.007 | 0.008 | 0.010 | 0.012 | 0.015 | 0.019 | 0.025 |
| 506.5 | 0.005 | 0.007 | 0.008 | 0.010 | 0.012 | 0.015 | 0.018 | 0.024 |
| 507   | 0.005 | 0.007 | 0.008 | 0.010 | 0.011 | 0.014 | 0.018 | 0.024 |
| 507.5 | 0.005 | 0.007 | 0.008 | 0.010 | 0.011 | 0.014 | 0.018 | 0.024 |
| 508   | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 | 0.018 | 0.024 |
| 508.5 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 | 0.018 | 0.023 |
| 509   | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 | 0.017 | 0.023 |
| 509.5 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 | 0.017 | 0.023 |
| 510   | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 | 0.017 | 0.022 |
| 510.5 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 | 0.017 | 0.022 |
| 511   | 0.004 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 | 0.016 | 0.022 |
| 511.5 | 0.004 | 0.005 | 0.007 | 0.008 | 0.010 | 0.013 | 0.016 | 0.022 |
| 512   | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.013 | 0.016 | 0.021 |
| 512.5 | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.012 | 0.016 | 0.021 |
| 513   | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.012 | 0.016 | 0.021 |
| 513.5 | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.012 | 0.016 | 0.021 |
| 514   | 0.004 | 0.005 | 0.006 | 0.008 | 0.009 | 0.012 | 0.015 | 0.021 |
| 514.5 | 0.004 | 0.005 | 0.006 | 0.008 | 0.009 | 0.012 | 0.015 | 0.020 |
| 515   | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.012 | 0.015 | 0.020 |
| 515.5 | 0.003 | 0.005 | 0.006 | 0.007 | 0.009 | 0.012 | 0.015 | 0.020 |
| 516   | 0.003 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 | 0.020 |
| 516.5 | 0.003 | 0.005 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 | 0.020 |
| 517   | 0.003 | 0.005 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 | 0.019 |
| 517.5 | 0.003 | 0.004 | 0.005 | 0.007 | 0.008 | 0.011 | 0.014 | 0.019 |
| 518   | 0.003 | 0.004 | 0.005 | 0.007 | 0.008 | 0.011 | 0.014 | 0.019 |
| 518.5 | 0.003 | 0.004 | 0.005 | 0.007 | 0.008 | 0.011 | 0.014 | 0.019 |
| 519   | 0.003 | 0.004 | 0.005 | 0.007 | 0.008 | 0.011 | 0.014 | 0.019 |
| 519.5 | 0.003 | 0.004 | 0.005 | 0.007 | 0.008 | 0.011 | 0.014 | 0.018 |
| 520   | 0.003 | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.014 | 0.018 |
| 520.5 | 0.003 | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.013 | 0.018 |
| 521   | 0.003 | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.013 | 0.018 |
| 521.5 | 0.003 | 0.004 | 0.005 | 0.006 | 0.008 | 0.010 | 0.013 | 0.018 |
| 522 5 | 0.003 | 0.004 | 0.005 | 0.000 | 0.008 | 0.010 | 0.013 | 0.018 |
| 573   | 0.002 | 0.004 | 0.005 | 0.000 | 0.008 | 0.010 | 0.013 | 0.010 |
| 523 5 | 0.002 | 0.003 | 0.003 | 0.000 | 0.007 | 0.010 | 0.013 | 0.017 |
| 523.5 | 0.002 | 0.003 | 0.004 | 0.000 | 0.007 | 0.010 | 0.013 | 0.017 |
| 524 5 | 0.002 | 0.003 | 0.004 | 0.000 | 0.007 | 0.010 | 0.013 | 0.017 |
| 525   | 0.002 | 0.003 | 0.004 | 0.000 | 0.007 | 0.010 | 0.012 | 0.017 |
| 525 5 | 0.002 | 0.003 | 0.004 | 0.006 | 0.007 | 0.009 | 0.012 | 0.017 |
| 526   | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.017 |
| 526 5 | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.017 |
| 527   | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.016 |
| 527.5 | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.016 |
| 52.8  | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.016 |
| 528.5 | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.016 |
| 529   | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.016 |
| 529.5 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.009 | 0.012 | 0.016 |
| 530   | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.009 | 0.011 | 0.016 |
| 530.5 | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.009 | 0.011 | 0.016 |
| 531   | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.009 | 0.011 | 0.016 |
| 531.5 | 0.001 | 0.003 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
|       |       |       |       |       |       |       |       | -     |

| 532                                                                                         | 0.001 | 0.003 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 532.5                                                                                       | 0.001 | 0.003 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 533                                                                                         | 0.001 | 0.003 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 533.5                                                                                       | 0.001 | 0.003 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 534                                                                                         | 0.001 | 0.002 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 534.5                                                                                       | 0.001 | 0.002 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 535                                                                                         | 0.001 | 0.002 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 535.5                                                                                       | 0.001 | 0.002 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 536                                                                                         | 0.001 | 0.002 | 0.003 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 536.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.008 | 0.011 | 0.015 |
| 537                                                                                         | 0.002 | 0.003 | 0.004 | 0.006 | 0.007 | 0.009 | 0.012 | 0.016 |
| 537.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.006 | 0.007 | 0.009 | 0.012 | 0.015 |
| 538                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.012 | 0.015 |
| 538.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 539                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 539.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 540                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 540.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 541                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 541.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 542                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 542.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 543                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 543.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 544                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 545                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 545                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 546                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 546.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 547                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.008 | 0.011 | 0.015 |
| 547.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.008 | 0.011 | 0.015 |
| 548                                                                                         | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 548.5                                                                                       | 0.002 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 549                                                                                         | 0.003 | 0.003 | 0.004 | 0.005 | 0.007 | 0.009 | 0.011 | 0.015 |
| 549.5                                                                                       | 0.003 | 0.003 | 0.004 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 550                                                                                         | 0.003 | 0.003 | 0.004 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 550.5                                                                                       | 0.003 | 0.004 | 0.004 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 551                                                                                         | 0.003 | 0.004 | 0.004 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 551.5                                                                                       | 0.003 | 0.004 | 0.004 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 552                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 552.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 553                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 553.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 554                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 554.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 555                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 555.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 556                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 556.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 557                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 55/.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 550                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 550 5                                                                                       | 0.003 | 0.004 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.015 |
| 560                                                                                         | 0.003 | 0.004 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.015 |
| 560 5                                                                                       | 0.003 | 0.004 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.015 |
| 561                                                                                         | 0.003 | 0.004 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.015 |
| 561 5                                                                                       | 0.003 | 0.004 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.015 |
| 562                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 562.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 563                                                                                         | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 563.5                                                                                       | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| ·                                                                                           | •     | •     | •     | •     | •     |       |       |       |

| 564   | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 564.5 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 565   | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 565.5 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 566   | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 566.5 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 567   | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 567.5 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 568   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 568.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 569   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 569.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 570   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 570.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 571   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 571.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 572   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 572.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 573   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 5/3.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.015 |
| 5/4   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 5/4.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 5/5   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 575.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 5765  | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 570.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 577 5 | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 578   | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 578.5 | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 579   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 579.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 580   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 580.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 581   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 581.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 582   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 582.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 583   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 583.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 584   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 584.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 585   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 585.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 586   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 586.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 587   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 587.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 588   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 588.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 589   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 589.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 590   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 590.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 591   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 502   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 502.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 592.3 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.014 |
| 502 5 | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 504   | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 50/ 5 | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 505   | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 595   | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.009 | 0.011 | 0.014 |
| 575.5 | 0.004 | 0.000 | 0.000 | 0.000 | 0.007 | 0.007 | 0.011 | 0.013 |

| 596   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.013 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 596.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.011 | 0.013 |
| 597   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 597.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 598   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 598.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 599   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 599.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 600   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 600.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 601   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 601.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 602   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 602.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 603   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 603.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 604   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 604.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 | 0.010 | 0.013 |
| 605   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 605.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 606   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 606.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 607   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 607.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 608   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 608.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 609   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 609.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 610   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 610.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 611   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 611.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 612   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 612.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 613   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 613.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 614   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 614.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 615   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 615.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 616   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 616.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 617   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 617.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 618   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 618.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 619   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 619.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 620   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 620.5 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 621   | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 621.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 622   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 622.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 623   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 623.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 624   | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 624.5 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 625   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 625.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 626   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 626.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 627   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 627.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |

| 628   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 628.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 629   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 629.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 630   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 630.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 631   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 631.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 622   | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.010 | 0.012 |
| 622.5 | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.010 | 0.012 |
| 622   | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.010 | 0.012 |
| 622.5 | 0.004 | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.010 | 0.012 |
| 033.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 634   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 634.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 635   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 635.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 636   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 636.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 637   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 637.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 638   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 638.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 639   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.012 |
| 639.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 640   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 640.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 641   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 | 0.013 |
| 641.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 642   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 642.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 643   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 643.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 644   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 644.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 645   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 645.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 646   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 646.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 647   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 647.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 648   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.013 |
| 648.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 649   | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 649.5 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 650   | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 650.5 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 651   | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 651.5 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 652   | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 652.5 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 653   | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 653.5 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 654   | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 654.5 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 655   | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 655 5 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 656   | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 656.5 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 657   | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 657.5 | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 658   | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 658.5 | 0.005 | 0.005 | 0.000 | 0.007 | 0.000 | 0.009 | 0.010 | 0.013 |
| 650   | 0.005 | 0.005 | 0.000 | 0.007 | 0.000 | 0.009 | 0.010 | 0.013 |
| 650.5 | 0.005 | 0.005 | 0.000 | 0.007 | 0.000 | 0.009 | 0.010 | 0.013 |
| 039.3 | 0.005 | 0.005 | 0.000 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |

| 660         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| 660.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 661         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 661.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 662         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 662.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 663         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 663.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 664         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 664.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 665         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 665.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 666         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 666.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 667         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 667.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 668         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 668.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 669         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 669.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 670         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 670.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 671         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 671.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 672         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 672.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 673         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 673.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 674         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 674.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 675         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 675.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 676         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 676.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 677         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 677.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 678         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 678.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 679         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 679.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 680         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 680.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 681         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 681.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 682         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 682.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 683         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 683.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 684         | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 684.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.010 | 0.013 |
| 685         | 0.005 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 685.5       | 0.005 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 080         | 0.005 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 6050<br>607 | 0.005 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 08/         | 0.005 | 0.005 | 0.006 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 600/.3      | 0.005 | 0.005 | 0.000 | 0.007 | 0.007 | 0.009 | 0.010 | 0.013 |
| 000         | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.009 | 0.010 | 0.012 |
| 600         | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.009 | 0.010 | 0.012 |
| 690.5       | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.009 | 0.010 | 0.012 |
| 600         | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 600 5       | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 601         | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 091<br>۲۰۱۲ | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 01.3        | 0.004 | 0.005 | 0.000 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |

| 692   | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 692.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 693   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 693.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 694   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 694.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 695   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 695.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 696   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 696.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 697   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 697.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 608   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 608 5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 600   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 600.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 700   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 700 5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 700.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| 701 5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.010 | 0.012 |
| /01.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.009 | 0.012 |
| 702   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.009 | 0.012 |
| /02.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.009 | 0.012 |
| /03   | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.009 | 0.012 |
| /03.5 | 0.004 | 0.005 | 0.005 | 0.007 | 0.007 | 0.008 | 0.009 | 0.012 |
| 704   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 704.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 705   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 705.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 706   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 706.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 707   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 707.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 708   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 708.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 709   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 709.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 710   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 710.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 711   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 711.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 712   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 712.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 713   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 713.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 714   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 714.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 715   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 715.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 716   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 716.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 717   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.012 |
| 717.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 718   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 718.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 719   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 719.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 720   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 720.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 721   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 721.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 722   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 722.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 723   | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 723.5 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |

| 724    | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| 724.5  | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 725    | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 725.5  | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 726    | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 726.5  | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 727    | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.009 | 0.011 |
| 727 5  | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.008 | 0.009 | 0.011 |
| 728    | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.008 | 0.009 | 0.011 |
| 728.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.008 | 0.009 | 0.011 |
| 720.5  | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.008 | 0.009 | 0.011 |
| 729.5  | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.008 | 0.009 | 0.011 |
| 729.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.000 | 0.008 | 0.009 | 0.011 |
| 730 5  | 0.004 | 0.004 | 0.005 | 0.000 | 0.000 | 0.003 | 0.009 | 0.011 |
| 731    | 0.004 | 0.004 | 0.005 | 0.000 | 0.000 | 0.007 | 0.008 | 0.011 |
| 731.5  | 0.004 | 0.004 | 0.005 | 0.000 | 0.000 | 0.007 | 0.008 | 0.011 |
| 731.5  | 0.004 | 0.004 | 0.005 | 0.000 | 0.000 | 0.007 | 0.008 | 0.011 |
| 722.5  | 0.004 | 0.004 | 0.005 | 0.000 | 0.000 | 0.007 | 0.008 | 0.011 |
| 732.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 722 5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| /33.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| /34    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| / 54.5 | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| /35    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| /35.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| /36    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| /36.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 737    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 737.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 738    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 738.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 739    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 739.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 740    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 740.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 741    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 741.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 742    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 742.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 743    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 743.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.011 |
| 744    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 744.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 745    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 745.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 746    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 746.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 747    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 747.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 748    | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 748.5  | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 749    | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 749.5  | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 750    | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 750.5  | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 751    | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 751.5  | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 752    | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 752.5  | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 753    | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 753.5  | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 754    | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 754.5  | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 755    | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
| 755.5  | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |

| 756   | 0.003 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.008 | 0.010 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 756.5 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 757   | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 757.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 758   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 758.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 759   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 759.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 760   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 760.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 761   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 761.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 762   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 762.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 763   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 763.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 764   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 764.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 765   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 765.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 766   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 766.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 767   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | 0.010 |
| 767.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | 0.007 | 0.010 |
| 768   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 768.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 769   | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.007 | 0.010 |
| 769.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 770   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 770.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 771   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 771.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 772   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.010 |
| 772.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 773   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 773.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 774   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 774.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 775   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 775.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 776   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 776.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 777   | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 777.5 | 0.003 | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 778   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 778.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 779   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 779.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 780   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 780.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 781   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 781.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /82   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 182.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 183   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /85.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /84   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /84.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /80   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /85.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /80   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /80.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 181   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| /8/.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 788   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 788.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 789   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 789.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 790   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 790.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 791   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 791.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 792   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 792.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 793   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 793.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 794   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 794.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 795   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 795.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 796   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 796.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 797   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 797.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 798   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 798.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 799   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.009 |
| 799.5 | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.008 |
| 800   | 0.003 | 0.003 | 0.004 | 0.005 | 0.005 | 0.006 | 0.006 | 0.008 |

# 4.9. Absorbance intensity data for $\rm H_2DTC$ with different concentrations at three different wavelength at 298.15 K

| [HaDTC] / mM | abs    | orbance inten | sity   |
|--------------|--------|---------------|--------|
|              | 434 nm | 238 nm        | 356 nm |
| 0.0000       | 0.000  | 0.000         | 0.000  |
| 0.0018       | 0.001  | 0.013         | 0.002  |
| 0.0062       | 0.005  | 0.044         | 0.007  |
| 0.0104       | 0.010  | 0.079         | 0.014  |
| 0.0144       | 0.016  | 0.120         | 0.022  |
| 0.0183       | 0.022  | 0.154         | 0.030  |
| 0.0220       | 0.027  | 0.184         | 0.037  |
| 0.0257       | 0.033  | 0.221         | 0.045  |
| 0.0291       | 0.043  | 0.271         | 0.057  |
| 0.0325       | 0.052  | 0.311         | 0.067  |
| 0.0358       | 0.057  | 0.345         | 0.075  |
| 0.0389       | 0.065  | 0.383         | 0.084  |
| 0.0420       | 0.077  | 0.449         | 0.099  |
| 0.0449       | 0.083  | 0.489         | 0.109  |
| 0.0478       | 0.089  | 0.523         | 0.117  |
| 0.0505       | 0.098  | 0.559         | 0.126  |
| 0.0558       | 0.112  | 0.629         | 0.140  |
| 0.0608       | 0.131  | 0.696         | 0.156  |
| 0.0699       | 0.156  | 0.802         | 0.179  |
| 0.0819       | 0.196  | 0.950         | 0.212  |
| 0.0921       | 0.236  | 1.083         | 0.234  |
| 0.1010       | 0.277  | 1.205         | 0.254  |
| 0.1088       | 0.314  | 1.310         | 0.272  |
| 0.1157       | 0.353  | 1.416         | 0.291  |
| 0.1218       | 0.389  | 1.510         | 0.310  |
| 0.1272       | 0.415  | 1.595         | 0.328  |
| 0.1322       | 0.447  | 1.674         | 0.346  |
| 0.1366       | 0.465  | 1.732         | 0.361  |

### 4.10. Data for determination of binding constants of $H_2DTC$ in different micellar medium (in 15% EtOH- water) at 298.15 K

| SDS                                   |                       | DTA               | В                     | C <sub>16</sub> MIn | nCl                   | 16-4 1            | 6                     | Tween-            | ·60                   |
|---------------------------------------|-----------------------|-------------------|-----------------------|---------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|
| $\frac{1/([D]_{0}+[S]_{m})}{/M^{-1}}$ | 1/[A-A <sub>0</sub> ] | $1/([D]_0+[S]_m)$ | 1/[A-A <sub>0</sub> ] | $1/([D]_0+[S]_m)$   | 1/[A-A <sub>0</sub> ] | $1/([D]_0+[S]_m)$ | 1/[A-A <sub>0</sub> ] | $1/([D]_0+[S]_m)$ | 1/[A-A <sub>0</sub> ] |
| 178.91                                | 233.94                | 188.41            | 31.25                 | 1809.43             | 21.28                 | 2928.86           | 27.78                 | 3237.40           | -12.66                |
| 100.13                                | 133.22                | 93.49             | 22.22                 | 1112.46             | 16.95                 | 2732.09           | 23.81                 | 3120.90           | -9.62                 |
| 67.74                                 | 96.40                 | 61.07             | 19.23                 | 813.84              | 14.93                 | 2529.72           | 21.74                 | 3002.10           | -8.06                 |
| 59.56                                 | 77.72                 | 43.16             | 18.52                 | 607.92              | 14.08                 | 2374.17           | 20.41                 | 2768.17           | -6.17                 |
|                                       |                       | 31.26             | 18.87                 | 469.33              | 12.99                 |                   |                       |                   |                       |
|                                       |                       |                   |                       | 357.70              | 11.90                 |                   |                       |                   |                       |
|                                       |                       |                   |                       | 279.26              | 11.63                 |                   |                       |                   |                       |
|                                       |                       |                   |                       | 218.17              | 11.11                 |                   |                       |                   |                       |

### 4.11. Data for determination of partition coefficient of $H_2DTC$ in solvent to the different micellar medium (15% EtOH-water) at 298.15 K

|                    | SDS                                               | DI                  | AB                                                | C16M                | IImCl                                             | 1                   | 6-4 16                                            | Two                 | een-60                                            |
|--------------------|---------------------------------------------------|---------------------|---------------------------------------------------|---------------------|---------------------------------------------------|---------------------|---------------------------------------------------|---------------------|---------------------------------------------------|
| $(1/[S_m])/M^{-1}$ | {[D] <sub>0</sub> /([A] <sub>0</sub> -[A])}/<br>M | 1/[S <sub>m</sub> ] | {[D] <sub>0</sub> /([A] <sub>0</sub> -<br>[A])}/M | 1/[S <sub>m</sub> ] | {[D] <sub>0</sub> /([A] <sub>0</sub> -<br>[A])}/M | 1/[S <sub>m</sub> ] | {[D] <sub>0</sub> /([A] <sub>0</sub> -<br>[A])}/M | 1/[S <sub>m</sub> ] | {[D] <sub>0</sub> /([A] <sub>0</sub> -<br>[A])}/M |
| 146.20             | 0.077                                             | 96.26               | 0.0068                                            | 1692.31             | 0.0052                                            | 29913.25            | 0.0086                                            | 39840.64            | 0.0025                                            |
| 103.30             | 0.034                                             | 62.24               | 0.0059                                            | 1086.08             | 0.0046                                            | 17235.44            | 0.0073                                            | 18779.34            | 0.0019                                            |
| 69.17              | 0.026                                             | 43.74               | 0.0057                                            | 747.97              | 0.0043                                            | 11454.75            | 0.0067                                            | 10220.77            | 0.0014                                            |
| 60.67              | 0.021                                             | 31.56               | 0.0058                                            | 548.64              | 0.0040                                            | 8833.92             | 0.0063                                            |                     |                                                   |
|                    |                                                   |                     |                                                   | 401.99              | 0.0037                                            | 6005.28             | 0.0064                                            |                     |                                                   |
|                    |                                                   |                     |                                                   | 305.54              | 0.0036                                            |                     |                                                   |                     |                                                   |
|                    |                                                   |                     |                                                   | 233.88              | 0.0034                                            |                     |                                                   |                     |                                                   |
|                    |                                                   |                     |                                                   |                     |                                                   |                     |                                                   |                     |                                                   |

#### Chapter-V

| 5.1. | Tensiometry | y data of s | urfactants at | phospha | te buffer | (pH 7) | [concentration = 20 | μM | at 298.15 K |
|------|-------------|-------------|---------------|---------|-----------|--------|---------------------|----|-------------|
|      |             | ,           |               |         |           | ( /    | L                   |    |             |

| In PB p   | H 7.0                | BM (20 μM) | in PB pH7.0        | In PB p   | H 7.0                | BM (20 μM) | in PB pH7.0        | In PB p   | H 7.0                | BM (20 μM) | in PB pH7.0        | In PB p    | H 7.0                | BM (20 µM) | in PB pH7.0 |
|-----------|----------------------|------------|--------------------|-----------|----------------------|------------|--------------------|-----------|----------------------|------------|--------------------|------------|----------------------|------------|-------------|
| [NaC]/ mM | γ/mN.m <sup>-1</sup> | [NaC]/mM   | $\gamma/mN.m^{-1}$ | [NaDC]/mM | γ/mN.m <sup>-1</sup> | [NaDC]/mM  | $\gamma/mN.m^{-1}$ | [SDDS]/mM | γ/mN.m <sup>-1</sup> | [SDDS]/mM  | $\gamma/mN.m^{-1}$ | [SDBS]/ mM | γ/mN.m <sup>-1</sup> | [SDBS]/ mM | γ/mN.m⁻¹    |
| 0.000     | 64.3                 | 0.000      | 59.3               | 0.000     | 65.0                 | 0.000      | 56.3               | 0.000     | 65.0                 | 0.000      | 59.1               | 0.000      | 65.0                 | 0.000      | 59.3        |
| 0.084     | 61.3                 | 0.042      | 57.2               | 0.019     | 62.9                 | 0.024      | 52.8               | 0.163     | 56.8                 | 0.071      | 53.1               | 0.047      | 48.6                 | 0.020      | 49.0        |
| 0.252     | 58.3                 | 0.084      | 56.4               | 0.056     | 58.0                 | 0.072      | 49.0               | 0.325     | 52.2                 | 0.143      | 51.3               | 0.093      | 43.2                 | 0.040      | 46.7        |
| 0.670     | 55.0                 | 0.168      | 54.8               | 0.112     | 54.3                 | 0.144      | 47.8               | 0.487     | 48.8                 | 0.214      | 50.0               | 0.140      | 37.6                 | 0.060      | 44.8        |
| 1.501     | 52.0                 | 0.252      | 54.3               | 0.187     | 51.7                 | 0.239      | 46.0               | 0.649     | 46.3                 | 0.321      | 48.5               | 0.186      | 36.0                 | 0.080      | 43.2        |
| 2.736     | 49.2                 | 0.377      | 52.7               | 0.280     | 49.4                 | 0.382      | 44.0               | 0.892     | 44.2                 | 0.463      | 46.7               | 0.279      | 33.4                 | 0.110      | 42.4        |
| 4.762     | 46.7                 | 0.503      | 51.3               | 0.391     | 47.6                 | 0.559      | 43.0               | 1.377     | 41.3                 | 0.641      | 45.7               | 0.465      | 30.2                 | 0.159      | 41.0        |
| 7.532     | 44.3                 | 0.670      | 51.3               | 0.530     | 46.1                 | 0.793      | 42.0               | 2.183     | 37.9                 | 0.854      | 43.8               | 0.743      | 28.9                 | 0.229      | 38.3        |
| 11.362    | 43.0                 | 0.920      | 50.0               | 0.713     | 43.6                 | 1.107      | 40.2               | 3.785     | 32.2                 | 1.102      | 41.8               | 1.205      | 28.1                 | 0.328      | 34.7        |
| 15.771    | 43.7                 | 1.169      | 48.9               | 0.940     | 41.5                 | 1.509      | 39.4               | 5.374     | 30.1                 | 1.386      | 39.8               | 2.124      | 27.9                 | 0.475      | 32.0        |
| 21.015    | 43.8                 | 1.584      | 47.3               | 1.209     | 40.0                 | 2.074      | 38.3               | 6.950     | 30.3                 | 1.739      | 38.2               | 3.940      | 27.9                 | 0.671      | 30.5        |
| 27.582    | 43.8                 | 2.408      | 46.5               | 1.562     | 38.6                 | 2.846      | 37.5               | 9.292     | 32.2                 | 2.163      | 36.0               | 6.170      | 27.9                 | 0.961      | 29.7        |
| 35.175    | 43.8                 | 3.632      | 45.2               | 2.000     | 37.7                 | 3.810      | 38.0               | 11.607    | 32.5                 | 2.726      | 34.6               |            |                      | 1.625      | 29.8        |
| 43.492    | 43.5                 | 5.640      | 44.2               | 2.509     | 36.7                 | 5.045      | 39.6               | 14.651    | 32.9                 | 3.427      | 33.0               |            |                      | 2.544      | 29.7        |
| 53.424    | 43.5                 | 9.542      | 43.5               | 3.091     | 36.1                 | 6.515      | 40.6               | 18.392    | 33.1                 | 4.473      | 31.0               |            |                      | 4.279      | 29.9        |
|           |                      | 16.914     | 43.9               | 3.738     | 36.9                 | 8.178      | 41.0               | 25.662    | 33.4                 | 6.204      | 29.6               |            |                      | 7.396      | 30.2        |
|           |                      | 23.764     | 43.7               | 4.443     | 38.4                 | 9.992      | 41.3               |           |                      | 9.276      | 31.7               |            |                      | 12.508     | 30.2        |
|           |                      | 36.101     | 43.7               | 5.200     | 38.1                 | 11.915     | 41.5               |           |                      | 12.295     | 32.2               |            |                      |            |             |
|           |                      | 46.906     | 43.7               | 6.073     | 39.5                 | 13.910     | 41.7               |           |                      | 16.565     | 32.9               |            |                      |            |             |
|           |                      |            |                    |           |                      | 15.941     | 41.7               |           |                      | 21.676     | 33.3               |            |                      |            |             |
|           |                      |            |                    |           |                      | 17.977     | 41.7               |           |                      | 27.853     | 33.5               |            |                      |            |             |
|           |                      |            |                    |           |                      | 19.995     | 41.7               |           |                      | 39.549     | 33.8               |            |                      |            |             |
|           |                      |            |                    |           |                      | 21.972     | 41.7               |           |                      | 60.610     | 33.7               |            |                      |            |             |

| In PB 1  | oH 7.0                                                 | BM (20 µM) | in PB pH7.0                                            | In PB pH   | 7.0                                                    | BM (20 μM  | ) in PB pH7.0                                | In PB p    | H 7.0                                   | BM (20 µM) | in PB pH7.0                                             | In PB p   | H 7.0                                                  | BM (20 μM) i | in PB pH7.0                                            |
|----------|--------------------------------------------------------|------------|--------------------------------------------------------|------------|--------------------------------------------------------|------------|----------------------------------------------|------------|-----------------------------------------|------------|---------------------------------------------------------|-----------|--------------------------------------------------------|--------------|--------------------------------------------------------|
| [NaC]/mM | ΔH <sup>0</sup> <sub>dil</sub><br>kJ.mol <sup>-1</sup> | [NaC]/mM   | ΔH <sup>0</sup> <sub>dil</sub><br>kJ.mol <sup>-1</sup> | [NaDC]/ mM | ΔH <sup>0</sup> <sub>dil</sub><br>kJ.mol <sup>-1</sup> | [NaDC]/ mM | $\Delta H^0_{dil} \underset{1}{kJ.mol^{-1}}$ | [SDDS] /mM | $\Delta H^0_{dil}$ kJ.mol <sup>-1</sup> | [SDDS] /mM | ∆H <sup>0</sup> <sub>dil</sub> kJ.mol <sup>-</sup><br>₁ | [SDBS]/mM | ΔH <sup>0</sup> <sub>dil</sub><br>kJ.mol <sup>-1</sup> | [SDBS]/mM    | ΔH <sup>0</sup> <sub>dil</sub><br>kJ.mol <sup>-1</sup> |
| 0        |                                                        | 0          |                                                        | 0          |                                                        | 0          |                                              | 0          |                                         | 0          |                                                         | 0         |                                                        | 0            | -                                                      |
| 0.509    | -0.160                                                 | 0.685      | -0.031                                                 | 0.110      | 0.400                                                  | 0.763      | 1.392                                        | 0.532      | -1.686                                  | 0.537      | -6.368                                                  | 0.066     | 0.149                                                  | 0.066        | -0.505                                                 |
| 2.546    | -0.155                                                 | 1.366      | 0.052                                                  | 0.763      | 0.421                                                  | 1.406      | 2.256                                        | 2.669      | -1.545                                  | 2.670      | -8.378                                                  | 0.328     | 0.185                                                  | 0.328        | -0.124                                                 |
| 4.566    | -0.147                                                 | 2.044      | 0.007                                                  | 1.406      | 0.437                                                  | 2.040      | 3.938                                        | 4.787      | -1.311                                  | 4.783      | -10.321                                                 | 0.587     | 0.217                                                  | 0.587        | 0.527                                                  |
| 6.561    | -0.127                                                 | 3.390      | -0.045                                                 | 2.040      | 0.473                                                  | 2.664      | 4.548                                        | 6.925      | -0.988                                  | 6.875      | -10.900                                                 | 0.844     | 0.267                                                  | 0.844        | -1.190                                                 |
| 8.538    | -0.081                                                 | 4.722      | -0.008                                                 | 2.664      | 0.508                                                  | 3.278      | 4.828                                        | 8.946      | -0.602                                  | 8.946      | -9.297                                                  | 1.098     | 0.331                                                  | 1.098        | -0.783                                                 |
| 10.498   | -0.034                                                 | 6.042      | 0.030                                                  | 3.278      | 0.548                                                  | 3.883      | 4.860                                        | 10.997     | -0.335                                  | 10.995     | -7.817                                                  | 1.349     | 0.344                                                  | 1.349        | -0.560                                                 |
| 14.348   | 0.023                                                  | 7.347      | 0.047                                                  | 3.883      | 0.551                                                  | 4.478      | 4.714                                        | 13.021     | -0.162                                  | 13.024     | -6.566                                                  | 1.598     | 0.319                                                  | 1.598        | -0.416                                                 |
| 16.245   | 0.049                                                  | 8.639      | 0.043                                                  | 4.478      | 0.527                                                  | 5.064      | 4.575                                        | 15.035     | -0.092                                  | 15.032     | -5.656                                                  | 1.845     | 0.296                                                  | 1.845        | -0.350                                                 |
| 18.121   | 0.066                                                  | 9.918      | -0.018                                                 | 5.064      | 0.479                                                  | 5.639      | 4.449                                        | 17.019     | -0.087                                  | 17.019     | -4.901                                                  | 2.089     | 0.274                                                  | 2.089        | -0.321                                                 |
| 19.978   | 0.077                                                  | 11.184     | -0.033                                                 | 5.639      | 0.429                                                  | 6.205      | 4.417                                        | 18.984     | -0.094                                  | 18.984     | -4.944                                                  | 2.330     | 0.251                                                  | 2.330        | -0.278                                                 |
| 21.814   | 0.083                                                  | 13.674     | -0.068                                                 | 6.205      | 0.376                                                  | 6.762      | 4.439                                        | 20.929     | -0.097                                  | 20.929     | -4.733                                                  | 2.569     | 0.236                                                  | 2.569        | -0.275                                                 |
| 23.630   | 0.081                                                  | 15.507     | -0.060                                                 | 6.762      | 0.317                                                  | 7.309      | 4.430                                        | 22.853     | -0.098                                  | 22.853     | -4.554                                                  | 2.805     | 0.214                                                  | 2.805        | -0.271                                                 |
| 25.426   | 0.085                                                  | 17.310     | -0.078                                                 |            |                                                        |            |                                              | 24.755     | -0.098                                  | 24.755     | -4.427                                                  | 3.038     | 0.200                                                  | 3.038        | -0.253                                                 |
| 27.203   | 0.073                                                  | 19.082     | -0.084                                                 |            |                                                        |            |                                              | 26.637     | -0.097                                  | 26.637     | -4.408                                                  | 3.269     | 0.180                                                  | 3.269        | -0.264                                                 |
| 28.959   | 0.070                                                  | 20.824     | -0.078                                                 |            |                                                        |            |                                              | 28.498     | -0.095                                  | 28.498     | -4.152                                                  | 3.497     | 0.170                                                  | 3.497        | -0.247                                                 |
| 30.695   | 0.071                                                  | 22.537     | -0.069                                                 |            |                                                        |            |                                              | 30.338     | -0.093                                  | 30.338     | -4.023                                                  | 3.723     | 0.157                                                  | 3.723        | -0.223                                                 |
| 32.411   | 0.076                                                  | 24.218     | -0.063                                                 |            |                                                        |            |                                              | 32.156     | -0.092                                  | 32.156     | -3.905                                                  | 3.946     | 0.145                                                  | 3.946        | -0.224                                                 |
| 34.107   | 0.099                                                  |            |                                                        |            |                                                        |            |                                              | 33.954     | -0.089                                  | 33.954     | -3.741                                                  | 4.167     | 0.135                                                  | 4.167        | -0.213                                                 |
|          |                                                        |            |                                                        |            |                                                        |            |                                              | 35.731     | -0.087                                  | 35.731     | -3.634                                                  | 4.385     | 0.117                                                  | 4.385        | -0.206                                                 |
|          |                                                        |            |                                                        |            |                                                        |            |                                              | 37.486     |                                         | 37.486     |                                                         | 4.601     |                                                        | 4.601        |                                                        |

5.2. Calorimetry data of surfactants at phosphate buffer (pH 7) [concentration = 20  $\mu$ M] at 298.15 K

| In PB p  | H 7.0    | BM (20 μM) | ) in PB pH7.0 | In PB pl | H 7.0    | BM (20 μM) | in PB pH7.0 | In PB pl | H 7.0    | BM (20 µM) | in PB pH7.0 | In PB p  | H 7.0    | BM (20 μM) Iı | n PB pH7.0 |
|----------|----------|------------|---------------|----------|----------|------------|-------------|----------|----------|------------|-------------|----------|----------|---------------|------------|
| Time/min | µcal/sec | Time/min   | µcal/sec      | Time/min | µcal/sec | Time/min   | µcal/sec    | Time/min | µcal/sec | Time/min   | µcal/sec    | Time/min | µcal/sec | Time/min      | µcal/sec   |
| 0.08     | 4.83     | 0.08       | 5.02          | 0.08     | 4.91     | 0.08       | 7.12        | 0.08     | 9.90     | 0.08       | 7.12        | 0.08     | 0.03     | 0.08          | 8.29       |
| 0.17     | 4.83     | 0.17       | 5.03          | 0.17     | 4.91     | 0.17       | 7.12        | 0.17     | 9.92     | 0.17       | 7.12        | 0.17     | 0.01     | 0.17          | 8.29       |
| 0.25     | 4.84     | 0.25       | 5.03          | 0.25     | 4.91     | 0.25       | 7.13        | 0.25     | 9.92     | 0.25       | 7.13        | 0.25     | 0.00     | 0.25          | 8.29       |
| 0.33     | 4.83     | 0.33       | 5.03          | 0.33     | 4.91     | 0.33       | 7.13        | 0.33     | 9.93     | 0.33       | 7.13        | 0.33     | -0.01    | 0.33          | 8.29       |
| 0.42     | 4.83     | 0.42       | 5.03          | 0.42     | 4.91     | 0.42       | 7.13        | 0.42     | 9.93     | 0.42       | 7.13        | 0.42     | -0.01    | 0.42          | 8.29       |
| 0.50     | 4.83     | 0.50       | 5.04          | 0.50     | 4.91     | 0.50       | 7.13        | 0.50     | 9.93     | 0.50       | 7.13        | 0.50     | -0.03    | 0.50          | 8.30       |
| 0.58     | 4.83     | 0.58       | 5.04          | 0.58     | 4.91     | 0.58       | 7.13        | 0.58     | 9.93     | 0.58       | 7.13        | 0.58     | -0.01    | 0.58          | 8.30       |
| 0.67     | 4.83     | 0.67       | 5.04          | 0.67     | 4.91     | 0.67       | 7.13        | 0.67     | 9.93     | 0.67       | 7.13        | 0.67     | 0.02     | 0.67          | 8.30       |
| 0.75     | 4.84     | 0.75       | 5.05          | 0.75     | 4.91     | 0.75       | 7.13        | 0.75     | 9.93     | 0.75       | 7.13        | 0.75     | 0.00     | 0.75          | 8.30       |
| 0.83     | 4.83     | 0.83       | 5.05          | 0.83     | 4.91     | 0.83       | 7.13        | 0.83     | 9.94     | 0.83       | 7.13        | 0.83     | -0.01    | 0.83          | 8.30       |
| 0.92     | 4.83     | 0.92       | 5.05          | 0.92     | 4.91     | 0.92       | 7.13        | 0.92     | 9.94     | 0.92       | 7.13        | 0.92     | -0.01    | 0.92          | 8.30       |
| 1.00     | 4.83     | 1.00       | 5.06          | 1.00     | 4.91     | 1.00       | 7.13        | 1.00     | 9.94     | 1.00       | 7.13        | 1.00     | 0.02     | 1.00          | 8.30       |
| 1.08     | 4.83     | 1.08       | 4.58          | 1.08     | 4.91     | 1.08       | 6.21        | 1.08     | 9.94     | 1.08       | 6.21        | 1.08     | -0.10    | 1.08          | 8.29       |
| 1.17     | 4.73     | 1.17       | 3.91          | 1.17     | 4.99     | 1.17       | 4.34        | 1.17     | 9.70     | 1.17       | 4.34        | 1.17     | -0.09    | 1.17          | 8.27       |
| 1.25     | 4.13     | 1.25       | 5.05          | 1.25     | 5.01     | 1.25       | 7.32        | 1.25     | 8.02     | 1.25       | 7.32        | 1.25     | 0.04     | 1.25          | 8.27       |
| 1.33     | 4.31     | 1.33       | 5.35          | 1.33     | 4.90     | 1.33       | 7.37        | 1.33     | 7.42     | 1.33       | 7.37        | 1.33     | 0.02     | 1.33          | 8.30       |
| 1.42     | 4.63     | 1.42       | 5.15          | 1.42     | 4.91     | 1.42       | 7.15        | 1.42     | 7.18     | 1.42       | 7.15        | 1.42     | 0.00     | 1.42          | 8.30       |
| 1.50     | 4.71     | 1.50       | 5.07          | 1.50     | 4.92     | 1.50       | 7.16        | 1.50     | 8.79     | 1.50       | 7.16        | 1.50     | -0.01    | 1.50          | 8.30       |
| 1.58     | 4.72     | 1.58       | 5.08          | 1.58     | 4.91     | 1.58       | 7.17        | 1.58     | 9.63     | 1.58       | 7.17        | 1.58     | 0.01     | 1.58          | 8.29       |
| 1.67     | 4.73     | 1.67       | 5.10          | 1.67     | 4.90     | 1.67       | 7.16        | 1.67     | 9.82     | 1.67       | 7.16        | 1.67     | 0.00     | 1.67          | 8.30       |
| 1.75     | 4.74     | 1.75       | 5.11          | 1.75     | 4.91     | 1.75       | 7.16        | 1.75     | 9.86     | 1.75       | 7.16        | 1.75     | 0.00     | 1.75          | 8.30       |
| 1.83     | 4.76     | 1.83       | 5.10          | 1.83     | 4.91     | 1.83       | 7.16        | 1.83     | 9.90     | 1.83       | 7.16        | 1.83     | 0.01     | 1.83          | 8.30       |
| 1.92     | 4.76     | 1.92       | 5.09          | 1.92     | 4.90     | 1.92       | 7.16        | 1.92     | 9.93     | 1.92       | 7.16        | 1.92     | 0.01     | 1.92          | 8.30       |
| 2.00     | 4.77     | 2.00       | 5.08          | 2.00     | 4.91     | 2.00       | 7.16        | 2.00     | 9.95     | 2.00       | 7.16        | 2.00     | 0.01     | 2.00          | 8.30       |
| 2.08     | 4.77     | 2.08       | 5.10          | 2.08     | 4.91     | 2.08       | 7.16        | 2.08     | 9.97     | 2.08       | 7.16        | 2.08     | 0.00     | 2.08          | 8.31       |
| 2.17     | 4.78     | 2.17       | 5.09          | 2.17     | 4.91     | 2.17       | 7.16        | 2.17     | 9.97     | 2.17       | 7.16        | 2.17     | 0.01     | 2.17          | 8.31       |
| 2.25     | 4.78     | 2.25       | 5.10          | 2.25     | 4.91     | 2.25       | 7.17        | 2.25     | 9.97     | 2.25       | 7.17        | 2.25     | 0.00     | 2.25          | 8.31       |
| 2.33     | 4.78     | 2.33       | 5.10          | 2.33     | 4.91     | 2.33       | 7.16        | 2.33     | 9.97     | 2.33       | 7.16        | 2.33     | 0.01     | 2.33          | 8.31       |

5.3. Raw calorimetry data (Time vs. Heat flow) of surfactants at phosphate buffer (pH 7) [concentration = 20 µM] at 298.15 K

| 2.42 | 4.79 | 2.42 | 5.11 | 2.42 | 4.91 | 2.42 | 7.16   | 2.42 | 9.97 | 2.42 | 7.16   | 2.42 | 0.01  | 2.42 | 8.31 |
|------|------|------|------|------|------|------|--------|------|------|------|--------|------|-------|------|------|
| 2.50 | 4.79 | 2.50 | 5.11 | 2.50 | 4.91 | 2.50 | 7.16   | 2.50 | 9.97 | 2.50 | 7.16   | 2.50 | 0.00  | 2.50 | 8.31 |
| 2.58 | 4.79 | 2.58 | 5.11 | 2.58 | 4.91 | 2.58 | 7.17   | 2.58 | 9.96 | 2.58 | 7.17   | 2.58 | 0.02  | 2.58 | 8.31 |
| 2.67 | 4.79 | 2.67 | 5.12 | 2.67 | 4.91 | 2.67 | 7.17   | 2.67 | 9.98 | 2.67 | 7.17   | 2.67 | 0.02  | 2.67 | 8.31 |
| 2.75 | 4.79 | 2.75 | 5.12 | 2.75 | 4.91 | 2.75 | 7.17   | 2.75 | 9.98 | 2.75 | 7.17   | 2.75 | 0.00  | 2.75 | 8.31 |
| 2.83 | 4.79 | 2.83 | 5.13 | 2.83 | 4.91 | 2.83 | 7.17   | 2.83 | 9.98 | 2.83 | 7.17   | 2.83 | -0.02 | 2.83 | 8.31 |
| 2.92 | 4.79 | 2.92 | 5.13 | 2.92 | 4.91 | 2.92 | 7.16   | 2.92 | 9.98 | 2.92 | 7.16   | 2.92 | -0.02 | 2.92 | 8.32 |
| 3.00 | 4.79 | 3.00 | 5.13 | 3.00 | 4.91 | 3.00 | 7.16   | 3.00 | 9.98 | 3.00 | 7.16   | 3.00 | -0.01 | 3.00 | 8.32 |
| 3.08 | 4.80 | 3.08 | 4.07 | 3.08 | 4.91 | 3.08 | 3.69   | 3.08 | 9.98 | 3.08 | 3.69   | 3.08 | -0.29 | 3.08 | 8.32 |
| 3.17 | 4.71 | 3.17 | 3.65 | 3.17 | 5.01 | 3.17 | -21.35 | 3.17 | 9.54 | 3.17 | -21.35 | 3.17 | 0.40  | 3.17 | 8.35 |
| 3.25 | 4.18 | 3.25 | 3.94 | 3.25 | 5.56 | 3.25 | -28.12 | 3.25 | 7.75 | 3.25 | -28.12 | 3.25 | 0.83  | 3.25 | 8.28 |
| 3.33 | 4.40 | 3.33 | 4.28 | 3.33 | 5.84 | 3.33 | -22.61 | 3.33 | 5.80 | 3.33 | -22.61 | 3.33 | 0.28  | 3.33 | 8.22 |
| 3.42 | 4.74 | 3.42 | 5.45 | 3.42 | 5.42 | 3.42 | -12.20 | 3.42 | 3.83 | 3.42 | -12.20 | 3.42 | 0.09  | 3.42 | 8.32 |
| 3.50 | 4.79 | 3.50 | 5.56 | 3.50 | 5.11 | 3.50 | -3.48  | 3.50 | 4.33 | 3.50 | -3.48  | 3.50 | 0.07  | 3.50 | 8.34 |
| 3.58 | 4.78 | 3.58 | 5.28 | 3.58 | 5.03 | 3.58 | 3.52   | 3.58 | 5.12 | 3.58 | 3.52   | 3.58 | 0.05  | 3.58 | 8.32 |
| 3.67 | 4.77 | 3.67 | 5.20 | 3.67 | 5.00 | 3.67 | 6.29   | 3.67 | 6.35 | 3.67 | 6.29   | 3.67 | 0.04  | 3.67 | 8.31 |
| 3.75 | 4.76 | 3.75 | 5.27 | 3.75 | 4.96 | 3.75 | 6.41   | 3.75 | 7.12 | 3.75 | 6.41   | 3.75 | 0.05  | 3.75 | 8.32 |
| 3.83 | 4.76 | 3.83 | 5.30 | 3.83 | 4.93 | 3.83 | 6.59   | 3.83 | 7.70 | 3.83 | 6.59   | 3.83 | 0.04  | 3.83 | 8.31 |
| 3.92 | 4.77 | 3.92 | 5.28 | 3.92 | 4.90 | 3.92 | 6.81   | 3.92 | 8.13 | 3.92 | 6.81   | 3.92 | 0.03  | 3.92 | 8.31 |
| 4.00 | 4.77 | 4.00 | 5.27 | 4.00 | 4.90 | 4.00 | 6.96   | 4.00 | 8.48 | 4.00 | 6.96   | 4.00 | 0.02  | 4.00 | 8.31 |
| 4.08 | 4.77 | 4.08 | 5.27 | 4.08 | 4.89 | 4.08 | 7.05   | 4.08 | 8.73 | 4.08 | 7.05   | 4.08 | 0.01  | 4.08 | 8.31 |
| 4.17 | 4.77 | 4.17 | 5.24 | 4.17 | 4.89 | 4.17 | 7.10   | 4.17 | 9.05 | 4.17 | 7.10   | 4.17 | 0.02  | 4.17 | 8.31 |
| 4.25 | 4.77 | 4.25 | 5.22 | 4.25 | 4.89 | 4.25 | 7.14   | 4.25 | 9.15 | 4.25 | 7.14   | 4.25 | 0.02  | 4.25 | 8.31 |
| 4.33 | 4.77 | 4.33 | 5.22 | 4.33 | 4.89 | 4.33 | 7.16   | 4.33 | 9.35 | 4.33 | 7.16   | 4.33 | 0.02  | 4.33 | 8.31 |
| 4.42 | 4.77 | 4.42 | 5.22 | 4.42 | 4.89 | 4.42 | 7.18   | 4.42 | 9.51 | 4.42 | 7.18   | 4.42 | -0.01 | 4.42 | 8.31 |
| 4.50 | 4.77 | 4.50 | 5.23 | 4.50 | 4.90 | 4.50 | 7.19   | 4.50 | 9.64 | 4.50 | 7.19   | 4.50 | 0.01  | 4.50 | 8.31 |
| 4.58 | 4.77 | 4.58 | 5.23 | 4.58 | 4.90 | 4.58 | 7.20   | 4.58 | 9.72 | 4.58 | 7.20   | 4.58 | 0.00  | 4.58 | 8.31 |
| 4.67 | 4.77 | 4.67 | 5.23 | 4.67 | 4.90 | 4.67 | 7.20   | 4.67 | 9.79 | 4.67 | 7.20   | 4.67 | -0.02 | 4.67 | 8.31 |
| 4.75 | 4.77 | 4.75 | 5.22 | 4.75 | 4.91 | 4.75 | 7.20   | 4.75 | 9.82 | 4.75 | 7.20   | 4.75 | -0.01 | 4.75 | 8.31 |
| 4.83 | 4.77 | 4.83 | 5.23 | 4.83 | 4.91 | 4.83 | 7.19   | 4.83 | 9.84 | 4.83 | 7.19   | 4.83 | -0.01 | 4.83 | 8.32 |
| 4.92 | 4.77 | 4.92 | 5.24 | 4.92 | 4.91 | 4.92 | 7.19   | 4.92 | 9.86 | 4.92 | 7.19   | 4.92 | -0.02 | 4.92 | 8.32 |
| 5.00 | 4.77 | 5.00 | 5.24 | 5.00 | 4.91 | 5.00 | 7.18   | 5.00 | 9.87 | 5.00 | 7.18   | 5.00 | -0.01 | 5.00 | 8.32 |

| 5.08 | 4.77 | 5.08 | 4.73 | 5.08 | 4.91 | 5.08 | 2.56   | 5.08 | 9.89  | 5.08 | 2.56   | 5.08 | -0.27 | 5.08 | 8.31 |
|------|------|------|------|------|------|------|--------|------|-------|------|--------|------|-------|------|------|
| 5.17 | 4.69 | 5.17 | 6.11 | 5.17 | 5.00 | 5.17 | -23.18 | 5.17 | 9.77  | 5.17 | -23.18 | 5.17 | 0.10  | 5.17 | 8.09 |
| 5.25 | 4.19 | 5.25 | 5.20 | 5.25 | 5.54 | 5.25 | -28.29 | 5.25 | 9.48  | 5.25 | -28.29 | 5.25 | 0.53  | 5.25 | 8.53 |
| 5.33 | 4.35 | 5.33 | 4.21 | 5.33 | 5.86 | 5.33 | -28.16 | 5.33 | 8.91  | 5.33 | -28.16 | 5.33 | 0.22  | 5.33 | 8.46 |
| 5.42 | 4.70 | 5.42 | 4.99 | 5.42 | 5.49 | 5.42 | -23.33 | 5.42 | 8.39  | 5.42 | -23.33 | 5.42 | 0.09  | 5.42 | 8.12 |
| 5.50 | 4.75 | 5.50 | 5.36 | 5.50 | 5.18 | 5.50 | -13.27 | 5.50 | 8.48  | 5.50 | -13.27 | 5.50 | 0.01  | 5.50 | 8.20 |
| 5.58 | 4.75 | 5.58 | 5.28 | 5.58 | 5.03 | 5.58 | -4.34  | 5.58 | 8.42  | 5.58 | -4.34  | 5.58 | -0.07 | 5.58 | 8.28 |
| 5.67 | 4.75 | 5.67 | 5.22 | 5.67 | 4.99 | 5.67 | 3.05   | 5.67 | 8.42  | 5.67 | 3.05   | 5.67 | -0.03 | 5.67 | 8.30 |
| 5.75 | 4.74 | 5.75 | 5.25 | 5.75 | 4.96 | 5.75 | 6.32   | 5.75 | 8.56  | 5.75 | 6.32   | 5.75 | -0.01 | 5.75 | 8.31 |
| 5.83 | 4.75 | 5.83 | 5.27 | 5.83 | 4.93 | 5.83 | 6.45   | 5.83 | 8.74  | 5.83 | 6.45   | 5.83 | -0.04 | 5.83 | 8.31 |
| 5.92 | 4.75 | 5.92 | 5.28 | 5.92 | 4.91 | 5.92 | 6.54   | 5.92 | 8.90  | 5.92 | 6.54   | 5.92 | -0.07 | 5.92 | 8.30 |
| 6.00 | 4.75 | 6.00 | 5.28 | 6.00 | 4.90 | 6.00 | 6.75   | 6.00 | 9.02  | 6.00 | 6.75   | 6.00 | -0.03 | 6.00 | 8.30 |
| 6.08 | 4.75 | 6.08 | 5.27 | 6.08 | 4.90 | 6.08 | 6.88   | 6.08 | 9.13  | 6.08 | 6.88   | 6.08 | -0.02 | 6.08 | 8.30 |
| 6.17 | 4.75 | 6.17 | 5.29 | 6.17 | 4.90 | 6.17 | 6.97   | 6.17 | 9.22  | 6.17 | 6.97   | 6.17 | -0.01 | 6.17 | 8.31 |
| 6.25 | 4.75 | 6.25 | 5.29 | 6.25 | 4.90 | 6.25 | 7.04   | 6.25 | 9.32  | 6.25 | 7.04   | 6.25 | 0.00  | 6.25 | 8.31 |
| 6.33 | 4.76 | 6.33 | 5.29 | 6.33 | 4.90 | 6.33 | 7.09   | 6.33 | 9.39  | 6.33 | 7.09   | 6.33 | 0.03  | 6.33 | 8.31 |
| 6.42 | 4.76 | 6.42 | 5.28 | 6.42 | 4.91 | 6.42 | 7.13   | 6.42 | 9.45  | 6.42 | 7.13   | 6.42 | 0.03  | 6.42 | 8.31 |
| 6.50 | 4.76 | 6.50 | 5.30 | 6.50 | 4.91 | 6.50 | 7.15   | 6.50 | 9.51  | 6.50 | 7.15   | 6.50 | 0.03  | 6.50 | 8.31 |
| 6.58 | 4.76 | 6.58 | 5.29 | 6.58 | 4.91 | 6.58 | 7.17   | 6.58 | 9.57  | 6.58 | 7.17   | 6.58 | 0.02  | 6.58 | 8.31 |
| 6.67 | 4.76 | 6.67 | 5.28 | 6.67 | 4.92 | 6.67 | 7.18   | 6.67 | 9.61  | 6.67 | 7.18   | 6.67 | 0.01  | 6.67 | 8.31 |
| 6.75 | 4.76 | 6.75 | 5.28 | 6.75 | 4.92 | 6.75 | 7.18   | 6.75 | 9.65  | 6.75 | 7.18   | 6.75 | 0.01  | 6.75 | 8.32 |
| 6.83 | 4.76 | 6.83 | 5.30 | 6.83 | 4.92 | 6.83 | 7.19   | 6.83 | 9.69  | 6.83 | 7.19   | 6.83 | 0.01  | 6.83 | 8.32 |
| 6.92 | 4.76 | 6.92 | 5.32 | 6.92 | 4.92 | 6.92 | 7.19   | 6.92 | 9.71  | 6.92 | 7.19   | 6.92 | 0.01  | 6.92 | 8.32 |
| 7.00 | 4.75 | 7.00 | 5.29 | 7.00 | 4.92 | 7.00 | 7.19   | 7.00 | 9.74  | 7.00 | 7.19   | 7.00 | 0.01  | 7.00 | 8.32 |
| 7.08 | 4.76 | 7.08 | 4.50 | 7.08 | 4.92 | 7.08 | 1.24   | 7.08 | 9.76  | 7.08 | 1.24   | 7.08 | -0.12 | 7.08 | 8.27 |
| 7.17 | 4.68 | 7.17 | 4.74 | 7.17 | 5.01 | 7.17 | -24.93 | 7.17 | 9.56  | 7.17 | -24.93 | 7.17 | 0.17  | 7.17 | 8.38 |
| 7.25 | 4.19 | 7.25 | 5.35 | 7.25 | 5.54 | 7.25 | -28.29 | 7.25 | 9.04  | 7.25 | -28.29 | 7.25 | 0.42  | 7.25 | 9.13 |
| 7.33 | 4.32 | 7.33 | 4.84 | 7.33 | 5.87 | 7.33 | -28.28 | 7.33 | 10.15 | 7.33 | -28.28 | 7.33 | 0.04  | 7.33 | 8.74 |
| 7.42 | 4.67 | 7.42 | 5.13 | 7.42 | 5.54 | 7.42 | -28.06 | 7.42 | 10.85 | 7.42 | -28.06 | 7.42 | 0.04  | 7.42 | 8.40 |
| 7.50 | 4.73 | 7.50 | 5.26 | 7.50 | 5.24 | 7.50 | -22.82 | 7.50 | 10.80 | 7.50 | -22.82 | 7.50 | 0.06  | 7.50 | 8.32 |
| 7.58 | 4.73 | 7.58 | 5.26 | 7.58 | 5.06 | 7.58 | -13.29 | 7.58 | 10.46 | 7.58 | -13.29 | 7.58 | 0.04  | 7.58 | 8.32 |
| 7.67 | 4.73 | 7.67 | 5.29 | 7.67 | 5.01 | 7.67 | -4.84  | 7.67 | 10.17 | 7.67 | -4.84  | 7.67 | -0.02 | 7.67 | 8.32 |

| 7.75  | 4.73 | 7.75  | 5.32 | 7.75  | 4.97 | 7.75  | 2.33   | 7.75  | 10.06 | 7.75  | 2.33   | 7.75  | -0.03 | 7.75  | 8.32 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 7.83  | 4.73 | 7.83  | 5.37 | 7.83  | 4.94 | 7.83  | 5.88   | 7.83  | 10.03 | 7.83  | 5.88   | 7.83  | -0.01 | 7.83  | 8.32 |
| 7.92  | 4.73 | 7.92  | 5.38 | 7.92  | 4.92 | 7.92  | 6.17   | 7.92  | 9.98  | 7.92  | 6.17   | 7.92  | 0.00  | 7.92  | 8.32 |
| 8.00  | 4.73 | 8.00  | 5.34 | 8.00  | 4.91 | 8.00  | 6.32   | 8.00  | 9.93  | 8.00  | 6.32   | 8.00  | -0.01 | 8.00  | 8.32 |
| 8.08  | 4.74 | 8.08  | 5.33 | 8.08  | 4.91 | 8.08  | 6.60   | 8.08  | 9.91  | 8.08  | 6.60   | 8.08  | -0.08 | 8.08  | 8.32 |
| 8.17  | 4.74 | 8.17  | 5.37 | 8.17  | 4.91 | 8.17  | 6.78   | 8.17  | 9.89  | 8.17  | 6.78   | 8.17  | -0.02 | 8.17  | 8.32 |
| 8.25  | 4.74 | 8.25  | 5.35 | 8.25  | 4.91 | 8.25  | 6.89   | 8.25  | 9.88  | 8.25  | 6.89   | 8.25  | -0.02 | 8.25  | 8.32 |
| 8.33  | 4.74 | 8.33  | 5.35 | 8.33  | 4.91 | 8.33  | 6.97   | 8.33  | 9.89  | 8.33  | 6.97   | 8.33  | 0.01  | 8.33  | 8.32 |
| 8.42  | 4.74 | 8.42  | 5.35 | 8.42  | 4.91 | 8.42  | 7.02   | 8.42  | 9.89  | 8.42  | 7.02   | 8.42  | 0.02  | 8.42  | 8.33 |
| 8.50  | 4.74 | 8.50  | 5.34 | 8.50  | 4.92 | 8.50  | 7.05   | 8.50  | 9.89  | 8.50  | 7.05   | 8.50  | 0.01  | 8.50  | 8.33 |
| 8.58  | 4.74 | 8.58  | 5.35 | 8.58  | 4.92 | 8.58  | 7.07   | 8.58  | 9.90  | 8.58  | 7.07   | 8.58  | 0.01  | 8.58  | 8.32 |
| 8.67  | 4.74 | 8.67  | 5.36 | 8.67  | 4.92 | 8.67  | 7.10   | 8.67  | 9.90  | 8.67  | 7.10   | 8.67  | -0.01 | 8.67  | 8.32 |
| 8.75  | 4.74 | 8.75  | 5.36 | 8.75  | 4.93 | 8.75  | 7.11   | 8.75  | 9.91  | 8.75  | 7.11   | 8.75  | 0.01  | 8.75  | 8.32 |
| 8.83  | 4.74 | 8.83  | 5.36 | 8.83  | 4.93 | 8.83  | 7.12   | 8.83  | 9.91  | 8.83  | 7.12   | 8.83  | 0.02  | 8.83  | 8.32 |
| 8.92  | 4.74 | 8.92  | 5.36 | 8.92  | 4.93 | 8.92  | 7.13   | 8.92  | 9.92  | 8.92  | 7.13   | 8.92  | 0.02  | 8.92  | 8.32 |
| 9.00  | 4.74 | 9.00  | 5.36 | 9.00  | 4.93 | 9.00  | 7.14   | 9.00  | 9.92  | 9.00  | 7.14   | 9.00  | 0.04  | 9.00  | 8.32 |
| 9.08  | 4.74 | 9.08  | 4.86 | 9.08  | 4.93 | 9.08  | 0.39   | 9.08  | 9.93  | 9.08  | 0.39   | 9.08  | 0.01  | 9.08  | 8.28 |
| 9.17  | 4.70 | 9.17  | 4.43 | 9.17  | 5.01 | 9.17  | -25.65 | 9.17  | 9.61  | 9.17  | -25.65 | 9.17  | 0.91  | 9.17  | 7.24 |
| 9.25  | 4.27 | 9.25  | 5.02 | 9.25  | 5.53 | 9.25  | -28.29 | 9.25  | 8.42  | 9.25  | -28.29 | 9.25  | 0.96  | 9.25  | 7.49 |
| 9.33  | 4.28 | 9.33  | 5.12 | 9.33  | 5.88 | 9.33  | -28.28 | 9.33  | 9.98  | 9.33  | -28.28 | 9.33  | 0.27  | 9.33  | 8.52 |
| 9.42  | 4.62 | 9.42  | 5.38 | 9.42  | 5.61 | 9.42  | -28.24 | 9.42  | 10.80 | 9.42  | -28.24 | 9.42  | 0.10  | 9.42  | 8.60 |
| 9.50  | 4.70 | 9.50  | 5.36 | 9.50  | 5.35 | 9.50  | -24.78 | 9.50  | 10.81 | 9.50  | -24.78 | 9.50  | 0.06  | 9.50  | 8.45 |
| 9.58  | 4.71 | 9.58  | 5.34 | 9.58  | 5.11 | 9.58  | -15.79 | 9.58  | 10.54 | 9.58  | -15.79 | 9.58  | 0.04  | 9.58  | 8.35 |
| 9.67  | 4.71 | 9.67  | 5.37 | 9.67  | 5.03 | 9.67  | -7.46  | 9.67  | 10.31 | 9.67  | -7.46  | 9.67  | 0.03  | 9.67  | 8.32 |
| 9.75  | 4.71 | 9.75  | 5.40 | 9.75  | 4.99 | 9.75  | -0.01  | 9.75  | 10.22 | 9.75  | -0.01  | 9.75  | 0.01  | 9.75  | 8.32 |
| 9.83  | 4.71 | 9.83  | 5.40 | 9.83  | 4.96 | 9.83  | 5.17   | 9.83  | 10.18 | 9.83  | 5.17   | 9.83  | -0.01 | 9.83  | 8.32 |
| 9.92  | 4.72 | 9.92  | 5.40 | 9.92  | 4.94 | 9.92  | 6.22   | 9.92  | 10.13 | 9.92  | 6.22   | 9.92  | -0.01 | 9.92  | 8.32 |
| 10.00 | 4.72 | 10.00 | 5.40 | 10.00 | 4.92 | 10.00 | 6.28   | 10.00 | 10.10 | 10.00 | 6.28   | 10.00 | -0.01 | 10.00 | 8.32 |
| 10.08 | 4.72 | 10.08 | 5.41 | 10.08 | 4.92 | 10.08 | 6.54   | 10.08 | 10.07 | 10.08 | 6.54   | 10.08 | -0.01 | 10.08 | 8.32 |
| 10.17 | 4.72 | 10.17 | 5.41 | 10.17 | 4.92 | 10.17 | 6.74   | 10.17 | 10.05 | 10.17 | 6.74   | 10.17 | -0.01 | 10.17 | 8.32 |
| 10.25 | 4.72 | 10.25 | 5.41 | 10.25 | 4.92 | 10.25 | 6.85   | 10.25 | 10.04 | 10.25 | 6.85   | 10.25 | -0.02 | 10.25 | 8.33 |
| 10.33 | 4.73 | 10.33 | 5.41 | 10.33 | 4.92 | 10.33 | 6.93   | 10.33 | 10.03 | 10.33 | 6.93   | 10.33 | -0.03 | 10.33 | 8.33 |

| 10.42 | 4.73 | 10.42 | 5.41 | 10.42 | 4.92 | 10.42 | 6.98   | 10.42 | 9.97  | 10.42 | 6.98   | 10.42 | 0.00  | 10.42 | 8.32 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 10.50 | 4.73 | 10.50 | 5.42 | 10.50 | 4.93 | 10.50 | 7.02   | 10.50 | 9.92  | 10.50 | 7.02   | 10.50 | 0.00  | 10.50 | 8.33 |
| 10.58 | 4.73 | 10.58 | 5.42 | 10.58 | 4.93 | 10.58 | 7.05   | 10.58 | 9.99  | 10.58 | 7.05   | 10.58 | 0.00  | 10.58 | 8.32 |
| 10.67 | 4.73 | 10.67 | 5.42 | 10.67 | 4.93 | 10.67 | 7.07   | 10.67 | 10.02 | 10.67 | 7.07   | 10.67 | -0.01 | 10.67 | 8.32 |
| 10.75 | 4.73 | 10.75 | 5.42 | 10.75 | 4.94 | 10.75 | 7.10   | 10.75 | 10.02 | 10.75 | 7.10   | 10.75 | 0.00  | 10.75 | 8.32 |
| 10.83 | 4.73 | 10.83 | 5.42 | 10.83 | 4.94 | 10.83 | 7.12   | 10.83 | 10.03 | 10.83 | 7.12   | 10.83 | -0.01 | 10.83 | 8.33 |
| 10.92 | 4.73 | 10.92 | 5.42 | 10.92 | 4.94 | 10.92 | 7.12   | 10.92 | 10.04 | 10.92 | 7.12   | 10.92 | -0.01 | 10.92 | 8.33 |
| 11.00 | 4.73 | 11.00 | 5.42 | 11.00 | 4.94 | 11.00 | 7.13   | 11.00 | 10.05 | 11.00 | 7.13   | 11.00 | -0.02 | 11.00 | 8.33 |
| 11.08 | 4.73 | 11.08 | 5.33 | 11.08 | 4.94 | 11.08 | 0.94   | 11.08 | 10.08 | 11.08 | 0.94   | 11.08 | -0.15 | 11.08 | 8.26 |
| 11.17 | 4.70 | 11.17 | 5.02 | 11.17 | 5.02 | 11.17 | -25.28 | 11.17 | 9.66  | 11.17 | -25.28 | 11.17 | 0.02  | 11.17 | 7.05 |
| 11.25 | 4.42 | 11.25 | 5.37 | 11.25 | 5.54 | 11.25 | -28.28 | 11.25 | 8.36  | 11.25 | -28.28 | 11.25 | 0.70  | 11.25 | 7.44 |
| 11.33 | 4.49 | 11.33 | 5.39 | 11.33 | 5.88 | 11.33 | -28.26 | 11.33 | 9.90  | 11.33 | -28.26 | 11.33 | 0.20  | 11.33 | 8.60 |
| 11.42 | 4.72 | 11.42 | 5.47 | 11.42 | 5.66 | 11.42 | -25.20 | 11.42 | 10.63 | 11.42 | -25.20 | 11.42 | 0.07  | 11.42 | 8.66 |
| 11.50 | 4.74 | 11.50 | 5.44 | 11.50 | 5.42 | 11.50 | -16.23 | 11.50 | 10.67 | 11.50 | -16.23 | 11.50 | 0.04  | 11.50 | 8.48 |
| 11.58 | 4.73 | 11.58 | 5.46 | 11.58 | 5.15 | 11.58 | -7.95  | 11.58 | 10.46 | 11.58 | -7.95  | 11.58 | 0.03  | 11.58 | 8.36 |
| 11.67 | 4.72 | 11.67 | 5.51 | 11.67 | 5.06 | 11.67 | -0.77  | 11.67 | 10.28 | 11.67 | -0.77  | 11.67 | 0.02  | 11.67 | 8.33 |
| 11.75 | 4.71 | 11.75 | 5.52 | 11.75 | 5.01 | 11.75 | 4.62   | 11.75 | 10.22 | 11.75 | 4.62   | 11.75 | 0.01  | 11.75 | 8.33 |
| 11.83 | 4.71 | 11.83 | 5.51 | 11.83 | 4.98 | 11.83 | 6.08   | 11.83 | 10.19 | 11.83 | 6.08   | 11.83 | 0.00  | 11.83 | 8.33 |
| 11.92 | 4.71 | 11.92 | 5.50 | 11.92 | 4.95 | 11.92 | 6.22   | 11.92 | 10.15 | 11.92 | 6.22   | 11.92 | 0.00  | 11.92 | 8.33 |
| 12.00 | 4.70 | 12.00 | 5.51 | 12.00 | 4.94 | 12.00 | 6.52   | 12.00 | 10.13 | 12.00 | 6.52   | 12.00 | 0.00  | 12.00 | 8.32 |
| 12.08 | 4.70 | 12.08 | 5.51 | 12.08 | 4.93 | 12.08 | 6.74   | 12.08 | 10.11 | 12.08 | 6.74   | 12.08 | 0.00  | 12.08 | 8.32 |
| 12.17 | 4.71 | 12.17 | 5.51 | 12.17 | 4.93 | 12.17 | 6.87   | 12.17 | 10.10 | 12.17 | 6.87   | 12.17 | 0.00  | 12.17 | 8.32 |
| 12.25 | 4.70 | 12.25 | 5.50 | 12.25 | 4.93 | 12.25 | 6.94   | 12.25 | 10.08 | 12.25 | 6.94   | 12.25 | 0.00  | 12.25 | 8.33 |
| 12.33 | 4.70 | 12.33 | 5.47 | 12.33 | 4.93 | 12.33 | 6.99   | 12.33 | 10.08 | 12.33 | 6.99   | 12.33 | 0.00  | 12.33 | 8.33 |
| 12.42 | 4.71 | 12.42 | 5.46 | 12.42 | 4.93 | 12.42 | 7.03   | 12.42 | 10.07 | 12.42 | 7.03   | 12.42 | -0.01 | 12.42 | 8.33 |
| 12.50 | 4.71 | 12.50 | 5.52 | 12.50 | 4.94 | 12.50 | 7.05   | 12.50 | 10.07 | 12.50 | 7.05   | 12.50 | -0.01 | 12.50 | 8.33 |
| 12.58 | 4.71 | 12.58 | 5.53 | 12.58 | 4.94 | 12.58 | 7.08   | 12.58 | 10.06 | 12.58 | 7.08   | 12.58 | -0.01 | 12.58 | 8.33 |
| 12.67 | 4.71 | 12.67 | 5.52 | 12.67 | 4.94 | 12.67 | 7.10   | 12.67 | 10.06 | 12.67 | 7.10   | 12.67 | -0.01 | 12.67 | 8.33 |
| 12.75 | 4.71 | 12.75 | 5.52 | 12.75 | 4.95 | 12.75 | 7.11   | 12.75 | 10.06 | 12.75 | 7.11   | 12.75 | 0.00  | 12.75 | 8.34 |
| 12.83 | 4.71 | 12.83 | 5.52 | 12.83 | 4.95 | 12.83 | 7.12   | 12.83 | 10.06 | 12.83 | 7.12   | 12.83 | -0.01 | 12.83 | 8.34 |
| 12.92 | 4.71 | 12.92 | 5.53 | 12.92 | 4.95 | 12.92 | 7.13   | 12.92 | 10.06 | 12.92 | 7.13   | 12.92 | 0.00  | 12.92 | 8.34 |
| 13.00 | 4.71 | 13.00 | 5.53 | 13.00 | 4.95 | 13.00 | 7.15   | 13.00 | 10.06 | 13.00 | 7.15   | 13.00 | 0.00  | 13.00 | 8.34 |

| 13.08 | 4.71 | 13.08 | 5.08 | 13.08 | 4.95 | 13.08 | 1.52   | 13.08 | 10.06 | 13.08 | 1.52   | 13.08 | -0.16 | 13.08 | 8.28 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 13.17 | 4.68 | 13.17 | 4.63 | 13.17 | 5.03 | 13.17 | -24.04 | 13.17 | 9.75  | 13.17 | -24.04 | 13.17 | -0.17 | 13.17 | 7.18 |
| 13.25 | 4.42 | 13.25 | 5.69 | 13.25 | 5.54 | 13.25 | -25.49 | 13.25 | 8.34  | 13.25 | -25.49 | 13.25 | 0.79  | 13.25 | 7.56 |
| 13.33 | 4.46 | 13.33 | 5.62 | 13.33 | 5.83 | 13.33 | -26.84 | 13.33 | 9.72  | 13.33 | -26.84 | 13.33 | 0.22  | 13.33 | 8.61 |
| 13.42 | 4.68 | 13.42 | 5.52 | 13.42 | 5.67 | 13.42 | -18.82 | 13.42 | 10.45 | 13.42 | -18.82 | 13.42 | 0.07  | 13.42 | 8.65 |
| 13.50 | 4.70 | 13.50 | 5.52 | 13.50 | 5.51 | 13.50 | -9.87  | 13.50 | 10.53 | 13.50 | -9.87  | 13.50 | 0.05  | 13.50 | 8.48 |
| 13.58 | 4.70 | 13.58 | 5.58 | 13.58 | 5.23 | 13.58 | -2.35  | 13.58 | 10.37 | 13.58 | -2.35  | 13.58 | 0.04  | 13.58 | 8.37 |
| 13.67 | 4.69 | 13.67 | 5.59 | 13.67 | 5.11 | 13.67 | 3.67   | 13.67 | 10.23 | 13.67 | 3.67   | 13.67 | 0.03  | 13.67 | 8.34 |
| 13.75 | 4.68 | 13.75 | 5.58 | 13.75 | 5.05 | 13.75 | 5.92   | 13.75 | 10.19 | 13.75 | 5.92   | 13.75 | 0.02  | 13.75 | 8.34 |
| 13.83 | 4.68 | 13.83 | 5.57 | 13.83 | 5.01 | 13.83 | 6.13   | 13.83 | 10.17 | 13.83 | 6.13   | 13.83 | 0.01  | 13.83 | 8.34 |
| 13.92 | 4.68 | 13.92 | 5.56 | 13.92 | 4.97 | 13.92 | 6.43   | 13.92 | 10.15 | 13.92 | 6.43   | 13.92 | 0.00  | 13.92 | 8.33 |
| 14.00 | 4.67 | 14.00 | 5.55 | 14.00 | 4.96 | 14.00 | 6.72   | 14.00 | 10.13 | 14.00 | 6.72   | 14.00 | 0.00  | 14.00 | 8.33 |
| 14.08 | 4.68 | 14.08 | 5.52 | 14.08 | 4.95 | 14.08 | 6.88   | 14.08 | 10.12 | 14.08 | 6.88   | 14.08 | 0.00  | 14.08 | 8.33 |
| 14.17 | 4.68 | 14.17 | 5.52 | 14.17 | 4.94 | 14.17 | 6.96   | 14.17 | 10.11 | 14.17 | 6.96   | 14.17 | 0.00  | 14.17 | 8.34 |
| 14.25 | 4.67 | 14.25 | 5.59 | 14.25 | 4.94 | 14.25 | 7.01   | 14.25 | 10.10 | 14.25 | 7.01   | 14.25 | 0.01  | 14.25 | 8.34 |
| 14.33 | 4.68 | 14.33 | 5.59 | 14.33 | 4.94 | 14.33 | 7.04   | 14.33 | 10.09 | 14.33 | 7.04   | 14.33 | 0.00  | 14.33 | 8.34 |
| 14.42 | 4.68 | 14.42 | 5.59 | 14.42 | 4.94 | 14.42 | 7.06   | 14.42 | 10.09 | 14.42 | 7.06   | 14.42 | 0.00  | 14.42 | 8.34 |
| 14.50 | 4.68 | 14.50 | 5.59 | 14.50 | 4.94 | 14.50 | 7.08   | 14.50 | 10.08 | 14.50 | 7.08   | 14.50 | -0.01 | 14.50 | 8.34 |
| 14.58 | 4.68 | 14.58 | 5.60 | 14.58 | 4.95 | 14.58 | 7.10   | 14.58 | 10.08 | 14.58 | 7.10   | 14.58 | 0.00  | 14.58 | 8.34 |
| 14.67 | 4.68 | 14.67 | 5.59 | 14.67 | 4.95 | 14.67 | 7.12   | 14.67 | 10.08 | 14.67 | 7.12   | 14.67 | 0.00  | 14.67 | 8.34 |
| 14.75 | 4.68 | 14.75 | 5.57 | 14.75 | 4.95 | 14.75 | 7.13   | 14.75 | 10.08 | 14.75 | 7.13   | 14.75 | 0.00  | 14.75 | 8.34 |
| 14.83 | 4.68 | 14.83 | 5.59 | 14.83 | 4.95 | 14.83 | 7.14   | 14.83 | 10.08 | 14.83 | 7.14   | 14.83 | 0.00  | 14.83 | 8.34 |
| 14.92 | 4.68 | 14.92 | 5.61 | 14.92 | 4.95 | 14.92 | 7.15   | 14.92 | 10.08 | 14.92 | 7.15   | 14.92 | 0.00  | 14.92 | 8.34 |
| 15.00 | 4.68 | 15.00 | 5.60 | 15.00 | 4.95 | 15.00 | 7.15   | 15.00 | 10.08 | 15.00 | 7.15   | 15.00 | 0.00  | 15.00 | 8.35 |
| 15.08 | 4.68 | 15.08 | 5.79 | 15.08 | 4.95 | 15.08 | 2.73   | 15.08 | 10.08 | 15.08 | 2.73   | 15.08 | -0.15 | 15.08 | 8.30 |
| 15.17 | 4.66 | 15.17 | 8.25 | 15.17 | 5.01 | 15.17 | -21.85 | 15.17 | 9.77  | 15.17 | -21.85 | 15.17 | -0.25 | 15.17 | 7.32 |
| 15.25 | 4.42 | 15.25 | 7.37 | 15.25 | 5.44 | 15.25 | -20.08 | 15.25 | 8.33  | 15.25 | -20.08 | 15.25 | 0.78  | 15.25 | 7.63 |
| 15.33 | 4.43 | 15.33 | 5.31 | 15.33 | 5.79 | 15.33 | -22.89 | 15.33 | 9.63  | 15.33 | -22.89 | 15.33 | 0.23  | 15.33 | 8.62 |
| 15.42 | 4.65 | 15.42 | 5.04 | 15.42 | 5.67 | 15.42 | -14.78 | 15.42 | 10.32 | 15.42 | -14.78 | 15.42 | 0.08  | 15.42 | 8.64 |
| 15.50 | 4.67 | 15.50 | 5.44 | 15.50 | 5.56 | 15.50 | -6.34  | 15.50 | 10.42 | 15.50 | -6.34  | 15.50 | 0.06  | 15.50 | 8.48 |
| 15.58 | 4.66 | 15.58 | 5.54 | 15.58 | 5.28 | 15.58 | 0.69   | 15.58 | 10.30 | 15.58 | 0.69   | 15.58 | 0.04  | 15.58 | 8.38 |
| 15.67 | 4.66 | 15.67 | 5.51 | 15.67 | 5.14 | 15.67 | 5.30   | 15.67 | 10.19 | 15.67 | 5.30   | 15.67 | 0.02  | 15.67 | 8.35 |

| 15 75 | 1 65 | 15 75 | 5 51 | 15 75 | 5.08 | 15 75 | 6.20   | 15 75 | 10.16 | 15 75 | 6.20   | 15 75 | 0.02  | 15 75 | 8 35 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 15.75 | 4.05 | 15.75 | 5.51 | 15.75 | 5.08 | 15.75 | 0.20   | 15.75 | 10.10 | 15.75 | 0.20   | 15.75 | 0.02  | 15.73 | 0.55 |
| 15.83 | 4.65 | 15.83 | 5.51 | 15.83 | 5.03 | 15.83 | 6.42   | 15.83 | 10.15 | 15.83 | 6.42   | 15.83 | 0.01  | 15.83 | 8.35 |
| 15.92 | 4.65 | 15.92 | 5.51 | 15.92 | 4.99 | 15.92 | 6.72   | 15.92 | 10.13 | 15.92 | 6.72   | 15.92 | 0.00  | 15.92 | 8.34 |
| 16.00 | 4.65 | 16.00 | 5.52 | 16.00 | 4.98 | 16.00 | 6.89   | 16.00 | 10.12 | 16.00 | 6.89   | 16.00 | 0.00  | 16.00 | 8.34 |
| 16.08 | 4.65 | 16.08 | 5.53 | 16.08 | 4.96 | 16.08 | 6.97   | 16.08 | 10.11 | 16.08 | 6.97   | 16.08 | -0.01 | 16.08 | 8.34 |
| 16.17 | 4.65 | 16.17 | 5.52 | 16.17 | 4.96 | 16.17 | 7.02   | 16.17 | 10.10 | 16.17 | 7.02   | 16.17 | 0.00  | 16.17 | 8.34 |
| 16.25 | 4.65 | 16.25 | 5.52 | 16.25 | 4.95 | 16.25 | 7.05   | 16.25 | 10.10 | 16.25 | 7.05   | 16.25 | 0.00  | 16.25 | 8.34 |
| 16.33 | 4.65 | 16.33 | 5.53 | 16.33 | 4.95 | 16.33 | 7.07   | 16.33 | 10.09 | 16.33 | 7.07   | 16.33 | 0.00  | 16.33 | 8.35 |
| 16.42 | 4.65 | 16.42 | 5.54 | 16.42 | 4.95 | 16.42 | 7.09   | 16.42 | 10.09 | 16.42 | 7.09   | 16.42 | 0.00  | 16.42 | 8.35 |
| 16.50 | 4.66 | 16.50 | 5.54 | 16.50 | 4.95 | 16.50 | 7.10   | 16.50 | 10.09 | 16.50 | 7.10   | 16.50 | 0.00  | 16.50 | 8.35 |
| 16.58 | 4.66 | 16.58 | 5.54 | 16.58 | 4.95 | 16.58 | 7.12   | 16.58 | 10.08 | 16.58 | 7.12   | 16.58 | 0.00  | 16.58 | 8.35 |
| 16.67 | 4.66 | 16.67 | 5.55 | 16.67 | 4.95 | 16.67 | 7.13   | 16.67 | 10.09 | 16.67 | 7.13   | 16.67 | 0.00  | 16.67 | 8.35 |
| 16.75 | 4.66 | 16.75 | 5.55 | 16.75 | 4.96 | 16.75 | 7.14   | 16.75 | 10.09 | 16.75 | 7.14   | 16.75 | 0.00  | 16.75 | 8.35 |
| 16.83 | 4.66 | 16.83 | 5.55 | 16.83 | 4.95 | 16.83 | 7.16   | 16.83 | 10.08 | 16.83 | 7.16   | 16.83 | 0.00  | 16.83 | 8.35 |
| 16.92 | 4.66 | 16.92 | 5.55 | 16.92 | 4.96 | 16.92 | 7.17   | 16.92 | 10.08 | 16.92 | 7.17   | 16.92 | 0.01  | 16.92 | 8.35 |
| 17.00 | 4.66 | 17.00 | 5.55 | 17.00 | 4.95 | 17.00 | 7.17   | 17.00 | 10.08 | 17.00 | 7.17   | 17.00 | 0.00  | 17.00 | 8.35 |
| 17.08 | 4.66 | 17.08 | 5.54 | 17.08 | 4.95 | 17.08 | 2.78   | 17.08 | 10.08 | 17.08 | 2.78   | 17.08 | -0.13 | 17.08 | 8.30 |
| 17.17 | 4.64 | 17.17 | 5.89 | 17.17 | 5.00 | 17.17 | -20.86 | 17.17 | 9.80  | 17.17 | -20.86 | 17.17 | -0.36 | 17.17 | 7.41 |
| 17.25 | 4.42 | 17.25 | 6.29 | 17.25 | 5.39 | 17.25 | -18.90 | 17.25 | 8.37  | 17.25 | -18.90 | 17.25 | 0.79  | 17.25 | 7.73 |
| 17.33 | 4.41 | 17.33 | 5.56 | 17.33 | 5.73 | 17.33 | -20.00 | 17.33 | 9.58  | 17.33 | -20.00 | 17.33 | 0.23  | 17.33 | 8.62 |
| 17.42 | 4.61 | 17.42 | 5.45 | 17.42 | 5.62 | 17.42 | -10.05 | 17.42 | 10.22 | 17.42 | -10.05 | 17.42 | 0.07  | 17.42 | 8.64 |
| 17.50 | 4.63 | 17.50 | 5.59 | 17.50 | 5.54 | 17.50 | -1.75  | 17.50 | 10.35 | 17.50 | -1.75  | 17.50 | 0.05  | 17.50 | 8.47 |
| 17.58 | 4.63 | 17.58 | 5.60 | 17.58 | 5.29 | 17.58 | 4.14   | 17.58 | 10.26 | 17.58 | 4.14   | 17.58 | 0.04  | 17.58 | 8.38 |
| 17.67 | 4.63 | 17.67 | 5.56 | 17.67 | 5.16 | 17.67 | 6.05   | 17.67 | 10.17 | 17.67 | 6.05   | 17.67 | 0.03  | 17.67 | 8.36 |
| 17.75 | 4.63 | 17.75 | 5.55 | 17.75 | 5.09 | 17.75 | 6.26   | 17.75 | 10.15 | 17.75 | 6.26   | 17.75 | 0.02  | 17.75 | 8.35 |
| 17.83 | 4.63 | 17.83 | 5.56 | 17.83 | 5.04 | 17.83 | 6.60   | 17.83 | 10.14 | 17.83 | 6.60   | 17.83 | 0.01  | 17.83 | 8.35 |
| 17.92 | 4.63 | 17.92 | 5.57 | 17.92 | 5.01 | 17.92 | 6.85   | 17.92 | 10.12 | 17.92 | 6.85   | 17.92 | 0.01  | 17.92 | 8.35 |
| 18.00 | 4.63 | 18.00 | 5.57 | 18.00 | 4.99 | 18.00 | 6.97   | 18.00 | 10.11 | 18.00 | 6.97   | 18.00 | 0.01  | 18.00 | 8.35 |
| 18.08 | 4.63 | 18.08 | 5.57 | 18.08 | 4.98 | 18.08 | 7.03   | 18.08 | 10.11 | 18.08 | 7.03   | 18.08 | 0.01  | 18.08 | 8.35 |
| 18.17 | 4.63 | 18.17 | 5.57 | 18.17 | 4.97 | 18.17 | 7.06   | 18.17 | 10.10 | 18.17 | 7.06   | 18.17 | -0.01 | 18.17 | 8.35 |
| 18.25 | 4.63 | 18.25 | 5.58 | 18.25 | 4.96 | 18.25 | 7.08   | 18.25 | 10.10 | 18.25 | 7.08   | 18.25 | -0.01 | 18.25 | 8.35 |
| 18.33 | 4.64 | 18.33 | 5.58 | 18.33 | 4.96 | 18.33 | 7.09   | 18.33 | 10.10 | 18.33 | 7.09   | 18.33 | -0.01 | 18.33 | 8.35 |

| 18.42 | 4.64 | 18.42 | 5.58 | 18.42 | 4.96 | 18.42 | 7.10   | 18.42 | 10.09 | 18.42 | 7.10   | 18.42 | 0.00  | 18.42 | 8.35 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 18.50 | 4.64 | 18.50 | 5.58 | 18.50 | 4.96 | 18.50 | 7.11   | 18.50 | 10.09 | 18.50 | 7.11   | 18.50 | 0.00  | 18.50 | 8.36 |
| 18.58 | 4.64 | 18.58 | 5.59 | 18.58 | 4.96 | 18.58 | 7.13   | 18.58 | 10.09 | 18.58 | 7.13   | 18.58 | 0.00  | 18.58 | 8.35 |
| 18.67 | 4.64 | 18.67 | 5.60 | 18.67 | 4.96 | 18.67 | 7.14   | 18.67 | 10.09 | 18.67 | 7.14   | 18.67 | 0.01  | 18.67 | 8.35 |
| 18.75 | 4.64 | 18.75 | 5.59 | 18.75 | 4.96 | 18.75 | 7.15   | 18.75 | 10.09 | 18.75 | 7.15   | 18.75 | 0.00  | 18.75 | 8.36 |
| 18.83 | 4.64 | 18.83 | 5.59 | 18.83 | 4.96 | 18.83 | 7.16   | 18.83 | 10.08 | 18.83 | 7.16   | 18.83 | 0.00  | 18.83 | 8.35 |
| 18.92 | 4.65 | 18.92 | 5.59 | 18.92 | 4.96 | 18.92 | 7.17   | 18.92 | 10.08 | 18.92 | 7.17   | 18.92 | 0.00  | 18.92 | 8.35 |
| 19.00 | 4.65 | 19.00 | 5.60 | 19.00 | 4.96 | 19.00 | 7.18   | 19.00 | 10.08 | 19.00 | 7.18   | 19.00 | 0.00  | 19.00 | 8.36 |
| 19.08 | 4.65 | 19.08 | 5.58 | 19.08 | 4.95 | 19.08 | 2.89   | 19.08 | 10.08 | 19.08 | 2.89   | 19.08 | -0.14 | 19.08 | 8.31 |
| 19.17 | 4.63 | 19.17 | 5.94 | 19.17 | 5.00 | 19.17 | -17.79 | 19.17 | 9.80  | 19.17 | -17.79 | 19.17 | -0.40 | 19.17 | 7.46 |
| 19.25 | 4.45 | 19.25 | 6.44 | 19.25 | 5.37 | 19.25 | -13.72 | 19.25 | 8.39  | 19.25 | -13.72 | 19.25 | 0.76  | 19.25 | 7.77 |
| 19.33 | 4.41 | 19.33 | 5.68 | 19.33 | 5.66 | 19.33 | -18.02 | 19.33 | 9.57  | 19.33 | -18.02 | 19.33 | 0.25  | 19.33 | 8.62 |
| 19.42 | 4.59 | 19.42 | 5.50 | 19.42 | 5.52 | 19.42 | -7.93  | 19.42 | 10.17 | 19.42 | -7.93  | 19.42 | 0.08  | 19.42 | 8.63 |
| 19.50 | 4.61 | 19.50 | 5.63 | 19.50 | 5.47 | 19.50 | 0.48   | 19.50 | 10.29 | 19.50 | 0.48   | 19.50 | 0.05  | 19.50 | 8.48 |
| 19.58 | 4.62 | 19.58 | 5.66 | 19.58 | 5.28 | 19.58 | 5.28   | 19.58 | 10.22 | 19.58 | 5.28   | 19.58 | 0.04  | 19.58 | 8.39 |
| 19.67 | 4.62 | 19.67 | 5.63 | 19.67 | 5.15 | 19.67 | 6.12   | 19.67 | 10.15 | 19.67 | 6.12   | 19.67 | 0.03  | 19.67 | 8.37 |
| 19.75 | 4.62 | 19.75 | 5.61 | 19.75 | 5.08 | 19.75 | 6.32   | 19.75 | 10.13 | 19.75 | 6.32   | 19.75 | 0.02  | 19.75 | 8.37 |
| 19.83 | 4.61 | 19.83 | 5.62 | 19.83 | 5.04 | 19.83 | 6.67   | 19.83 | 10.13 | 19.83 | 6.67   | 19.83 | 0.01  | 19.83 | 8.36 |
| 19.92 | 4.62 | 19.92 | 5.62 | 19.92 | 5.01 | 19.92 | 6.89   | 19.92 | 10.12 | 19.92 | 6.89   | 19.92 | 0.01  | 19.92 | 8.36 |
| 20.00 | 4.62 | 20.00 | 5.63 | 20.00 | 4.99 | 20.00 | 6.98   | 20.00 | 10.11 | 20.00 | 6.98   | 20.00 | 0.00  | 20.00 | 8.35 |
| 20.08 | 4.62 | 20.08 | 5.62 | 20.08 | 4.98 | 20.08 | 7.04   | 20.08 | 10.10 | 20.08 | 7.04   | 20.08 | 0.00  | 20.08 | 8.35 |
| 20.17 | 4.62 | 20.17 | 5.62 | 20.17 | 4.97 | 20.17 | 7.07   | 20.17 | 10.10 | 20.17 | 7.07   | 20.17 | 0.00  | 20.17 | 8.36 |
| 20.25 | 4.62 | 20.25 | 5.63 | 20.25 | 4.96 | 20.25 | 7.08   | 20.25 | 10.10 | 20.25 | 7.08   | 20.25 | 0.01  | 20.25 | 8.35 |
| 20.33 | 4.63 | 20.33 | 5.63 | 20.33 | 4.96 | 20.33 | 7.09   | 20.33 | 10.09 | 20.33 | 7.09   | 20.33 | 0.00  | 20.33 | 8.36 |
| 20.42 | 4.63 | 20.42 | 5.62 | 20.42 | 4.96 | 20.42 | 7.11   | 20.42 | 10.09 | 20.42 | 7.11   | 20.42 | 0.00  | 20.42 | 8.36 |
| 20.50 | 4.63 | 20.50 | 5.63 | 20.50 | 4.96 | 20.50 | 7.12   | 20.50 | 10.09 | 20.50 | 7.12   | 20.50 | 0.00  | 20.50 | 8.36 |
| 20.58 | 4.63 | 20.58 | 5.64 | 20.58 | 4.96 | 20.58 | 7.13   | 20.58 | 10.09 | 20.58 | 7.13   | 20.58 | 0.00  | 20.58 | 8.36 |
| 20.67 | 4.64 | 20.67 | 5.64 | 20.67 | 4.96 | 20.67 | 7.15   | 20.67 | 10.09 | 20.67 | 7.15   | 20.67 | 0.00  | 20.67 | 8.36 |
| 20.75 | 4.64 | 20.75 | 5.63 | 20.75 | 4.96 | 20.75 | 7.16   | 20.75 | 10.09 | 20.75 | 7.16   | 20.75 | 0.00  | 20.75 | 8.36 |
| 20.83 | 4.64 | 20.83 | 5.63 | 20.83 | 4.96 | 20.83 | 7.17   | 20.83 | 10.09 | 20.83 | 7.17   | 20.83 | 0.00  | 20.83 | 8.36 |
| 20.92 | 4.64 | 20.92 | 5.63 | 20.92 | 4.95 | 20.92 | 7.18   | 20.92 | 10.09 | 20.92 | 7.18   | 20.92 | 0.00  | 20.92 | 8.36 |
| 21.00 | 4.64 | 21.00 | 5.64 | 21.00 | 4.96 | 21.00 | 7.18   | 21.00 | 10.09 | 21.00 | 7.18   | 21.00 | 0.00  | 21.00 | 8.36 |
|       |      |       |      |       |      |       |        |       |       |       | -      | -     |       | -     |      |

| 21.08 | 4.64 | 21.08 | 5.62 | 21.08 | 4.95 | 21.08 | 3.89   | 21.08 | 10.09 | 21.08 | 3.89   | 21.08 | -0.14 | 21.08 | 8.33 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 21.17 | 4.63 | 21.17 | 6.01 | 21.17 | 5.00 | 21.17 | -19.62 | 21.17 | 9.84  | 21.17 | -19.62 | 21.17 | -0.44 | 21.17 | 7.55 |
| 21.25 | 4.45 | 21.25 | 6.56 | 21.25 | 5.35 | 21.25 | -19.91 | 21.25 | 8.43  | 21.25 | -19.91 | 21.25 | 0.74  | 21.25 | 7.74 |
| 21.33 | 4.41 | 21.33 | 5.75 | 21.33 | 5.58 | 21.33 | -17.34 | 21.33 | 9.53  | 21.33 | -17.34 | 21.33 | 0.25  | 21.33 | 8.61 |
| 21.42 | 4.57 | 21.42 | 5.54 | 21.42 | 5.44 | 21.42 | -5.41  | 21.42 | 10.11 | 21.42 | -5.41  | 21.42 | 0.07  | 21.42 | 8.63 |
| 21.50 | 4.60 | 21.50 | 5.68 | 21.50 | 5.41 | 21.50 | 2.71   | 21.50 | 10.25 | 21.50 | 2.71   | 21.50 | 0.04  | 21.50 | 8.49 |
| 21.58 | 4.60 | 21.58 | 5.72 | 21.58 | 5.24 | 21.58 | 5.91   | 21.58 | 10.20 | 21.58 | 5.91   | 21.58 | 0.03  | 21.58 | 8.40 |
| 21.67 | 4.61 | 21.67 | 5.68 | 21.67 | 5.13 | 21.67 | 6.15   | 21.67 | 10.14 | 21.67 | 6.15   | 21.67 | 0.03  | 21.67 | 8.37 |
| 21.75 | 4.61 | 21.75 | 5.66 | 21.75 | 5.07 | 21.75 | 6.42   | 21.75 | 10.13 | 21.75 | 6.42   | 21.75 | 0.02  | 21.75 | 8.37 |
| 21.83 | 4.61 | 21.83 | 5.66 | 21.83 | 5.03 | 21.83 | 6.74   | 21.83 | 10.12 | 21.83 | 6.74   | 21.83 | 0.01  | 21.83 | 8.36 |
| 21.92 | 4.61 | 21.92 | 5.66 | 21.92 | 4.99 | 21.92 | 6.92   | 21.92 | 10.12 | 21.92 | 6.92   | 21.92 | 0.00  | 21.92 | 8.36 |
| 22.00 | 4.61 | 22.00 | 5.66 | 22.00 | 4.98 | 22.00 | 7.01   | 22.00 | 10.10 | 22.00 | 7.01   | 22.00 | 0.00  | 22.00 | 8.36 |
| 22.08 | 4.62 | 22.08 | 5.66 | 22.08 | 4.97 | 22.08 | 7.05   | 22.08 | 10.10 | 22.08 | 7.05   | 22.08 | 0.00  | 22.08 | 8.36 |
| 22.17 | 4.62 | 22.17 | 5.67 | 22.17 | 4.97 | 22.17 | 7.08   | 22.17 | 10.10 | 22.17 | 7.08   | 22.17 | 0.00  | 22.17 | 8.36 |
| 22.25 | 4.62 | 22.25 | 5.67 | 22.25 | 4.96 | 22.25 | 7.10   | 22.25 | 10.10 | 22.25 | 7.10   | 22.25 | 0.00  | 22.25 | 8.36 |
| 22.33 | 4.63 | 22.33 | 5.67 | 22.33 | 4.96 | 22.33 | 7.11   | 22.33 | 10.10 | 22.33 | 7.11   | 22.33 | 0.00  | 22.33 | 8.36 |
| 22.42 | 4.63 | 22.42 | 5.66 | 22.42 | 4.95 | 22.42 | 7.12   | 22.42 | 10.10 | 22.42 | 7.12   | 22.42 | 0.00  | 22.42 | 8.36 |
| 22.50 | 4.63 | 22.50 | 5.66 | 22.50 | 4.95 | 22.50 | 7.14   | 22.50 | 10.10 | 22.50 | 7.14   | 22.50 | -0.01 | 22.50 | 8.36 |
| 22.58 | 4.63 | 22.58 | 5.69 | 22.58 | 4.95 | 22.58 | 7.17   | 22.58 | 10.09 | 22.58 | 7.17   | 22.58 | 0.00  | 22.58 | 8.36 |
| 22.67 | 4.64 | 22.67 | 5.68 | 22.67 | 4.95 | 22.67 | 7.18   | 22.67 | 10.09 | 22.67 | 7.18   | 22.67 | 0.00  | 22.67 | 8.36 |
| 22.75 | 4.64 | 22.75 | 5.68 | 22.75 | 4.95 | 22.75 | 7.19   | 22.75 | 10.09 | 22.75 | 7.19   | 22.75 | 0.00  | 22.75 | 8.36 |
| 22.83 | 4.64 | 22.83 | 5.68 | 22.83 | 4.95 | 22.83 | 7.20   | 22.83 | 10.09 | 22.83 | 7.20   | 22.83 | 0.00  | 22.83 | 8.36 |
| 22.92 | 4.64 | 22.92 | 5.68 | 22.92 | 4.95 | 22.92 | 7.21   | 22.92 | 10.09 | 22.92 | 7.21   | 22.92 | 0.00  | 22.92 | 8.36 |
| 23.00 | 4.64 | 23.00 | 5.68 | 23.00 | 4.95 | 23.00 | 7.22   | 23.00 | 10.09 | 23.00 | 7.22   | 23.00 | 0.00  | 23.00 | 8.36 |
| 23.08 | 4.64 | 23.08 | 5.66 | 23.08 | 4.95 | 23.08 | 3.89   | 23.08 | 10.09 | 23.08 | 3.89   | 23.08 | -0.12 | 23.08 | 8.34 |
| 23.17 | 4.63 | 23.17 | 6.03 | 23.17 | 4.99 | 23.17 | -20.32 | 23.17 | 9.85  | 23.17 | -20.32 | 23.17 | -0.50 | 23.17 | 7.62 |
| 23.25 | 4.50 | 23.25 | 6.73 | 23.25 | 5.33 | 23.25 | -21.87 | 23.25 | 8.49  | 23.25 | -21.87 | 23.25 | 0.72  | 23.25 | 7.76 |
| 23.33 | 4.44 | 23.33 | 5.86 | 23.33 | 5.52 | 23.33 | -15.56 | 23.33 | 9.54  | 23.33 | -15.56 | 23.33 | 0.26  | 23.33 | 8.61 |
| 23.42 | 4.57 | 23.42 | 5.56 | 23.42 | 5.34 | 23.42 | -2.75  | 23.42 | 10.09 | 23.42 | -2.75  | 23.42 | 0.07  | 23.42 | 8.63 |
| 23.50 | 4.60 | 23.50 | 5.70 | 23.50 | 5.32 | 23.50 | 4.67   | 23.50 | 10.22 | 23.50 | 4.67   | 23.50 | 0.05  | 23.50 | 8.49 |
| 23.58 | 4.60 | 23.58 | 5.75 | 23.58 | 5.21 | 23.58 | 6.27   | 23.58 | 10.18 | 23.58 | 6.27   | 23.58 | 0.04  | 23.58 | 8.40 |
| 23.67 | 4.61 | 23.67 | 5.71 | 23.67 | 5.10 | 23.67 | 6.22   | 23.67 | 10.12 | 23.67 | 6.22   | 23.67 | 0.03  | 23.67 | 8.37 |

| 23.75 | 4.61 | 23.75 | 5.70 | 23.75 | 5.05 | 23.75 | 6.52   | 23.75 | 10.12 | 23.75 | 6.52   | 23.75 | 0.03  | 23.75 | 8.37 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 23.83 | 4.61 | 23.83 | 5.70 | 23.83 | 5.01 | 23.83 | 6.81   | 23.83 | 10.12 | 23.83 | 6.81   | 23.83 | 0.01  | 23.83 | 8.36 |
| 23.92 | 4.61 | 23.92 | 5.71 | 23.92 | 4.99 | 23.92 | 6.96   | 23.92 | 10.11 | 23.92 | 6.96   | 23.92 | 0.01  | 23.92 | 8.36 |
| 24.00 | 4.62 | 24.00 | 5.71 | 24.00 | 4.97 | 24.00 | 7.04   | 24.00 | 10.10 | 24.00 | 7.04   | 24.00 | 0.00  | 24.00 | 8.36 |
| 24.08 | 4.62 | 24.08 | 5.71 | 24.08 | 4.96 | 24.08 | 7.09   | 24.08 | 10.10 | 24.08 | 7.09   | 24.08 | 0.00  | 24.08 | 8.36 |
| 24.17 | 4.62 | 24.17 | 5.70 | 24.17 | 4.96 | 24.17 | 7.12   | 24.17 | 10.10 | 24.17 | 7.12   | 24.17 | 0.00  | 24.17 | 8.36 |
| 24.25 | 4.62 | 24.25 | 5.70 | 24.25 | 4.95 | 24.25 | 7.14   | 24.25 | 10.10 | 24.25 | 7.14   | 24.25 | 0.00  | 24.25 | 8.36 |
| 24.33 | 4.63 | 24.33 | 5.71 | 24.33 | 4.95 | 24.33 | 7.15   | 24.33 | 10.10 | 24.33 | 7.15   | 24.33 | 0.00  | 24.33 | 8.36 |
| 24.42 | 4.63 | 24.42 | 5.72 | 24.42 | 4.95 | 24.42 | 7.17   | 24.42 | 10.10 | 24.42 | 7.17   | 24.42 | 0.00  | 24.42 | 8.37 |
| 24.50 | 4.63 | 24.50 | 5.72 | 24.50 | 4.95 | 24.50 | 7.18   | 24.50 | 10.09 | 24.50 | 7.18   | 24.50 | 0.00  | 24.50 | 8.37 |
| 24.58 | 4.64 | 24.58 | 5.71 | 24.58 | 4.95 | 24.58 | 7.20   | 24.58 | 10.09 | 24.58 | 7.20   | 24.58 | 0.00  | 24.58 | 8.37 |
| 24.67 | 4.64 | 24.67 | 5.71 | 24.67 | 4.95 | 24.67 | 7.21   | 24.67 | 10.09 | 24.67 | 7.21   | 24.67 | 0.00  | 24.67 | 8.37 |
| 24.75 | 4.64 | 24.75 | 5.72 | 24.75 | 4.95 | 24.75 | 7.22   | 24.75 | 10.09 | 24.75 | 7.22   | 24.75 | 0.00  | 24.75 | 8.36 |
| 24.83 | 4.64 | 24.83 | 5.72 | 24.83 | 4.94 | 24.83 | 7.23   | 24.83 | 10.09 | 24.83 | 7.23   | 24.83 | 0.00  | 24.83 | 8.36 |
| 24.92 | 4.64 | 24.92 | 5.72 | 24.92 | 4.95 | 24.92 | 7.24   | 24.92 | 10.10 | 24.92 | 7.24   | 24.92 | 0.00  | 24.92 | 8.37 |
| 25.00 | 4.64 | 25.00 | 5.72 | 25.00 | 4.95 | 25.00 | 7.24   | 25.00 | 10.09 | 25.00 | 7.24   | 25.00 | 0.00  | 25.00 | 8.37 |
| 25.08 | 4.64 | 25.08 | 5.70 | 25.08 | 4.94 | 25.08 | 4.28   | 25.08 | 10.09 | 25.08 | 4.28   | 25.08 | -0.12 | 25.08 | 8.34 |
| 25.17 | 4.64 | 25.17 | 6.10 | 25.17 | 4.96 | 25.17 | -20.14 | 25.17 | 9.89  | 25.17 | -20.14 | 25.17 | -0.46 | 25.17 | 7.65 |
| 25.25 | 4.54 | 25.25 | 6.84 | 25.25 | 5.19 | 25.25 | -22.91 | 25.25 | 8.56  | 25.25 | -22.91 | 25.25 | 0.67  | 25.25 | 7.79 |
| 25.33 | 4.48 | 25.33 | 5.92 | 25.33 | 5.46 | 25.33 | -14.37 | 25.33 | 9.51  | 25.33 | -14.37 | 25.33 | 0.23  | 25.33 | 8.61 |
| 25.42 | 4.57 | 25.42 | 5.60 | 25.42 | 5.31 | 25.42 | -0.97  | 25.42 | 10.06 | 25.42 | -0.97  | 25.42 | 0.07  | 25.42 | 8.62 |
| 25.50 | 4.60 | 25.50 | 5.72 | 25.50 | 5.27 | 25.50 | 5.66   | 25.50 | 10.20 | 25.50 | 5.66   | 25.50 | 0.04  | 25.50 | 8.49 |
| 25.58 | 4.61 | 25.58 | 5.79 | 25.58 | 5.17 | 25.58 | 6.39   | 25.58 | 10.17 | 25.58 | 6.39   | 25.58 | 0.03  | 25.58 | 8.40 |
| 25.67 | 4.61 | 25.67 | 5.76 | 25.67 | 5.09 | 25.67 | 6.31   | 25.67 | 10.12 | 25.67 | 6.31   | 25.67 | 0.03  | 25.67 | 8.38 |
| 25.75 | 4.62 | 25.75 | 5.75 | 25.75 | 5.04 | 25.75 | 6.61   | 25.75 | 10.12 | 25.75 | 6.61   | 25.75 | 0.02  | 25.75 | 8.37 |
| 25.83 | 4.62 | 25.83 | 5.76 | 25.83 | 5.00 | 25.83 | 6.85   | 25.83 | 10.12 | 25.83 | 6.85   | 25.83 | 0.01  | 25.83 | 8.37 |
| 25.92 | 4.62 | 25.92 | 5.75 | 25.92 | 4.97 | 25.92 | 6.98   | 25.92 | 10.12 | 25.92 | 6.98   | 25.92 | 0.00  | 25.92 | 8.37 |
| 26.00 | 4.62 | 26.00 | 5.74 | 26.00 | 4.96 | 26.00 | 7.05   | 26.00 | 10.11 | 26.00 | 7.05   | 26.00 | 0.00  | 26.00 | 8.37 |
| 26.08 | 4.63 | 26.08 | 5.74 | 26.08 | 4.96 | 26.08 | 7.10   | 26.08 | 10.10 | 26.08 | 7.10   | 26.08 | 0.00  | 26.08 | 8.37 |
| 26.17 | 4.63 | 26.17 | 5.74 | 26.17 | 4.95 | 26.17 | 7.13   | 26.17 | 10.10 | 26.17 | 7.13   | 26.17 | 0.00  | 26.17 | 8.37 |
| 26.25 | 4.63 | 26.25 | 5.75 | 26.25 | 4.94 | 26.25 | 7.16   | 26.25 | 10.10 | 26.25 | 7.16   | 26.25 | 0.00  | 26.25 | 8.37 |
| 26.33 | 4.64 | 26.33 | 5.74 | 26.33 | 4.94 | 26.33 | 7.18   | 26.33 | 10.10 | 26.33 | 7.18   | 26.33 | 0.01  | 26.33 | 8.37 |

| 26.42 | 4.64 | 26.42 | 5.74 | 26.42 | 4.94 | 26.42 | 7.20   | 26.42 | 10.10 | 26.42 | 7.20   | 26.42 | 0.00  | 26.42 | 8.37 |
|-------|------|-------|------|-------|------|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 26.50 | 4.64 | 26.50 | 5.76 | 26.50 | 4.94 | 26.50 | 7.21   | 26.50 | 10.10 | 26.50 | 7.21   | 26.50 | 0.00  | 26.50 | 8.37 |
| 26.58 | 4.65 | 26.58 | 5.78 | 26.58 | 4.94 | 26.58 | 7.23   | 26.58 | 10.10 | 26.58 | 7.23   | 26.58 | 0.01  | 26.58 | 8.37 |
| 26.67 | 4.65 | 26.67 | 5.77 | 26.67 | 4.94 | 26.67 | 7.24   | 26.67 | 10.10 | 26.67 | 7.24   | 26.67 | 0.00  | 26.67 | 8.37 |
| 26.75 | 4.65 | 26.75 | 5.76 | 26.75 | 4.94 | 26.75 | 7.25   | 26.75 | 10.10 | 26.75 | 7.25   | 26.75 | 0.00  | 26.75 | 8.37 |
| 26.83 | 4.65 | 26.83 | 5.76 | 26.83 | 4.94 | 26.83 | 7.26   | 26.83 | 10.10 | 26.83 | 7.26   | 26.83 | 0.00  | 26.83 | 8.38 |
| 26.92 | 4.65 | 26.92 | 5.76 | 26.92 | 4.94 | 26.92 | 7.26   | 26.92 | 10.09 | 26.92 | 7.26   | 26.92 | 0.00  | 26.92 | 8.38 |
| 27.00 | 4.65 | 27.00 | 5.77 | 27.00 | 4.94 | 27.00 | 7.26   | 27.00 | 10.10 | 27.00 | 7.26   | 27.00 | 0.00  | 27.00 | 8.38 |
| 27.08 | 4.65 | 27.08 | 5.73 | 27.08 | 4.93 | 27.08 | 4.62   | 27.08 | 10.09 | 27.08 | 4.62   | 27.08 | -0.12 | 27.08 | 8.36 |
| 27.17 | 4.64 | 27.17 | 6.05 | 27.17 | 4.95 | 27.17 | -20.01 | 27.17 | 9.89  | 27.17 | -20.01 | 27.17 | -0.48 | 27.17 | 7.66 |
| 27.25 | 4.56 | 27.25 | 6.91 | 27.25 | 5.16 | 27.25 | -23.40 | 27.25 | 8.61  | 27.25 | -23.40 | 27.25 | 0.66  | 27.25 | 7.82 |
| 27.33 | 4.56 | 27.33 | 6.00 | 27.33 | 5.42 | 27.33 | -13.49 | 27.33 | 9.53  | 27.33 | -13.49 | 27.33 | 0.25  | 27.33 | 8.61 |
| 27.42 | 4.60 | 27.42 | 5.63 | 27.42 | 5.27 | 27.42 | 0.09   | 27.42 | 10.04 | 27.42 | 0.09   | 27.42 | 0.08  | 27.42 | 8.62 |
| 27.50 | 4.60 | 27.50 | 5.75 | 27.50 | 5.21 | 27.50 | 6.28   | 27.50 | 10.19 | 27.50 | 6.28   | 27.50 | 0.04  | 27.50 | 8.49 |
| 27.58 | 4.60 | 27.58 | 5.84 | 27.58 | 5.13 | 27.58 | 6.54   | 27.58 | 10.16 | 27.58 | 6.54   | 27.58 | 0.03  | 27.58 | 8.40 |
| 27.67 | 4.60 | 27.67 | 5.80 | 27.67 | 5.06 | 27.67 | 6.41   | 27.67 | 10.11 | 27.67 | 6.41   | 27.67 | 0.03  | 27.67 | 8.38 |
| 27.75 | 4.60 | 27.75 | 5.79 | 27.75 | 5.02 | 27.75 | 6.68   | 27.75 | 10.12 | 27.75 | 6.68   | 27.75 | 0.02  | 27.75 | 8.38 |
| 27.83 | 4.61 | 27.83 | 5.79 | 27.83 | 4.99 | 27.83 | 6.87   | 27.83 | 10.12 | 27.83 | 6.87   | 27.83 | 0.01  | 27.83 | 8.37 |
| 27.92 | 4.61 | 27.92 | 5.79 | 27.92 | 4.96 | 27.92 | 6.99   | 27.92 | 10.11 | 27.92 | 6.99   | 27.92 | 0.01  | 27.92 | 8.37 |
| 28.00 | 4.61 | 28.00 | 5.79 | 28.00 | 4.95 | 28.00 | 7.06   | 28.00 | 10.10 | 28.00 | 7.06   | 28.00 | 0.00  | 28.00 | 8.37 |
| 28.08 | 4.62 | 28.08 | 5.79 | 28.08 | 4.95 | 28.08 | 7.11   | 28.08 | 10.10 | 28.08 | 7.11   | 28.08 | 0.00  | 28.08 | 8.38 |
| 28.17 | 4.62 | 28.17 | 5.79 | 28.17 | 4.94 | 28.17 | 7.15   | 28.17 | 10.10 | 28.17 | 7.15   | 28.17 | 0.00  | 28.17 | 8.37 |
| 28.25 | 4.62 | 28.25 | 5.80 | 28.25 | 4.94 | 28.25 | 7.18   | 28.25 | 10.10 | 28.25 | 7.18   | 28.25 | 0.01  | 28.25 | 8.37 |
| 28.33 | 4.63 | 28.33 | 5.79 | 28.33 | 4.93 | 28.33 | 7.20   | 28.33 | 10.10 | 28.33 | 7.20   | 28.33 | 0.00  | 28.33 | 8.37 |
| 28.42 | 4.63 | 28.42 | 5.80 | 28.42 | 4.93 | 28.42 | 7.22   | 28.42 | 10.10 | 28.42 | 7.22   | 28.42 | 0.00  | 28.42 | 8.38 |
| 28.50 | 4.64 | 28.50 | 5.80 | 28.50 | 4.94 | 28.50 | 7.24   | 28.50 | 10.10 | 28.50 | 7.24   | 28.50 | 0.00  | 28.50 | 8.38 |
| 28.58 | 4.64 | 28.58 | 5.80 | 28.58 | 4.94 | 28.58 | 7.25   | 28.58 | 10.10 | 28.58 | 7.25   | 28.58 | 0.00  | 28.58 | 8.38 |
| 28.67 | 4.64 | 28.67 | 5.81 | 28.67 | 4.94 | 28.67 | 7.26   | 28.67 | 10.10 | 28.67 | 7.26   | 28.67 | 0.00  | 28.67 | 8.38 |
| 28.75 | 4.65 | 28.75 | 5.80 | 28.75 | 4.94 | 28.75 | 7.27   | 28.75 | 10.10 | 28.75 | 7.27   | 28.75 | 0.00  | 28.75 | 8.38 |
| 28.83 | 4.65 | 28.83 | 5.80 | 28.83 | 4.94 | 28.83 | 7.27   | 28.83 | 10.10 | 28.83 | 7.27   | 28.83 | 0.00  | 28.83 | 8.38 |
| 28.92 | 4.65 | 28.92 | 5.80 | 28.92 | 4.94 | 28.92 | 7.28   | 28.92 | 10.10 | 28.92 | 7.28   | 28.92 | 0.00  | 28.92 | 8.38 |
| 29.00 | 4.65 | 29.00 | 5.80 | 29.00 | 4.94 | 29.00 | 7.29   | 29.00 | 10.10 | 29.00 | 7.29   | 29.00 | 0.00  | 29.00 | 8.38 |

| 29.08 | 4.66 | 29.08 | 5.79 |  | 29.08 | 5.25   | 29.08 | 10.10 | 29.08 | 5.25   | 29.08 | -0.12 | 29.08 | 8.36 |
|-------|------|-------|------|--|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 29.17 | 4.65 | 29.17 | 6.07 |  | 29.17 | -20.07 | 29.17 | 9.94  | 29.17 | -20.07 | 29.17 | -0.45 | 29.17 | 7.74 |
| 29.25 | 4.61 | 29.25 | 7.06 |  | 29.25 | -26.13 | 29.25 | 8.71  | 29.25 | -26.13 | 29.25 | 0.62  | 29.25 | 7.79 |
| 29.33 | 4.60 | 29.33 | 6.11 |  | 29.33 | -12.80 | 29.33 | 9.48  | 29.33 | -12.80 | 29.33 | 0.21  | 29.33 | 8.60 |
| 29.42 | 4.61 | 29.42 | 5.65 |  | 29.42 | 1.20   | 29.42 | 10.01 | 29.42 | 1.20   | 29.42 | 0.08  | 29.42 | 8.62 |
| 29.50 | 4.61 | 29.50 | 5.78 |  | 29.50 | 6.85   | 29.50 | 10.18 | 29.50 | 6.85   | 29.50 | 0.04  | 29.50 | 8.49 |
| 29.58 | 4.62 | 29.58 | 5.87 |  | 29.58 | 6.66   | 29.58 | 10.16 | 29.58 | 6.66   | 29.58 | 0.03  | 29.58 | 8.41 |
| 29.67 | 4.62 | 29.67 | 5.85 |  | 29.67 | 6.48   | 29.67 | 10.11 | 29.67 | 6.48   | 29.67 | 0.03  | 29.67 | 8.39 |
| 29.75 | 4.62 | 29.75 | 5.83 |  | 29.75 | 6.74   | 29.75 | 10.11 | 29.75 | 6.74   | 29.75 | 0.02  | 29.75 | 8.38 |
| 29.83 | 4.62 | 29.83 | 5.84 |  | 29.83 | 6.92   | 29.83 | 10.12 | 29.83 | 6.92   | 29.83 | 0.02  | 29.83 | 8.38 |
| 29.92 | 4.62 | 29.92 | 5.83 |  | 29.92 | 7.01   | 29.92 | 10.12 | 29.92 | 7.01   | 29.92 | 0.00  | 29.92 | 8.38 |
| 30.00 | 4.62 | 30.00 | 5.83 |  | 30.00 | 7.09   | 30.00 | 10.10 | 30.00 | 7.09   | 30.00 | 0.01  | 30.00 | 8.37 |
| 30.08 | 4.63 | 30.08 | 5.83 |  | 30.08 | 7.14   | 30.08 | 10.10 | 30.08 | 7.14   | 30.08 | 0.00  | 30.08 | 8.37 |
| 30.17 | 4.63 | 30.17 | 5.83 |  | 30.17 | 7.18   | 30.17 | 10.10 | 30.17 | 7.18   | 30.17 | 0.01  | 30.17 | 8.37 |
| 30.25 | 4.64 | 30.25 | 5.83 |  | 30.25 | 7.20   | 30.25 | 10.10 | 30.25 | 7.20   | 30.25 | 0.01  | 30.25 | 8.37 |
| 30.33 | 4.64 | 30.33 | 5.83 |  | 30.33 | 7.22   | 30.33 | 10.10 | 30.33 | 7.22   | 30.33 | 0.00  | 30.33 | 8.37 |
| 30.42 | 4.64 | 30.42 | 5.83 |  | 30.42 | 7.24   | 30.42 | 10.10 | 30.42 | 7.24   | 30.42 | 0.00  | 30.42 | 8.37 |
| 30.50 | 4.65 | 30.50 | 5.83 |  | 30.50 | 7.26   | 30.50 | 10.10 | 30.50 | 7.26   | 30.50 | 0.00  | 30.50 | 8.38 |
| 30.58 | 4.65 | 30.58 | 5.83 |  | 30.58 | 7.27   | 30.58 | 10.10 | 30.58 | 7.27   | 30.58 | 0.00  | 30.58 | 8.38 |
| 30.67 | 4.66 | 30.67 | 5.84 |  | 30.67 | 7.28   | 30.67 | 10.10 | 30.67 | 7.28   | 30.67 | 0.00  | 30.67 | 8.38 |
| 30.75 | 4.66 | 30.75 | 5.84 |  | 30.75 | 7.29   | 30.75 | 10.10 | 30.75 | 7.29   | 30.75 | 0.00  | 30.75 | 8.38 |
| 30.83 | 4.67 | 30.83 | 5.85 |  | 30.83 | 7.29   | 30.83 | 10.10 | 30.83 | 7.29   | 30.83 | 0.00  | 30.83 | 8.38 |
| 30.92 | 4.67 | 30.92 | 5.84 |  | 30.92 | 7.29   | 30.92 | 10.10 | 30.92 | 7.29   | 30.92 | 0.00  | 30.92 | 8.38 |
| 31.00 | 4.67 | 31.00 | 5.84 |  | 31.00 | 7.29   | 31.00 | 10.10 | 31.00 | 7.29   | 31.00 | 0.00  | 31.00 | 8.37 |
| 31.08 | 4.68 | 31.08 | 5.82 |  | 31.08 | 5.33   | 31.08 | 10.10 | 31.08 | 5.33   | 31.08 | -0.10 | 31.08 | 8.36 |
| 31.17 | 4.67 | 31.17 | 6.04 |  | 31.17 | -19.63 | 31.17 | 9.94  | 31.17 | -19.63 | 31.17 | -0.42 | 31.17 | 7.76 |
| 31.25 | 4.66 | 31.25 | 7.01 |  | 31.25 | -24.43 | 31.25 | 8.76  | 31.25 | -24.43 | 31.25 | 0.56  | 31.25 | 7.80 |
| 31.33 | 4.68 | 31.33 | 6.12 |  | 31.33 | -11.31 | 31.33 | 9.52  | 31.33 | -11.31 | 31.33 | 0.21  | 31.33 | 8.59 |
| 31.42 | 4.68 | 31.42 | 5.70 |  | 31.42 | 2.35   | 31.42 | 10.01 | 31.42 | 2.35   | 31.42 | 0.06  | 31.42 | 8.61 |
| 31.50 | 4.66 | 31.50 | 5.83 |  | 31.50 | 7.32   | 31.50 | 10.17 | 31.50 | 7.32   | 31.50 | 0.04  | 31.50 | 8.48 |
| 31.58 | 4.66 | 31.58 | 5.92 |  | 31.58 | 6.76   | 31.58 | 10.15 | 31.58 | 6.76   | 31.58 | 0.03  | 31.58 | 8.40 |
| 31.67 | 4.66 | 31.67 | 5.88 |  | 31.67 | 6.58   | 31.67 | 10.11 | 31.67 | 6.58   | 31.67 | 0.02  | 31.67 | 8.38 |

| 31.75 | 4.65 | 31.75 | 5.86 |  | 31.75 | 6.79   | 31.75 | 10.11 | 31.75 | 6.79   | 31.75 | 0.02  | 31.75 | 8.38 |
|-------|------|-------|------|--|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 31.83 | 4.66 | 31.83 | 5.86 |  | 31.83 | 6.93   | 31.83 | 10.12 | 31.83 | 6.93   | 31.83 | 0.01  | 31.83 | 8.37 |
| 31.92 | 4.66 | 31.92 | 5.86 |  | 31.92 | 7.02   | 31.92 | 10.12 | 31.92 | 7.02   | 31.92 | 0.00  | 31.92 | 8.37 |
| 32.00 | 4.66 | 32.00 | 5.86 |  | 32.00 | 7.08   | 32.00 | 10.11 | 32.00 | 7.08   | 32.00 | 0.00  | 32.00 | 8.37 |
| 32.08 | 4.66 | 32.08 | 5.85 |  | 32.08 | 7.13   | 32.08 | 10.10 | 32.08 | 7.13   | 32.08 | 0.00  | 32.08 | 8.37 |
| 32.17 | 4.67 | 32.17 | 5.85 |  | 32.17 | 7.17   | 32.17 | 10.10 | 32.17 | 7.17   | 32.17 | 0.00  | 32.17 | 8.37 |
| 32.25 | 4.67 | 32.25 | 5.86 |  | 32.25 | 7.20   | 32.25 | 10.10 | 32.25 | 7.20   | 32.25 | 0.00  | 32.25 | 8.37 |
| 32.33 | 4.68 | 32.33 | 5.86 |  | 32.33 | 7.23   | 32.33 | 10.11 | 32.33 | 7.23   | 32.33 | 0.00  | 32.33 | 8.37 |
| 32.42 | 4.68 | 32.42 | 5.86 |  | 32.42 | 7.24   | 32.42 | 10.10 | 32.42 | 7.24   | 32.42 | 0.00  | 32.42 | 8.37 |
| 32.50 | 4.69 | 32.50 | 5.86 |  | 32.50 | 7.26   | 32.50 | 10.10 | 32.50 | 7.26   | 32.50 | 0.00  | 32.50 | 8.38 |
| 32.58 | 4.69 | 32.58 | 5.86 |  | 32.58 | 7.27   | 32.58 | 10.10 | 32.58 | 7.27   | 32.58 | 0.00  | 32.58 | 8.38 |
| 32.67 | 4.70 | 32.67 | 5.87 |  | 32.67 | 7.28   | 32.67 | 10.10 | 32.67 | 7.28   | 32.67 | 0.00  | 32.67 | 8.37 |
| 32.75 | 4.70 | 32.75 | 5.87 |  | 32.75 | 7.29   | 32.75 | 10.10 | 32.75 | 7.29   | 32.75 | 0.00  | 32.75 | 8.38 |
| 32.83 | 4.70 | 32.83 | 5.87 |  | 32.83 | 7.29   | 32.83 | 10.10 | 32.83 | 7.29   | 32.83 | 0.00  | 32.83 | 8.38 |
| 32.92 | 4.70 | 32.92 | 5.87 |  | 32.92 | 7.30   | 32.92 | 10.10 | 32.92 | 7.30   | 32.92 | 0.00  | 32.92 | 8.38 |
| 33.00 | 4.71 | 33.00 | 5.87 |  | 33.00 | 7.30   | 33.00 | 10.10 | 33.00 | 7.30   | 33.00 | 0.00  | 33.00 | 8.38 |
| 33.08 | 4.71 | 33.08 | 5.85 |  | 33.08 | 5.58   | 33.08 | 10.10 | 33.08 | 5.58   | 33.08 | -0.10 | 33.08 | 8.37 |
| 33.17 | 4.70 | 33.17 | 6.07 |  | 33.17 | -19.27 | 33.17 | 9.97  | 33.17 | -19.27 | 33.17 | -0.40 | 33.17 | 7.80 |
| 33.25 | 4.72 | 33.25 | 7.07 |  | 33.25 | -24.65 | 33.25 | 8.82  | 33.25 | -24.65 | 33.25 | 0.52  | 33.25 | 7.80 |
| 33.33 | 4.77 | 33.33 | 6.16 |  | 33.33 | -10.39 | 33.33 | 9.52  | 33.33 | -10.39 | 33.33 | 0.19  | 33.33 | 8.58 |
| 33.42 | 4.75 | 33.42 | 5.72 |  | 33.42 | 3.19   | 33.42 | 9.99  | 33.42 | 3.19   | 33.42 | 0.06  | 33.42 | 8.60 |
| 33.50 | 4.73 | 33.50 | 5.85 |  | 33.50 | 7.62   | 33.50 | 10.16 | 33.50 | 7.62   | 33.50 | 0.04  | 33.50 | 8.48 |
| 33.58 | 4.72 | 33.58 | 5.94 |  | 33.58 | 6.82   | 33.58 | 10.16 | 33.58 | 6.82   | 33.58 | 0.03  | 33.58 | 8.41 |
| 33.67 | 4.71 | 33.67 | 5.91 |  | 33.67 | 6.62   | 33.67 | 10.11 | 33.67 | 6.62   | 33.67 | 0.02  | 33.67 | 8.39 |
| 33.75 | 4.71 | 33.75 | 5.89 |  | 33.75 | 6.84   | 33.75 | 10.12 | 33.75 | 6.84   | 33.75 | 0.01  | 33.75 | 8.38 |
| 33.83 | 4.71 | 33.83 | 5.89 |  | 33.83 | 6.97   | 33.83 | 10.12 | 33.83 | 6.97   | 33.83 | 0.01  | 33.83 | 8.38 |
| 33.92 | 4.71 | 33.92 | 5.89 |  | 33.92 | 7.05   | 33.92 | 10.12 | 33.92 | 7.05   | 33.92 | 0.00  | 33.92 | 8.38 |
| 34.00 | 4.71 | 34.00 | 5.89 |  | 34.00 | 7.11   | 34.00 | 10.11 | 34.00 | 7.11   | 34.00 | 0.00  | 34.00 | 8.38 |
| 34.08 | 4.72 | 34.08 | 5.88 |  | 34.08 | 7.15   | 34.08 | 10.10 | 34.08 | 7.15   | 34.08 | 0.01  | 34.08 | 8.38 |
| 34.17 | 4.72 | 34.17 | 5.88 |  | 34.17 | 7.19   | 34.17 | 10.10 | 34.17 | 7.19   | 34.17 | 0.00  | 34.17 | 8.38 |
| 34.25 | 4.72 | 34.25 | 5.89 |  | 34.25 | 7.21   | 34.25 | 10.10 | 34.25 | 7.21   | 34.25 | 0.01  | 34.25 | 8.37 |
| 34.33 | 4.73 | 34.33 | 5.89 |  | 34.33 | 7.24   | 34.33 | 10.11 | 34.33 | 7.24   | 34.33 | 0.00  | 34.33 | 8.37 |

| 34.42 | 4.73 | 34.42 | 5.88 |  | 34.42 | 7.25   | 34.42 | 10.11 | 34.42 | 7.25   | 34.42 | 0.00  | 34.42 | 8.38 |
|-------|------|-------|------|--|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 34.50 | 4.73 | 34.50 | 5.89 |  | 34.50 | 7.27   | 34.50 | 10.10 | 34.50 | 7.27   | 34.50 | 0.00  | 34.50 | 8.37 |
| 34.58 | 4.74 | 34.58 | 5.90 |  | 34.58 | 7.28   | 34.58 | 10.11 | 34.58 | 7.28   | 34.58 | 0.00  | 34.58 | 8.37 |
| 34.67 | 4.74 | 34.67 | 5.90 |  | 34.67 | 7.29   | 34.67 | 10.10 | 34.67 | 7.29   | 34.67 | 0.00  | 34.67 | 8.38 |
| 34.75 | 4.74 | 34.75 | 5.89 |  | 34.75 | 7.29   | 34.75 | 10.10 | 34.75 | 7.29   | 34.75 | 0.00  | 34.75 | 8.38 |
| 34.83 | 4.74 | 34.83 | 5.90 |  | 34.83 | 7.30   | 34.83 | 10.10 | 34.83 | 7.30   | 34.83 | 0.00  | 34.83 | 8.38 |
| 34.92 | 4.74 | 34.92 | 5.91 |  | 34.92 | 7.30   | 34.92 | 10.10 | 34.92 | 7.30   | 34.92 | 0.00  | 34.92 | 8.38 |
| 35.00 | 4.75 | 35.00 | 5.90 |  | 35.00 | 7.30   | 35.00 | 10.10 | 35.00 | 7.30   | 35.00 | 0.00  | 35.00 | 8.38 |
| 35.08 | 4.75 | 35.08 | 5.88 |  | 35.08 | 5.85   | 35.08 | 10.10 | 35.08 | 5.85   | 35.08 | -0.09 | 35.08 | 8.37 |
| 35.17 | 4.75 | 35.17 | 6.06 |  | 35.17 | -18.49 | 35.17 | 9.98  | 35.17 | -18.49 | 35.17 | -0.56 | 35.17 | 7.81 |
| 35.25 | 4.77 | 35.25 | 7.06 |  | 35.25 | -24.22 | 35.25 | 8.85  | 35.25 | -24.22 | 35.25 | 0.58  | 35.25 | 7.82 |
| 35.33 | 4.85 | 35.33 | 6.19 |  | 35.33 | -10.06 | 35.33 | 9.54  | 35.33 | -10.06 | 35.33 | 0.25  | 35.33 | 8.58 |
| 35.42 | 4.82 | 35.42 | 5.75 |  | 35.42 | 3.45   | 35.42 | 9.97  | 35.42 | 3.45   | 35.42 | 0.06  | 35.42 | 8.60 |
| 35.50 | 4.79 | 35.50 | 5.88 |  | 35.50 | 7.85   | 35.50 | 10.15 | 35.50 | 7.85   | 35.50 | 0.04  | 35.50 | 8.48 |
| 35.58 | 4.78 | 35.58 | 5.96 |  | 35.58 | 6.94   | 35.58 | 10.16 | 35.58 | 6.94   | 35.58 | 0.03  | 35.58 | 8.41 |
| 35.67 | 4.77 | 35.67 | 5.95 |  | 35.67 | 6.70   | 35.67 | 10.10 | 35.67 | 6.70   | 35.67 | 0.03  | 35.67 | 8.39 |
| 35.75 | 4.77 | 35.75 | 5.93 |  | 35.75 | 6.89   | 35.75 | 10.12 | 35.75 | 6.89   | 35.75 | 0.02  | 35.75 | 8.38 |
| 35.83 | 4.77 | 35.83 | 5.93 |  | 35.83 | 7.00   | 35.83 | 10.13 | 35.83 | 7.00   | 35.83 | 0.01  | 35.83 | 8.38 |
| 35.92 | 4.77 | 35.92 | 5.93 |  | 35.92 | 7.07   | 35.92 | 10.12 | 35.92 | 7.07   | 35.92 | 0.01  | 35.92 | 8.38 |
| 36.00 | 4.77 | 36.00 | 5.92 |  | 36.00 | 7.12   | 36.00 | 10.11 | 36.00 | 7.12   | 36.00 | 0.00  | 36.00 | 8.37 |
| 36.08 | 4.77 | 36.08 | 5.92 |  | 36.08 | 7.16   | 36.08 | 10.10 | 36.08 | 7.16   | 36.08 | 0.00  | 36.08 | 8.37 |
| 36.17 | 4.77 | 36.17 | 5.92 |  | 36.17 | 7.19   | 36.17 | 10.10 | 36.17 | 7.19   | 36.17 | 0.01  | 36.17 | 8.37 |
| 36.25 | 4.77 | 36.25 | 5.92 |  | 36.25 | 7.22   | 36.25 | 10.10 | 36.25 | 7.22   | 36.25 | 0.00  | 36.25 | 8.38 |
| 36.33 | 4.77 | 36.33 | 5.92 |  | 36.33 | 7.24   | 36.33 | 10.10 | 36.33 | 7.24   | 36.33 | 0.00  | 36.33 | 8.38 |
| 36.42 | 4.77 | 36.42 | 5.92 |  | 36.42 | 7.25   | 36.42 | 10.11 | 36.42 | 7.25   | 36.42 | 0.00  | 36.42 | 8.38 |
| 36.50 | 4.77 | 36.50 | 5.92 |  | 36.50 | 7.27   | 36.50 | 10.11 | 36.50 | 7.27   | 36.50 | 0.00  | 36.50 | 8.38 |
| 36.58 | 4.78 | 36.58 | 5.92 |  | 36.58 | 7.28   | 36.58 | 10.11 | 36.58 | 7.28   | 36.58 | 0.01  | 36.58 | 8.38 |
| 36.67 | 4.78 | 36.67 | 5.92 |  | 36.67 | 7.29   | 36.67 | 10.10 | 36.67 | 7.29   | 36.67 | 0.01  | 36.67 | 8.38 |
| 36.75 | 4.78 | 36.75 | 5.92 |  | 36.75 | 7.30   | 36.75 | 10.10 | 36.75 | 7.30   | 36.75 | 0.01  | 36.75 | 8.38 |
| 36.83 | 4.78 | 36.83 | 5.92 |  | 36.83 | 7.30   | 36.83 | 10.10 | 36.83 | 7.30   | 36.83 | -0.01 | 36.83 | 8.38 |
| 36.92 | 4.79 | 36.92 | 5.92 |  | 36.92 | 7.31   | 36.92 | 10.10 | 36.92 | 7.31   | 36.92 | -0.01 | 36.92 | 8.38 |
| 37.00 | 4.79 | 37.00 | 5.93 |  | 37.00 | 7.31   | 37.00 | 10.10 | 37.00 | 7.31   | 37.00 | -0.01 | 37.00 | 8.38 |

| 37.08 | 4.79 | 37.08 | 5.92 |  | 37.08 | 6.65   | 37.08 | 10.11 | 37.08 | 6.65   | 37.08 | -0.08 | 37.08 | 8.37 |
|-------|------|-------|------|--|-------|--------|-------|-------|-------|--------|-------|-------|-------|------|
| 37.17 | 4.78 | 37.17 | 6.09 |  | 37.17 | -15.43 | 37.17 | 10.01 | 37.17 | -15.43 | 37.17 | -0.52 | 37.17 | 7.88 |
| 37.25 | 4.82 | 37.25 | 7.11 |  | 37.25 | -24.69 | 37.25 | 8.93  | 37.25 | -24.69 | 37.25 | 0.51  | 37.25 | 7.79 |
| 37.33 | 4.91 | 37.33 | 6.22 |  | 37.33 | -10.43 | 37.33 | 9.51  | 37.33 | -10.43 | 37.33 | 0.24  | 37.33 | 8.57 |
| 37.42 | 4.88 | 37.42 | 5.78 |  | 37.42 | 3.27   | 37.42 | 9.95  | 37.42 | 3.27   | 37.42 | 0.08  | 37.42 | 8.60 |
| 37.50 | 4.85 | 37.50 | 5.88 |  | 37.50 | 8.15   | 37.50 | 10.13 | 37.50 | 8.15   | 37.50 | 0.07  | 37.50 | 8.48 |
| 37.58 | 4.83 | 37.58 | 5.97 |  | 37.58 | 7.15   | 37.58 | 10.15 | 37.58 | 7.15   | 37.58 | 0.05  | 37.58 | 8.40 |
| 37.67 | 4.82 | 37.67 | 5.96 |  | 37.67 | 6.77   | 37.67 | 10.11 | 37.67 | 6.77   | 37.67 | 0.03  | 37.67 | 8.39 |
| 37.75 | 4.81 | 37.75 | 5.95 |  | 37.75 | 6.92   | 37.75 | 10.12 | 37.75 | 6.92   | 37.75 | 0.02  | 37.75 | 8.38 |
| 37.83 | 4.81 | 37.83 | 5.93 |  | 37.83 | 7.02   | 37.83 | 10.12 | 37.83 | 7.02   | 37.83 | 0.00  | 37.83 | 8.38 |
| 37.92 | 4.81 | 37.92 | 5.95 |  | 37.92 | 7.08   | 37.92 | 10.12 | 37.92 | 7.08   | 37.92 | -0.01 | 37.92 | 8.38 |
| 38.00 | 4.81 | 38.00 | 5.95 |  | 38.00 | 7.13   | 38.00 | 10.10 | 38.00 | 7.13   | 38.00 | 0.00  | 38.00 | 8.37 |
| 38.08 | 4.81 | 38.08 | 5.93 |  | 38.08 | 7.17   | 38.08 | 10.10 | 38.08 | 7.17   | 38.08 | 0.00  | 38.08 | 8.37 |
| 38.17 | 4.81 | 38.17 | 5.92 |  | 38.17 | 7.20   | 38.17 | 10.11 | 38.17 | 7.20   | 38.17 | 0.00  | 38.17 | 8.38 |
| 38.25 | 4.81 | 38.25 | 5.93 |  | 38.25 | 7.23   | 38.25 | 10.11 | 38.25 | 7.23   | 38.25 | 0.00  | 38.25 | 8.38 |
| 38.33 | 4.81 | 38.33 | 5.95 |  | 38.33 | 7.25   | 38.33 | 10.11 | 38.33 | 7.25   | 38.33 | 0.00  | 38.33 | 8.38 |
| 38.42 | 4.81 | 38.42 | 5.94 |  | 38.42 | 7.26   | 38.42 | 10.11 | 38.42 | 7.26   | 38.42 | -0.01 | 38.42 | 8.38 |
| 38.50 | 4.81 | 38.50 | 5.93 |  | 38.50 | 7.27   | 38.50 | 10.11 | 38.50 | 7.27   | 38.50 | -0.01 | 38.50 | 8.38 |
| 38.58 | 4.81 | 38.58 | 5.95 |  | 38.58 | 7.28   | 38.58 | 10.10 | 38.58 | 7.28   | 38.58 | 0.00  | 38.58 | 8.38 |
| 38.67 | 4.81 | 38.67 | 5.96 |  | 38.67 | 7.29   | 38.67 | 10.10 | 38.67 | 7.29   | 38.67 | 0.00  | 38.67 | 8.37 |
| 38.75 | 4.82 | 38.75 | 5.96 |  | 38.75 | 7.30   | 38.75 | 10.10 | 38.75 | 7.30   | 38.75 | 0.00  | 38.75 | 8.38 |
| 38.83 | 4.82 | 38.83 | 5.96 |  | 38.83 | 7.30   | 38.83 | 10.10 | 38.83 | 7.30   | 38.83 | 0.00  | 38.83 | 8.38 |
| 38.92 | 4.82 | 38.92 | 5.96 |  | 38.92 | 7.30   | 38.92 | 10.10 | 38.92 | 7.30   | 38.92 | 0.01  | 38.92 | 8.38 |
| 39.00 | 4.82 | 39.00 | 5.94 |  | 39.00 | 7.30   | 39.00 | 10.10 | 39.00 | 7.30   | 39.00 | 0.01  | 39.00 | 8.38 |
| 39.08 | 4.82 | 39.08 | 5.93 |  | 39.08 | 6.15   | 39.08 | 10.10 | 39.08 | 6.15   | 39.08 | -0.06 | 39.08 | 8.37 |
| 39.08 | 4.82 | 39.17 | 6.13 |  | 39.17 | -17.38 | 39.17 | 10.00 | 39.17 | -17.38 | 39.17 | -0.49 | 39.17 | 7.90 |
| 39.08 | 4.82 | 39.25 | 7.23 |  | 39.25 | -23.32 | 39.25 | 8.97  | 39.25 | -23.32 | 39.25 | 0.50  | 39.25 | 7.83 |
| 39.08 | 4.82 | 39.33 | 6.26 |  | 39.33 | -8.40  | 39.33 | 9.55  | 39.33 | -8.40  | 39.33 | 0.21  | 39.33 | 8.55 |
| 39.08 | 4.82 | 39.42 | 5.75 |  | 39.42 | 4.61   | 39.42 | 9.94  | 39.42 | 4.61   | 39.42 | 0.05  | 39.42 | 8.58 |
| 39.08 | 4.82 | 39.50 | 5.89 |  | 39.50 | 8.30   | 39.50 | 10.11 | 39.50 | 8.30   | 39.50 | 0.03  | 39.50 | 8.46 |
| 39.08 | 4.82 | 39.58 | 6.02 |  | 39.58 | 7.09   | 39.58 | 10.14 | 39.58 | 7.09   | 39.58 | 0.02  | 39.58 | 8.40 |
| 39.08 | 4.82 | 39.67 | 6.01 |  | 39.67 | 6.80   | 39.67 | 10.11 | 39.67 | 6.80   | 39.67 | 0.02  | 39.67 | 8.38 |

| 39.08 | 4.82 | 39.75 | 5.95 |  | 39.75 | 6.95 | 39.75 | 10.12 | 39.75 | 6.95 | 39.75 | 0.01  | 39.75 | 8.38 |
|-------|------|-------|------|--|-------|------|-------|-------|-------|------|-------|-------|-------|------|
| 39.08 | 4.82 | 39.83 | 5.94 |  | 39.83 | 7.04 | 39.83 | 10.13 | 39.83 | 7.04 | 39.83 | 0.01  | 39.83 | 8.38 |
| 39.08 | 4.82 | 39.92 | 5.96 |  | 39.92 | 7.07 | 39.92 | 10.11 | 39.92 | 7.07 | 39.92 | 0.01  | 39.92 | 8.38 |
| 39.08 | 4.82 | 40.00 | 5.99 |  | 40.00 | 7.10 | 40.00 | 10.10 | 40.00 | 7.10 | 40.00 | 0.01  | 40.00 | 8.37 |
| 39.08 | 4.82 | 40.08 | 5.95 |  | 40.08 | 7.14 | 40.08 | 10.10 | 40.08 | 7.14 | 40.08 | 0.00  | 40.08 | 8.37 |
| 39.08 | 4.82 | 40.17 | 5.93 |  | 40.17 | 7.19 | 40.17 | 10.10 | 40.17 | 7.19 | 40.17 | 0.00  | 40.17 | 8.38 |
| 39.08 | 4.82 | 40.25 | 5.95 |  | 40.25 | 7.22 | 40.25 | 10.10 | 40.25 | 7.22 | 40.25 | 0.00  | 40.25 | 8.38 |
| 39.08 | 4.82 | 40.33 | 5.96 |  | 40.33 | 7.24 | 40.33 | 10.11 | 40.33 | 7.24 | 40.33 | -0.01 | 40.33 | 8.38 |
| 39.08 | 4.82 | 40.42 | 5.99 |  | 40.42 | 7.26 | 40.42 | 10.10 | 40.42 | 7.26 | 40.42 | 0.00  | 40.42 | 8.38 |
| 39.08 | 4.82 | 40.50 | 5.96 |  | 40.50 | 7.28 | 40.50 | 10.10 | 40.50 | 7.28 | 40.50 | 0.00  | 40.50 | 8.38 |
| 39.08 | 4.82 | 40.58 | 5.95 |  | 40.58 | 7.28 | 40.58 | 10.10 | 40.58 | 7.28 | 40.58 | 0.00  | 40.58 | 8.38 |
| 39.08 | 4.82 | 40.67 | 5.96 |  | 40.67 | 7.29 | 40.67 | 10.10 | 40.67 | 7.29 | 40.67 | 0.00  | 40.67 | 8.38 |
| 39.08 | 4.82 | 40.75 | 5.96 |  | 40.75 | 7.29 | 40.75 | 10.10 | 40.75 | 7.29 | 40.75 | 0.00  | 40.75 | 8.38 |
| 39.08 | 4.82 | 40.83 | 5.96 |  | 40.83 | 7.30 | 40.83 | 10.10 | 40.83 | 7.30 | 40.83 | 0.00  | 40.83 | 8.38 |
| 39.08 | 4.82 | 40.92 | 5.96 |  | 40.92 | 7.29 | 40.92 | 10.10 | 40.92 | 7.29 | 40.92 | 0.00  | 40.92 | 8.37 |
| 39.08 | 4.82 | 41.00 | 5.96 |  | 41.00 | 7.30 | 41.00 | 10.10 | 41.00 | 7.30 | 41.00 | 0.00  | 41.00 | 8.37 |
|       |      |       |      |  |       |      | 41.08 | 10.10 |       |      |       |       |       |      |

### 5.4. Absorbance of BM in presence and absence of different concentration of individual surfactant at 298.15 K [[concentration of BM = $10 \mu$ M]

| wavelength/nm | Absorption inte   | nsity vs. waveleng<br>BM cone | h (nm) for differer<br>centration is fixed | nt concentration of<br>in 10 μM | each surfactant.  |
|---------------|-------------------|-------------------------------|--------------------------------------------|---------------------------------|-------------------|
| U             | free BM<br>(0 mM) | NaC<br>(16.27 mM)             | NaDC<br>(4.08 mM)                          | SDDS<br>(6.70 mM)               | SDBS<br>(0.39 mM) |
| 500           | 0.005             | 0.043                         | 0.024                                      | 0.093                           | 0.078             |
| 499           | 0.005             | 0.043                         | 0.024                                      | 0.093                           | 0.078             |
| 498           | 0.005             | 0.043                         | 0.024                                      | 0.093                           | 0.078             |
| 497           | 0.005             | 0.043                         | 0.024                                      | 0.093                           | 0.079             |
| 496           | 0.005             | 0.043                         | 0.024                                      | 0.093                           | 0.079             |
| 495           | 0.005             | 0.044                         | 0.025                                      | 0.093                           | 0.080             |
| 494           | 0.005             | 0.044                         | 0.025                                      | 0.094                           | 0.080             |
| 493           | 0.006             | 0.044                         | 0.025                                      | 0.094                           | 0.080             |
| 492           | 0.006             | 0.044                         | 0.025                                      | 0.094                           | 0.080             |
| 491           | 0.006             | 0.044                         | 0.025                                      | 0.094                           | 0.081             |
| 490           | 0.006             | 0.044                         | 0.025                                      | 0.094                           | 0.081             |
| 489           | 0.006             | 0.044                         | 0.025                                      | 0.094                           | 0.081             |
| 488           | 0.006             | 0.044                         | 0.025                                      | 0.095                           | 0.082             |
| 487           | 0.006             | 0.044                         | 0.026                                      | 0.095                           | 0.082             |
| 486           | 0.006             | 0.045                         | 0.026                                      | 0.095                           | 0.082             |
| 485           | 0.006             | 0.045                         | 0.026                                      | 0.095                           | 0.083             |
| 484           | 0.006             | 0.045                         | 0.026                                      | 0.095                           | 0.083             |
| 483           | 0.006             | 0.045                         | 0.026                                      | 0.096                           | 0.084             |
| 482           | 0.006             | 0.045                         | 0.026                                      | 0.096                           | 0.084             |
| 481           | 0.006             | 0.045                         | 0.026                                      | 0.096                           | 0.084             |
| 480           | 0.006             | 0.046                         | 0.027                                      | 0.096                           | 0.085             |
| 479           | 0.006             | 0.046                         | 0.027                                      | 0.097                           | 0.085             |
| 478           | 0.006             | 0.046                         | 0.027                                      | 0.097                           | 0.085             |
| 477           | 0.006             | 0.046                         | 0.027                                      | 0.097                           | 0.086             |
| 476           | 0.006             | 0.046                         | 0.027                                      | 0.097                           | 0.086             |
| 475           | 0.006             | 0.046                         | 0.027                                      | 0.097                           | 0.086             |
| 474           | 0.006             | 0.047                         | 0.027                                      | 0.097                           | 0.087             |
| 473           | 0.006             | 0.047                         | 0.028                                      | 0.098                           | 0.087             |
| 472           | 0.006             | 0.047                         | 0.028                                      | 0.098                           | 0.088             |
| 471           | 0.006             | 0.047                         | 0.028                                      | 0.098                           | 0.088             |
| 470           | 0.006             | 0.047                         | 0.028                                      | 0.098                           | 0.088             |
| 469           | 0.006             | 0.047                         | 0.028                                      | 0.098                           | 0.089             |
| 468           | 0.006             | 0.047                         | 0.028                                      | 0.099                           | 0.089             |
| 467           | 0.006             | 0.048                         | 0.029                                      | 0.099                           | 0.090             |
| 466           | 0.006             | 0.048                         | 0.029                                      | 0.099                           | 0.090             |
| 465           | 0.006             | 0.048                         | 0.029                                      | 0.099                           | 0.090             |
| 464           | 0.006             | 0.048                         | 0.029                                      | 0.099                           | 0.091             |
| 463           | 0.006             | 0.048                         | 0.029                                      | 0.100                           | 0.091             |
| 462           | 0.006             | 0.048                         | 0.029                                      | 0.100                           | 0.091             |
| 461           | 0.006             | 0.049                         | 0.029                                      | 0.100                           | 0.092             |
| 460           | 0.006             | 0.049                         | 0.030                                      | 0.100                           | 0.092             |
| 459           | 0.006             | 0.049                         | 0.030                                      | 0.101                           | 0.093             |

| 458 | 0.006 | 0.049 | 0.030 | 0.101 | 0.093 |
|-----|-------|-------|-------|-------|-------|
| 457 | 0.006 | 0.049 | 0.030 | 0.101 | 0.094 |
| 456 | 0.006 | 0.050 | 0.030 | 0.101 | 0.094 |
| 455 | 0.006 | 0.050 | 0.031 | 0.101 | 0.094 |
| 454 | 0.007 | 0.050 | 0.031 | 0.102 | 0.095 |
| 453 | 0.007 | 0.050 | 0.031 | 0.102 | 0.095 |
| 452 | 0.007 | 0.050 | 0.031 | 0.102 | 0.096 |
| 451 | 0.007 | 0.051 | 0.031 | 0.102 | 0.096 |
| 450 | 0.007 | 0.051 | 0.031 | 0.102 | 0.096 |
| 449 | 0.007 | 0.051 | 0.032 | 0.103 | 0.097 |
| 448 | 0.007 | 0.051 | 0.032 | 0.103 | 0.097 |
| 447 | 0.007 | 0.052 | 0.032 | 0.103 | 0.098 |
| 446 | 0.007 | 0.052 | 0.032 | 0.104 | 0.098 |
| 445 | 0.007 | 0.052 | 0.032 | 0.104 | 0.099 |
| 444 | 0.007 | 0.052 | 0.033 | 0.104 | 0.099 |
| 443 | 0.007 | 0.052 | 0.033 | 0.105 | 0.100 |
| 442 | 0.007 | 0.053 | 0.033 | 0.105 | 0.100 |
| 441 | 0.007 | 0.053 | 0.033 | 0.105 | 0.101 |
| 440 | 0.007 | 0.053 | 0.034 | 0.106 | 0.101 |
| 439 | 0.007 | 0.053 | 0.034 | 0.106 | 0.102 |
| 438 | 0.007 | 0.054 | 0.034 | 0.106 | 0.102 |
| 437 | 0.007 | 0.054 | 0.034 | 0.106 | 0.102 |
| 436 | 0.007 | 0.054 | 0.035 | 0.107 | 0.103 |
| 435 | 0.007 | 0.055 | 0.035 | 0.107 | 0.103 |
| 434 | 0.007 | 0.055 | 0.035 | 0.108 | 0.104 |
| 433 | 0.007 | 0.055 | 0.035 | 0.108 | 0.105 |
| 432 | 0.007 | 0.056 | 0.035 | 0.108 | 0.105 |
| 431 | 0.008 | 0.056 | 0.036 | 0.109 | 0.106 |
| 430 | 0.008 | 0.057 | 0.036 | 0.109 | 0.100 |
| 429 | 0.008 | 0.057 | 0.030 | 0.109 | 0.107 |
| 423 | 0.008 | 0.057 | 0.037 | 0.110 | 0.107 |
| 426 | 0.008 | 0.058 | 0.037 | 0.110 | 0.108 |
| 425 | 0.008 | 0.058 | 0.038 | 0.111 | 0.109 |
| 424 | 0.008 | 0.058 | 0.038 | 0.111 | 0.109 |
| 423 | 0.008 | 0.059 | 0.038 | 0.112 | 0.110 |
| 422 | 0.008 | 0.059 | 0.038 | 0.112 | 0.111 |
| 421 | 0.008 | 0.059 | 0.039 | 0.112 | 0.111 |
| 420 | 0.008 | 0.060 | 0.039 | 0.113 | 0.112 |
| 419 | 0.008 | 0.060 | 0.039 | 0.113 | 0.113 |
| 418 | 0.008 | 0.061 | 0.040 | 0.114 | 0.113 |
| 417 | 0.009 | 0.061 | 0.040 | 0.114 | 0.114 |
| 416 | 0.009 | 0.061 | 0.040 | 0.114 | 0.115 |
| 415 | 0.009 | 0.062 | 0.041 | 0.115 | 0.115 |
| 414 | 0.009 | 0.062 | 0.041 | 0.115 | 0.116 |
| 413 | 0.009 | 0.062 | 0.041 | 0.116 | 0.117 |
| 412 | 0.009 | 0.063 | 0.042 | 0.116 | 0.117 |
| 411 | 0.009 | 0.063 | 0.042 | 0.117 | 0.118 |
| 410 | 0.009 | 0.064 | 0.042 | 0.117 | 0.119 |

| 409 | 0.009 | 0.064 | 0.043 | 0.118 | 0.119 |
|-----|-------|-------|-------|-------|-------|
| 408 | 0.009 | 0.065 | 0.043 | 0.118 | 0.120 |
| 407 | 0.009 | 0.065 | 0.043 | 0.119 | 0.121 |
| 406 | 0.010 | 0.066 | 0.044 | 0.119 | 0.122 |
| 405 | 0.010 | 0.066 | 0.044 | 0.120 | 0.122 |
| 404 | 0.010 | 0.067 | 0.045 | 0.120 | 0.123 |
| 403 | 0.010 | 0.067 | 0.045 | 0.121 | 0.124 |
| 402 | 0.010 | 0.068 | 0.045 | 0.121 | 0.125 |
| 401 | 0.010 | 0.068 | 0.046 | 0.122 | 0.126 |
| 400 | 0.010 | 0.069 | 0.046 | 0.122 | 0.126 |
| 399 | 0.010 | 0.069 | 0.046 | 0.123 | 0.127 |
| 398 | 0.011 | 0.070 | 0.047 | 0.123 | 0.128 |
| 397 | 0.011 | 0.070 | 0.047 | 0.124 | 0.129 |
| 396 | 0.011 | 0.070 | 0.048 | 0.124 | 0.130 |
| 395 | 0.011 | 0.071 | 0.048 | 0.125 | 0.131 |
| 394 | 0.011 | 0.072 | 0.049 | 0.125 | 0.131 |
| 393 | 0.011 | 0.072 | 0.049 | 0.126 | 0.132 |
| 392 | 0.011 | 0.073 | 0.049 | 0.126 | 0.133 |
| 391 | 0.011 | 0.073 | 0.050 | 0.127 | 0.134 |
| 390 | 0.012 | 0.074 | 0.050 | 0.128 | 0.135 |
| 389 | 0.012 | 0.074 | 0.051 | 0.128 | 0.136 |
| 388 | 0.012 | 0.075 | 0.051 | 0.129 | 0.137 |
| 387 | 0.012 | 0.075 | 0.052 | 0.129 | 0.138 |
| 386 | 0.012 | 0.076 | 0.052 | 0.130 | 0.139 |
| 385 | 0.012 | 0.077 | 0.053 | 0.130 | 0.140 |
| 384 | 0.013 | 0.077 | 0.053 | 0.131 | 0.141 |
| 383 | 0.013 | 0.078 | 0.054 | 0.132 | 0.142 |
| 382 | 0.013 | 0.078 | 0.054 | 0.132 | 0.143 |
| 381 | 0.013 | 0.079 | 0.054 | 0.133 | 0.144 |
| 380 | 0.013 | 0.079 | 0.055 | 0.133 | 0.145 |
| 379 | 0.012 | 0.077 | 0.052 | 0.133 | 0.143 |
| 378 | 0.011 | 0.075 | 0.049 | 0.131 | 0.141 |
| 311 | 0.010 | 0.074 | 0.048 | 0.131 | 0.140 |
| 275 | 0.011 | 0.075 | 0.048 | 0.132 | 0.142 |
| 375 | 0.011 | 0.070 | 0.049 | 0.133 | 0.143 |
| 373 | 0.011 | 0.077 | 0.049 | 0.134 | 0.145 |
| 373 | 0.012 | 0.077 | 0.050 | 0.135 | 0.143 |
| 371 | 0.012 | 0.079 | 0.052 | 0.130 | 0.148 |
| 370 | 0.012 | 0.080 | 0.053 | 0.137 | 0.149 |
| 369 | 0.013 | 0.081 | 0.053 | 0.138 | 0.151 |
| 368 | 0.013 | 0.082 | 0.054 | 0.140 | 0.152 |
| 367 | 0.014 | 0.083 | 0.055 | 0.141 | 0.154 |
| 366 | 0.014 | 0.084 | 0.056 | 0.142 | 0.155 |
| 365 | 0.015 | 0.086 | 0.057 | 0.143 | 0.157 |
| 364 | 0.016 | 0.087 | 0.058 | 0.144 | 0.159 |
| 363 | 0.016 | 0.088 | 0.059 | 0.146 | 0.161 |
| 362 | 0.017 | 0.090 | 0.060 | 0.147 | 0.162 |
| 361 | 0.018 | 0.091 | 0.062 | 0.149 | 0.164 |

| 360 | 0.019 | 0.093 | 0.063 | 0.150 | 0.167 |
|-----|-------|-------|-------|-------|-------|
| 359 | 0.020 | 0.094 | 0.064 | 0.152 | 0.169 |
| 358 | 0.021 | 0.096 | 0.066 | 0.154 | 0.171 |
| 357 | 0.021 | 0.098 | 0.068 | 0.156 | 0.173 |
| 356 | 0.023 | 0.099 | 0.069 | 0.158 | 0.176 |
| 355 | 0.024 | 0.102 | 0.071 | 0.160 | 0.179 |
| 354 | 0.025 | 0.104 | 0.073 | 0.162 | 0.181 |
| 353 | 0.026 | 0.106 | 0.075 | 0.164 | 0.184 |
| 352 | 0.027 | 0.108 | 0.076 | 0.166 | 0.186 |
| 351 | 0.029 | 0.110 | 0.078 | 0.168 | 0.189 |
| 350 | 0.030 | 0.112 | 0.080 | 0.170 | 0.192 |
| 349 | 0.032 | 0.115 | 0.083 | 0.173 | 0.195 |
| 348 | 0.033 | 0.117 | 0.085 | 0.175 | 0.198 |
| 347 | 0.035 | 0.120 | 0.087 | 0.178 | 0.202 |
| 346 | 0.036 | 0.122 | 0.089 | 0.180 | 0.205 |
| 345 | 0.038 | 0.125 | 0.091 | 0.183 | 0.208 |
| 344 | 0.040 | 0.127 | 0.093 | 0.185 | 0.212 |
| 343 | 0.041 | 0.130 | 0.096 | 0.188 | 0.215 |
| 342 | 0.043 | 0.133 | 0.098 | 0.191 | 0.219 |
| 341 | 0.045 | 0.135 | 0.100 | 0.194 | 0.223 |
| 340 | 0.047 | 0.139 | 0.104 | 0.197 | 0.228 |
| 339 | 0.050 | 0.144 | 0.109 | 0.201 | 0.235 |
| 338 | 0.052 | 0.150 | 0.116 | 0.206 | 0.243 |
| 337 | 0.054 | 0.154 | 0.119 | 0.210 | 0.249 |
| 336 | 0.056 | 0.157 | 0.122 | 0.213 | 0.253 |
| 335 | 0.057 | 0.160 | 0.124 | 0.215 | 0.257 |
| 334 | 0.059 | 0.162 | 0.126 | 0.218 | 0.260 |
| 333 | 0.060 | 0.164 | 0.128 | 0.220 | 0.264 |
| 332 | 0.062 | 0.167 | 0.130 | 0.222 | 0.268 |
| 331 | 0.063 | 0.169 | 0.132 | 0.225 | 0.272 |
| 330 | 0.064 | 0.172 | 0.134 | 0.227 | 0.276 |
| 329 | 0.065 | 0.174 | 0.136 | 0.229 | 0.279 |
| 328 | 0.066 | 0.176 | 0.138 | 0.231 | 0.282 |
| 327 | 0.067 | 0.178 | 0.140 | 0.232 | 0.285 |
| 326 | 0.068 | 0.180 | 0.141 | 0.234 | 0.288 |
| 325 | 0.068 | 0.182 | 0.143 | 0.236 | 0.291 |
| 324 | 0.069 | 0.184 | 0.144 | 0.238 | 0.294 |
| 323 | 0.070 | 0.186 | 0.146 | 0.240 | 0.297 |
| 322 | 0.070 | 0.188 | 0.147 | 0.241 | 0.301 |
| 321 | 0.070 | 0.190 | 0.148 | 0.242 | 0.303 |
| 320 | 0.071 | 0.191 | 0.150 | 0.244 | 0.306 |
| 319 | 0.071 | 0.193 | 0.151 | 0.245 | 0.310 |
| 318 | 0.071 | 0.195 | 0.152 | 0.246 | 0.313 |
| 317 | 0.071 | 0.196 | 0.153 | 0.247 | 0.316 |
| 316 | 0.071 | 0.198 | 0.154 | 0.249 | 0.318 |
| 315 | 0.071 | 0.199 | 0.155 | 0.250 | 0.321 |
| 314 | 0.071 | 0.201 | 0.157 | 0.251 | 0.324 |
| 313 | 0.071 | 0.202 | 0.158 | 0.252 | 0.327 |
| 312 | 0.071 | 0.204 | 0.159 | 0.253 | 0.330 |

| 311 | 0.072 | 0.206 | 0.160 | 0.255 | 0.333 |
|-----|-------|-------|-------|-------|-------|
| 310 | 0.072 | 0.208 | 0.161 | 0.256 | 0.337 |
| 309 | 0.072 | 0.210 | 0.162 | 0.258 | 0.340 |
| 308 | 0.072 | 0.212 | 0.164 | 0.259 | 0.344 |
| 307 | 0.072 | 0.214 | 0.165 | 0.261 | 0.348 |
| 306 | 0.073 | 0.217 | 0.167 | 0.263 | 0.353 |
| 305 | 0.073 | 0.220 | 0.170 | 0.266 | 0.359 |
| 304 | 0.074 | 0.223 | 0.172 | 0.268 | 0.364 |
| 303 | 0.075 | 0.227 | 0.174 | 0.271 | 0.370 |
| 302 | 0.077 | 0.232 | 0.178 | 0.275 | 0.378 |
| 301 | 0.078 | 0.237 | 0.182 | 0.280 | 0.385 |
| 300 | 0.080 | 0.241 | 0.186 | 0.284 | 0.393 |
| 299 | 0.082 | 0.247 | 0.190 | 0.289 | 0.402 |
| 298 | 0.084 | 0.253 | 0.195 | 0.295 | 0.412 |
| 297 | 0.087 | 0.261 | 0.201 | 0.301 | 0.423 |
| 296 | 0.090 | 0.269 | 0.207 | 0.308 | 0.434 |
| 295 | 0.093 | 0.277 | 0.214 | 0.316 | 0.445 |
| 294 | 0.097 | 0.287 | 0.222 | 0.325 | 0.458 |
| 293 | 0.102 | 0.298 | 0.231 | 0.337 | 0.472 |
| 292 | 0.108 | 0.312 | 0.242 | 0.349 | 0.486 |
| 291 | 0.113 | 0.324 | 0.253 | 0.361 | 0.499 |
| 290 | 0.119 | 0.336 | 0.263 | 0.372 | 0.510 |
| 289 | 0.123 | 0.346 | 0.272 | 0.382 | 0.520 |
| 288 | 0.126 | 0.355 | 0.280 | 0.390 | 0.529 |
| 287 | 0.130 | 0.365 | 0.287 | 0.399 | 0.538 |
| 286 | 0.134 | 0.375 | 0.296 | 0.409 | 0.548 |
| 285 | 0.138 | 0.387 | 0.306 | 0.420 | 0.560 |
| 284 | 0.143 | 0.399 | 0.316 | 0.431 | 0.570 |
| 283 | 0.146 | 0.408 | 0.324 | 0.439 | 0.577 |
| 282 | 0.149 | 0.414 | 0.329 | 0.445 | 0.581 |
| 281 | 0.149 | 0.418 | 0.331 | 0.448 | 0.583 |
| 280 | 0.150 | 0.420 | 0.333 | 0.450 | 0.584 |
| 279 | 0.149 | 0.422 | 0.333 | 0.451 | 0.584 |
| 278 | 0.149 | 0.422 | 0.334 | 0.452 | 0.584 |
| 277 | 0.147 | 0.422 | 0.333 | 0.451 | 0.586 |
| 276 | 0.146 | 0.421 | 0.332 | 0.450 | 0.589 |
| 275 | 0.144 | 0.419 | 0.330 | 0.448 | 0.596 |
| 274 | 0.142 | 0.416 | 0.328 | 0.445 | 0.604 |
| 273 | 0.139 | 0.413 | 0.325 | 0.442 | 0.613 |
| 272 | 0.136 | 0.408 | 0.321 | 0.438 | 0.623 |
| 271 | 0.133 | 0.403 | 0.316 | 0.433 | 0.630 |
| 270 | 0.130 | 0.398 | 0.312 | 0.428 | 0.635 |
| 269 | 0.127 | 0.393 | 0.307 | 0.423 | 0.645 |
| 268 | 0.123 | 0.388 | 0.302 | 0.418 | 0.665 |
| 267 | 0.120 | 0.383 | 0.297 | 0.413 | 0.688 |
| 266 | 0.116 | 0.378 | 0.293 | 0.407 | 0.710 |
| 265 | 0.113 | 0.373 | 0.288 | 0.403 | 0.735 |
| 264 | 0.110 | 0.368 | 0.284 | 0.398 | 0.767 |
| 263 | 0.107 | 0.363 | 0.280 | 0.393 | 0.809 |

| 262 | 0.104 | 0.358 | 0.276 | 0.389 | 0.859 |
|-----|-------|-------|-------|-------|-------|
| 261 | 0.101 | 0.354 | 0.272 | 0.385 | 0.910 |
| 260 | 0.099 | 0.351 | 0.269 | 0.382 | 0.961 |
| 259 | 0.097 | 0.348 | 0.267 | 0.380 | 1.012 |
| 258 | 0.095 | 0.345 | 0.265 | 0.377 | 1.064 |
| 257 | 0.094 | 0.343 | 0.263 | 0.376 | 1.115 |
| 256 | 0.092 | 0.341 | 0.262 | 0.375 | 1.169 |
| 255 | 0.092 | 0.341 | 0.261 | 0.375 | 1.226 |
| 254 | 0.091 | 0.341 | 0.261 | 0.375 | 1.281 |
| 253 | 0.091 | 0.342 | 0.262 | 0.378 | 1.326 |
| 252 | 0.091 | 0.343 | 0.263 | 0.381 | 1.365 |
| 251 | 0.092 | 0.345 | 0.265 | 0.385 | 1.402 |
| 250 | 0.093 | 0.349 | 0.268 | 0.392 | 1.438 |
| 249 | 0.094 | 0.353 | 0.272 | 0.401 | 1.469 |
| 248 | 0.096 | 0.358 | 0.276 | 0.413 | 1.497 |
| 247 | 0.099 | 0.365 | 0.282 | 0.428 | 1.524 |
| 246 | 0.102 | 0.375 | 0.290 | 0.451 | 1.549 |
| 245 | 0.107 | 0.387 | 0.300 | 0.481 | 1.573 |
| 244 | 0.112 | 0.401 | 0.311 | 0.520 | 1.598 |
| 243 | 0.119 | 0.418 | 0.326 | 0.568 | 1.626 |
| 242 | 0.128 | 0.442 | 0.345 | 0.629 | 1.663 |
| 241 | 0.140 | 0.470 | 0.369 | 0.712 | 1.708 |
| 240 | 0.153 | 0.503 | 0.397 | 0.817 | 1.757 |
| 239 | 0.171 | 0.543 | 0.431 | 0.941 | 1.816 |
| 238 | 0.194 | 0.594 | 0.474 | 1.091 | 1.898 |
| 237 | 0.222 | 0.657 | 0.526 | 1.286 | 2.009 |
| 236 | 0.252 | 0.726 | 0.584 | 1.527 | 2.148 |
| 235 | 0.288 | 0.805 | 0.651 | 1.797 | 2.323 |
| 234 | 0.332 | 0.901 | 0.733 | 2.092 | 2.540 |
| 233 | 0.379 | 1.008 | 0.826 | 2.427 | 2.773 |
| 232 | 0.426 | 1.115 | 0.925 | 2.760 | 2.947 |
| 231 | 0.475 | 1.226 | 1.020 | 2.986 | 3.029 |
| 230 | 0.527 | 1.346 | 1.112 | 3.091 | 3.072 |
| 229 | 0.578 | 1.468 | 1.209 | 3.123 | 3.108 |
| 228 | 0.624 | 1.583 | 1.303 | 3.129 | 3.127 |
| 227 | 0.664 | 1.684 | 1.386 | 3.130 | 3.118 |
| 226 | 0.700 | 1.778 | 1.462 | 3.128 | 3.109 |
| 225 | 0.736 | 1.873 | 1.537 | 3.130 | 3.111 |
| 224 | 0.768 | 1.965 | 1.609 | 3.137 | 3.113 |
| 223 | 0.794 | 2.045 | 1.674 | 3.143 | 3.114 |
| 222 | 0.818 | 2.122 | 1.731 | 3.144 | 3.117 |
| 221 | 0.844 | 2.205 | 1.787 | 3.140 | 3.119 |
| 220 | 0.870 | 2.290 | 1.849 | 3.140 | 3.110 |
| 219 | 0.895 | 2.371 | 1.914 | 3.144 | 3.095 |
| 218 | 0.922 | 2.452 | 1.978 | 3.142 | 3.088 |
| 217 | 0.952 | 2.540 | 2.045 | 3.129 | 3.080 |
| 216 | 0.987 | 2.634 | 2.125 | 3.118 | 3.066 |
| 215 | 1.022 | 2.716 | 2.214 | 3.108 | 3.059 |
| 214 | 1.063 | 2.784 | 2.303 | 3.094 | 3.051 |

| 213 | 1.113 | 2.846 | 2.389 | 3.089 | 3.024 |
|-----|-------|-------|-------|-------|-------|
| 212 | 1.171 | 2.888 | 2.478 | 3.074 | 3.000 |
| 211 | 1.236 | 2.896 | 2.567 | 3.037 | 2.977 |
| 210 | 1.307 | 2.880 | 2.637 | 3.001 | 2.935 |
| 209 | 1.383 | 2.852 | 2.668 | 2.965 | 2.885 |
| 208 | 1.467 | 2.806 | 2.663 | 2.916 | 2.826 |
| 207 | 1.566 | 2.738 | 2.624 | 2.837 | 2.746 |
| 206 | 1.674 | 2.637 | 2.555 | 2.726 | 2.624 |
| 205 | 1.774 | 2.515 | 2.434 | 2.610 | 2.482 |
| 204 | 1.847 | 2.369 | 2.257 | 2.475 | 2.320 |
| 203 | 1.856 | 2.169 | 2.044 | 2.273 | 2.127 |
| 202 | 1.759 | 1.924 | 1.813 | 2.034 | 1.912 |
| 201 | 1.554 | 1.633 | 1.520 | 1.757 | 1.624 |
| 200 | 1.389 | 1.433 | 1.306 | 1.562 | 1.412 |

## 5.5. Fl. Intensity data of BM (10 $\mu M)$ in presence and absence of different NaC concentration in phosphate buffer pH 7.0

| wavele | Interaction of BM (10 $\mu$ M) in presence of different [NaC] in phosphate buffer pH 7.0 |      |      |      |      |      |      |      |      |      |      |       |
|--------|------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|-------|
| ngth / | Free                                                                                     | 0.15 | 0.22 | 0.26 | 0.29 | 0.36 | 0.44 | 0.73 | 1.59 | 5.63 | 6.97 | 16.27 |
| nm     | BM                                                                                       | mM    |
| 300    | 384                                                                                      | 392  | 383  | 377  | 371  | 356  | 351  | 335  | 325  | 312  | 309  | 309   |
| 302    | 493                                                                                      | 498  | 488  | 477  | 468  | 448  | 437  | 411  | 393  | 373  | 369  | 369   |
| 304    | 621                                                                                      | 623  | 610  | 594  | 582  | 555  | 539  | 500  | 476  | 449  | 445  | 445   |
| 306    | 749                                                                                      | 746  | 730  | 710  | 695  | 660  | 640  | 589  | 560  | 528  | 524  | 523   |
| 308    | 869                                                                                      | 865  | 843  | 820  | 802  | 762  | 736  | 675  | 641  | 606  | 600  | 601   |
| 310    | 983                                                                                      | 977  | 953  | 925  | 904  | 859  | 828  | 758  | 720  | 681  | 674  | 676   |
| 312    | 1108                                                                                     | 1099 | 1070 | 1039 | 1014 | 962  | 926  | 845  | 802  | 758  | 751  | 754   |
| 314    | 1246                                                                                     | 1234 | 1201 | 1165 | 1136 | 1075 | 1032 | 939  | 890  | 840  | 831  | 836   |
| 316    | 1393                                                                                     | 1378 | 1340 | 1299 | 1265 | 1195 | 1147 | 1037 | 982  | 925  | 914  | 918   |
| 318    | 1541                                                                                     | 1521 | 1479 | 1432 | 1394 | 1318 | 1261 | 1137 | 1075 | 1008 | 996  | 999   |
| 320    | 1674                                                                                     | 1650 | 1604 | 1553 | 1511 | 1426 | 1365 | 1227 | 1159 | 1083 | 1070 | 1073  |
| 322    | 1790                                                                                     | 1765 | 1716 | 1660 | 1612 | 1522 | 1456 | 1308 | 1233 | 1149 | 1135 | 1138  |
| 324    | 1894                                                                                     | 1867 | 1815 | 1755 | 1703 | 1609 | 1538 | 1379 | 1299 | 1206 | 1191 | 1194  |
| 326    | 1991                                                                                     | 1960 | 1907 | 1840 | 1785 | 1686 | 1611 | 1442 | 1358 | 1257 | 1238 | 1241  |
| 328    | 2089                                                                                     | 2052 | 1996 | 1926 | 1866 | 1765 | 1683 | 1503 | 1413 | 1302 | 1281 | 1284  |
| 330    | 2187                                                                                     | 2146 | 2085 | 2010 | 1948 | 1840 | 1753 | 1563 | 1466 | 1344 | 1321 | 1320  |
| 332    | 2284                                                                                     | 2236 | 2170 | 2090 | 2026 | 1912 | 1820 | 1620 | 1515 | 1382 | 1358 | 1354  |
| 334    | 2375                                                                                     | 2320 | 2250 | 2165 | 2098 | 1980 | 1883 | 1673 | 1560 | 1414 | 1388 | 1383  |
| 336    | 2454                                                                                     | 2393 | 2319 | 2231 | 2160 | 2038 | 1936 | 1716 | 1597 | 1439 | 1412 | 1403  |
| 338    | 2519                                                                                     | 2452 | 2376 | 2280 | 2205 | 2082 | 1977 | 1750 | 1624 | 1455 | 1426 | 1415  |
| 340    | 2567                                                                                     | 2494 | 2413 | 2315 | 2237 | 2111 | 2005 | 1773 | 1640 | 1462 | 1430 | 1418  |
| 342    | 2603                                                                                     | 2522 | 2437 | 2337 | 2258 | 2127 | 2020 | 1784 | 1646 | 1459 | 1426 | 1411  |
| 344    | 2629                                                                                     | 2538 | 2452 | 2345 | 2268 | 2136 | 2025 | 1786 | 1643 | 1449 | 1415 | 1396  |
| 346    | 2642                                                                                     | 2547 | 2456 | 2347 | 2268 | 2137 | 2024 | 1782 | 1635 | 1435 | 1399 | 1376  |
| 348    | 2650                                                                                     | 2544 | 2451 | 2342 | 2262 | 2129 | 2016 | 1772 | 1621 | 1415 | 1377 | 1352  |

| 350 | 2647 | 2533 | 2439 | 2329 | 2247 | 2115 | 2000 | 1757 | 1602 | 1393 | 1351 | 1324 |
|-----|------|------|------|------|------|------|------|------|------|------|------|------|
| 352 | 2629 | 2511 | 2417 | 2307 | 2222 | 2092 | 1977 | 1734 | 1577 | 1363 | 1320 | 1293 |
| 354 | 2601 | 2480 | 2384 | 2274 | 2189 | 2058 | 1946 | 1703 | 1545 | 1329 | 1287 | 1257 |
| 356 | 2563 | 2437 | 2343 | 2231 | 2147 | 2019 | 1908 | 1667 | 1509 | 1291 | 1249 | 1219 |
| 358 | 2511 | 2382 | 2289 | 2178 | 2095 | 1969 | 1861 | 1623 | 1467 | 1249 | 1208 | 1177 |
| 360 | 2449 | 2319 | 2226 | 2119 | 2036 | 1914 | 1806 | 1575 | 1422 | 1205 | 1163 | 1133 |
| 362 | 2381 | 2251 | 2159 | 2053 | 1972 | 1852 | 1746 | 1523 | 1372 | 1157 | 1117 | 1086 |
| 364 | 2304 | 2175 | 2085 | 1980 | 1901 | 1785 | 1684 | 1468 | 1318 | 1109 | 1069 | 1038 |
| 366 | 2221 | 2092 | 2006 | 1905 | 1827 | 1715 | 1618 | 1409 | 1263 | 1059 | 1020 | 989  |
| 368 | 2132 | 2005 | 1922 | 1823 | 1748 | 1643 | 1547 | 1347 | 1206 | 1007 | 970  | 940  |
| 370 | 2038 | 1916 | 1836 | 1739 | 1670 | 1568 | 1478 | 1285 | 1148 | 957  | 921  | 891  |
| 372 | 1942 | 1824 | 1747 | 1655 | 1588 | 1493 | 1405 | 1220 | 1091 | 906  | 872  | 843  |
| 374 | 1843 | 1729 | 1656 | 1568 | 1505 | 1415 | 1330 | 1156 | 1032 | 855  | 823  | 795  |
| 376 | 1745 | 1637 | 1566 | 1485 | 1423 | 1338 | 1257 | 1094 | 975  | 806  | 775  | 749  |
| 378 | 1646 | 1543 | 1477 | 1398 | 1340 | 1259 | 1185 | 1030 | 918  | 757  | 728  | 703  |
| 380 | 1548 | 1452 | 1388 | 1313 | 1260 | 1184 | 1113 | 968  | 862  | 710  | 682  | 659  |
| 382 | 1451 | 1361 | 1301 | 1231 | 1181 | 1110 | 1043 | 907  | 807  | 664  | 639  | 615  |
| 384 | 1358 | 1273 | 1217 | 1151 | 1103 | 1038 | 976  | 849  | 756  | 621  | 597  | 574  |
| 386 | 1270 | 1190 | 1137 | 1075 | 1031 | 970  | 913  | 794  | 706  | 579  | 557  | 536  |
| 388 | 1184 | 1109 | 1059 | 1002 | 960  | 905  | 851  | 741  | 659  | 541  | 519  | 500  |
| 390 | 1102 | 1033 | 987  | 933  | 894  | 843  | 793  | 690  | 614  | 503  | 483  | 466  |
| 392 | 1025 | 960  | 917  | 867  | 830  | 784  | 737  | 642  | 572  | 468  | 450  | 433  |
| 394 | 950  | 891  | 851  | 805  | 771  | 728  | 685  | 596  | 531  | 435  | 418  | 403  |
| 396 | 882  | 826  | 789  | 746  | 715  | 675  | 635  | 554  | 494  | 405  | 388  | 375  |
| 398 | 815  | 765  | 731  | 691  | 662  | 625  | 588  | 514  | 458  | 376  | 361  | 348  |
| 400 | 755  | 708  | 676  | 639  | 613  | 579  | 545  | 476  | 425  | 349  | 336  | 323  |
| 402 | 697  | 653  | 624  | 590  | 566  | 535  | 503  | 441  | 393  | 325  | 312  | 301  |
| 404 | 641  | 602  | 575  | 545  | 522  | 494  | 465  | 408  | 365  | 301  | 290  | 280  |
| 406 | 591  | 556  | 531  | 503  | 481  | 457  | 430  | 378  | 338  | 280  | 270  | 260  |
| 408 | 545  | 512  | 489  | 464  | 444  | 422  | 398  | 350  | 314  | 261  | 251  | 243  |
| 410 | 503  | 473  | 451  | 428  | 410  | 390  | 368  | 324  | 291  | 243  | 235  | 226  |
| 412 | 462  | 436  | 416  | 395  | 379  | 360  | 340  | 301  | 271  | 226  | 219  | 212  |
| 414 | 426  | 402  | 384  | 365  | 350  | 333  | 315  | 279  | 251  | 211  | 204  | 198  |
| 416 | 392  | 371  | 354  | 337  | 323  | 308  | 291  | 258  | 234  | 198  | 191  | 185  |
| 418 | 361  | 341  | 327  | 311  | 298  | 284  | 270  | 240  | 217  | 185  | 179  | 173  |
| 420 | 332  | 315  | 302  | 287  | 275  | 263  | 250  | 223  | 202  | 173  | 167  | 162  |
| 422 | 306  | 290  | 278  | 265  | 255  | 244  | 232  | 207  | 189  | 162  | 156  | 152  |
| 424 | 282  | 268  | 257  | 245  | 236  | 226  | 215  | 192  | 176  | 151  | 147  | 143  |
| 426 | 260  | 248  | 238  | 227  | 219  | 210  | 200  | 179  | 164  | 142  | 138  | 135  |
| 428 | 240  | 229  | 221  | 211  | 203  | 195  | 186  | 167  | 154  | 134  | 130  | 127  |
| 430 | 222  | 213  | 205  | 196  | 189  | 182  | 173  | 156  | 144  | 127  | 123  | 120  |
| 432 | 206  | 197  | 191  | 182  | 176  | 170  | 162  | 147  | 136  | 120  | 116  | 114  |
| 434 | 191  | 183  | 178  | 170  | 164  | 158  | 152  | 137  | 128  | 113  | 110  | 108  |
| 436 | 177  | 171  | 166  | 159  | 153  | 148  | 142  | 129  | 121  | 108  | 105  | 104  |

| 438 | 164 | 159 | 154 | 148 | 143 | 139 | 133 | 122 | 114 | 102 | 100 | 99 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| 440 | 152 | 148 | 144 | 138 | 134 | 130 | 126 | 114 | 108 | 98  | 95  | 94 |
| 442 | 141 | 138 | 135 | 130 | 126 | 122 | 118 | 108 | 102 | 93  | 91  | 90 |
| 444 | 131 | 129 | 126 | 122 | 118 | 115 | 111 | 102 | 96  | 89  | 86  | 86 |
| 446 | 122 | 120 | 118 | 114 | 111 | 108 | 105 | 96  | 91  | 85  | 83  | 82 |
| 448 | 113 | 112 | 111 | 107 | 104 | 102 | 99  | 91  | 87  | 81  | 79  | 78 |
| 450 | 105 | 105 | 104 | 101 | 98  | 97  | 93  | 86  | 82  | 77  | 75  | 75 |
| 452 | 98  | 99  | 98  | 95  | 93  | 91  | 88  | 82  | 78  | 73  | 72  | 72 |
| 454 | 91  | 93  | 92  | 89  | 88  | 86  | 84  | 78  | 74  | 70  | 69  | 69 |
| 456 | 85  | 87  | 87  | 85  | 83  | 82  | 79  | 74  | 71  | 67  | 66  | 66 |
| 458 | 79  | 82  | 82  | 80  | 79  | 78  | 76  | 70  | 68  | 64  | 63  | 63 |
| 460 | 74  | 77  | 78  | 76  | 75  | 74  | 72  | 67  | 65  | 62  | 61  | 61 |
| 462 | 69  | 73  | 74  | 72  | 71  | 71  | 69  | 64  | 62  | 59  | 58  | 59 |
| 464 | 64  | 69  | 70  | 69  | 68  | 68  | 66  | 61  | 59  | 57  | 56  | 57 |
| 466 | 60  | 65  | 67  | 66  | 65  | 65  | 63  | 58  | 57  | 55  | 54  | 55 |
| 468 | 57  | 62  | 64  | 63  | 62  | 62  | 60  | 56  | 55  | 53  | 52  | 53 |
| 470 | 53  | 58  | 61  | 60  | 59  | 59  | 57  | 53  | 52  | 51  | 50  | 51 |
| 472 | 50  | 56  | 58  | 57  | 57  | 57  | 55  | 51  | 50  | 49  | 48  | 49 |
| 474 | 47  | 53  | 55  | 55  | 55  | 54  | 53  | 49  | 48  | 47  | 46  | 47 |
| 476 | 44  | 51  | 53  | 52  | 52  | 52  | 51  | 47  | 46  | 46  | 45  | 45 |
| 478 | 42  | 48  | 51  | 50  | 51  | 50  | 49  | 46  | 45  | 44  | 43  | 44 |
| 480 | 39  | 46  | 49  | 48  | 49  | 49  | 47  | 44  | 43  | 43  | 42  | 43 |
| 482 | 37  | 44  | 47  | 47  | 47  | 47  | 46  | 42  | 42  | 41  | 40  | 41 |
| 484 | 36  | 43  | 45  | 45  | 45  | 45  | 44  | 41  | 41  | 40  | 39  | 40 |
| 486 | 34  | 41  | 44  | 43  | 44  | 44  | 42  | 40  | 39  | 39  | 38  | 39 |
| 488 | 32  | 39  | 42  | 42  | 42  | 42  | 41  | 38  | 38  | 37  | 37  | 38 |
| 490 | 30  | 37  | 40  | 40  | 41  | 41  | 40  | 37  | 37  | 36  | 36  | 36 |
| 492 | 29  | 36  | 39  | 39  | 39  | 39  | 38  | 36  | 35  | 35  | 35  | 35 |
| 494 | 28  | 34  | 37  | 37  | 38  | 38  | 37  | 34  | 34  | 34  | 33  | 34 |
| 496 | 26  | 33  | 36  | 36  | 36  | 37  | 36  | 33  | 33  | 33  | 32  | 33 |
| 498 | 25  | 31  | 34  | 34  | 35  | 35  | 34  | 32  | 32  | 31  | 31  | 32 |
| 500 | 24  | 30  | 33  | 33  | 33  | 34  | 33  | 30  | 30  | 30  | 30  | 31 |

| wavelength/ | Ir       | nteraction | n of BM ( | 10 µM) in | presence | of differe | ent [SDBS | ] in phosp | hate buff | er pH 7.0 |      |
|-------------|----------|------------|-----------|-----------|----------|------------|-----------|------------|-----------|-----------|------|
| nm          | [SDBS] = | 0.02       | 0.04      | 0.07      | 0.00     | 0.11       | 0.12      | 0.17       | 0.00      | 0.00      | 0.00 |
| 200         | 0 mM     | 0.02       | 0.04      | 0.06      | 0.09     | 0.11       | 0.13      | 0.17       | 0.22      | 0.30      | 0.39 |
| 300         | 403      | 396        | 486       | 462       | 3/8      | 388        | 384       | 383        | 369       | 341       | 319  |
| 302         | 514      | 499        | 530       | 504       | 453      | 447        | 429       | 416        | 395       | 362       | 343  |
| 304         | 647      | 619        | 620       | 587       | 547      | 531        | 502       | 480        | 451       | 411       | 390  |
| 306         | 777      | 738        | 722       | 682       | 643      | 620        | 581       | 552        | 515       | 467       | 444  |
| 308         | 900      | 852        | 825       | 778       | 737      | 709        | 662       | 625        | 581       | 524       | 499  |
| 310         | 1019     | 959        | 927       | 8/3       | 826      | 795        | 739       | 697        | 646       | 579       | 551  |
| 312         | 1146     | 1075       | 1036      | 9/4       | 921      | 884        | 821       | 772        | 713       | 637       | 604  |
| 314         | 1289     | 1203       | 1156      | 1084      | 1024     | 981        | 908       | 852        | 782       | 696       | 659  |
| 316         | 1439     | 1338       | 1284      | 1202      | 1132     | 1083       | 998       | 934        | 855       | 755       | 715  |
| 318         | 1591     | 1473       | 1412      | 1320      | 1240     | 1185       | 1088      | 1014       | 925       | 814       | 769  |
| 320         | 1728     | 1594       | 1527      | 1426      | 1337     | 1275       | 1168      | 1086       | 988       | 865       | 815  |
| 322         | 1850     | 1699       | 1627      | 1519      | 1422     | 1355       | 1238      | 1148       | 1042      | 909       | 856  |
| 324         | 1956     | 1793       | 1717      | 1602      | 1496     | 1425       | 1300      | 1204       | 1089      | 948       | 892  |
| 326         | 2055     | 1878       | 1800      | 1677      | 1565     | 1489       | 1359      | 1255       | 1134      | 984       | 924  |
| 328         | 2158     | 1965       | 1884      | 1756      | 1636     | 1554       | 1416      | 1308       | 1178      | 1023      | 961  |
| 330         | 2258     | 2050       | 1967      | 1833      | 1706     | 1619       | 1474      | 1362       | 1227      | 1064      | 1003 |
| 332         | 2358     | 2137       | 2050      | 1911      | 1777     | 1686       | 1533      | 1419       | 1279      | 1113      | 1053 |
| 334         | 2450     | 2216       | 2129      | 1987      | 1846     | 1754       | 1592      | 1475       | 1333      | 1164      | 1107 |
| 336         | 2532     | 2285       | 2198      | 2053      | 1906     | 1811       | 1643      | 1526       | 1382      | 1212      | 1158 |
| 338         | 2598     | 2341       | 2254      | 2106      | 1956     | 1858       | 1684      | 1566       | 1420      | 1252      | 1203 |
| 340         | 2646     | 2381       | 2292      | 2145      | 1992     | 1890       | 1716      | 1595       | 1447      | 1281      | 1236 |
| 342         | 2683     | 2407       | 2317      | 2172      | 2016     | 1912       | 1735      | 1612       | 1465      | 1302      | 1259 |
| 344         | 2707     | 2423       | 2333      | 2188      | 2030     | 1924       | 1746      | 1624       | 1476      | 1316      | 1276 |
| 346         | 2722     | 2429       | 2340      | 2195      | 2035     | 1931       | 1752      | 1631       | 1483      | 1326      | 1289 |
| 348         | 2728     | 2429       | 2342      | 2197      | 2034     | 1930       | 1752      | 1632       | 1484      | 1332      | 1298 |
| 350         | 2722     | 2418       | 2334      | 2188      | 2027     | 1923       | 1745      | 1626       | 1481      | 1334      | 1305 |
| 352         | 2705     | 2399       | 2315      | 2171      | 2011     | 1908       | 1731      | 1615       | 1472      | 1330      | 1304 |
| 354         | 2675     | 2368       | 2286      | 2145      | 1986     | 1885       | 1709      | 1595       | 1456      | 1319      | 1295 |
| 356         | 2634     | 2326       | 2246      | 2110      | 1952     | 1854       | 1679      | 1566       | 1435      | 1301      | 1280 |
| 358         | 2580     | 2274       | 2197      | 2064      | 1910     | 1812       | 1642      | 1531       | 1402      | 1274      | 1257 |
| 360         | 2518     | 2216       | 2139      | 2011      | 1860     | 1766       | 1597      | 1492       | 1364      | 1243      | 1227 |
| 362         | 2447     | 2147       | 2076      | 1953      | 1804     | 1711       | 1549      | 1447       | 1322      | 1207      | 1192 |
| 364         | 2367     | 2074       | 2005      | 1886      | 1741     | 1652       | 1495      | 1397       | 1277      | 1167      | 1154 |
| 366         | 2281     | 1997       | 1931      | 1817      | 1676     | 1590       | 1440      | 1343       | 1230      | 1125      | 1114 |
| 368         | 2190     | 1912       | 1851      | 1742      | 1607     | 1525       | 1380      | 1288       | 1180      | 1080      | 1070 |
| 370         | 2094     | 1828       | 1769      | 1665      | 1536     | 1458       | 1318      | 1230       | 1129      | 1035      | 1026 |
| 372         | 1994     | 1741       | 1684      | 1585      | 1463     | 1387       | 1254      | 1172       | 1076      | 987       | 979  |
| 374         | 1891     | 1652       | 1598      | 1505      | 1387     | 1316       | 1189      | 1111       | 1021      | 938       | 931  |
| 376         | 1790     | 1563       | 1513      | 1424      | 1313     | 1246       | 1126      | 1053       | 967       | 890       | 882  |
| 378         | 1688     | 1472       | 1426      | 1342      | 1239     | 1175       | 1062      | 993        | 913       | 841       | 834  |
| 380         | 1588     | 1384       | 1340      | 1263      | 1165     | 1105       | 999       | 934        | 860       | 794       | 786  |
| 382         | 1490     | 1296       | 1257      | 1185      | 1092     | 1036       | 938       | 876        | 807       | 745       | 740  |
| 384         | 1393     | 1212       | 1176      | 1108      | 1022     | 971        | 878       | 820        | 757       | 699       | 694  |
| 386         | 1303     | 1133       | 1099      | 1037      | 955      | 908        | 822       | 768        | 709       | 655       | 651  |
| 388         | 1215     | 1057       | 1025      | 967       | 892      | 847        | 767       | 717        | 662       | 613       | 609  |
| 390         | 1131     | 984        | 954       | 901       | 831      | 790        | 716       | 669        | 619       | 574       | 569  |
| 392         | 1051     | 914        | 887       | 839       | 774      | 736        | 667       | 623        | 577       | 535       | 532  |
| 394         | 975      | 849        | 824       | 779       | 719      | 684        | 620       | 580        | 537       | 499       | 496  |

5.6. Fl. Intensity data of BM (10  $\mu M)$  in presence and absence of different SDBS concentration in phosphate buffer pH 7.0

| -   |     | 1   |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 396 | 904 | 787 | 765 | 724 | 668 | 636 | 577 | 540 | 500 | 466 | 462 |
| 398 | 836 | 729 | 708 | 670 | 619 | 590 | 535 | 501 | 465 | 434 | 430 |
| 400 | 773 | 674 | 656 | 622 | 574 | 547 | 496 | 465 | 432 | 403 | 400 |
| 402 | 713 | 623 | 606 | 575 | 532 | 507 | 460 | 432 | 401 | 375 | 373 |
| 404 | 657 | 574 | 559 | 530 | 491 | 468 | 426 | 400 | 372 | 349 | 346 |
| 406 | 606 | 530 | 516 | 490 | 454 | 433 | 395 | 371 | 346 | 324 | 322 |
| 408 | 558 | 488 | 476 | 453 | 419 | 401 | 366 | 344 | 321 | 302 | 300 |
| 410 | 514 | 451 | 439 | 418 | 388 | 371 | 339 | 319 | 298 | 281 | 279 |
| 412 | 473 | 415 | 405 | 387 | 359 | 344 | 314 | 296 | 277 | 262 | 260 |
| 414 | 435 | 383 | 374 | 357 | 332 | 318 | 291 | 275 | 258 | 244 | 243 |
| 416 | 401 | 354 | 345 | 330 | 307 | 295 | 270 | 255 | 240 | 228 | 226 |
| 418 | 369 | 326 | 319 | 305 | 285 | 274 | 251 | 237 | 224 | 213 | 212 |
| 420 | 340 | 301 | 295 | 282 | 264 | 254 | 234 | 221 | 208 | 199 | 198 |
| 422 | 313 | 278 | 273 | 261 | 245 | 236 | 217 | 206 | 195 | 186 | 185 |
| 424 | 288 | 257 | 252 | 242 | 227 | 219 | 202 | 193 | 182 | 174 | 174 |
| 426 | 266 | 238 | 233 | 225 | 211 | 204 | 189 | 180 | 170 | 164 | 163 |
| 428 | 246 | 220 | 217 | 209 | 197 | 191 | 176 | 168 | 159 | 154 | 153 |
| 430 | 227 | 205 | 201 | 195 | 183 | 178 | 165 | 158 | 150 | 144 | 144 |
| 432 | 211 | 190 | 188 | 182 | 171 | 167 | 155 | 148 | 141 | 136 | 136 |
| 434 | 195 | 177 | 175 | 169 | 160 | 156 | 145 | 139 | 133 | 129 | 129 |
| 436 | 193 | 165 | 163 | 158 | 150 | 146 | 137 | 132 | 126 | 122 | 122 |
| 430 | 168 | 154 | 153 | 1/0 | 1/1 | 140 | 120 | 124 | 110 | 115 | 116 |
| 440 | 156 | 144 | 1/3 | 130 | 141 | 130 | 12) | 117 | 112 | 100 | 110 |
| 440 | 145 | 144 | 143 | 139 | 132 | 122 | 115 | 117 | 106 | 103 | 104 |
| 442 | 145 | 104 | 134 | 130 | 124 | 115 | 109 | 105 | 100 | 08  | 00  |
| 444 | 135 | 120 | 123 | 122 | 110 | 100 | 108 | 105 | 05  | 98  | 99  |
| 440 | 123 | 11/ | 11/ | 109 | 102 | 109 | 06  | 99  | 93  | 95  | 94  |
| 440 | 100 | 104 | 102 | 100 | 105 | 07  | 90  | 94  | 90  | 00  | 09  |
| 450 | 109 | 104 | 103 | 102 | 98  | 97  | 91  | 89  | 80  | 84  | 85  |
| 452 | 102 | 98  | 98  | 96  | 92  | 92  | 87  | 85  | 82  | 80  | 80  |
| 454 | 95  | 92  | 92  | 91  | 88  | 8/  | 82  | 80  | /8  | 76  | 77  |
| 456 | 89  | 8/  | 8/  | 86  | 83  | 83  | /8  | //  | /4  | 12  | 73  |
| 458 | 84  | 82  | 83  | 82  | 79  | 79  | 74  | 73  | 70  | 69  | 70  |
| 460 | 78  | 77  | 78  | 78  | 75  | 75  | 71  | 70  | 67  | 66  | 66  |
| 462 | 74  | 73  | 74  | 74  | 71  | /1  | 68  | 66  | 64  | 63  | 63  |
| 464 | 70  | 69  | 70  | 70  | 68  | 68  | 65  | 63  | 61  | 60  | 60  |
| 466 | 66  | 66  | 67  | 67  | 65  | 65  | 62  | 61  | 58  | 57  | 58  |
| 468 | 62  | 63  | 64  | 64  | 62  | 62  | 59  | 58  | 56  | 55  | 55  |
| 470 | 59  | 60  | 61  | 61  | 59  | 60  | 56  | 55  | 53  | 52  | 53  |
| 472 | 56  | 57  | 59  | 59  | 57  | 57  | 54  | 53  | 51  | 50  | 50  |
| 474 | 53  | 55  | 56  | 56  | 54  | 55  | 52  | 51  | 49  | 48  | 48  |
| 476 | 50  | 53  | 54  | 54  | 52  | 53  | 50  | 49  | 47  | 46  | 46  |
| 478 | 47  | 50  | 52  | 52  | 50  | 51  | 48  | 47  | 45  | 44  | 44  |
| 480 | 45  | 48  | 50  | 50  | 48  | 49  | 46  | 45  | 43  | 42  | 43  |
| 482 | 43  | 47  | 48  | 48  | 47  | 47  | 44  | 44  | 42  | 41  | 41  |
| 484 | 41  | 45  | 46  | 46  | 45  | 46  | 43  | 42  | 40  | 39  | 39  |
| 486 | 40  | 43  | 45  | 45  | 43  | 44  | 41  | 41  | 39  | 38  | 38  |
| 488 | 38  | 42  | 43  | 43  | 42  | 43  | 40  | 40  | 38  | 37  | 37  |
| 490 | 36  | 40  | 41  | 42  | 40  | 41  | 39  | 38  | 36  | 35  | 35  |
| 492 | 35  | 39  | 40  | 40  | 39  | 40  | 37  | 37  | 35  | 34  | 34  |
| 494 | 33  | 37  | 38  | 39  | 37  | 38  | 36  | 35  | 34  | 33  | 33  |
| 496 | 32  | 35  | 37  | 37  | 36  | 37  | 34  | 34  | 32  | 31  | 32  |
| 498 | 30  | 34  | 35  | 35  | 34  | 35  | 33  | 33  | 31  | 30  | 30  |
| 500 | 29  | 33  | 34  | 34  | 33  | 34  | 32  | 31  | 30  | 29  | 29  |

| Fluo      | Fluorescence area of BM in presence different concentration of surfactants ( $\lambda_{emission} = 347$ nm) |            |                    |            |                    |            |                    |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------|------------|--------------------|------------|--------------------|------------|--------------------|--|--|--|--|
| [NaC]/ mM | 10 <sup>-4</sup> F                                                                                          | [NaDC]/ mM | 10 <sup>-4</sup> F | [SDDS]/ mM | 10 <sup>-4</sup> F | [SDBS]/ mM | 10 <sup>-4</sup> F |  |  |  |  |
| 0.00      | 20.2                                                                                                        | 0.14       | 17.4               | 0.00       | 18.8               | 0.00       | 20.4               |  |  |  |  |
| 0.04      | 19.4                                                                                                        | 0.20       | 17.5               | 0.05       | 17.9               | 0.01       | 19.0               |  |  |  |  |
| 0.07      | 20.4                                                                                                        | 0.40       | 15.9               | 0.10       | 17.7               | 0.02       | 18.3               |  |  |  |  |
| 0.11      | 19.9                                                                                                        | 0.59       | 16.0               | 0.15       | 17.2               | 0.03       | 17.0               |  |  |  |  |
| 0.15      | 19.5                                                                                                        | 0.78       | 15.2               | 0.20       | 16.9               | 0.04       | 17.7               |  |  |  |  |
| 0.18      | 18.9                                                                                                        | 0.97       | 15.0               | 0.25       | 16.6               | 0.05       | 17.3               |  |  |  |  |
| 0.22      | 18.8                                                                                                        | 1.42       | 13.2               | 0.30       | 15.7               | 0.07       | 16.7               |  |  |  |  |
| 0.26      | 18.0                                                                                                        | 1.85       | 12.3               | 0.35       | 15.0               | 0.09       | 15.5               |  |  |  |  |
| 0.29      | 17.4                                                                                                        | 2.26       | 10.8               | 0.40       | 14.6               | 0.11       | 14.8               |  |  |  |  |
| 0.33      | 17.0                                                                                                        | 2.66       | 10.9               | 0.45       | 14.6               | 0.13       | 13.5               |  |  |  |  |
| 0.37      | 16.5                                                                                                        | 3.40       | 10.8               | 0.50       | 14.1               | 0.17       | 12.6               |  |  |  |  |
| 0.44      | 15.6                                                                                                        | 4.08       | 10.5               | 0.60       | 14.1               | 0.22       | 11.6               |  |  |  |  |
| 0.51      | 15.1                                                                                                        |            |                    | 0.70       | 14.0               | 0.26       | 11.2               |  |  |  |  |
| 0.73      | 13.9                                                                                                        |            |                    | 0.90       | 13.5               | 0.30       | 10.5               |  |  |  |  |
| 0.95      | 13.5                                                                                                        |            |                    | 1.30       | 13.5               | 0.39       | 10.2               |  |  |  |  |
| 1.16      | 13.1                                                                                                        |            |                    | 1.89       | 12.8               | 0.69       | 9.8                |  |  |  |  |
| 1.59      | 12.8                                                                                                        |            |                    | 3.84       | 12.0               | 0.90       | 9.7                |  |  |  |  |
| 2.87      | 12.5                                                                                                        |            |                    | 6.70       | 11.1               | 1.10       | 9.6                |  |  |  |  |
| 4.27      | 11.7                                                                                                        |            |                    | 9.49       | 11.1               | 1.51       | 9.3                |  |  |  |  |
| 5.63      | 11.3                                                                                                        |            |                    | 18.20      | 10.7               | 1.92       | 9.2                |  |  |  |  |
| 6.98      | 11.0                                                                                                        |            |                    | 33.44      | 10.6               |            |                    |  |  |  |  |
| 16.28     | 10.9                                                                                                        |            |                    |            |                    |            |                    |  |  |  |  |
| 19.11     | 10.6                                                                                                        |            |                    |            |                    |            |                    |  |  |  |  |
| 24.42     | 10.7                                                                                                        |            |                    |            |                    |            |                    |  |  |  |  |

5.7. Fluorescence area of BM in presence of different surfactant concentrations at 298.15 K

| Stren-Volmer (SV) F <sub>0</sub> /F of BM (10µM) at different quencher (Surfactant) concentration |                   |                             |                   |               |                   |               |                   |  |  |
|---------------------------------------------------------------------------------------------------|-------------------|-----------------------------|-------------------|---------------|-------------------|---------------|-------------------|--|--|
| 10 <sup>4</sup> [NaC]/mM                                                                          | F <sub>0</sub> /F | 10 <sup>4</sup> [NaDC] / mM | F <sub>0</sub> /F | 104[SDDS]/ mM | F <sub>0</sub> /F | 104[SDBS] /mM | F <sub>0</sub> /F |  |  |
| 0                                                                                                 | 1.0               | 0.00                        | 1.0               | 0.00          | 1.0               | 0.00          | 1.0               |  |  |
| 1.46                                                                                              | 1.0               | 4.00                        | 1.1               | 0.48          | 1.0               | 2.18          | 1.1               |  |  |
| 2.19                                                                                              | 1.1               | 7.84                        | 1.1               | 1.00          | 1.1               | 4.35          | 1.2               |  |  |
| 2.56                                                                                              | 1.1               | 14.20                       | 1.3               | 2.01          | 1.1               | 8.70          | 1.3               |  |  |
| 2.92                                                                                              | 1.2               | 18.50                       | 1.4               | 3.01          | 1.2               | 10.90         | 1.4               |  |  |
| 3.65                                                                                              | 1.2               | 26.60                       | 1.5               | 4.01          | 1.3               | 13.00         | 1.5               |  |  |
| 4.38                                                                                              | 1.3               | 40.80                       | 1.6               | 5.01          | 1.3               | 17.40         | 1.6               |  |  |
| 7.29                                                                                              | 1.5               |                             |                   |               |                   | 21.70         | 1.8               |  |  |
|                                                                                                   |                   |                             |                   |               |                   | 30.30         | 1.9               |  |  |
|                                                                                                   |                   |                             |                   |               |                   | 38.90         | 2.0               |  |  |

5.8. Stern Volmer quenching data (F\_0/F) of BM in presence of different surfactant concentrations at 298.15 K

5.9. log plot data of BM in presence of different surfactant concentrations in log scale at 298.15 K

| log plot of BM (10µM) in presence of different [surfactant] |                  |              |                  |              |                  |              |                     |  |  |
|-------------------------------------------------------------|------------------|--------------|------------------|--------------|------------------|--------------|---------------------|--|--|
| log ([NaC])                                                 | $log{(F_0-F)/F}$ | log ([NaDC]) | $log{(F_0-F)/F}$ | log ([SDDS]) | $log{(F_0-F)/F}$ | log ([SDBS]) | $\log\{(F_0-F)/F\}$ |  |  |
| -3.835                                                      | -1.427           | -3.398       | -1.077           | -4.318       | -1.306           | -4.662       | -0.936              |  |  |
| -3.659                                                      | -1.123           | -3.106       | -0.878           | -3.998       | -1.200           | -4.361       | -0.817              |  |  |
| -3.592                                                      | -0.912           | -2.847       | -0.520           | -3.697       | -0.957           | -4.061       | -0.499              |  |  |
| -3.534                                                      | -0.790           | -2.732       | -0.391           | -3.521       | -0.711           | -3.964       | -0.420              |  |  |
| -3.437                                                      | -0.639           | -2.575       | -0.294           | -3.396       | -0.539           | -3.885       | -0.290              |  |  |
| -3.358                                                      | -0.532           | -2.390       | -0.192           | -3.300       | -0.479           | -3.760       | -0.210              |  |  |
| -3.137                                                      | -0.340           |              |                  |              |                  | -3.664       | -0.119              |  |  |
|                                                             |                  |              |                  |              |                  | -3.519       | -0.025              |  |  |
|                                                             |                  |              |                  |              |                  | -3.410       | -0.003              |  |  |

|               | Molar Ellipticity ( $[\theta]x10^{-3}/\text{deg.cm}^2\text{.dmol}^{-1}$ ) of BM (5 $\mu$ M) in presence of varying concentration of NaC |                   |         |         |         |         |         |         |         |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|---------|---------|---------|---------|---------|---------|
| wavelength/nm | free BM                                                                                                                                 | [NaC]=<br>0.18 mM | 0.54 mM | 1.07 mM | 1.76 mM | 3.46 mM | 6.36 mM | 9.35 mM | 12.7 mM |
| 350           | -0.044                                                                                                                                  | -0.066            | 0.054   | 0.035   | -0.164  | -0.161  | -0.153  | -0.076  | 0.059   |
| 349           | -0.017                                                                                                                                  | -0.074            | 0.026   | 0.055   | -0.139  | -0.148  | -0.137  | -0.068  | 0.055   |
| 348           | 0.012                                                                                                                                   | -0.071            | 0.013   | 0.078   | -0.111  | -0.136  | -0.122  | -0.059  | 0.052   |
| 347           | 0.040                                                                                                                                   | -0.058            | 0.015   | 0.096   | -0.083  | -0.126  | -0.109  | -0.046  | 0.050   |
| 346           | 0.065                                                                                                                                   | -0.037            | 0.031   | 0.106   | -0.054  | -0.121  | -0.101  | -0.028  | 0.049   |
| 345           | 0.082                                                                                                                                   | -0.011            | 0.053   | 0.104   | -0.028  | -0.120  | -0.098  | -0.006  | 0.047   |
| 344           | 0.086                                                                                                                                   | 0.015             | 0.075   | 0.088   | -0.004  | -0.125  | -0.102  | 0.016   | 0.044   |
| 343           | 0.078                                                                                                                                   | 0.036             | 0.090   | 0.061   | 0.015   | -0.137  | -0.114  | 0.031   | 0.040   |
| 342           | 0.058                                                                                                                                   | 0.049             | 0.090   | 0.027   | 0.027   | -0.155  | -0.134  | 0.036   | 0.035   |
| 341           | 0.033                                                                                                                                   | 0.052             | 0.073   | -0.009  | 0.028   | -0.177  | -0.161  | 0.030   | 0.031   |
| 340           | 0.009                                                                                                                                   | 0.046             | 0.040   | -0.044  | 0.018   | -0.201  | -0.192  | 0.016   | 0.028   |
| 339           | -0.010                                                                                                                                  | 0.033             | -0.004  | -0.075  | -0.004  | -0.223  | -0.225  | -0.004  | 0.029   |
| 338           | -0.019                                                                                                                                  | 0.017             | -0.052  | -0.100  | -0.034  | -0.241  | -0.254  | -0.025  | 0.033   |
| 337           | -0.019                                                                                                                                  | -0.001            | -0.098  | -0.119  | -0.067  | -0.251  | -0.275  | -0.043  | 0.042   |
| 336           | -0.014                                                                                                                                  | -0.021            | -0.135  | -0.132  | -0.096  | -0.255  | -0.288  | -0.059  | 0.057   |
| 335           | -0.008                                                                                                                                  | -0.042            | -0.159  | -0.140  | -0.117  | -0.252  | -0.292  | -0.073  | 0.079   |
| 334           | -0.004                                                                                                                                  | -0.065            | -0.171  | -0.142  | -0.127  | -0.244  | -0.289  | -0.087  | 0.107   |
| 333           | -0.005                                                                                                                                  | -0.089            | -0.171  | -0.138  | -0.125  | -0.233  | -0.280  | -0.100  | 0.139   |
| 332           | -0.010                                                                                                                                  | -0.114            | -0.161  | -0.128  | -0.116  | -0.220  | -0.267  | -0.111  | 0.170   |
| 331           | -0.016                                                                                                                                  | -0.135            | -0.144  | -0.115  | -0.103  | -0.208  | -0.251  | -0.116  | 0.196   |
| 330           | -0.020                                                                                                                                  | -0.152            | -0.124  | -0.100  | -0.093  | -0.196  | -0.231  | -0.113  | 0.211   |
| 329           | -0.019                                                                                                                                  | -0.162            | -0.102  | -0.088  | -0.086  | -0.186  | -0.209  | -0.099  | 0.213   |
| 328           | -0.011                                                                                                                                  | -0.167            | -0.081  | -0.082  | -0.084  | -0.178  | -0.186  | -0.074  | 0.202   |
| 327           | 0.002                                                                                                                                   | -0.170            | -0.062  | -0.083  | -0.085  | -0.174  | -0.164  | -0.040  | 0.184   |
| 326           | 0.019                                                                                                                                   | -0.170            | -0.046  | -0.091  | -0.087  | -0.174  | -0.148  | -0.003  | 0.165   |
| 325           | 0.035                                                                                                                                   | -0.171            | -0.035  | -0.103  | -0.086  | -0.177  | -0.137  | 0.033   | 0.152   |
| 324           | 0.047                                                                                                                                   | -0.169            | -0.027  | -0.115  | -0.083  | -0.182  | -0.133  | 0.064   | 0.149   |
| 323           | 0.052                                                                                                                                   | -0.165            | -0.021  | -0.124  | -0.078  | -0.190  | -0.134  | 0.087   | 0.153   |
| 322           | 0.050                                                                                                                                   | -0.155            | -0.018  | -0.125  | -0.072  | -0.199  | -0.136  | 0.101   | 0.161   |
| 321           | 0.042                                                                                                                                   | -0.141            | -0.015  | -0.121  | -0.068  | -0.208  | -0.139  | 0.105   | 0.166   |
| 320           | 0.030                                                                                                                                   | -0.124            | -0.016  | -0.114  | -0.069  | -0.221  | -0.141  | 0.098   | 0.164   |
| 319           | 0.017                                                                                                                                   | -0.111            | -0.022  | -0.110  | -0.077  | -0.236  | -0.146  | 0.082   | 0.153   |
| 318           | 0.005                                                                                                                                   | -0.105            | -0.036  | -0.112  | -0.094  | -0.257  | -0.157  | 0.059   | 0.135   |
| 317           | -0.003                                                                                                                                  | -0.112            | -0.060  | -0.125  | -0.121  | -0.281  | -0.175  | 0.033   | 0.116   |
| 316           | -0.009                                                                                                                                  | -0.132            | -0.095  | -0.147  | -0.157  | -0.309  | -0.203  | 0.008   | 0.100   |
| 315           | -0.012                                                                                                                                  | -0.162            | -0.136  | -0.174  | -0.199  | -0.336  | -0.237  | -0.015  | 0.090   |
| 314           | -0.015                                                                                                                                  | -0.196            | -0.177  | -0.200  | -0.241  | -0.359  | -0.274  | -0.036  | 0.085   |
| 313           | -0.021                                                                                                                                  | -0.228            | -0.211  | -0.217  | -0.276  | -0.375  | -0.307  | -0.055  | 0.082   |
| 312           | -0.032                                                                                                                                  | -0.253            | -0.232  | -0.221  | -0.299  | -0.383  | -0.333  | -0.075  | 0.077   |
| 311           | -0.047                                                                                                                                  | -0.267            | -0.241  | -0.213  | -0.306  | -0 384  | -0.352  | -0.098  | 0.068   |

5.10. Molar ellipticity data of SB (5  $\mu M)$  in presence of different NaC concentration 298.15 K

| 310 | -0.068 | -0.270 | -0.240 | -0.197 | -0.299 | -0.382 | -0.365 | -0.126 | 0.054  |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 309 | -0.093 | -0.266 | -0.236 | -0.182 | -0.286 | -0.380 | -0.375 | -0.155 | 0.039  |
| 308 | -0.122 | -0.257 | -0.239 | -0.177 | -0.274 | -0.382 | -0.387 | -0.182 | 0.023  |
| 307 | -0.154 | -0.247 | -0.254 | -0.189 | -0.274 | -0.391 | -0.403 | -0.201 | 0.008  |
| 306 | -0.186 | -0.238 | -0.285 | -0.221 | -0.290 | -0.406 | -0.420 | -0.210 | -0.007 |
| 305 | -0.216 | -0.233 | -0.327 | -0.268 | -0.321 | -0.426 | -0.438 | -0.207 | -0.024 |
| 304 | -0.241 | -0.231 | -0.373 | -0.323 | -0.362 | -0.446 | -0.451 | -0.193 | -0.045 |
| 303 | -0.258 | -0.232 | -0.412 | -0.374 | -0.400 | -0.464 | -0.459 | -0.172 | -0.068 |
| 302 | -0.264 | -0.237 | -0.438 | -0.412 | -0.426 | -0.477 | -0.459 | -0.149 | -0.090 |
| 301 | -0.258 | -0.244 | -0.446 | -0.430 | -0.432 | -0.485 | -0.452 | -0.127 | -0.107 |
| 300 | -0.244 | -0.252 | -0.438 | -0.426 | -0.419 | -0.487 | -0.440 | -0.108 | -0.113 |
| 299 | -0.223 | -0.259 | -0.422 | -0.405 | -0.390 | -0.485 | -0.425 | -0.094 | -0.107 |
| 298 | -0.201 | -0.264 | -0.403 | -0.374 | -0.355 | -0.480 | -0.408 | -0.085 | -0.092 |
| 297 | -0.181 | -0.267 | -0.388 | -0.339 | -0.323 | -0.473 | -0.389 | -0.083 | -0.070 |
| 296 | -0.163 | -0.268 | -0.379 | -0.308 | -0.299 | -0.463 | -0.370 | -0.086 | -0.046 |
| 295 | -0.147 | -0.266 | -0.376 | -0.284 | -0.284 | -0.449 | -0.350 | -0.094 | -0.024 |
| 294 | -0.126 | -0.262 | -0.373 | -0.267 | -0.274 | -0.429 | -0.330 | -0.101 | -0.002 |
| 293 | -0.099 | -0.253 | -0.365 | -0.256 | -0.265 | -0.403 | -0.309 | -0.101 | 0.023  |
| 292 | -0.063 | -0.239 | -0.348 | -0.248 | -0.251 | -0.369 | -0.287 | -0.090 | 0.054  |
| 291 | -0.022 | -0.218 | -0.322 | -0.239 | -0.232 | -0.328 | -0.264 | -0.062 | 0.092  |
| 290 | 0.018  | -0.190 | -0.290 | -0.227 | -0.209 | -0.284 | -0.240 | -0.020 | 0.134  |
| 289 | 0.050  | -0.156 | -0.256 | -0.211 | -0.186 | -0.242 | -0.213 | 0.031  | 0.174  |
| 288 | 0.064  | -0.122 | -0.226 | -0.193 | -0.168 | -0.205 | -0.186 | 0.080  | 0.204  |
| 287 | 0.059  | -0.091 | -0.206 | -0.174 | -0.159 | -0.179 | -0.160 | 0.116  | 0.218  |
| 286 | 0.036  | -0.069 | -0.197 | -0.157 | -0.159 | -0.165 | -0.138 | 0.134  | 0.214  |
| 285 | 0.001  | -0.058 | -0.199 | -0.145 | -0.166 | -0.164 | -0.123 | 0.132  | 0.197  |
| 284 | -0.037 | -0.057 | -0.207 | -0.141 | -0.179 | -0.171 | -0.115 | 0.114  | 0.173  |
| 283 | -0.071 | -0.063 | -0.217 | -0.145 | -0.194 | -0.181 | -0.116 | 0.090  | 0.149  |
| 282 | -0.095 | -0.071 | -0.224 | -0.157 | -0.207 | -0.190 | -0.125 | 0.069  | 0.132  |
| 281 | -0.110 | -0.079 | -0.223 | -0.174 | -0.218 | -0.194 | -0.139 | 0.056  | 0.123  |
| 280 | -0.117 | -0.086 | -0.213 | -0.192 | -0.225 | -0.195 | -0.159 | 0.052  | 0.121  |
| 279 | -0.121 | -0.091 | -0.196 | -0.206 | -0.227 | -0.196 | -0.180 | 0.054  | 0.123  |
| 278 | -0.122 | -0.098 | -0.176 | -0.213 | -0.222 | -0.202 | -0.201 | 0.058  | 0.126  |
| 277 | -0.121 | -0.107 | -0.158 | -0.212 | -0.212 | -0.216 | -0.219 | 0.061  | 0.127  |
| 276 | -0.117 | -0.119 | -0.147 | -0.204 | -0.198 | -0.239 | -0.232 | 0.062  | 0.127  |
| 275 | -0.108 | -0.130 | -0.146 | -0.193 | -0.181 | -0.268 | -0.237 | 0.063  | 0.123  |
| 274 | -0.095 | -0.139 | -0.156 | -0.184 | -0.166 | -0.297 | -0.234 | 0.067  | 0.114  |
| 273 | -0.082 | -0.141 | -0.173 | -0.182 | -0.159 | -0.321 | -0.225 | 0.072  | 0.100  |
| 272 | -0.075 | -0.138 | -0.193 | -0.189 | -0.161 | -0.333 | -0.217 | 0.073  | 0.079  |
| 271 | -0.081 | -0.131 | -0.213 | -0.205 | -0.176 | -0.335 | -0.214 | 0.066  | 0.051  |
| 270 | -0.104 | -0.126 | -0.229 | -0.231 | -0.202 | -0.327 | -0.221 | 0.045  | 0.018  |
| 269 | -0.143 | -0.126 | -0.240 | -0.261 | -0.234 | -0.316 | -0.239 | 0.009  | -0.017 |
| 268 | -0.195 | -0.135 | -0.249 | -0.292 | -0.268 | -0.309 | -0.265 | -0.038 | -0.049 |
| 267 | -0.251 | -0.152 | -0.259 | -0.320 | -0.297 | -0.308 | -0.290 | -0.087 | -0.076 |

| 266 | -0.303  | -0.174  | -0.271  | -0.340  | -0.317  | -0.317  | -0.304  | -0.128  | -0.099  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 265 | -0.343  | -0.196  | -0.288  | -0.350  | -0.327  | -0.333  | -0.302  | -0.156  | -0.119  |
| 264 | -0.369  | -0.213  | -0.306  | -0.353  | -0.329  | -0.353  | -0.281  | -0.168  | -0.137  |
| 263 | -0.382  | -0.224  | -0.322  | -0.348  | -0.327  | -0.373  | -0.247  | -0.169  | -0.155  |
| 262 | -0.385  | -0.227  | -0.334  | -0.341  | -0.324  | -0.390  | -0.209  | -0.165  | -0.170  |
| 261 | -0.386  | -0.224  | -0.337  | -0.335  | -0.325  | -0.403  | -0.179  | -0.161  | -0.180  |
| 260 | -0.388  | -0.216  | -0.332  | -0.334  | -0.332  | -0.410  | -0.164  | -0.160  | -0.183  |
| 259 | -0.394  | -0.208  | -0.319  | -0.336  | -0.344  | -0.411  | -0.167  | -0.163  | -0.178  |
| 258 | -0.405  | -0.203  | -0.303  | -0.342  | -0.359  | -0.408  | -0.185  | -0.167  | -0.168  |
| 257 | -0.418  | -0.203  | -0.289  | -0.349  | -0.375  | -0.403  | -0.212  | -0.172  | -0.159  |
| 256 | -0.430  | -0.212  | -0.280  | -0.353  | -0.389  | -0.399  | -0.239  | -0.177  | -0.156  |
| 255 | -0.439  | -0.232  | -0.281  | -0.354  | -0.404  | -0.402  | -0.264  | -0.188  | -0.163  |
| 254 | -0.447  | -0.262  | -0.292  | -0.354  | -0.422  | -0.417  | -0.287  | -0.207  | -0.178  |
| 253 | -0.457  | -0.302  | -0.316  | -0.359  | -0.449  | -0.449  | -0.311  | -0.237  | -0.200  |
| 252 | -0.475  | -0.346  | -0.352  | -0.377  | -0.491  | -0.499  | -0.341  | -0.278  | -0.227  |
| 251 | -0.507  | -0.391  | -0.402  | -0.413  | -0.549  | -0.566  | -0.382  | -0.327  | -0.260  |
| 250 | -0.558  | -0.434  | -0.465  | -0.470  | -0.624  | -0.643  | -0.436  | -0.383  | -0.305  |
| 249 | -0.631  | -0.475  | -0.540  | -0.548  | -0.709  | -0.722  | -0.503  | -0.449  | -0.369  |
| 248 | -0.722  | -0.522  | -0.626  | -0.639  | -0.798  | -0.800  | -0.585  | -0.528  | -0.458  |
| 247 | -0.827  | -0.581  | -0.723  | -0.735  | -0.883  | -0.872  | -0.681  | -0.626  | -0.573  |
| 246 | -0.939  | -0.661  | -0.828  | -0.831  | -0.960  | -0.942  | -0.791  | -0.745  | -0.708  |
| 245 | -1.051  | -0.767  | -0.942  | -0.924  | -1.031  | -1.017  | -0.916  | -0.886  | -0.853  |
| 244 | -1.161  | -0.897  | -1.063  | -1.017  | -1.099  | -1.105  | -1.052  | -1.040  | -1.000  |
| 243 | -1.271  | -1.046  | -1.194  | -1.119  | -1.175  | -1.210  | -1.199  | -1.200  | -1.145  |
| 242 | -1.388  | -1.207  | -1.337  | -1.241  | -1.267  | -1.338  | -1.353  | -1.364  | -1.298  |
| 241 | -1.523  | -1.378  | -1.497  | -1.395  | -1.386  | -1.490  | -1.521  | -1.539  | -1.478  |
| 240 | -1.693  | -1.568  | -1.685  | -1.591  | -1.543  | -1.674  | -1.717  | -1.744  | -1.708  |
| 239 | -1.917  | -1.795  | -1.915  | -1.840  | -1.752  | -1.901  | -1.964  | -2.009  | -2.015  |
| 238 | -2.217  | -2.088  | -2.211  | -2.159  | -2.030  | -2.193  | -2.294  | -2.366  | -2.420  |
| 237 | -2.620  | -2.479  | -2.599  | -2.565  | -2.403  | -2.580  | -2.737  | -2.841  | -2.939  |
| 236 | -3.151  | -2.998  | -3.107  | -3.082  | -2.898  | -3.093  | -3.320  | -3.453  | -3.589  |
| 235 | -3.832  | -3.664  | -3.758  | -3.732  | -3.540  | -3.759  | -4.054  | -4.210  | -4.385  |
| 234 | -4.676  | -4.482  | -4.558  | -4.529  | -4.341  | -4.591  | -4.938  | -5.112  | -5.343  |
| 233 | -5.678  | -5.438  | -5.500  | -5.472  | -5.298  | -5.582  | -5.954  | -6.153  | -6.473  |
| 232 | -6.810  | -6.504  | -6.550  | -6.535  | -6.384  | -6.701  | -7.078  | -7.324  | -7.770  |
| 231 | -8.018  | -7.635  | -7.661  | -7.672  | -7.551  | -7.901  | -8.276  | -8.609  | -9.207  |
| 230 | -9.233  | -8.779  | -8.775  | -8.823  | -8.740  | -9.125  | -9.515  | -9.976  | -10.734 |
| 229 | -10.379 | -9.880  | -9.834  | -9.923  | -9.889  | -10.316 | -10.757 | -11.382 | -12.287 |
| 228 | -11.391 | -10.885 | -10.793 | -10.917 | -10.945 | -11.425 | -11.969 | -12.772 | -13.808 |
| 227 | -12.229 | -11.753 | -11.629 | -11.773 | -11.875 | -12.421 | -13.118 | -14.098 | -15.264 |
| 226 | -12.890 | -12.465 | -12.336 | -12.485 | -12.666 | -13.293 | -14.185 | -15.332 | -16.658 |
| 225 | -13.398 | -13.027 | -12.930 | -13.071 | -13.327 | -14.049 | -15.167 | -16.484 | -18.028 |
| 224 | -13.802 | -13.466 | -13.434 | -13.564 | -13.881 | -14.715 | -16.082 | -17.599 | -19.430 |
| 223 | -14.153 | -13.826 | -13.873 | -14.003 | -14.361 | -15.327 | -16.971 | -18.745 | -20.906 |
| 222 | -14.491 | -14.155 | -14.273 | -14.423 | -14.802 | -15.924 | -17.882 | -19.982 | -22.472 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 221 | -14.838 | -14.490 | -14.651 | -14.850 | -15.240 | -16.540 | -18.856 | -21.333 | -24.105 |
| 220 | -15.202 | -14.852 | -15.023 | -15.303 | -15.710 | -17.198 | -19.913 | -22.778 | -25.767 |
| 219 | -15.581 | -15.246 | -15.410 | -15.796 | -16.240 | -17.911 | -21.046 | -24.259 | -27.432 |
| 218 | -15.981 | -15.668 | -15.834 | -16.343 | -16.856 | -18.684 | -22.228 | -25.720 | -29.122 |
| 217 | -16.421 | -16.121 | -16.325 | -16.959 | -17.574 | -19.518 | -23.435 | -27.146 | -30.914 |
| 216 | -16.931 | -16.625 | -16.914 | -17.660 | -18.402 | -20.425 | -24.666 | -28.596 | -32.910 |
| 215 | -17.543 | -17.216 | -17.624 | -18.456 | -19.336 | -21.428 | -25.962 | -30.190 | -35.182 |
| 214 | -18.275 | -17.933 | -18.464 | -19.350 | -20.362 | -22.558 | -27.392 | -32.055 | -37.699 |
| 213 | -19.115 | -18.798 | -19.423 | -20.328 | -21.457 | -23.841 | -29.017 | -34.237 | -40.263 |
| 212 | -20.016 | -19.790 | -20.462 | -21.360 | -22.584 | -25.271 | -30.841 | -36.617 | -42.512 |
| 211 | -20.900 | -20.834 | -21.517 | -22.391 | -23.693 | -26.785 | -32.755 | -38.861 | -43.966 |
| 210 | -21.673 | -21.804 | -22.498 | -23.346 | -24.712 | -28.246 | -34.520 | -40.454 | -44.147 |
| 209 | -22.242 | -22.551 | -23.303 | -24.129 | -25.539 | -29.443 | -35.788 | -40.809 | -42.720 |
| 208 | -22.529 | -22.936 | -23.819 | -24.626 | -26.051 | -30.119 | -36.176 | -39.436 | -39.606 |
| 207 | -22.476 | -22.864 | -23.933 | -24.713 | -26.106 | -30.020 | -35.374 | -36.116 | -35.042 |
| 206 | -22.045 | -22.305 | -23.548 | -24.277 | -25.575 | -28.964 | -33.249 | -31.014 | -29.544 |
| 205 | -21.206 | -21.289 | -22.596 | -23.232 | -24.369 | -26.892 | -29.914 | -24.697 | -23.793 |
| 204 | -19.944 | -19.879 | -21.046 | -21.543 | -22.472 | -23.911 | -25.727 | -18.014 | -18.466 |
| 203 | -18.254 | -18.142 | -18.927 | -19.250 | -19.962 | -20.287 | -21.217 | -11.898 | -14.083 |
| 202 | -16.162 | -16.123 | -16.327 | -16.474 | -17.011 | -16.398 | -16.959 | -7.127  | -10.895 |
| 201 | -13.737 | -13.844 | -13.396 | -13.410 | -13.863 | -12.661 | -13.425 | -4.130  | -8.869  |
| 200 | -11.101 | -11.321 | -10.334 | -10.298 | -10.786 | -9.439  | -10.876 | -2.896  | -7.740  |
| 199 | -8.420  | -8.609  | -7.373  | -7.386  | -8.023  | -6.967  | -9.312  | -3.016  | -7.137  |
| 198 | -5.881  | -5.829  | -4.741  | -4.887  | -5.743  | -5.310  | -8.508  | -3.832  | -6.706  |
| 197 | -3.656  | -3.180  | -2.636  | -2.936  | -4.015  | -4.366  | -8.110  | -4.647  | -6.205  |
| 196 | -1.859  | -0.917  | -1.197  | -1.578  | -2.809  | -3.911  | -7.760  | -4.920  | -5.547  |
| 195 | -0.525  | 0.709   | -0.478  | -0.767  | -2.021  | -3.673  | -7.203  | -4.389  | -4.772  |
| 194 | 0.397   | 1.517   | -0.451  | -0.390  | -1.514  | -3.408  | -6.349  | -3.092  | -3.998  |
| 193 | 1.025   | 1.462   | -1.005  | -0.302  | -1.163  | -2.954  | -5.269  | -1.293  | -3.340  |
| 192 | 1.498   | 0.654   | -1.976  | -0.365  | -0.882  | -2.261  | -4.134  | 0.642   | -2.869  |
| 191 | 1.938   | -0.661  | -3.171  | -0.472  | -0.634  | -1.381  | -3.135  | 2.380   | -2.590  |
| 190 | 2.414   | -2.163  | -4.401  | -0.563  | -0.424  | -0.429  | -2.411  | 3.711   | -2.457  |

Jewand Dry 17:06-2022

# List of Publications and Reprints

### For Thesis:

- A detailed assessment on the interaction of sodium alginate with a surface-active ionic liquid and a conventional surfactant: a multitechnique approach; S. Das and S. Ghosh, *Phys. Chem. Chem. Phys.*, 2022, 24, 13738-13762.
- Studies on the self-aggregation, interfacial and thermodynamic properties of a surface active imidazolium based ionic liquid in aqueous solution: Effects of salt and temperature; S. Das, N. Patra, A. Banerjee, B. Das, S. Ghosh; *J. Mol. Liq.*, 2020, 320, 114497.
- Formation of Mixed Micelle in an Aqueous Mixture of a Surface Active Ionic Liquid anda Conventional Surfactant: Experiment and Modeling; S. Das, S. Ghosh, B. Das; *Journalof Chemical & Engineering Data*, 2018, 63, 3784-3800.

### **Other Publications:**

- Addressing the Exigent Role of a Coumarin Fluorophore toward Finding the Suitable Microenvironment of Biomimicking and Biomolecular Systems: Steering to Project the Drug Designing and Drug Delivery Study; S. Paul, P. Roy, S. Das, S. Ghosh, P. Saha Sardar, and A. Majhi; ACS Omega, 2021, 6, 11878–11896.
- Detailed Physicochemical Interaction of Inulin with Some Conventional Surfactants and Surface Active Ionic Liquid; N. Patra, A. Mal, S. Das, S. Ghosh; J. Mol. Liq., 2021, 340, 116849.
- Theoretical Approaches on the Synergistic Interaction between Double Headed Anionic Amino Acid-Based Surfactants and Hexadecyltrimethylammonium Bromide;
   M. Barai, M. K. Mandal, H. Sultana, E. Manna, S. Das, K. Nag, S. Ghosh, A. Patra, A. K. Panda; *J Surfactants Deterg*, 2020, 23, 891-902.
- Effect of an anionic surfactant (SDS) on the photoluminescence of graphene oxide (GO)in acidic and alkaline medium; P. Saha, D K. Pyne, S Ghosh, S. Banerjee, S. Das, S. Ghosh, P. Dutta, A. Halder; *RSC Advances*, 2018, 8, 584-595.

# **Conference Publication:**

Interaction of Poly Acrylic Acid with Surfactants and Exploring the Role of β-CD; Conference: International Conference on Emerging Technologies for Sustainable Development (ICETSD'19); N. Patra, A. Mal, S. Das, S. Ghosh. (Conference Paper)

# Poster Presentation:

- Presented a poster at the 23<sup>rd</sup> West Bengal State Science and Technology Congress, 2016 on 28-29<sup>th</sup> February, 2016. (Topic: Effect of Salts on the Self-Aggregation Behavior of Surface Active Ionic Liquids (SAILs) and the Determination of Aggregation Number)
- Presented a poster at the National Seminar on Chemical Sciences: Today and Tomorrow (CSTT-2019) on March 14, 2019 under CAS II program organized by Department of Chemistry, Jadavpur University. (Topic: Interaction of Bromelain with Surfactants: A UV-Vis and Fluorescence Study).
- Presented poster at NATCOSEB- 2017 on November 10-12, 2017, jointly organized by ISSST and School of Chemistry, Sambalpur University, Odisha. (Topic: Mixed Micelle formation in an aqueous mixture of Surfactants: A Thermodynamic and Theoretical Study)

# Oral Presentation:

- Invited speaker at TSSRA on September 12, 2019, organized by Department of Chemistry and Chemical Technology, Vidyasagar University and ISSST, Kolkata (Topic: Aggregation of Surface Active Imidazolium Ionic Liquid in Aqueous Solution: Effect of Temperature and Salts).
- Presented oral in the 25<sup>th</sup> West Bengal State Science and Technology Congress, 2018 held on 4-5<sup>th</sup> March, 2018 at the Science City, Kolkata, organized by Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal. (Topic: Effect of Salts on the Self-Aggregation Behavior of Surface Active Ionic Liquids (SAILs) and the Determination of Aggregation Number)

# PAPER

Check for updates

**Cite this:** *Phys. Chem. Chem. Phys.*, 2022, **24**, 13738

# A detailed assessment on the interaction of sodium alginate with a surface-active ionic liquid and a conventional surfactant: a multitechnique approach<sup>†</sup>

Sourav Das and Soumen Ghosh (D\*

An investigation has been made on the interaction of a biodegradable anionic polyelectrolyte, sodium alginate (NaAlg), with two oppositely charged cationic surfactants, 1-hexadecyl-3-methyl imidazolium chloride ( $C_{16}$ MImCl) and 1-hexadecyl triphenylphosphonium bromide ( $C_{16}$ TPB), the former is a surface active ionic liquid (SAIL) and the latter a conventional surfactant over a wide concentration regime of the polyelectrolyte. Dual influence of electrostatic and hydrophobic interactions plays in this investigation when mixing surfactants with an oppositely charged polyelectrolyte. A number of different experimental techniques, e.g., conductometry, tensiometry, steady state and time resolved spectrofluorimetry, turbidimetry, isothermal titration calorimetry (ITC), dynamic light scattering (DLS), attenuated total reflection (ATR), high resolution transmission electron microscopy (HR-TEM) and fluorescence microscopy, have been implemented to get comprehensive information about the interaction of the oppositely charged polyelectrolyte and surfactants. Tensiometry study reveals the existence of several conformations of NaAlg influenced by different concentrations of surfactants titrated to it and these are abbreviated as critical aggregation concentration (cac), saturated concentration of polymer-surfactant complex ( $C_{\rm s}$ ) and finally extended critical micelle concentration ( $C_{\rm m}^{\rm s}$ ) due to the aggregation of the surfactant itself, appearing in chronological order from low to high concentrations of surfactants. Apart from tensiometry, these above concentrations have been well found and the values are well comparable when investigating polyelectrolyte-surfactant interaction by other physicochemical techniques as well. Irreversible phase separation of the oppositely charged polyelectrolyte-surfactant complex (PS-complex) occurs at higher polyelectrolyte concentration investigated here for both the surfactants in the vicinity of cac for  $C_{16}MImCl$  and near  $C_m^{*1}$  for  $C_{16}TPB$  and finally persists after further addition of surfactants above the formation of free micelles. Several bulk and interfacial parameters, viz., Gibbs free energy of micellization  $(\Delta G_{m}^{\circ})$ , enthalpy of micellization  $(\Delta H_{m}^{\circ})$ , entropy of micellization  $(\Delta S_{m}^{\circ})$ , degree of counterion binding ( $\beta$ ), surface excess at cmc ( $\Gamma_{max}$ ), area minimum ( $A_{min}$ ), surface pressure at cmc  $(\pi_{cmc})$ , pC<sub>20</sub>, packing parameter (P), hydrodynamic radius (r) and aggregation number (N<sub>a</sub>) of two surfactants both in the presence and absence of NaAlg, have been calculated for these investigated systems. Characterization of NaAlg, both surfactants and their individual complexes was performed using FTIR-ATR. DLS shows the distribution of size of polymer surfactant complexes over a wide range of surfactant concentrations at a fixed polyelectrolyte concentration, while HR-TEM study reveals not only the size of agglomerated clusters of the PS-complex but also its shapes. Images of NaAlg-surfactant complexes were also captured using fluorescence microscopy in solution phase. A strong PS-complex in the presence of  $C_{16}$ MImCl has been reported here over  $C_{16}$ TPB.

Received 14th January 2022, Accepted 5th May 2022

DOI: 10.1039/d2cp00221c

rsc.li/pccp

#### 1. Introduction

Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India. E-mail: gsoumen70@hotmail.com † Electronic supplementary information (ESI) available. See DOI: https://doi.org/ 10.1039/d2cp00221c

Surfactants form a specific type of aggregate in both aqueous and non-aqueous solvents at a threshold concentration, called critical micelle concentration (cmc).<sup>1-3</sup> Significant attention has been paid for decades until now<sup>4–14</sup> to the oppositely



View Article Online

Journal of Molecular Liquids 320 (2020) 114497



Contents lists available at ScienceDirect

# Journal of Molecular Liquids

journal homepage: www.elsevier.com/locate/molliq

# Studies on the self-aggregation, interfacial and thermodynamic properties of a surface active imidazolium-based ionic liquid in aqueous solution: Effects of salt and temperature



Sourav Das<sup>a</sup>, Nitai Patra<sup>a</sup>, Arnab Banerjee<sup>b</sup>, Bijan Das<sup>b,\*</sup>, Soumen Ghosh<sup>a,\*</sup>

<sup>a</sup> Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India <sup>b</sup> Department of Chemistry, Presidency University, Kolkata 700 073, India

#### ARTICLE INFO

Article history: Received 10 June 2020 Received in revised form 14 September 2020 Accepted 1 October 2020 Available online 9 October 2020

Keywords: Self-aggregation of surface active ionic liquid Conductometry Tensiometry Isothermal titration calorimetry Dynamic light scattering Steady-state and time-resolved fluorescence

#### ABSTRACT

The influence of four sodium salts (NaCl, NaBr, Na<sub>2</sub>SO<sub>4</sub>, and Na<sub>3</sub>PO<sub>4</sub>) on the self-aggregation, interfacial, and thermodynamic properties of a surface active ionic liquid (1-hexadecyl-3-methylimidazolium chloride, C<sub>16</sub>MImCl) has been explored in aqueous solutions by conductometry, tensiometry, spectrofluorimetry, isothermal titration calorimetry and dynamic light scattering (DLS). Analyses of the critical micellar concentration (cmc) values indicate that the anions of the added salts promote the self-aggregation of  $C_{16}$ MImCl in the order:  $Cl^- < Br^- < PO_4^{3-} <$  $SO_4^{2-}$ . Dehydration of imidazolium head groups, in general, governs the process of micellization of aqueous C<sub>16</sub>MImCl in presence of the investigated salts within the investigated temperature range (298.15–318.15 K), while the melting of iceberg takes the leading role below 303.15 K for the C<sub>16</sub>MImCl-Na<sub>3</sub>PO<sub>4</sub> system. The results indicate that addition of salt leads to a greater spontaneity of micellization, and that exothermicity prevails in these systems. Differential effect of the salts on the interfacial properties of  $C_{16}$ MeImCl has been interpreted on the basis of the coupled influence of the electrostatic charge neutralization of surfactants at the interface, and the van der Wa-als repulsion of surfactant tails and electrostatic repulsion of surfactant head groups. C<sub>16</sub>MelmCl has been predicted to form spherical micelles in presence of varying amounts of NaCl, Na<sub>2</sub>SO<sub>4</sub> and Na<sub>3</sub>PO<sub>4</sub>, while there occurs probably a transition in the micellar geometry from spherical to non-spherical shape when added NaBr concentration exceeds 0.01 mol.kg<sup>-1</sup>. Fluorescence studies demonstrate that a combined quenching mechanism is operative for the quenching of pyrene fluorescence in the investigated C<sub>16</sub>MImCI-salt systems. Micellar aggregation numbers obtained from Steady State Fluorescence Quenching method have always been found be somewhat smaller than those estimated from Time Resolved Fluorescence Quenching method. The order of instability of the C16MImCl-micelles ascertained from Zeta potential measurements conform to what has been inferred from the cmc values. The hydrodynamic diameters of C16MImCl-micelles, obtained from DLS studies, have been found to increase with increasing salinity of the solutions.

© 2020 Published by Elsevier B.V.

#### 1. Introduction

In recent years, considerable attention is being paid to the studies on ionic liquids with surface activity (commonly referred to as surface active ionic liquids) in colloid and interface science [1–9]. Surface active ionic liquids, like conventional surfactants, form self-aggregates [10–18] owing to the balance of hydrophilic and hydrophobic interactions above a particular concentration known as the critical micellar concentration (*cmc*) [19–22]. Current interest in the area of surface active ionic liquids stems from the ease of fine-tuning of the hydrophobic-ity of ionic liquid molecules by varying the length of the hydrocarbon

https://doi.org/10.1016/j.molliq.2020.114497 0167-7322/© 2020 Published by Elsevier B.V. chains, the type of the head-group or the nature and size of the counterions which might permit the modulation of the structure and the delicate dynamics of their self-aggregates for specific purposes. Additives could also result in the modification of the interaction and selfaggregation behavior of surfactants appreciably [23–35]. Studies on surfactant solutions in presence of a salt have been shown to provide important insight into various interactions prevailing in these solutions [32–36]. Surfactant-salt mixtures find widespread use in biological, technological, medical formulations, pharmaceuticals, enhanced oil recovery for the purpose of improved solubilization, suspension and dispersion [2]. Various organic and inorganic salts in combination with various surfactants are also used for this purpose [3–9,14–47]. However, there had been, so far, a very few attempts which explored the effect of salts on the self-aggregation properties of surface active ionic liquid solutions [48–52]. Keeping this in view, we have taken up a

<sup>\*</sup> Corresponding authors.

*E-mail addresses:* bijan.chem@presiuniv.ac.in.in (B. Das), gsoumen17@yahoo.co.in (S. Ghosh).

# Journal of chemical& engineering © Cite This: J. Chem. Eng. Data 2018, 63, 3784–3800

# Formation of Mixed Micelle in an Aqueous Mixture of a Surface Active Ionic Liquid and a Conventional Surfactant: Experiment and Modeling

Sourav Das,<sup>†</sup> Soumen Ghosh,<sup>†</sup> and Bijan Das<sup>\*,‡</sup>

<sup>†</sup>Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India <sup>‡</sup>Department of Chemistry, Presidency University, Kolkata 700 073, India

ABSTRACT: The aggregation behavior in binary mixtures of two surfactants, 1-hexadecyl-3-methylimidazolium chloride and dodecyltrimethylammonium bromide, has been investigated in aqueous solutions using conductometric, tensiometric, spectrofluorimetric, and zeta potential measurements. The counterion binding, aggregation number, and anisotropy of the micellar environment have been ascertained. The results have been analyzed on the basis of the theories of Clint, Rubingh, and Motomura. The thermodynamic parameters of the micellization process have been evaluated and discussed. The interfacial adsorptions of the mixed surfactants including their surface excesses and headgroup areas have also been evaluated. The existence of an attractive interaction among the constituents of the mixed surfactant systems investigated has been inferred.



#### 1. INTRODUCTION

Surfactants find widespread applications in both industry and everyday life.<sup>1-3</sup> Because of the amphiphilic chemical structure, surfactant in an aqueous solution has a preference toward interfacial adsorption at low concentration, whereas beyond a critical concentration, it self-aggregates to form an assembled structure whose size, shape, and average number of amphiphile per aggregated structure depend on the amphiphile concentration and other physicochemical parameters like temperature, presence of salt, etc. The critical amphiphile concentration required for the onset of the formation of an aggregated structure, referred to as a micelle, is called the critical micellar concentration (cmc).<sup>4–6</sup>

Mixed surfactant systems almost invariably manifest enhanced interfacial properties (e.g., decreased critical micellar concentration, higher surface activity, etc.) compared to those of their individual components.<sup>7-15</sup> This behavior of mixed surfactants allows their use in low concentrations in the cosmetic industry to avoid potential skin irritation.<sup>16,17</sup> It can also be beneficial for the environment, as the amount of surfactants released and hence their impact could be substantially reduced.<sup>18</sup> In the pharmaceutical field, the absorption of various drugs in the human body is found to be enhanced by mixed micelles.<sup>19-21</sup> Mixtures of cationic and anionic surfactants find use in cleansing products to facilitate their dissolution and improved tolerance of water hardness.<sup>22</sup> In view of the remarkable application potential and economic viability of mixed surfactant systems, a significant amount of research work has been devoted to searching and elucidating the physicochemical properties of these systems.

Recent years have witnessed<sup>23-31</sup> an upsurge of interest in the self-aggregation aptitude of a new class of ionic liquids, known as the surface active ionic liquids (ILs). This is because of the possibility of fine-tuning of the hydrophobicity of ionic liquid molecules by varying the length of the alkyl chains, the type of the headgroup, or the nature and size of the counterions which might permit the modulation of the structure and the delicate dynamics of their micellar aggregates for specific purposes.

The micellar and thermodynamic properties of the imidazolium-based surface active ionic liquids<sup>32,33</sup> and their mixtures with anionic, nonionic, zwitterionic, and gemini surfactants have been investigated in detail.<sup>34,35</sup> However, studies involving ILs and cationic surfactants are scarce with the exception of very few reports.<sup>36,37</sup> In general, mixtures of cationic surfactants have, so far, been paid relatively less attention.11,33,38

In this work, the micellar and thermodynamic behavior of the mixed micelles formed in the aqueous mixtures of two cationic surfactants-1-hexadecyl-3-methylimidazolium chloride (HDMimCl) and dodecyltrimethylammonium bromide (DTAB)-has been investigated in order to shed light on various interactions prevailing in this system. The two surfactants with different lengths of the alkyl groups have been selected such that they differ in their cmc's by 1 order of magnitude, capable of producing discernible effects in their mixtures.

Received: May 8, 2018 Accepted: August 28, 2018 Published: September 10, 2018

ACS Publications © 2018 American Chemical Society



http://pubs.acs.org/journal/acsodf



# Addressing the Exigent Role of a Coumarin Fluorophore toward Finding the Suitable Microenvironment of Biomimicking and Biomolecular Systems: Steering to Project the Drug Designing and Drug Delivery Study

Sandip Paul, Pritam Roy, Sourav Das, Soumen Ghosh, Pinki Saha Sardar,\* and Anjoy Majhi\*

Cite This: ACS Omega 2021, 6, 11878–11896

ACCESS More

Read Online

Article Recommendations

Supporting Information

**ABSTRACT:** The photophysics of 4-azidocoumarin (4-AC), a novel fluorescent coumarin derivative, is well established by the investigation of the alteration of the microheterogeneous environment comprising two types of systems: supra-molecular systems, cyclodextrins (CDs), and biomolecular systems, serum albumins (SAs). The enhanced emission of the ligand with the organized assemblies like  $\alpha$ -CD,  $\beta$ -CD, and  $\gamma$ -CD by steady-state and time-resolved fluorescence and fluorescence anisotropy at 298 K is compared with those of bovine serum albumin (BSA) and human serum albumin (HSA). The remarkable enhancement of the emission of ligand 4-AC along with the blue shift of the emission for both the systems are visualized as the incorporation of 4-AC into the hydrophobic core of the CDs and proteins mainly due to reduction of nonradiative decay process in the hydrophobic interior of CDs and SAs. The binding constants at 298 K and the single binding site are estimated using enhanced emission and anisotropy of the bound ligand in both the systems. The



marked enhancement of the fluorescence anisotropy indicates that the ligand molecule experiences a motionally constrained environment within the CDs and SAs. Rotational correlation time ( $\theta_c$ ) of the bound ligand 4-AC is calculated in both the categories of the confined environment using time-resolved anisotropy at 298 K. Molecular docking studies for both the variety of complexes of the ligand throw light to assess the location of the ligand and the microenvironment around the ligand in the ligand–CD and ligand–protein complexes. Solvent variation study of the probe 4-AC molecule in different polar protic and aprotic solvents clearly demonstrates the polarity and hydrogen-bonding ability of the solvents, which supports the alteration of the microenvironments around 4-AC due to binding with the biomimicking as well as biomolecular systems. Dynamic light scattering is employed to determine the hydrodynamic diameter of free BSA/HSA and complexes of BSA/HSA with the ligand 4-AC.

#### ■ INTRODUCTION

The microenvironment responsive ligands or drugs have been an emergent application in the recent times for investigations on drug designing or drug delivery research. Perturbation or alteration of the microenvironment surrounding a ligand/drug molecule is a prime concern of the current medical science and life science projects.<sup>1-9</sup> The nature of the microenvironment surrounding a ligand or drug or any other molecule has been explored by a variety of spectroscopic techniques, among which fluorescence spectroscopy seems to be the most widely used technique.<sup>2,10-12</sup> Fluorescent probes are powerful tools for biosensing and bioimaging because of their high sensitivity, specificity, high fluorescence intensity, excellent solubility, biocompatibility, and simple preparation.<sup>13</sup> Hence, development of fluorescent probes, specifically for biological settings and clinical settings, has attracted intense interest.<sup>13-16</sup> Till date, different kinds of fluorescent probes are commercially available and can be used in biological investigations.

Coumarin molecules, as a family of molecules, exhibit a wide range of fluorescence emission properties; hence, they are used as a fluorescent probe, and they also have a wide range of biological importance.<sup>17–26</sup> For example, azidocoumarins are known to be used in biomolecular photoaffinity labelling.<sup>27</sup> It may also be noted that photostability is an important criteria for a molecule to become a good fluorescent probe.<sup>28</sup> The use of fluorescent probes in some biomolecular systems and biomimicking systems, in many times, helps to amend some structural change of these systems, advocating the challenging roles of those probes toward the environments.<sup>3–6,9,29–32</sup>







© 2021 The Authors. Published by American Chemical Society 11878

doi.org/10.1021/acsomega.0c06152 ACS Omega 2021, 6, 11878—11896

Journal of Molecular Liquids 340 (2021) 116849

Contents lists available at ScienceDirect





journal homepage: www.elsevier.com/locate/molliq

# Detailed physicochemical interaction of inulin with some conventional surfactants and surface active ionic liquid



#### Nitai Patra<sup>a,b</sup>, Arpan Mal<sup>a</sup>, Sourav Das<sup>a</sup>, Soumen Ghosh<sup>a,\*</sup>

<sup>a</sup> Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700 032, India <sup>b</sup> Central Footwear Training Centre, Phani Bhusan Pathak Road, Pujali, P.S.- Budge Budge, 24 Parganas (S), Kolkata 700 138, India

#### ARTICLE INFO

Article history: Received 5 November 2020 Revised 2 June 2021 Accepted 25 June 2021 Available online 12 July 2021

Keywords: Inulin Surface active ionic liquid Cationic conventional and gemini surfactants Different techniques

#### ABSTRACT

Inulin, a carbohydrate based polymer has immense applications in industries of human aids. There are very limited interactive studies on this polymer although there are numerous applications. In the present study, interactions of inulin with different amphiphiles lead to interesting characteristics as identified by various physicochemical methods. Tensiometry, conductometry, isothermal titration calorimetry, turbidimetry, etc. have been employed to characterize the phenomenological changes. Cationic type amphiphiles, e.g., surface active ionic liquid, conventional, and gemini surfactants provide very fruitful interactions. These amphiphiles form small aggregates with the polymer at low concentration, coacervates at moderate concentration and free micelles at higher concentrations of the amphiphiles. Inulin-amphiphiles interaction has been supported by different morphological studies also.

© 2021 Elsevier B.V. All rights reserved.

#### 1. Introduction

Polymer-surfactant interactions are common and captivating in various fields, such as medicinal and pharmaceutical industries, cosmetics, detergency, drug encapsulation, enhanced oil recovery, paints, coatings etc [1–8]. Inulin, a non-structural, storage carbohydrate, heterogeneous polysachharide of fructose units, consists of chain-terminating glucosyl moieties and a repetitive fructosyl moiety, [9,10] which are linked by  $\beta(2, 1)$  bonds. That is why its caloric value is very low. The degree of polymerization (DP) of standard inulin ranges from 2 to 60. After removing the fractions with DP lower than 10 during manufacturing process, the remaining product is high performance inulin [11]. Inulin is found in the leeks, onions, wheat, asparagus (Asparagus officianalis) garlic, Jerusalem artichoke (Helianthus tuberosus) and chicory (Cichorium intybus) root [12,13]. This polymer has some typical contributions towards the health of human body by reducing the risk of diseases [14]. Inulin acts as prebiotics due to its nature of inhibiting the growth of pathogenic microorganism and it is used as a potentially treating colon dysfunction as it stimulates the growth of the beneficial bacteria (e.g., *biofidobacteria*) in the colon [15,16]. Inulin is also effective for its promotion of good digestive health, lipid metabolism, enhancement of mineral bioavailability, reducing growth of cancer and tumor cell growth [17–25]. It has been observed that there are

https://doi.org/10.1016/j.molliq.2021.116849 0167-7322/© 2021 Elsevier B.V. All rights reserved.

formations of coacervates in the polymer-surfactant interactions in many cases. The coacervates can be used for solubilization and encapsulation of lipophilic drugs. It is also convenient for the synthesis and delivery of nanoparticles [26]. Researchers have distinguished strongly interacting systems (polymers and surfactants with opposite charges) [27–30] from weakly interacting systems (usually neutral polymer and charged surfactant) [31-34]. There are examples of interactions of conventional surfactants as well as ionic liquids with different types of polymers, such as hydroxymethyl cellulose, carboxymethyl cellulose [29,35-38], carbohydrate polymers, viz., starch [39,40], amylose [41], amylopectin [42,43] etc. Interaction of inulin also has been shown in recent studies in aqueous and different solvent media [44,45]. However, there are infrequent studies on the interaction of inulin with amphiphiles [24]. In the present study, interaction of inulin has been performed with cationic amphiphiles of different types of head and tail groups. Cetyl pyridinium chloride (CPC), tetramethylene-1,4-bis(dimethyltetradecylammonium) bromide (14–4-14), 1-decyl-3-methyl imidazolium chloride [DMIM][Cl], 3-(N,N-Dimethylmyristylammonio) and propanesulfonate (DMAPS) have been used for the interaction with inulin. This study has been explored by the tensiometry, conductometry, isothermal titration calorimetry and turbidimetry measurements. The size and shape of the aggregated inulin-amphiphile were analysed by DLS, FESEM and TEM techniques.

<sup>\*</sup> Corresponding author. E-mail address: gsoumen70@hotmail.com (S. Ghosh).

ORIGINAL ARTICLE



# Theoretical Approaches on the Synergistic Interaction between Double-Headed Anionic Amino Acid-Based Surfactants and Hexadecyltrimethylammonium Bromide

Manas Barai<sup>1</sup> · Manas Kumar Mandal<sup>1</sup> · Habiba Sultana<sup>1</sup> · Emili Manna<sup>2</sup> · Sourav Das<sup>3</sup> · Kaushik Nag<sup>4</sup> · Soumen Ghosh<sup>3</sup> · Anuttam Patra<sup>5</sup> · Amiya Kumar Panda<sup>1</sup> <sup>(b)</sup>

Received: 1 October 2019 / Revised: 11 March 2020 / Accepted: 15 March 2020 © 2020 AOCS

Abstract Theoretical investigations on the micellization of mixtures of (i) amino acid-based anionic surfactants [AAS: N-dodecyl derivatives of aminomalonate, -aspartate, and -glutamate] and (ii) hexadecyltrimethylammonium bromide (HTAB), were carried out at different mole ratios. Variation in the theoretical values of critical micelle concentration (CMC), mole fraction of surfactants in the micellar phase (X), at the interface  $(X^{\sigma})$ , interaction parameters at the bulk/interface  $(\beta^R / \beta^{\sigma})$ , ideality/nonideality of the mixing processes, and activity coefficients (f) were evaluated using Rubingh, Rosen, Motomora, and Sarmoria-Puvvada-Blankschtein models. CMC values significantly deviate from the theroretically calculated values, indicating associative interaction. With increasing mole fraction of AAS ( $\alpha_{AAS}$ ), the magnitude of the  $(\beta^{\rm R}/\beta^{\sigma})$  values gradually decreased, considered to attributable to hydrophobic interactions. With increasing  $\alpha_{AAS}$ , the micellar mole fraction of HTAB  $(X_2)$  decreased insignificantly and

**Supporting information** Additional supporting information may be found online in the Supporting Information section at the end of the article.

- Amiya Kumar Panda akpanda@mail.vidyasagar.ac.in
- <sup>1</sup> Department of Chemistry, Vidyasagar University, Midnapore, West Bengal 721102, India
- <sup>2</sup> Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
- <sup>3</sup> Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
- <sup>4</sup> Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
- <sup>5</sup> Chemistry of Interfaces Group, Luleå University of Technology-SE-97187, Luleå, Sweden

 $X_2$  values were higher than those compared to AAS for all combinations, due to the dominance of HTAB in micelles. Micellar mole fraction at the ideal state of AAS ( $X_1^{\text{ideal}}$ ) differed from micellar mole fraction of AAS ( $X_1$ ), indicating nonideality in the mixed micellization process. Gibbs free energy of micellization ( $\Delta G_m$ ) values are more negative than the free energy of micellization for ideal mixing ( $\Delta G_m^{\text{ideal}}$ ), indicating the micellization process is spontaneous. With increasing  $\alpha_{\text{AAS}}$ , the enthalpy of micellization ( $\Delta H_m$ ) and entropy of micellization ( $\Delta S_m$ ) values gradually increased, which indicates micellization is exothermic. The different physicochemical parameters of the mixed micelles are correlated with the variation in the spacer length between the two carboxylate groups of AAS.

**Keywords** Mixed micelle · Synergism · Interaction parameter · Micellar composition · Activity coefficient

J Surfact Deterg (2020).

| Abbreviations                                                  |                                    |
|----------------------------------------------------------------|------------------------------------|
| $\alpha_{AAS}$                                                 | mole fraction of AAS               |
| x <sub>i</sub>                                                 | stoichiometric mole fraction       |
| $\beta^{\mathrm{R}}, \beta^{\mathrm{\sigma}}$                  | interaction parameters at the bulk |
|                                                                | and interface                      |
| $\Delta H_{\rm m}$ , $\Delta G_{\rm m}$ and $\Delta S_{\rm m}$ | changes in enthalpy, free energy   |
|                                                                | and entropy of micellization       |
| $\Delta G_{ m m}^{ m ideal}$                                   | free energy of micellization for   |
|                                                                | ideal mixing                       |
| max                                                            | surface excess                     |
| 4 <sub>min</sub>                                               | minimum molecular area of          |
|                                                                | the surfactant at the air-water    |
|                                                                | interface                          |
|                                                                |                                    |

# **RSC Advances**

# PAPER

Check for updates

Cite this: RSC Adv., 2018, 8, 584

Effect of an anionic surfactant (SDS) on the photoluminescence of graphene oxide (GO) in acidic and alkaline medium<sup>†</sup>

Prosenjit Saha,<sup>a</sup> Dinesh Kumar Pyne,<sup>a</sup> Srijon Ghosh,<sup>b</sup> Soumadip Banerjee,<sup>b</sup> Sourav Das,<sup>c</sup> Soumen Ghosh, <sup>b</sup> <sup>c</sup> Partha Dutta<sup>\*d</sup> and Arnab Halder <sup>b</sup>\*<sup>a</sup>

An anionic surfactant (SDS) modulates the photoluminescence of graphene oxide (GO) in both acidic and alkaline medium. In the acidic medium (pH  $\approx$  2), formation of hemi spherical surface micelles on the GO sheets creates a non-polar environment around the flourophoric moiety of GO and hinders the solvent relaxation. This leads to a significant 36 nm blue shift of the photoluminescence band, whereas in alkaline medium (pH  $\approx$  10), SDS interacts with GO sheets in a different way due to the presence of negatively charged carboxylate ions at the GO edges. The repulsion between the negatively charged GO sheets and the intercalation of SDS within the basal planes of GO may weaken  $\pi$ - $\pi$  stacking interaction which produces largely separate layers of GO. The largely separated GO sheets due to very weak stacking interactions among successive layers may behave almost like isolated functionalized GO, resulting in an enhancement of the photoluminescence intensity at 303 nm.

Received 1st November 2017 Accepted 16th December 2017

DOI: 10.1039/c7ra12024a

rsc.li/rsc-advances

#### Introduction

Graphene, a monolayer of sp<sup>2</sup>-hybridised carbon atoms with a two dimensional honey-comb sheet structure, and graphene based nano materials have become a popular research topic in nanomaterials science due to their unique optical and mechanical properties<sup>1-6</sup> and many technological<sup>7-9</sup> and biological applications,<sup>10</sup> since its discovery in 2004. Functionalized graphene sheets or graphene oxide (GO) obtained by treating graphite with strong oxidizers, was primarily considered only as a precursor for graphene, but as a result of oxidation, the band gap of graphene is enhanced and graphene oxide has drawn tremendous research interest for its optical properties<sup>11–18</sup> which are somehow limited for graphene because of its zero band gap. On the other hand due to the availability of several oxygen containing functional groups (epoxy, hydroxyl, carboxyl) on the surface and sheet edges<sup>19,20</sup> and high surface area, GO interacts with many organic, inorganic, biomolecules, polymers<sup>21-23</sup> and surfactants<sup>24-28</sup> to produce several GO based nanomaterials and nanocomposites. Adsorption of surfactants

applications in Li-ion battery electrodes<sup>29,30</sup> and metal-oxide films.<sup>31,32</sup> Introduction of electrostatic repulsive or steric factors increases the stability of the aqueous GO system.<sup>28</sup> This can be obtained by increasing the pH of the medium above the  $pK_a$  of the carboxylic groups through the utilization of electrostatic repulsion between the negative charges of carboxyl groups on the edges of the GO sheet.<sup>33–35</sup> But when the carbon to oxygen ratio is high, pH adjustment is not practically possible. In this situation, stability of the aqueous GO system may be enhanced by using surfactants. The charged head groups of adsorbed ionic surfactants may provide electrostatic repulsion or steric interaction. Considering this fact in mind, the different research groups investigated the stability of GO in aqueous medium in the presence of sodium dodecyl sulphate (SDS) by various methods and also studied the interaction between GO and SDS. Hsieh et al. observed the adsorption behavior of SDS on functionalized graphene sheet (FGS) by conductometric titration.<sup>27</sup> According to them, the surface of FGS is complete covered by monolayer adsorption of 12 µm SDS concentration, when FGS has carbon to oxygen ratio is 18 and they found the critical surface aggregation concentration (CSAC) for surface micelle formation on FGS as 1.5 mM.27 In another work, related to the stability of FGS in the presence of SDS by optical microscopy and UV-vis study, Aksay and coworkers showed that FGS achieved significant stability in aqueous medium above the monolayer adsorption concentration ( $\geq 40 \ \mu M$ ) of SDS.<sup>28</sup> Glover et al. reported the charge driven selective adsorption of SDS on graphene oxide by atomic force microscopy and showed that the amount of selective adsorption of SDS depends on the degree of

on the GO surface plays an important role for many practical

COYAL SOCIETY

View Article Online

<sup>&</sup>lt;sup>a</sup>Department of Chemistry, Presidency University, Kolkata – 700073, India. E-mail: arnab.chem@presiuniv.ac.in; Tel: +91 3340529846

<sup>&</sup>lt;sup>b</sup>Indian Association for the Cultivation of Science, Jadavpur, Kolkata – 700 032, India <sup>c</sup>Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata-700032, India

<sup>&</sup>lt;sup>d</sup>Department of Chemistry, Maharaja Manindra Chandra College, Kolkata – 700003, India. E-mail: par\_dut@yahoo.com; Tel: +91 9433464396

<sup>†</sup> Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra12024a

# Interaction of Poly Acrylic Acid with Surfactants and Exploring the Role of $\beta$ -CD

Nitai Patra, Arpan Mal, Sourav Das, and Soumen Ghosh\*

Centre for Surface Science, Physical Chemistry Section, Department of Chemistry, Jadavpur University Kolkata-700 032, India, Email:gsoumen70@hotmail.com/ patrasquare@gmail.com

**ABSTRACT:** Interaction of polymers with surfactant has extensive applications in pharmaceutical industries as well as in cosmetics, detergents, pesticides, and enhanced oil recovery. In this study, poly acrylic acid (PAA) has been used along with surfactants, such as pure Triphenyl tetradecyl phosphonium bromide (TTPB), pentamethylene-1, 4-bis (dimethyltetradecylammonium bromide) (14-5-14) to investigate the polymer-surfactant interaction in both aqueous and aqueous  $\beta$ -CD media.

#### **1. INTRODUCTION**

Studies on interaction of polymers with surfactant have extensive applications in industries, pharmaceuticals, cosmetics, detergents, pesticides, and enhanced oil recovery. There are specific interests on the polymer and ionic surfactant systems because of its typical physicochemical properties at different possible combinations. The basic principles of the interactions between polymer and surfactant are explored by Kwak et al.<sup>1</sup>, Goddard and Ananthapadmanabhan et al.,<sup>2</sup> and others.3-5 There are still controversies and uncertainties on the nature and mode of complex behavior in surfactant-polymer systems. Poly (acrylic acid), known as PAA, is a synthetic cross linked homo polyelectrolyte because it loses its acidic (carboxylic) protons at neutral pH of water. The association processes of linear poly (acrylic acid) polymers with surfactants have been explored by the measurement of adsorption,<sup>6,7</sup> surface tension,<sup>7</sup> fluorescence,<sup>8-11</sup> dye solubilization,<sup>8</sup> and conductivity<sup>8, 12</sup> methods. The interaction is mainly hydrophobic for anionic surfactant, and is favored for non-ionized polymer<sup>13</sup>. To maintain the electro neutrality conditions, the surfactant is accompanied by its counterions, which increase the osmotic pressure inside the aggregates and cause their swelling<sup>14</sup>. In the case of a cationic surfactant, the association process with poly (acrylic acid) may result in a phase separation when the carboxylic groups are neutralized by the cationic groups of the



surfactant.<sup>15, 16</sup> The interaction with a non-ionic surfactant is usually weak except for the association of poly (acrylic acid) with ethoxylated surfactants.<sup>8, 17–20</sup> In these systems, hydrogen bonding between the carboxylic groups and the oxygen of the ethylene oxide chain contributes to the aggregation. However, studies on the interaction of PAA and similar polymer poly (methacrylic acid) with cationic surfactants are scarce in the literature .<sup>16,21</sup> The effect of cyclodextrins on the surfactant-polymer complex is limited in the literature .<sup>22</sup> In this study, the effect of  $\beta$ -CD has been observed in the PAA-surfactant complex by the measurement of tensiometry.

#### **2. EXPERIMENTAL SECTION**

2.1. Materials. Triphenyl tetradecyl phosphonium bromide (TTPB) and βcyclodextrin ( $\beta$ -CD) (purity  $\geq 97\%$ ) were purchased from Caledon Laboratories, LTD, Canada. and Sigma Aldrich, respectively. Pentamethylene-1. 4-bis (dimethyltetradecylammonium bromide) (14-5-14) was synthesized using the standard procedure. Double distilled water (x 2-3 µS cm<sup>-</sup> <sup>1</sup> at 25°C) was applied for sample preparation. All the experiments were performed under a fixed temperature.

#### 2.2. Methods.

*Tensiometry*- Tensiometric measurements were done with a du Noüy tensiometer (Krüss, Germany), using a platinum ring detachment method. 5 mL of PAA/PAA+ $\beta$ -CD solution was