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ABSTRACT

In this dissertation a large volume of nonlinear wave phenomena in plasma has
been studied. We have carried out investigations pertaining to different wave modes
observed in plasma under different configuration. The applicability of such study
ranges from laser plasma interaction, astrophysical plasma, magnetospheric plasma,
semiconductor plasma etc. We have used analytical and simulation techniques to
obtain the results. In the process we have designed some mathematical and simula-
tion tools that will help the future researchers to investigate various other aspects of
plasma physics. In the process we have studied KdV equation, Burgers equations,
nonlinear Schrodinger equation and also came up with the modified versions. Am-
plitude modulation and the formation of envelope soliton in quantum plasma have
been studied with reference to laser plasma interaction and is presented in chap-
ters 2 and 3. The effects of quantum diffraction and exchange symmetry have been
also studied in magnetoplasma, the findings are presented in chapter 4. A semi-
Lagrangian method to study the nonlinear electrostatic waves in quantum plasma is
presented in chapter 5. We have also studied the dynamical system analysis, bifurca-
tion theory and stability analysis, Lyapunov exponent and chaotic scenario in various
plasma configuration and all these are presented in chapter 6. Resonant interaction
and it’s contribution towards harmonic generation in surface plasma waves observed
in vacuum-plasma interface has been studied and presented in chapter 7. The chap-
ter 8 deals with the wave-wave interaction in a semiconductor plasma where we have
used designed simulation codes. In chapter 9 the nonlinear evolution of stationary
structures has been presented in details with limiting and boundary conditions. This
is crucial for new researches in this field. Finally we have summarised our important
findings and also pointed out the future prospect of these findings and the scope for
application of the new technique developed in the present thesis.

xi





CHAPTER 1

INTRODUCTION

Plasma is the most abundant state of known matter in the universe. It has been said that

almost 99.9% of the matter in the universe is in the plasma state. This estimate may be

inaccurate, but it is undeniably an important reason for studying plasma dynamics to bet-

ter understand the various fields in our universe. Plasma physics is the study of ionized

gases containing charged particles and fluids interacting with self-consistent electric and

magnetic fields. It is a basic research topic with numerous applications, including space

and astrophysics, controlled fusion [1, 2], accelerator physics [3, 4] and beam storage [5,

6]. Plasmas are found in stellar interiors and atmospheres, gaseous nebulae, and much

of the interstellar medium. As soon as one leaves the earth’s atmosphere, one enters our

neighborhood and comes into contact with the plasma that makes up the solar wind and

the Van Allen radiation belts. A lightning strike, the gentle glow of the Aurora Borealis,

the conducting gas inside a fluorescent tube or neon sign, a slight degree of ionization in

a rocket exhaust, etc., are common contacts with plasmas.

1.1 Plasma Waves

Plasma is an electrically conducting, quasi-neutral fluid. It comprises electrons and a

single species of positive ions in the most straightforward instance. Still, it can also con-

tain several ion species, including negative and positive ions and neutral particles. Waves

in plasmas are due to the correlated motion of particles and the interplay of fields that

propagate in a plasma medium. Plasma particles interact through electric and magnetic

fields due to their electrical conductivity. This complex of particles and fields can sup-

port a wide range of wave events. A linear perturbation in space plasma can be reviewd

as a linear combination of the Eigen wave modes derived from the space plasma’s lin-
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Chapter 1. Introduction

ear wave dispersion relations. There is no interaction between these Eigen wave modes

under the linear superimposition assumption. As a result, the linear combination’s co-

efficients should not change over time. Nonlinear plasma dynamics is used to explore

the formation, evolution, propagation, and characteristics of the large amplitude quasi-

stationary nonlinear waves, structures, or turbulence commonly observed in the plasmas

and numerical simulations of space plasmas. The natural electric and magnetic field

holds the plasma particles. The electric and magnetic fields will fluctuate over time due

to motions within the plasma, and these variations will appear as plasma waves.

Plasma is rich in wave phenomena. We can find many important plasma properties

by studying the waves in plasma. Some nonlinear phenomena, such as the formation

of solitary waves and various forms of instability, involve waves of finite amplitude.

Again, since 99.9% of matter is in the plasma state, studying plasma provides an idea

of an astrophysical environment. For this reason, studying nonlinearity in plasma waves

for cosmological applications [7, 8, 9, 10] has greatly interested many scientists. It has

been observed that galactic plasmas [11] are multispecies plasmas with both positive and

negative charges. The existence of plasma electron-positron-ion (e-p-i) is found in black

holes, in the magnetospheric regions of neutron stars [12, 13, 14, 15], in the regions of

aurorae, etc. The e-p-i plasmas are also generated in several laboratory environments

[16, 17, 18]. Thus, during the last two decades, many authors have become interested in

studying nonlinear waves and the e-p-i plasma phenomenon [19, 20, 21, 22, 23, 24, 16,

17].

The space from the upper ionosphere to the solar system contains a fully ionized gas

of varied densities. Most of the ions are hydrogen, and the touch of helium and electrons

produces an overall neutral plasma. Magnetized plasma waves are generated around

magnetized planets (Mercury, Earth, Jupiter, Saturn, Neptune, Uranus) and propagate

in the magnetosphere. Frequencies well below the ion cyclotron frequency have three

possible wave modes. These are ’slow’, ’fast’, and ’Shear-Alfven modes’. Only high-

speed and Shear-Alfven modes exist for low-energy plasmas (about 10 eV).

2



Chapter 1. Introduction

”Fast” mode allows energy to propagate diagonally to the surrounding magnetic field

and disperse wave energy throughout the magnetosphere. It is a kind of magnetic force

wave (blast). In shear mode, energy is guided along the ambient magnetic field. It is a

transverse wave.

1.2 Instabilities in Plasma waves

The buoyant waves that travel across the tops of fluid bodies and crash upon bound-

aries all across the physical world are observed. The disturbances in the atmosphere that

cause what is known as the weather are equally common, but they are not always recog-

nized as waves. Wave phenomena are critical in the behavior of plasmas. According to

plasma physics, waves in plasmas are a network of related particles and fields that move

in a cyclically repeating pattern. A wide range of wave phenomena is supported by these

complex interactions of particles and fields. According to plasma physics, waves in plas-

mas are a complex interaction of particles and fields that move in a cyclically repeating

pattern.

The species that oscillates can be used to further categorize waves. The electron

temperature in most plasmas of interest is either comparable with or higher than the

ion temperature. This observation suggests that the electrons move much more quickly

than the ions because of their much smaller mass. The rapid motion of the electrons

determines the electron mode, but the ions can be assumed to be endlessly heavy and

therefore stationary. The stability of the plasma is a crucial area in plasma physics. A

plasma’s stability is typically only meaningfully examined when it has been determined

that it is in equilibrium. If there are net forces that will accelerate any portion of the

plasma, this is what ”equilibrium” investigates. If not, ”stability” determines whether a

minor disturbance will increase, oscillate, or be dampened.

A plasma instability is a region in the frequency/wavelength domain where turbu-

lence occurs due to changes in the characteristics of a plasma (e.g. temperature, den-

3
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sity, electric fields, magnetic fields). Such turbulence has great implications in space

based technology [25, 26], astrophysical [27] and laser base measurement [28]. Ex-

treme manifestations of space plasma instability are space storms [29, 30]. Examples of

complicated events involving quick disturbances and system reconfiguration on both the

macroscopic and microscopic scales include the onset of a solar flare or the growth of

a substorm. Plasma instabilities explains the importance of e-p-i plasma with relevance

to various astrophysical applications like in pulsar atmosphere to laboratory experiments

like tokamak.

1.3 Plasma Modeling

Plasmas behave like fluids and sometimes like a collection of individual particles—the

basic approaches for plasma modeling are analytic and some times numerical simula-

tions. There are a few primary kinds of plasma models: single particle, kinetic, fluid,

hybrid kinetic/fluid, gyrokinetic, and a system of many particles. Among them, fluid and

kinetic are two fundamental approaches.

The kinetic model is the most basic way to describe a plasma, yielding a distribution

function f(
→
x,

→
v, t) with independent variables

→
x and

→
v representing position and veloc-

ity, respectively. The electromagnetic fields are determined by the charges and currents

specified by the distribution functions using Maxwell’s equations. A kinetic descrip-

tion is obtained by solving the Boltzmann equation or, when an accurate description of

long-range Coulomb interaction is required, by the Vlasov equation, which contains a

self-consistent collective electromagnetic field, or by the Fokker-Planck equation, which

contains approximations to derive manageable collision terms. The fluid description

treats the large-scale properties of plasma involving mass, momentum, and energy trans-

port [31, 32].
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1.4 Hydrodynamic Model

Without taking into account microscopic events, we trace the mobility of small vol-

ume elements in the plasma in the hydrodynamic description. Average values are well-

centered because there are enough particles in the volume to prevent fluctuations from

significantly shifting the average values. In the same way, we assume that the average

fields considered to be acting globally on this same volume element account for the ef-

fect of the electric and magnetic micro fields produced by the charged particles in the

volume element on the macroscopic scale. Since the volume elements are so small, a

detailed spatial description can be provided. In comparison to calculations from the

kinetic theory, which are far more difficult to derive and interpret, the hydrodynamic

model allows us to characterize all the physical occurrences in the plasma in a relatively

comprehensive manner.

The charged particles in a plasma make up one (for example, the electrons, with

the ions remaining at rest and forming a continuous background, providing an effec-

tive viscosity to the electron motion) or more fluids (that of the electrons and that of

the ions). Each fluid’s motion is characterized locally by an average velocity
→
v , the

value of which is determined by incorporating the velocity distribution of the particles

contained in the volume element under consideration. The motion of the charged par-

ticles generates the electromagnetic fields
→
E and

→
B (for which the average local value

is retained (macroscopic fields), which are included in the equations of motion [33] in

a self-consistent manner. Furthermore, collisions are included in the model, which al-

ters the pre-determined motion defined by the superposition of the external and induced

fields.

1.5 Analysis of Plasma Waves and Instability

Plasma stability is an important consideration in the study of plasma physics. When

systems containing plasmas are in equilibrium, certain parts of the plasma can be per-
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turbed by the small perturbations that act on them. The system’s stability determines

whether the perturbation grows, vibrates, or disappears. Plasma can often be treated

as a fluid, and its stability is analyzed using hydrodynamics (HD) formulation. Since

HD theory is the most straightforward representation of plasma, HD stability is neces-

sary for stable devices used for fusion, especially magnetohydrodynamic (MHD) energy.

However, there are other types of instability—velocity space instability in systems with

magnetic mirrors and beams. Interesting things are observed due to stability effects.

Field-reversed configuration was predicted to be unstable by MHD but was observed to

be stable, probably due to kinetic effects.

Plasma instabilities are categorized into two general categories: (i) Hydrodynamic insta-

bilities and (ii) Kinetic instabilities.

1.5.1 Hydrodynamic Instabilities

In fluid mechanics, hydrodynamic stability is the field of analyzing fluid flow stability

and the onset of instability. The study of hydrodynamic stability aims to investigate

whether a given flow is stable or unstable and, if so, how these instabilities cause turbu-

lence. The theoretical and experimental foundations of hydrodynamic stability were laid

primarily by Helmholtz , Kelvin, Rayleigh and Reynolds in the 19th century [34, 35, 36,

37, 38]. These foundations have provided many useful tools for studying hydrodynamic

stability. These include Reynolds numbers, Euler equations, and Navier-Stokes equa-

tions. When studying flow stability, it is helpful to understand a more straightforward

system. It is an incompressible, non-viscous fluid that can develop into more complex

flows [38]. Since the 1980s, more computational methods have been used to model and

analyze complex flows.

To distinguish between fluid flow states, consider how the fluid reacts to a distur-

bance in the initial state [39]. These disturbances will be related to the system’s initial

properties, such as velocity, pressure, and density. Stable flow, any infinitely slight varia-

tion considered a disturbance, will not affect the system’s initial state and will eventually
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die down in time [39]. For a fluid flow to be considered stable, it must be stable con-

cerning every possible disturbance. This implies that no mode of disturbance exists for

which it is unstable [38]. On the other hand, for an unstable flow, any fluctuation will

have some noticeable effect on the system’s state. This would then cause the disturbance

to grow amplitude so that the system progressively departs from the initial state and

never returns [39]. This means that there is at least one mode of disturbance concerning

which the flow is unstable, and the disturbance will therefore distort the existing force

equilibrium [40].

Reynolds number (Re) is the critical tool used to determine the stability of a flow. A

dimensionless number gives the ratio of inertial and viscous terms [41]. In a physical

sense, this number is a ratio of the forces due to the fluid’s momentum (inertial terms)

and the forces arising from the relative motion of the different layers of a flowing fluid

(viscous terms). The equation for this is [39]

Re =
inertial
viscous

=
ρu2

µu
L

=
ρuL

µ
=
uL

ν

where ρ = density, u = velocity of the fluid flow, µ = dynamic viscosity - measures the

fluids resistance to shearing flows, L = characteristic length, ν = kinematic viscosity

and = µ
ρ
− measures ratio of dynamic viscosity to the density of the fluid.

The Reynolds number is useful because it can provide cut-off points for when the

flow is stable or unstable, namely the Critical Reynolds number Rc. As it increases, the

amplitude of a disturbance which could then lead to instability gets smaller [38]. It is

agreed that fluid flows will be unstable at high Reynolds numbers. A High Reynolds

number can be achieved in several ways, e.g., if µ is a small value or if ρ and u are high

values [39]. This means that instabilities will arise almost immediately, and the flow will

become unstable or turbulent [38].
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1.6 Analytical Studies

A plasma system can be described by a set of nonlinear partial differential equations

(PDEs). Computer simulation is a good way to model and test astrophysical processes.

In this way, the experimental data is explained in terms of the physics of the model, and

the computer model is improved compared to the experimental data. This cycle provides

a better understanding of the predictability and level of application of the study. Design

and program a series of simulations using astrophysical differential equations.

1.6.1 Methods for Study of Non-linear Waves in Space Plasma

Quasi-linear Approximation:

The quasi-linear approximation is useful for studying small but finite amplitude nonlin-

ear waves. The quasi-linear approximation preserves the first and second-order terms in

the Taylor expansion of the nonlinear equation. The quasi-linear approximation is often

used to study nonlinear phenomena due to wave interactions. The quasi-linear approx-

imation allows the study of nonlinear phenomena at many space and time scales. The

quasi-linear approximation solution can be a time-independent structure over a long time

interval but becomes a time-dependent structure over a short interval.

Pseudo Potential Method:

The pseudopotential method is often used to study solutions of nonlinear waves that

are stable over time. The pseudopotential method can help us find analytical solutions

to nonlinear equations with or without approximations of quasars. Unlike the standard

approximation, there is no standard procedure for determining the pseudopotentials of

fully nonlinear equations. Fortunately, the pseudopotential can be obtained in nonlinear

plasma physics based on energy flux conservation. If we consider solutions of non-

linear one-dimensional plane waves
(
∇ = x̂ ∂

∂x

)
which propagate at a constant speed,

then we can choose a moving frame such that the wave structure becomes stationary
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(time-independent, i.e., ∂
∂t

= 0). Thus, the set of partial differential equations (PDEs) is

reduced into a set of ordinary differential equations (ODEs). Since numerical methods

for solving ordinary differential equations are well established, one can always obtain

nonlinear-wave solutions by solving these ODEs numerically with different boundary

conditions. One may need to examine numerical solutions for many different parame-

ters and initial conditions to understand systematic changes in wave characteristics. So,

it is difficult to get a full dependency on numerical solutions. However, suppose the non-

linear wave equations can be reduced to equations similar to the equations of motion. In

that case, the so-called pseudopotential method can be used for exploratory analysis of

the solution space. The pseudopotential method can be used to study electrostatic and

electromagnetic waves in collision-free plasma.

Reductive Perturbation Method (RPM):

The perturbation theory results in an expression of the desired solution as a formal power

series in a ”small” parameter (called a perturbation series), quantifying the deviation

from the equilibrium that can be solved exactly. The primary term in this entire series

is the solution of the correctly solved problem. In contrast, the other words describe the

deviation in the solution due to the deviation from the initial problem. Formally, we have

for the approximation to the complete solution A, a series in the small parameter (here

called ”ϵ”), like the following:

A = A0 + ε1A1 + ε2A2 + · · ·

In this example, A0 would be the known solution to the precisely solvable initial prob-

lem, and A1, A2, ... represent the higher-order terms found iteratively by some system-

atic procedure. For small ε, higher-order terms in the series become successively smaller.

Next, the reductive perturbation method is presented as a solution that allows us to reduce

a general nonlinear hyperbolic system to a single, solvable nonlinear equation describing

the far-field of the system. The reductive perturbation method applied to more general

systems, including dispersion dissipation, shows that they can be reduced to the Burgers
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equation or the Kortweg-de-Vries (KdV) equation for long waves. Additionally, it is

demonstrated that the Schrodinger equation governs the far-field for the slow modulated

propagation of plane waves with extremely small amplitudes and that, for small but fi-

nite amplitudes, the general wave system can be reduced to a nonlinear Schrodinger type

equation, which we refer to as the general nonlinear Schrodinger equation.

Homotopy Perturbation Method:

The Homotopy perturbation method (HPM) is a semi-analytical method for solving lin-

ear and nonlinear differential equations. A system of coupled linear and nonlinear ordi-

nary/partial differential equations can also be solved using this method. In mathematics,

homotopy is a method of categorizing geometric regions by looking at the various kinds

of routes that can be created in the region. If one of two paths can be constantly de-

formed into the other while keeping the end points stable and staying inside its defined

region, the paths are said to be homotopic. The shaded zone in portion A of the figure

1.1 has a hole in it; while f and g are homotopic pathways, g′ is not homotopic to f or g

since it cannot be deformed into one of them without going through the hole and leaving

the territory.

In more technical terms, homotopy entails creating a path by continuously mapping

points in the range of 0 to 1 to points in the area, so that adjacent points on the interval

also correspond to adjacent points on the path. The continuous homotopy map h(x, t) is

a function of two variables x and t that is equal to f(x) when t = 0 and equal to g(x)

when t = 1. It associates with two acceptable paths, f(x) and g(x), and is a function of

two variables. The graphic (figure 1.1) depicts the intuitive notion of a steady distortion

as t increases from 0 to 1 without leaving the area. For instance, the homotopic function

for pathways f and g in portion A of the figure is h(x, t) = (1 − t)f(x) + tg(x); the

points f(x) and g(x) are connected by a straight line segment, and h(x, t) specifies a

path connecting the same two endpoints for each fixed value of t.

The homotopic pathways beginning and ending at a single place are of particular
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Figure 1.1: Homotopy

importance (see part B of the figure 1.1). A homotopy class is the collection of all such

pathways that are homotopic to one another within a particular geometric region. The

fundamental group of the region, whose structure differs depending on the type of area,

can be used to represent the set of all such classes in algebra. In a region without holes,

all closed pathways are homotopic, and there is only one element in the fundamental

group. All pathways that go around the hole the same amount of times are homotopic in

a region with a single hole. Similarly, we define a set of homotopy pathways and basic

regions on a general manifold in three or more dimensions. In higher dimensions, one

can also define higher dimensional homotopy groups.

In homotopy perturbation method or homotopy perturbation technique (HPT) first

splits the differential equations into two parts (linear and nonlinear). Next, we construct

the homotopy by considering the initial condition or initial approximation. Then, as the

homotopy parameter goes from 0 to 1, the initial state goes to an exact or approximated

analytic solution.

1.7 Computer Simulation

Computer simulation is a good way to model and test astrophysical processes. In this

way, the experimental data is explained in terms of the physics of the model, and the
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computer model is improved compared to the experimental data. This cycle provides a

better understanding of the predictability and level of application of the study. Design

and program a series of simulations using astrophysical differential equations. It has a

wide range of uses in astrophysics. The hybrid simulation combines the electromagnetic

equation with charged particle dynamics. This simulation shows the time evolution of

particles and fields in the presence of two backpropagating ion beams. The magneto-

hydrodynamic equation is a combination of the electromagnetic (Maxwell-Heaviside)

equation and the fluid equation. In general, MHD equations are non-linear. An ex-

ample of astrophysics is the modeling of Kelvin-Helmholtz instability. This happens

when there are fluids of various densities with velocity shear at the interface. Exam-

ples include atmospheric wind shear, lakes (winds on the water), and magnetosphere

boundaries. The simulation shows a computer model of the temporal evolution of the

magnetosphere interface. By linearizing the MHD equation, one can simulate the prop-

agation of Ultra-Low Frequency (ULF) waves in the magnetosphere.

1.8 Motivation

The motivation behind this doctoral work is to study the different nonlinear phenomenon

using analytic and simulation tools. I have studied various wave modes, stabilities, wave

interaction and stationary structure formations. Keeping in mind the limitations (both

technical and computation system facility) we have been motivated to design new sim-

ulation techniques and employed certain topological methods to carry out our investi-

gations. We have addressed problems in different fields like laser plasma interaction

(LPI), semiconductor plasma, astrophysical plasma, ionospheric plasma etc. This thesis

contains a variety of techniques and a plethora of applications of plasma physics. The

subsequent chapters will elaborate the works accordingly.
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CHAPTER 2

AMPLITUDE MODULATION AND SOLITON FORMATION OF AN INTENSE

LASER BEAM INTERACTING WITH DENSE QUANTUM PLASMA:

SYMBOLIC SIMULATION ANALYSIS

2.1 Introduction

In the field of fluid dynamics or nonlinear optics or plasma physics, modulational in-

stability (MI) or amplitude modulation (AM) is an interesting phenomena whereby an

initial periodic waveform undergo derivation which are reinforced by the nonlinearity

present in the system, generating spectral sidebands which eventually breakup the wave-

form (initially uniform) into a train of pulses [42, 43, 44]. Initially discovered and mod-

eled for periodic surface waves in 1967 [45], it was suggested that this mechanism is

probably the cause of rogue waves [46, 47]. This modulational instability occurs when

there is anomalous group velocity dispersion, where short wavelength (high energy)

pulses travel fast (with higher group velocity) than the less energetic pulses. In nonlin-

ear optics such phenomena is related with Kerr nonlinearity. This instability strongly

depends on the frequency of perturbation. The growth of instability is therefore fre-

quency dependent and an overall gain spectrum can be obtained analytically by starting

with the nonlinear Schrodinger equations (NLSE). The nonlinear Schrodinger equation

describe the evolution of the complex valued slowly varying wave envelope with space

and time.

Plasma is a very complex system. Different order of non linearity and dispersion are

seen to occur in plasma. As a result the complexity of the physical problem increases

manifold. To deal with such orders of nonlinearity and incorporating others effects dif-

ferent approaches have been attempted. Among them the common ones are the fluid

model and the particle model. In practice both methods have their limitations and ad-
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vantages. Over the past few years these models have found widespread usage and we

too will confine ourselves with the fluid picture. Plasma as we all knew is an extremely

heated soup of charged particles which manifest collective phenomena and also conform

to quasineutrality conditions. Dense matter in the plasma state manifest some additional

effects [48, 49, 50, 51]. Firstly the pressure experienced by the plasma is due to the rel-

ativistic degeneracy [52, 53] accounting for particle speeds closes to the speed of light.

Now it has been quiet interesting to study the effect of quantum mechanical tunneling

or other quantum effects in dense plasmas. Pioneers like Shukla [54, 55, 56], Man-

fredi [57, 58], Hass [59, 60] have done tome of works on quantum plasma. Often they

have used quantum hydrodynamic (QHD) model to deal with the quantum behaviour of

plasma particles. After them Misra [61, 62], Sahoo [63], Ghosh [64], Chandra [65, 66,

67, 68], Brodin [69], Bonitz [70, 71], Singh [72, 73] and others authors have made use

of the same hydrodynamics model to solve many problems. This model takes into con-

sideration the quantum statistical effect through the equation of state and the quantum

diffraction effect through the Bohm potential term. Many authors [74, 75] have made

use of this QHD model with certain additions and alterations [76] depending upon the

applicability of the model under different criteria. Since such a model includes terms in

the momentum equation, this equation is crucial in plasma dynamics. The pressure of

magnetic field introduce certain changes in the system. The inclusion of directionality,

the propagation vector and the electromagnetic interaction modifies the electrostatic pic-

ture. Considering the plasma as a dielectric medium which shields the electromagnetic

fields to modify it, a low power electromagnetic field can’t cause much visible change.

The electromagnetic radiation just reflects back for the interface. But with the advent of

high power and ultra fast laser beams there has been changes in this picture. A survey of

available literature [77, 78, 79, 80, 81] shows how plasma interacts with laser fed into it.

In many electrostatic situations where the phase speed is less than speed of light, some

wave particle resonant interaction occurs amounting to Lanbdau damping or something

of similar nature.
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Often the techniques or methods employed to solve the problems of this kind are

either analytical or computational. Both have their limitations. In analytic approach

there exists certain level of ingenuity but it can’t be scaled up and we have to contain

ourselves with few orders of approximations. The computational approach on the other

hand suffers from technical constrains and a high end super computer is the basic prereq-

uisite. In order to solve the issues of analytical solutions and computational technique we

make use of elements of topology and continuous mapping and take an attempt to solve

coupled partial differential equations (PDE). To our knowledge PDE has been solved in

few cases by employing homotopy perturbation technique (HPT). But coupled PDE has

not been solved by this method immense effort to solve our equations with symbolic

notation and not numerical values. In essence our method is computer aided analytical

method. The originality of the problem is inherent in the method employed here. In brief

the chapter is organized in the following manner. In the second section we provide with

the basic formulation with associated normalization. In the next section we make use of

symbolic computation and obtained solution for different orders of homotopy parameter

(p). Finally we check the convergence and discuss the results obtained and cross check

the results this obtained with other previous findings (analytical or computational).

2.2 Basic Formulations

Here we consider that the pressure exerted by particle at such high densities follow the

relativistic degeneracy pressure given by Chandrasekhar [52, 53]. Further we have con-

sidered a Gaussian distribution of density and beam profile in space. It is assumed to be

irradiated with a intense laser beam with a radial Gaussian cross section given by [77]

→
E = x̂E0e

− r2

r20 ei(k.r−ω.t) + c.c. (2.1)

Here, the quantities have usual meaning. Now assuming slow variation in laser beam

amplitude and employing Maxwell’s equations the magnetic field equation can be writ-
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ten as
→
B ≡ ŷ

kc

ω
E0e

− r2

r20 ei(k.r−ω.t) + c.c. (2.2)

We have assumed the electric field is coupled the initial unperturbed laser field and

accordingly small perturbations due to the beam plasma interaction is given by [77]
→
E=

→
E0 +

→
E1

where E0 and E1 are corresponds to initial value of the laser beam and unstable pertur-

bation (|E◦| ≫ |E1|) respectively. In this system we consider a dense plasma containing

relativistically degenerate electrons and relatively inertial ionic background satisfy neu-

tralizing criteria. The electrons are assumed to have a streaming along the direction of

motion, such that the speed is close to the speed of light and hence experience relativis-

tic effects. Now let an intense laser beam be introduce in the plasma. Here the laser is

called intense because if it were weak electromagnetic beam then plasma would shield

the electric field and behave as dielectric. Taking these factors into consideration the

dynamic equations describing the laser plasma interaction is given by

∂(γn)

∂t
+

→
∇ ·
(
γn

→
v
)
= 0, (2.3)

∂
→

(γv)

∂t
+

→
v ·

→
∇

→
(γv)= − e

m0

(
→
E+

→
v

c
×

→
B

)
−

→
∇ P

m0n
+

ℏ2

2m2
0

→
∇
(
∇2

√
n√

n

)
, (2.4)

(
∂

∂t
+

→
v ·

→
∇
)

→
E =

1

ϵ0

→
J. (2.5)

Here the pressure is ultra relativistic in nature

P =
1

8
(
3

π
)
1
3hc(n)

4
3 . (2.6)

In equations (2.3) and (2.4) γ is the streaming factor as considered by many authors [82].

16



Chapter 2. Amplitude modulation and soliton formation of an intense laser beam
interacting with dense quantum plasma: symbolic simulation analysis

For ease of mathematical treatment we use normalization so as to obtain dimensionless

differential equations. Therefore, using normalization scheme for field quantities x →

x ωp

vth
, y → y ωp

vth
, z → z ωp

vth
, t → ωpt, u → u

vth
, v → v

vth
, w → w

vth
, E → eE

m0vthωp

and n → n
n0

, where vth, ωp,m0 and n0 are the thermal velocity, plasma frequency, mass

of electron and initial density of plasma, we obtained the differential equations in the

normalized form and resolve into scalar components given by

∂(γn)

∂t
+
∂(γnu)

∂x
+
∂(γnv)

∂y
+
∂(γnw)

∂z
= 0, (2.7)

∂(γu)

∂t
+ u

∂(γu)

∂x
+ v

∂(γu)

∂y
+ w

∂(γu)

∂z
= −E +

k

ω
Ew − Au

∂

∂x

(
n

1
3

)
+
H2

2

∂

∂x

(
1√
n

(
∂2
√
n

∂x2
+
∂2
√
n

∂y2
+
∂2
√
n

∂z2

))
, (2.8)

∂(γv)

∂t
+ u

∂(γv)

∂x
+ v

∂(γv)

∂y
+ w

∂(γv)

∂z
= −Au

∂

∂y

(
n

1
3

)
+
H2

2

∂

∂y

(
1√
n

(
∂2
√
n

∂x2
+
∂2
√
n

∂y2
+
∂2
√
n

∂z2

))
, (2.9)

∂(γw)

∂t
+ u

∂(γw)

∂x
+ v

∂(γw)

∂y
+ w

∂(γw)

∂z
= −k

ω
Eu− Au

∂

∂z

(
n

1
3

)
+
H2

2

∂

∂z

(
1√
n

(
∂2
√
n

∂x2
+
∂2
√
n

∂y2
+
∂2
√
n

∂z2

))
, (2.10)

∂E

∂t
+ u

∂E

∂x
+ v

∂E

∂y
+ w

∂E

∂z
+ nu = 0. (2.11)

where Au = 1
2

(
3
π

) 1
3 h
m0vth

n
1
3
0 , H = ℏωp

m0v2th
. Now with such equations available for

solutions (analytical or computational) we will to proceed accordingly. As discussed in

the later part of the introduction we will construct homotopy and obtain our solutions

from it.
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2.3 Symbolic simulation

In plasma physics nonlinear phenomena are of great importance. Therefore, analytical

methods were initially tried such as perturbation with smallness parameters (often de-

noted by λ and ϵ). But in problems with strong nonlinearity, there is no smallness param-

eter at all and the approximate solutions obtained by reductive perturbation or multiple

scale perturbations, in most of the cases are valid only for extremely small values of

the smallness parameter finds limited application here. As long the system parameters

are small such a perturbation method is okay. But an universality of the perturbation

technique is not acceptable as there is no criteria on which the smallness parameter shall

depend. So such an analytical method need to be verified experimentally or numeri-

cally. With the upgradation of different mathematical software and the scope to employ

symbolic computations as in Matlab R2019, we attempted successfully to incorporate

our extended homotopy perturbation technique to get desired results. Unlike numerical

simulation where we feed into the problem numerical values, such that they evolve into

solutions that approximately describes the physical problem, symbolic simulation makes

use of mathematical functions that is is run in the program to give higher order analyt-

ical solution. This technique does not make numerical approximation and accurately

provides simulation results of the functions initially fed into the problem. The average

run time of the code is optimized so as to provide the solutions in a short period of time.

With our modest hardware facilities of 8GB RAM and 2.2 GHz processor we could

successfully make provisions for our symbolic simulation. In nutshell this technique is

the computer aided analytical solution of partial differential equations with boundary

conditions.

To brief the techniques let us consider the following non linear differential equation

A(
−
u)− f(

−
r) = 0, (2.12)
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with boundary condition

B(−u, ∂
−
u

∂n
) = 0, r ∈ Γ. (2.13)

Here A,B, f(r) and Γ are a general differential operator, a boundary operator, an an-

alytical function (which is previously known) and the boundary of the domain Ω. The

operator A can be divided into linear (L) and non linear part (N ) such that

L(−u) +N (
−
u)− f(

−
r) = 0 (2.14)

By employing basic homotopy principle, we construct the homotopy for this problem

as:

H(
−
v, p) ≡ (1− p)

[
L(−v)− L(−u0)

]
+ p

[
A(

−
v)− f(

−
r)
]
= 0, p ∈ [0, 1] . (2.15)

or equivalently

H(
−
v, p) ≡ L(−v)− L(−u0) + pL(

−
u0) + p

[
N (

−
v)− f(

−
r)
]
= 0 (2.16)

where
−
u0 is initial assumption satisfying the boundary condition (2.13). As the homotopy

parameter p changes from zero to unity the picture convolutes from
−
u0 (r) to

−
v (r)

(exact or approximated analytic solution). In topology, this is called deformation and

L(−v) − L(−u0), A(
−
v) − f(

−
r) are said to be homotopic. According to the HPT, we can

first use the embedding parameter p as a small parameter, and assume that the solutions

of equation (2.16) can be written as a power series in p:

−
v= p0

−
v
(0)

+p
−
v
(1)

+p2
−
v
(2)

+... (2.17)

To obtain solution of (2.16) we make use of equation (2.17) and expand A(
−
u) by Taylor

series in p and putting this expression in (2.16). Then equating the coefficient of like
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powers of p, we obtain equation which are easily solvable. Setting p = 1, the results in

the approximate solution of equation (2.16) takes the form

−
u= lim

p→1

−
v=

−
v
(0)

+
−
v
(1)

+
−
v
(2)

+... (2.18)

The convergence of the series (2.18) has been suggested by He [83, 84] requires :

1. The second derivative of N (
−
v) with respect to v must be small because the param-

eter may be relatively large, i.e., p→ 1.

2. The norm of L−1 ∂N
∂
−
v

must be smaller than unity so that the series converges.

2.4 Result

In the following figures (2.1)-(2.2) we visualize the velocity streamlines and the velocity

profile as well as electric field and density at different instances of time and for dif-

ferent initial density and laser wavelengths. From the figures, it appear that the laser

can propagate within the plasma to some extent and gradually ceases to cause any per-

turbations. With decreasing wavelength the laser penetrates less and shows bifurcation

(figure (2.3)). The streamline motions are intersecting in between. It shows clearly the

trapping of electrons graphically. Since we are just making projections with our gov-

erning equations, there is hardly any difference from the kinetic theory. Laser wakefield

accelerations can be easily understood from the figures. The streamlines show the lat-

eral extent perpendicular to laser propagation where the particles are influenced. The

interesting part of the figure is that the streamlines extend along propagation direction

but the electric field of the laser is not up to that level. The density fluctuations too do

not extend that far. A detailed study would reveal that there are electronic fluctuations,

but they are many orders smaller. The density fluctuations are less prominent due to the

shielding mechanism and the quasi-neutrality.
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Figure 2.1: (a) Streamline, (b) velocity profile (c) electric field and (d) density slices at
t = 1fs for n0 = 1028/m3, λ = 10−8m,T = 20 eV
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Figure 2.2: (a) Streamline, (b) velocity profile (c) electric field and (d) density slices at
t = 12fs for n0 = 1028/m3, λ = 10−8m,T = 20 eV
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Figure 2.3: (a) Streamline, (b) velocity profile (c) electric field and (d) density slices at
t = 12fs for n0 = 1028/m3, λ = 10−8m,T = 30 eV

Figure 2.4: (a) Velocity (b) electric field and (c) density surface evolution on x− z plane
at t = 8fs for n0 = 1027/m3, λ = 10−8m,T = 13 eV
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Figure 2.5: (a) Velocity (b) electric field and (c) density surface evolution on x− z plane
at t = 8fs for n0 = 1027/m3, λ = 10−10m,T = 13 eV

In figure (2.3) we see that after a certain level (n0 = 1028/m3, T = 30 eV ) the veloc-

ity profile bifurcates. The electric field also extends deep in the plasma and there is more

oblique fluctuation in density. This is attributed to some kind of dispersion phenomena

in which the velocity profile split up. Some kind of field particle resonant interaction

might be occurring in the background. Such filamentations is reported in intense laser

interacting with plasma [85, 86]. This can also produce instability producing zones of in-

tense laser intensity. Such studies have been carried out by Young et al [87, 88], Schmitt

[89] and Hercher [90].

In figures 2.1, 2.2 and 2.3 we find that the electric field, density and velocity profiles

acquire certain modulation which cause to exits once the laser enters the plasma. The

density profile takes the shape of humps and dips that corresponds to soliton or solitary

structures. If given sufficient time to observe, such modlations will repeat and from the

associated time scales we can claim that solitons with different temporalextent can be

generate such a situation is often repeated by workers who study laser plasma interaction

[91]. In a recent works by Song et al [91], it has been reported that optical solitons

(bright) are found in optical fibre lsaers. They have gone a step formed and showed

that breathers are generated and provided the nonlinear Schrodinger equation. Similar

breathers solitons are also an outcome of our theoretical results (figure 2.4 & 2.5).

In this work figures 2.4 and 2.5 predicts envelop solitons formation. The electric field

component shows initial modulations that originate and die out to reappear again with
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diminished amplitude. Such a attention obvious as plasma is nonlinear media and the

order of nonlinearity depends on the plasma density (via Debye shielding parameter).

A number of experimental observations support our theoretical claim. Our Homotopy

Assisted Symbolic Simulation (HASS) technique is newly developed by C. Das and S.

Chandra is a step forwards this direction. Since it makes use of topological perturba-

tions technique and to our knowledge no works has been done like this, we hope our

method holds immense potential to predict possible plasma effects that would be helpful

to design any future experiments. This can be also help full in potential studies on mode

locking [92, 93, 94]. Solitons observed in optical domain is nano structures and graphene

based system [95, 96, 97, 98] can be obtained theoretically by this technique (HASS).

Energy exchange phenomena [99] is the crucial aspect here. Such an exchange occurs

between electric field vectors and plasma particles and such an interactions becomes

more meaningful when we go for higher laser and ultra dense plasmas. We store similar

experiments works for future theoritical verification by our designed HASS technique.

2.5 Conclusion

To sum up, our symbolic simulation studies give a real picture of the physical problem

and opens up the door to analytically solve physical problem by making use of symbolic

computations. This technique far more superior than classical perturbations methods and

also do not require super computing facilities to obtain the results. In short the novelty of

such an advantageous analytical approach outnumbers the pros of other techniques com-

monly used. The results obtained here suggests oblique instability in finite beam plasma

system [100]. It can also provide a solution to transverse filamentations instability along

a short fire ball bunch [101]. It also shows micro bunching of plasma particles along

the direction of propagation of laser beam up to certain extent inside the plasma [102].

This kind of radiative compression triggers localized magnetic re-connection. Different

PIC simulation studies suggest trapping of electrons amounting the thermal acceleration
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[103]. Thus our HPT studies suggest that there is potential scope of symbolic simulation

in studying complex phenomena in dense laser plasma interaction.
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CHAPTER 3

NONLINEAR INTERACTION OF INTENSE LASER BEAM WITH DENSE

PLASMA

3.1 Introduction

In recent year inertial confinement fusion [104, 105, 106] and plasma heating technolo-

gies [107, 108] are in the news due to the potential application in fusion technology.

Often laser is fed into the system for such a purpose. When the intensity of laser beam

exceeds ≈ 1022 W/m2 the quiver velocity of the particles approaches the speed of light.

Further when the density of plasma is very high such that the equation of the state takes

into consideration the relativistic degeneracy factors [109, 65] the situation displays new

happening and further more there can be additional effects like instability [110], har-

monic production [111], vortices [112] etc. However, in laser plasma interactions the

density is such that the consideration of relativistic degeneracy is not so meaningful.

The pressure in such a system is thermal in nature. Therefore, in order to take into con-

sideration such factors we frame our governing equations accordingly. We assume the

plasma particles to form fluid species. Such streams display many wave phenomena and

in most of these cases there are associated instabilities [113]. The instabilities are not

always those which die out easily but can often grow into magnified proportion such

that the whole system becomes unstable [114]. Plasma being a highly complex system

shows different levels of nonlinearity [115, 116] such that these nonlinearities add up

to give stationary structure as solitary entities that propagate through the plasma. Now

there are also dispersive effects within the media that tries to straighter out the nonlinear-

ities. However, at some point these two might balance each other, and a modulated wave

envelope propagates in space and time. To start with the basic equations and thereby

taking perturbative pathway is old technique. Such technique hold goods for small per-
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turbations where approximation methods are justified, but these technique often lack the

appropriateness and universality. Some authors [72, 117, 118, 119] have used multiple

scale reductive perturbative techniques (RPT) that are limited to its applications and fails

to address the problem properly. Washimi and Taniuti [120] used RPT to study plasma

problem. Later Nishikawa et al [121], Ghosh et al [82], Chandra et al [67, 122], Shukla

and others [123, 124] have treaded the same path to address the problem. But in the

recent years He [83, 84] and others have made use of elements of topology and came

up with the homotopy perturbation method (HPM) in which the nonlinear differential

equations can be solve exactly (or approximated analytically) to obtain the final state

after starting from initial considerations with proper boundary conditions. It is somehow

related to mapping from the real space to an equivalent space where the convergence

criteria is accounted for. A research group from Turkey [125] have used HPM to solve

the Zakharov-Kuznetsov equation. Ma [126] have used of HPM for the Wu-Zhang equa-

tions in the fluid dynamics and come out with fascinating results. Moini [127] have used

the same technique to solve the PDE. In this chapter we went a step further to make

use of HPM to solve coupled PDE and obtained solution for different orders of the em-

bedding (homotopy) parameter. The final results give very beautiful results and match

with experimental outcomes [128]. The motivation behind such a work is to study the

modulation phenomena and the stability criteria. The chapter is organized as below: in

the next section we start with the basic dynamic equations governing the fluid motion of

plasma particles. Within this section we make use of normalization schemes for simpli-

fication of the problem. In the third section we construct homotopy befitting the problem

at hand and finally discuss the results to compare with works of other authors.

3.2 Basic formulation

We consider that at such high densities the pressure exerted by particles follow the ther-

mal pressure given by
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pe = nekBT (3.1)

where kB, T and ne are Boltzman constant, temperature and electron density.

Assuming the particles and laser profile follow the Gaussian pattern in transverse

direction in space, the plasma is considered to be irradiated with intense laser beam

given by [77]
→
E = x̂Eei(kz−ωt) + c.c., (3.2)

where E, k and ω are amplitude, wave number and frequency of the laser beam respec-

tively. Now assuming the slow variation for laser beam amplitude
(∣∣ 1
ω
∂E
∂t

∣∣≪ |E|
)

and

employing Faraday’s law of Maxwell’s equations the magnetic field is

→
B ≡ ŷ

kc

ω
Eei(kz−ωt) + c.c., (3.3)

where c is the velocity of light. The wave equation for the electric field of the laser beam

that governs the propagation of laser beam is given by

(
∇2 − 1

c2
∂2

∂t2

)
→
E=

1

µ0

∂
→
J

∂t
, (3.4)

where
→
J is the plasma current density.

The electric field is assumed to be coupled with the initial perturbed laser as small

perturbation due to beam plasma interaction
→
E=

→
E0 +

→
E1, where E0 and E1 are cor-

respond to initial value of the laser beam and unstable perturbation (|E0| ≫ |E1|) re-

spectively. The perturbed terms are incorporated in E1. As per RPT E1 has different

order terms of perturbation expressions, but here in HASS we some them up together

and while employing it will expand series. Assuming the ions to be extremely heavy

as compared to electrons providing the neutralizing background the fluid equations for
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electrons are as follows [77, 129]

∂ne

∂t
+

→
∇ ·
(
ne

→
Ve

)
= 0, (3.5)

(
∂

∂t
+

→
Ve ·

→
∇
)

→
Ve= − e

me

(
→
E +

→
Ve

c
×

→
B

)
−

→
∇ pe

mene

, (3.6)

(
∂

∂t
+

→
Ve·

→
∇
)

→
E =

n e
→
Ve

ϵ0
+
[
c

→
∇ ×

→
B−

→
E
(→
∇ ·

→
Ve

)
−

→
∇ ×

(→
Ve ×

→
E
)
+
(→
E·

→
∇
) →
Ve

]
(3.7)

Here, e &
→
Ve = (ue, ve, we) denotes charge and velocity of electron and we take

thermal pressure which is given by Eqn. (3.1). The justification of ignoring ion motion is

due to the fact that the electrons respond to the beam field easily and set into oscillations,

whereas the ions being impartially heavy do not set into oscillation and can be justified

to be forming a neutralizing background.

For simplicity of the problem we use the following normalization scheme x→ x ωp

vth
,

y → y ωp

vth
, z → z ωp

vth
, t → ωpt, ue → ue

vth
, ve → ve

vth
, we → we

vth
, E → eE

m0vthωp
and

ne → ne

n0
, where vth, ωp,me and n0 are the thermal velocity, plasma frequency, mass of

electron and initial density of plasma, and the dynamic equations in normalized scalar

forms are given as

∂ne
∂t

+
∂(neu)

∂x
+
∂(neve)

∂y
+
∂(newe)

∂z
= 0 (3.8)
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∂ue
∂t

+ ue
∂ue
∂x

+ ve
∂ue
∂y

+ we
∂ue
∂z

= −E +
k

ω
Ewe −

1

ne

∂ne
∂x

(3.9)

∂ve
∂t

+ ue
∂ve
∂x

+ ve
∂ve
∂y

+ we
∂ve
∂z

= − 1

ne

∂ne
∂y

(3.10)

∂we
∂t

+ ue
∂we
∂x

+ ve
∂we
∂y

+ we
∂we
∂z

= −k

ω
Eue −

1

ne

∂ne
∂z

(3.11)

∂E

∂t
+ ue

∂E

∂x
+ ve

∂E

∂y
+ we

∂E

∂z
+ neue = 0. (3.12)

We have reduced Eqn.(3.7) into scalar form and simplified with additional considera-

tions (i) ignoring magnetic fluctuations implying the balance between conduction current

and displacement current. (ii) Further considering
→
∇ ×

→
E = 0, i.e. assuming uniformity

in electric field and restraining our work in studying the fluctuation in the z component,

the simulation studies were carried out in the following section. The above set of coupled

PDEs when solved properly will give the solution for the field quantities.

3.3 Symbolic simulation

In complex plasma physics where a lot of nonlinear phenomena exists, reductive per-

turbation technique or Fourier methods are employed for the analytical part. In such a

case small scale perturbation are easily solvable with varied orders of approximations.

Further, where numerical methods are employed, the problem suffers from other mathe-

matical disadvantages. But for numerical simulation often a high end computing facility

is required. With the advances of available software and the introduction of symbolic

method in Matlab R2019 we could design a technique with our modest computer facility

(8 GB RAM, 2.2 GHz processor) that incorporates the analytical functions and provides

results in terms of such functions with the aid of computers. Introducing elements of

topology we make use of homotopy perturbation method (HPM) to solve coupled PDE.
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To brief the techniques- let us consider the following non linear differential equation

D(
−
U)− f(

−
r) = 0 (3.13)

with boundary condition

B(
−
U ,
∂

−
U

∂n
) = 0, r ∈ Γ. (3.14)

Here D,B, f(r) and Γ are a general differential operator, a boundary operator, an an-

alytical function (which is previously known) and the boundary of the domain Ω. The

operator D can be divided into linear (L) and non linear part (N ) such that

L(
−
U) +N (

−
U)− f(

−
r) = 0 (3.15)

By employing basic homotopy technique, we construct homotopy

H(
−
V , p) ≡ (1− p)

[
L(

−
V)− L(

−
U0)

]
+ p

[
D(

−
V)− f(

−
r)

]
= 0,

p ∈ [0, 1] .

(3.16)

or equivalently

H(
−
V , p) ≡ L(

−
V)− L(

−
U0) + pL(

−
U0) + p

[
N (

−
V)− f(

−
r)

]
= 0 (3.17)

where
−
U0 is initial assumption satisfying the boundary condition (3.14). As the homo-

topy parameter p changes from zero to unity the picture convolutes from
−
U0 (r) to

−
U (r)

(exact or approximated analytic solution). In topology, this is called deformation and

L(
−
V)−L(

−
U0), D(

−
V)− f(

−
r) are called homotopic. According to the HPM, we can first

use the embedding parameter p as a small parameter, and assume that the solutions of
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Eqn. (3.17) can be written as a power series in p:

−
V= p0

−
V

(0)

+p
−
V

(1)

+p2
−
V

(2)

+... (3.18)

To obtain solution of Eqn. (3.17) we make use of Eqn. (3.18) and expand D(
−
V) by Taylor

series in p and putting this expression in Eqn. (3.17). Then equating the coefficient of

like powers of p, which are easily solvable (ref. Appendix chapter A). Setting p = 1, the

results in the approximate solution of Eqn. (3.17) takes the form

−
U= lim

p→1

−
V=

−
V

(0)

+
−
V

(1)

+
−
V

(2)

+... (3.19)

The convergence of the series (3.19) has been suggested by He [83, 84] requires :

1. The second derivative of N (
−
V) with respect to

−
V must be small because the pa-

rameter may be relatively large, i.e., p→ 1.

2. The norm of L−1 ∂N

∂
−
V

must be smaller than one so that the series converges.

Figure 3.1: (a) Streamline and velocity profile (b) density slices and (c) electric field at
t = 45fs for n0 = 1026/m3, λ = 10−7m,T = 1 eV

3.4 Result and discussion

In this section we will try to interpret the results based on the simulation results obtained

by HASS method. In the figures mainly the velocity streamlines, the density volume
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Figure 3.2: (a) Streamline and velocity profile (b) density slices and (c) electric field at
t = 50fs for n0 = 1026/m3, λ = 10−8m,T = 1 eV

Figure 3.3: (a) Streamline and velocity profile (b) density slices and (c) electric field at
t = 90fs for n0 = 1025/m3, λ = 10−7m,T = 1.2 eV

Figure 3.4: (a) Streamline and velocity profile (b) density slices and (c) electric field at
t = 120fs for n0 = 1025/m3, λ = 10−7m,T = 1.2 eV
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Figure 3.5: (a) Streamline and velocity profile (b) density slices and (c) electric field at
t = 50fs for n0 = 1025/m3, λ = 10−7m,T = 1.2 eV

Figure 3.6: (a) velocity surface evolution (b) density contour (c) electric field surface
evolution at t = 400 fs, n0 = 1024/m3, λ = 10−7m,T = 1 eV

Figure 3.7: (a) velocity surface evolution (b) density contour (c) electric field surface
evolution at t = 520 fs, n0 = 1024/m3, λ = 10−7m,T = 1 eV
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slice and the electric field have been depicted. The results are observed at different

instants and for different values of laser wavelength, plasma temperature and density.

Figure (3.1) shows that starting with an initial density of 1026 m−3 and plasma tem-

perature of 1 eV with laser wavelength 10−7 m there appears a very small order response

along the direction of laser propagation which may be said to be trapping of particles,

majority particles diverge outward and this transverse widening is due to the initial re-

sponse of the particles with the laser fields. The particles cannot respond fast to transport

the input energy into the bulk of the plasma. The density volume slice (figure (3.1).(b))

support this claim as the transverse widening has not yet appeared. Likewise in figure

(3.1.(c)), the electric field is not much modulated as we will find in the later figures.

However, very soon, i.e. at 50 fs, [ figure (3.2)] with same density and temperature,

but with more energetic laser (λ = 10−8 m) the initial modulation in velocity stream-

line become prominent. The particle density and the laser fields however shows more

modulations and an enhanced widening. This is due to the reaction from the bulk of the

plasma where energy localization appear and the transverse dispersion is reduced. The

laser beam propagates more into the bulk but there are more frequent modulations as the

frequency of the beam increases ten times.

Figure (3.3) shows the corresponding plots for lower density (≈ 1025 m−3) and

slightly higher temperature T = 1.2 eV . Here we find an appearance of spatial ar-

rangement of density. Here the streamlines are less diverging implying the fact that

at moderate plasma density and given enough time (t = 90 fs) the bulk provides a

transverse pressure so that the divergence is reduced. Given sufficient time (120 fs) in

figure (3.4) the density volume slice have more prominent modulations. Accordingly

the electric fields also acquire higher modulated values reflecting on the fact of particle

localization in the bulk plasma. However we find an additional fact that there is an ini-

tial rarefaction in the density at the point where the laser is fed. Apparently it appears

that the density at the input is reduced due to Coloumb repulsion that occurs when the

particles interacts with the laser fields.
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Figures (3.6) and (3.7) correspond to later instants of time t = 400 fs and t =

520 fs. Other parameter like initial density is 1024/m3, λ = 10−7m and T = 1 eV . We

find that the lateral broadening appears, though such a broadening lags with the propa-

gating beam. The velocity of particles acquire a gradual decrease along the propagation

direction (z-axis). Modulations however exists, but there is a gradual drop in the dc

value. The profiles of the electric field confirm the fact that the momentum of particles

influence the particle densities and thus alter the electric field of the laser beam inside

the plasma.

We therefore observe that three factors determine the widening of laser beam and

its propagation in the plasma, viz. the plasma density, the plasma temperature and the

laser energy. All these parameters affect in a complex phenomena, mainly the energy of

laser beam and the particle density. It is inferred that energy exchange and some kind of

resonant interaction are play during the process.

3.5 Conclusion

To conclude we successfully introduce a symbolic simulation technique to study the am-

plitude modulation of electrostatic waves in dense plasma. The novelty of the work is in

the technique and the correspondence of the results with earlier researchers [130, 131,

132, 133]. The employing of homotopy was suggested by He [83, 84] and apart from

our previously published works [134], no work has been done to solve coupled PDE

with HPM. We consider our work to be first of its kind where we have further gone a

step ahead to make use of homotopy assisted symbolic simulation ( HASS) technique

and obtain the results. The best part of the work is the bypassing of mathematical ap-

proximation and overcoming the limitations of numerical methods. The results obtained

here corresponds to some findings by other authors [135]. It matches with the temporal

evolution reported by earlier work [135, 136, 137, 138, 139, 140].
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EFFECTS OF EXCHANGE SYMMETRY AND QUANTUM DIFFRACTION

ON AMPLITUDE MODULATED ELECTROSTATIC WAVES IN QUANTUM

MAGNETOPLASMA

4.1 Introduction

Degenerate matter is a highly dense state of matter are generally composed of Fermions

which satisfy the Pauli Exclusion principle and therefore must occupy states of higher

kinetic energy. Such degenerate matter in dense stellar environments include electrons,

protons, neutrons etc. and is often found in astrophysical plasma and other dense stellar

objects where gravitational pressure is so extreme that quantum mechanical effects are

significantly important. In the evolutionary state of stars like white dwarfs and neutron

stars, the thermal pressure is not enough to prevent gravitational collapse. Such degen-

erate matter is usually modeled as an ideal Fermi gas or some variants of it, an ensemble

of non-interacting Fermions. In quantum physics, the exclusion criteria prevents iden-

tical Fermions to occupy same quantum states. From statistical physics we know that

lowest energy levels are filled up even at non-zero temperature. Such a full degener-

acy amounts to pressure which is non-zero even at absolute zero temperature [141, 142,

143]. Increasing the density (which can be done by either adding more particles or re-

ducing the volume) forces the particles into higher quantum state . In such a situation,

a compression force is required which gets manifested by a resisting pressure . This

kind of degeneracy pressure does not depend upon temperature but on the density and

keeps the dense stars in equilibrium. Degenerate matter with Fermions (whose energy

become more than the rest mass energy) acquire velocities close to the speed of light,

and are known to experience relativistic degeneracy. Noted scientists like A. Eddington

[144, 145, 146, 147], Norton [148], Smith [149], R. Fowler [48, 49, 50, 51] , A. Milne
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[150, 151, 152, 153], Koester [154], S. Chandrasekhar [155, 52, 156, 157, 53] have done

celebrated works on the concept and properties of degenerate matter in stellar bodies. It

was due to the pioneering works of S. Chandrasekhar on relativistic degenerate stellar

mass and the associated pressure that we are able to study different phenomena in stellar

entities.

With reference to the previous works on stellar evolution we know that if plasma is

cooled and the pressure on it increased simultaneously, it will not be possible to com-

press the plasma any further due to the constraint in Pauli exclusion principle. In such a

highly compressed state, there is no extra space for any particle and therefore its location

is defined with certainty. Now if the uncertainty in location is almost absent, then accord-

ing to Heisenberg uncertainty principle there will be extreme high level of momentum

uncertainty. When such a situation is attain, the high uncertainty in momentum allows

the particle to attain high kinetic energies, or in other words the particles move very fast.

So it can be concluded that when a system is compressed to confine the particles into a

very small volume, a tremendous force is required to control its momentum. Unlike a

classical situation where the pressure is proportional to the temperature by the Clapeyron

equation, here in the degenerate matter the pressure is given by Chandrasekhar [53] as:

Pe = (πm4
ec

5/3h3)
[
Re(2R

2
e − 3)

√
1 +R2

e + 3 sinh−1Re

]
(4.1)

where Re = pFe/mec = [3h3ne/8πm
3
ec

3] Now under limiting conditions, for plasma

with weak relativistic degeneracy the pressure is given by

Pe =
1

20
(
3

π
)
2
3
h2

me

(ne)
5
3 , (for Re → 0) (4.2)

and for plasma with ultra relativistic degeneracy the pressure is given by

Pe =
1

8
(
3

π
)
1
3hc(ne)

4
3 , (for Re → ∞) (4.3)
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In the former case (Eqn.(4.2)) the plasma can be treated as an ideal Fermi gas to a

great extent; whereas in the latter situation (Eqn. (4.3)) (where the density is very high)

the particles are forced into quantum states with relativistic energies and the pressure

goes accordingly. Although every dense matter experiences both thermal and relativistic

pressure, it has been noted that in commonly encountered gases thermal pressure dom-

inate over the relativistic degeneracy pressure, and the latter may be ignored. However,

degenerate matter though have thermal pressure at such high densities, the relativistic

degeneracy pressure dominates primarily. In an ordinary Fermi gas, electrons occupy

the majority of energy levels and electron degeneracy is observed. In the core of stars,

once hydrogen forming stops, the mass is due to the positively charged carbon and he-

lium nuclei, floating in a sea of electrons. Such matter do not obey ordinary gas laws.

White dwarfs are not luminous because they produce energy, rather they radiate off the

huge energy stored in them. When such matter is very closely packed, the particles

position themselves right up against its neighbor and the degenerate gas behave simi-

lar to a solid in such cases. Therefore, the kinetic energies are quite high and the rate

of collision is quite low. Under such situation the degenerate matter (here electrons )

can travel great distances at velocities approaching the speed of light. Unlike common

matter where temperature becomes an external manifestation of the kinetic energy, in a

relativistically degenerate matter , the pressure only depend on the speed of degenerate

particles. Interestingly adding heat does not increase the statistical speed of electrons,

because they are stuck in fully occupied quantum energy levels. However, the masses of

an object with electron degeneracy has an upper limit known as the Chandrasekhar limit

[53], beyond which the degeneracy pressure can not prevent the collapse of the object.

Celestial bodies below this limit (1.44 solar mass) are the white dwarfs and above which

it is either a neutron star (supported partially by neutron degeneracy pressure) or a black

hole.

In physics and particularly plasma physics, the exchange interaction or exchange

correlation is a quantum mechanical effect that occurs between identical particles (here
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Fermions). Though such an interaction term may be a part of the equation of motion or

force, it is not a force in real sense as it lacks a force carrier. However, such effect is due

to the exchange symmetry of wave function of identical particles. Both Fermions and

Bosons experience such exchange interaction. In case of particles obeying the Fermi-

Dirac statistics such interactions is sometimes called Pauli repulsion, due to the associ-

ated exclusion principle. Now the effect of this exchange interaction is manifold. When

the wave function of quantum particles overlap, due to this exchange interaction the ex-

pectation value of distance may increase (for Fermions) or decrease (for Bosons). It is

also responsible for ferromagnetism. However there is no classical analogue to this phe-

nomenon. In case of plasma which contain Fermionic particles the exchange interaction

may be electron-electron repulsive interaction, electron-proton attractive interaction and

proton-proton repulsive interaction. The exchange interaction is a direct consequence

of the symmetry of the wave functions. Such exchange interaction are also observed in

solid as well as in the presence of magnetic field. In these cases the spin of the particles

are crucial in determining the effects. In magnetized plasma’s therefore the exchange

interactions are more important. The coulomb exchange interaction is a function of the

dielectric constant, density and effective mass of the plasma particles. As discussed pre-

viously space plasma (especially those in the case of neutron star, white dwarfs and other

celestial objects) have very high density and the temperature is very low (ultra cold). In

such a domain quantum effects come into play. There are intense magnetic field in and

around these astrophysical objects. Therefore the plasma particles (Fermions major-

ity) experience exchange interaction. The high density therefore causes a number of

quantum phenomena, viz. relativistic degeneracy, exchange interaction as well as the

quantum diffraction effect (through the Bohm potential term).

In space plasma, large number of wave phenomena of various origin has been ob-

served. Some of them are the electron-acoustic (EA) waves, ion-acoustic (IA) waves,

dust-acoustic (DA) waves which are lowfrequency waves whereas there are electron

plasma waves, Langmuir wave, shocks, as well as in instabilities and vortices therein.
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Various space plasma phenomenon which are constantly reported by numerous space

agencies and observatories therefore require a solid theoretical explanation. Studies in

space plasma nowadays have incorporated the quantum domain and the latest model is

the quantum hydrodynamic (QHD) model developed by Haas [59, 60], Manfredi [57,

58], Shukla [54, 55, 56] and others [122, 134]. Researchers have included correction

terms will proper justification in the dynamic equations. The pressure in the momen-

tum equation include quantum terms as well as classical ones. A. Pavel [158] have

included theexchange interaction term in the quantum hydrodynamic model. Initial re-

searchers like Kuznetsov [159] Kuz’menkov [160], Fedoseev [161, 162], Kuz’menkov

[160], Faddeev [163], Sulem et al. [164] and others have developed many particle quan-

tum hydrodynamic (MPQHD) model to analyze different phenomena. In the nonlinear

paradigm one of the interesting description is the envelop soliton [a nonlinearly mod-

ulated envelope wave packet]. Apart from the extended quasiperiodic solutions, the

(integrable) nonlinear Schrodinger equation (NLSE) provides stationary profile envelop

solitons which are localized structure bearing the from of an envelop excitation that is

localize in space. It confines within itself modulated localized electrostatic carrier wave

oscillations [164, 165]. Localized envelope solitary structure has been observed by space

missions and observatories. Such structures may be either a bright type in which a pulse

shaped, slowly oscillatory localised structure forms with gradually vanishing bound-

aries originating from the modulation of the initial waves; or it may be a negative pulse

shaped localized disturbance like a propagating electron potential dip etc. If the poten-

tial is zero it is a dark soliton, whereas if it is finite yet has low compare to the other

density/potential values, it is called a gray type. A harmonic (linear) wave evolves into

a nonlinear multi soliton structure by the modulation instability (MI). Initially the non-

linear effect is first manifested as simple superposition of linear harmonic oscillation of

the carrying wave, and then over time evolves from the weak perturbations until finally

the wave collapse. There may be intermittent structures in the from of solitary structure

in the electrostatic waves where the non-linearity generated is balanced by any kind of
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group dispersive mechanism. In plasmas modulational instability has been studied by

numerous authors. In recent years Shukla [54, 55, 56], Misra [61, 62], Bhowmik [166],

Goswami [118, 167], Sarkar [168, 169], Singh [72, 73], Paul [117], Ghosh [82, 64],

Sahoo [63], Chandra [66, 67, 68, 65], and others have studied the MI and solitary waves

in quantum plasmas.

A survey of the available literature shows that modulation instability in an electron

acoustic wave including electron-exchange correction and relativistic degeneracy in a

magnetized quantum plasma has not been investigated so far. The motivation of the

present chapter is to study the amplitude modulation of the electron acoustic waves with

quantum diffraction effect (Bohm potential), Relativistic degeneracy pressure, electron

exchange interaction taking all at a time. This work is important because studies on

quantum plasma often do not include the exchange symmetry term. Further when such

plasma have wave phenomenon within it (as here we have electron acoustic wave) due to

non-linear effect as well as dispersive phenomena, the wave amplitude undergoes mod-

ulation and forms envelope soliton . The instability of such modulation and the growth

on different parameters are of prime interest both theoretically as well as experimentally.

The amplitude modulated waves often give rise to certain instabilities that are signature

of the plasma. A proper understanding of the phenomena may also help to predict any

new happening that might be crucial to the space plasma investigations of this day and

the future.

In this chapter we considered a two component electron-ion plasma with relativistic

degeneracy pressure, exchange interaction potential, quantum diffraction effect as well

as the presence of magnetic field. The chapter organized in the following manner: in

§4.2 we come up with the set of basic dynamic equations. We use reductive perturba-

tion technique (RPT) and Fourier method to derive the linear dispersion relation relating

frequency (ω) with wave number (k) as well as the group velocity of the wave (Cg) that

will contribute to the formation and provides envelop soliton. In §4.3 we derive the

non-linear Schrodinger equation which provides the key to amplitude modulation and
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the instability therein. We discuss the result and the dependence on various parameters

through the graphs in §4.4. To support our explanation, we study the dynamical proper-

ties of the amplitude modulated electrostatic waves (§4.4). In §4.5, we carry out a study

based on homotopy perturbation and analyse the evolution of the potential function with

space and time. Finally, in §4.6 we conclude with a note on the outcome of our finding

and a brief overview of our future investigations.

4.2 Basic Equations

We consider a two component dense quantum plasma containing inertia-less electrons

and inertial ions. We consider the streaming motion of the plasma particles. Due to its

low inertia the electron attain high velocity due to the relativistic degeneracy which can

be close to the speed of light there by introducing a relativistic factor γe for the velocity

and density in the electron equations. The basic sets of dynamic equations governing the

particle motion are given as the set of continuity Eqns. (4.4),(4.5) for electrons and ions

as well as momentum Eqns. (4.6),(4.7) for these two species.

∂ (γene)

∂t
+

→
∇ ·
(
γene

→
ve

)
= 0 (4.4)

∂ni

∂t
+

→
∇ ·
(
ni

→
vi

)
= 0 (4.5)

0 =
e

me

[
→
∇ φ+

1

c

→
ve×

→
B

]
−

→
∇ pe

mene

+
1

me

→
∇ Uxce +

ℏ2

2m2
eγe

→
∇
(
∇2√ne√

ne

)
(4.6)

∂
→
vi

∂t
+
(

→
vi ·

→
∇
)

→
vi= − e

mi

→
∇ φ−

→
∇ pi

mini

(4.7)

∇2φ =
e

ϵ0
(ne − ni) (4.8)
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where φ, nj ,
→
vj, mj, pj ,c, Uxce are the electrostatic potential, number density, veloc-

ity, mass, pressure, velocity of light in vacuum and interaction exchange potential for

the j th species namely j = i (ion) , e (electron). The exchange correlation potential for

electrons is given by [170]

Uxce = −0.985
e2

ϵL
n

1
3
e

[
1+

0.034

n
1
3
e α∗

B

ln
(
1+ 18.37n

1
3
e α

∗
B

)]
(4.9)

where ϵL is the effective dielectric constant, n0e is the equilibrium densities of the elec-

tron species and α∗
B = ϵLℏ2

m∗
ee

2 is the Bohr radius.

For simplicity Eqn. (4.9) we can be written as

Uxce = −1.6
e2

ϵL
n

1
3
e + 5.65

ℏ2

me

n
2
3
e (4.10)

since 1.837n
1
3
e α∗

B << 1.

Here we taking ultra relativistic degeneracy pressure for electron and fermi pressure

for ion are given by

pe =
1

8

(
3

π

) 1
3

hcn
4
3
e (4.11)

pi =
EFi
3n0i

n3
i (4.12)

We now normalize the quantities by x → ωpi

Cs
x, t → ωpit, φ → eφ

EFi
, nj → nj

ni0
, vj →

vj
Cs

, here subscript ’0’ denotes at equilibrium state for the jth species. For simplicity we

reduce our three dimensional equation into an one-dimensional problem and the set of

scalar fluid equations are

∂ (γene)

∂t
+
∂ (γeneve)

∂x
= 0 (4.13)

∂ni
∂t

+
∂ (nivi)

∂x
= 0 (4.14)
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0 =
∂φ

∂x
+
ve⊥
ρs

− λ1n
−2
3
e
∂ne
∂x

+ λ2n
−1
3
e
∂ne
∂x

+
H2

2γe

∂

∂x

(
1

√
ne

∂2
√
ne

∂x2

)
(4.15)

∂vi
∂t

+ vi
∂vi
∂x

= −∂φ
∂x

− ni
∂ni
∂x

(4.16)

and
∂2φ

∂x2
= (ne − ni) . (4.17)

where EFi = ℏ2
2mi

(3π2n0)
2
3 is the ion Fermi energy, ve⊥ is velocity of the electron

along y-axis, ωpi =
√

e2Z2n0

miϵ0
, (Z atomic number) is the ion plasma frequency, Cs =√

EFi

mi
is the quantum ion acoustic speed, ωpe =

√
e2n0

meϵ0
is the electron plasma frequency,

ωci =
eB0

mic
, H =

ℏωpi

Cs
√
meEFi

, ρs =
cEFiωpi

eB0Cs
, Ae = 1

8EFi

(
3
π

) 1
3 hc, λ1 = 4

3
Ae +

1.6e2n
1
3
0

3ϵLEFi
and

λ2 =
3.77ℏ2n

2
3
0

meEFi
. Here density of plasma ≈ 1028 − 1032 per m3, temperature T few Kelvin

and H denotes quantum diffraction parameter which is the ratio of energy associated

with single plasmon to the ion Fermi energy. The magnetic fields help in constraining

the motion in the direction of the field and therefore help us to study the fluctuations

along and perpendicular to the field.

4.3 Linear and nonlinear analysis

Derivation of the Linear Dispersion relation::

Let us consider that both the electrons and ions respond to the varying part of the

field quantities. Starting with a linear approximation for the electronic interactions,

the ions participate and it tries to restore the disturbances created. The field quanti-

ties ne, ni, ve, ve⊥, vi & φ constitute the five components U (n)
l (ξ, τ) of a dynamical state

46



Chapter 4. Effects of exchange symmetry and quantum diffraction on amplitude
modulated electrostatic waves in quantum magnetoplasma

vector U .

Ul = U
(0)
l +

∞∑
n=1

ϵn
∞∑

l=−∞

U
(n)
l (ξ, τ) exp[il(kx− ωt)] (4.18)

here k is wave number and ω is frequency and ϵ is a small parameter, with subjected to

the reality condition U (n)
−l = U

(n)∗
l (here * denote complex conjugate), where

U
(0)
l =



1

1

u0

0

0


(4.19)

We expand U near equilibrium state as

ne = 1 +
∞∑
n=1

ϵn
∞∑

l=−∞

n
(n)
e,l (ξ, τ) exp[il(kx− ωt)],

ni = 1 +
∞∑
n=1

ϵn
∞∑

l=−∞

n
(n)
i,l (ξ, τ) exp[il(kx− ωt)],

ve = u0 +
∞∑
n=1

ϵn
∞∑

l=−∞

v
(n)
e,l (ξ, τ) exp[il(kx− ωt)],

ve⊥ =
∞∑
n=1

ϵn
∞∑

l=−∞

v
(n)
e⊥,l (ξ, τ) exp[il(kx− ωt)],

vi =
∞∑
n=1

ϵn
∞∑

l=−∞

v
(n)
i,l (ξ, τ) exp[il(kx− ωt)],

φ =
∞∑
n=1

ϵn
∞∑

l=−∞

φ
(n)
l (ξ, τ) exp[il(kx− ωt)].

(4.20)

Such an method involving about the different harmonics is known as the Fourier tech-

nique. We assume that u(0)l and u(n)l are slowly varying with time (t) and position (x),

i.e. they are function of a set of new stretched variable ξ and τ given by ξ = ϵ (x− Cgt)

and τ = ϵ2t.
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Here the smallness parameter ϵ helps us to identify the various harmonic and ordered

terms in the perturbation analysis, and Cg is the normalized group velocity.

Applying this above expansion (4.20) to the Eqns. (4.13)-(4.17) and equating both

sides the coefficients of ordered harmonic i.e. exp[i(kx−ωt)], exp[2i(kx−ωt)] and the

terms independent of (kx−ωt) (i.e. zeroth harmonic) and neglecting 2nd & higher order

perturbation of perpendicular velocity of electron, we identify each groups of equations

as set-I, set-II, and set-III respectively. To solve this sets of equations(I, II, III) we

introduce the following perturbation for field variables .

ψ = ψ(1) + ϵψ(1) + ϵ2ψ(2) + ... (4.21)

Solving the lowest order ϵ (i.e. n=1) equations for l = 1, we get from equations (4.13) -

(4.17) as

n
(1)
e,1 = A11φ

(1)
1 , n

(1)
i,1 = B11φ

(1)
1 , v

(1)
e,1 = C11φ

(1)
1 , v

(1)
i,1 = D11φ

(1)
1 , (4.22)

where he coefficients A11, B11, C11, D11 are given in Appendix §B.1. Solving this above

relations for the five field quantities we get the linear dispersion relation as

ω2 =
3k2 + k2 (1 + k2)

(
λ1 − 2λ2 +

H2k2

4γ3

)
3 + k2

(
λ1 − 2λ2 +

H2k2

4γ3

) (4.23)

where γ1 = u0
2c2
, γ2 = 1− u20

2c2
, γ3 = 1 +

3u20
2c2

, using approximate expansion.

It describes the quantum mechanical counter part of the classical electron plasma wave

dispersion relations with correlation terms arising from relativistic degeneracy, electron

exchange interaction and quantum diffraction parameter. The value of H is quite impor-

tant as it distinguishes a quantum phenomena from it classical counterpart (for H > 1,

it is quantum and H < 1 it is semi classical regime). Eqn. (4.23) boils down to the lin-

ear dispersion relation is the classical case with slight modifications. In the regime with
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higher wavelength values, i.e. lower wavenumber (k), the higher order terms in k may

be neglected. Further in classical plasma there are no exchange correlation effects and

quantum diffraction terms. So with reference to Eqn. (4.23) we put λ1 = λ2 = H = 0

and ignoring higher terms in k we get ω2 = k2 which has the usual sound speed form.

So we can easily comment the correspondence between quantum and classical picture.

Derivation of Nonlinear Schrodinger equation::

Going to the next higher order terms we obtain the group velocity term as

Cg =
dω

dk
(4.24)

The first harmonic quantities in the second order perturbation relations i.e. for n = 2, l =

1 (given Appendix §B.3) , we can write the field quantities in terms of ∂φ
(1)
1

∂ξ
as

n
(2)
e,1 = iA21

∂φ
(1)
1

∂ξ
, n

(2)
i,1 = iB21

∂φ
(1)
1

∂ξ
,

v
(2)
e,1 = iC21

∂φ
(1)
1

∂ξ
, v

(2)
i,1 = iD21

∂φ
(1)
1

∂ξ
,

φ
(2)
1 = iE21

∂φ
(1)
1

∂ξ
, (4.25)

The coefficients A′′
21, B

′′
21, C

′′
21&D

′′
21 are given in Appendix §B.4. From here we get

the expression for group velocity as

Cg =
ω

k
+

2 (ω − k)

k2

(
(ω + k)

− ω

k
.
12γ3(ω

2 − k2) + (k4 + k2 − ω2k2) (γ3 (−6 + 2λ1 − 4λ2) + 9H2k2)

γ3 (4λ1 − 8λ2) + 3H2k2

)
(4.26)

which is in the extended form.

Further collecting coefficients for n=2, and l=2, we get the second order terms in second
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order harmonics as

n
(2)
e,2 = A22

(
φ
(1)
1

)2
, n

(2)
i,2 = B22

(
φ
(1)
1

)2
,

v
(2)
e,2 = C22

(
φ
(1)
1

)2
, v

(2)
i,2 = D22

(
φ
(1)
1

)2
,

φ
(2)
2 = E22

(
φ
(1)
1

)2
. (4.27)

where A22, B22, C22 &D22 are given in Appendix §B.6. It is found that from the field

quantities from second order zeroth harmonic we can not determine the field quantities

completely, we need to go 3rd order (n = 3) zeroth harmonic (l = 0), by doing so that

we obtained

n
(2)
e,0 = A20 | φ(1)

1 |2, n(2)
i,0 = B20 | φ(1)

1 |2,

v
(2)
e,0 = C20 | φ(1)

1 |2,

v
(2)
i,0 = D20 | φ(1)

1 |2, and φ
(2)
0 = E20 | φ(1)

1 |2 (4.28)

where A20, B20, C20, D20 & E20 are given in Appendix §B.8.

Equating the coefficient of ϵ on all terms obtained for 3rd order (n=3) for first

harmonic(l=1) and imposing compatibility condition we obtained the desire non-linear

Schrodinger equation as

i
∂φ

∂τ
+ P

∂2φ

∂ξ2
+Q | φ |2 φ = 0 (4.29)

Here φ(1)
1 = φ and the group dispersion coefficient (P) and nonlinear coefficient (Q) are

given by P = q1
r

and Q = q2
r

, where

q1 =
(W + 1)

(k2 − ω2)
(D21(ω − kCg) +B21(k − ωCg) + kE21)

+2kWE21 −
2(kγ3 +W )

k(4λ1γ3 − 8λ2γ3 + 3H2k2)

(
(2λ1 − 4λ2 + 9H2k2)A21 −H2k2A11 − 6γ3E21

)
,
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q2 =
k(W − 1)

(k2 − ω2)
(kD22D11 + kD20D11 + ωB11D20 + 2ωB11D22 + ωB20D11) +W (E20 + E22),

r =
(W + 1)(kD11 + ωB11)

ω2 − k2
,

W =
12γ3(ω

2 − k2)− k(4λ1γ3 − 8λ2γ3 + 3H2k2)

k(4λ1γ3 − 8λ2γ3 + 3H2k2)(1− k2(ω2 − k2)) + 12γ3(ω2 − k2)
.

(4.30)

We can obtained the solution of NLSE (4.29) in form as given bellow [169]

ϕ =

√(
β

P
+ α2

)
P

Q
· sech

[{√
β

P
+ α2

}
(ξ − 2αPτ)

]
exp{i(αξ + βτ)} (4.31)

where α and β are real number.

Figure 4.1: Linear dispersion characteristics (ω vs k) plot for different values of u0 with
B0 = 100T (a) n0 = 1028/m3 (b) n0 = 1030/m3 and (c) n0 = 1032/m

3

4.4 Result and discussion

Numerical plots of analytical results::

In this section we analyze graphically the linear dispersion relation and the nonlinear

Schrodinger equation with different numerical values of the plasma parameters. De-

pending upon the normalization criteria our reduced quantities have specific range of

values and accordingly our numerical plots are obtained. In figure 4.1, we plot the lin-

ear dispersion graphs for different density of plasma particles. We observe that as the
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Figure 4.2: Group velocity (Cg) vs k plot for different values of u0 with B0 = 100T (a)
n0 = 1028/m3 (b) n0 = 1030/m3 and (c) n0 = 1032/m

3

Figure 4.3: Dispersive coefficient (P ) vs k plot for different values of u0 withB0 = 100T
(a) n0 = 1028/m3 (b) n0 = 1030/m3 and (c) n0 = 1032/m

3

Figure 4.4: Stability domain (PQ) vs k plot for different values of u0 with B0 = 100T
(a) n0 = 1028/m3 (b) n0 = 1030/m3 and (c) n0 = 1032/m

3

density increases the slope of the dispersion characteristics reduces slightly. However,

there is not much change due to streaming velocity (u0). The figures (4.1)a, (4.1)b and
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Figure 4.5: Growth rate (|Q|) vs k plot for different values of u0 with B0 = 100T (a)
n0 = 1028/m3 (b) n0 = 1030/m3 and (c) n0 = 1032/m

3

Figure 4.6: Wavenumber corresponding to maximum growth rate of instability (P
Q

) vs k
plot for different values of u0 with B0 = 100T (a) n0 = 1028/m3 (b) n0 = 1030/m3 and
(c) n0 = 1032/m

3

Figure 4.7: Spatio-temporal evolution of stable modulated waveform (a) α = 0.01, β =
20, n0 = 1028/m3 (b) α = 0.01, β = 20, n0 = 1030/m3 (c)α = 0.0052, β = 20, n0 =
1032/m3
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Figure 4.8: Phase space plot for (a) n0 = 1028 (b) n0 = 1030(c)n0 = 1032 with k =
0.2, u0 = 0.01c, B0 = 100T

Figure 4.9: Phase space plot for (a) n0 = 1028, k = 0.01 (b) n0 = 1030(c)n0 = 1032, k =
0.01 with u0 = 0.1c, B0 = 100T

Figure 4.10: Superperiodic propagating waves ψ vs η plot for (a) different n0 (per m
3)

k = 0.2, u0 = 0.01c, B0 = 100T (b) different u0 with n0 = 1030/m3, k = 0.2, u0 =
0.1c, B0 = 100T and (c) different k with n0 = 1032/m

3
, u0 = 0.01c, B0 = 100T
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Figure 4.11: Spatial and temporal variation of amplitude of the potential ϕ for (a) k = 0.1
(b) k = 0.3 (c) k = 0.5 with n0 = 1030, u0 = 0.01c, B0 = 100T

Figure 4.12: Spatial and temporal variation of amplitude of the potential ϕ for (a) k = 0.1
(b) k = 0.3 (c) k = 0.5 with n0 = 1032, u0 = 0.01c, B0 = 100T

(4.1)c corresponds to normalised frequency vs normalised wavenumber plot with equi-

librium density ranging from 1028/m3 to 1032/m3. The magnetic field is taken 100T

as per stellar environment data. In figure 4.2 group velocity is plotted as a function of

wavenumber. We find that there is a dip in the value and the group velocity altogether

have a negative value. This negative value signifies that compared to the initial wave

velocity, the wave group is left more and more behind the waveframe. The more phase

lagging happens at some specific values of wavenumber. This might be due to the fact

that at certain values of wavenumber the particle are trapped in their positions and cannot

move forward. Two possible explanation to this phenomenon are (i) either the particles

cannot respond quickly and take up momentum from the wave field; or (ii) they have al-
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ready tunneled out from the place of action of the force. With reference to the nonlinear

Schrodinger equation [169] and from the expression of nonlinear and dispersive coef-

ficients, we can claim that the dispersive effects increase and then decrease [figure4.3].

However, for moderate values of wave number there is a discontinuity. This is due to

the fact that the different wave modes constituting the wave packet do not behave in

similar manner with the media. This is due to the high level of nonlinearity inherent in

plasma. It is observe that with increasing streaming velocity the dispersive effects are

more pronounced. The amplitude modulation of this electron acoustic wave is described

by nonlinear Schrodinger equation (NLSE) (4.29). It is known from the literature that

an initially uniform wave function grows spatially modulated one which is energetically

favorable. This causes the waves to be modulationally unstable. From the theory of

NLSE and its application in plasma physics we come to learn that the sign of the product

of the nonlinear coefficient (Q) and group dispersion coefficient (P) defines the region of

stability or instability. With reference to Eqns. (4.29); The PQ >,< 0 value is crucial

due to the fact that with reference to the nonlinear Schrodinger equation we may claim

that the nonlinear effective potential is negative a possible bound state may be obtained

such that the modulation is stable in nature. The product PQ in Eqn. (4.29) where

both nonlinear and disperssive terms are are on the left hand side necessitates it to be

negative to correspond to a stable mode. The positive values corresponds to instability.

Such an instability found to be dependent on the nonlinear factors and this nonlinearity

is propotional to the absolute value of the nonlinear coefficient (Q). The plot growth rate

is therefore plotted through |Q| . If PQ < 0 then wave function modulationally stable,

where as if PQ > 0, it is unstable. The relative strength of group dispersion and non-

linearity is measured by a quantity P
Q

. The growth rate of the modulational instability

depends on the wave number of the initial wave train. It(growth rate) attains a maximum

value of gm =| Q | φ2 corresponding to the wave number km =| Q
P

| φ0 of the mod-

ulation. With reference to various parameter we now discuss on the stability/instability

domain (represented by sign of PQ) and the growth rates (represented by | Q |) and the
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wave number (km =| Q
P
|) of modulation. To find the wavenumber (km) corresponding

to maximum growth rate we differentiate the equation and after some basic algebraic

calculation obtain that this value of wave number corresponds to maximum instability is

propotional to P/Q.

Since the sign of PQ the determine the stability domain with reference to (figure 4.4)

we can say that at very large wavelengths (low wave number) the modulated wavepacket

is stable and then it becomes unstable. However, the stability regions shift towards higher

wavenumber with increasing density suggesting that as density increases the modulated

wave behave as a single entity over small wavelength region. Probably it is more com-

pact and the level of nonlinearity is more and dispersive effects are less significant. The

subsequent growth rate of modulational instability is depicted in figure 4.5. The growth

rate is found to decrease with increasing wavenumber. However, streaming motion have

no visible effect in influencing the growth rate. The wavenumber (km) corresponding to

the maximum growth rate of instability however is located nearby to the to that which

shows pronounced dispersive effects (figure 4.6). Figure (4.7) shows stable amplitude

modulated envelop solitons for different plasma parameters. This suggests that once a

degree of modulation reached, it becomes impossible to overlook dispersive effects and

then the waveform becomes unstable and the modulation begins to change. If given

enough time the modulation can split into a number of small wavepackets or individual

waves. The intricate behaviour is better understood from the dynamical properties of the

amplitude modulated waves in the next subsection.

Dynamical properties::

In order to investigate the dynamical properties of amplitude modulated electrostatic

waves in this problem, we consider transformation η = lξ−V τ and ϕ(η) = ψ(η)exp(iδη),

the NLSE then transforms into
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d2ψ

dη2
=

(
δ2 − 1

Pl2
δV

)
ψ +

Q

Pl2
ψ3 (4.32)

Eqn. (4.32) can be expanded in the dynamical system as

∂ψ

∂η
= z

∂z

∂η
= P ′ψ +Q′ψ3 (4.33)

where P ′ =
(
δ2 − 1

Pl2
δV
)
;Q′ = Q

Pl2
This system will be conservative if the correspond-

ing field is solenoidal, i.e.
→
∇ .

→
F= 0, where

→
F (z, P ′ψ +Q′ψ3). Hence the system is a planar one with Hamiltonian given by

H′ = z2

2
− P ′ψ2

2
+ Q′ψ4

4
. Since the phase trajectories defined by equation (4.33) de-

termines all the electrostatic modes we study the possibility of function and according to

figure 4.8 it is clear that there is no critical points (other than (0,0)). However, there ap-

pears to be an attractor that is the source of the conservative field (F ). We can easily see

that the phase trajectory changes it slope and spreads more in the z axis and shrinks in

this ψ-axis. It implies that as density increases there are more possible momentum eigen-

states available for the system and position eigenstates are less accessible. This is direct

consequence of quantum mechanics. Interestingly here we find that the streaming ve-

locity has some prominent effect in determining the phase trajectory. However at large

wave. approximation there are kinking suggesting the strength of hidden accelerator

(4.9). In figure 4.10 a series of superperiodic waves are plotted with different quantities

as the tuning parameters. Plasma density as well as streaming velocity decreases the

super periodicity. The wave number (k) on the other hand increases the superperiodicity.

These studies second our findings of the perturbative analysis.
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4.5 HAM study

To solve Eqn. (4.29) we make use homtopy analysis method (HAM) [134, 171] and

study the evolution of amplitude modulated solitary structure. To brief the techniques-

let us consider the following non linear differential equation

D(
−
U)− f(

−
r) = 0 (4.34)

with boundary condition

B(
−
U ,
∂

−
U

∂n
) = 0, r ∈ Γ. (4.35)

Here D,B, f(r) and Γ are a general differential operator, a boundary operator, an analyti-

cal function (which is previously known) and the boundary of the domain Ω respectively.

The operator D can be divided into linear (L) and non linear part (N ) such that

L(
−
U) +N (

−
U)− f(

−
r) = 0 (4.36)

Now employing basic homotopy technique, we construct homotopy as

H(
−
V , p) ≡ (1− p)

[
L(

−
V)− L(

−
U0)

]
+ p

[
D(

−
V)− f(

−
r)

]
= 0,

p ∈ [0, 1] .

(4.37)

or equivalently

H(
−
V , p) ≡ L(

−
V)− L(

−
U0) + pL(

−
U0) + p

[
N (

−
V)− f(

−
r)

]
= 0 (4.38)

where
−
U0 is initial assumption satisfying the boundary condition (4.35). As the embed-

ding (homotopy) parameter p changes from zero to unity the picture convolutes from
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−
U0 (r) to

−
U (r) (exact or approximated analytic solution).

We now discuss the results obtained from HAM starting with a sinusoidal potential.

Due to self interaction and associated non-linearity the wave evolution represented by

the nonlinear Schrodinger equation slowly gets a spatial modulation (figure- 4.11 4.12)

as shown. The density and the wavenumber are the tuning parameter here. If given

enough time the modulation thus created grows over time (figure- 4.11 4.12). Such a

wave is thus modulationally unstable as the amplitude increases. It is to be noted that

we have chosen the value of k in such a way so as to allow amplitude modulation to take

visible shape. This region is depicted by the sandwiched region of instability in P
Q
vs k

plots. The modulation is found to occur in the form of an envelope solitary structure.

This is relatable with previous studies on amplitude modulation in plasma waves.

4.6 Conclusion

We have studied here the effects of exchange correlation, the streaming motion as well as

the quantum diffraction on the nonlinear evolution of modulated electron plasma waves.

We have used the standard Fourier technique to derive the nonlinear Schrodinger equa-

tion. The NLSE describe the nonlinear evolution of envelop soliton and the associated

modulational instability and it growth rate. We have shown how the wave’s instability

depends on various parameters and in which domain of wave number. To understand the

physical situation we included a section on the dynamical properties of amplitude mod-

ulated electrostatic waves. The analysis of dynamical system supports the findings of

the perturbative analysis. Furthermore we have employed a section based on homotopy

perturbation technique and analyzed the growth of instability. Our findings match in

both approaches and this second techniques holds promise in analyzing complex plasma

phenomena.
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CHAPTER 5

SEMI–LAGRANGIAN METHOD TO STUDY NONLINEAR ELECTROSTATIC

WAVES IN QUANTUM PLASMA

5.1 Introduction

In the physical realm, the low temperature and high particle density delimits the quantum

effects in plasma [172, 58] where the de Broglie wavelength overlaps over each other

that’s giving rise to Quantum effects as per the exclusion principle [56]. A number

of works on highly dense and low temperature plasma, popularly termed as ”Quantum

plasmas” have been carried out by many authors [173]. Many wave modes like ion

acoustic waves (IAWs) [174, 175, 117, 168] electron acoustic waves (EAWs) [67, 169,

176], electron plasma waves (EPWs) [64, 82], Dust Acoustic Waves (DAWs) [63, 177]

etc. have been studied in quantum plasma. Studies on shocks and double layers in such

plasma have been carried out [178, 179]. In all these works the often used model is the

quantum hydrodynamic model [180]. Such a plasma have applications from laboratory

to space [181, 182]. Originally developed by Haas [172], Shukla [183], Manfredi [58],

Marklund [184], it was further studied by Misra [185] Ghosh [180] Chandra [66, 122]

and others [186]. Many different types of nonlinear effects [187, 73] are observed in

quantum plasma [188, 167, 72]. A number of approaches have been summarised in the

review paper by Shukla [56]. Recently, chaos study in plasma have gained prominence

[189, 190] and holds promises to understand the microscopic mechanisms in the plasma

system.

The degeneracy in such Fermionic plasma have been dealt with a relativistic degen-

eracy [65, 68] or quantum degeneracy [64, 82]. The electron distribution function [191]

plays an important role in determining the generation of different wave modes in which

the dispersion characteristics, the thermodynamic processes as well as any form of inho-
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Figure 5.1: Schematic depiction of the experimental setup for generating temperature
anisotropy. Adopted from Beatty et. al. [192]. Here B1, L1&R1 are the magnetic field,
length and radius respectively of the input plasma channel. AndB2, L2&R2 are the mag-
netic field, length and radius respectively of the plasma chamber where the anisotropy
originates.

mogeneity or anisotropy is dependent on the distribution function. Such an anisotropy

was recently reported by Beatty et.al. [192]. A schematic depiction of the experiment

is given in figure (5.1). The Kinetic models for Plasma systems are crucial in the study

of linear velocity space instabilities but are not so effective in providing information

on micro density and collective Thomson scattering. The mathematical prescription of

kinetic models is the Vlasov–Maxwell (VM) equation [193]. The requirement for the

VM formulation is the particle distribution function. The motivation behind this work

is to study the evolution of macroscopic quantities in a dense plasma with tempera-

ture anisotropy. In the fluid picture the moments of such a distribution function under

equilibrium conditions will give the quantum hydrodynamic (QHD) model with one di-

mensional temperature anisotropy [191]. Recent works can be found in the following

works [194, 195, 196, 197, 198, 199, 200]
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5.2 Temperature anisotropy and Kinetic model

In the present work we consider a collisionless plasma in which plane longitudinal waves

propagate leading to an adiabatic compression along the propagation direction, thus cre-

ating heating and temperature anisotropy in one direction. The ratio between the proton

temperature perpendicular (T⊥) and parallel (T∥) to the background magnetic field is

called temperature anisotropy. With slight deviation from the classical Vlasov picture,

here from the Wigner equation, the phase fluid incompressibility is violated by way of

quantum tunneling that is a phenomena observed in a dense quantum plasma. Such

model was put forward by Eliasson and Shukla [191] and later worked upon by Chan-

dra [67] , Akbari [201] and others [171, 202, 134]. The numerical resolution of the

Kinetic Vlasov equation has been studied by some authors in the particle-in-cell frame-

work [203]. In this method the description of the temporal evolution of the equation

through self consistent fields and finite number of particle is utilised along with the us-

age of a grid for resolution. Another method makes use of computation of distribution

function for one time step in the backward direction in the grid and uses a standard in-

terpolation technique [204, 35, 205]. This process couples the Eulerian and Lagrangian

framework and the Vlasov equation (and equations derived from it) is obtained [206]. In

this work we employ the distribution function presented by Eliasson and Shukla [191,

207] and later extensively studied by others [67, 208] is given by:

f(y, v⃗, t) =
− n0

Li3/2(−eβµ)

(
βm
2π

)3/2
e{(

βm
2

)[(vy−vy,ex)2η+v2x+v2z]−βµ} + 1
, (5.1)

where n0 is the equilibrium electron density, Liα (ξ) is the poly-logarithm function,

vy,ex(y, t) is the average velocity of the particles in the propagation direction, m is

the mass of the electron, µ is the chemical potential, β = 1
kBTe0

, kB is the Boltz-

mann constant, Te0 is the background temperature and η(y, t) = Te0/Ty,ex(y, t) is the

one-dimensional temperature anisotropy of the distribution function. Different proton
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temperatures perpendicular and parallel to the magnetic field can cause waves in an

electron-proton plasma. If T⊥ > T∥, the plasma could be unstable to both proton cy-

clotron (PC) and mirror modes (MM) waves, which have been identified in the Venusian

environment [209]. Temperature and temperature anisotropy’s observations in the so-

lar wind and magnetosheath are especially important because they reveal how heating

happens at a collisionless shock and how the solar wind is produced. [210].

The electron temperature anisotropy is controlled by fluctuations produced by elec-

tromagnetic kinetic instabilities, according to kinetic plasma theory and simulations

[211]. Many macroscopic parameters that describe the solar wind, such as particle

temperature anisotropy or electron heat flow, are always measured with values that are

constrained by the onset of kinetic instabilities, according to the argument. The general

argument is that when the flow expands, it causes a distortion in the distribution function,

which manifests as an increase in temperature anisotropy [211, 212, 213]. Plasma ki-

netic theory from microscopic interactions and motions of its constituents, describes and

predicts the state of plasma. Plasma kinetics is the study of continua in velocity space

and the link between velocity and forces [214, 202, 215, 216]. To provide accurate prop-

agation and damping, the complete kinetic effects of finite temperature electrons must be

kept in the parallel contributions to the dielectric tensor [217]. In the high-temperature

limit, we retain the nonlinear fluid equations for a dense hot plasma and in the low-

temperature limit, we retain the correct fluid equations for a fully degenerate plasma

[191]. We use the Maxwell’s equations and subsequently obtained the time evolution of

the distribution function, the density and energy profiles by using the semi-Lagrangian

method.
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5.3 Basic Equations

The general form of Vlasov equation is given by

∂f

∂t
+ p · ∇yf + F (y, t)∇pf(y,p, t) = 0 (5.2)

Such an equation when coupled with Maxwell equations form the Vlasov-Maxwell

equations. In case of electrostatic waves in unmagnetised plasmas, Maxwell’s equations

include only the Poisson equation

∇y ·E(y, t) =

∫ +∞

−∞
f(y,p, t)dp−N0 (5.3)

Here we normalized time by the inverse of the plasma frequency: ωp, velocity by thermal

speed (and therefore momentum p to mvthermal ), and space by Debye length. F (y, t) is a

generalized force term, E in the electrostatic case. We present the 1D electrostatic case

for which the Vlasov equation simplifies to : [218]

∂f

∂t
+ v

∂f

∂y
+ E(y, t)

∂f

∂v
= 0 (5.4)

and
∂E

∂y
= 1−

∫ −∞

−∞
f(y, v, t)dv (5.5)

with initial condition f(y, v, t = 0) = f0(y, v). In the next sections we present the

numerical scheme and the algorithm for this simulation study.
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5.4 Numerical Scheme

Time Splitting: :

In this semi-Lagrangian method [219, 205] the Vlasov equation (5.4) can be recast in

the following form:

∂f

∂t
+U(Y, t) · ∇Y f = 0 (5.6)

where Y denotes the phase space coordinates (here Y = (y, py) ) and U is a solenoidal

vector field containing two components in the 1D case. Since U is solenoidal (i.e.

divergence-free), Eq. (5.6) can be formulated in a conservative form

∂f

∂t
+∇Y (U(Y, t)f) = 0 (5.7)

Splitting Y into two components Y1 and Y2, Eq. (5.7) can then be written as:

∂f

∂t
+∇Y1 (U1 (Y1,Y2, t) f) +∇Y2 (U2 (Y1,Y2, t) f) = 0 (5.8)

Further, it is well known [205] that solving separately

∂f
∂t

+∇Y1 (U1 (Y1,Y2, t) f) = 0

∂f
∂t

+∇Y2 (U2 (Y1,Y2, t) f) = 0
(5.9)

keeps up to 2nd order accuracy for the whole equation (5.6) by flipping the solutions.

It should be noted that while this semi-Lagrangian scheme does not solve the Vlasov’s

equation in its conservative form, it does so in the advective version, allowing for the use

of the backward characteristic approach. Subsequently, we get [219]

∂f

∂t
+U1 · ∇Y1f = 0 (5.10)
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∂f

∂t
+U2 · ∇Y2f = 0 (5.11)

if and only if

∇Y1U1 (Y1,Y2, t) = 0

∇Y2U2 (Y1,Y2, t) = 0
(5.12)

Semi-Lagrangian method::

In the semi-Lagrangian method we can introduce the solutions of the dynamical system

i.e. the characteristics of (5.6)

dY

dt
= U(Y(t), t) (5.13)

Let us denote by Y(t;Y, t1) the solution at an instant t whose value is Y at time t1.

Taking Y(t) a solution of Eq. (5.12), we have

d

dt
(f(Y(t), t)) =

∂f

∂t
+
dY

dt
· ∇yf

=
∂f

∂t
+U(Y(t), t) · ∇Y f = 0

(5.14)

which means that f is constant along the characteristics. This can also be written as

f(Y(t;Y, t1), t) = f(Y(t1;Y, t1), t1) = f(Y, t1) (5.15)

for any times t and t1 and phase-space coordinate y. This property will be employed

to solve such a discrete problem by Semi-Lagrangian method (SLM). By introducing a

finite set of mesh points (Ym)m=1,...,N which is (or not) equally spaced we solve this

discrete problem. Then, with a given value of f at the mesh points at any given time
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Figure 5.2: Evolution of distribution function in phase-space for different normalize
runtime t. (a) t=4.9946; (b) t=24.9925; (c) t=99.9899 and (d) t=149.9921

step, we obtain the new value Ym at mesh point.

f (Ym, tn +∆t) = f (Y (tn −∆t;Ym, tn +∆t) , tn −∆t) (5.16)

For each mesh point Ym, the distribution function (f ) is computed in two steps which

are

1. To find the starting point of the characteristic which is ending at Ym,

i.e. Y (tn −∆t;Ym, tn +∆t).

2. Followed by the computation of f (Y (tn −∆t;Ym, tn +∆t) , tn −∆t) by spline

interpolation, since f is known only at mesh points at the instant tn −∆t.
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Figure 5.3: y–v contour plots for different normalized runtime t. (a) t=4.9946; (b)
t=24.9925; (c) t=99.9899 and (d) t=149.9921
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Figure 5.4: Evolution of normalized particle density (n) for different normalized runtime
t. (a) t=4.9946; (b) t=24.9925; (c) t=99.9899 and (d) t=149.9921
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Figure 5.5: Distribution of kinetic energy (normalized) for different normalized runtime
t. (a) t=4.9946; (b) t=24.9925; (c) t=99.9899 and (d) t=149.9921
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Algorithm::

To solve the Vlasov–Poisson system Eqns. (5.4) & (5.5) numerically we using the time

splitting scheme from time step tn to tn+1 which involved here four steps :

1. We perform a half time–step shift along the y -direction f ∗(y, v) = fn(y −

v∆t/2, v)

2. We compute the electric field at time tn+1/2 by substituting f ∗ in the Poisson’s

equation (5.5)

3. Perform a shift along the v -direction f ∗∗(y, v) = f ∗ (y, v − E
(
y, tn+1/2

)
∆t
)

4. Perform a second halftime step shift along the y -axis fn+1(y, v) = f ∗∗(y −

v∆t/2, v).

Note, here electric field is the electrostatic one and it is normalized.

5.5 Results and Discussions

From the above sections we obtain the ”Semi-Lagrangian Vlasov Code” (SLVC) for the

finite temperature quantum plasma with one dimensional temperature anisotropy. The

gradual evolution of the distribution function in the phase space and subsequently the

density and energy profiles reflect on the properties of the system and its evolution in

time. In figure (5.2) we have shown the gradual evolution of the Eliasson–Shukla distri-

bution function at different instants of time. From the figure (5.2)(a-d) it is found that

there are regions of higher and lower values suggesting the formation of electron holes

in the phase space. Such a pocket gradually evolves over time with tails of distribu-

tion minima suggesting the opposite velocity i.e. reflection of the phase fluid. Such a

phenomenon is a direct outcome of the violation of the incompressibility of phase fluid

in contrast to its classical counterpart. The temperature anisotropy causes particle trap-

ping in the phase diagram. This is relatable due to the fact that adiabatic compression
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causes electron localisation of particles which are clearly depicted in subsequent figures.

From figure (5.3), it is clearly understood that there are multiple dips of the distribution

function shaped as wings in the phase plots. These dips have pockets of higher electron

concentrations and also regions of scarcity. These blue coloured regions corresponding

to the reflected stream generated from thermal anisotropy. An animation file of the same

can be found here (link)

Based on the distribution function (DF), the physically measurable quantities like den-

sity and energy distributions are also studied with time. The density of particles which

arise from the zeroth moment of the DF in velocity space and the energy is obtained

from the second moment respectively. From figure (5.4) it becomes clear there exists

density fluctuations which die out exponentially with time as well as with distance to-

wards the boundary. There are gradual yet finite variations at the origin which appears

after some time has elapsed (5.4) (c,d). This appears to be the Kelvin- Helmholtz insta-

bility as suggested by some authors in their work [35]. These small scale motions are

a result of small scale turbulence that traces its origin to the temperature anisotropy in

equation (5.1), as discussed in the previous sections. In the fluid picture, this would have

correspondence with an increased value of the Reynold’s number. These mixing regions

periodically move away and a second order mixing region again appears at the centre of

the phase space. Such a process suggests an excess and void of kinetic energy [figure

(5.5)] in the configuration space implying both repulsive and attractive forces in action.

Neighboring phase fluid layers induces a velocity shear thus trying to homogenise the

temperature anisotropy.

5.6 Applications

Our work describes how a stellar wind evolves and is one of the more sophisticated

scenarios that’s been created to account for the various solar wind features that have been

observed [220]. Weibel instability could be explained through anisotropic plasma [221]
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and hence it could explain phenomena in astrophysical plasma like gamma ray burst

and shock formation in supernovae remnants. Temperature anisotropy is also helpful in

studying the plasma environment in the Venusian atmosphere. Also this method can be

helpful in generating a magnetic field in laboratory plasma [222, 223, 224], especially

within the setting of laser-plasma interaction [225]. Our work is applicable to study

tokamaks and this is just one of the issues of fusion reactors that could be undergone

through this model.

5.7 Conclusion and Summary

In this chapter, we employed the semi-Lagrangian method for the kinetic Vlasov equa-

tion corresponding to a Fermi distribution in dense plasma with 1D temperature anisotropy

and discussed the numerical simplifications that can be further used in some other mod-

els, in which a time-splitting prescription can be applied. In brief, the full method appli-

cable for any form of Vlasov type equations can be carried out with the guiding-centre

Vlasov–Poisson model. It overcomes the limitations where it could not be solved ac-

curately using such splitting method but possible in the advective form. The numerical

results thus obtained are very satisfying. We used MATLAB R2019 module library and

by assembling it we were enabled to treat many complex problems occurring in plasma

physics through the SLVC. To a positive note that this methodology does not depend

upon the use of regular grids. Rather, we use a set of lines (not necessarily equally

spaced) in each direction to employ spline interpolation.
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CHAPTER 6

BIFURCATION THEORY AND STABILITY ANALYSIS

6.1 Introduction

To analyze a physical plasma system, one must first apply a qualitative analytical method.

One needs to look at the plasma system components, such as the plasma source itself and

its diagnostic tools, to see how these components interact to provide results that explain

the operation of the plasma system. For example, immersing a basic electrical diagnos-

tic instrument, such as a Langmuir probe, in a thermally generated plasma source and

measuring characteristic plasma parameters forms a plasma system. When the probe

bias is applied to the probe chip, plasma charge currents are collected between the two

polarities of the probe bias. The resulting so-called IV curve is similar to the logis-

tic curve previously proposed by Verhulst [226]. Verhulst’s logistic model curves show

how the population grows compared to the available resources and form modern chaos

theory’s basis. This letter qualitatively discusses plasma charges’ population growth (or

depletion) and their maintenance in plasma systems. This is done without any additional

assumptions about the physical composition of the plasma charge itself. In addition,

the results here require a change in the approach of interpreting Langmuir probe trace

data, which used only exponential fit to model plasma charge-current vs. probe bias

data. This allows us to implement a better model for analyzing the behavior of different

plasma systems.

Bifurcation theory and stability analysis are very useful tools for qualitatively and

quantitatively studying the behavior of complex systems without explicitly determin-

ing the solutions of the governing equations for various initial and boundary conditions.

This chapter is complementary to the corresponding mathematical theories. It conveys

the basic idea of bifurcation theory and stability analysis. Here we chapter provide the
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vocabulary to classify the equilibria and common branches commonly encountered in

applications. This shows the application of theory for studying equilibrium criteria in

plasma system. It also briefly describes some aspects related to stationary structures,

wave modes, parametric influence, geometry of the system etc. It focuses on ordinary

differential equations (ODES), an important block for studying branching and stabil-

ity. This chapter also describes how ODE research is generalized in the case of partial

differential equations (PDEs).

A close field of research often studied in this regard is Chaos theory. Chaos is an in-

terdisciplinary scientific theory, an area of mathematics susceptible to initial conditions

and the basis of dynamical systems that were once thought to exhibit completely random

disorder and irregular states. It focuses on patterns and deterministic laws. Chaos theory

believes that the apparent randomness of chaotic and complex systems are the under-

lying patterns, interconnections, persistent feedback loops, iterations, self-similarities,

fractals, and self-organization [227]. The butterfly effect, the basic principle of chaos,

explains how small changes in one state of a deterministic nonlinear system lead to

significant differences in later states (i.e., subtle to the initial conditions) [228]. The

metaphor for this behavior is that a butterfly flapping its wings in Vrindavan can cause

cyclone in Bay of Bengal.

Slight differences in initial conditions, such as those due to measurements or round-

ing errors in numerical computation, can yield widely diverging outcomes for such dy-

namical systems, rendering long-term prediction of their behavior impossible [229].

This can happen even though these systems are deterministic, meaning that their fu-

ture behavior follows a unique evolution [230] and is entirely determined by their initial

conditions, with no random elements involved. In other words, the deterministic na-

ture of these systems does not make them predictable [231]. This behavior is known as

deterministic chaos or simply chaos.

Lyapunov Exponent: In this context another quantity is important often termed as

Lyapunov Exponent. In mathematics, the Lyapunov exponent of a dynamical system or
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the characteristic Lyapunov exponent is a quantity that characterizes the separation of

orbits near infinity. Quantitatively, the two orbitals diverge in phase space at the initial

separation vector δZ0 diverge (provided that the divergence can be treated within the

linearized approximation) at a rate given by

∥δZ(t)∥ ≈ eλt|δZ0|,

where λ is the Lyapunov exponent. Separation rate may vary depending on the direction

of the initial separation vector. Therefore, there is a spectrum of Lyapunov exponents-a

number equal to the number of dimensions in topological space. It is customary to call

the largest (maximal) Lyapunov exponent (LLE) to define the concept of predictability

of dynamic systems. A positive LLE is usually considered to indicate that the system is

chaotic (if other conditions are met, such as the compactness of the topological space).

Note that any initial separation vector usually contains several components in the direc-

tion associated with the LLE, and because of the exponential growth rate, the effects of

other indices are canceled over time. The index is named after Alexander Lyapnov. It has

important application in plasma Physics. The Lyapunov exponent was investigated nu-

merically and analytically for various plasma states by many authors in the recent years

[232, 233, 234, 235]. A three-dimensional particle code that calculates the Coulomb

force between individual particles is used to study the instantaneous expansion rate of

nearby orbitals in topological space. It can be seen that the Lyapunov exponent has var-

ious dependencies on the Coulomb coupling constant, corresponding to dilute plasma,

liquid plasma, and solid plasma. An analytical model has also been developed to show

the relationship between the Lyapunov exponent and the dielectric response function

[236]. This model shows that the Lyapunov exponent of the dilute plasma is on the or-

der of the plasma frequency, which is consistent with the simulation results. In dilute

plasmas, large fluctuations in the instantaneous expansion rate have been shown to be

caused by close encounters that break force symmetry and lead to orbital instability.

This chapter is organized in the following way. In Section §6.2 we introduce quan-
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tum plasma at finite temperature and the basic governing equations. Then we derive

KdV-Burger equation in Subsection §6.2.1 and its dynamical properties. With higher

degree of nonlinearity amplitude modulation is studied in Subsection §6.2.2 and the

subsequent Subsection §6.2.2 provides a treatise on the chaotic study. In Section §6.3,

we study bifurcation analysis of electron acoustic waves (EAWs) in degenerate astro-

physical plasma with its basic governing equations. In the Subsection §6.3.1, we brief

on the derivational part of KdV equation. Then dynamical characteristics of EAWS are

studied in unperturbed (in §6.3.2) and perturbed system (in §6.3.2) and subsequently in

Subsection §6.3.3, non-linear Schrodinger equation (NLSE) is derived. In the Subsec-

tion §6.3.4 we obtain the dynamical system equations and discuss the results in Section

§6.4 with superperiodic solutions and phase plots.

6.2 Quantum plasma at finite temperature

Quantum effects in plasma have been studied by quantum hydrodynamic (QHD) model

[60, 237]. It requires high density and extremely low temperature in order to display

quantum statistical and quantum diffraction effects. However Shukla and Eliasson [56,

191] obtained nonlinear electron fluid equation for a quantum plasma with arbitrary

electron degeneracy. The applicability of quantum effects in a finite temperature plasma

showing quantum statistical and diffraction effects at a temperature not approaching ab-

solute zero considered the temperature anisotropy have been the guiding motivation.

Elliason and Shukla presented the model and have been used by Akbari et al [201] in

later years. According to this model which is based on 3D equilibrium state in which

nonlinear plane plasma wave propagate. Assuming 3D Fermi-Dirac equilibrium state

for spin-1/2 particles, the particle density given by

n0 =
1

2π2

(
2m

ℏ2

)∫ ∞

o

E1/2dE

eβ(E−µ)+1

=
1

2πβ1/2

(
2m

ℏ2

)
Γ

(
3

2

)
Li3/2(e

βµ), (6.1)
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(where β = 1
kBTFh

and µ is chemical potential) and taking different order of moment of

distribution function the dynamical equations are obtained and are given as:

∂

∂t
(nh) +

∂

∂x
(nhuh) = 0 (6.2)

∂

∂t
(nc) +

∂

∂x
(ncuc) = 0 (6.3)

[λ](
∂

∂t
+ uh

∂

∂x
)uh =

∂

∂x
ϕ− Fh(

∂

∂x
nh)

+
H2

2

∂

∂x
[

1
√
nh

∂2

∂x2
√
nh] + ηh

∂2uh
∂x2

(6.4)

(
∂

∂t
+ uc

∂

∂x
)uc =

∂ϕ

∂x
− Fc

∂nc
∂x

+
H2

2

∂

∂x
[

1
√
nc

∂2
√
nc

∂x2
] + ηc

∂2uc
∂x2

(6.5)

∂2ϕ

∂x2
= (nc +

nh
δ

− ni
δ1
δ
) (6.6)

The value of λ = 1, 0 is due to the fact whether or not we want to study the inertia effects

of hot electrons. Here we used the normalization scheme as nj → nj

nj0
, uj → uj

Csh
, x →

xωc

Csh
, t → ωct, ϕ → eϕ

kBTFh

, where the subscript j is used to denote hot (h), cold (c)

electrons and ion (i), uj, nj (j = c, h) are the velocity, density, Fh = (nh0

n0
)
1
3

mec2

6kBTFh
,Fc =

(δ)
2
3

mec
2

2kBTFh , δ = nc0

nh0
, δ1 =

ni0

nh0
(subscript 0 stand for equilibrium state) and H = ℏωc

2kBTFh
,

ωc =
√

nc0e2

ϵ0me
is the cold electron plasma frequency, Csh =

√
2kBTFh

me
is the hot electron

acoustic speed and TFh
is the hot electron Fermi temperature respectively.
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6.2.1 Derivation of KdV-Burger’s equation

As done in previous works [68] perturbation expansion of the field quantities have been

made. We take ϕ as the amplitude of the electric potential field, χ and τ are the stretched

variables corresponding to x and t respectively [68] where χ = ε1/2(x −Mt) and τ =

ε3/2t. Accordingly the perturbation series is given by:



nh

nc

uh

uc

ϕ


=



1

1

u0

u0

ϕ0


+ ϵ



n
(1)
h

n
(1)
c

u
(1)
h

u
(1)
c

ϕ(1)


+ ϵ2



n
(2)
h

n
(2)
c

u
(2)
h

u
(2)
c

ϕ(2)


+ ... (6.7)

and the viscosity factor is ηh,c = ϵ
1
2η

(0)
h,c. Using the standard procedure and equating

terms of same power in ϵ we finally obtain the KdV Burger’s equation given by

∂ϕ

∂τ
+ Aϕ

∂ϕ

∂χ
+B

∂3ϕ

∂χ3
− C

∂2ϕ

∂χ2
= 0 (6.8)

where

A =

2 (M−u0)2

(Fc−(M−u0)2)
3 +

(M−u0)
2

(Fh− (M−u0)
2)2

+
(M−u0)

2

(Fh− (M−u0)
2)2

δ (Fh−(M−u0)2)

2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh− (M−u0)

2+
(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)

B = −

H2

(
1

(Fc−(M−u0)
2)2

+ 1

δ (Fh− (M−u0)
2) (Fh−(M−u0)

2)

)
4

− 1

2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh− (M−u0)

2+
(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)

C =

η
(0)
c (M−u0)

(Fc−(M−u0)2)
2 +

η
(0)
h (M−u0)

δ (Fh− (M−u0)2) (Fh−(M−u0)2)

2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh− (M−u0)

2+
(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)
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Dynamical Properties of Unperturbed EASWs:

To study the dynamical properties of steady state electron acoustic stationary wave struc-

tures (EASWs) we start with a traveling wave solution and using the KdV equation as

the evolutionary system the progressive waves and the corresponding phase portraits are

shown below. For this we use the transformation: η1 = lχ−Mτ , ϕ(χ, τ) = ψ1(η1) with

the usual boundary conditions as η1 → ±∞, ψ, ∂ψ
∂η1
, ∂

2ψ
∂η12

→ 0 where M is the velocity

of the wave frame. By using this transformation and upon integration of the KdV equa-

tions twice with respect to η1 we obtain the set of equations corresponding to dynamical

system as:

∂2ψ1

∂η12
=
M

Bl

∂ψ1

∂η1
− C

Bl3
ψ1 +

A

2Bl2
ψ1

2 (6.9)

Now the Eqn. (6.9) can be transform in to dynamical system of the form

∂ψ1

∂η1
= z1

∂z1
∂η1

=
C

Bl
z1 +

M

Bl3
ψ1 −

A

2Bl2
ψ1

2 (6.10)

The system will be conservative if the divergence of the field is zero i.e.
→
∇ .

→
F= 0,

where
→
F
(
z1,

C
Bl
z1 +

M
Bl3
ψ1 − A

2Bl2
ψ1

2
)
. Accordingly the Hamiltonian is given by:

H =
z1

2

2
− C

2Bl
z1

2 − M

2Bl3
ψ1

2 +
A

6Bl2
ψ1

3 (6.11)

Since the phase plots describes all equations of EAWs we plan to study the dynamical

properties of the system through the parametric phase portraits for different parameters

and initial conditions.

Figure (6.1) shows the super periodic EAWs for different values of quantum diffrac-

tion parameter (H), streaming velocity (u0) and Mach number (M). Here δ (cold and

hot electron equilibrium density ratio) is 0.5. It is claim that as H increases the waves
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Figure 6.1: Effect of parameters on the superperiodic solutions (a) quantum diffraction
(H), (b) Streaming motion (u0) and (c) waveframe speed (M). Other parameters are
ηh,c = 1.5, δ = 0.5, Fh = 1.4, Fc = 0.48.

Figure 6.2: Phase portraits for different parameters in various combinations (a) M =
1.6, H = 2, (b) M = 2, H = 2 and (c) M = 1.6, H = 2.2. Other parameters are
u0 = 0.5, δ = 0.5ηh,c = 1.5, Fh = 1.4, Fc = 0.48 .
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undergo a phase shift and it clear that the phases corresponding to H=2.45 superposes on

the second harmonic corresponding to H=2. It is noted for the first time that the quantum

diffraction contributes to the phase apart from the amplitude of the wave ϕ. The contribu-

tion of the streaming velocity u0 is similar to the effect of H but it is less effective when

compared to H. The reason behind this may be due to the fact that streaming motion

affects small nonlinearity which introduces a positive phase difference. On the contrary

the wave-frame speed (reflected through the Mach number) acts contrary to the quantum

diffraction and streaming. The wave frame speed which adds up a negative phase factor

is somehow uncorrelated and not in consonance with nonlinear effects. In other words

it compounds to increasing dispersive effects thus making the phases lag behind. Also it

can be interpreted like this, the quantum diffraction parameter (H) which related to the

plasmonic energy and inversely to the thermal energy. Shows that with higher values

of H the periodicity decreases. (i.e. the energy associated with the propagating wave is

less.)

From the phase diagrams we show the dependence of quantum diffraction and Mach

number for different instances of time. From figure 6.2 we see that the phase trajectories

become distorted as time grows by. The vector directions show a nonuniform force field

thus supporting our claims in the previous sections on non-perturbative and perturbative

investigations. Further from figure 6.2(a–b) it is clear that wave-frame velocity does

not allow the distortion in phase trajectories and incorporates dispersive elements in the

system. The same was evident from 6.1. Hence ϕ, η1 and χ are state variables. From

Eqn. (6.10) it is clear that the system has no equilibrium points (other than 0,0) thereby

suggesting the probability of hidden attractor(s) on the left side of the diagram. From

figures (6.2 a,b and c) it is clear that there are hidden attractor(s) that limits the momenta

spectra slightly. From these figures we see that the motion is not chaotic.
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6.2.2 Amplitude Modulation and Nonlinear Schrodinger Equation

The degree of nonlinearity amounts to the formation of modulated stationary structures.

Such a nonlinearity may be due to external or internal perturbations of some kind. The

system in the unperturbed case if acted upon by some external perturbations or some sort

of nonlinear interactions originating within the system amounts to some disturbances,

the dynamical equations undergo some modifications. Accordingly the KdV-B solitary

wave evolves into amplitude modulated envelope solitary structures.

Perturbed System:

The evolutionary equation was obtained by adding a forcing term to the KdV-Burger’s

equation (6.8) and is given by:

∂ϕ

∂τ
+ Aϕ

∂ϕ

∂χ
+B

∂3ϕ

∂χ3
− C

∂2ϕ

∂χ2
= f0exp[iω

′τ ] (6.12)

Where f0 and ω′ are the magnitude and frequency of such perturbations. Such an

alteration reflects in the dynamical system equation and the transformed set of equa-

tions are given below. To study the formation and properties of the envelop solitons we

have to convert the KdV-B equation into nonlinear Schrodinger equation (NLSE). Us-

ing Fourier’s method (Multiple scale perturbation technique) for a generalised dynamical

state vector U with ξ1 = ε(χ−cτ), θ = ε3τ , here c is the wave speed of the fundamental

disturbance.

Ul = U
(0)
l +

∞∑
n=1

εn
∞∑

l=−∞

U
(n)
l (ξ1, τ) exp[il(kχ− ωτ)] (6.13)

and obtaining ordered equations for various harmonics [188] the NLSE is given as:

i
∂φ

∂θ
+ P

∂2φ

∂ξ21
+Q | φ |2 φ = 0 (6.14)
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Here P and Q are dispersive and nonlinear coefficients given by:

P = − (3Bk − iC) ;Q =

[
A2k

(
1

(6Bk2 − i4kC)
− 1

3Bk2

)]
(6.15)

Dynamical Properties of Nonlinear Schrodinger Equation:

It is important to study the dynamical properties of the nonlinear Schrodinger equa-

tion. So we have considered the following transformation η2 = lξ1 − V τ and φ(η2) =

ψ2(η2)exp(i∆η2), the NLSE (6.14) then transforms into

d2ψ2

dη22
=

(
δ2 − 1

Pl2
∆V

)
ψ2 +

Q

Pl2
ψ2

3 (6.16)

Equation ((6.16)) can be expanded in the dynamical system as

∂ψ2

∂η2
= z2

∂z2
∂η2

= P ′ψ2 +Q′ψ2
3 (6.17)

Here

P ′ = ∆2− 1
Pl2

∆V, Q′ = − Q
Pl2

This system will be conservative if the corresponding

field is solenoidal, i.e.
→
∇ .

→
F= 0, where

→
F
(
z2, P

′ψ2 +Q′ψ2
3
)
. Hence the system is a planar one with Hamiltonian given by

H′ = z22

2
− P ′ψ2

2

2
− Q′ψ2

4

4
. Since the phase trajectories defined by equation (6.17),

we study the system in details by introducing the parametric phase portraits (P3) of the

amplitude modulated envelope solitons.

Chaotic Signature of Amplitude Modulated Structures:

The chaotic signature is important in studying the stability of amplitude modulated soli-

tary structures. We have made use of particular system specific transformations and used

our newly developed ’Parametric Phase Portrait Code (P3code)’ to study the dependence
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Figure 6.3: Parametric phase portraits for different (a) normalised quantum diffraction
parameter (H) and (b) normalised equilibrium density ratio of cold-to-hot electrons (δ).
Other parameters are ηh = 0.4, ηc = 0.4, V = 1.6, k = 0.2, u0 = 0.5, Fh = 0.05&Fc =
0.0004.
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Figure 6.4: Parametric phase portraits for different (a) normalised hot electron degener-
acy parameter (Fh) and (b) normalised cold electron degeneracy parameter (Fc). Other
parameters are ηh = 0.4, ηc = 0.4, V = 1.6, k = 0.2, u0 = 0.5, H = 2&δ = 0.3.
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Figure 6.5: Parametric phase portraits for different (a) normalised hot electron viscosity
parameter (ηh) and (b) normalised cold electron viscosity parameter (ηc). Other param-
eters are H = 2, δ = 0.3, V = 1.6, k = 0.2, u0 = 0.5, Fh = 0.05&Fc = 0.0004.
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Figure 6.6: Parametric phase portraits for different (a) normalised streaming parameter
(u0) and (b) normalised wavenumber (k) of fundamental wave. Other parameters are
ηh = 0.4, ηc = 0.4, V = 1.6, H = 2, δ = 0.3, Fh = 0.05&Fc = 0.0004.
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of phase trajectories on various system parameters and a variety of initial conditions

(z2,
∂z
∂η2

)η2=0. The figures (6.3, 6.4, 6.5 and 6.6) show the influence of various param-

eters on the chaotic states of envelop solitons in phase portraits. The parametric range

was taken where such stationary structures assumed significant variations. It is found

from figure (6.3) that as the quantum diffraction parameter increases from H=1.4 to 2.4

(6.3 a), the phase portraits corresponding to Initial conditions, IC=0,2 & 0,-2) becomes

more chaotic. Such a system is relatable to the fact that higher the value of H, higher

is the possibility of occurrence of quantum tunneling, which means that more electrons

are free to execute randomised motion although the system started with an initially com-

pact particle ensemble. The sudden reversal of phase trajectories in (ψ2, z) plane which

occurs at higher values of phase co-ordinates corresponding to higher H values reflect

on the fact that reflections from the system boundaries. It is interesting to note that

the phase reversals do not occur in the same path but follows a close-by yet separate

trajectory. This type of quantum chaotic hysteresis is due to the fact that at such high

densities, the states available to the system while moving in the forward direction is not

available during the backward traversal in phase space, i.e. it has been occupied by seg-

ment of the system with different initial condition or those which have evolved in time.

The information regarding such an occupied state is however missing with the present

mathematical/theoretical formulation and may be termed as information loss. The de-

pendence on hot-to-cold electron equilibrium density ratio (δ) is shown in figure (6.3 b).

It is seen that the system takes different sets of trajectories [clockwise or anticlockwise

w.r.t. δ axis] for unstable and stable initial conditions. The positive or negative values of

∂z
∂η

corresponding to the stability domains. However, higher the stability/instability the

more chaotic (or spread out) phase trajectories are opted. It reflects on the fact that the

motion converges for extreme low or high values of δ. The chaotic motions correspond-

ing to intermediate values of δ = 0.4 → 0.6 suggests that there is an exchange of energy

among the hot and cold electron species, or in other words the hot electron because cold

species by giving up randomness and acquiring less mobility and vice versa.

90



Chapter 6. Bifurcation Theory and Stability Analysis

Figures (6.4a,b) shows the P3 plots for different values of degeneracy parameters of

hot and cold electrons (Fh, Fc). It is to be noted that for a regular change of Fh value

the already mobile hot electrons does not make the system more chaotic as it implies the

less availability of states for randomised system. However, there are instances of sud-

den bursts of randomness which are statistical fluctuations and therefore less probable.

However a shift in Fc takes the system to a more chaotic state and a quantum chaotic

hysteresis is more pronounced. The restoring force which was to be contributed mainly

by the hot electron species when shared by cold species, the initially inertial subsystem

gains additional momentum and the state becomes more chaotic. In a nutshell the degen-

eracy parameters do not include orders of randomness to such a dense system. Figure

(6.5) shows the effects of hot and cold electron viscosity parameters. Both these param-

eters retain the ordered system more or less around the initial point. There are limited

signature of hysteresis and sometimes there are large scale fluctuations in a conservative

system. The momenta in these states respond to those of a resonant state and thus there

are almost circular/elliptical loops in the phase planes. The last P3 plot (6.6) correspond

to variations of streaming motion (u0) and initial disturbance’s wavenumber (k). Here

two interesting pictures are obtained. Firstly, if there is more streaming in the system

the chaotic nature ceases manifold. This is due to the fact that the high longitudinal

momenta within the wave makes the system less available a chaotic state, the initial dis-

turbance is transported to the plasma wave and the randomised states are not available

to the system. If the streaming is low there are almost circular phase trajectories (6.6

a) implying that both position and momentum undergo changes in the process. But as

streaming increases the phase curves squeeze in ψ2 axis and the variation is in the z-axis,

i.e.; they are more localised with only degree of freedom being limited to the momenta

axis. This is a beautiful finding as it implies that the motion is longitudinal only (the

motion which is to and fro in nature) . A tilted view of figure (6.6a) will show a mode

along the u0 axis which suggests that at certain value of u0 the motion almost ceases

and the plasma system is like a dense compact matter. With reference to (6.6-b) it is
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clear that as the fundamental wave becomes more energetic (high k) the system becomes

chaotic with the additional energy fed to the system. To sum up these chaotic analysis

provides with a number of additional information regarding such a dense system.

6.3 Bifurcation Analysis of EAWs in Degenerate Astrophysical Plasma: Chaos

and Multistability

In space and astrophysical plasma, nonlinear ion-acoustic waves (IAWs) which are low

frequency waves can exhibit chaotic dynamics, which have importance in telecommuni-

cation [238, 208]. Bifurcations of nonlinear travelling wave solutions in such plasmas

were reported using dynamical systems theory [239]. By reducing the non-linear equa-

tion to a Hamiltonian system with electrostatic potential and applying the bifurcation

theory of dynamical systems, various solitonic and quasiperiodic wave characteristics

for ion-acoustic waves have been examined [240, 241, 199, 200]. In this section we

have studied the effect of small perturbations on the system and have discussed the re-

sults with the help of phase portraits. In series of experiments on different properties of

electron acoustic waves by F. Anderegg et.al [242], the experimental setup was as shown

in figure 6.7. The trap is depicted in figure 6.7 as a series of hollow conducting cylinders

held in ultrahigh vacuum. A mild ”rotating wall” electric field applied to the sectored

electrode keeps the plasma in a stable state for days. The revolving wall is turned off 100

milliseconds before each wave measurement and then turned back on 200 milliseconds

later. Laser induced fluorescence (LIF) photons are gathered by optics perpendicular to

the trap axis by a diagnostic laser beam parallel to the magnetic field close to the trap

axis. The diagnosed volume is the intersection of the laser beam and the detection op-

tics’ viewing volume. And through this experiment they studied how the waves can be

excited throughout a wide continuum of frequencies at moderate and great amplitude

[242].

In an un-magnetized three-component degenerate dense plasma [177] with two groups
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Figure 6.7: Experimental setup with coherent photon detection, adopted from F. An-
deregg et.al [242]

of relativistic electrons at statistically different temperatures and stationary cold ions pro-

ducing a uniform neutralising background, the propagation of electron-acoustic waves

is examined. The quantum hydrodynamic (QHD) model equations that describe the be-

haviour of electron plasma waves in the model under consideration are given by [243,

180]
∂ (nj)

∂t
+
−→
∇ · (nj−→u j) = 0 (6.18)

∂ (−→u j)

∂t
+
(−→u j ·

−→
∇
)
(−→u j) =

1

me

[
e
−→
∇ϕ− 1

nj

−→
∇Pj +

ℏ2

2me

−→
∇
[∇2√nj

√
nj

]]
(6.19)

∇2ϕ = 4πe (nec + neh − Zini) (6.20)

The normalization scheme used is carried out as done by earlier researchers [171, 182]

x → xωc/csh, t → tωc, ϕ → eϕ/2kBTFh, nj → nj/nj0, ni → ni/ni0, uj → uj/csh.
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Here ωec =
√

4πnec0e2/me and csh =
√

2kBTFeh/me and the set of normalized equa-

tions obtained are:

∂ (nj)

∂t
+
∂ (njuj)

∂x
= 0 (6.21)

(
∂

∂t
+ uj

∂

∂x

)
uj =

∂ϕ

∂x
− Fj

∂nj
∂x

+
H2

2

∂

∂x

[
1

√
nj

∂2
√
nj

∂x2

]
(6.22)

∂2ϕ

∂x2
=

(
nec +

neh
δ

− ni
δ1
δ

)
(6.23)

where, Fj = (χe/3)
(
R2
j0/
√
1 +R2

j0

)
is the term arising from relativistic pressure

in weakly relativistic case, whereas for ultra relativistic case Fj = χeRj0/3 where

χe = mec
2/2kBTFeh; H = ℏωec/2kBTFeh is a non-dimensional quantum diffraction

parameter, δ = nc0/nh0 and δi = Zni0/nh0, TFeh is the Fermi temperature of hot elec-

trons and suffix j=eh, ec stand for hot and cold electron species. In fully degenerate

and relativistic configurations, the electron degeneracy pressure can be represented as

follows :

Pj =
(
πm4

ec
5/3h3

) [
Rj

(
2R2

j − 3
)√

1 +R2
j + 3 sinh−1R

]
(6.24)

where,

Rj = pFj
/mec =

[
3h3nj/8πm

3
ec

3
] 1

3 = Rj0n
1
3
j (6.25)

in which Rj0 = (nj0/n0)
1/3 with n0 = 8πm3

ec
3/3h3, ‘c’ being the speed of light in

vacuum. pFj is the electron Fermi relativistic momentum [212, 173]. Therefore, the

relativity pressure in ultra relativistic case is given by

Pj =
1

8

(
3

π

) 1
3

hcn
4
3
j (6.26)
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It’s worth remembering that electron number density, not electron temperature, deter-

mines the degenerate electron pressure.

6.3.1 Derivation of KdV equation

To investigate the non-linear behaviour of electron acoustic waves, we use inertia-less

hot ultra relativistic electrons, inertial cold electrons and stationary ions. The heated

electrons are thought to be the only cause of the pressure effect [188]. Using standard

stretching variables of space and time [195, 244],

ξ′ = ε1/2 (x− V0t) and τ1 = ε3/2t (6.27)

and perturbation expansion


nj

uj

ϕ

 =


1

0

0

+ ε


n
(1)
j

u
(1)
j

ϕ(1)

+ ε2


n
(2)
j

u
(2)
j

ϕ(2)

+ · · · (6.28)

the KdV equation obtained is [245, 179]:

∂ϕ

∂τ1
+ A′ϕ

∂ϕ

∂ξ′
+B′ ∂

3ϕ

∂ξ′3
= 0 (6.29)

where,

A′ = − 3
2V0

= − 3

2
√
δχeReh0/3

,

B′ =
V 4
0 −(1+δ)H2/4

2V0
= (δχeReh0/3)

2−(1+δ)H2/4

2
√
δχeReh0/3

We know the standard solution is given by [63]

ϕ = ϕm sech2
(
η′

∆

)
(6.30)

where η′ = ξ′ −M1τ1 the amplitude ϕm and width ∆ of the soliton are given by: ϕm =
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3M1

A′ and ∆ =
√

4B′

M1

A balance between dispersive and non-linear processes creates the single wave structure.

The feature of such a solitary wave structure is determined by the relative strength of

these two influences, which is in harmony with our previous studies [122].

6.3.2 Dynamical systems of Electron Acoustic Forced-KdV

Unperturbed system:

To obtain the dynamical system based on KdV equation, we now study a traveling wave

solution. For this, we use the transformation η′ = ξ′ −M1τ1 with the usual boundary

conditions as η′ → ±∞, ψ′ → 0, ∂ψ
′

∂η′
→ 0, ∂

2ψ′

∂η′2
→ 0 where M1 is the velocity of the

wave frame. Using this transformation and integrating the KdV equations twice with

respect to η′ we obtain.

∂2ψ′

∂η′2
= P1ψ

′ −Q1ψ
′2 (6.31)

where P1 =
M1

B′ =
M1

√
δχeReh0/3

(δχeReh0/3)
2−(1+δ)H2/4

, Q1 =
A′

2B′ =
3

2((δχeReh0/3)
2−(1+δ)H2/4)

,

Now the Eqn. (6.31) can be transformed into dynamical system of the form

∂ψ′

∂η′
= z′ (6.32)

∂z′

∂η′
= P1ψ

′ −Q1ψ
′2 (6.33)

The system will be conservative if the divergence of the field is zero i.e.
→
∇ .

→
F ′= 0,

where
→
F ′ (z′, P1ψ

′ −Q1ψ
′3). Hence, the Hamiltonian of the system is given by:

H ′(ψ′, z′) =
z′2

2
− P1ψ

′2

2
+
Q1ψ

′4

4
(6.34)

Since the phase plots describes all equations of EAWs with different initial conditions,
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we plan to study the bifurcation of phase trajectories for different parameters and initial

conditions. When a tiny smooth change to a system’s parameter values (the bifurcation

parameters) generates an abrupt ’qualitative’ or topological change in its behaviour, it is

termed as bifurcation [246, 247, 178].

Figure 6.8: Supernonlinear wave solution corresponding to dynamical system for Forced
KdV equation (i) with different values of parameter Reh0= 4(Blue), 6(Pink), 8(Orange),
9(Purple) with value of other parameters H=2.2, χe=0.8,f0=1, ω=10 (ii) with different
values of parameter H= 1.8(Blue), 2(Pink), 2.2(Orange), 2.4(Purple) with value of other
parameters χe=0.8,Reh0=8, f0=1, ω = 10 (iii) with different values of parameter δ=
0.1(Blue), 0.2(Pink), 0.3(Orange), 0.4(Purple) with value of other parameters H=2.2,
χe=0.8, Reh0=8, f0=1, ω=10

Figure 6.9: Supernonlinear wave solution corresponding to dynamical system for Forced
KdV equation (i) with different values of parameter χe = 0.4(Blue), 0.6(Pink), 0.8(Or-
ange) with value of other parameters H = 2.2, χe = 0.8, Reh0 = 8, f0 = 1, ω = 10
(ii)with different values of parameter f0 = 0(Blue), 1(Pink), 2(Orange), 4(Purple) with
value of other parameters H = 2.2, χe = 0.8,Reh0 = 8,ω = 10 (iii)with different values
of parameter ω = 0(Blue), 0.5(Pink), 1(Orange), 2(purple), 3(Dark Blue) with value of
other parameters H = 2.2, χe = 0.8, Reh0 = 8, f0 = 1.
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Figure 6.10: Phase portrait of Forced KdV for different values of (i)Reh0=6, (ii)Reh0=9,
(iii) Reh0=10 for different parameters H=2.2, χe=0.8, f0=1, ω = 10

Figure 6.11: Phase portrait of Forced KdV for different values of (i) H=1.8, (ii) H=2,
(iii) H=2.4 for different parameters χe=0.8, Reh0=8, f0=1, ω = 10

Figure 6.12: Phase portrait of Forced KdV for different values of (i) δ=0.1, (ii) δ=0.2,
(iii) δ=0.3 for different parameters H=2.2, χe=0.8, Reh0=8, f0=1, ω = 10

Figure 6.13: Phase portrait of Forced KdV for different values of (i) χe=0.5, (ii) χe=0.7,
(iii) χe=0.9 for different parameters H=2.2, Reh0=8, f0=1, ω = 10

Perturbed system:

The effects of external force on a system are of great interest. Various kind of external

forces may have various effects. In this study, the external force provided is f0cos(ω1η
′)
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Figure 6.14: Phase portrait of Forced KdV for different values of (i) f0=0 (ii) f0=5, (iii)
f0=10 for different parameters H=2.2, χe=0.8,Reh0=8, f0=1, ω = 10

Figure 6.15: Phase portrait of Forced KdV for different values of (i)ω=0, (ii) ω=2, (iii)
ω=3 for different parameters χe=0.8, Reh0=8, f0=1

[239]. Hence, we get

∂ψ′

∂η′
= z′

∂z′

∂η′
= P1ψ −Q1ψ

′3 + f0 cos(ω1η
′) (6.35)

The external perturbation is η′ dependent, f0 is the strength of the perturbation and ω1 is

the compounding frequency. Figure (6.8) shows how the increase in the value of Reh0

leads to increase in frequency and amplitude of the structure leading to increased disper-

sive effects and giving rise to some kind of an envelope wave [169, 248]. The increase

in the value of quantum diffraction parameter (H) which is related to plasmonic energy

leads to fluctuation and amplitude variation. The value of δ (cold to hot electron equi-

librium number density ratio) upto δ= 0.3 gives stable modes with no much fluctuations

but further increase leads to unstable modes with increasing amplitude. In figure 6.9 is

the strongly coupled system in which the increase in χe (inversly proportional to ther-

mal energy) leads to increase in Debye length (λD) giving rise to region of electric field

that is the sphere of influence in the system. The increasing strength of perturbation
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Figure 6.16: Bifurcation plots for ψ′ and z for Forced KdV with variation in Reh0 and H
for value of different parameters χe=0.8, f0=0.8, ω=2.5

(f0) increases the amplitude of the structure leaving the spatial frequency approximately

unchanged and the compounding frequency does not affect the structures as the plasma

is highly dense. Equation (6.35) compared to non autonomous system, can be related to

corresponding autonomous system defined through the condition

∂ξ′

∂η′
= 1 (6.36)

Hence ψ′, η′ and ξ′ are state variables. From Eqn. (6.36), it is clear that the system has

no equilibrium points, thereby suggesting the probability of hidden attractors. In figure

6.10, different initial conditions are having almost closed loop. Because of the external

100



Chapter 6. Bifurcation Theory and Stability Analysis

Figure 6.17: Bifurcation plots for ψ′ and z for Forced KdV with variation in χe and δ for
value of different parameters H=2.2, Reh0=8, f0=0.8, ω=2.5

force provided, the phase portrait is tending to double the period in loop. It is because

with increase in value of Reh0, the external perturbation applied has ability to increase

the frequency and hence provide extra energy to the system. Such a fluctuation in initial

path could be studied through Lyapunov exponent [249]. To study such chaotic motions

in detail [190, 189], the use of Lyapunov exponents is an effective tool as it characterizes

the rate of separation of infinitesimally close trajectories. As z is directly proportional

to electric field, we are getting two different values of electric field for same value of ψ′

in figure 6.11, leading to degeneracy which is due to the non-linear mechanism in high

energy plasma. The lesser value of δ leads to lesser inertia but as the value of δ rises,

period-doubling bifurcation comes into play.
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Figure 6.18: Bifurcation plots for ψ′ and z for Forced KdV with variation in f0 and ω
for value of different parameters H=2.2, χe=0.8, Reh0=8,

Figure 6.19: Largest Lyapunov exponent for Forced KdV for values of different parame-
ters (i) H=2.2, χe=1, Reh0=10, f0=0.8, ω=0.8, (ii) H=2.8, χe=1, Reh0=8, f0=0.8, ω=0.8,
(iii) H=2.2, χe=1, Reh0=8, f0=0.8, ω=0.8

In figure 6.13, for lesser value of χe, the thermal energy is greater and hence not

enclosed inside the system whereas as χe increases, the thermal energy decreases and

hence the system is more symmetric which is what stated in second law of thermodynam-

ics. Figure 6.14 demonstrates that increasing the external force leads to period-doubling
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Figure 6.20: Largest Lyapunov exponent for Forced KdV for values of different param-
eters (i) H=2.2, χe=1, Reh0=8, f0=1, ω=0.8, (ii) H=2.2, χe=1, Reh0=8, f0=4, ω=0.8, (iii)
H=2.2, χe=1, Reh0=8, f0=1, ω=4

bifurcation, which occurs when a little change in a system’s properties allows a new pe-

riodic trajectory to emerge from an existing periodic trajectory with twice the period of

the original. At ω=0 in figure 6.15, there is a constant force being applied to system and

hence momentum is linearly increasing with time making the phase lead as the potential

energy stored is getting converted into the Kinetic energy. Figures (6.16-6.18) show the

range of bifurcation having periods of order and disorder. In fig.6.16, quantum diffrac-

tion parameter does not seem to contribute much to either chaotic or ordered pattern

from range 1.6 to 2. Higher to this value, the bifurcation is in pure quantum regime. The

bifurcation curve converges to a single point in both cases with increase in δ as well as

ω.

Figures 6.19 and 6.20 shows the largest Lyapunov exponent that is the value of Lya-

punov exponent for given parameter for which the system is chaotic. The influence of

parameter Reh0 is such that the LLP ceases to determine if the system is chaotic or or-

dered after value 6. And H begins to determine if the factor is chaotic or ordered after

value 2. In case of δ, for lower values of δ, the number density of cold electrons de-

creases and increases if value of δ is high. In between there is an equilibrium of number

density of cold to hot electrons and hence the system is more ordered. Now in figure

6.20, when the value of χe is less that (i.e. thermal energy is high, higher than the rest

energy), the system is more chaotic. And in case of external force, when the external

force applied is higher, the system will be chaotic in nature.
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Figure 6.21: Supernonlinear wave solution corresponding to dynamical system for
NLSE (i) with different values of parameter Reh0= 4(Blue), 6(Pink), 8(Orange), 9(Pur-
ple) with value of other parameters H=2.2, δ=0.3, k=0.5, χe=0.8, Rec0=2, Fec=0.35703,
Feh=2.1333, (ii) with different values of parameter H= 1.8(Blue), 2(Pink), 2.2(Orange),
2.4(Purple) with value of other parameters δ=0.3, χe=0.8,Reh0=8,Rec0=2, Fec=0.35703,
Feh=2.1333 (iii) with different values of parameter δ= 0.1(Blue), 0.2(Pink), 0.3(Or-
ange), 0.4(Purple) with value of other parameters H=2.2, χe=0.8, Reh0=8, Rec0=2,
Fec=0.44983, Feh=2.1333

Figure 6.22: Supernonlinear wave solution corresponding to dynamical system for
NLSE (i) with different values of parameter χe= 0.4(Blue), 0.6(Pink), 0.8(Orange)
with value of other parameters H=2.2, δ=0.3, k=0.5, Reh0=8, Rec0=2, Fec=0.35703,
Feh=2.1333, (ii)with different values of parameter k= 0.05(Blue), 0.1(Pink), 0.12(Or-
ange), 0.125(Purple) with value of other parameters H=2.2, δ=0.3, χe=0.8, Reh0=8,
Rec0=2, Fec=0.35703, Feh=2.1333, (iii)with different values of parameter ω= 2(Blue),
3(Pink), 4(Orange), 10(purple) with value of other parameters H=2.2, χe=0.8, Reh0=8,
Rec0=2, Fec=0.35703, Feh=2.1333

Figure 6.23: Phase portrait of NLSE for different values of (i) Reh0=6, (ii) Reh0=7,
(iii) Reh0=9 for different parameters H=2.2, δ=0.3, χe=0.8, k=0.5, Rec0=2, Fec=0.35703,
Feh=1.6
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Figure 6.24: Phase portrait of NLSE for different values of (i) H=1.8, (ii) H=2,
(iii) H=2.4 for different parameters Reh0=8, δ=0.3, χe=0.8, k=0.5, Reh0=8, Rec0=2,
Fec=0.35703, Feh=2.1333

Figure 6.25: Phase portrait of NLSE for different values of (i) δ=0.03, (ii) δ=0.3, (iii)
δ=0.7 for different parameters H=2.2, χe=0.8, k=0.5,Reh0=8, Rec0=2, Fec=0.35703,
Feh=2.1333

Figure 6.26: Phase portrait of NLSE for different values of (i) χe=0.4, (ii) χe=0.6
(iii) χe=1 for different parameters H=2.2, δ=0.3, k=0.5, Reh0=8, Rec0=2, Fec=0.35703,
Feh=2.1333

Figure 6.27: Phase portrait of NLSE for different values of (i) k=0.05, (ii) k=2, (iii) k=6
for different parameters H=2.2, δ=0.3 χe=0.8, Reh0=8, Rec0=8, Fec=1.4281, Feh=2.1333
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Figure 6.28: Phase portrait of NLSE for different values of (i) ω=0.5, (ii) ω=0.9, (iii)
ω=2 for different parameters H=2.2, χe=0.8, Reh0=8, Rec0=8, Fec=1.4281, Feh=2.1333

Figure 6.29: Bifurcation plots of NLSE for ψ′′ and z for FKdV with variation in Reh0

and H for value of different parameters χe=0.8, δ=0.3, k=0.5, Fec=0.35703, Feh=2.1333
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Figure 6.30: Bifurcation plots for ψ′′ and z for FKdV with variation in χe and δ for value
of different parameters H=2.2, k=0.5, Reh0=8, Rec0=2, Fec=0.44183, Feh=2.13333

6.3.3 Analytic derivation of NLSE

We want to look at how an electron acoustic wave evolves non-linearly. Higher harmonic

production arises from the carrier wave’s nonlinear self-interaction in the background

plasma [216, 215]. The field variables are expanded using the Fourier method as follows:


nj

uj

ϕ

 =


1

0

0

+ ε2


nj0

uj0

ϕ0

+
∞∑
s=1

εs




njs

ujs

ϕs

 exp(isθ) +


n∗
js

u∗js

ϕ∗
s

 exp(−isθ)


(6.37)

where θ = k1x−ω1t, the field quantities nj0, uj0, ϕ0, njs, ujs are expected to change
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Figure 6.31: Bifurcation plots for ψ′′ and z for FKdV with variation in k and omega
for value of different parameters H=2.2, δ=0.3, χe=0.8 Reh0=8, Rec0=2, Fec=0.35703,
Feh=2.13333

Figure 6.32: Largest Lyapunov exponent for values of different parameters (i) H=2.2,
δ=0.3, χe=0.8, k=0.5, Reh0=10, Rec0=2, Fec=0.35703, Feh=2.6667, (ii) H=2.8, δ=0.3,
χe=0.8, k=0.5, Reh0=8, Rec0=2, Fec=0.35703, Feh=2.1333, (iii) H=2.2, δ=0.9, χe=0.9,
k=0.5, Reh0=8, Rec0=2, Fec=0.51493, Feh=2.1333

slowly when x and t change, i.e. they’re supposed to be functions of

ξ′′ = ε (x− cgt) and τ2 = ε2t (6.38)

108



Chapter 6. Bifurcation Theory and Stability Analysis

Figure 6.33: Largest Lyapunov exponent for values of different parameters (i) H=2.2,
δ=0.3, χe=1, k=0.5, Reh0=8, Rec0=2, Fec=0.44629, Feh=2.6667, (ii) H=2.2, δ=0.3,
χe=0.8, k=1, Reh0=8, Rec0=2, Fec=0.35703, Feh=2.1333, (iii) H=2.2, δ=0.3, χe=0.8,
k=0.5, Reh0=8, Rec0=2, Fec=0.35703, Feh=2.1333

where ϵ is a smallness parameter and cg = dω
dk

is the normalized group velocity. Using

standard multiple scale perturbation technique we re-derive the NLSE as [202]

i
∂ϕ2

∂τ2
+ P2

∂2ϕ2

∂ξ′′2
= Q2ϕ

2
2ϕ

∗
2 (6.39)

where values of P2 and Q2 are

P2 =
1

2

dcg
dk

=
1 + (Aec/Ωec) + (Aeh/δ · Ωeh)

2ω [(1/Ω2) + (1/Ω2
ec)]

(6.40)

and

Q2 =
(Nec/Ωec) + (Neh/δΩec)

2ω
[
(1/Ω2

ec) +
(
1/Ω2

eε

)] (6.41)

Here, the other functions are provided in the appendix (chapter D) Dey et.al [202] has

reported the numerical plots of the NLSE.

6.3.4 Dynamical Systems of Amplitude Modulated EAWs

In the study of dynamical systems with two-dimensional phase space, a limit cycle is

a closed trajectory in phase space, with the property that at least one other trajectory

spirals into it as time approaches infinity or as time approaches negative infinity. This

type of behaviour can be seen in some non-linear systems. To investigate the dynamical

properties of EAWs, we consider transformation η′′ = lξ′′ − V τ2 and ϕ2 = ϕ(η′′) =

ψ′′(η′′)exp(iβη′′), the NLSE then transforms into:
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d2ψ′′

dη′′2
=

(
β2 − 1

P2l2
βV

)
ψ′′ +

Q2

P2l2
ψ′′3 (6.42)

Eqn. (6.42) can be expanded in the dynamical system as

∂ψ′′

∂η′′
= z′′

∂z′′

∂η′′
= P2

′′ψ′′ +Q2
′′ψ′′3 (6.43)

where P2
′′ = β2 − 1

P2l2
βV and Q2

′′ = − Q2

P2l2

This system will be conservative if the corresponding field is solenoidal, i.e.
→
∇

.
→
F ′′= 0, where

→
F ′′ (z′′, P2

′′ψ′′ +Q2
′′ψ′′3). Hence the system is a planar one with

Hamiltonian given by H ′′ = z′′2

2
− P2

′′ψ′′2

2
− Q2

′′ψ′′4

4
. The phase plots provide the dynam-

ical properties.

In figure 6.21, the increase in H reduces the modulation and wave number of the

waves making plasma more dense and hence giving birth to quantum tunneling. And

if figure 6.22, the rise in value of wave number i.e. decreasing frequency made the

modulation of envelope soliton cover a larger space.

The phase plots figures, however suggest that there is convergence condition and

there are hidden or coexisting attractors that lead to the conclusion of the existence of

limit cycle [250]. In figure 6.23, there is no much fluctuation with change in value of

Reh0 whereas the separation between hidden separators in figure 6.24 increases with rise

in value of quantum diffraction parameter (H). In figure 6.25 hidden attractors spread

out with increase in value of δ, that is because number density of cold electrons increases

and the system becomes more inertial i.e. less mobility and hence the system is more

ordered. But in figure 6.26, lesser the value of χe, more is the thermal energy and

hence more chaotic is the system thus following the second law of thermodynamics. In

both figures 6.27 and 6.28, the system becomes more ordered with increase in value of

parameter. Further from figure 6.29-6.31, there are some pockets of parametric range in
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which dynamical system is highly bifurcated giving bump on tail type distribution. And

in figures 6.32 and 6.33, there are certain packets of parametric range within which the

distribution is quite similar to other cases.

6.3.5 Applications

This work will find application in theoretically predicting the stable modes in many solar

plasma and stellar plasma applications. The current study could also aid in understanding

the fundamental properties of electron-acoustic waves in extremely dense astrophysical

objects such as white dwarfs and neutron stars [251]. The density of white dwarfs can

range between 105 to 109. As a result, the relativity parameterRj0 in this example can

be in the range 0.37 to 8 [220].These results will also be useful in the future intense

laser-solid plasma experiments where the relativistic electron degeneracy effects become

important.

6.4 Conclusion

We have shown envelope solitons in relativistic plasma with degenerate hot and cold

electrons and perturbed ions as constituents. The fluid quantum hydrodynamic model

governs the dynamics of the electron acoustic plasma system. This plasma shows the

behaviour of astrophysical plasma where speed of particles approach speed of light. We

have taken the relativistic pressure and analyzed behaviour of electron acoustic waves.

The solution of Forced-KdV equation explains the dependence of behaviour of these

perturbed solitons on various parameters taken. The unperturbed plasma system is stud-

ied and then how does the perturbation affects the system is investigated. The dynamical

system is studied through non-linear Schrodinger equation (NLSE). The importance of

studying dynamical systems is explained through phase portraits. The qualitative change

in this system’s dynamics with variation in parameters is explained through bifurcation

where the characterization of the rate of separation of infinitesimally close trajectories
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is done using Lyapunov exponent. And the chaotic behaviour of the system is studied

through Largest Lyapunov exponent. This study is applicable to various astrophysical

phenomenon like in stellar media, magnetospheres, polar caps etc.
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CHAPTER 7

RESONANT INTERACTIONS AND CHAOTIC EXCITATION IN NONLINEAR

SURFACE WAVES IN DENSE PLASMA

7.1 Introduction

Plasma in space as well as laboratory are often confined by way of magnetic fields.

In most of the cases we have regions rich in ionised gas of finite density and almost

vacuum. Thus there appears a boundary between these two regions [252]. The electric

and magnetic properties of these regions vary accordingly. For instance a magnetar [253]

which has strong magnetic field confines the astrophysical plasma around itself through

the magnetic bottling mechanism. Any perturbation of electrical or mechanical in nature

at these boundaries can grow up to gigantic proportions or might also die out. There

are reports [187, 73] where nonlinear interaction inside plasma can produce harmonics.

Such harmonics attribute addition features to the ionised gas. By a judicial study of the

data from such harmonics the density and currents of the plasma components may be

predicted. The collective behaviour of such plasma is the combined effect of individual

particle dynamics. By studying the particle dynamics that might result in such nonlinear

phenomena many information can be obtained. Such studies are within the preview

of dynamical systems [208, 189] and chaos [190, 254, 177]. The individual particle

orbits create a magnetic field that acts as an intermediary to the coupling mechanism.

Often space missions [255] report of various wave modes [182, 181] and associated

stationary structures like solitary waves [186, 175, 180], shocks [118, 173, 256, 178],

double layers [257, 258, 179], vortices [259, 260] etc and associated instabilities [174,

195]. Of the many wave modes, some are extensively studied and are available in the

literature. There can be electrostatic modes like Ion acoustic modes (IAW) [168, 167,

117], electron acoustic modes (EAW) [194, 169, 261], dust acoustic modes (DAW) [63]
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etc. Some additional electromagnetic modes are the Alfvén mode [262], magnetosonic

mode [263, 184] etc.

The plasmas available in the universe may be either dense or dilute. The coupling

mechanism in these two categories are very different. Often dense plasma is observed

in intense laser plasma interactions [134, 264, 265, 171], neutron stars [266, 64], white

dwarfs [267], relativistic streaming plasma [82, 65] etc. The dilute plasma has been

extensively studied. Not much works are there which takes into consideration the high

density and low temperature effects. These two effects often are beyond the preview of

classical plasma and a quantum formulation is necessary. The quantum hydrodynamic

model is one such theory which is applicable to these types of plasma. Initially concep-

tualised by Manfredi [268, 269], Haas [270, 172], Bonitz [271], Shukla [56, 183] and

subsequently studied extensively by Chandra [66, 68], Mishra [272], Goswami [176],

and others [72, 243, 122]. This theory holds ground in the present days as it takes into

consideration many quantum mechanical effects that were otherwise left unexplored.

Quantum plasma physics becomes meaningful when the de Broglie wavelength of the

plasma particles becomes comparable to the inter-particle distance. Because of this,

there is a significant overlap of the corresponding wavefunctions. In such a situation,

the study of plasma physics problem is described by quantum statistics, in contrast to

the usual classical Maxwell-Boltzmann statistics. The quantum mechanical (Fermionic)

character becomes more relevant for sufficiently dense plasma. In a plasma system if the

number density of degenerate electrons is of the order of 1030/m3 to 1035/m3 or of closer

densities then we need quantum mechanics to support them [191, 207, 185].

The surface wave modes are coupled electrostatic/electromagnetic excitations of

electrons near the vacuum-plasma interface and can be excited on a sufficiently dense

plasma half-space and can propagate along the interface and decay on either sides of the

boundary. Some recent literature can be found in this regard [273, 274, 275] They are

characterized by time dependent concentration of surface charge on the surface. These

results into the rapid fall of the wave amplitude on the either side of boundary.
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The motivation behind this work is the investigation of second harmonic generation

and propagation within the bulk of plasma that is bounded by vacuum on one surface.

Such a semi bounded plasma shows a transverse propagation of higher harmonics across

the interface. The electrical perturbation at the boundary produces additional effects

that might directly or indirectly control the conversion efficiency of different harmonics.

Here we study the spatial variation of conversion efficiency and the frequency shifts that

might have a deep influence on the generation and sustenance of higher harmonics

This chapter is organized in the following ways. In Section §7.2, introduce our gov-

erning equations, then (in §7.3), we obtain the linear dispersion relation and the first-

order field quantities from which we study the Lagrangian chaos. In Section §7.4, the

nonlinear theory of second-harmonic generation is presented. Its parametric influence

is also studied. This chapter is concluded with some physical applicabilities of these

theoretical findings.

7.2 Model Equations

We have considered a dense plasma whose equation of state is given by degeneracy

pressure as:

Pe =
πm4

ec
5

3h3
[Re(2R

2
e − 3)

√
1 +R2

e + 3 sinh−1Re] (7.1)

Where, Re =
[

3h3ne

8πm3
ec

3

] 1
3
= Re0n

1
3
e . For a weak degeneracy the equation can be recast

as Pe = kBTe
ne0

2/3n
5/3. Now as we are interested in the interaction mechanism between

the fundamental and higher harmonics of such a plasma separated from the vacuum and

waves are being generated at the plasma-vacuum interface are propagated within the

bulk of the plasma, the set of governing equations describing the system are given by:

∂ne
∂t

+ ∇⃗(neue) = 0 (7.2)

[
∂

∂t
+ u⃗e∇⃗

]
u⃗e =

1

me

[
e∇⃗ϕ− 1

ne
∇⃗Pe +

ℏ2

2me

∇⃗

[
1

√
ne

∇2√ne

]]
(7.3)
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∇2ϕ = (ne + Zini) (7.4)

and also there is Laplace’s equation in vacuum for vacuum field quantity ϕv as,

∇2ϕv = 0. (7.5)

Where, Λ = mec2

2kBTFe
. And the non-dimensional quantum diffraction parameter H is given

as,H = ℏωe

kBTFe
. TFe is the Fermi temperature of the electrons,ne0 and ni0 are equilibrium

number densities of electrons and ions respectively and ωe =
√

4πne0e2

me
is the electron

plasma frequency. Now combining equation ((7.2)-(7.5)) we can write,

(
∂2

∂t2
+ 1−∇2 +

H2

4
∇4

)
∇2ϕ2 =

∂L
∂t

+
−→
∇ .

−→
T +∇2R (7.6)

where, L = −
−→
∇ · (n−→u ),

−→
N = (−→u ·

−→
∇)−→u + Fen

−→
∇n, R = H2

4
n∇2n

7.3 Linear Theory

7.3.1 Linear Dispersion Characteristic

We can write every field quantity X as [276],

X = X0 +X1 (7.7)

where X can be ϕ,ϕv,n,ux,uz and X0 is equilibrium value and X1 is a small perturbation

and we take X1 as [276],

X1 = X1(x)exp[i(kz − ωt)] + cc (7.8)

Neglecting the non-linear term we can write the linear form of the surface wave,which is

associated with the following 1st order perturbation quantities, that decays exponentially

in the direction normal to the interface are given in Appendix §C.1.
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Figure 7.1: Dispersion curve for different quantum diffraction parameter (H)

And the linear dispersion relation is given by:

ω =
1√
2

(
1 +

k√
2

√
ΛRe

3
+
H2k4

4

)
(7.9)

The dispersive effects increase with quantum diffraction and the degeneracy effects.

From equation (7.9) these effects are clear and to depict the dependence we plot the

linear dispersion characterisation for different values of (H) and (Λ) [figure (7.1), (7.2)]

respectively.

7.3.2 Linear Surface waves

A linear wave at the surface separating the vacuum and plasma gradually favors the

growth of higher harmonics through nonlinear interaction. Such small surface waves

on fluids have been well formulated by Airy [277]. A nonlinear interaction of this type

is the direct result of particle trajectories mixing within the bulk of the plasma. We

restrain ourselves in the linear regime to understand the basic mechanism (chaos) which

will induce nonlinear interaction in subsequent stages. In this context of wave mixing

it is important to discuss the ’Lagrangian chaos’. The interface which is represented by

x − y plane and the wave which in propagating along the surface. We intend to see the
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Figure 7.2: Dispersion curve for different degeneracy parameter (Λ)

mechanism in the x−z plane. Assuming the component of the wave under investigation

being the x-direction the field quantities of the plasma fluid are given by (7.10)–(7.11).

It is to be noted that the amplitude for a harmonic waves travelling on fluid layer at

a depth/height of ‘h’ from the interface be some function of the surface displacement

given by equation (7.10).

ξ(x, t) = Acos(kx− ωt) (7.10)

The velocity field fields in the bulk of plasma of height ‘h’ are given by equation (7.11).

ux(x, z, t) = Aω
cosh[k(l + z)]

sinh(kl)
cos(kx− ωt)

uz(x, z, t) = Aω
sinh[k(l + z)]

sinh(kl)
sin(kx− ωt)

 (7.11)
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Here, x, ux,z and uz are horizontal coordinate, horizontal velocity, vertical coordinate

and vertical velocity of the wave respectively. If we get into the bulk of the plasma

[i.e. l → ∞] the fluid velocity components take the form equation (7.12) which can be

written as
ux(x, z, t) = Aωekzcos(kx− ωt) = ẋ

uz(x, z, t) = Aωekzsin(kx− ωt) = ż

ξ = Acos(kx− ωt)


(7.12)

7.3.3 Particle dynamics under one harmonic wave

In order to study the particle motion under a wave we start from equation (7.12) and

change the variable as ψ = kz − ωt. Also, rescaling as, z1 = kz and τ = ωt, we get

dψ

dτ
= ψ′ = kAez1cosψ − 1

dz1
dτ

= y′ = kAez1sinψ

kz = ln(k)− nπ, z1 = ln(k)− nπ


(7.13)

Also, these equation can be presented in Hamiltonian form

ψ′ =
∂H
∂z1

& z1
′ = −∂H

∂ψ
(7.14)

with time independent Hamiltonian given by

H = kAez1cosψ − z1 (7.15)

To simplify we use, ζ = z1 + ln(kA) then new form of Hamiltonian will be,

H = eζcosψ − ζ

i.e H = ∓k2Acosψ − ln(k) + nπ

 (7.16)
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Figure 7.3: Level curves of Hamiltonian (H) defined by (7.17) giving the orbits of a
particle under a single harmonic wave

With equations of motion,

ψ′ = eζcosψ − 1 & ζ ′ = eζsinψ (7.17)

Figure (7.3) shows the level curves corresponding to equation (7.17). We find that there

are open curves as ζ → ∞ and there are periodic shifts at low value of ξ. A level curve

of a function (here Hamiltonian) of two variables (ψ and ζ) at a particular values of

the function is the set of all particles on the domain of the function which takes up that

particular value.
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Figure 7.4: The vector length versus time of different amplitude of surface
disturbance(A)
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Figure 7.5: The vector length versus time of different quantum diffraction
parameters(H)
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Figure 7.6: The vector length versus time of different values frequency (ω)
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Figure 7.7: The vector length versus time of different values wave vector ((k))
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7.3.4 Superposition of Waves and Lagrangian Chaos

It is now important to study the dependence of particle motion on various particles.

The dynamic system equation are analyzed. To brief about the analytic approach to

study the particle advection in a more complicated flow we superpose the harmonics,

ẋ =
∑

j ux,j(x, z, t) and ż =
∑

j uz,j(x, z, t) For our case j = 1 and 2.

The surface distortion is therefore given by D̃(x, t) =
∑2

j=1Ajcos(kjx− ωjt+ θj),

θj is the phase difference. Since the fluid is considered incompressible we can use the

condition ∂ux
∂x

= −∂uz
∂z

. The streamfunction is therefore given by,

′∑
=

2∑
j=1

Aj
ωj
kj
ekjzcos(kjx− ωjt+ θj).

These can be a potential given by the complex conjugate of stream function given by,

∏
=

2∑
j=1

Aj
ωj
kj
ekjzsin(kjx− ωjt+ θj).

Now, these streamline function (
∑′) and potential function (

∏
) can be coupled as real

and imaginary part of a single complex function dependent of complex variable (ρ =

x+ iz) given by,

F (ρ) =
2∑
j=1

Aj
ωj
kj
ekjz [exp(kjx− ωjt+ θj)] .

The equation of motion accordingly becomes

ρ̇ = −idF
dρ

To investigate whether the orbit is chaotic or not we compute the Largest Lyapunov

exponent (LLE). This is done by studying the linear perturbation around the flow (7.11).

Equation (7.13) is supplemented by the linear dynamical system for deviations (δx, δz)
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given by,

δẋ =
∂ux
∂x

δx+
∂ux
∂z

δz

δż =
∂uz
∂x

δx+
∂uz
∂z

δz

 . (7.18)

The above symmetry is used based on the incompressibility and potentiality of the flow

suggesting the Lyapunov exponent is symmetric about the origin.

Chaos requires a positive values of Largest Lyapunov exponent (LLE). This can be

interpreted by studying the long time properties of the modulus of the vector (δx, δz),

which is d(t) =
√

(δx)2 + (δz)2. In figures (7.4) to (7.7) we plot the vector length versus

time of different parameters. The exponential decay or growth or oscillatory nature of

d(t) suggests chaos or order based on the equation d(t) ∼ eλmt. Here, λm is the LLE.

The nature and stability of the orbits are thus predicted for these figures. In figure (7.4)

we find that the distance vector gradually oscillates with diminishing magnitude which

is more rapid for larger amplitude of surface disturbance (A). This is due to the decrease

of skin depth with amplitude of surface distance. Maximum the energy is used for lateral

movement, more quickly the motion cease to exists. The effect of quantum diffraction

(figure (7.5)) is anisotropic during the waxing and waning phase, when the length of

the deviation vector d(t) increases there appears small fluctuations in the crests which is

due to quantum mechanical tunneling. As quantum diffraction parameter (H) increases

periodically increases resulting in smaller periods.

Figures (7.6) and (7.7) show the dependence of deviation vector on the frequency (ω)

and wavenumber (k) of the surface disturbance. We see that a frequency (ω) increases

(Figure (7.6)) from 0.2 to 1.2 anomalous behaviour appears. Initially the derivation

decreases in amplitude (Blue and Orange). Then the system shows lower periodicity

with asymmetric profile depicting lagging behaviour (yellow) or in other sense some

kind of energy mismatch. Suddenly the derivation peaks up from which we can infer

that some resonance mechanism occurs at ω = 1.2. The effect of wavenumber (k) is

more interesting. From figure (7.7) we see that the wavenumber increases from 0.1, 0.2
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small magnitude, but at u = 0.8 there is no such fluctuations suggesting a total mismatch

of energy exchange. Such a phenomena cannot be explained in the linear theory and we

have to resort to the nonlinear theory for it. At k = 1.2 we find an exponentially decaying

periodic fluctuations suggesting heavy damping, but the damping cannot overpower the

periodic restoring force that is supplied from the system through the stress created in the

system given by the equation of state.

To summarise our findings from the linear theory we conclude that the linear dis-

persion characteristics depends positively on the quantum diffraction parameter (H) and

the degeneracy factor (Rh0). We have also studied the dynamical behaviour and the

level curves of the Hamiltonian. Further we studied the Lagrangian chaos by studying

the Maximal/Largest Lyapunov exponents (LLE). From the linear theory, a suggestive

resonant interaction appears for k = 1.2 and ω = 1.2. Both wavemunber and frequency

are in normalized scales. To study in more detail we have to investigate the nonlinear

interactions that are given in the subsequent sections.

7.4 Nonlinear Theory

7.4.1 Harmonics of Field Quantities: Generation and Evolution

Now,let us consider the nonlinear effects to be incorporated in the system equations.

Therefore, to obtain the field quantity of higher harmonics through nonlinear interaction,

let us write the generalized field variables as [276],

X = X0 +X1 +X2 (7.19)

where X0 is the equilibrium value, X1is the 1st order perturbed quantities associated

with linear effects and X2 is the some additional effect due to non-linearity. Substituting

the expansion (7.19) in (7.7) and keeping in mind that X1 satisfy the linear equations we
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obtain: (
∂2

∂t2
+ 1−∇2 +

H2

4
∇4

)
∇2ϕ2 =

∂Q

∂t
+
−→
∇ .

−→
T +∇2R (7.20)

∇2ϕν2 = 0 (7.21)

We here will assume that non-linear affects are weak so that we can assume X2 << X1

; this will allows us to calculate the nonlinear terms on the right-hand side of (7.7) by

using the known linear components in Appendix §C.1. Since we are interested only in

the oscillatory part of the second order perturbed quantities, the non-oscillatory terms

arising on the right hand side of (7.7) will be ignored. Thus we finally obtain the second

order oscillatory quantities using the linear components and boundary conditions given

by:

ϕ2 = {P1e
−2kx + P2e

2iβx + P3}ei(kz−2ωt) (7.22a)

n2 = {N1e
−2kx −N2e

2iβx +N3}ei(kz−2ωt)] (7.22b)

ux2 =
i

2ω
{U1e

−2kx + e−2γxU2 (7.22c)

+e−(γ+k)xU3 − e−2iβxU4 + U5}ei(kz−2ωt) (7.22d)

uz2 =
i

2ω
{e−2kxW1 + e−2γxW2 + e−2γxW3 (7.22e)

+e−(γ+k)xW4 − e−2iβxW5 +W6} (7.22f)

eι(kz−2ωt) (7.22g)

where,

4β2 = 4ω2 − 1− 4k3 − 4H2k4 (7.22h)
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The constants B2, D2, pj’s and Fj’s are given in Appendix §C.2.

7.4.2 Parametric Dependence of Field Quantities

Since we have obtained the second harmonic field quantities it is necessary to study the

dependence of velocity vectors in different depths of plasma media on various parame-

ters. In the following figures (7.8)-(7.19) the transverse (x- component) and longitudinal

(z- component) of velocities and the streamline corresponding to the velocity vector has

been depicted for plasma parameters. In figures (7.8)-(7.11) we see that as the amplitude

of the surface disturbance increases it dies out quickly across the interface (figure (7.8)).

However, the effect of quantum diffraction parameter (H) extends from the interface at

around H = 2.2 and the amplitude again grows (figure (7.9)). This growth of transverse

velocity component is due to the quantum tunneling effect across the boundary. This

means after a certain lateral length along the x-axis the velocity of the wave is totally

negative suggesting total internal reflection. This reflection is dependent on wavenumber

and for a normalised wave number shift from 0.4 to 0.6 (figure (7.10)).

The frequency of surface disturbance (ω) however can propagate along x-direction,

the periodicity in velocity propagates within the bulk but any surface modulation is lost.

This is due to the high density of the plasma. Such effect is clearly visible in figures

(7.11) b,c.

Contrary to the transverse velocity component (ux2), the longitudinal component

(uz2) in the second harmonic shows the variation much within the bulk of the plasma.

Figures (7.12)-(7.15) show the effects of surface disturbance amplitude (A), quantum

diffraction parameter (H), wavenumber (k) and frequency (ω) of periodic surface dis-

turbance. It is clearly seen that the velocity wave propagate with exponentially decaying

amplitude in x-direction (7.12) and at the surface the z- component shows progressive

wave suggesting the constant supply of energy in longitudinal direction by the external

source. This source may be an electrostatic field, or laser beam or any EM radiation

with periodicity that matches exactly (or closely) with the resonant frequency of the sys-
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Figure 7.8: x-component of velocity field inside plasma layer for different amplitudes
(A) of surface disturbance.(a) A=0.2, (b) A=0.5 & (c) A=0.8. Here k = 0.2, ω =
0.5, H = 1.8, Re = 2

Figure 7.9: x-component of velocity field inside plasma layer for different values of
quantum diffraction parameter (H).(a) H=1.6, (b) H=2 & (c) H=2.2. Here k = 0.2, ω =
0.5, A = 0.4, Re = 2

tem. The quantum diffraction parameter unlike the transverse component does not affect

much of the longitudinal velocity component and the velocity field flattens for x > 0

(figure (7.13)). The wavenumber however shows a total reflection type mechanism for

u = 0.6 at a transverse distance of x = 5 (figure (7.14)). One interesting effect is seen

for frequency of surface disturbance ω = 1.2 (figure (7.15)). From here we can predict

a velocity resonance for ω = 1.2 and at a spatial distance x → 5. The velocity profile

takes a solitary structure around z = 0 suggesting the excitation of resonant modes close

to the resonant frequency (ω = 1).

In figures (7.16)-(7.19) we depict the velocity streamlines and its dependence on

various parameters. We see that as the amplitude of surface disturbance increases the

obliqueness of velocity streams increases (figure (7.16)). This is due to the energy asso-

ciated with large amplitude oscillations that enhances the oblique propagation of waves

in the lateral direction. As the density increases favoring more tunneling phenomena the
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Figure 7.10: x-component of velocity field inside plasma layer for different values
wavenumber (k) of surface disturbance.(a) k=0.2, (b) k=0.4 & (c) k=0.6. Here H =
1.8, ω = 0.5, A = 0.4, Re = 2

Figure 7.11: x-component of velocity field inside plasma layer for different values fre-
quency (ω) of surface disturbance.(a) ω = 0.2, (b) ω = 0.8 & (c) ω = 1.2. Here
H = 1.8, k = 0.2, A = 0.4, Re = 2

Figure 7.12: z-component of velocity field inside plasma layer for different amplitudes
(A) of surface disturbance.(a) A=0.2, (b) A=0.5 & (c) A=0.8. Here k = 0.2, ω =
0.5, H = 1.8, Re = 2
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Figure 7.13: z-component of velocity field inside plasma layer for different values of
quantum diffraction parameter (H).(a) H=1.6, (b) H=2 & (c) H=2.2. Here k = 0.2, ω =
0.5, A = 0.4, Re = 2

Figure 7.14: z-component of velocity field inside plasma layer for different values
wavenumber (k) of surface disturbance.(a) k=0.2, (b) k=0.4 & (c) k=0.6. Here H =
1.8, ω = 0.5, A = 0.4, Re = 2

Figure 7.15: x-component of velocity field inside plasma layer for different values fre-
quency (ω) of surface disturbance.(a) ω = 0.2, (b) ω = 0.8 & (c) ω = 1.2. Here
H = 1.8, k = 0.2, A = 0.4, Re = 2
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Figure 7.16: Velocity streamline inside plasma layer for different amplitudes (A) of
surface disturbance.(a) A=0.2, (b) A=0.5 & (c) A=0.8. Here k = 0.2, ω = 0.5, H =
1.8, Re = 2

Figure 7.17: Velocity streamline inside plasma layer for different values of quantum
diffraction parameter (H).(a) H=1.6, (b) H=2 & (c) H=2.2. Here k = 0.2, ω = 0.5, A =
0.4, Re = 2

Figure 7.18: Velocity streamline inside plasma layer for different values wavenumber (k)
of surface disturbance.(a) k=0.2, (b) k=0.4 & (c) k=0.6. Here H = 1.8, ω = 0.5, A =
0.4, Re = 2
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Figure 7.19: Velocity streamline inside plasma layer for different values frequency (ω)
of surface disturbance.(a) ω = 0.2, (b) ω = 0.8 & (c) ω = 1.2. Here H = 1.8, k =
0.2, A = 0.4, Re = 2

streamlines deviate from each other due to repulsion of Coloumbic nature as well as due

to exclusion principle (figure (7.17)c). Particle flow and localization is visible in figures

((7.18) and (7.19)). As the wavelength (k) and frequency (ω) of surface disturbance

increases short range contractions are noticed in the bulk of the plasma. Streamlines are

not that closely spaced but it shows a collective response to the external field. We have

seen similar resonant behaviour in figures (7.6) and (7.7).

7.5 Conclusions

In this work we have investigated in details the generation and propagation of second

harmonics at a plasma vacuum interface and its corresponding field variables inside the

bulk of plasma. We also studied Lagrangian chaos and its parametric dependence. The

findings will help researchers in Laser-produced plasmas to study the generation and

sustenance of higher harmonics and how to make use of them in practical applications.
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CHAPTER 8

NONLINEAR WAVE-WAVE INTERACTION IN SEMICONDUCTOR

JUNCTION DIODE

8.1 Introduction

Semiconductors have revolutionized the pursuit of science and engineering in the last

century. From miniaturization of instruments to the efficiency of their functioning, semi-

conductor devices is a necessity for every sphere of S & T. Recently spin effects in mem-

ory devices and associated electronics have added more academic and industrial interest

[278, 279, 280, 281, 282, 283, 284, 285, 286]. Since then many theoretical models

have been used to understand the proper science behind semiconductor physics [287,

288]. The science of semiconductor have received a fresh insight through the experi-

mental modelling by employing plasma fluid theory [288]. The quantum hydrodynamic

(QHD) model which was initially developed by Manfredi [268, 269], Haas [172, 289,

290, 291], Shukla [56], Chandra [66, 65, 64, 82, 134, 187, 261, 208] , Bonitz [292],

Marklund [184], and others [185, 223, 220, 72, 293, 294, 295, 296, 297, 292, 186,

180] have been widely used to study nonlinear interactions in semiconductor plasma

systems. Recently, research groups like Akbari [298, 299] Eliasson [207], Markowich

[300] have contributed seriously in the energy transport investigations of heavily doped

semiconductors. The Boltzmann equation [301] which is valid for classical system how-

ever becomes insufficient to described properly the semiconductor plasma theory [302].

Accordingly, the Fermi Dirac distribution [175, 303] and other similar distribution func-

tions [304] have been used in the theoretical understanding of semiconductor plasma

physics. The dynamic equation describing the macroscopic behaviour of semiconduc-

tor plasma is based on the microscopic parameters which define the system [305]. The

hydrodynamic models [306] and the diffusion models [300] have partially been success-
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ful in describing the physical system. However simulation studies [287] have helped to

understand the system with more accuracy. This is possible due to the application of

super-computing facilities available nowadays [307].

This work is primarily framed on the hydrodynamic model equation governing the

holes and electrons in a heavily doped semiconductor device [306]. We can use the same

Maxwell equation in semiconductors as we do for electrical charges in plasma physics.

Long range interaction [308, 309, 310] like Coulomb force leads to the semi classi-

cal Liouville’s theorem [311] or Vlasov model [301] whereas short range interaction

are studied by the scattering models [312, 313]. The scattering models make use of the

Boltzmann equation coupled with the Maxwell’s equations [314]. The scattering interac-

tions include short range interactions [315] that encompasses electron interaction [316],

electron hole interaction [317], hole-hole interaction [318], electron - neutral interaction

[319], neutral hole interaction [320] etc. In diffusion theory [321, 322] for semiconduc-

tors Boltzmann equation plays the major role. Semiconductor plasmas can also show

many kind of instability [323, 324, 325] like any other plasma [194, 326, 174, 195].

However since we are interested in the study of quantum effects in semiconductors, a

quantum statistical equation of state [63, 327, 72, 177, 73] will be more appropriate.

The present work is motivated to carry out a three-pronged investigation on semi-

conductor diode incorporating an analytical study, numerical analysis, and simulation

results that we have recently developed, which uses analytically obtained evolutionary

equations ( through the extended Poincare-Lighthill-Kuo (PLK) method [328]) initial

conditions and different system parameters. This work holds tremendous promise in

theoretically investigating actual physical experiments.

This chapter is organized in the following manner. In Section §8.2, we present the

fluid equations describing the electron and hole dynamics. We obtain the KdV equation

describing the electron and hole flows in the semiconductor by using the extended PLK

method (§8.3). In this section, we also plot the numerical results showing the head on

collision between the electron and hole solitons (Section §8.3.1). In Section §8.4.1,

136



Chapter 8. Nonlinear Wave-Wave Interaction in Semiconductor Junction Diode

we present our simulation algorithm in Section §8.4.1 findings in Section §8.4.2 and

conclude this chapter with some application to experimental interpretations in Section

§8.5.

8.2 Basic Formulation

There are two species of charge carriers in semiconductors viz. electrons and holes. In

our semiconductor plasma model a PN junction diode is considered. When a positive

potential is applied across the PN diode, the p-n junction is in forward biased condition,

for that the holes of the p-side and the electrons of the n-side is running towards the

junction. We consider the length of the semiconductor element some tens of Debye

length so that we ca consider the electrons and holes flow towards the PN junction.

This resembles oppositely propagating solitary structures which in subsequent instants of

time will interact in a nonlinear fashion thus giving rise to many interesting mechanisms

which we will study in the subsequent sections. The quantum hydrodynamic model

euations have been used by many authors [189, 182]

The p-type semiconductor side with hole majority has the basic dynamical equations

complying the quantum hydrodynamic (QHD) model given by

∂nh
∂t

+
∂

∂x
(nhuh) = 0 (8.1)

mhnh

(
∂uh
∂t

+ uh
∂uh
∂x

)
= −enh

∂ϕ

∂x
− ∂Ph

∂x

− ℏ2

4mh

∂

∂x

(
∂2

∂x2
√
nh

)
− Vh,xc

∂nh
∂x

(8.2)

and,

ϵL
∂2ϕ

∂x2
= e(nh + ni − ne) (8.3)

And n-type semiconductor segment with electrons as majority carriers have the follow-

137



Chapter 8. Nonlinear Wave-Wave Interaction in Semiconductor Junction Diode

ing dynamical equations given by,

∂ne
∂e

+
∂

∂x
(neue) = 0 (8.4)

mene

(
∂ue
∂t

+ ue
∂ue
∂x

)
= ene

∂ϕ

∂x
− ∂Pe

∂x

− ℏ2

4me

∂

∂x

(
∂2

∂x2
√
ne

)
− Ve,xc

∂ne
∂x

(8.5)

and,

ϵL
∂2ϕ

∂x2
= e(nh + ni − ne) (8.6)

ϵL is the linear dielectric constant for the semiconductor. In equations (8.2) and (8.5)

there are exchange correlation potential which is given by,

Vj,xc = −0.985
nj

1/3e2

ϵL

[
1 +

0.034

a∗Bjnj
1/3
ln
(
1 + 18.37a∗Bjnj

1/3
)]
. (8.7)

Where, ϵL is the dielectric constant of semiconductor and a∗Bj = ϵℏ2
mje2

is the effective

Bohr atomic radius of the species (j = h, e). The ion thermal pressure is given via.

equation of state i.e., Ph = kBThnh in which Th is temperature of holes and kB is

Boltzmann constant. The doping concentrations ratio are given as ne0/nh0 = α ( for

n-side of semiconductor); nh0/ne0 = ρ (for p-side of semiconductor). The neutral ions

do not take part in the oscillation and are considered to form the uniform neutralising

background. We have incorporated the nonlinear Bohm potenial [329, 294, 171].

Based on the 3D equilibrium Fermi-Dirac distribution for electrons at an arbitrary

temperature Eliasson and Shukla [191] derived a set of fluid equation which are valid

both at extremely low temperature as well as finite temperature limits. This model has

been used by many authors [190, 183, 66, 208] A plane longitudinal electrostatic wave

propagates in quantum plasma without collision and leads to adiabatic compression,
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thereby causing temperature anisotropy in the electron distribution. Due to quantum

mechanical tunneling the classical compressibility of the electron phase fluid is violated.

Further, the non-equilibrium dynamics of the plasma particles is considered with the

assumption that the chemical potential (µ) remains constant. Under such assumptions

the non-equilibrium particle density is given as,

n0 =
1

2π2

(
2me

ℏ

)3/2 ∫ ∞

0

E1/2dE

eβ(E−µ) + 1

= − 1

2π2β3/2

(
2m

ℏ

)3/2

Γ

(
3

2

)
Li3/2(−eβµ)

Where, me is the electron mass, ℏ is the reduced Planck‘s constant, n0 is the equilibrium

number density, β = 1/kBTe0, Te0 is the background temperature of electron, µ is the

chemical potential and Liκ(x) is the poly-logarithmic function in x of order κ. When

β → ∞ i.e, cold temperature of electron, we have µ → EF , where EF is the Fermi

energy. Accordingly the Fermi energy is given by

EF = (3π2n0)
2/3 ℏ2

2me

(8.8)

The pressure term for the electron is given as [208]

Pe = men0v
2
TeF (

ne
n0

)3 (8.9)

Again, vTe =
√

kBTTe

me
is the thermal speed F is the ratio of two poly-logarithm function

given by,

F =
Li5/2(−eβµ)
Li3/2(−eβµ)

(8.10)

The equation of state for holes is given by the Boltzmann distribution. The different

plasma parameters for semiconductors are given in table (8.1) [330, 331, 332, 333].

If Pj is the EoS for degenerate matter then it can be presented as, Pj = (βj/3)
[

Γ2/3

1+Γ2/3

]1/2
for weakly relativistic case where as in ultra-relativistic case it has the form like Pj =
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Semiconductor Γ β µhe Ph Pe Number Density Hole mass ratio Electron mass ratio
Ge 1.03× 107 1.573× 107 0.208 2.4× 108 1.141× 109 2.02× 1013 0.51m0 0.06m0

Si 4.42× 103 9.7× 106 0.50 2.653× 107 5.305× 107 8.72× 109 0.33m0 1.59m0

InP 6.6 5.94× 106 7.50 3.711× 106 4.95× 105 1.3× 107 0.6m0 0.08m0

GaAs 1.03 5.94× 105 8.50 1.7× 106 2× 105 2.03× 106 0.51m0 0.06m0

Table 8.1: Different plasma parameter for different plasmas

βjΓ
1/3

3
. In both the cases βj =

mjc
2

2kBTj
and Γ is the ratio of the unperturbed densities of

holes and electrons; where j = e, h. Here µhe stands for the mass ratio between holes

and electron. Also, m0 is the rest mass of electron.

8.3 Derivation of Evolutionary Equations

Now, we solve the normalized form of equations from (8.1) to (8.6) with help of PLK

method and use some standard stretching variables. As we consider the wave due to hole

plasma flows from left to right thus the stretching variables for the left to right space are

given by,

ξ = ε(x− λht) + ε2P0(ξ, τ) + ...

τ = ε3t

 (8.11)

Here λe&λh are the wave group velocities of electrons and holes which is equal to the

velocity of waveframes of the corresponding species of carriers. Also, the wave due to

electron plasma flows from right to left thus the stretching variables for the left to right

space are given by,

η = ε(x+ λet) + ε2Q0(η, τ) + ...

τ = ε3t

 (8.12)

Here, ε is smallness parameter measuring the dispersion of the waves. Such stretching

and perturbation has been used by many authors [168, 118, 117, 167, 68]. If we assume

that both the waves start at a same instant then the wave will interact at a point y-length

from the left side of the semiconductor and is given below:

y =
2L

1 + λe
λh

(8.13)
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After some algebraic steps we get the KdV equations for the both sides which are given

by,
∂ϕh

(1)

∂τ
+ A1ϕh

(1)∂ϕh
(1)

∂ξ
+B1

∂3ϕh
(1)

∂ξ3
(8.14)

and,
∂ϕe

(1)

∂τ
+ A2ϕe

(1)∂ϕe
(1)

∂η
+B2

∂3ϕe
(1)

∂η3
(8.15)

Here, A1 and A2 (equation (8.16))are the nonlinear coefficients for hole and electron

waves respectively and B1 and B2 (equation (8.17))are the dispersive coefficients.

A1 =

[
(ν − δσ2)(3λh

2 −Θh − 3)

18
− 6λh

3 − 3

2(3λh
2 −Θh − 3)2

]
A2 = −

[(
9F

λe
2 + λe

)(
δσi + γσh +

3χα

9F + χΘe

)]
(8.16)

B1 =

[
βh
2

− (3λh
2 −Θh − 3)

18

]
; B2 = −βe

λe
(8.17)

Here Θj = VFj
2
[
3− (3π)2/3H2(0.985 + 0.616

1+ 1.9
H2

)
]

and βj = ℏ2
4mj

2 . For details of the derivation one may look in the recent works on

degenerate plasma [179, 181]

8.3.1 Numerical Analysis of Solitary waves and Wave-wave Interactions

We start with numerical solutions for the wave interaction in the present system. The

electron and hole density solitons propagate towards the junction when a potential bias

is applied across the semiconductor. Since we are looking for numerical solutions of the

analytical functions we start with a hyperbolic secant squared solution. The bright hole

soliton interacts with the negative electron soliton and when they collide to each other at

the interface the total potential is negative due to the excess concentration and mobility

of electrons. If we had two electrostatic waves propagating toward each other formed
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Figure 8.1: Interaction between electron and hole waves
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(a)

(b)

(c)

Figure 8.2: Contour plot for different values of (a) doping parameter for n-side of semi-
conductor α; (b) quantum diffraction parameter H and (c) doping parameter for p-side
of semiconductor ρ
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from counter propagating carrier beams equal amplitude then the interaction would have

caused a zero potential. However in this numerical analysis the gradual interaction be-

tween the electrons and holes are not properly visible. Therefore a real-time simulation

will be more appropriate in this study which vein present in the subsequent sections. In

figure (8.2) we show the parametric dependence on the soliton interaction. The dop-

ing parameter for n-side of semiconductor α (8.2a), quantum diffraction parameter (H)

(8.2b), doping parameter for p-side of semiconductor ρ (8.2c) significantly affect the in-

teraction mechanism which is shown through these figures. The simulation results will

help in identifying the nonlinear wave wave interaction in a more physical way which is

presented in the next section.

8.4 Simulation

8.4.1 Theory

We have carried out a simulation starting with the evolutionary equation and employed

our newly developed INSAT-FORK code. We start with the nonlinear partial differential

equation obtained from the governing equations (8.1)-(8.6) through the PLK method.

In this case the evolution equation is a KdV equation. We transform the equation from

real space to Fouriers space and convert the the PDE to ODE and solve by using Runge-

Kutta 4th Order (RK4) method and obtained the solution in momentum space which is

re-transformed into real space. Alternatively the reductive perturbation technique (RPT)

[67, 169, 122, 243, 256, 173, 178, 176, 73, 187] can be used in place of PLK method.

This technique is advantageous since we can bypass the numerical viscosity effects in the

simulation which is due to the nonlinear terms in the evolution equation. The additional

edge in this method is that we can deal with the unnormalised evolutionary equation with

different initial and boundary conditions which can acquire gigantic values in similar

problems corresponding to numerical viscosity etc.
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Figure 8.3: Potential evolution for L=60 and τ = 0.25, 0.5 and 0.75

Figure 8.4: Electric field evolution for L=60 and τ = 0.25, 0.5 and 0.75
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Figure 8.5: Contour plot of long time evolution of potential and field for L=60 and
τ = 0.25, 1 and 8

8.4.2 Results

In figure (8.3) we plot the potential evolution for different instance of time. During the

early phases ( τ =0.25, 0.5, 0.75 ) of the wave wave interaction, we see that the length

of the semiconductor medium is taken as L=60 in terms of the the Debye length of

the semiconductor plasma. Streams of holes propagate from the left hand side towards

the junction and a a bunch of electrons propagate from the right hand side towards the

junction. At τ = 0.25, both the electron and holes start to move towards the interface.

However within the first few instants of time there is no interaction and this time is the

response time between which the interaction does not start. As time increases we see

that both electrons and holds create secondary potential fluctuations along the length.

This is due to the fact that as the pulses propagate along each other, the semiconductor

medium starts oscillating in response to the the pulses from the two extremities. This is

relatable with the collective behaviour as observed in plasma. As time increases there

are zones of interactions visible in figures (8.3)(b, c, e, f). We observe that the region
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Figure 8.6: Potential and Field for L=60 and τ = 1
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Figure 8.7: Potential and Field for L=60 and τ = 8

Figure 8.8: Potential and Field for L=120 and τ = 1
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Figure 8.9: Potential and Field for L=120 and τ = 2
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of interaction gradually increases thus widening the blue and green regions along the

τ axis. Nonlinear effects originate in the medium and increases the electron and hole

pulses’ amplitude and the width as well thereby favouring interactions between electrons

and holes. Such interaction may lead into recombination and after a sufficient time the

semiconductor medium acquires uniform potential.

In figure (8.4) we show the evolution of electric field which is taken as the gradient of

the potential obtained from the simulation and presented in the figure (8.3). We see that

there are regions of electron and hole concentration maxima which originate due to the

nonlinear interaction of minority charges in the other side of the PN junction. From the

contour plots in figures (8.4)(d–f) we conclude that the electrons are creating secondary

oscillations in the semiconductor much quickly then the holes. This is due to the the fact

that electrons are slightly mobile than the holes. In other way we say that the effective

mass of the holes being slightly greater than those of electrons show more inertial effect

in the medium. At around τ = 0.1 the interaction begins to take place and there are

three regions of interaction shown by horizontal modulation along the ξ/η axis. As time

increases we notice that there are regions of hole and electron majority on other side of

the junction. However there are small short range fields in this regions which are due to

the the remnant field after interaction. This small scale electric field fluctuations arise

from the subsequent acceleration of the the minority charges right after the electron and

hole solitons collide with each other. One may suggest that such an interaction may lead

to recombination phenomenon thereby supplying energy to the semiconductor medium.

Electrostatic field die out after sometime and the semiconductor acquires a uniform po-

tential. Figure (8.5) shows the contour plot of long time evolution of potential and field.

Our previous claim of potential homogenisation is reflected in figure (8.5)c at sufficient

long time (τ = 8). The effect of time of interaction is visible from the comparison of

figures (8.6) and (8.7). It is seen that as time increases the solitary structures propagating

towards each other from the two extremities of the semiconductor collide and interact in

a nonlinear fashion after which they move on either side of the PN junction due to the
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applied bias. The effect of length can be compared from figures (8.6) and (8.8). As the

length is doubled up from 60 to 120 on either side of the junction we see that the interac-

tion lasts for longer time. This is due to the fact that as the length increases the response

time increases as well as the pulses take more time to propagate towards the junction

with respective group velocities. The effect of time of neutralisation for longer semi-

conductor channel can be compared from figures (8.8) and (8.9). All these time series

plots hint towards the classical interaction mechanism for a system of quantum particles.

An animated version of the evolution of the potential can be checked here [334]. This

information can be related with the numerical findings in the previous section when the

solitons collide with each other. However the intricate mechanism are clearly visible

through the simulation studies. The INSAT FORK code can be e applied to multiple

component plasma [248], semiconductor diodes [335], Hall systems [336], etc.

8.5 Summary

In this work the interaction between electron and hole waves. In the next part of this

work is basically a simulation of colliding electron and hole solitons in a semiconductor

plasma. We have successfully shown the interaction mechanism both graphically as well

as through animation. The results will help in understanding breakdown mechanism

and designing electronic devices accordingly. The analytical approach partly supports

the simulation results which has close resemblance with experimental outcome. The

newly designed simulation code can be extended to a variety of problems with periodic

boundary conditions. A wide range of nonlinear effects can be predicted from such

simulation works.
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STATIONARY STRUCTURES AND ITS EVOLUTION

9.1 Introduction

Over the past few years there has been a considerable increase in the study of quantum

and exotic plasma. Quantum plasma are characterized by high density or low tempera-

ture or both such that they might amount to the overlapping of de-Broglie waves so as

to give rise to quantum effects. When such a plasma is in motion, i.e the species flow

as fluids, there are many hydrodynamic effects that amount to the formation of station-

ary structures whose stability depends on physical characteristics of the plasma. Many

of such structures appear and disappear under different plasma configurations. For in-

stance if we consider the plasma being composed of ions and electrons, where there are

statistically differentiated hot and cold electron groups out of which the cold species

provide inertia and the warm category provides the restoring force. Such a system allow

the propagation of low frequency waves like the electron acoustic waves. The ions being

heavier are almost immobile and form an uniform neutralizing background satisfying the

quasi-neutrality criteria. The warm electron due to the high mobility provides the pres-

sure that depends upon the equation of state of the system. Now there are small range

interactions among the plasma particles, as a result they give rise to viscous effects.

Now such a viscous effect slows down the particles’ motion and the viscosity greatly

affects the structure of the stationary formations. Bernstein, Greene and Kruskal [337]

showed that there can be a possibility of an unlimited class of solutions to the Vlasov

equations (BGK Solutions). Taking cue from their pioneering works a member of stable

and unstable potential structures have been reported. Initially double layers were solved

by Langmuir [338] who used the cold particle approximation (delta-function distribu-

tion); but with our present knowledge we know that such solutions are unstable. Later
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Block(1972) used fluid theory at finite temperature to obtain the solution that was asymp-

totically self consistent for the potential separation greater than the thermal energy thus

creating strong double layers. Later works of Knorr and Goertz [339], Carlqvist [340]

and others have enriched the subject knowledge.

Among other stationary structures shocks and solitary waves are often referred to the

literature and are obtained in laboratory produce plasma and space plasmas. Such dy-

namical structure have been extensively studied by M. Akbari-Moghanjoughi [341, 342],

Kourakis [343], Shahmansouri [344, 345], Schamel [346], Kim [347], Quon and Wong

[348], Chandra [65, 68, 187, 243], Ghosh [82, 64], Bychkov [349], Marklund [184].

Among these works, some are in the classical domain whereas some lie in the quantum

range. For instance, in case shock fronts in quantum plasmas the dispersion is due to the

Bohm Potential term in contrast to the dissipation effects in classical plasmas. Quan-

tum systems have gathered more prominence due to its applications in nano-structures

[350, 351, 352], quantum wells [353, 354, 355], laser fusion plasma [356, 357], ul-

tracold plasmas [358, 359], plasmonic devices [360]and similar other fields. Nonlinear

effects in plasma manifest in various forms under various physical situations [187]. Dark

and bright soliton [361, 362], vortices, nonlinear interaction with electromagnetic waves

[363, 364], turbulence [365], solitary profiles [366, 367] some of which are supported

by electron spins [368] are among those effects often observed in plasmas. If viscosity

is present shocks are often reported and they are studied by Burgers’ equation.

Now it has been reported that quantum effects in dense plasma might not necessarily

require ultra cold temperature. Even finite temperature dense Fermi plasma manifest the

quantum diffraction effects. In a very novel work carried out by Eliasson and Shukla in

2008 [191], they came up with the evolution of nonlinear fluid equations of in a finite

temperature Fermi plasma. The model that they have considered is based on a 3D equi-

librium state in which nonlinear electron plasma waves are propagating and have been

used by many [73, 72, 169, 167, 134, 171, 176, 122]. In contrast to the classical Vlasov

picture where the phase fluid is incompressible; this model incorporates the violations
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of incompressibility of phase fluid due to quantum tunneling. To a first order approxi-

mation such incompressibility is assumed to hold good. Considering the waves lead to

adiabatic compression in the direction of propagation, it leads to temperature anisotropy,

the non-equilibrium particle distribution therefore is given by [191]

f(xi, u⃗, t) =
F0

1 + eβm/2
(
(ux − uav)

2α + (uy)
2 + (uz)

2 − βµ
)

(9.1)

where uavis the average velocity of the particles, α(x, t) = Te0
Tau(x,t))

is the temperature

anisotropy to be obtained from number density variations. F0 is a normalizing constant.

To a first approximation, we assume the chemical potential to remain constant. Here

F0 = 2(m
h
)3, α can be written as α(x, t) = [ n0

he(x,t)
]2.

Space and many other laboratory plasmas have energy and velocity in such a range

that often a commonly used distribution function becomes insufficient. Many scientists

therefore, attempted to introduce distribution functions that to a great extent successfully

describe the physical problem. Tsallis distribution [369, 370, 168], Cairns distribution

[371], non thermal distribution [371, 167, 168], Kappa distribution [372, 373, 374, 375,

376, 377], q-non extensive [378, 379] are some of them. Plasmas found in planetary

magnetosphere [118, 176] and stellar and solar plasma [380] often display characteristics

of Kappa distribution. We have investigated the available literature for a detailed study

of Kappa distribution, and designed this problem in the light of such works. Often it

is observed that within a plasma various species of particles like electrons [117], ions,

positrons [169], dust [63, 381, 181, 182] etc. are present [190]. In dense stellar plasmas

[73, 256] where electrons and ions are compactly packed quantum-statistical effects and

quantum diffraction effects [188] are additional manifestations. These give rise to several

features to existing wave modes.

This chapter is organized in the following manner. In Section §9.2 we introduce the

finite temperature Fermi fluid model and the basic governing equation corresponding to
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the problem. In Subsection §9.2.2 we obtain the psedopotential using Sagdeev’s method

which will help in the study of large amplitude solitary structures. Next we obtain the

KdV Burger’s equation in Subsection §9.2.3 that provides the differential equation corre-

sponding to small amplitude stationary structures like shocks, double layers and solitary

waves. Then in Section §9.3 we study forced KdV and envelope soliton in magneto-

plasma with Kappa distributed ions and introduce basic governing equations. In Subsec-

tion §9.3.2, we study the symbolic simulation of the forced Korteweg–De Vries (KdV)

and its evolution into an envelope soliton. To augment the previous findings, we carry

out the linear and nonlinear analysis. Then in Subsection §9.3.3, we obtain the linear

dispersion relation and discuss the results therein. Next, we obtained the KdV equation

by employing the perturbation technique and obtain the solution for the KdV equation.

We plot the solitary profile and discuss the results and finally conclude with some results

and application of this problem in real plasma situations. We also utilize the perturba-

tion approach (in §9.3.3) in order to get the Nonlinear Schrodinger equation and analyze

the stability and instability criteria of amplitude-modulated envelope solitons. Finally in

Section §9.4 we conclude with some remarks on the applicability and the importance of

this work in physical scenario.

9.2 Evolution of nonlinear stationary formations in a quantum plasma at finite

temperature

Many applications with plasma interactions include the density at which the medium acts

primarily as a fluid. The basic movements regarding energy input, force application, and

the effects of magnetic and electric fields are continuum fluid movements [382]. There-

fore, this explanation and interpretation servicess as a starting point for understanding

the complex behavior of plasmas. It then improves modeling and experimentation to

reveal the uniqueness of regimes and interactions and ultimately to an understanding of

the plasma, enabling efficient device operation. To create this important explanation, we
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will use magnetohydrodynamics (MHD) equations to help us understand and quantify

the behavior of plasmas.

The plasma interaction model is an unsteady solver based on the law of conservation

of charge. As mentioned earlier [383, 384], the International Space Station is affected

by surface differences or deep dielectric charging processes that plague small spacecraft

in more demanding charging environments, except for anomalous charging spikes. We

sometimes reported very low ionospheric densities during those in the previous section.

Active charging of the station’s conductive structure powered by the vehicle’s electro-

motive force is the most important charging process for the International Space Station

and its security analysis. The stray potential of the plasma interaction model is sim-

ulated by computing the equivalent energies associated with capacitively constrained

dynamic charges. The lost potential of this approach is unique to the external plasma at

any point on the spacecraft. At the same time, the operating voltage and geomagnetic

electromotive force of the solar system distribute the potential throughout the structure.

The capacitance of the vehicle corresponds to the thin dielectric anodizing material that

covers the glued aluminum vehicle structure. The structural metal surrounds one side

of the capacitance, and the surrounding conductive plasma surrounding the other side

of the capacitance is dominated by the basic material properties of the coating. Charge

accumulation is considered according to the positive and negative integrated currents

collected in the conductive structure.

It is a matter of fact to have sufficient observational data to support the theory to

model / reconstruct the stationary structures in space plasma. To investigate this, we

have to define “Stationary structures” first.

A stationary structure encountered by spacecraft in interplanetary plasma, e.g., flux

ropes, clouds, reconnection exhaust, etc. One can now use the spacecraft data to recon-

struct those sections uniquely. The current method has the problem of data redundancy,

but how much data is sufficient for the present scenario. Unfortunately, there is no an-

swer, at least for now. Russian scientist Oleg I. Berngardt, Laboratory Head at the Insti-
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tute of Solar-Terrestrial Physics OF SIBERIAN BRANCH OF RUSSIAN ACADEMY

OF SCIENCES, can be said that plasma is mainly composed of unsteady and irregular

media. Suppose one wants to reconstruct the static structure of the media. Measurement

techniques provide temporal and spatial resolution, integration time, detector timing, and

more. Therefore, each method offers some smoothed value.

In that case, one needs to look at the theory of metrology, get the model media in the

form of a combination of static and dynamic parts, and find the parameters independent

of the dynamic characteristics of the model. People usually use different types of statis-

tical analysis to find these parameters: very long (nearly infinite) integrations (like noise

in measurement data where the dynamic part of the media is zero on average). (When

generating signals), superimposed epoch analysis, correlation techniques (when the dy-

namic aspects of the media change the temporal or spatial position of the effect of the

measured data), and spectral analysis (when the dynamic elements of the media change).

When generating a period during which measurement data is missing), etc. The problem

is that plasma is usually not a stationary object and its parameters and structure change

over time. Therefore, scientists can generally talk very roughly about the steady-state of

the plasma. In his opinion, the more data one measures, the better. Even the equipment

placed nearby will generate additional information (for example, they may have different

noise components and can be used to detect the direction of the effect using interferom-

etry techniques, etc. ). This allows one to build more complex models and consider the

more complex dynamic parts of the media model when trying to find the static parts of

the media model.

9.2.1 Basic equation

The finite temperature Fermi fluid model and the basic governing equations [60, 237, 56,

191, 201] are given as

∂

∂t
(nh) +

∂

∂x
(nhuh) = 0 (9.2)

157



Chapter 9. Stationary Structures and Its Evolution

∂

∂t
(nc) +

∂

∂x
(ncuc) = 0 (9.3)

[λ](
∂

∂t
+ uh

∂

∂x
)uh =

∂

∂x
ϕ− Fh(

∂

∂x
nh)

+
H2

2

∂

∂x
[

1
√
nh

∂2

∂x2
√
nh] + ηh

∂2uh
∂x2

(9.4)

(
∂

∂t
+ uc

∂

∂x
)uc =

∂ϕ

∂x
− Fc

∂nc
∂x

+
H2

2

∂

∂x
[

1
√
nc

∂2
√
nc

∂x2
] + ηc

∂2uc
∂x2

(9.5)

∂2ϕ

∂x2
= (nc +

nh
δ

− ni
δ1
δ
) (9.6)

The value of λ = 1, 0 corresponds to whether or not the inertia effects of hot electrons.

We normalize the above equations as nj → nj

nj0
, uj → uj

Csh
, x → xωc

Csh
, t → ωct, ϕ →

eϕ
kBTFh

, where the subscript j is used to denote hot (h), cold (c) electrons and ion (i),

uj, nj (j = c, h) are the velocity, density, Fh = (nh0

n0
)
1
3

mec2

6kBTFh
,Fc = (δ)

2
3

mec
2

2kBTFh , δ =

nc0

nh0
, δ1 =

ni0

nh0
(subscript 0 stand for equilibrium state) and H = ℏωc

2kBTFh
, ωc =

√
nc0e2

ϵ0me
is

the cold electron plasma frequency, Csh =
√

2kBTFh

me
is the hot electron acoustic speed

and TFh
is the hot electron Fermi temperature respectively.

9.2.2 Non-perturbative Analysis

In order to study possibility of formation and nature of such stationary formation (large/arbitrary

amplitude solitons) we make use of Sagdeev’s pseudopotential method.
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Derivation of the Pseudopotential Function:

To obtain the pseudopotential function we apply regular stretched co-ordinate transfor-

mation ρ = x − Mt, where M is Mach number. Integrating the dynamic equations

and employing standard technique we get the field quantities in terms of nh. Substitut-

ing z = n
1/2
h = n1/2 and perform integration with appropriate boundary conditions i.e;

n(ρ)
′′
→ 0, n(ρ)

′
→ 0 and n→ 0 as ρ→ |±∞|, one obtain the energy integral equation

as
1

2

(
dn

dρ

)2

+ U(n) = 0 (9.7)

where U(n) can be expressed as

U(n) = 1
2(ηc−ηh)2

[
M2(λ− 1)n(n− 1)

+Mu0(1− λ)n2 + (Fcδ−Fh)n
2(n−1)

(δ+1)
+ u0(λ−1)(u0−2M)n2

2

+ (1−λ)
2

(
M2(n− 1)2 + 2Mn(n− 1)u0 + u20n

2
)]2

(9.8)

here λ = 0 corresponds to hot electrons are inertia less. The pseudopotential is plotted

against hot electron density which for brevity we writen in figure -9.1 with variation

of system parameters and we discuss it in the results section §9.2.2. To yield soliton

solution, we use some boundary conditions as follows:

a) U(n) = 0 at n = 0 and n = nm

b) dU
dn

= 0 at n = 0 but dU
dn

̸= 0 at n = nm

c) d2U
dn2 < 0 at n = 0

(9.9)

From Eqn. (9.7), we can say that shape of soliton structure can be decided from the

following equation:

ρ = ±
∫ n

nm

dn√
−2U(n)

(9.10)
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Figure 9.1: U vs n for different values of (a) δ, (b) ηh & (c) ηc with M = 1.6, H =
2, λ = 1, u0 = 0.5, Fh = 0.05&Fc = 0.0004. (Individual parameters are in the median
range)

Figure 9.2: Arbitrary amplitude solitary profile vs ρ for different values of (a) δ (b) u0,
& (c) M with δ = 0.5, ηh = 0.004, ηc = 0.001, H = 2, λ = 1, Fh = 0.05&Fc =
0.0004.(Individual parameters are in the intermediate range)

The corresponding solitary structures with arbitrary amplitude is plotted in figures 9.2,9.3,9.4

for different plasma parameters.

Findings of Non-perturbative Investigation:

For large amplitude solitary structures we need to consider different viscosity parame-

ters for hot and cold electrons. Since the energy associated with such structures are high

when compared to small amplitude where both are comparable and few orders lesser.

Figure-9.1 show the variation of the pseudo-potential function with δ,ηh&ηc respectively

as tuning parameters. The other constants are Fh = 0.05, Fc = 0.0004, M = 1.6, u0 =

0.5. In figures-9.1 (b) and 9.1(c) the effects of hot and cold electron viscosity factors

have been shown. From the figures 9.1 (a–c) it is clear that the hot electron density has

a positive effect in decreasing the pseudopotential which is due to the increase in mo-
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Figure 9.3: Arbitrary amplitude solitary profile vs ρ for different values of (a) ηh & (b)
ηc with δ = 0.5,M = 1.6, u0 = 0.5, H = 2, λ = 1, Fh = 0.05&Fc = 0.0004.(Individual
parameters are in the intermediate range)

Figure 9.4: Arbitrary amplitude solitary profile vs ρ for different values of (a) Fh & (b)
Fc with M = 1.6, u0 = 0.5, δ = 0.5, H = 2, ηh = 0.004, ηc = 0.001&λ = 1.(Individual
parameters are in the intermediate range)
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bility and restoring force terms. The viscosity factors ηc and ηh show opposite effects

when compared to the effect of δ. This is relatable as the higher density of cold elec-

trons will provide inertia effect, thus contributing positively to the potential structure and

formation of double layers. Apart from δ, Viscosity parameters ηc, ηh other parameters

do not have much significant contributions in the pseudopotential. When the large am-

plitude solitary structures were plotted [figure 9.2] with variations in δ, u0,M it is clear

from 9.2(a) that equilibrium hot-to-cold electron density ratio (δ) has a dispersive effect

whereas the streaming or the waveframe motions have no significant changes 9.2 (b–c).

The viscous and restoring forces corresponding to hot and cold electron species is shown

in figures 9.3 & 9.4. the viscous drag experienced by hot electrons is more compared to

cold species. This is a direct consequence of mobility and momentum transfer among

particles. There is no dependence of large amplitude structures on Fh&Fc except for

some particular values close to zero. This is clear from figure 9.4(a–b) that the required

restoring force term for cold electrons is higher than the hot electrons since the former

contribute primarily to inertia. It is to be noted that some parameters were obtained in

certain range (ηh, ηc) to obtain this type of conclusions. Some kind of resonant inter-

action might be instrumental in this phenomena. Relatable works will be available for

comparison in some of these papers [134, 358, 345].

9.2.3 Reductive Perturbation Method

In order to study small amplitude stationary formation we make use of reductive pertur-

bation technique (RPT) to obtain the KdV Burger’s equation. We have used the same

technique previously [118] [169] as used by other authors [167] [341]

Derivation of KdV-Burger’s equation:

As done in previous works [68] perturbation expansion of the field quantities have been

made. We take ϕ as the amplitude of the electric potential field, χ and τ are the stretched

variables corresponding to x and t respectively [68] where χ = ε1/2(x −Mt) and τ =
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ε3/2t. Accordingly the perturbation series is given by:



nh

nc

uh

uc

ϕ


=



1

1

u0

u0

ϕ0


+ ϵ



n
(1)
h

n
(1)
c

u
(1)
h

u
(1)
c

ϕ(1)


+ ϵ2



n
(2)
h

n
(2)
c

u
(2)
h

u
(2)
c

ϕ(2)


+ ... (9.11)

and the viscosity factor is ηh,c = ϵ
1
2η

(0)
h,c. Using the standard procedure and equating

terms of same power in ϵ we finally obtain the KdV Burger’s equation given by

∂ϕ

∂τ
+ Aϕ

∂ϕ

∂χ
+B

∂3ϕ

∂χ3
− C

∂2ϕ

∂χ2
= 0 (9.12)

where

A =

2 (M−u0)2

(Fc−(M−u0)2)
3 +

(M−u0)
2

(Fh− (M−u0)
2)2

+
(M−u0)

2

(Fh− (M−u0)
2)2

δ (Fh−(M−u0)2)

2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh− (M−u0)

2+
(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)

B = −

H2

(
1

(Fc−(M−u0)
2)2

+ 1

δ (Fh− (M−u0)
2) (Fh−(M−u0)

2)

)
4

− 1

2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh− (M−u0)

2+
(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)

C =

η
(0)
c (M−u0)

(Fc−(M−u0)2)
2 +

η
(0)
h (M−u0)

δ (Fh− (M−u0)2) (Fh−(M−u0)2)

2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh− (M−u0)

2+
(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)

Now in equation9.12 we consider the inertia effects of hot electrons and the pressure

degeneracy effect of cold electrons. Comparing with the studies of other researchers

the hot electron inertia and the cold electron degeneracy pressure might have negligible

effect as we discuss in the following cases

163



Chapter 9. Stationary Structures and Its Evolution

Case-I:

Ignoring the hot electron inertia the KdV-Burger’s equation is given by

∂ϕ

∂τ
+ A1ϕ

∂ϕ

∂χ
+B1

∂ϕ3

∂χ3
− C1

∂2ϕ

∂χ2
= 0 (9.13)

where

A1 =

2 (M−u0)2

(Fc−(M−u0)2)
3 +

(M−u0)2

Fh
2 δ (Fh−(M−u0)2)

2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh δ (Fh−(M−u0)2)

B1 = −

H2

(
1

(Fc−(M−u0)
2)2

+ 1

Fh δ (Fh−(M−u0)
2)

)
4

− 1
2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh δ (Fh−(M−u0)2)

C1 =

η
(0)
c (M−u0)

(Fc−(M−u0)2)
2 +

η
(0)
h (M−u0)

Fh δ (Fh−(M−u0)2)
2 (M−u0)

(Fc−(M−u0)2)
2 +

M−u0
Fh δ (Fh−(M−u0)2)

Case-II:

Ignoring cold electron degeneracy pressure the corresponding equation 9.12 is given as

∂ϕ

∂τ
+ A2ϕ

∂ϕ

∂χ
+B2

∂ϕ3

∂χ3
− C2

∂2ϕ

∂χ2
= 0 (9.14)

where

A2 = −
2

(M−u0)4
−

(M−u0)
2

(Fh− (M−u0)
2)2

+
(M−u0)

2

(Fh− (M−u0)
2)2

δ (Fh−(M−u0)2)

2
(M−u0)3

+
M−u0

Fh− (M−u0)
2+

(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)

B2 = −
H2

(
1

(M−u0)
4+

1

δ (Fh− (M−u0)
2) (Fh−(M−u0)

2)

)
4

− 1

2
(M−u0)3

+
M−u0

Fh− (M−u0)
2+

(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)
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C2 =

η
(0)
c

(M−u0)3
+

η
(0)
h (M−u0)

δ (Fh− (M−u0)2) (Fh−(M−u0)2)

2
(M−u0)3

+
M−u0

Fh− (M−u0)
2+

(M−u0)

Fh− (M−u0)
2

δ (Fh−(M−u0)2)

Case-III:

Ignoring both hot electron inertia and cold electron degeneracy pressure

∂ϕ

∂τ
+ A3ϕ

∂ϕ

∂χ
+B3

∂ϕ3

∂χ3
− C3

∂2ϕ

∂χ2
= 0 (9.15)

where

A3 = −
2
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(0)
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Case-IV:

Ignoring the viscous effects along the hot electron inertia and cold electron degeneracy

pressure
∂ϕ

∂τ
+ A4ϕ

∂ϕ

∂χ
+B4

∂ϕ3

∂χ3
(9.16)

where

A4 =

2 (M−u0)2

(Fc−(M−u0)2)
3 +

(M−u0)
2
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2)2

+
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B4 = −

H2

(
1

(Fc−(M−u0)
2)2

+ 1

δ (Fh− (M−u0)
2) (Fh−(M−u0)

2)

)
4

− 1
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2 +
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Solution of KdV-Burger’s equation:

To solve this equation we employing method of series solutions as suggested by Wazwaz

[385]. For this we use tanh transformation and considering the fact the Burgers solution

for shocks have ’tanh’ type solution and KdV solitary waves have ’sech’ type solution

one obtain solution for double layers given by

ϕDL = ±ϕ0[1 + tanh(
χ

2
)] (9.17)

the ± sigh corresponds to the polarity of double layers. A detailed treatment is provided

by Jian-Jun [386]. The KdV-Burger equation incorporate both the term and has a solution

of the form

ϕsh = ϕ0[sech
2(
χ

2
)± (1 + tanh(

χ

2
))] (9.18)

equation 9.18 is the solution of the K-dV-Burgers equation describing the shock front

coupled with solitary formations. If the stationary formation is stable the nonlinear

forces and the dispersive factors balance each other thus give rise to a pure solitary

waveform given by

ϕs0h = ϕ0sech
2(
χ

2
) (9.19)

Here the width has been normalized to a factor of 2 keeping in mind the inter-layer

separation and the stationary formations.
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Figure 9.5: (a) Shock profile & (b) Contour plots for different values of viscosity factor
(η) with Fc = 0.48, Fh = 1.4,M = 1.5, u0 = 0.5, H = 2, λ = 1&δ = 0.005.

Figure 9.6: (a) Polarity shifting solitary structures with contour plots & (b) Shock profile
for different values of Fh with Fc = 0.48, ηh,c = 1.5,M = 1.5, H = 2, u0 = 0.5, λ =
1&δ = 0.005.
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Figure 9.7: (a) Polarity shifting solitary structures with contour plots & (b) Shock profile
for different values of Fc with Fh = 1.4, ηh,c = 1.5,M = 1.5, H = 2, u0 = 0.5, λ =
1&δ = 0.005.

Figure 9.8: (a) Polarity shifting solitary structures with contour plots & (b) Shock pro-
file for different values of quantum diffraction parameter (H) with Fh = 1.4, Fc =
0.48, ηh,c = 1.5,M = 1.5, u0 = 0.5, λ = 1&δ = 0.005.
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Figure 9.9: (a) Shock profile & (b) Contour plots for different values of streaming veloc-
ity (u0) with Fh = 1.4, Fc = 0.48, ηh,c = 1.5, H = 2,M = 1.5, u0 = 0.5, λ = 1&δ =
0.005.

Figure 9.10: (a) Shock profile & (b) Contour plots for different values of wave-frame
velocity (M) with Fh = 1.4, Fc = 0.48, ηh,c = 1.5, H = 2, u0 = 0.5, λ = 1&δ = 0.005.
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Figure 9.11: Polarity shifting small amplitude solitary structures with contour plots vs χ
for different values of (a) Fh & (b) Fc with M = 1.6, u0 = 0.5, δ = 0.5, H = 2, ηh,c =
1.5&λ = 1.

Figure 9.12: Polarity shifting small amplitude solitary profile vs χ for different values
of (a) quantum diffraction parameter (H) & (b) unipolar Small amplitude solitary profile
with change in viscosity factor (η) with Fh = 1.4, Fc = 0.48,M = 1.6, u0 = 0.5, H =
2, δ = 0.5&λ = 1.

170



Chapter 9. Stationary Structures and Its Evolution

Figure 9.13: Small amplitude solitary profile vs χ for different values of (a) streaming
velocity (u0) & (b) wave-frame velocity (M) with Fh = 1.4, Fc = 0.48, H = 2, ηh,c =
1.5, δ = 0.5&λ = 1.

Figure 9.14: Effect of equilibrium hot-to-cold electron concentration ratio (δ) in the
formation of small amplitude shocks (a) and solitary structures (b) ηh,c = 1.5 with Fh =
1.4, Fc = 0.48,M = 1.6, u0 = 0.5, H = 2&λ = 1.
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Findings of the Reductive Perturbation Method:

Now in general plasma being a highly nonlinear media, nonlinear effects start com-

ing into play right from the instance of small amplitude perturbations. To study such

phenomena we start with the basic normalised equations (9.2)–(9.6) and with the pertur-

bation expansion (9.11) of field variables in stretched co-ordinates. After obtaining the

KdV-Burgers equation and using the standard solutions as used by many [256, 169, 168]

we plot the functions. From the figure 9.5 shows the dependence of shocks fronts on

various plasma parameters. Figures (9.6–9.7) shows the variation of solitary and shock

frontson the degeneracy parameters Fh, Fc . With reference to figure-9.8 we see that H

has positive effect in creating the shocks fronts. On other side of χ = 0, H has enhancing

effect of shock separation. This is due to the greater diffraction effect associated with

high density. Streaming motion has an interesting behavior. It can independently convert

positive shocks to negative and vise-versa. This is due to the streaming velocity u0 (fig-

ure9.9). Much similar to streaming velocity, the waveframe speed (M) shows converting

feature in shock front (figure-9.10). The only difference in u0 and M have reciprocal

effects. When the nonlinear effect is more pronounced and is also balanced by disper-

sive effects, the shock front propagates in space and time as a solitary structure. The

mathematical expression for such a structure is given by (9.19). It may have a potential

base of different magnitude on either side where the solution takes the form (9.18). The

following figures explain such a possibility. Figure 9.11 shows similar effect due to Fh

and Fc. Both Fh and Fc corresponds to restoring force term. Once the restoring force

is in play, it is immaterial what be the source, it can be due to both hot and cold elec-

trons, the total effect is important. Quantum diffraction term (figure-9.12) has deepening

effect in enhancing the solitary profiles (relatable with figure 9.8). In the same figure

(figure-9.12b) viscosity parameters are found to have almost no effect. In figure 9.13

the effect of streaming and the propagating wave-frame’s dependence have been shown.

The change in the polarity of the wave changes around M=0.95 and u0 = 0.65. Thus
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both the fluid velocity and the wave velocity is instrumental in determining the shock’s

polarity. In the figure 9.14 the relative proportion of hot and cold electron is found to

affect in an interesting manner, while they cant alter the polarity they can slightly alter

the magnitude. This is absolutely new finding. The saddle-back like profile points to the

possibility of energy redistribution and this is clear from shock contours (in χ− δ plane)

and solitary profiles (in χ− δ plane). From the nature of these figures we see that δ and

η have reversed effect in delimiting the shock contours. Such an inferences can be also

drawn for figure (9.1). The effect of δ is effective in the delimiting the regions of shocks

fronts. Figure-9.5(b) shows the corresponding shocks contour in χ − η plane which is

quite relatable. In the figures 9.11–9.14 above we find that there is a solitary feature in

plasma which gradually takes shape of a wave pulse once the nonlinear and dispersive

effects balance each other. It is evident due to fact that ions which have huge inertia has a

tendency to enhance the shock separation much opposite the effect of Fh. In figure 9.10

the χ −M contour for shocks is shown. It beautifully depicts the domains of positive

and negative shocks. The contour codes are informative in this aspect. Figure-9.8 very

beautifully shows the transition from a negative shock front into a rarefactive soliton.

Here H is the tuning parameter. Clearly it is seen that if H value increases the balancing

of nonlinear and dispersive forces become more effective. Keeping the anisotropy on ei-

ther side of χ it is possible to create a solitary features. Figure-9.12 further depicts how a

comprehensive soliton converts into a rarefactive one when the parameters favour such a

consideration criteria. In contrast to quantum diffraction (H), the streaming velocity (u0)

is also instrumental in such a conversion, we find that a typical value of u0 figure-9.13

(near to 0.45) no such solitary structure appears. As u0 increases nonlinearity increase

due to the to cope up with the dispersive elements. Because of such a non-responsive

dispersion, the nonlinearity gets sufficient time to grow up in the media. Figure-9.13(b)

shows the contour plots of dark and bright solitons with M. However M and u0 have

reverse effects as observed in figures (9.13) and (9.2). The figures show almost negligi-

ble dependence on δ and η . The fact here is we have considered same value of ηc and
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ηh and to be equal to η due to the such a high density plasma. The nature of soliatry

transition due to values of Fh (figure-9.11) is similar to that of u0, but more pronounced.

It is because the mobility of hot electron and its ability to provide restoring forces. Inter-

estingly Fc [figure-9.11(b)] has unipolar behavior. Omitting the plot for Fc = 0 which

would be an ideal case of cold electrons produce some restoring effect it gives positive

solitary formations with diminishing amplitude. Works by Shukla [56, 387] and others

have seemingly alike results in some of their problems.

9.3 Forced KdV and Envelope Soliton in Magnetoplasma with Kappa Distributed

Ions

Magnetic field is often seen in the astrophysical plasma [388, 389, 243, 174, 195, 223,

220, 213, 222, 216] and planetary environment [390, 391, 392, 393, 394, 395]. In artifi-

cially produced plasma applications often magnetic modulation or magnetic confinement

is used. There too the effect of the magnetic field becomes exceptionally important. Ac-

cordingly, we have involved the magnetic field in this section. Solitary structures with

large amplitude were observed by FAST [396] and Polar [397, 398] satellites has been

reported to give rise to amplitude modulated electron-acoustic solitons [399, 178]. Deter-

mining the Kappa Distributions of Space Plasmas from Observations have been carried

out by many researchers [400, 401, 402, 168, 403, 404, 169, 73, 72]. Further such quan-

tum plasmas are observed in astrophysical environments and has been the motivation

of many early workers on quantum plasma [405, 406, 208]. Recently several studies

have drawn attention to the structure and behaviour of the rogue [179, 173, 189, 177,

186]. In this section we confine ourselves to the study of electron acoustic wave (EAW)

[194, 407, 408, 409, 410, 411, 215, 412, 413, 414, 415, 416, 417, 68, 180] mode where

there are two categories of electrons [175], hot (warm) inertia-less electrons and the cold

(inertial) electrons those provide the restoring force.
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9.3.1 Basic Equations

Streams of charged particles in space plasma undergo ponderomotive forces [72, 418]

owing to the magnetic field and oscillate depending on the arrangement and composition

of the plasma components. We assume a plasma with cold electrons and inertialess

hot electrons, as well as kappa distributed ions, producing a homogeneous neutralising

background. The quantum diffraction term for electrons is considered solely. There is

an additional transverse streaming motion. In this light, the following are the dynamic

equations,

∂tnj +∇ · (njuj) = 0 (9.20)

(∂tuc + uc ·∇) = (qe/mc)[uc × B + E] + (ℏ2/2m2
c)∇

(
∇2√nc/

√
nc

)
(9.21)

0 = (qe/mh)[uh ×B+ E] + 1/nh∇Π + (ℏ2/2m2
h)∇

(
∇2√nh/

√
nh
)

(9.22)

∇2ψ = 4πe(nc + nh − Zni) (9.23)

where, Π = 1
8

(
3
π

) 1
3 hcn

4
3
h . The electrons are statistically degenerate so the quantum

diffraction effects are incorporated in equations (9.21) & (9.22). Further the pressure

given by (π) is relativistically degenerate. The supra-thermal ions are governed by the

kappa distributions given by

ni =
[
1 +

ψ

κ− (3/2)

](κ+(1/2))

= 1 + c1ψ + c2ψ
(3/2) + . . .

(9.24)
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Where, c1 = 2κ−1
2κ−3

, c2 = − 2κ2− 1
2

4κ2−12κ+9

We have assumed ωcc = eB0/mc is the gyro-frequency and magnetic field is acting

along ẑ direction. uc and uh are fluid velocity of cold and hot electron species respec-

tively. e is the electronic charge. With reference to quasi-neutrality condition δ = ni0

nh0

and ρ = nc0

nh0
.

Equations (9.20) - (9.23) are scaled with the time t and space by 1/ωj =

√(
mj

4πnj0Z2e2

)
and the Debye length λDe =

√(
kBTe

4πnj0Ze2

)
. We altered the number densities of electrons

(nc, nh) by unperturbed densities nc0 & nh0 and fluid velocity uj by the sound speed

csh =
(
ZkTe
mh

)1/2
, the electrostatic potential ψ by kTe

e
respectively and the equations can

be written in normalised and scalar form. For aptness and simplicity of this chapter we

omit this trivial section.

9.3.2 Results of HASS Technique

Now in order to investigate the problem in the light of Homotopy, we refer to the fol-

lowing figures (9.15)-(9.21). We see that in the plot of ψ vs τ and ξ′ with variations in

wavenumber (k) there are significant changes. Here δ = 0.5, H = 1.8, V = 1.2, ωcc = 0.5,

f0 = 0.6 and ρ = 0.4 the initial waveform of a KdV soliton under the action of external

applied force gradually evolves into different forms with different values of wavenum-

ber (k). Concerning figure 9.15 the gradual increase in wavenumber (k) (a) k = 1, (b)

k = 1.7 and (c) k = 2, the waveform evolves in the time domain. Higher the value of

wavenumber, higher is the associated energy in the wave. It, therefore, creates a type

of instability due to its higher inherent energy. It will be reflected once we study the

amplitude modulation in the latter part of this section.

We see that in the plot of ψ vs ξ′ and quantum diffraction parameter (H) with varia-

tions in wavenumber (k) there are significant changes (9.16). Here δ = 0.5, τ = 0.5 = 1.8,

V = 1.2, ωcc = 0.7, f0 = 0.6 and ρ = 0.5 the initial (sech2) waveform of a KdV soliton

gradually evolves into different forms with varying wavenumber (k). With reference to
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Figure 9.15: HASS plots for F-KdV solitons for different values of k with τ as variable.
Here δ = 0.5, H = 1.8, V = 1.2, ωcc = 0.5, f0 = 0.6 and ρ = 0.4 (a) k = 1, (b) k = 1.7 and
(c) k = 2.

Figure 9.16: HASS plots for F-KdV solitons for different values of k with H as variable.
Here δ = 0.5, τ = 0.5, V = 1.2, ωcc = 0.7, f0 = 0.6 and ρ = 0.5, (a) k = 1.2, (b) k = 1.7 and
(c) k = 2.

Figure 9.17: HASS plots for F-KdV solitons for different values of k with f0 as variable.
Here δ = 0.5, τ = 0.5, H = 1.8, V = 1.2, ωcc = 0.7 and ρ = 0.5, (a) k = 0.7, (b) k = 2.5 and
(c) k = 4 .
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Figure 9.18: HASS plots for F-KdV solitons for different values of k with ρ as variable.
Here δ = 0.5, τ = 0.5, H = 2, V = 0.9, ωcc = 0.7 and f0 = 0.6, (a) k = 0.7, (b) k = 2.5 and
(c) k = 4.

Figure 9.19: HASS plot for F-KdV solitons for different values of ξ′ with wavenumber
(k) as variable. Here δ = 0.5, τ = 0.5, H = 2, V = 0.9, ωcc = 0.7 and f0 = 0.6,
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Figure 9.20: HASS plots for envelope solitons for different values of k with τ as variable.
(a) δ = 0.5, H = 1.8, V = 0.9, ωcc = 0.5, ρ = 0.4 and k = 0.1 ; (b) δ = 0.5, H = 1.8, V =
1.2, ωcc = 0.5, ρ = 0.4 and k = 0.8; (c) δ = 0.5, H = 2, V = 1.2, ωcc = 0.5, ρ = 0.4 and k =
1.2.

Figure 9.21: HASS plots for envelope solitons for different values of k with (a) Quantum
diffraction parameter [H], (b) cold-to-hot electron concentration [ρ] and (c) ions-to-hot
electron concentration [δ] as variables. Other parameters are (a) δ = 0.5, τ = 0.5, V =
1.2, ωcc = 0.7, f0 = 0.6 and ρ = 0.5, (b) δ = 0.5, τ = 0.5, H = 2, V = 0.9, ωcc = 0.7 and f0
= 0.6, (c) ρ = 0.4, τ = 0.5, H = 2, V = 0.9, ωcc = 0.7 and f0 = 0.6.
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figure 9.16 the gradual increase in wavenumber (k); (a) k = 1.2, (b) k = 1.7 and (c) k

= 2 the waveform changes. Higher the vale of wavenumber, more modulations appear

and although it decreases exponentially on either side of space coordinate, its effect is

more diminished. In figure 9.17 we find that the amplitude of external force field linearly

attenuates the soliton profile. This is more pronounced when the wave energy increases

(with increased wavenumber). It means that the external perturbations cause the sys-

tem more damping effect by inducing it to give up energy. Such an energy shedding

causes instability as was evident from figure 9.15. The equilibrium concentration ratio

(ρ) however, shows additional resonance like features that might be attributed to the en-

ergy sharing between the inertial and non-inertial components of the plasma. In (b) of

figure 9.18 it suddenly shows spiking up of solitary profile due to the addition of plasma

particles whose energy is in sync with the external system. It is therefore understood that

the wavenumber (k) has significant effects in creating and maintaining the waveforms.

To study the effect of wavenumber, a (ψ - ξ′ - k) plot is presented 9.19. Here, the zones

of resonance and dissonance are visible. The intermediate zone in k space where no

stationary formations are observed is due to the fact the energy of the soliton dies off

completely to reappear again when the wavenumber crosses a certain range. We further

study the formation of enveloping solitons and its fluctuations with parameters. In figure

9.20 (a) the parameters are δ = 0.5, H = 1.8, V = 0.9, ωcc = 0.5, ρ = 0.4 and k = 0.1

respectively. For (b) in the same figure they are δ = 0.5, H = 1.8, V = 1.2, ωcc = 0.5, ρ

= 0.4 and k = 0.8; plot (c) have parameter values δ = 0.5, H = 2, V = 1.2, ωcc = 0.5, ρ

= 0.4 and k = 1.2. In the next figure 9.21 parametric plot is shown distinctively. Here

quantum diffraction parameter (H), hot-cold electron concentration ρ and ion to electron

concentration δ are the tuning parameters in (a), (b) and (c) respectively. The effects of

the quantum diffraction is contrary to the other two. Such an inference can be drawn

from the analytical sections as well. The importance of this section is that it gives an

exact picture of the problem and can be easily visualised with real time.
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9.3.3 Analytical Study

Dispersion characteristics:

Since we anticipated that there is a minor perturbation so that we can linearise the field

quantities to a significant degree, we assume the field quantities to fluctuate in this man-

ner, exp[i(k⃗ · r⃗ − ωt)]. We assume the forcing term in the momenta equations to be

absent initially and come into play once the particles interact to form stationary forma-

tions. We will add the forcing after the first round of nonlinear analysis. Using the

standard procedure, one obtains the linear dispersion relation.

1 +

[
1(

(ω − kux0)2 +
H2k4

4

) + 1(
ω2
cc + (ω − kux0)2 +

H2k4

4

)]

+
1

k2

3
+ H2k4

4

− δ(2κ− 1)

k2(2κ− 3)
= 0 (9.25)

The quantum diffraction term (H) is derived from the Bohm potential term from the

energy due to the oscillating electromagnetic field coupled with moving charged parti-

cle.This dispersion relationship conforms to the typical electron acoustic wave disper-

sion relation, under certain circumstances. And solving equation (9.25) we get four roots

of ω,

ω = kux0 ±
{
−A±

√
A2 − 4AB

2

}1/2

(9.26)

Where,

A =
{
ω2
cc+2H2k4+Cω2

cc+2CH2k4+8
1+C

}
,

B =
{
H2k4ω2

cc+H
4k8+4ω2

cc+8H2k8+CH2k4ω2
cc+CH

4k8

1+C

}
and

C =

{
1

k2

3
+H2k4

4

− δ(2κ−1)
k2(2κ−3)

}
.

The slow and fast modes are obtained through the dispersion relation (9.26). The ±

before the braces corresponds to the fast and slow modes.
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Features of linear dispersion relation:

In figure 9.22, we plot the contour plots of linear dispersion characteristics with variation

in quantum diffraction parameter (H). It shows that as the system moves towards higher

quantum diffraction regime the contours are more closely packed showing a positive

dependence on (H). Figure 9.23 shows the same for different values of kappa index.

It is clear that though kappa indices are important in higher wavenumber (k) region it

is less prominent at small wavenumber. Figure 9.24 shows the classical and quantum

counterpart of magnetic field dependence. In the classical range, the magnetic field

dependence is prominent but it is not so for the quantum case. Figure 9.25 shows the

classical and quantum variants of the ionic density distribution (δ). Whereas in classical

case such dependence is clear in small wave-numbers, it is reversed for the quantum

range. The streaming velocity gives rise to fast and slow modes as evident from equation

9.26. The streaming motion only adds some excess linear term turn in the dispersion

curve. As an additional analysis, we showed in the figure how the energy propagates with

wave-number. It is reflected in the group velocity curves Figure 9.26. For κ = 2, there

is a gradual shift in the wave group velocity whereas for κ = 4 there is a discontinuity.

This may be accorded to the high energy streaming in a κ distributed plasma. Figure 9.27

depicts the contour plots for comparison with variation of quantum diffraction term (H)

for different kappa index. Figure 9.28 shows similar plots in the classical and quantum

figures for the dependence of the dispersion curve with the kappa index.
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Figure 9.22: A contour plot of angular frequency in (k −H) plane where κ = 4 and δ =
0.5.

Figure 9.23: A contour plot of angular frequency in (k − κ) plane when H = 2 and δ =
0.5.
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Figure 9.24: A contour plot of angular frequency in (k − ωcc) plane when δ = 0.5 and κ
= 3.

Figure 9.25: A contour presentation of dispersion curve with variation of δ when H = 2
and κ = 3
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Figure 9.26: A graphical comparison of variation of group velocity versus normalised
wave number with different values of quantum diffraction parameter and κ

Figure 9.27: A contour plots comparison of group velocity and normalised wave number
with variation of H for different values of κ indices

185



Chapter 9. Stationary Structures and Its Evolution

Figure 9.28: A contour plots comparison of group velocity and normalised wave number
with variation of κ for classical case and quantum case

Non-linearity and the Korteweg-de Vries equation:

We follow the appropriate perturbation expansion for field quantities to understand the

non-linearity of electron acoustic waves,



nj = 1 + λ1n
(1)
j + λ1

2n
(2)
j + . . .

ψ = λ1ψ
(1) + λ1

2ψ(2) + . . .

uz = λ1u
(1)
z + λ1

2u
(2)
z + λ1

3u
(3)
z + . . .

ux,y = ux0 + λ1
3/2u

(1)
x,y + λ1

2u
(2)
x,y + λ1

5/2u
(3)
x,y + . . .

(9.27)

λ1 is the smallness parameter measuring the extent of perturbation in the system. We

employ the typical spacial and time variables according to the conventional reductive

perturbation technique,

ξ′ = λ
1/2
1 (lx + ly + lz − V t), τ = λ

3/2
1 t (9.28)

where V indicates the Mach number, the intensity of non-linearity is λ1 and l2x+l
2
y+l

2
z =
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Figure 9.29: A graphical presentation of solitary structure for different values of (H),
when κ = 4, V = 1.4, ωcc = 0.5, ρ = 0.4, lz = 0.3 and δ = 0.5

1. The KdV equation of the first order is obtained

∂ψ

∂τ
+ Pψ

∂ψ

∂ξ′
+Q

∂3ψ

∂ξ′3
= 0 (9.29)

Where, P =
(V−ux0)3

(
H2l2z

4(V −ux0)
4+

(V −ux0)(l
2
x+l2y)

ω2
cc

− 9H2

4
lz+1

)
2l2z

and

Q = −
(V−ux0)3

 ρl4z
(V −ux0)

4+3l2z−
δ 1−4κ2

2(2κ−3)2

2


2l2z

By employing the transformation (η = ξ′ − V τ ) and applying the boundary conditions,

ψ → 0, d
2ψ

dξ′2
→ 0 as ξ′ → ∞ ,the solution of equation (9.29) is given by,

ψ = ψm sech2 (η/∆) (9.30)

here, ψm = 3V /P and ∆ =
√

4Q
V

the development of KdV solitary structure is described by equation (9.30). A sta-

tionary system of this type gives a great deal of information on the plasma waves, and

their correlation to many plasma parameters.
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Figure 9.30: A contour plot of solitary profile for different values of (κ), when H = 2,V
= 1.4, ωcc = 0.5, ρ = 0.4, lz = 0.3 and δ = 0.5

Figure 9.31: A contour plot of solitary profile for different values of (lz), when H = 2, κ
= 6, ωcc = 0.9, ρ = 0.8, V = 1.4 and δ= 0.7
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Figure 9.32: A comparison of solitary structure for different values for Mach number (V
)between classical and quantum scenario when ωcc= 0.5, lz = 0.3, κ = 3, ρ= 0.4 and δ =
0.5

Figure 9.33: A comparison of solitary structure for different values for different values
of (ωcc), when V = 1.4,δ = 0.5, ρ = 0.4,lz = 0.3 and κ = 3
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Figure 9.34: Contour plots for different values of (δ), when V = 1:4, ωcc = 0:5, κ = 3 and
ρ = 0:5

Nature of KdV soliton:

The variation of KdV solitary structures on various plasma parameters are discussed with

reference to the following figures. Figure 9.29 - 9.35 provides the plots of KdV solitary

structure for various parametric variations. Figure 9.29 depicts the solitary profile for

varying values of quantum diffraction parameter (H). As the system moves in the quan-

tum domain the solitary profile is flattened. This may be due to the strong correlation of

the particle in such a range. Additionally, it can be said that at such high densities the

system has less available states and the degree of non-linearity is overpowered by the

dispersive effects. Figure 9.30 shows the contour plots for the Kappa index in the classi-

cal and quantum domain. Here in the classical case, the kappa index is prominent in the

small η - space whereas it is more spaced in the quantum case. Contour plots for varia-

tions in the (lz) value (i.e; the directional cosine for the z - component)is shown in figure

9.31. It shows that the classical counterpart is short & more closely packed and there are

fewer variations at the periphery than the centre. Figure 9.32 makes a comparison for

the solitons in quantum and classical domain with the variation of wave frame velocities

[or Mach number (V)]. The quantum plots are more extensive at high Mach number (V).

The effect of magnetic field (via ωcc) is shown in figure 9.33. In both quantum and clas-
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Figure 9.35: Variation of non-linearity with direction cosine for different Mach number
(a) and Quantum diffraction parameter (b)
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Figure 9.36: Spatio-temporal evolution of the Envelope Solitary structure

sical range the magnetic field increases the depth of rarefactive solitary structures. It is

more pronounced in the quantum region. It is because of the high density such that the

system particles as a whole respond to the magnetic field without any dispersive action.

Figure 9.34 shows the (η − δ) plot for two values of Kappa index. A smaller value of

kappa indices the (η−δ) curves have a progression with ion density but for high k value,

ion density is almost ineffective in affects the solitary structures. Figure 9.35 shows how

the nonlinear coefficient (P) varies with directional cosine (lz), Mach number (V ) and

quantum diffraction term (H) as tuning parameters.

Envelope soliton and the non-linear Schrödinger equation:

If non-linearity in the plasma is very high and an initial uniform waveform gets converted

into a wave structure so that it further undergoes self-modulation then envelope solitary

formations are found to evolve. To study the nature of such envelope solitons and to

analyze whether such modulation is stable against dispersion, we calculate a non-linear

Schrödinger equation. To derive it, we make use of a simple transformation followed by

expansion.For NLSE, We introduced the stretching variables χ1 and τ as

χ1 = ϵ(ξ − τ); t = ϵ2τ (9.31)
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Figure 9.37: The variation of the critical wave number (kC).

Now we consider that electrons only participate in this linear approximations. Employ-

ing Fourier expansion of field quantities such that

ul(χ1, t) = u
(0)
l +

∞∑
n=1

εn
∞∑

l=−∞

u
(n)
l eil(kx−ωt) (9.32)

using perturbations of field variables such as

ψ =
∞∑
n=1

ε(n)ψ(n)

We get the equation of NLS given by

i
∂ψ

∂t
+R

∂2ψ

∂χ2
1

= Sψ2ψ∗. (9.33)

While studying amplitude modulation and related envelope soliton, the non-linear Schrodinger

(NLSE) equation is essential. Here, the balance of nonlinear and dispersive components

is maintained. The dispersive (R) and Nonlinear (S) coefficients are

R = 3kV 3

2l2z

(
ρl4z
V 4 + 3l2z − δ 1−4κ2

4(2κ−3)2

)
;

193



Chapter 9. Stationary Structures and Its Evolution

S =
V 3

(
H2l2z
4V 4 +

V (l2x+l2y)

ω2
cc

− 9H2

4
lz+1

)
12l2zk

(
αl4z
V 4 +3l2z−δ 1−4κ2

4(2κ−3)2

) (9.34)

We adopt function transformation approach in order to obtain the solution of the equation

(9.33), and assume that the solution turns into the form

ψ(χ1, t) = f(ς)e(iθ) (9.35)

where ς & θ are related as

ς = χ1 − (αR + βS); θ = αχ1 + γt (9.36)

Wherever there is α, β and γ constantly, the real function is f(ς). Now that equation

(9.35) is replaced with equation (9.33), we have the usual differential equation

R∂2(ς)f − (Rα2 + γ)f + Sf 3 = 0 (9.37)

which can be written as

(∂ςf)
4 =

2Rα2 + γ

R

{
f 2 −

(
S

Rα2 + γ

)
1

8
f 4

}
(9.38)

With the equation (9.38) integrated, the NLSE (9.33) solution has been formed,

ψ =

√(
γ

R
+ α2

)
R

S
· sech

[{√
γ

R
+ α2

}
(ς − 2αRθ)

]
ei(ας+γθ) (9.39)

The wavelength (or corresponding energy) due to which the waves will be stable is

directly related to the performance of RS and its sign in wave-number (k) space. Figure

9.36 depicts the amplitude modulated envelope soliton or envelope solitary wave. Figure
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9.37 illustrates the modifications of the crucial (kC) wave number, which brings forth

the utmost modulation wave number (kC) value for the wave stability of the condition

(RS > 0). From the figures one may grasp the parametric dependence easily.

9.4 Conclusion

The findings of this work will help in the understandings of the various parameters in de-

termining the origin and nature of stationary formations like double layers, shocks and

solitary structures. The gradual evolution of sheet like charge separations (the double

layers) to a shock front and finally as a solitary wave profile is often crucial while car-

rying out experiments in plasma and interpreting astronomical shocks. A couple of year

back the interplanetary shocks observed on 19/04/2018 [118, 256] can be interpreted for

and in future measurements can be made to account for any similar astrophysical phe-

nomena. This theoretical work also shows step by step evolution of an electron acoustic

rogue wave with huge energy starting from weak plasma oscillations. The model has the

potential to identify the parametric range for stable envelop soliton and the minute fluc-

tuations which might cause serious instability. An extension of the theory can employed

in studying rogue waves (RW) in optical fibers. However, the basic equations will un-

dergo some changes and the parameters chosen accordingly. Apart from plasma physics,

this work can find application in fiber optics, arterial mechanics and similar fields where

nonlinear Schrodinger equation describes the evolution process.
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CHAPTER 10

SUMMARY AND CONCLUSION

In the present thesis, we have investigate the amplitude modulation and envelop soli-

ton formation in a dense plasma when such a plasma interacts with an intense laser

beam. We have used the symbolic simulation technique to find the modulation instabil-

ity of an electrostatic wave with higher orders of nonlinearity. We identified the range of

wavenumber in which such instability can occur. Furthermore, we have analysed the for-

mation of envelope soliton of waves localized in space. The importance of the relativistic

contribution of streaming particles is discussed alongside the parametric influences ex-

perienced by the plasma particles. The results obtained here will help interpret different

phenomena that arise in laser plasma interaction. The findings are presented in the sec-

ond and third chapters. The employment of homotopy-assisted symbolic simulation has

been instrumental in studying the nature and formation of envelope solitons and their de-

pendence on various parameters. The different orders of homotopy perturbation gener-

ate a convergent series solution for such nonlinear coupled partial differential equations.

Our technique bypasses the rigorous analytical derivation of coupled partial differential

equations without a loss of information. The methodology is novel and holds promise

for application in models that explain experimental observations. The results will be

beneficial in interpreting various dense laser-plasma interactions.

In chapter four the effects of exchange correlation, streaming motion, and quantum

diffraction on the nonlinear evolution of modulated electron plasma waves have been

investigated. The nonlinear Schrodinger equation (NLSE) is obtained using the stan-

dard Fourier technique. The nonlinear evolution of the envelope soliton, its associated

modulational instability, and its growth rate are described by the nonlinear Schrodinger

equation. We have demonstrated how wave instability is affected by various parameters
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and the wave number domain. The dynamical properties of amplitude-modulated elec-

trostatic waves help to understand the physical process occurring in the system.. The

dynamical system analysis supports the findings of the perturbative analysis.

In chapter four we employ the semi-Lagrangian method for the kinetic Vlasov equa-

tion to study the instabilities in a quantum plasma with one-dimensional temperature

anisotropy. Taking the Fermi Dirac type of distribution function and using the semi-

Lagrangian Vlasov code, we have investigated the gradual evolution of density and ki-

netic energy in a degenerate plasma with quantum effects. In this collisionless plasma,

adiabatic compression take place along the direction of wave propagation. It lead to

temperature anisotropy of the electron distribution that varies along the wave propaga-

tion path. The findings will find application for dense plasma at finite temperatures as

in laser-produced plasmas, fusion plasma, and solar plasmas. Here we have studied the

gradual evolution of stationary formations in electron acoustic waves at a finite tem-

perature quantum plasma. We have used quantum hydrodynamics model equations and

obtained the KdV-Burgers equation. From here, we show how the amplitude-modulated

solitons evolve from double-layer structures through shock fronts and ultimately con-

verge into solitary structures. The stability of modulation and its propagation in space

are crucial in laboratory plasma. The dynamical analysis and the chaotic portraits have

helped to understand the system very well. The parametric phase portraits will help the

theoretical understanding of the parametric influence of large and small amplitude sta-

tionary structures. The findings of chapter six incorporates the dynamical system study

and application of chaos theory in plasma physics. Bifurcation analysis and dynami-

cal system studies are carried out to find the stability regime and chaotic scenario in

electron-acoustic waves in relativistic degenerate plasma. Using the quantum hydro-

dynamic model we have derived Korteweg-de Vries equation describing the nature and

characteristics of solitary structures. The amplitude modulated envelop soliton formation

due to external perturbations has been studied by analysing the nonlinear Schrodinger

equation. Further, to explore the stability factors and the parametric range for such sta-
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bility, a dynamical system is inspected, and a bifurcation analysis is carried out. The

chaotic behavior of the system is studied through the largest Lyapunov exponent. This

work will find application in theoretically predicting the stable modes in solar plasma,

stellar plasma applications and laser plasma in the future. In subsequent sections the

nonlinear self-interaction of an electrostatic surface wave on an otherwise homogeneous

semi-bounded plasma with degeneracy effects is examined in a quantum hydrodynamic

model with suitable boundary conditions. It has been shown that a portion of the second

harmonic produced by self-interaction lacks a proper surface wave feature and instead

spreads obliquely into the bulk of the plasma, away from the plasma-vacuum interface.

A situation like this occurs during surface etching, plasma processing, and other laser-

plasma interactions. We have explored how harmonics are formed when a powerful laser

strikes an unmagnetized plasma, as well as the resulting Lagrangian chaos and harmonic

conversation rate. The dense plasma exhibits quantum statistical effects as well as quan-

tum diffraction effects. In chapter seven a semiconductor p-n junction diode with heavy

doping under consideration is kept in forward biased condition. These are oppositely

streams of electrons and holes. These two streams interact among themselves and result

in recombination, which supplies additional energy to the system. Such thermal energy

creates additional electrical fluctuations, which exist long after the interaction. We have

carried out an analytical investigation with numerical techniques and a simulation of the

wave-wave interaction in semiconductor junction diodes. We have been successful in

graphically and animatedly demonstrating the interaction mechanism. The findings will

aid in understanding the breakdown mechanism and assist in designing electronic de-

vices appropriately. The simulation results, which closely resemble the newly developed

simulation code (INSAT-FORK) and can be extended to various problems with periodic

boundary conditions, are partly supported by the analytical approach. These simulation

studies can be used to predict a broad range of nonlinear effects. In subsequent chapters,

we have studied the electron acoustic waves in a magnetized plasma containing Kappa

distributed ions which are streaming with high velocity within the plasma and under the
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action of external force. We have employed the homotopy perturbation method to obtain

the graphical plots of solitary structures and their evolution into an envelope soliton. An-

alytically, we have obtained the linear dispersion relation and studied its characteristics.

Further, we have derived the KdV equation using the reductive perturbation technique

and studied the parametric dependence on the KdV solitary profile. These findings aug-

ment the homotopy results. The analytical and simulation results thus obtained will help

interpret and identify electron acoustic wave modes in such a plasma system. To sum up

we have seen that in a magnetized plasma with Kappa distributed ions that are stream-

ing at high speeds inside the plasma and under the influence of an external force, show

significant new effects. In such a plasma system, the analytical and simulation results

will aid in understanding and identifying the electron acoustic wave modes. To obtain

the graphical plots of solitary structures and their growth into an envelope soliton, we

have used the homotopy perturbation method. We obtained the linear dispersion relation

analytically and investigated its properties. Additionally, we investigated the parametric

dependence on the KdV solitary profile. These results support the homotopy findings.

The findings in this work will help explore new aspects of nonlinear plasma physics.

Introducing some new codes opens the possibility of studying mini-complex phenomena

in real-time using simple computation tools and a small desktop computer. We have tried

to maintain a correlation between experimental findings and theoretical understanding.

Based on the findings of this work, we can extend our research in semiconductor plasma

and laser-plasma, as well as the application of bifurcation theory to practical plasma

problems. The future investigation will include:

• Upgradation of simulation techniques.

• Regularisation of schemes and conservation laws.

• Simplification of nonlinear partial differential equations’ solution techniques.

Since we have used a bit of topology here, we expect to incorporate some advanced

mathematical ideas to be used in plasma physics and fluid systems.
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APPENDIX A

NONLINEAR INTERACTION OF INTENSE LASER BEAM WITH DENSE

PLASMA

Let U =
(
ne,

−→
Ve,

−→
E
)
, D =


∂
∂t
+ V⃗e · ∇⃗+

(
∇⃗ · V⃗e

)
∂
∂t
+ V⃗e · ∇⃗+ 0.

(
∇⃗ · V⃗e

∂
∂t
+ V⃗e · ∇⃗+ 0.

(
∇⃗ · V⃗e

,

f(r) =


0

− e
me

 E⃗ + V⃗e
c
× B⃗

1
ϵ0
neV⃗e

− ∇⃗pe
mene

 ,
−→
V =

(
Ne,

−→
V e,

−→
E
)

and V(0)
= U0 be the initial approximation.

Using (3.18) and linearizing by the Taylor series N (V) in p, we get the linear form

N (V) = p0N0

(
V(0)

)
+ pN1

(
V(0)

, V(1)
)
+ p2N2

(
V(0)

,V(1)
,V(2)

)
+ . . . (A.1)

Similarly we expand f(r) by the Taylor series in p, and the coefficients of lineariza-

tion are obtained by using Matlab R2019 symbolic computation. Putting these expres-

sion for N (V) and f(r) in equation (3.17) and equating like powers of p, we get a set of

equations which can solve iteratively. Finally we get the solution as

U = lim
p→1

V = V(0)
+ V(1)

+ V(2)
+ . . . (A.2)
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APPENDIX B

EFFECTS OF EXCHANGE SYMMETRY AND QUANTUM DIFFRACTION

ON AMPLITUDE MODULATED ELECTROSTATIC WAVES IN QUANTUM

MAGNETOPLASMA

B.1 n=1, l=1 perturbation relations:

− iωγ1n
(1)
e,1 + ikγ1v

(1)
e,1 + ikγ1u0n

(1)
e,1 = 0,

− iωn
(1)
i,1 + ikv

(1)
i,1 = 0,

− ikφ
(1)
1 −

v
(1)
e⊥,1

ρs
+
ikλ1
3
n
(1)
e,1 −

2ikλ2
3

n
(1)
e,1 + i

H2

4γ3
k3n

(1)
e,1 = 0,

− iωv
(1)
i,1 + ikφ

(1)
1 + ikn

(1)
i,1 = 0,

− k2φ
(1)
1 − n

(1)
e,1 + n

(1)
i,1 = 0. (B.1)

B.2 n=1, l=1 perturbation coefficients:

A11 =
k4 + k2 − ω2k2

ω2 − k2
,

B11 =
k2

ω2 − k2
, C11 = (

ω − ku0
k

)(
k4 + k2 − ω2k2

ω2 − k2
),

D11 =
ωk

ω2 − k2
. (B.2)
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B.3 n=2, l=1 perturbation relations:

− Cgγ1
∂n

(1)
e,1

∂ξ
− iωγ2n

(2)
e,1 + γ1

∂v
(1)
e,1

∂ξ
+ ikγ2v

(2)
e,1 + u0γ1

∂n
(1)
e,1

∂ξ
+ iku0γ2n

(2)
e,1 = 0,

− Cg
∂n

(1)
i,1

∂ξ
− iωn

(2)
i,1 +

∂v
(1)
i,1

∂ξ
+ ikv

(2)
i,1 = 0,

−∂φ
(1)
1

∂ξ
−ikφ(2)

1 +
λ1
3
(ikn

(2)
e,1+

∂n
(1)
e,1

∂ξ
)−2λ2

3
(ikn

(2)
e,1+

∂n
(1)
e,1

∂ξ
)−H2

2γ3
(−ik

3

2
n
(2)
e,1−3k2

∂n
(1)
e,1

∂ξ
) = 0,

− Cg
∂v

(1)
i,1

∂ξ
− iωv

(2)
i,1 +

∂φ
(1)
1

∂ξ
+ ikφ

(2)
1 +

∂ni,1
(1)

∂ξ
+ ikn

(2)
i,1 = 0,

2ik
∂φ

(1)
1

∂ξ
− k2φ

(2)
1 − n

(2)
e,1 + n

(2)
i,1 = 0. (B.3)

B.4 n=2, l=1 perturbation coefficients:

A′
21 =

12γ3k

4λ1γ3 − 8λ2γ3 + 3H2k2
,

A′′
21 = 2iA11

γ3 (−6 + 2λ1 − 4λ2) + 9H2k2

k (4γ3λ1 − 8γ3λ2 + 3H2k2)
,

B′
21 =

k2

ω(ω − k)
,

B′′
21 = i

k (1− CgD11 +B11)− (k − ω) (CgB11 −D11)

ω (k − ω)
,

C ′
21 =

γ1 (ω − ku0)A
′
21

kγ2
,

C ′′
21 =

kγ2A
′′
21 + iγ1 (−CgA11 + C11 + u0A11)

kγ2

D′
21 =

ωB′
21

k
,

D′′
21 =

B′′
21 + i (CgB11 −D11)

k
,

E ′
21 =

2ik − A′′
21 +B′′

21

k2 + A′
21 −B′

21

,

iA21 = A′
21E21 + A′′

21, iB21 = B′
21E21 +B′′

21, iC21 = C ′
21E21 + C ′′

21,

iD21 = D′
21E21 +D′′

21, iE21 = E ′
21. (B.4)
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B.5 n=2, l=2 perturbation relations:

−Cgγ1
∂n

(1)
e,2

∂ξ
−2iωγ2n

(2)
e,2+γ1

∂v
(1)
e,2

∂ξ
+2ikγ2v

(2)
e,2+u0γ1

∂n
(1)
e,2

∂ξ
+2iku0γ2n

(2)
e,2+2ikγ1

2n
(1)
e,1v

(1)
e,1 = 0,

− Cg
∂n

(1)
i,2

∂ξ
− 2iωn

(2)
i,2 +

∂v
(1)
i,2

∂ξ
+ 2ikv

(2)
i,2 + 2ikn

(1)
i,1 v

(1)
i,1 = 0,

−∂φ
(1)
2

∂ξ
−2ikφ

(2)
2 +

λ1
3
(2ikn

(2)
e,2+

∂n
(1)
e,2

∂ξ
)−2λ2

3
(2ikn

(2)
e,2+

∂n
(1)
e,2

∂ξ
)−H2

2γ3
(−4ik3n

(2)
e,2−4k2

∂n
(1)
e,2

∂ξ
) = 0,

− Cg
∂v

(1)
i,2

∂ξ
− 2iωv

(2)
i,2 +

∂φ
(1)
2

∂ξ
+ 2ikφ

(2)
2 +

∂ni,2
(1)

∂ξ
+ 2ikn

(2)
i,2 + 2ikv

(1)
i,1 v

(1)
i,1 = 0,

4ik
∂φ

(1)
2

∂ξ
− 4k2φ

(2)
2 − n

(2)
e,2 + n

(2)
i,2 − 1

2
φ
(1)
1 .φ

(1)
1 = 0. (B.5)

B.6 n=2, l=2 perturbation coefficients:

E22 =
2kD11(ωB11 + kD11)− 1

2(ω2 − k2)
(
4k2 + 3γ3

γ3(λ1−2λ2)+3H2k2
− k2

ω2−k2

) ,
A22 =

3γ3E22

γ3(λ1 − 2λ2) + 3H2k2
,

B22 =
kD11(ωB11 + kD11) + k2E22

ω2 − k2
,

C22 =
A22(ω − ku0) + kA11C11

k
,

D22 =
ωB22

k
−B11D11. (B.6)

204



Chapter B. Effects of exchange symmetry and quantum diffraction on amplitude
modulated electrostatic waves in quantum magnetoplasma

B.7 n=3, l=0 perturbation relations:

γ1
∂n

(1)
e,0

∂τ
− Cgγ2

∂n
(2)
e,0

∂ξ
+ γ2

∂v
(2)
e,0

∂ξ
+ u0γ2

∂n
(2)
e,0

∂ξ
= 0,

∂n
(1)
i,0

∂τ
− Cg

∂n
(2)
i,0

∂ξ
+
∂v

(2)
i,0

∂ξ
= 0,

− ∂φ
(2)
0

∂ξ
+
λ1
3

(
∂n

(2)
e,0

∂ξ

)
− 2λ2

3

(
∂n

(2)
e,0

∂ξ

)
= 0,

∂v
(1)
i,0

∂τ
− Cg

∂v
(2)
i,0

∂ξ
+
∂φ

(2)
0

∂ξ
+
∂n

(2)
i,0

∂ξ
= 0,

∂2φ
(1)
0

∂ξ2
− n

(3)
e,0 + n

(3)
i,0− | φ(1)

1 |2= 0. (B.7)

B.8 n=2, l=0 perturbation coefficients:

E20 =

(
C2
g − 1

)
(λ1 − 2λ2)

(λ1 − 2λ2)− 3(C2
g − 1)

,

A20 =
3E20

λ1 − 2λ2
,

B20 =
E20

C2
g − 1

,

C20 =
3 (Cg − u0)E20

(λ1 − 2λ2)
,

D20 =
CgE20

C2
g − 1

. (B.8)
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B.9 n=3, l=1 perturbation relations:

γ1
∂n

(1)
e,1

∂τ
− Cgγ2

∂n
(2)
e,1

∂ξ
− iωγ3n

(3)
e,1 + γ2
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RESONANT INTERACTIONS AND CHAOTIC EXCITATION IN NONLINEAR

SURFACE WAVES IN DENSE PLASMA

C.1 First Harmonic Quantities

ϕ1 =
A

γ − k
[−2ke−γx + (γ + k)e−kx] (C.1)

ϕν1 = Aekx (C.2)

n1 = A(γ2 − k2)e−γx = αe−γx (C.3)

(C.4)

ux1 =
iAγ

ω

[
(γ2 − k2)

(
1− H2(γ2 − k2)

4

)
− 1

]
(e−γx − e−kx) (C.5)

= i(ψxe
−γx + θxe

−kx) (C.6)

(C.7)

uz1 =
A

ω

[
(γ2 − k2)

(
1− H2(γ2 − k2)

4

)
− 1

]
(γe−γx + ke−kx) (C.8)

= (ψze
−γx + θze

−kx) (C.9)

(C.10)

where,

γ2 = 1 + (
ΛRe

3
)k2 + (

H2k4

2
)− ω2
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C.2 Second Harmonic Quantities

P1 =
(2iβ − 2k)M2

2iβ + 2k
(C.11)

−
3∑
j=1

(Fj(2iβ + pj)

(2iβ + 2k)p2j

(
1− p2j + (H2p4j/4)− 4ω2

) (C.12)

P2 =
4kM2

2iβ + 2k
− (C.13)

3∑
j=1

Fj
(2k − pj)

(2iβ + 2k)p2j

(
1− p2j + (H2p4j/4)− 4ω2

)1 (C.14)

p1 = 2k (C.15)

p2 = 2γ (C.16)

p3 = k + γ (C.17)

F1 = 2k2(θ2x − 2θ2z) (C.18)

F2 = 2α2(γ2 − k2)− 2ωα(2kψz − 2γψx) (C.19)

−(2γ2ψ2
x + 4k2ψ2

z) +H2α2(γ2 − k2)2/4 (C.20)

F3 = 2ωα
{
(γ + k)θx − 2kθz

}
−
{
(γ + k)2θxψx + 8k2θz

}
(C.21)

P3 =
3∑
j=1

F
Fje

−pjxp−2
j(

1−p2
j
+

H2p4
j

4 −4ω2

) (C.22)

N1 = 4k2P1 (C.23)

N2 = 4β2P2 (C.24)
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N3 =
3∑
j=1

Fje
−pjx

1− p2j

(
+

H2p4j
4

− 4ω2

) (C.25)

U1 =

[
k(θ2x + 2P1) + 8k3P1 +

32H2k5P1

4
+ 2ikθxθz

]
(C.26)

U2 =

[
γ(ψ2

x + α2) + 8k3P1 +H2α2γ
γ2 − k2

4
+ 2ikψxψz

]
(C.27)

U3 = ((γ + k)θxψx + 2ik(θxψz + θzψx)) (C.28)

U4 = (2iβP2 − 8iβ3P2 + 32β5P2) (C.29)

U5 =
3∑
j=1

Fje
−pjx(1 + p2j + (H2p4j)/4)

pj

(
1− p2j ++(H2p4j/4)− 4ω2

) (C.30)

W1 =

[
kθxθz + 2H2k5P1 + 2ik(θ2z − P1 − 4k2P1)

]
(C.31)

W2 =

[
ik

(
2ψ2

z + α2k − H2α2(γ2 − k2)

4

)]
(C.32)

W3 = γψxψz (C.33)

W4 = (θxψzγ + θzψzk + i4kθzψz) (C.34)

W5 = P2(2ik(1− 4β2) + 8k3β2H2) (C.35)

W6 =
3∑
j=1

Fje
−pjx(2ιk(1 + p2j)− 2H2k63p2j)

p2j

(
1− p2j ++(H2p4j/4)− 4ω2

) (C.36)

209



APPENDIX D

BIFURCATION THEORY AND STABILITY ANALYSIS

Aj =
ω (cgσj − γj)

k2
+

1

k

[
cgγj −

σj (4Fj + 3H2k2)

4
+

3H2k3

4Ωj

]
(D.1)

γj =
{
ω2kcg + ω

[
Ωj + Fj

(
Ωj − k2

)
+
(
H2k2/4

) (
3Ωj − k2

)]
+cgk

3
[
Fj +

(
H2k2/4

)]}
/Ω2

j

(D.2)

σj =
[
k
(
Ωj − ω2

)
+ 2ωk2cg −k3

{
Fj +

(
3H2k2/4

)}]
/Ω2

j (D.3)

Nj = −
[
ω2 +

(
H2k6/8

)
χj +ω

2 +
(
H2k6/8

)
lj/Ωj

]
(D.4)

where

χj =
[
b0 −

[
ω2k2 + 2ωk3cg −H2k6/4

]
/Ω2

j

]
/
(
Fj − c2g

)
(D.5)

and

lj = −b2 −
[
3(ωk)2 −

(
H2k6/4

)]
/2Ω2

j (D.6)
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