STUDIES ON COMPUTER VISION BASED IDENTIFICATION OF SPECIES AND MATURITY STAGES FOR SOME MEDICINAL PLANTS AND AGRICULTURAL PRODUCES

Thesis submitted by

GUNJAN MUKHERJEE

Doctor of Philosophy (Engineering)

DEPARTMENT OF PRINTING ENGINEERING FACULTY COUNCIL OF ENGINEERING AND TECHNOLOGY JADAVPUR UNIVERSITY KOLKATA 700032, INDIA 2022

JADAVPUR UNIVERSITY KOLKATA- 700032, INDIA

INDEX NO. 241/18/E

 Title of the Thesis Studies on Computer Vision Based Identification of Species and Maturity Stages for Some Medicinal Plants and Agricultural Produces
 Name, Designation & Dr. Arpitam Chatterjee, &Institution of the Supervisor
 Dr. Arpitam Chatterjee, Associate Professor, Department of Printing Engineering Jadavpur University, Salt Lake Campus Sector-III, Block-LB, Plot-8, Kolkata- 700098, India Phone:9836020770 Fax: 03323357254

3. List of Publications Papers published in international Journals

- Gunjan Mukherjee, Bipan Tudu, Arpitam Chatterjee. (2021) A convolutional neural network-driven computer vision system toward identification of species and aturity stage of medicinal leaves: case studies with Neem, Tulsi and Kalmegh leaves, Soft Computing, 25 (22), pp. 14119-14138.DOI: 10.1007/s00500-021-06139-9.
- 2) Gunjan Mukherjee, Bipan Tudu , Arpitam Chatterjee . (2022) A multi-channel convolution neural network driven computer vision system towards identification of Species and maturity stage of banana fruits: case studies with Martaman and Singapuri banana", *Int. J. Computational Intelligence Studies, Vol. 11, No. 1,pp.1–23.*
- 3) Gunjan Mukherjee, Arpitam Chatterjee, Bipan Tudu .(2022) Identification of the types of disease for tomato plants using amodified gray wolf optimization optimized Mobile NetV2 convolutional neural network architecture driven computer vision framework. *Concurrency Computator Pract Exper.;e7161. doi: 10.1002/cpe.7161*t:
- Gunjan Mukherjee, Bipan Tudu, Arpitam Chatterje, TomNet: A deep neural network based computer vision towards simultaneous classification of species and maturity stages of tomato (Communicated).

Papers published in International Conference Proceeding

- Gunjan Mukherjee, Arpitam Chatterjee, Bipan Tudu.(2016) Study on the potential of combined GLCM features towards medicinal plant classification, 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC). IEEE
- Gunjan Mukherjee, Arpitam Chatterjee, Bipan Tudu .(2017) Color feature based approach towards maturity discrimination of medicinal plants: Case study with Kalmegh (Andrographis paniculata), Computational Science and Engineering – Deyasi et al. (Eds)© Taylor & Francis Group, ISBN 978-1-138-02983-5.
- 3) Gunjan Mukherjee, Arpitam Chatterjee, Bipan Tudu. (2017) Morphological feature based maturity level identification of kalmegh and Tulsi leaves, third international conference on Research n computational intelligence and communication networks.IEEE.
- Devraj. Vishnu, Gunjan. Mukherjee and Arpitam. Chatterjee, "A computer vision approach for grade ideaD. Vishnu. D, Mukherjee. G, and Chatterjee. A., "A computer vision approach for grade identification of rice bran," 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), 2017, pp. 10-14, doi: 10.1109/ICRCICN.2017.8234473.ti 10.1109/ICRCICN.2017.8234473.
- 5) Gunjan Mukherjee, Arpitam Chatterjee, Bipan Tudu.(2022) A Computer Vision Approach Towards Maturity Stage Classification of Tomatoes Using Second Order Wavelet Features.In: Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H. (eds) Proceedings of International Conference on Data Science and Applications . Lecture Notes in Networks and Systems, vol 288. Springer, Singapore. https://doi.org/10.1007/978-981- 16-5120-5_10

Statement of Originality

I, Gunjan Mukherjee, registered on the 25th April, 2018 do hereby declare that this thesis entitled "Studies on Computer Vision Based Identification of Species and Maturity Stages for Some Medicinal Plants and Agricultural Produces" contains literature survey and original research work done by the undersigned candidate as part of Doctoral studies.

All information in this thesis has been obtained and presented in accordance with existing academic rules and ethical conduct. I declare that, as required by rules and conduct, I have fully cited and referred all materials and results that are not original to this work.

I also declare that I have checked this thesis as per the "Policy on Anti Plagiarism, Jadavpur University, 2019", and the level of similarity as checked by iThenticate software is 5%.

my on theelding

Gunjan Mukherjee Index No. 241/18/E Date:

Argitum Char Associate Professor Department of Printing Engineering Jadavpur University, Salt-lake Campus Kolkata - 700 098

Dr. Arpitam Chatterjee Associate Professor, Department of Printing Engineering Jadavpur University, Salt Lake Campus Sector-III, Block-LB, Plot-8, Kolkata- 700098, India

CERTIFICATE FROM THE SUPERVISORS

Date:

This is to certify that the thesis entitled "Studies on Computer Vision Based Identification of Species and Maturity Stages for Some Medicinal Plants and Agricultural Produces" submitted by Shri Gunjan Mukherjee, who got his name registered on 25th of April,2018 for the award of Ph. D (Engg.) degree of Jadavpur University is absolutely based upon his own work under the supervision of Dr.Arpitam Chatterjee and that neither his thesis nor any part of the thesis has been submitted for any degree /diploma or any other academic award anywhere before.

Argitum Chat fessor Department of Printing Engineering Jadavpur University, Salt-lake Campus Kolkata - 700 098 Dr. Arpitam Chatterjee

Associate Professor,

Department of Printing Engineering Jadavpur University, Salt Lake Campus Sector-III, Block-LB, Plot-8, Kolkata- 700098, India

DEDICATED TO

TO

ALL MIGHTY GOD

ACKNOWLEDGMENTS

The success of performing any noble job and its real pleasure remain incomplete unless the people connected to the job as the integral part with their continuous support, supervision ultimately paves the way to make it happen. I, therefore would like to acknowledge with sincere gratitude to the kind assistance and supports provided by all concerned persons.

It is my great privilege to express my profound and sincere gratitude to Dr. Arpitam Chatterjee, Department of Printing Engineering, Jadavpur University, Kolkata for his continuous cooperation, supervision and precious guidance at every stage of the research works and preparation of thesis. The completion of this thesis would have become incomplete without his persistent supervision

I must also mention my heartfelt gratitude to Prof. Bipan Tudu, Department of Instrumentation & Electronics Engineering, Jadavpur University, Kolkata for his valuable suggestions, right direction and immense supports at each and every steps of the entire research program.

I am also grateful and thankful to Prof. Soumen Basak, Head of the Department of Printing Engineering, Jadavpur University, and Kolkata for extending his supports with all sorts of facilities for carrying out the research during the entire journey.

I would like to convey my sincere thanks to all the faculty members, technical and non technical staffs of the Department of Printing Engineering, Jadavpur University for their timely and prompt support and help towards the research program.

Finally, I would like to express my earnest gratitude to my mother, colleagues and friends to carry out this work. I would like to extend my warm thanks to my son and daughter for sharing their expected time to concentrate to my research work .Last but not the least, I would like to express my heartfelt and honest gratitude to my dear wife for her stern persistence, unconditional support, great motivation and profound encouragement during the entire research work.

my on leveling-

Gunjan Mukherjee

Abstract

We are familiar with different varieties of agricultural produces. The agricultural products comprise either different types of foods like fruits or vegetables or different leaves of medicinal plants used for the remedial of different critical and chronic diseases. All of these agricultural products show myriad food or medicinal values towards the human beings. The agro products neem, tulsi, kalmegh etc have been very familiar to us and has been proved to be the integral part of ayurveda from very ancient time with high potential of curing many different critical and chronic human diseases. Some notable contribution of these plants are natural healing powers towards many ailments like blood pressure, digestion disorder, blood purification , skin diseases and many other chronic diseases like cancer etc. The remedial qualities of such plants are attributable to the bio actives present in the plants. The bio actives or the biochemical adoptogen varies from one species to another and also from one maturity stage to another within the same species.

Like the medicinal plants, fruits like tomato or banana are also contributing majorly towards the wellbeing of the human health. Banana contains different minerals like potassium, magnesium, calcium, manganese etc which keeps the good health of human heart and apart from showing the remedial signs like fighting anemia, controlling blood pressure etc. The nutrients present in the fruit banana vary from one species to another and also varies from one stage of maturity to another stage with in the same species of the fruit group.

Like banana, tomato is also another widely consumed fruit and bear many different food values and remedial actions on the human health. It shows enough potentiality towards remedial of many chronic diseases like cancer, osteoporosis and other different types of cardiovascular diseases. Presence of the bioactive lycopane in tomato shows typical remedial actions for the chronic diseases like reducing risk of cancer. In addition to such remedial qualities, it also shows curing potentials for diseases like osteoporosis, cardiovascular diseases etc. The action of such bioactive present can vary from one species to another and also from one maturity stage to another within the same species.

Despite having the beneficial aspects, plants show some degree of susceptibility towards the typical diseases and as a result undergo damages .Most of the diseases are caused by the bacterial or fungal infection and can spread at very rapid rate from one plant to the other. The need of identification of plant species and the disease types are being performed manually. The manual operations become subjective, high time taking and invasive in nature.

In the first phase of study of this thesis, the species and maturity discrimination of different medicinal plants have been explored. The leaves of the three categories of plants neem, tulsi and kalmegh in heir different maturity stages have been collected, preprocessed and finally grouped into the train and test set . The deep learning based CNN model has been formed and optimized with the modified GWO optimizer. The accuracy of classification for unknown leaf has been achieved at 99% approximately.

In the second phase of study, the species and maturity discrimination of the fruits and vegetables have been explored. The different species of fruits banana and the tomato were selected in three distinct maturity grades premature, mature and over mature. After preprocessing operations, the images were captured to make the train set. The dataset were finally fed to the deep learning based classifier CNN model optimized with the PSO or GWO optimizer. Depending on the performance criterions of the optimizer, the metrics were developed. The classification accuracies for both of the fruits were found very close to 99%.

In the third phase of study, seven different types of diseases of tomato plant leaves have been explored. The fungal or bacteria affected leaves have been collected and the captured images of those leaves have been formed into the training and test sets respectively. The training dataset have been utilized to train up the light weighted model mobileNet optimized with the modified GWO techniques. The classifier identifies the unknown leaves with the proper disease types with the accuracy value 98% approximately. The metric values and the accuracies obtained in respective phases of research studies vouches the fact the explored computer vision models can be potential tool towards classification of the different produces in terms of species and maturity levels.

Contents

Abstract		
Chapte	r 1: Introduction and scope of the thesis	9
1.1	Introduction	9
1.2	Conventional methodologies for agro produce grading	13
1.2.1	Gas chromatography-mass spectroscope(GC-MS)	13
1.2.2	High performance liquid chromatography(HPLC)	14
1.2.3	Near infrared spectroscopy(NIR)	14
1.2.4	Electronic nose(E-nose)	16
1.2.5	Magnetic resonance with chemometrics	17
1.2.6	Chemical sensors	18
1.3	Literature survey	20
1.4	Brief overview of computer vision	35
1.5	Problem statement	42
1.6	Objective and scope of the thesis	44
1.7	Research questions	45
1.8	Thesis structure	46
1.9	Conclusion	48
	References	49
-	r 2: Detection of species and maturity for medicinal plant	57
leaves		
2.1	Introduction	57
2.2	Computer vision framework for medicinal leaf species and maturity stage detection	60
2.2.1	Sample collection and UV-vis spectroscopy	60
2.2.2	Imaging chamber	62
2.2.3	Leaf isolation	63
2.3	Development of CNN model	65
2.3.1	Convolution layer	66
2.3.2	Pooling layer	67
2.3.3	Fully connected layers	68
2.4	Hyperparameter optimization	69
2.4.1	Binary particle swarm optimization	73
2.4.2	Hyperparameter optimization using GWO	74
2.4.3	Hyperparameter optimization using modified GWO	77
2.5	Model performance evaluation	81
2.6	Results and Discussion	85
2.6.1	Model validation	88
2.6.2	Evaluation against confusion matrix	91
2.6.3	Cohen kappa coefficient score	94
2.6.4	Receiver operating characteristics (ROC) curve	95
2.6.5	Comparative analysis	96
2.6.6	GUI presentation	99
2.7	Conclusion	101
	References	101

Chapte	r 3: Species and maturity grading of vegetables – Case	106
studies	with tomatoes	
3.1	Introduction	106
3.2	Dataset preparation	109
3.2.1	Sample collection	109
3.2.2	Image acquisition	109
3.2.2.1	Channel selection and thresholding for image isolation	112
3.3	TomNet-CNN model for species and maturity stage classification of tomatoes	113
3.3.1	Hyperparameter optimization of the TomNet model	116
3.4	Results and Discussions	116
3.4.1	Model validation	119
3.4.2	Performance evaluation against confusion matrix	120
3.4.3	Cohen kappa coefficient score	123
3.4.4	Receiver operating characteristics (ROC) curve	123
3.4.5	Comparative analysis	124
3.4.6	GUI presentation	126
3.5	Conclusion	120
5.5	References	128
		120
_	r 4: Species and maturity grading of fruits – Case study	132
with ba	nana	
4.1	Introduction	132
4.2	Dataset preparation	136
4.2.1	Sample collection	136
4.2.2	Image acquisition	136
4.2.2.1	Channel selection and thresholding for image isolation	137
4.3	CNN model for species and maturity stage classification of bananas	138
4.3.1	Hyperparameter optimization	141
4.4	Results and Discussions	141
4.4.1	Model validation	144
4.4.2	Performance evaluation against confusion matrix	148
4.4.3	Cohen kappa score	151
4.4.4	Receiver operating characteristics (ROC) curve	151
4.4.5	Comparative analysis	153
4.4.6	GUI presentation	155
4.5	Conclusion	156
	References	157
Chanta	r 5: Plant leaf disease detection – Case study with tomato	160
leaves	5. Frant real disease detection Case study with tomato	
5.1	Introduction	160
5.2	MobileNetV2 model for tomato leaf disease detection	163
5.2.1	Dataset preparation	163
5.2.2	MobileNetV2 classification model development	165
5.2.3	Hyperparameter optimization using Modified GWO	105
5.2.5	Results and discussions	170
5.3.1	Model validation	170
J.J.I		1/4

5.3.2	Performance evaluation against confusion matrix	176
5.3.3	Cohen Kappa score	178
5.3.4	Receiving operating characteristic (ROC) curve	179
5.3.5	Comparative analysis	180
5.3.6	GUI representation	182
5.5	Conclusion	184
	References	185
Chant	er 6. Concluding Remarks	188

188
190
192
194
195

List of Figures

Fig. 1.1.	Some major contributions of agro produce towards human health issues and diseases.	12
Fig 1.2.	Working principle of GC-MS.(Courtesy:Gas Chromatography Mass Spectrometry (GCMS) - Shimadzu https://www.shimadzu.eu.com)	14
Fig 1.3.	Working principle of HPLC. (Courtesy:HPLC basics – Principles and parameters – KNAUER https://www.knauer.net > Analytical-HPLC-UHPLC > HPL.)	15
Fig 1.4.	Working principle of NIR spectroscopy.(Courtesy:Why FT- NIR spectroscopy? Brukerhttps://www.bruker.com > ft-nir- spectrometers > what-is.)	16
Fig 1.5.	Working principle of E-nose.(Courtesy:What is Electronic Nose (enose): Working Principle https://www.elprocus.com > electronic-nose-work	17
Fig 1.6.	Working principle of magnetic resonance with chemometrics. (Courtesy:https://www.nibib.nih.gov/science- education/science-topics/magnetic-resonance-imaging-mri)	18
Fig 1.7.	Working principle of chemical sensors.(Courtesy:Chemical sensors and biosensors https://bme.lth.se > Courses > Kemiska_sensorer)	19
Fig.2.1.	UV-Vis spectroscopy for the (a) kalmegh (b) Neem and (c) Tulsi leaves. The labeling of peaks as 1, 2 and 3 in the graph indicate the concentrations of Chlorophyll a, Chlorophyll b and Carotenoids.	61
Fig. 2.2.	The imaging chamber i) imaging mode and ii) loading mode	63
Fig.2.3.	Leaf isolation process; (a) capturing multiple images, (b) laying bounding boxes around each leaf and (c) isolated leaf images.	65
Fig. 2.4:	Schematic representation of CNN used for medicinal plant leaf species and maturity classification.	69
Fig. 2.5.	Schematic representation of the BPSO algorithm.	81
Fig. 2.6.	Confusion matrix for binary classification	82
Fig. 2.7.	Convergence plot for BPSO	85
Fig. 2.8.	Examples of feature extracted in different layers of CNN	88

Fig.2.9.	Model validation plots for (i) plots with entire training and validation set, (ii) loss plots for individual species and (iii) accuracy plots for individual species.	90
Fig. 2.10.	Confusion matrix [31] for leaf species classification and maturity classification for individual leaf species. The maturity stages premature, mature and over-mature have been abbreviated as PM, M and OM, respectively.	91
Fig. 2.11.	ROC curves of classification of (a) species and maturity stages for (b) neem, (c) tulsi and (d) kalmegh leaves.	96
Fig. 2.12.	Screenshot of GUI windows corresponding to the medicinal leaf (a) species and (b) maturity identification for the unknown samples.	100
Fig. 3.1.	Examples tomato isolation and background subtraction output	111
Fig. 3.2.	Color channel dynamics for tomato images	112
Fig. 3.3.	Schematic representation of TomNet architecture	113
Fig. 3.4.	Visualizing the output of TomNet model	115
Fig. 3.5.	Convergence plot for GWO optimization	117
Fig. 3.6.	TomNet validation using (a) accuracy and (b) loss plots.	119
Fig. 3.7.	Confusion matrix for tomato species and maturity stage classification using TomNet	121
Fig. 3.8.	ROC-AUC for different classification tasks usingTomNet	124
Fig. 3.9.	GUI windows corresponding to the tomato class and maturity identification for any unknown sample identified as (a) premature pear (b) mature pear (c) overmature pear (d) premature roma (e) mature roma and (f) overmatureroma.	127
Fig. 4.1.	Examples \of isolated and background subtracted banana images	137
Fig. 4.2.	Color channel dynamics for (a) Martaman and (b) Singapori banana	138
Fig. 4.3.	Schematic representation of multi-channel CNN for banana species and maturity stage classification.	139
Fig. 4.4.	<i>Convergence plot for (a) BPSO,(b) GWO and (c) modified GWO optimizer</i>	142
Fig. 4.5.	Visual representation of feature extractions from different CNN layers	144
Fig. 4.6.	Model validation for testing and validation set using accuracy and loss values	145

Fig. 4.7.	Confusion matrix for species and maturity stage classification	148
Fig. 4.8.	The ROC and ROC-AUC for (a) species classifier channel and maturity stage classifier channel for (b) Singapuri and (c) Martaman.	152
Fig. 4.9.	GUI windows corresponding to the banana class and maturity identification for any unknown sample identified as (a) premature martaman (b) over-mature martaman (c) pre-mature singapori and (d) mature singapori.	156
Fig. 5.1.	Examples of tomato leaf diseases from Plant Village database	161
Fig. 5.2.	Color channel separations for diseased leaves with (a) early blight and (b) target spot diseases.	164
Fig. 5.3.	Split in convolutional block(a) standard convolution filters (b) depth- wise and (c) point-wise convolution filters.	166
Fig. 5.4.	The MobileNet V2 architecture used for tomato leaf disease classification.	168
Fig. 5.5.	Leaf disease classification using MobileNet V2 architecture (a) layered architecture and (b) classification operation.	169
Fig. 5.6.	Convergence curve for modified GWO optimization	171
Fig. 5.7.	Feature extraction by MobileV2 (a) layers and (b) images extracted from layers	171
Fig. 5.8.	Model validation plots for (a) accuracy and (b) loss.	175
Fig. 5.9.	The confusion matrix for the optimized MobileNetV2 classifier for test dataset (BS,EB,LB,LM,SLS,SM, TS and HL indicates bacterial spot, early blight, late blight, leaf mold, Septoria leaf spot, spider mites, target spot and healthy leaves, respectively)	177
Fig. 5.10.	ROC curves and ROC-AUC values for different classes resulted by optimized MobileNetV2 classifier.	179
Fig. 5.11.	GUI windows corresponding to the tomato leaf disease identification for any unknown sample identified as (a) Healthy leaf (b) Bacterial spot (c) Early blight (d) Late blight (e) Leaf mold (f) Septoria leaf spot (g) Spider mites and (h) Target spot.	183

List of Tables

Table 1.1	A literature review	20
Table 1.2	A literature review for application of computer vision	39
Table 2.1	Some of the reported techniques for detection of species and maturity for medicinal plant leaves.	58
Table 2.2	Leaf isolation algorithm	64
Table 2.3	Comparative study between the PSO and GWO.	70
Table 2.4	Descriptions of the respective metrics	72
Table 2.5	The hyperparameter coding for BPSO algorithm	80
Table 2.6	Performance evaluation metrics derived from confusion metrics	83
Table 2.7	Optimized hyperparameter settings of CNN	86
Table 2.8	Results of 10-fold cross validation	88
Table 2.9	Performance evaluation for leaf species classification	92
Table 2.10	Performance evaluation for maturity stage classification	92
Table 2.11	Evaluation of Cohen Kappa score for Leaf species classifier and Maturity classifier	95
Table 2.12	Performance comparison of presented CNN model with other classifiers	97
Table 3.1	Some of the reported techniques for automatic grading of tomatoes	107
Table 3.2	Tomato and banana image isolation algorithm	110
Table 3.3	TomNet layer dynamics	114
Table 3.4	Hyperparameter settings of TomNet	117
Table 3.5	10-fold cross-validation results for TomNet model	120
Table 3.6	TomNet performance evaluation using metrics of confusion matrix	122
Table 3.7	Cohen kappa scores for TomNet	123
Table 3.8	Comparative performance evaluation of TomNet	125

Table 4.1	Some of the reported techniques for automatic grading of bananas	133
Table 4.2	Multi-channel CNN layer dynamics (Common layer presentation for both the channels)	140
Table 4.3	Hyperparameter settings of multichannel CNN	142
Table 4.4	10-fold cross-validation results for species classification	146
Table 4.5	10-fold cross-validation results for maturity classification	147
Table 4.6	Classification performance of species classifier channel	149
Table 4.7	Classification performance of maturity stage classifier channel	149
Table 4.8	Cohen Kappa scores for different channels	151
Table 4.9	Performance comparison of presented model	153
Table 5.1	Some of the reported techniques for automatic grading of bananas	161
Table 5.2	MobileNet V2 optimized parameter settings	172
Table 5.3	Results of 10-fold cross validation	175
Table 5.4	Classification performance by MobileNet V2 architecture	177
Table 5.5	Cohen Kappa score for tomato leaf disease classifier	179
Table 5.6	Performance comparison of presented model	180

List of Abbreviation

R&D	Research and Development
GC	Gas Chromatography
HPLC	High Performance Liquid Chromatography
NIRS	Near Infra-RedSpectrography
SVM	Support Vector Machine
PCA	Principal Component Analysis
LDA	Linear Discriminant Analysis
MRI	Magnetic Resonance Imaging
РН	Potential of Hydrogen
LBP	Local Binary Pattern
KNN	K Nearest Neighbors Algorithm
GA	Genetic Algorithm
CNN	Convolutional Neural Network
NMR	Nuclear Magnetic Resonance
ANN	Artificial Neural Network
PNN	Probabilistic Neural Network
BPNN	Back Propagation Neural Network

RGB	Red Green Blue
HSV	Hue Saturaion Value
SWNIR	Short Wave Near Infra Red
VIS NIR	Visible Near Infra Red
R- CNN	Region Convolutional Neural Networks
LBPH	Local Binary Pattern Histogram
ResNet	Residual Network
BNN	Binarized Neural Network
DNN	Deep Neural Network
VGGNET	Visual Geometry Group
DBN	Deep Belief Network
RNN	Recurrent Neural Network
RNTN	Recursive Neural Tensor Network
GWO	Grey wolf Optimization
GLCM	Grey Level Co-occurrence Matrix
PSO	Particle Swarm Optimization
NN	Neural Network
ReLU	Rectified Linear Unit
UV VIS	Ultra Violet Visible Spectroscopy
BPSO	Binary Particle Swarm Optimisation

ТР	True Positive
TN	True Negetive
FP	False Positive
FN	False Negetive
ROC	Receiver Operating Characteristics
TPR	True Positive Rate
FPR	False Positive Rate
AUC	Area Under the curve
C_cost	Computational cost
D_C_cost	Depth wise cost
CR	Depth wise convolution cost
MSE	Mean Square Error
OS	Operating system

CHAPTER 1 INTRODUCTION AND SCOPE OF THE THESIS

1.1. Introduction

We are familiar to many varieties of agricultural products in our day to day lives. The conventional agro produces bear extensive impacts as the food item that provide the varying degree of food as well as medicinal values. These cultivars provide good immunity and nutrition as being edible along natural healing power for many diseases. There are some types of plants among the agro products which show strong therapeutic effects towards remedies of chronic diseases and are generally treated as the medicinal plants. The plants such as the Neem, Tulsi, Kalmegh, Basaka, Turmeric, Ginger, Sarpagandha, and many more such medicinal leaves are extensively used to cure number of common ailments of human beings. They are integral part of a popular alternative medicinal approach called Ayurveda which is originated in India but popular across the world [1] from the ancient age of human civilization. Blood pressure, digestion disorders, blood purification, different skin diseases and many other chronic diseases including cancer are being treated using medicinal plants. The biochemical composition varies from one medicinal leaf to another. For instance Andrographolide is the major constituent of *Kalmegh* and contributes towards the treatment of diseases like respiratory tract infection [2]. The constituents oleanolic acid, ursolicacid, rosemarinic acid, eugenol, carvacrol, linalool, *βcaryophyllene* and β -*element* [3] are found in *Tulsi* as adaptogen. Presence of several chemicals like nimbin, nimbini and nimbidin [4] in the Neem leaves renders its' antiviral, antibacterial, antifungal and anthelmintic properties. The amount of bio-chemicals present in the medicinal

plants plays the significant role in remedies of different diseases and varies with the maturity of leaves.

Like medicinal plants, the fruits such as tomato or banana are also major contributors of human health. Banana fruit is most popular among different fruits due to its world-wide availability. It contributes nearly 15% of the food production market [5] .Banana contains the high fiber which is responsible for improvement of the human digestive system. Moreover it also contain the minerals like *potassium, calcium, magnesium, manganese, iron, folate, niacin, riboflabin* and *B6*.These nutrients have the high impacts in maintaining overall body function [5].Some significant contribution of the banana fruits are keeping the good heart health, controlling blood pressure, fighting anemia and making ease in the overall digestion. All the nutrients present in banana and food values vary with different stages of maturity.

Like banana, tomato is also another popular and much widely consumed fruit. It contains the high amount of fiber along with *vitamin A* and *C* which contributes to the medicinal values [6]. Some of the important contributions of this fruit includes remedial potential for diseases like reducing risk of cancer, osteoporosis and other cardiovascular diseases [7], *Lycopane* [8] is the chemical compound present in tomato which renders the anticancer and antioxidant properties. Like medicinal leaves and bananas the nutritional values of tomato also varies depending on the species and maturity stages.

Despite several advantages the agro produces are also susceptible to damage due to different plant diseases. For instance, the leaf diseases in tomato are quite common and incur huge agricultural and economic loss. There are different diseases and each type of disease have different impacts. The diseases are mostly caused due to the fungal and bacterial organisms [9]. At the same time some of the plant diseases can spread from one plant to the other quickly which raise the need of early detection of plant diseases. Some of the major impacts of bioactive properties of agro produces in human life can be shown in Fig. 1.1.

The need of identification of species, maturity stages and diseases in the agro produces remain as utmost important tasks in agricultural and economic growth of any country. All these tasks are commonly performed manually by human experts however such manual operations are limited by high time consumption, subjective assessment and invasive in nature. Thus automated identification, classification and prediction operations becomes an impactful R&D field [10][11].This thesis explores the scope of the such automation in these three directions; i) identification of species and maturity stages for medicinal plants, ii) identification of species and maturity stages for fruits and vegetables and iii) early detection of plant diseases.

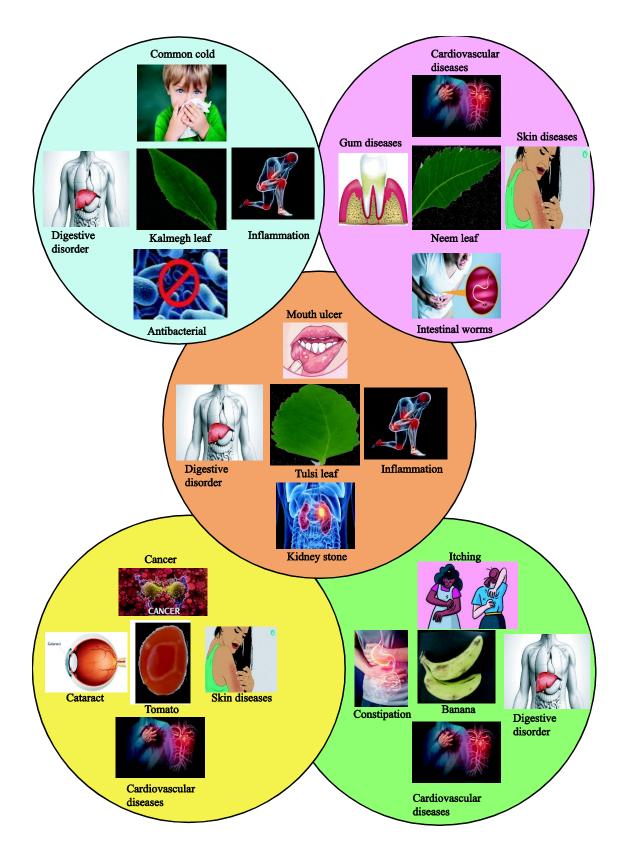


Fig. 1.1: Some major contributions of agro produce towards human health issues and diseases.

1.2 Conventional methodologies for agro produce grading

The grading and sorting of agro produces is an important task. It includes different identification, classification and prediction operation like detecting species and maturity stage since these two characteristics highly govern the medicinal and food values. Different analytical and instrumental methods are adopted for such grading apart from grading by human experts. Methods like gas chromatography (GC), high performance liquid chromatography (HPLC), near infra-red spectrography (NIRS) are some of the popular techniques involved in this regard. Instrumental approach based on electronic nose and tongue, magnetic resonance in combination with chemometric method, optical method like absorption and detection property like Raman spectroscopy and NIR spectroscopy have as well been used. These fundamental operational principles of these methods have been discussed in the following sections.

1.2.1 Gas chromatography-mass spectroscope (GC-MS)

GC-MS, as shown in Fig.1.2 consists of two parts the gas chromatograph and mass spectrometer. It is a scientific diagnosis technique to detect special type of the compounds responsible for the plant growth called *phytochemicals*. This also attributes to the medicinal value of plants. The presence of bioactive in the plant renders the medicinal feature to the plant. The main objective of the GC-MS is to identify the unknown compounds from the permanent gas.

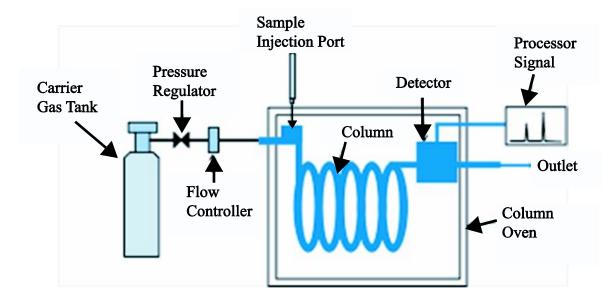


Fig 1.2. *Working principle of GC-MS.(Courtesy:Gas Chromatography Mass Spectrometry (GCMS) - Shimadzu /https://www.shimadzu.eu.com)*

1.2.2. High performance liquid chromatography(HPLC)

HPLC process is carried out in order to separate the compounds that are present in the sample and can be dissolved in liquid in trace concentration. HPLC process involves pumping the sample mixture or the analyte in a solvent under high pressure. Plant hormones regulate the overall growth of plant. The plant hormones are generally determined by application of HPLC techniques. The exact quantification of the hormones can be assessed by the reverse phase liquid chromatography. The basic principle of the HPLC, as shown in Fig.1.3 is dependent on the fact that some of the molecules move slowly compared to the rest of the molecules present in the chromatography column. This brings about the attraction force between the mobile phase (liquid and gases) with the solid phase (solid or liquid). The molecules experiencing more attraction force with the stationary phase take more time to pass through the column and vice versa.

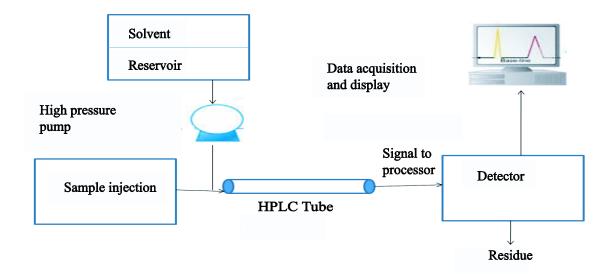


Fig 1.3. Working principle of HPLC. (Courtesy: <u>C:\Users\bwu\Downloads\ HPLC basics - Principles</u> and parameters - KNAUER https:\www.knauer.net > Analytical-HPLC-UHPLC > HPL.)HPLC basics -Principles and parameters - KNAUERhttps://www.knauer.net > Analytical-HPLC-UHPLC > HPL.)

1.2.3. Near infrared spectroscopy (NIR)

NIR is a popular technique involved in estimating the macro and micro nutrients present in the leaf tissues. NIR spectroscopy, as shown in Fig. 1.4, within the spectral range 780 to 2500 nm provides the intricacies of the information related to the vibration features as a result of the combinations of bond. It is often preferred over other instrumental methods for nondestructive, inexpensive and faster execution properties. The chemicals as well as the physical compositions of the substances under study can be revealed by means of typical patterns formed under the NIR spectra.

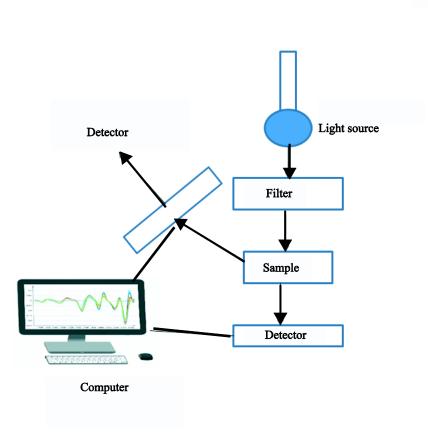


Fig 1.4. Working principle of NIR spectroscopy.(Courtesy: Why FT-NIR spectroscopy? | Brukerhttps://www.bruker.com > ft-nir-spectrometers > what-is.)

1.2.4 Electronic nose (E-nose)

Electronic nose, as shown in Fig. 1.5 is a device to monitor the volatile production of maturity states with the help of different metal oxide sensors. With the help of different computational methods like principle component analysis (PCA) and linear discriminant analysis (LDA). E-nose can perform food grading efficiently.

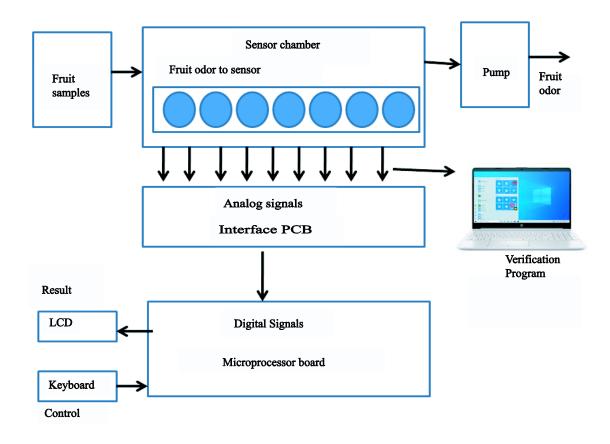


Fig 1.5. Working principle of E-nose.(Courtesy:<u>C:\Users\bwu\Downloads\ What is Electronic Nose</u> (enose): Working Principle https:\www.elprocus.com > electronic-nose-workWhat is Electronic Nose (enose): Working Principle https://www.elprocus.com > electronic-nose-work

1.2.5 Magnetic resonance with chemometrics

MRI system is made up of the permanent magnet fitted with the radio frequency coils. MRI system as shown in Fig. 1.6 is used to recognize the physio chemical changes in agro produces. The grading is performed using the magnetic resonance images of different grades with the help of qualitative and quantitative image analysis methods. Chemometrics involves the mathematical, statistical and other methods to design the optimal measurement procedure to provide the pertinent chemical information. This is also a nondestructive approach.

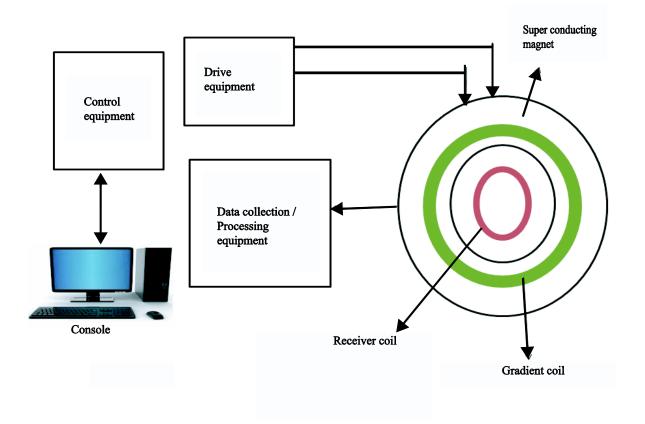


Fig1.6.Working principle of magnetic resonance with chemometrics. (Courtesy:https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri)

1.2.6. Chemical sensors

Chemical sensors, as shown in Fig. 1.7 convert the physical and chemical properties of analytes into measurable signals having the magnitude equivalent to the concentration of the subjected analytes. These work on sugar contents, PH, ethylene emission and absorption detection. There are two distinct components in chemical sensors; receptors and transducers. The receptor comes directly in contact with the analyte. Some of the receptors are active in bringing about the chemical reactions and some others single out the specific molecules. Chemical sensors based on

the carbon nanostructure composites are used to assess the ripeness of tomato fruit. The change in the conductance and capacitance of the nanocomposite sensors are measured.

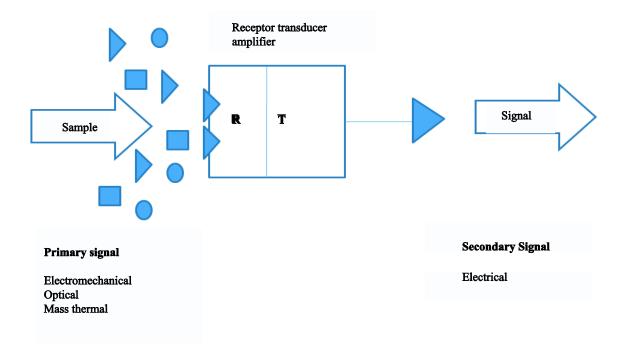


Fig 1.7. Working principle of chemical sensors.(Courtesy:Chemical sensors and biosensors https://bme.lth.se > Courses > Kemiska_sensorer)

1.3 Literature survey

Table 1.1 consolidates literature survey on some of the major applications of the previously stated instrumental and analytical techniques in quality grading of agro produces.

Applications	Working	Data analysis	Remarks	Ref
	Principle	technique		
Recognizes	Statistical features	Feeding of	Leaves are fragile	[12]
different plant	obtained from the	Statistical features	and prone to	
species.	digital images	to the neuro fuzzy	different	
		classifier.	environmental and	
			biological factors.	
			The procedure has	
			been extended to	
			address the small	
			deformation.	
Leaf shape ,	The plant leaf is	The binary particle	Out of the many	[13]
color and texture	identified based on	swarm	machine learning	
has been	GIST and local	optimization	approaches applied,	
analyzed	binary pattern.	technique as	the decision tree has	
		feature reduction	got the better	
		techniques.	performance	
Recognition of	Morphological	Use of KNN,	The performance of	[14]
the plant leaves	features like	decision tree and	classification has	
and species.	centroid, major axis,	multilayer	been enhanced by	
	minor axis ,	perception	using the SVM with	
	perimeter , solidity ,	classifier on the	adaptive boosting	
	orientation	open source data	techniques.	

Table 1.1. A literature review

		set FLAVIA	
Classifying the	Association rule	Use of the niching	The improved GA [15]
documents into	mining techniques for	memticalgorithm	algorithm contains
predefined	correlation of the	and the genetic	rules inspired by the
categories	relationships among a	algorithm in	natural genetic
according to	large set of data	hybridmode.	populations to
their contents	items.		evaluate the
			problems.
Reviews the	The bio organic	Assessment of the	Tulsi leaves show [16]
therapeutic uses	constituents shows	anti inflamatory	the excellent
of tulsi plant	the antioxidant, anti	activities by using	parricidal activities.
and its	atherogenic, anti-	phyto chemical	
application in	aging ,anti-	constituents .	
curing the	inflammatory, antis		
diseases like	tress and		
cold, cough,	antihelmintic		
malaria, dengue			
etc.			
Evaluation of the	Origin, distribution,	Assessment of the	The sharp decline in [17]
medicinal	plant botany,	1	the availability of
qualities of		bioactivesand	the drugs to the
0 1	edaphic and climatic		different medicine
leaves	requirements,	properties due to	
	planting geometry,	continuous	escalation of price is
	nutrient	application of	
	management,	manures and better	
	irrigation	irrigation system.	from wide sources
	management, disease		without paying any
	and weed		attention towards the
	management,		study.
	maturity and harvest		

	period.			
Determination of	Implementation of	The CNN based	All the soybean [18]	
the leaf based	the multi feature	algorithm with	leaves were taken	
identification	combined systems on	fine-tuned	from each respective	
of soybean plant	the basis of multiple	Xception network	growth period of the	
leaf cultivars	leaf morphological	for the	plant.	
	features like shape,	classification		
	texture and venation.	purpose.		
Detection of the	Use of the low field	Determination of	The sensitivity of [19]	
water deficiency	NMR (nuclear	mild water stress	NMR was affected	
in the leaf	magnetic resonance)	by nitrogen rate in	by the stage of	
towards	relaxometry as the	shoots and amino	development of the	
assessment of the	development marker	acids	leaves. The impact	
draught as the	on the NMR		of water was	
abiotic stresss in	relaxation spectra.		assessed on two	
the leaves of			different ranks of	
plants.			leaves.	
Identification of	Treatment of the leaf	The histogram of	The acquired image [20]	
Indian medicinal	characteristics like	the color and edge	characteristics	
plants on the	leaf color, area and	for identifying	obtained through the	
basis of leaf	edge features as the	different medicinal	experiment were	
characteristics	characteristic	plants.	finally compared	
with the	features.		against the features	
medicinal plants			of the images from	
like Hibiscus,			the image database	
Betle, Ocimum,			for identification	
Leucas, Vinca,			purpose.	
Murraya,				
Centella, Ruta				
and Mentha.				

.			
	Neural network based	_	-
different	approach like		•
techniques for	artificial neural	image and contour	different. The most
the classification	network(ANN),	extraction and	challenging part is to
and recognition	Probabilistic neutral	refinements as	extract the
of plant leaves	network(PNN),	edge recognition	distinctive features
	Convolutional neural	by means of the	of the leaves by
	network(CNN),K	Suzuki algorithm.	many statistical
	nearest		means.
	neighbor(KNN) and		
	support vector		
	machine (SVM) and		
	other combined		
	techniques.		
To classify the	The morphological	The classification	The speed of the live [22]
plants by means	features of the leaf	of plant leaves on	segmentation
of images	like aspect ratio,	the basis of	algorithm can be
captured by	rectangularity,	nearest neighbor	optimized in order to
mobile phones.	convex area ratio,	distance of the	enhance the
	convex perimeter	query leaf features	usability.
	ratio, sphericity and	from the median	
	circularly,	features of each	
	eccentricity, form	species in the	
	factor, regional	training set.	
	moments of inertia		
	and angle code		
	histogram.		
To identify the	Recognition of the	Deeplearning	The multiscale [23]
-	plant leaves by means	based techniques	learning process has
automatically by		-	been adopted which

using the deep	CNNarchitecturegoog	Flaviadataset.	deforms several	
learning	lenet		sizes by using the	
approach.			maximum and	
			minimum sizes. The	
			over fitting	
			phenomena can be	
			tackled by engaging	
			the less learning	
			data.	
To assess the	Assessment of the	Use of the	The TSS and	[24]
internal quality	chromaticity values	external visual	lycopene component	
of the tomato	by means of the	colors for the	of the tomato were	
fruit in order to	image processing by	classification of	squeezed out from	
show the	engaging the	tomatoes of three	the slurry of cut off	
beneficial aspect	calorimeter.	sorted classes	portion of the	
of the		mature , green	tomato fruit.	
chromacity		intermediate and		
values and		advanced		
lycopane		including six		
contents of the		ripeness stages		
tomato towards				
the maturity				
based				
classification.				
To detect the	The computer vision	Use of the	The average hue	[25]
tomato maturity	based towards the	classifier BPNN	values of the sub	
stages by means	determination of	for reaching to the	region were	
of computer	maturity of tomato	classified status of	extracted as the	
vision.	based on the color	the tomato on the	feature color values	
	features extracted	basis of colour	for distinction	
	from number of	features	between different	

Chapter 1: Introduction and scope of the thesis

	concentric circles		tomato fruits.
	from the surface of		
	tomato.		
Extraction of	Color mapping	Use of both the	Multiple methods [26]
different features	method and	external features	are available for the
of fruits like	Montecarlo method	and internal	extraction of
color, size	followed by the	features such as	features which are
,volume shape	Curvlet and gabor	aroma, test flavor,	also dependent on
and textures.	wavelet transform for	sweetness etc for	the factors
	extraction of the	extraction of	concerned.
	texture features	features	
	along with discrete		
	wavelet, fourier		
	transform, scale		
	space, chain code and		
	clustering methods .		
To develop the	machine vision and	Use of the physical	The experimental [27]
model for	the artificial neural	parameters like	setup used the
automatic	network model based	size, color and	shorter number of
grading of the	classification system	external defects	parameters for
apple fruit.	along with the back	for apple	achieving the shorter
	propagation ANN	classification	calculation time and
	classifier.	purpose. Two	with lower
		categories of the	prediction error.
		parameters	
		surface level apple	
		quality and quality	
		of apple are	
		evident.	
To detect the	The back propagation	The feature	Three distinct [28]
fresh tomato	neural network	extraction based	maturity levels were

using computer	basedclassification	on the maximum	marked as the green,	
vision.	techniques based on	inscribed circle on	-orange and red	
	the feature color	the surface of	tomatoes of two	
	values of two types of	tomato and area	distinct species roma	
	tomatoes roma and	followed by the	and pear.	
	pear.	subdivision into		
		five concentric		
		circles with color		
		feature value in		
		terms of hue color.		
To evaluate the	The electronic nose	The LDA and	The PCA and LDA	[29]
tomato maturity	device PEN2 fitted	PCA techniques in	techniques have	
state by means of	with ten different	order to assess	been studied in order	
sensing the	arrays for detection	different ripening	to validate the	
volatile	of different ripening	stages of	differences among	
production of	stages of tomato.	tomatoes.	different maturity	
ripeness states by			stages of tomato.	
a specific				
electronic node				
devises.				
To evaluate the	The assessment of the	The physiological	Water portion	[30]
tomato maturity	density of water	changes of	relaxation behavior	
state using the	contents in various	tomatoes in their	is sensitive to the	
magnetic	maturity stage of	different maturity	local environment	
resonance	tomato for assessing	stages captured	and the material	
imaging	the maturity stages by	through the MR	structure and thus	
	subjecting the	images.	used	
	information to the			
	MRI system.			
Determination of	Raman spectroscopy	The assessment of	The Raman peaks	[31]
the maturity by	of the spatially offset	the change of	corresponding to the	

means of the spectra studied in the Raman peak by carotenoids specified wavelength means of spectral hasshown up along with the shift of the the Raman maturity of the divergence(SID).T peaks has been spectroscopy. tomato fruit. racking of the SID observed. spectroscopy. tomato fruit. To estimate the Near infrared The mature green, The bio yield force [32] maturity of spectroscopy to pink and red obtained from the tomato and to assess the maturity colored tomatoes puncture test shows predict the level of momotaro. subjected to the that normalization textural The PCA and Soft treatment for the pretreated spectra assessment of the lying between 1100 tomato species modeling of class textural properties of independent assessment of the tomato by analogy concept for of the tomato by highest correlation means of the correlation textural different maturities partial least square spectroscopy techniques. Nondestructive The handheld The whole fruit The initial [33] approach spectrometer interactance concentration of towards to assess the maturity measurement chlorophyll and the determination of of tomatoes along carried out on the statistical model with the Statistical model and calibrated and The NIR wisible and near validated to carry out measurement infrared the operation.				
approach through the Raman maturityrange for selection of informationinformation divergence(SID).T peaks has been spectroscopy.with the shift of the peaks has been spectroscopy.To estimate the tomato and to tomato and to assess the maturityrinfrared of the tomato fruit.The mature green, pink and red colored tomatoes puncture test shows puncture test shows predict the level of momotaro.The mature green, subjected to the treatment for the pertreated spectra assessment of the lying between 1100 tomato species modeling of class textural propertiesThe NCA and Soft treatment for the partial least square profice to the different maturities partial least square regression techniques.The initial [33] approachNondestructive towards to assess the maturityThe whole fruit means of of tomatoes along carried out on the tomato speciesThe handheldThe whole fruit tomato species regression techniques.Nondestructive towardsThe handheldThe whole fruit measurement calcorphyll and the distright out on the spectrometerThe whole fruit interactance carried out on the ripening in tomatoes are completely variety dependent.help of hand held calibrated and nearNonde fruit the operation.The measurement calibrated andThe measurement calibrated andhelp of hand held calibrated and nearNonde fruit the operation.The measurement calibrated andThe measurement follows the same	means of the	spectra studied in the	Raman peak by	carotenoids
the Raman maturity of the divergence(SID).T peaks has been spectroscopy. tomato fruit. racking of the SID observed. values with the gradual ripening of the tomato fruit. To estimate the Near infrared The mature green, The bio yield force [32] maturity of spectroscopy to pink and red obtained from the tomato and to assess the maturity colored tomatoes puncture test shows predict the level of momotaro. subjected to the that normalization textural The PCA and Soft treatment for the pretreated spectra properties of independent assessment of the lying between 1100 tomato species modeling of class textural properties – 1800 nm has the momotaro by analogy concept for of the tomato by highest correlation means of he near distinguishing among means of the coefficient value. infra-red different maturities partial least square spectroscopy The handheld The whole fruit The initial [33] approach spectrometer interactance concentration of towards to assess the maturity measurement chlorophyll and the determination of of tomatoes along carried out on the ripening in tomatoes along carried out on the the maturity of with the NIR based green tomatoes are completely tomato with the statistical model the operation. The NIR visible and near validated to carry out infrared the operation. follows the same	nondestructive	specified wavelength	means of spectral	hasshown up along
spectroscopy. tomato fruit. racking of the SID observed. values with the gradual ripening of the tomato fruit. To estimate the Near infrared The mature green, The bio yield force [32] maturity of spectroscopy to pink and red obtained from the tomato and to assess the maturity colored tomatoes puncture test shows predict the level of momotaro. subjected to the that normalization textural The PCA and Soft treatment for the pretreated spectra assessment of the lying between 1100 tomato species modeling of class textural properties – 1800 nm has the momotaro by analogy concept for of the tomato by highest correlation means of the near distinguishing among means of the coefficient value. infra-red different maturities partial least square spectroscopy to assess the maturity measurement chlorophyll and the determination of of tomatoes along carried out on the ripening in tomatoes the maturity of with the NIR based green tomatoes are completely tomato with the statistical model to carry out infrared and near validated to carry out infrared and near validated to carry out infrared infrared and searce in the operation.	approach through	range for selection of	information	with the shift of the
values with the gradual ripening of the tomato fruit. To estimate the Near infrared The mature green, The bio yield force [32] maturity of spectroscopy to pink and red obtained from the tomato and to assess the maturity colored tomatoes puncture test shows predict the level of momotaro. subjected to the that normalization textural The PCA and Soft treatment for the pretreated spectra properties of independent assessment of the lying between 1100 tomato species modeling of class textural properties – 1800 nm has the momotaro by analogy concept for of the tomato by highest correlation means of he near distinguishing among means of the coefficient value. infra-red different maturities partial least square spectroscopy to assess the maturity measurement chlorophyll and the determination of of tomatoes along carried out on the the maturity of with the NIR based green tomatoes are completely tomato with the statistical model The will the NIR help of hand held calibrated and The NIR visible and near validated to carry out measurement infrared the operation.	the Raman	maturity of the	divergence(SID).T	peaks has been
gradual of the tomato furit.ripening of the tomato furit.To estimate the maturity of spectroscopy to pedict the level of momotaro.The mature green, pink and red obtained from the puncture test shows puncture test shows[32]maturity tomato and to assess the maturity colored tomatoes predict the level of momotaro.subjected to the subjected to the treatment for the pretreated spectra properties of independentmeans of the independentjuing between 1100 independenttomato species momotaro means of he near infra-red infra-redmeans of the different maturities partial least square regression techniques.The initial [33]Nondestructive towardsThe handheldThe whole fruit measurementThe initial [33]approach the maturityspectrose along of tomatoes along with the NIR based infra-redThe NIR measurementinteractance interactanceNondestructive the maturity of with the NIR based interactancemeasurement interactancechlorophyll and the ipening in tomatoes are completelythe maturity of tomato with the visible and near visible and nearvalidated to carry out validated to carry outThe measurement infra-redThe NIR measurement	spectroscopy.	tomato fruit.	racking of the SID	observed.
of the tomato fruit.To estimate theNearinfraredThe mature green, pink and redThe bio yield force [32]maturityof spectroscopytopink and redobtained from the obtained from the tomato and to assess the maturitycolored tomatoes puncture test showspredictthelevel of momotaro. subjected to the independenttreatment for the assessment of the lying between 1100tomatospeciesmodelingof class textural properties– 1800 nm has the highest correlation coefficient value.infra-reddifferent maturities partial least squarepartial least squarespectroscopyThe handheldThe whole fruit regression techniques.The initial [33]approachspectrometer interactanceinteractance concentrationconcentration of tomatoes are concentration of towardsthe maturity of with the NIR based wisible and near validated to carry out infraredmeasurement the operation.The measurement tolorow the same			values with the	
To estimate theNearinfraredThe mature green, pinkThe bio yield force[32]maturityofspectroscopytopinkandredobtainedfromthetomatoandtoassessthe maturitycoloredtomatoespuncturetest showspredictthelevel ofmomotaro.subjectedtothethatnormalizationtexturalThe PCA and Softtreatment for thepretreatedspectrapropertiesofindependentassessment of thelying between 1100-tomatospeciesmodelingofclasstextural properties-1800 nm hasthemomotarobyanalogyconcept forofthe tomato byhighestcorrelationcoefficient value.infra-reddifferent maturitiespartial least squareregressioncoefficient value.interactanceconcentrationofspectroscopyregressiontechniques.ThehandheldThe whole fruitTheinitial[33]approachspectrometerinteractanceconcentrationoftomatoesarecompletelytowardstoassess the maturitymeasurementchlorophyll and theripening in tomatoesarecompletelytowardstoassess the maturitymeasurementthetripening in tomatoesarecompletelytowardstoassess the maturitymeasure			gradual ripening	
maturityofspectroscopytopinkandredobtainedfromthetomatoandtoassessthematuritycoloredtomatoespuncturetests showspredictthelevel ofmomotaro.subjectedtothethatnormalizationtexturalThe PCA and Softtreatment for thepretreatedspectrapropertiesofindependentassessment of thelyingbetween 1100tomatospeciesmodelingof classtextural properties– 1800 nm has themomotarobyanalogyconcept forof the tomato byhighestcorrelationmeans of he neardistinguishing amongmeansof thecoefficient value.infra-reddifferent maturitiespartial least squareregressionspectroscopyThehandheldThe whole fruitTheinitial[33]approachspectrometerinteractanceconcentrationoftowardstoassess the maturitymeasurementchlorophyll and thedetermination ofoftomatoesalogcarried out on theripening in tomatoesthematurity ofwith theNIRbasedgreen tomatoesarecompletelytomatovalidated to carry outmeasurementtheNIRmeasurementfollowsthe same			of the tomato fruit.	
tomato and to assess the maturity colored tomatoes puncture test shows predict the level of momotaro. subjected to the that normalization textural The PCA and Soft treatment for the pretreated spectra properties of independent assessment of the lying between 1100 tomato species modeling of class textural properties – 1800 nm has the momotaro by analogy concept for of the tomato by highest correlation means of he near distinguishing among means of the infra-red different maturities partial least square spectroscopy regression techniques. Nondestructive The handheld The whole fruit The initial [33] approach spectrometer interactance concentration of towards to assess the maturity measurement chlorophyll and the determination of of tomatoes along carried out on the ripening in tomatoes the maturity with the NIR based green tomatoes the maturity with the NIR based green tomatoes the maturity of with the NIR based green tomatoes are completely tomato with the statistical model the operation. The NIR wisible and near validated to carry out measurement infrared the operation. follows the same	To estimate the	Near infrared	The mature green,	The bio yield force [32]
predictthelevel of momotaro.subjected to thethat normalizationtexturalThe PCA and Softtreatment for thepretreated spectrapropertiesofindependentassessment of thelying between 1100tomato speciesmodeling of classtextural properties– 1800 nm has themomotarobyanalogy concept forof the tomato byhighest correlationmeans of he neardistinguishing amongmeans of thecoefficient value.infra-reddifferent maturitiespartial least squarespectroscopyregressiontechniques.NondestructiveThehandheldThe whole fruitTheapproachspectrometerinteractanceconcentration oftowardsto assess the maturitymeasurementchlorophyll and thedetermination ofof tomatoes alongcarried out on theripening in tomatoesthe maturity ofwith the NIR basedgreen tomatoesarecompletelytomato with thestatisticalmodelTheNIRhelp of hand heldcalibratedandTheNIRvisible and nearvalidated to carry outmeasurementfollowsthe same	maturity of	spectroscopy to	pink and red	obtained from the
texturalThe PCA and Softtreatment for the retreated spectrapropertiesindependentassessment of the assessment of thelying between 1100tomato speciesmodeling of classtextural properties- 1800 nm has the highest correlationmeans of he neardistinguishing among distinguishing among infra-redof the tomato by partial least squarecoefficient value.spectroscopyregressionregression-NondestructiveThe handheldThe whole fruitThe interactanceThe interactancetowardsto assess the maturity with the NIR basedgreen tomatoes green tomatoesare completelytomato with the statisticalmodel-The measurementhelp of hand held visible and nearvalidated to carry outThe walidated to carry outThe same	tomato and to	assess the maturity	colored tomatoes	puncture test shows
propertiesofindependentassessment of thelying between 1100tomatospeciesmodelingofclasstextural properties–1800 nm has themomotarobyanalogy concept forofthe tomatobyhighestcorrelationmeans of he neardistinguishing amongmeansofthecoefficient value.infra-reddifferent maturitiespartial least squarespectroscopyregressiontechniques.NondestructiveThehandheldThewholefruitapproachspectrometerinteractanceconcentrationoftowardstoassess the maturitymeasurementchlorophyll and thedetermination ofoftomatoesarecompletelytomato with thestatisticalmodelvarietydependent.help of hand heldcalibratedandTheNIRvisible and nearvalidated to carry outmeasurementfollowsthe same	predict the	level of momotaro.	subjected to the	that normalization
tomato species modeling of class textural properties – 1800 nm has the momotaro by analogy concept for of the tomato by highest correlation means of he near distinguishing among means of the coefficient value. infra-red different maturities partial least square spectroscopy regression techniques. Nondestructive The handheld The whole fruit The initial [33] approach spectrometer interactance concentration of towards to assess the maturity measurement chlorophyll and the determination of of tomatoes along carried out on the the maturity of with the NIR based green tomatoes are completely tomato with the statistical model and help of hand held calibrated and the operation. The operation. The operation.	textural	The PCA and Soft	treatment for the	pretreated spectra
momotarobyanalogy concept for distinguishing among distinguishing among means of the partial least squarehighest coefficient value.infra-reddifferent maturities partial least squarepartial least square regression techniques.NondestructiveThe handheldThe whole fruitThe initial [33]approach towardsspectrometer to assess the maturity of tomatoes along the maturity of with the NIR based the statistical modelThe whole fruitThe initial [33]the maturity of tomato with the variety dependent.of to carry out measurementthe ripening in tomatoes are variety dependent.help of hand held visible and near infraredandThe measurement the operation.The measurement follows the same	properties of	independent	assessment of the	lying between 1100
means of he near infra-reddistinguishing among different maturitiesmeans partial least squarecoefficient value.spectroscopyregression techniques.regression techniques.NondestructiveThe spectrometerThe whole fruitThe initial [33]approachspectrometerinteractanceconcentration of to assess the maturityto assess the maturitymeasurementchlorophyll and the ripening in tomatoesthe maturity of tomato with the visible and nearvaried validated to carry outThe measurementinfraredthe operation.TheNIR measurement	tomato species	modeling of class	textural properties	– 1800 nm has the
infra-red spectroscopydifferent maturities regression techniques.partial least square regression techniques.NondestructiveThe handheldThe wholeThe initialImage: Sectrometer (Image: Sectrometer)The interactanceThe concentrationImage: Sectrometer of concentrationImage: Sectrometer of concentrationImage: Sectrometer of concentrationImage: Sectrometer of concentrationImage: Sectrometer of concentrationImage: Sectrometer of concentrationImage: Sectrometer of concentrationImage: Sectrometer concentrationImage: Sectrometer of concentrationImage: Sectrometer concentrationImage: Sectrometer sectrom	momotaro by	analogy concept for	of the tomato by	highest correlation
spectroscopy regression kechniques. Nondestructive The handheld The whole fruit The initial [33] approach spectrometer interactance concentration of towards to assess the maturity measurement chlorophyll and the determination of of tomatoes along carried out on the ripening in tomatoes the <maturity of<="" td=""> with the NIR based green tomatoes are completely tomato with the statistical model The NIR visible and near validated to carry out measurement measurement infrared the operation. follows the same</maturity>	means of he near	distinguishing among	means of the	coefficient value.
NondestructiveThehandheldThewholefruitTheinitial[33]approachspectrometerinteractanceconcentrationoftowardsto assess the maturitymeasurementchlorophyll and thedetermination ofoftomatoesalongcarriedout on thethematurity ofwith theNIR basedgreen tomatoesarecompletelytomato with thestatisticalmodelvarietydependent.help of hand heldcalibratedandTheNIRvisible and nearvalidated to carry outmeasurementfollowsthe same	infra-red	different maturities	partial least square	
NondestructiveThehandheldThewholefruitTheinitial[33]approachspectrometerinteractanceconcentrationoftowardsto assess the maturitymeasurementchlorophyll and thedetermination ofoftomatoesalongcarriedout on thethematurity ofwith theNIR basedgreen tomatoesarecompletelytomatowith thestatisticalmodelvarietydependent.help of hand heldcalibratedandTheNIRvisibleandnearvalidated to carry outmeasurementinfraredthe operation.followsthe same	spectroscopy		regression	
approachspectrometerinteractanceconcentrationoftowardsto assess the maturitymeasurementchlorop+yll and thedetermination ofoftomatoesalongcarried out on theripening in tomatoesthe maturity ofwith the NIR basedgreen tomatoesarecompletelytomato with thestatistical modelvarietydependent.help of hand heldcalibrated andTheNIRvisible and nearvalidated to carry outmeasurementfollowsinfraredthe operation.followsthe same			techniques.	
IfIftowardsto assess the maturitymeasurementchlorophyll and thedetermination ofof tomatoes alongcarried out on theripening in tomatoesthe maturity ofwith the NIR basedgreen tomatoesarecompletelytomato with thestatisticalmodelvarietydependent.help of hand heldcalibratedandTheNIRvisible and nearvalidated to carry outmeasurementfollows the same	Nondestructive	The handheld	The whole fruit	The initial [33]
determination of the maturity ofof tomatoesalong alongcarried out on the green tomatoesripening in tomatoesthe maturity of tomato with the help of hand heldwith the NIR based statistical modelgreen tomatoesare varietycompletelytomato with the help of hand heldcalibrated andandThe measurementNIRvisible and near infraredvalidated to carry out the operation.measurementfollowsthe same	approach	spectrometer	interactance	concentration of
the maturity ofwith the NIR basedgreen tomatoesarecompletelytomato with thestatistical modelvarietydependent.help of hand heldcalibrated andTheNIRvisible and nearvalidated to carry outmeasurementinfraredthe operation.followsthe same	towards	to assess the maturity	measurement	chlorophyll and the
tomato with thestatisticalmodelvarietydependent.help of hand heldcalibratedandTheNIRvisible and nearvalidated to carry outmeasurementinfraredthe operation.followsthe same	determination of	of tomatoes along	carried out on the	ripening in tomatoes
help of hand heldcalibratedandTheNIRvisible and nearvalidated to carry outmeasurementinfraredthe operation.followsthe same	the maturity of	with the NIR based	green tomatoes	are completely
visible and nearvalidated to carry outmeasurementinfraredthe operation.followsthe same	tomato with the	statistical model		variety dependent.
infrared the operation. follows the same	help of hand held	calibrated and		The NIR
1	visible and near	validated to carry out		measurement
instrument. pattern as observed	infrared	the operation.		follows the same
1	instrument.			pattern as observed
in other fruits.				in other fruits.

Image processing	The part of	The application of	The image	[34]
based	matlabsimulink	image processing	processing algorithm	
algorithmic	application to carry	algorithm on the	can be used for other	
approach	out the assessment	tomatoes of	fruits such as apples,	
towards the	for identification	different maturity	citrus fruits and	
identification of	process of the tomato.	grades.	mandarin oranges.	
six different			The exposure of the	
ripening or			greater surface area	
maturity stages			could be done by	
of tomato.			fitting a motor	
			below the platform	
			inorder to rotate the	
			fruit.	
To classify	Conversion of the	The PCA along	The color histogram	[35]
different	color space from the	with the SVM for	of the tomato images	
maturity stages	RGB to HSV	feature extraction	thus formed has	
of tomato by	followed by the PCA	and its analysis.	been subjected to the	
using the multi	application to		PCA plotting.	
class SVM based	generate the feature			
classification	vectors followed by			
approach	the feeding of the			
towards the	feature set to the			
assessment of	multi class SVM			
ripeness.	classifier for			
	identification of			
	proper class.			
To recognize the	Fuzzy rule based	The feature space	Six different	[36]
object as tomato	classification for	has partitioning	ripeness stages have	
fruit and estimate	recognition and	based on the	been detected. The	
the mineness of	classification of the	principles of fuzzy	detection process did	

the fruit in pre	fruit of Red green	logics into the	not interfere in the	
harvest session	color differences	linguistic variables	natural growth of	
by using	followed by the use	with the help of	tomato. The	
automatic rule	of red green color	learning algorithm.	experiment carried	
learning based	ratio for recognition		out also maintained	
decision tree.	and classification		the color integrity	
	purpose.		while segmenting	
			tomato from the	
			background.	
To ascertain the	Use of the chemical	Appointment of	The approach is	[37]
ripeness stages	sensors fabricated by	different sensors	primarily focused on	
of tomato by	depositing the thin	for detection of	the quantitative	
means of	film of composites of	maturity categories	measurement	
chemical sensors	carbon nano tubes,	of tomatoes	avoiding the need of	
based on the	carbon nano coils and		the qualitative visual	
carbon	polyvinyl alcohol for		inspection.	
nanostructure	assessing the changes			
composites.	in the value of			
	conductance and			
	capacitance.			
To evaluate	The hyper spectral	The decrease of	The variation of	[38]
ripeness of	imaging based	the absorption	spectra obtained	
tomato on the	spatially resolved	peak consistently	confirms the clear	
basis of optical	instruments to	with the increase	distinction between	
absorption and	measure the optical	of ripeness	different ripening	
scattering	absorption and	property.	stages of tomatoes.	
properties. The	scattering			
model was	coefficients.			
developed in				
order to find the				

of tomatoes.

To classify the	A conventional	The deep learning	Three different [39]
banana fruits	neural network CNN	approach has been	classes of banana
based on the	model called as the	carried out on	like normal banana,
concept of deep	ConvNets.	kaggle dataset	banana lady finger
learning.		comprising of	and banana red have
		1914 images	been subjected to the
		divided in	model for
		respective training	experimental
		and test set.	purposes.
To determine	The autonomous	Use of the	The results have [40]
multiple ripeness	computer vision	features of banana	been compared with
stages of banana	approach to identify	namely color,	various techniques
by using the	the ripening stages of	development of	like SVM, naïve
artificial neural	banana along with the	brown spots and	Bayes and KNN,
network.	artificial neural	tamara statistical	decision tree and
	network based	texture for the	discriminant
	framework for	classification	analysis classifiers
	classification.	procedure	
To identify the	The maturity	The attributes of	Analysis of variance [41]
maturity stages	assessment based on	banana like mean	between the
of banana fruit	the mean color	color intensity	different maturity
by means of	intensity algorithm	from histogram,	stages plays the
image	and area algorithm.	area, perimeter,	crucial role in
processing		major axis length,	assessment of
techniques		minor axis length	maturity of the fruit.
		extracted from the	
		calibration image	
		of the fruit.	
To predict the	Parallel plate	Use of the	Green ripe banana [42]

quality of banana	capacitor with the	dielectric property	fruit has the greater
during the	sine wave frequency	to assess the	permittivity than the
ripening stage of	generator for quality	quality parameters	full ripe ones. The
the fruit using	prediction.	of banana fruit	relative permittivity
the capacitance		during the ripening	was correlated with
sensing system		period.	the quality
			parameters of
			banana.
To assess the	The prediction	The distinction of	The banana pulp [43]
sugar and starch	accuracy realization	between the	was used instead to
in intact banana	by collecting the	soluble and	get the better results.
and mango fruit	visible short	insoluble forms of	
by SWNIR	wavelength near	carbohydrates	
spectroscopy.	infra-red spectra	using the short	
	using the partial	wave near infrared	
	transmittance optical	spectroscopy	
	geometry.		
To predict the	Visible and near	The	First the VIS/NIR [44]
banana fruit	infrared spectroscopy	chromatography	range was measured
quality using	in reflectance mode	method for	
		1100	followed by the
factors like	for nondestructive		2
	for nondestructive detection of the food	individual sugar	2
pigment content,		individual sugar	application of
pigment content,	detection of the food	individual sugar	application of
pigment content, starch index,	detection of the food chlorophyll and sugar	individual sugar	application of
pigment content, starch index, sugar content	detection of the food chlorophyll and sugar contents. With the	individual sugar	application of
pigment content, starch index, sugar content which are	detection of the food chlorophyll and sugar contents. With the application of partial	individual sugar	application of
pigment content, starch index, sugar content which are accountable for	detection of the food chlorophyll and sugar contents. With the application of partial least square	individual sugar	application of
pigment content, starch index, sugar content which are accountable for maturity	detection of the food chlorophyll and sugar contents. With the application of partial least square regression applied to	individual sugar	application of
pigment content, starch index, sugar content which are accountable for maturity	detection of the food chlorophyll and sugar contents. With the application of partial least square regression applied to auto scaled spectral data.	individual sugar analysis.	application of

classify the herbs	electronic nose The	subjected to the	classifier used was
-	hybrid intelligent	0	
	system involving the		
diseases.	fuzzy inference	three different	C
	system, naïve Baise		
	system, probabilistic	separate enaberren	
	neural network along		
	with SVM		
To develop a	Deep convolution	The CNN	The AlexNet has [46]
recognition	model to recognize		LJ
method for	-	up of three distinct	
cucumber	diseases.	layers for extraction	
diseases using	uiseases.	•	DCNN.
leaf symptom		the segmented	Denn.
images based on		image set.	
deep convolution		inlage set.	
network			
	The model Squeeze	The tomato plant	The study detected [47]
•	Net based on the	-	•
diseases of leaf			•
	C	from the vegetable	
images using	•	crops research	the leaf images.
the SqueezeNet	disease.	institute in	
model.		Lambang for each	
To develop o	The convelution	class.	The images of [49]
1		Neuroph was used	-
-	neural networks	-	diseased leaves
_	(CNN) based model	-	were all collected
and classification	• •	CNN.	by means of the
of maize leaf	0		smart phone based
diseases out of			camera.
the healthy	maize leaf diseases.		

leaves				
To detect the leaf	The CNN based	Classification of the	The average	[49]
diseases of	model to classify the	tomato leaves of	performance of	
tomato fruit by	leaf diseases.	five different	classification is	
means of image		diseases namely	above 95% and the	
processing		bacterial spot, late	system has been	
approach		blight, septoria leaf	proved to be much	
		spot, and tomato	user friendly also.	
		mosaic, yellow		
		curved alongside		
		the healthy leaf		
		based on CNN.		
To identify the	The detection of	Implementation of	Comparison	[50]
different diseases	different diseases and	the ROI align in the	between the	
of tomatoes and	the infected area of	faster R-CNN	different model has	
it's associated	the tomato fruit by	andmask R-CNN	been carried out as	
infected areas	means of the faster R-	architecture in order	has been found that	
based on the	CNN and mask R-	to minimize the	the performance in	
deep	CNN architecture.	equalization error	case of mobile net	
convolutional		and segment out	outweighed that of	
neural networks.		the lesion spots.	the ResNet-101.	
To identify the	The nine layer deep	The process image	The performance of	[51]
plant leaf	CNN model to	flipping, gamma	CNN has been	
diseases using	identify different	correction, noise	compared to the	
the CNN model	diseases of plant	injection, principal	popular model like	
	leaves.	component	AlexNet, VGG16,	
	The deep CNN has	analysis, color	Inception V3 and	
	been trained by using	augmentation,	ResNet.	
	different mini batch	rotation and scaling		
	sizes ranging from 64			
	to 160 with			

	augmented datasets.		
To develop the	The CNN based	The size of 128 X	The performance [52]
automated	model for	128pixels has been	measurement has
system based on	recognizing the rice	extracted from the	been carried out in
CNN	blast diseases. The	image with the help	hybrid mode by
architecture in	performance has been	of moving	combining the
order to diagnose	evaluated to assess	window. The CNN,	CNN with SVM,
the rice diseases.	the equality in	LBPH and Harr	LBPH and Harr
	potentiality of CNN	wavelet features of	wavelet and the
	with softmax and	the plant leaves	performance
	CNN with support	have been	assessment has
	vector machine.	extracted.	been done.
To develop the	The UNet deep	The salient feature	The residual [53]
system in	learning model	like the leaf shape,	network Resent-50
detecting and	depending on the	leaf surface and	with 50 layered
estimating the	principles of hybrid	background content	architecture has
severity	deep learning model.	features for the	been pretrained
estimation for		UNet	with the plant
diseases of			village datasets.
tomato green			
house plants. The			
detection			
mechanism has			
been focused			
onto the generic			
features of plant			
diseases.			
Identification of	The statistical	The extraction of	The difference [54]
tomato plant leaf	features of the image	statistical function	between the healthy
diseases at the	of plant leaves	mean, median,	tomato plant and

early stage using	subjected to the CNN	range and standard	diseased plant on
the segmented	classifier.	deviation based	the basis of
features.		features	histogram.
To develop the	ResNet-50, Xception,	The transfer	Tomato diseased [55]
deep learning	MobileNet,ShuffleNe	Learning approach	Detection
model in order to	t,DenseNet121_Xcep	for the	application has
detect the plant	tion for the purpose	classification	become much
diseases.	of feature extraction.	purpose.	effective in tomato
			pest control.
To develop the	The multistage BNN	The squeeze and	In order to cope up [56]
deep learning	architecture	excitation network	with the complex
module for leaf	integrated into	integrated with	characteristics of
disease detection	ResNet-50 model for	CNN model for	tomato diseases, the
based on	the process of leaf	carrying out the	study of multi scale
convolution	disease detection.	process of	extraction of
neural network		detection.	disease features has
by Attention		and comprises 10	been adopted.
Module.		different categories	
		of tomato leaf.	

The traditional approach towards determination of species and maturity of different agro products are done manually and accordingly suffer significant limitations. The sorting and grading process of the agro products require good skill sets of the sorter. In manual system, the sorting process can be lengthened and consumes considerable time. The chemical and analytical instrumental methods towards the species and maturity assessment of different agro products suffer some number of limitation like expensive and time consuming test process, sample preparation process and invasive nature of operation as well. Moreover the aforesaid procedure also suffers from the lack of mobility i.e. difficulty in the real time or on-spot detection due to stationary presence of the instruments in the lab. The computer vision system has shown the significant potentiality towards remedial of different sort of problems addressed above in the field of agriculture due to its non-destructive and non-invasive application.

1.4. Brief overview of computer vision

Computer vision is an emerging field of research which explores the way of sensing and understanding the information from images and videos by computer. It has the two distinct perspectives; biological and engineering. From the biological perspective, it is the computational model of human visual system on the other hand from the engineering perspective it is an automated system which can mimic the perception of human being. Some elemental tools for capturing image data include either single camera or multiple cameras and the data concerned can be the single dimensional or multi dimensions. The information extracted from the image has the multiple variance like identification or classification of the image, navigation in space and augmented reality applications. Some of the salient advantages of computer vision over established instrumental and analytical techniques include comparatively less expensive implementation, non-invasive methodology and faster decision making with competitive accuracy. The potential of computer vision has been explored in diverse applications. The advancements of machine learning algorithms and hardware configurations have further strengthened the potential of computer vision based deployments. The major building blocks of computer vision system include (i) image acquisition, (ii) object/pattern detection (ii) object/pattern recognition and (iii) results in terms of classification and prediction.

Image acquisition: in this first step of computer vision framework the images are captured. The images can be single frame or multi frame (video capture). The images can also vary depending on the type of illumination and imaging conditions. There are applications where instead of visual images, feature images like thermal images are captured.

- Object/pattern detection: Once the images are captured the computer vision systems learns the inherent and distinguishable pattern in the images. For example, in case of object recognition the boundary of the object can be an important pattern that can distinguish between different types of objects present in an image. Similarly, colors and textures are also commonly used patterns that can distinguish between different objects. Such characteristics are commonly referred as features and the choice of features that can distinguish are entirely application dependent.
- Object recognition: Once the features are identified and extracted in the previous step they are subjected to the machine learning algorithms. These algorithms are mathematically developed and having the potential to learn from the examples. The degree to which the algorithm can learn varies widely but nevertheless by virtue of such learning mechanism all such algorithms can identify or detect any unknown sample of the same nature. One thing is important to note that the modern algorithms are capable of drawing soft and flexible boundaries between different classes unlike the hard and rigid boundaries obtained by many of the classical algorithms.
- Decision making: This is the stage where the computer vision declares its output against unknown test cases. There are two major types of declarations normally practices; classification and prediction. In former case the output is in terms of decided class for the subjected samples among many classes under consideration while in later case it is normally a predicted value which is often referred as regression. In many of the applications both of the applications are considered. For instance, in case of any agro industry application the classification task may be to identify the class of a particular agro produce and prediction task may be the prediction of how many days it can be stored prior to its rotten stage.

The widespread applications of computer vision can be consolidated as follows;

Special effect in the movie: Computer vision has been uniquely applied in many movies, especially the cartoon and animation movies. The movements of human actor have been simulated as digital actors. The exact positions of markers are accessed using the concept of computer vision.

Scene recognition: Photographs of any scene can be easily detected and recognized using this concept. It is widely used for digital surveillance and image-based searching over internet.

Digital biometrics: Computer vision approach can successfully be applied in detecting the face, expression and gesture recognition. This is widely used for biometrics where fingerprint and iris detections are also accomplished using computer vision.

Optical character recognition: Computer vision can be successfully used in recognizing the characters and numbers of many different patterns. This is widely used in document image processing and old document restorations.

Self-driving: Automation in car driving has been implemented by using the concept of computer vision. In many such applications this is also termed as robotic vision.

Augmented reality: This is another growing field of applications majorly used for computer and mobile gaming. This provides much reality in user experience which in turn increases the user engagement.

Virtual reality: In this area the position of a user and the position of all the objects around are getting connected to each other's and change in some realistic way.

Financial services: Computer vision principles have majorly been applied in the field of financial services. The banking and insurance sector have been enormously benefitted due to

progress of computer vision. The fast banking services are provided to the customers by uploading the photo-id cards. The uploaded documents can easily be analyzed.

Health care: Computer vision can play crucial roles in diagnosis of diseases by means of machine learning and can reduce the clinical cost for economically growing countries.

Preventive maintenance in industry: The monitoring system of the industries has been based on the computer vision principles for producing reports on the status of infrastructure and processes. The alert systems for predictive maintenance are also developed using computer vision.

Social media: The enormous popularity of social media has become possible due to the advancement of research in the computer vision. Automatic tagging of user images and embedding of computer vision principles in the lens are results of advanced computer vision approaches.

Machine learning plays pivotal roles in computer vision. It brings the essence of human psychology and reasoning capability in computing. Table 1.2 presents some of the major works using computer vision in diverse research fields.

Applications	Working	Data	Remarks	Ref
	principle	analysis		
		technique		
Preparing the	The facial	The model	The two authentic	[57]
authentic facial	expression	based face	databases namely	
expression.	classification	tracking	the emotion database	
Database based	on the basis of	algorithm	and the Cohen	
on the	machine		Kanade database has	

spontaneous	learning		been used for the	
emotions	techniques.		purpose.	
available in the				
environment.				
To develop the	The classifier	A novel	The optimization	[58]
machine	CNN for	adaptive	efficiency has been	
learning	feature	weights	improved by	
algorithm for	selection.	objective	introducing the	
convolution		function	quadratic	
feature		approach for	programming	
selection.		evaluation	methods.	
		and		
		selection of		
		features		
To highlight the	Statistical,	Some	The current research	[59]
interaction	logical,	important	paradigm has been	
between	conceptual,	strategies	based on the	
artificial	connectionists,	inductive	machine learning	
intelligence,	neural	deductive,	and computer vision.	
computer vision	network,	analogical		
and machine	genetic	etc.		
learning.	algorithms or			
	evolutionary			
	algorithms.			
To classify the	The neural	The Image		[60]
Image Net with	network	Net based		
the help of	having 60	network		
deep	million			
convolution	parameters and			
neural network	650,000			
	neurons			

	consists of five			
	convolution			
	layers.			
To extract the	The extraction	The text	The datasets	[61]
multi text from	of meaningful	group	encompasses the	
the scene.	group of	hypothesis	texts in different	
	regions.	••	orientations in two	
	C	the	different languages.	
		proximity		
		and		
		similarity		
		laws.		
To develop the	Object and	The	It turns the general	[62]
object and	action aware	effective	natural language	
action aware	model to make	path loss to	instructions into	
model for visual	the object	penalize the	robot agent actions	
language	centered and	trajectories		
navigation.	action centered	from the		
	instructions for	ground truth		
	the sake of	path.		
	visual			
	perception.			
-	CNN model	The CNN	The CNN model has	[63]
	architecture	model as a	been subjected to the	
	consisting of	classifier	regularization and	
	the	trained with	optimization process	
	convolution ,	the	in order to get the	
	pooling and	concerned	best accuracy in the	
	fully connected	known data	result obtained.	
	layers has been	sets to be		
	used for	trained and		

	carrying out	the trained	
	the	model is	
	classification	used for	
	task.	unknown	
		data.	
To highlight	CNN is a class	The training	Different variation [64]
different CNN	of DNN and	tales place	of CNN are ResNet,
architectures	consisting of	inthe CNN	VGGNET,
and their	the layers	model	LexNetetc
application	convolution,	followed by	
perspectives.	maxpooling	the	
	and the fully	classificatio	
	connected.	n of test	
		data.	
To highlight the	The statistical	The model	The models have [65]
significant role	techniques and	ANN or	been fed with the
of artificial	generic	CNN	one and three
intelligence in	machine	trained with	dimensional data
the field of	learning	the	for training purpose.
computer	algorithms in	conducive	
vision.	different	datasets.	
	models like		
	ANN, CNN		
	etc.		

1.5. Problem statement

The literature review conveys that determination of species and maturity is an important research field where different analytical and instrumental methods are mostly adopted. Despite appreciable accuracy such methods have drawbacks like expensiveness, lengthy and precision

sample making process, invasive and destructive testing method and portability issues that limit their realization in different locations in the supply chain for on-the-spot detection. The sample making for obtaining the result is very much time taking and so for large scale assessment of maturity of agro products, these methods fail to meet the time constraints. The chemical reagents used for the assessment purpose are costly, too. These motivates towards development of noninvasive, non-destructive and chemical free approaches for food quality assessment. Literature review also reveals that computer vision frameworks have shown potential all such limitations associated with conventional methods. Machine learning is the effective means of tackling the problem of classification for different agro products between different species and maturity stages.

Among different machine learning algorithms deep learning algorithm is most emerging one. Convolutional new network (CNN) is one of most prominent deep learning mechanism in the field of computer vision. There are different reasons of its popularity. One major advantage is that it eliminates separate feature extraction step as it learns the high level features itself from the images through incremental steps.Often the comparatively high training time of CNN is projected as a drawback but once trained it can provide very fast decision with high accuracy. Earlier deep learning algorithms were found suitable for cases where large amount of data was present. But, some of the latest developments in learning mechanism have made application of CNN possible for small datasets with low variance. However, as the dataset size increases the performance potential also can increase. Another big advantage of CNN and other deep learning algorithms is its ability to generalize the prediction model to avoid over- or under-fitting problems often encountered with conventional algorithms for small dataset. CNN architecture is based on the machine learning dynamics and exploits many layers of nonlinear information processing. It consists of convolution, pooling and fully connected layers. The prime benefit of CNN is that it does not need the hand engineered feature extraction. The cascaded model of CNN is effective towards the faster detection. Multi-channel CNN has been implemented by fitting two CNN models in parallel. CNN hyper parameter optimization is also another important boosting task towards achieving the greater accuracy of classification. The deep learning concept has come up in many variations like deep learning neural network(DNN),deep belief network(DBN),recurrent neural network(RNN) and recursive neural tensor networks(RNTN).Use of such machine learning based approach fully annulled the chances of damage of the leaves or plants on application of chemicals.

The detailed literature survey is presented in Table 1.1 and 1.2 confirms the possibility of applying machine learning particularly CNN driven computer vision framework for quality grading and detection/identification tasks in agro produces. The reviews can also be consolidated into following major categories of research directions.

- a) Determination of different maturity stages of medicinal leaves.
- b) Determination of different diseases of leaves of different agro plants.
- c) Determination of different maturity stages of fruits and vegetables.
- d) Application of deep learning concepts in the classification of different agro products.
- e) Application of deep learning concepts in the classification of different diseases.

1.6. Objective and scope of the thesis

The medicinal plant leaves neem, tulsi and kalmegh, the fruits tomato and banana bears lot of medicinal qualities along with their food values. However, the bioactive present in those agro products vary with the maturity and also across different species. Similarly the diseases of plant

leaves are also very threatening to the plant growth and agricultural economy. The lack of timely detection of diseases can lead to the damage and even death of the plant. In order to assess proper maturity stage of the plant leaves of different fruits or vegetables or to detect different sort of common plant diseases, many different invasive and destructive or chemical analyses have been carried out. In this thesis compute vision approach for classifications of different maturity stages of agro products and early detection of different diseases for the plants have been explored. The focus in machine learning aspect has been remained with CNN since that can provide considerable accuracy while reducing the separate feature selection step with conventional machine learning algorithms like support vector machine (SVM), random forest (RF) and linear or logical regression. The possibility of realizing the adopted CNN models for a hand held or mobile device development towards on-spot detection and prediction has also been focused while optimizing the CNN architectures. For building the generalized platform, all the external conditions and constraints have been taken into consideration and the associated errors arising from the samples have been addressed. The summary of the objectives have been represented below.

- a) The detailed and extensive literature survey for finding the common medicinal plants and other agro products with high impacts on the human health.
- b) To find different plants those are more susceptible to different diseases.
- c) To apply the preprocessing techniques for removing noises in order to extract the enough analytical information from the samples.
- d) To adopt the optimum deep learning model for classification and prediction.
- e) To find the appropriate optimizing algorithm in order to increase the model performance.
- f) To evaluate the models against standard metrics to assess the robustness.

1.7. Research questions

Considering the scope and objectives of the research topic in the thesis here, the following research questions have been framed.

RQ1. Can the deep learning based model be used to detect the maturity of medicinal leaves, fruits and vegetables?

RQ2.Can the deep learning based model be used to classify different diseases of the plant?

RQ3.Is it possible to develop any mathematical model from the computer vision data to predict the maturity stage or disease type for any medicinal plant leaves, fruits or vegetables?

RQ4. Can optimization of the deep learning model hyperparameters contribute towards performance improvement?

RQ5. Can the deep learning system be a suitable means to aid the existing instrumental and analytical methods of detection and prediction tasks in agro industry?

1.8. Thesis structure

In this thesis, the images of leaves from three medicinal plants namely, neem, tulsi and kalmegh and the fruits banana and tomato have been used in search of the possible answers to the research questions. As per the literature review it has been observed that the demands of getting the maximum medicinal benefits out of the leaves or fruits and detection of plant diseases in proper time is of utmost interest from the perspectives of economic benefits. There are several methods available for detection of maturity of agro products or diseases of different plants which are very costly and tedious to perform therefore the alternative method of using the deep learning approach has been proposed here. The deep learning model based on the modified CNN optimized with the appropriate optimizing algorithm has been attempted in this thesis work. In the perspectives of the above mentioned objectives, the entire work has been divided into six chapters as outlined below.

Chapter 1 introduces the scope of the thesis describing the origin of the problem and outlined the objectives of the thesis work. This elaborates the significance of assessment of maturity of medicinal plants and fruits along with classification of different diseases for plants. The existing methodologies for assessment of maturity and diseases have been discussed. The chapter also highlights the related literature survey. The chapter finally summarizes the scope, objectives and research questions of the thesis.

Chapter 2 provides the overview of medicinal plant and its significance in production of different medicines. It also highlights the experimental set up for sample collection, dataset preparation and model development. The optimization of the model has been carried out and has been presented analytically in this chapter. The associated results and discussion for assessment of maturity of leaves have also been included in this chapter. The chapter thus elucidates the scope of computer vision framework for identification of species and prediction of associated maturity stage that can contribute towards use of medicinal leaves at correct stage for preparing medicinal products.

Chapter 3 elucidates the species and maturity grading of vegetable. The experimental setups along with the process of sample collection, dataset preparation and model development have been elaborated. The experimental result with the familiar vegetable tomato has been included into this chapter. The result of experiment has been shown to be improved to higher grade with the application of hyperparameter optimization. The result of the experiment vouches the

47

possible potentiality of the computer vision framework towards the identification and prediction tasks concerned to the species and maturity stages of vegetables.

Chapter 4 describes the significance of determination of species and the maturity grading of fruits. The experimental setups along with the process of sample collection, dataset preparation and model development have been highlighted. The unique feature of the model with separate channels for respective task of species and maturity determination has been illustrated. The experimental results with its associated metrics for popular fruit namely banana has been included in this chapter. The results of this chapter confirm the possibility of the computer vision framework for identification and prediction tasks related to species and maturity stages of fruits.

Chapter 5 elaborates the significance of early detection of the leaf diseases. This chapter also illustrates details of experimental setup including the sample collection, dataset preparation and model development. The Mobile net model and its corresponding optimization using modified GWO has been expressed in this chapter with the improvement reflected in the overall work. The associated result discussion has also been highlighted with the help of different metrics. The promising results of this chapter show that computer vision can be a potential proposition to avoid huge agricultural loss by means of early detection of plant diseases.

Chapter 6 summarizes the major findings of the thesis. The chapter also includes the limitations identified during the experiments under the presented scopes. The possible future extensions of the presented works have as well been presented in this concluding chapter.

1.9. Conclusion

This chapter provides the general overview of the thesis. It shows the importance of maturity and species detection task for agro produces by means of considerable literature survey. It also

elaborates the potential of advanced machine learning driven computer vision systems to perform several engineering problems while addressing the limitations like invasive nature of operations, high instrument cost and long processing time of the conventional techniques. The diverse applications of computer vision have as well been presented in terms of literature survey. The motivation of exploring the scope of advanced machine learning driven computer vision frameworks for detection and prediction tasks in agro produces has been clearly elaborated. Objectives and scope of the thesis has been drawn in view of the background survey. The associated research questions have been clearly mentioned which is to be addressed in the conclusion section of the thesis. Lastly the thesis structure has been described with the flow diagram depicting various sectional topics of the thesis for a bird-eye view of the presented works.

References

- Kumkar S., Dobos G.J., Rampp, T. (2017). The significance of ayurvedic medicinal plants. J Evid Based Complement Altern Med 22(3):494–501.
- Verma H .et.al.(2019).Evaluation of an emerging medicinal crop Kalmegh [Andrographispaniculata (Burm. F.)Wall Ex. Nees] for commercial cultivation and pharmaceutical & industrial uses: a review. J PharmacognPhytochem 8(4):835–838.
- Upadhyay R.K. (2017).Tulsi: a holy plant with high medicinal and therapeutic value. Int J Green Pharm (Suppl) 11(1):S1–S12.
- Alzohairy M. (2016). Therapeutics role of Azadirachtaindica (Neem) and their active constituents in diseases prevention and treatment. Evidence-Based Complement Altern Med. <u>https://doi.org/</u> 0.1155/2016/7382506.

- Fatma M., Ahmed N.(2019). Ripeness Classification of Bananas Using an Artificial Neural Network', Arabian Journal for Science and Engineering, King Fahd University of Petroleum &Minerals, Vol. 44, No. 8.
- Bhowmik D., Kumar K.S., Paswan S., Srivastava, S. (2012).Tomato-a natural medicine and its health benefits. J. Pharmacogn. Phytochem.1(1), 33–43.
- Saad A.M., Ibrahim A., El-Bialee N. (2016).Internal quality assessment of tomato fruits using image color analysis. Agric. Eng. Int.: CIGR J. 18, 339–352.
- Suarez M., Rodríguez R., Elena M., Díaz C. (2008). Chemical composition of tomato (Lycopersiconesculentum) from Tenerife, the Canary Island. Food Chem., 106, 1046-1056.
- Isleib J. (2018).Signs and symptoms of plant disease: Is if fungal, viral or bacterial? Retrieved from

https://www.canr.msu.edu/news/signs_and_symptoms_of_plant_disease_is_it_fungal_viral_or_b acterial.

- Rafiq A., Makroo H., Sachdev P., Sharma S. (2013). Application of Computer Vision System in Food Processing- A Review. International Journal of Engineering Research and Applications. 3. 1197-1205.
- 11) Faridi H., Aboonajmi M. (2017). Application of machine vision in agricultural products. In: Proceedings 4th iranian international NDT conference, Olympic Hotel, Tehran, Iran, Feb 26–27.
- 12) Chaki J., Parekh R., BhattacharyaS. (2015).Recognition of whole and deformed plant leaves using statistical shape features and neuro fuzzy classifier. In: IEEE Proceedings of 2nd international conference on recent trends in information system (ReTIS).

- Keivani M., Mazloum J., Sedaghatfar E., Tavakoli M.B. (2020) .Automated analysis of leaf shape, texture, and color features for plant classification. Traitement du Signal 37(1):17–28.https://doi.org/10.18280/ts.370103.
- 14) Mahajan S., Raina A., Gao X-Z, Pandit K. (2021). A plant recognition using morphological feature extraction and transfer learning over SVM and AdaBoost. Symmetry 13:356. <u>https://doi.org/10.3390/</u> sym13020356.
- Santra A.K., Christy C.J.(2012).Genetic algorithm and confusion matrix for document clustering. Int J ComputSci 9(1):322–328.
- Upadhyay R..K. (2017).Tulsi: a holy plant with high medicinal and therapeutic value.Int J Green Pharm (Suppl) 11(1):S1–S12.
- 17) Verma H., Negi M.S., Mahapatra B.S., PaulJ.(2019). Evaluation of an emerging medicinal crop Kalmegh [Andrographispaniculata (Burm. F.)Wall Ex. Nees] for commercial cultivation and pharmaceutical & industrial uses: a review. J PharmacognPhytochem 8(4):835–838.
- 18) Zhang Y., Peng J., Yuan X..et.al.(2021).MFCIS: An automatic leaf-based identification pipeline for plant cultivars using deep learning and persistent homology.Hortic Res8, 172 . https://doi.org/10.1038/s41438-021-00608-w.
- 19) Sorin C., Mariette F., Musse M., Leport L., CruzF.,et.al.(2018). Leaf development monitoring and early detection of water deficiency by low field nuclear magnetic resonance relaxation in NicotianatabacumPlants. Applied Sciences, MDPI, 8 (6), pp.943. 10.3390/app8060943. hal-01830627.
- 20) Kumar S.(2012). Leaf color area and edge features based approach for identification of Indian medicinal plants. Indian Journal of Computer Science and Engineering (IJCSE), Vol. 3 No.3 Jun-Jul.
- 21) Azlah M.A.F., ChuaL.S., Rahmad F.R., Abdullah F.I., AlwiS.R. (2019). Review on Techniques for Plant Leaf Classification and Recognition, Computers, 8, 77.

- 22) Sangle S., ShirsatK., Bhosle V. (2013). Shape Based Plant Leaf Classification System Using Android, Int. J. of Engineering Research and Technology. 2(8), August.
- Jeon W., RheeS. (2017). Plant Leaf Recognition Using a Convolution Neural Network. IJFIS ;17:26-34. <u>https://doi.org/10.5391/IJFIS.2017.17.1.26</u>.
- 24) Saad A.M., Ibrahim A., El-Bialee N. (2016).Internal quality assessment of tomato fruits using image color analysis. Agric. Eng. Int.: CIGR J. 18, 339–352.
- 25) Van de Poel B. et.al. (2012).Model-based classification of tomato fruit development and ripening related to physiological maturity. Postharvest Biol. Technol. 67, 59–67. <u>http://dx.doi.org/10.1016/j.postharvbio.2011.12.005</u>.
- 26) Satpute M.R., JagdaleS.M.(2016).Color, size, volume, shape and texture feature extraction techniques for fruits: a review. Int. Res. J. Eng. Technol. 3, 703–708.
- 27) Bhatt A.K.,Pant D.(2015).Automatic apple grading model development based on backpropagation neural network and machine vision, and its performance evaluation.AISoc. 30, 45–56. <u>http://dx.doi.org/10.1007/s00146-013-0516-5</u>.
- 28) Wang P., Toudeshki A., Tan H., Ehsani R. (2018), A methodology for fresh tomato maturity detection using computer vision, Computers and Electronics in Agriculture 146, 43–50.
- 29) Gómez A.H., Hu G., Wang J., PereiraA.G. (2006).Evaluation of tomato maturity by electronic nose.Comput Electron Agric 54(1),44–52.
- Zhang L., McCarthyM.J.(2012).Measurement and evaluation of tomato maturity using magnetic resonance imaging. Postharvest BiolTechnol 67,37–43.
- 31) Qin J., Chao K., Kim M.S. (2012).Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest BiolTechnol 71, 21–31.
- 32) Sirisomboon P., Tanaka M., Kojima T., Williams P. (2012).Nondestructive estimation of maturity and textural properties on tomato 'Momotaro' by near infrared spectroscopy. J Food Eng 112(3),218–226.

- 33) Tiwari G., Slaughter D.C., Cantwell M. (2013).Nondestructive maturity determination in green tomatoes using a handheld visible and near infrared instrument. Postharvest BiolTechnol86, 221– 229.
- 34) Rupanagudi S.R., Ranjani B.S., Nagaraj P., Bhat, V.G. (2014). A cost effective tomato maturity grading system using image processing for farmers. In: Contemporary Computing and Informatics (IC3I), International Conference on, IEEE, 7–12.
- 35) Lhariri E. et.al. (2014).Multi-class SVM based classification approach for tomato ripeness. In: Innovations in Bio-inspired Computing and Applications, Springer International Publishing, 175– 186.
- 36) Goel N., Sehgal P. (2015).Fuzzy classification of pre-harvest tomatoes for ripeness estimation an approach based on automatic rule learning using decision tree. Appl. Soft Comput. 36, 45–56.
- 37) Greenshields M.W.C.C. et. al. (2015).Non-destructive tomato ripeness determination using carbon nanostructure based chemical sensors: Application of tristimulus and principal component analysis methods. International Journal Electroactive Materials 3:10–14.
- 38) Zhu Q., He C., Lu R., Mendoza F., Cen H. (2015). Ripeness evaluation of 'Sun Bright' tomato using optical absorption and scattering properties. Postharvest BiolTechnol 103, 27–34.
- 39) Al-Daour A.F., AI Shawwa M.O., AbuNasir S.S. (2019).Banana Classification Using Deep Learning, International Journal of Academic Information Systems Research (IJAISR),ISSN: 2643-9026, Vol. 3, No. 12, pp. 6-11.
- 40) Mazen F.M.A., NashatA.A. (2019). Ripeness Classification of Bananas Using an Artificial Neural Network, Arabian Journal for Science and Engineering, King Fahd University of Petroleum & Minerals, Vol. 44, No. 8.
- 41) Surya P.D., SatheeshK,J. (2015).Assessment of banana fruit maturity by image processing technique,J.FoodSci.Technol,Vol.52,No.3,pp.1316–1327.[online] <u>https://doi.org/10.1007/s13197-013-1188-3</u>.

- 42) Soltani M., Alimardani R., Omid M. (2010).Prediction of banana quality during ripening stage using capacitance sensing system, Australian J. Crop Sci., Vol. 4, No. 6, pp. 443–447.
- 43) Subedi P.P., Walsh K.B. (2011). Assessment of sugar and starch in intact banana and mango fruit by swnirspectroscopy ,Postharvest Biol. Technol, Vol. 62, No.3,pp. 238–245.
- 44) Zude M. (2003).Non-destructive prediction of banana fruit quality using VIS/NIR spectroscopy. Fruits 58, 135–142.
- 45) Mustafa M.S., Husin Z., Tan W.K., Mavi M,F., Farook R.S.M.(2020), Development of automated hybrid intelligent system for herbs plant classification and early herbs plant disease detection. Neural Computing and Applications, 1-23.
- 46) Ma J., Du K., Zheng F., Zhang L., Gong Z., Sun Z.(2018). A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network, Computers and Electronics in Agriculture, vol. 154, pp. 18–24.
- 47) Hidayatuloh A., Nursalman M., Nugraha E. (2018). Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model, International Conference on Information Technology Systems and Innovation (ICITSI), pp. 199-204, doi: 10.1109/ICITSI.2018.8696087.
- 48) Sibiya M.,Sumbwanyambe M. (2019). A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional NeuralNetworks. AgriEngineering. 1:119 131.doi: 10.3390/agriengineering1010009.
- 49) Mim T.T., Sheikh M.H., Shampa R.A., Reza M.S., Islam M.S.(2019).Leaves Diseases Detection of Tomato Using Image Processing, 8th International Conference System Modeling and Advancement in Research Trends (SMART), pp. 244-249, doi: 10.1109/SMART46866.2019.9117437.
- 50) Wang Q., Qi F., Sun M., Qu J., Xue J. (2019). Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep Convolutional Neural Networks and

ObjectDetectionTechniques, ComputationalIntelligenceandNeuroscience, vol. ArticleD 9142753, 15 pages, https://doi.org/10.1155/2019/9142753

- 51) Geetharamani R., Arun Pandian J. (2019).Identification of plant leaf diseases using a nine-layer deep convolutional neural network, Computers & Electrical Engineering, vol. 76, pp. 323–338.
- 52) Liang W.J., Zhang H., Zhang G.F., Cao H.X. (2019).Rice Blast Disease Recognition Using a Deep Convolutional Neural Network. Sci Rep 9, 2869. <u>https://doi.org/10.1038/s41598-019-38966-0</u>.
- 53) Wspanialy P., Moussa M.A.(2020). A detection and severity estimation system for generic diseases of tomato greenhouse plants. Comput.Electron. Agric. 178 doi: 10.1016/j.compag.105701.
- 54) Chahande M., DubeyA.K., Mishra V., Mohanty M.N. (2020). Analysis of Segmented Features For Identification of Tomato Plant Leaf Diseases At Early Stage . International Journal of Advanced Science and Technology, 29(8s), 2730 - 2738. Retrieved from http://sersc.org/journals/index.php/IJAST/article/view/15198.
- 55) Hong H., Lin J., Huang F.(2020).Tomato Disease Detection and Classification by Deep Learning," International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 25-29, doi: 10.1109/ICBAIE49996.2020.00012.
- 56) Zhao S., Peng Y., Liu J., Wu S. (2021). Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module. Agriculture, 11, 651. <u>https://doi.org/10.3390/agriculture</u>
- 57) Sebe N., Lew M.S., Yafei S., Cohen I., Gevers T., Huang, T.S. (2007). Authentic facial expression analysis. Image and Vision Computing, 25(12): p. 1856-1863.
- 58) Zhang F.,Li W., Zhang Y., Feng Z.(2018).Data Driven Feature Selection for Machine Learning Algorithms in Computer Vision. IEEE Internet of Things Journal, 5(6): p. 4262-4272.

- 59) Esposito F.,Malerba M.(2001).Machine learning in computer vision. Applied Artificial Intelligence, 15(8): p. 693-705.
- 60) Krizhevsky A., Sutskever I., Hinton G.E.(2012).ImageNet Classification with Deep Convolutional Neural Networks. NIPS'12 Proc 25th IntConf Neural Inf Process Syst 1:1097– 1105.
- Gomez L., Karatzas D.(2013).Multi-script Text Extraction from Natural Scenes. In ICDAR, 2013.
- 62) Qi Y., Pan Z., Zhang S., Hengel A., Wu Q.(2020), Object-and-Action Aware Model for Visual Language Navigation. arXiv 2020, arXiv:2007.14626.
- 63) Khan S.(2018).A Guide to Convolutional Neural Networks for Computer Vision. Morgan & amp; Claypool.
- 64) Upadhyay Y. (2019).Computer Vision: A Study on Different CNN Architectures and Their Applications.Medium,Alumn AI Academy, 29 Mar., medium.com/alumnaiacademy/introductionto-computer-vision-4fc2a2ba9dc.
- 65) Karn A.(2021).ARTIFICIALINTELLIGENCE IN COMPUTER VISION, International Journal of Engineering Applied Sciences and Technology, 2021 Vol. 6, Issue 1, ISSN No. 2455-2143, Pages 249-254

CHAPTER 2

DETECTION OF SPECIES AND MATURITY FOR MEDICINAL PLANT LEAVES

2.1 Introduction

Ayurveda [1] has long been established as a popular field of alternative medicine in India and other countries in Asia. The healing power of the medicinal plants towards diseases like liver diseases, skin diseases, digestion disorder, blood pressure and blood purification are few to mention among wide variety of lifestyle and chronic diseases. Leaf of the plants like Neem (*Azadirachtaindica*), Tulsi (*Ocimumtenuiflorum*) and Kalmegh (*Andrographispaniculata*) are used largely to cure up many such critical diseases. The biochemical constituents present in those leaves make it more efficient towards the remedies of many critical and chronic diseases. The amount of bio-actives present in the leaves vary with maturity stage of leaves. In order to get the significant medicinal effectiveness the medicinal plants requires the picking up of leaves at the correct maturity stages and sorting of leaves in terms of the species and maturity level.Commonly the maturity of the leaves is ascertained by the human experts by virtue of knowledge and experience.

The work presented in this chapter has been published as:

Mukherjee G., Tudu B., Chatterjee A. A convolutional neural network-driven computer vision system toward identification of species and maturity stage of medicinal leaves: case studies with Neem, Tulsi and Kalmegh leaves, (2021) Soft Computing, 25 (22), pp. 14119-14138.DOI: 10.1007/s00500-021-06139-9.

Chapter 2: Detection of species and maturity for medicinal plant leaves

Many conventional instrumental and analytical methods have also been adopted for accurate detection of maturity stage and bio-chemical components in these leaves. Techniques like gas chromatography (GC) and high performance liquid chromatography (HPLC) are popular in this context. The efficiency of such methods is excellent but limited in terms of expensive instruments, precision sample preparation process, highly skilled manpower for operation and interpretation and mobility or portability of the instruments. The nature of testing is also invasive and destructive which in turn limits their usage in the automated process chain. Near infra-red (NIR) can address the portability issue but room for finding alternative solution considering real-time or on-the-spot detection is still open. The main objective of using the computer vision paradigm is to make it portable so that it could be used on-the-spot and also be realized in real life mobile app or a portable handheld device at the consumer or retailer end in the market. The non-invasive and non-destructive operations are the key merits of the computer vision based frameworks [2-3]. Some of the works utilizing various techniques in this direction have been consolidated in the Table 2.1.

Table 2.1: Some of the reported techniques for detection of species and maturity for medicinal plant leaves.

Base technique	Method	Result	
The CNN model classifier	Custom built CNN model has been built	The precision accuracy	
for automatic classifications species of plants [4]	up to classify the publicly available	of 98.69% and 98.75%	
·L	Flavia and Foliage datasets.	has been achieved.	
The computer vision	The analysis of generated heatmaps on	The accuracy value	
backeddeep learning based	the image of leaf for recognition of	varies 75% to 90%	
approach [5]	leaves process.		
Automatic extraction of the	The neuro fuzzy classification of the	The accuracy value of	
shape features and its analy-	shape features	97.5% has been	

Chapter 2: Detection of species and maturity for medicinal plant leaves

sis through classifiers [6]		achieved.
Identification of plant leaf images through the GIST	The pbest guided binary particle swarm optimisation methodology for reduction	The highest value of the classification
and Local Binary Pattern[7]	of features.	accuracy achieved was 96.85%
The leaf biometrics based	The particle swarm optimization as a	The identification
plant identification model	pre-processing phases and grey wolf	rateof 98.9% has been
[8]	optimizer based leaf texture reduction.	achieved.
The features like colour,	The extreme learning methods have	The evaluated accuracy
vein, fourier	been applied to learn the individual as	of 99.10% have been
descriptor ,GrayLevel Co-	well as the combined features of the	achieved.
occurrence Matrixetc have	leaf.	
been adopted towards the		
identification of plants [9]		
Classification	Classification of the morphological	The precision rate of
ofMorphological features of	features consisting of centroid, major	95.85% has been
plantwith the SVM along	axis length, minor axis length, solidity,	achieved.
with the adaptive boosting	perimeter and orientation using KNN,	
techniques.[10]	decision trees, multilayer perceptron	

The neural network based approach has been proved to be effective in ascertaining the species and maturities of different medicinal plant leaves. The neural network model is made up of number of connected layers. The model is trained to adjust the connection weights as per the desired outputs. The main shortcoming of this popular soft computing model is that it requires a large number of different distinctive characteristic features to carry out the differentiation among the different medicinal leaves. Feature extraction out of the leaves is very much tedious, time taking and demands very close and meticulous observation of the leaves. These feature extraction part can be simplified by adopting the deep learning method CNN [11]. Different variations of deep learning[12] methods are deep belief network(DNN)[13],Convolution neural network(CNN)[14],Recurrent neural network(RNN)[15] and restricted recurrent neural tensor network(RRNTN)[16]Another very significant application area of the CNN is the recognition of plant leaf [17][18][19][20].

2.2. Computer vision framework for medicinal leaf species and maturity stage detection

As stated in previous chapter the computer vision framework has three major steps; image acquisition, image feature extraction and classification or prediction. Each of these steps as used for medicinal plant leaves have been detailed in following sections.

2.2.1. Sample collection and UV-vis. spectroscopy

Three popular medicinal plants, namely, neem, tulsi and kalmegh were considered for this work due to their ready availability in local market and domestic gardens. In terms of medicinal effectiveness these plants play pivotal role as well. The leaves were collected in the same season so that the changes due to climatic change can be avoided. Three maturity stages; labeled as premature, mature and over-mature were considered. It can be also noted that the samples of varying maturity stages were collected from the same tree. Initially, as a proof of fact that the important bio-chemical contents change with maturity an UV-vis. spectroscopy was performed in-house. The result of that is shown in Fig.2.1. For this experiment the leaf extracts were prepared using distilled water for proper functioning of spectroscopy. The characteristic plots of spectroscopy clearly show that the peaks of important bio-chemical considerably change with different maturity stage in the same species of leaves. The absorption spectra obtained were plotted against the wavelength and the peaks were obtained for Chlorophyll a, Chlorophyll b and Carotenoids occurred between the 400 and 700 nm. It was clearly visible that the peaks were varying with the corresponding maturity which in return indicates that the variation in the amount of bio-actives is attributable to the variation in maturity of plant.

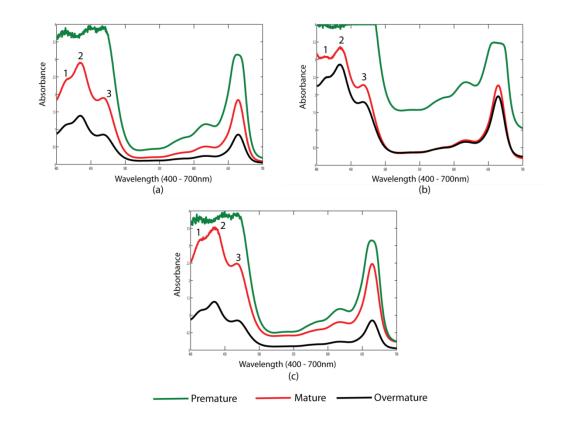


Fig.2.1: UV-Vis spectroscopy for the (a) kalmegh (b) Neem and (c) Tulsi leaves. The labeling of peaks as 1, 2 and 3 in the graph indicate the concentrations of Chlorophyll a, Chlorophyll b and Carotenoids.

Total 1500 leaves for each type of plant species were collected with 500 leaves for each maturity type. The maturity classes have been broadly classified into three categories named as premature, mature and over mature. Since the life span of the plants taken in this work largely varies, so the age concerned for grading of the plants is varying with the particular plant. The initial gradation of sample leaves was done by the human with expertise in Ayuervedic practice. The samples were carried in controlled temperature from the plucking point to the image acquisition point and subjected to the imaging chamber on the same day.

2.2.2. Imaging chamber

Illumination plays an important role for intensity images. Therefore an imaging chamber was developed in-house to control the illumination during image acquisition step. The photographs of actual chamber as used for this as well as all the other studies presented in this thesis work is shown in Fig. 2.2. The chamber casing was made of wood with the dimension of $0.5 \text{ ft} \times 0.5 \text{ ft} \times 1 \text{ ft}$. White led light were used for the illumination purpose and strips of LEDs were mounted at the four corners of the chamber. The adjustable base was made to adjust the distance between the camera lens and the object under consideration in order to obtain the desired focus. The operating current and the voltage for the chamber were 12V DC and 20 mA. The images were captured in JPEG format for its wide familiarity across different devices and mobile phones in spite of its lossy nature. The images were taken by using the camera SONY DSC -W30 and attached to the computer with the connector USB2.0. No camera filters, zooming options and external light sources like flash light of the camera were used during image acquisition. The images of actual imaging chamber are shown in Fig. 2.2. An in-house dataset of medicinal leaves with neem, tulsi and kalmegh leaves for different maturity stages was prepared for model development and experimentations.

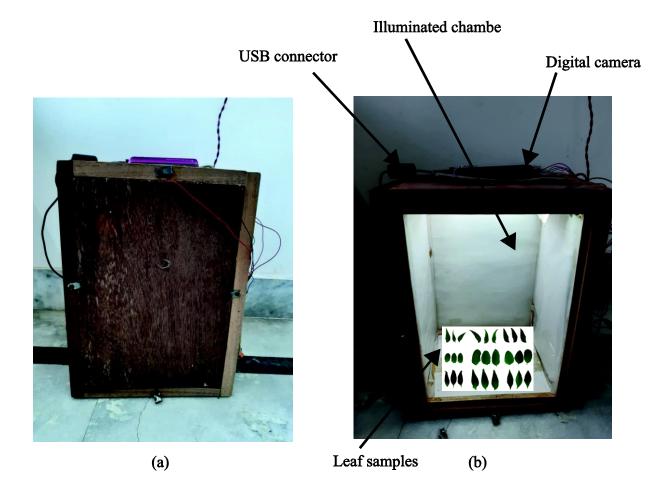


Fig. 2.2.The imaging chamber i) imaging mode and ii) loading mode

2.2.3 Leaf isolation

The images of leaves of any particular plant type have been captured inside the photographic chamber with the help of digital camera kept at a fixed height from the base supporting the leaf sample. Since the leaves of the plants under consideration were very tiny in size and large in number it was difficult to capture individual leaves. Hence an leaf isolation step was introduced so that multiple leaves can be captured together and followed by isolation of individual leaf. The leaf isolation algorithm as adopted in this work has been presented in Table 2.2 and illustrated in Fig. 2.3.

Table 2.2: Leaf isolation algorithm

Step 1: Leaves of different species under consideration of this research were arranged on the white sheet of paper in row maintaining the fixed gap.

Step 2: A horizontal scan line was drawn from left to right crossing all the individual images of leaves.

Step 3:Pixel values were scanned along the scan line tracking the number of transitions corresponding to a particular color channel between two consecutive pixels with respect to the fixed threshold value of 100. The value of 100 was arrived by Otsu's method for finding the adaptive thresholding value commonly used for image segmentation and binarization. The number of leaves was tracked by counting the number of transitions.

Step 4: The two extreme coordinates on the line were measured along the *X*-axis and the length of the line was been divided by number of leaves arranged on the white sheet. This gave the coordinate for bounding box

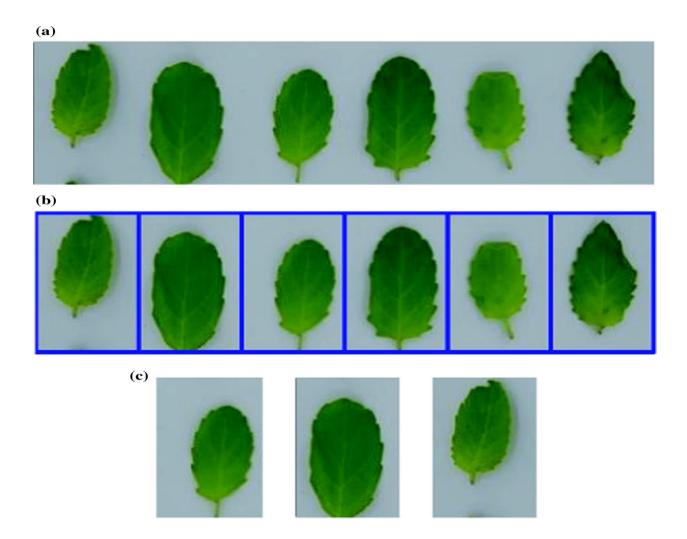


Fig.2.3:Leaf isolation process; (a) capturing multiple images, (b) laying bounding boxes around each leaf and (c) isolated leaf images.

2.3. Development of CNN model

The CNN [21]model has been implemented for the process of classification of different leaf species and their distinct maturity stages of medicinal leaf neem ,tulsi and kalmegh simultaneously. The CNN model comprises of three distinguished layers namely convolution, pooling and fully connected layers. The convolutional and pooling layers are engaged in extracting the information directly from the input images without going through the complex and critical steps of knowledge extraction process as used in many conventional algorithms. This also

yields the good benefits in terms of time. The fully connected layer of the model is equivalent to the neural network (NN) architecture comprising of multiple hidden layers with distinct output layers made up of number of output nodes equal to the number of classes involved. Some of the popular pre-trained CNN models are AlexNet, GoogleNet and VGGNet [21]. Despite their considerable accuracy and wide-spread applications some of the limitations of these models include; high hardware configuration and hyperparameter optimization for specific application to obtain higher accuracy. Hence, for this work the CNN model has been developed from scratch to have a model which is lighter in architecture that can be realized in a mobile or handheld device with low-end hardware configurations. The dynamics of different layers of the model as used for this work have been described in following sections.

2.3.1. Convolution layer

Convolution layer comes after the input layer and responsible for producing the feature map from the input images. The extracted feature map moves forward to the pooling layer which appears as the intermediate interface between convolution and fully connected layers. The feature map is the direct result of operation on the images using the filter bank. The convolution layer is also attributed with number of hyper parameters like image size, filter size, number of filters, strides and padding. Stride implies the pixel numbers by means of which the filter traverses through the image and padding. The zero padding has been appended for this work. The feature maps obtained through the convolution layer has been realized by the neurons. Same types of neurons have been assigned for the same type of feature mapping and different types of neurons have been assigned for different feature mapping. The k^{th} output feature map can be expressed as Eq.(2.1).

$$Y_k = f(W_k * x) \tag{2.1}$$

where, *x* implies the input image, W_k and Y_k denote the convolution filter and the output feature map, respectively, corresponding to the k^{th} layer. '*' computes the inner product of the model at each location of the input image and f(.) denotes the non-linear representation of the activation function [22] used to extract the non-linear features from the input image. ReLU is one of the most commonly used activation function used in the mapping operation that can be expressed as Eq.(2.2)

$$R(z) = \max(0, z) \tag{2.2}$$

2.3.2 Pooling layer

Pooling layer immediately follows the convolution layer and is used to reduce the spatial resolution of the feature map. It also introduces translational invariance to the small shifts and distortions. This layer reduces the number of parameters used to be learned. Two moments mean and maximum (popularly acronym as *max*) values have been calculated within the convolved image. Max_pooling is the aggregation layer which propagates maximum values to the next layer [23]. Global average pooling is another variation of pooling layer operation also performing the down sampling from the size of *height*×*size* to the array of size 1×1 by means of averaging operation. The output of the pooling operation on the k^{th} feature map can be expressed as Eq.(2.3).

$$Y_{kij} = \max_{p,q \in R_{ij}} \left(X_{kpq} \right) \tag{2.3}$$

where, X_{kpq} denotes the element at the (p, q) location inside the pooling region. R_{ij} defines the receptive field around the location (i,j).

2.3.3 Fully connected layers

This is the final layer of the hierarchical CNN model and similar to the NN architecture. This layer is also named as *dense* layer in CNN realization. It contains one or more hidden layers consisting of numbers of functional nodes that are fully connected to each other. The nodes of last hidden layer are connected to the output layer which consists of output nodes same as the number of classes in subjected problem. The features of any image are extracted in the convolution layers and then down sampled by the pooling layers to get flattened by the concerned flatten layer and finally mapped by the subset of the fully connected layers to the final output of the network by means of high level reasoning [23]. The final output thus forms the *N* dimensional vectors where*N* is the number of classes.

The objective function in the dense layer can be of different types depending on the type of classification task. For multiple class problems, *softmax* is most commonly used one and it can be expressed as Eq.(2.4). It provides the distributed probability of belongingness among the defined classes where summation of all the probabilities results 1 .The class with the highest probability is chosen as the declared class. The nodes of each of the fully connected layers perform the non-linear mapping following the specified objective function which is ReLU in common practice as well as in this work.

$$p(y = j / \Theta^{(i)}) = \frac{e^{\Theta^{(i)}}}{\sum_{j=0}^{k} e^{\Theta^{(i)}_{k}}}$$
(2.4)

where, p(y = j) is the probability of belongingness to j^{th} class out of total *k* number of classes. $\Theta = \sum_{i=0}^{k} w_i x_i$. Schematic representation of the CNN model as used in this work is presented in Fig. 2.4.

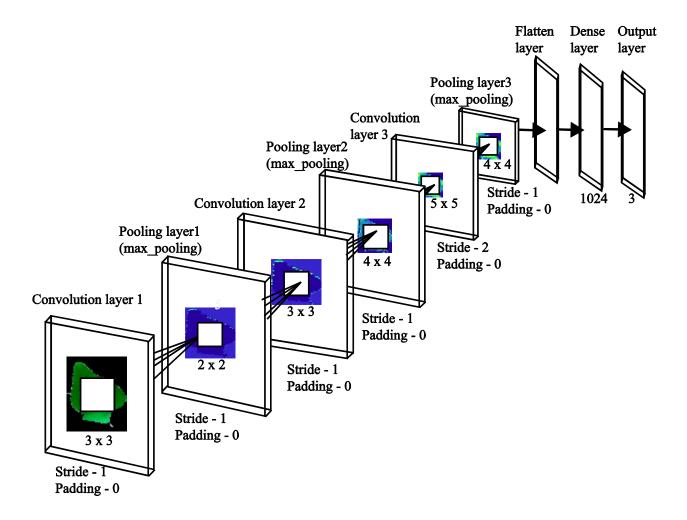


Fig. 2.4: Schematic representation of CNN used for medicinal plant leaf species and maturity classification.

2.4. Hyperparameter optimization

Driven by the layered architectures CNN consists of considerable number of hyperparameters. Setting of these plays crucial roles in model performance. This motivates towards optimization of hyperparameter settings. There are two prominent methods for that; i) starting with random values generated within a specified range for different parameters and employing some search heuristics for finding the optimum condition and ii) taking a pre-trained model and tuning the parameters. Since this work employs a custom CNN model the first approach was adopted. The key parameters for any CNN architecture are input image size (considering number of rows and columns are equal), number of filters or kernels in individual convolution and pooling layers, kernel dimension, stride size, method of pooling (max or mean pooling) and number of nodes in fully connected layer. As all these are integer numbers the binary heuristics can be employed.

In this thesis three optimization algorithms have been used namely, particle swarm optimization (PSO)[24], gray wolf optimization (GWO)[25] and a proposed modified version of (GWO). However all these algorithms were implemented in binary domain since the problem has been converted into binary search space. One reason for such domain conversion is towards simplicity of the algorithms since binary domain eliminated many control parameters of continuous domain. PSO is one of the most common iterative search oriented optimization techniques and has been used widely including CNN parameter tuning [24, 26].GWO being a comparatively new algorithm but found to be competitive to PSO. Table 2.3 shows a comparative study between PSO and GWO. The modification of the conventional GWO is presented to address the average based position update phenomenon. The goal was to achieve improved performance by modified GWO optimized CNN. The comparative study between the PSO and GWO in terms of their performance potentiality has been represented in the Table 2.3.Table 2.4 expresses the description of different metrics with their corresponding expressions.

Table 2.3: Comparative study between the PSO and GWO.

Sl_no	PSO	GWO
1	PSO is the stochastic algorithm simulating the	It is the met heuristic algorithm
	random movements of the swarms.	and simulated by the herds of
		wolves categorized as alpha, beta,
		delta and omega wolves as per the

role played in herds while attacking any prey.

2 The best solution is achieved in the search T space over which the swarms are flying th around.The best optimum solution is achieved w by the pbest or personal best and gbest or a global best position of the swarms b

The best solution is achieved in the search space over which the wolves are roaming in the attacking spree and it is achieved by the transformed average positional coordinate of the wolves.

3 PSO serves as the good multi objective Simple GWO cannot serve optimiser towards the multi objective optimisationwell, the attachment of external archive to the optimizer makes it the good candidate for the optimization process.

It shows the tendency of early convergence GWO shows the improved over the short range data and need much convergence over the PSO over memory space for updating velocity.
It is prone to fall in local optimum in the space GWO is also prone to fall in the local optimum in case of complex problem.

Serial No	Metric	Expression	Implication
1.	Recall or True Positive Rate (TPR)	TP / (TP + FN)	This metric conveys how well the model can identify the positive cases that are actually positive. Hence higher value is desired.
2.	Specificity or True Negative Rate (TNR)	TN/(TN + FP)	This metric conveys how well the model can identify negative cases which are actually negative. Hence higher value is desired.
3.	Precision	TP/ (TP + FP)	This metric denotes how much the model is precise or accurate among all those predicted positive and how many of them actual positive.
4.	F1_Score	2*(Precision*Recall)/(Precision + Recall)	This metric is the measure to maintain balance between the precision and recall.

Table 2.4 Descriptions of the respective metrics

			This is important in
			case of uneven class
			distribution.
5.	Classification	Number of correct predictions	This is meant for
	accuracy	/Total number of predictions	evaluating the
	Ş	I	classification model.
		made	This implies the
			fraction of
			predictions, the
			model makes.

2.4.1. Binary particle swarm optimization

BPSO has proven potential to reach the global minima with considerable speed and low computational complexity. Hence, in this work BPSO was opted. In brief the initialization, search and finding optimum solution in BPSO[25] follows the same path of PSO. The initial solutions are randomly generated in binary domain which is conceptualized as swarms existing in nature like bird flocks or fish swarms. Two best solutions are driving force of this algorithm, namely, local best (p_{best}) and global best (g_{best}). p_{best} is the best solution found by a group in its vicinity while g_{best} is the solution that is best among all the possible solutions in the entire search space. The term *best* is quantitatively assessed by evaluating each solution against a function called *fitness* function. Fundamentally BPSO mimic the food searching behaviors in natural swarms hence all the solutions other than local and global bests update their position and velocity based on those two parameters of the g_{best} and p_{best} solutions as expressed in Eq.(2.5) and (2.6), respectively.

$$v_i^{t+1} = \boldsymbol{\varpi} \, v_i^t + c_1 r_1 \Big(p_{best,i}^t - p_i^t \Big) + c_2 r_2 \Big(g_{best}^t - p_i^t \Big)$$
(2.5)

$$x_i^{t+1} = x_i^t + v_i^{t+1}$$
(2.6)

where, v_i^{t+1} and v_i^t are velocity of i^{th} solution at $(t+1)^{th}$ and t^{th} iteration while x_i^{t+1} and x_i^t are the position index for the same. ϖ is an inertia used for better convergence which is conventionally initiated at 0.9 and eventually reduced to $0.4.c_1$ and c_2 are the constant parameters generated in (1, 2) and r_1 and r_2 are the random numbers generated in (0, 1). Conceptually these random values bring the essence of cognitive and social aspects of natural swarms.

The update dynamics as presented in Eq.(2.5) and (2.6) result in continuous values like PSO which is probabilistically mapped to $\{0, 1\}$ in case of BPSO as shown in Eq.(2.7).

$$s_{ij}^{t} = \frac{1}{1 + \exp\left(-v_{ij}^{t}\right)}$$
(2.7)

where, *i* and *j* are the solution and bit index, respectively. Since the solutions are binary coded the probability s_{ij}^t is used as possibility of changing the bit value from 0 to 1 or vice-versa. Hence the position update in BPSO is presented as Eq.(2.8).

$$x_{ij}^{t+1} = \begin{cases} 1, if \ q_{ij}^t < s_{ij}^t \\ 0, otherwise \end{cases}$$
(2.8)

where, x_{ij}^{t+1} is the j^{th} bit of i^{th} solution at $(t+1)^{th}$ iteration.

2.4.2. Hyperparameter optimization using GWO

Gray wolf optimization (GWO)is a comparatively newly introduced swarm intelligence algorithm that has shown significant potential in different optimization performance tasks and

demands much credits for advantages over popular algorithms like particle swarm optimization (PSO) and artificial bee colony (ABC) in terms of optimal tunable parameters and faster convergence since it does not require any derived information in initial search which also helps in bypassing the local minima.

GWO is the bio-inspired metaheuristic designed algorithm which simulates the social behavior of the pack of wolves attacking any target prey in the hunting spree [27] The wolves in this algorithm are hierarchically classified into three groups; $alpha(\alpha)$, $beta(\beta)$, $delta(\delta)$ and $omega(\omega)$ on the basis of their actions and motivated by the hunting behaviors of gray wolves. During the hunting process, the position updates of the wolves occur for performing the several tasks like searching, encircling and attacking the pray. Mathematically these steps are represented as Eq. (2.9–2.10).

$$\overline{D} = |\overline{C} \cdot \overline{X}_p(t) - \overline{X}(t)|$$
(2.9)

$$\overline{X}(t+1) = |\overline{X}_p - \overline{A} \cdot \overline{D}(t)|$$
(2.10)

where, \vec{A} , \vec{C} and \vec{D} are the respective random vectors indicating the simulation of the encircling behaviors of the wolves. t stands for the current iteration, $\vec{A} = 2a \cdot \vec{r_1}a$ and $\vec{C} = 2 \cdot \vec{r_2}$. a is the control parameter expressed as in Eq. (2.11).

$$a = 2\left(1 - \frac{it}{N}\right) \tag{2.11}$$

where, the maximum number of iteration is limited by N, the random numbers in (0,1) are represented by \bar{r}_1 and \bar{r}_2 . The position of the grey wolf and the prey vectors are denoted by \vec{X} and \vec{X}_p respectively. The linear pattern of change in the variable 'a' has been tracked from 2 to 0. The relative updates are mathematically presented as Eq.s (2.12 – 2.14) where X_{α} , X_{β} and X_{δ} denote the position of α , β and δ . C_1, C_2 and C_3 implies set of random vectors in (0, 1). The current solution position has been denoted by \vec{X} .

$$D_{\alpha} = |C_1 \cdot X_{\alpha} - X| \tag{2.12}$$

$$D_{\beta} = |C_2 \cdot X_{\beta} - X| \tag{2.13}$$

$$\vec{D}_{\delta} = |C_3 \cdot \vec{X}_{\delta} - \vec{X}| \tag{2.14}$$

The Eq.s (2.15 - 2.18) represents the step size of the ϖ wolf where X_1 , X_2 and X_3 are the final and updated position vectors of α , β and δ wolves, respectively. $\overrightarrow{A_1}$, $\overrightarrow{A_2}$ and $\overrightarrow{A_3}$ vectors denotes the random vectors in the range (0, 1). The vectors $\overrightarrow{A_1}$ and \overrightarrow{C} play crucial roles in exploration and exploitation for the GWO algorithm. The exploration phase for wolves contains the conditions $|\overrightarrow{A}| < -1$ and $|\overrightarrow{A}| > 1$. The exploitation of the wolf consists of the condition $|\overrightarrow{C}| > 1$. The vector \overrightarrow{A} is being influenced by the controlling parameter a. It also causes change in behavior of the ϖ wolves with respect to the prey. If $|\overrightarrow{A}| > 1$, the grey wolf may run away from the dominant i.e. The bigger search space or the global search space in optimization has been addressed. On the other hand, if $|\overrightarrow{A}| < 1$, the ϖ wolves approach the dominant i.e. the local search space has been addressed as a result of shrinking of the search space.

$$X_1 = X_\alpha - A_1 \cdot D_\alpha \tag{2.15}$$

$$\vec{X}_2 = \vec{X}_\beta - \vec{A}_2 \cdot \vec{D}_\beta \tag{2.16}$$

$$\vec{X}_3 = \vec{X}_\delta - \vec{A}_3 \cdot \vec{D}_\delta \tag{2.17}$$

$$\vec{X}(t+1) = \frac{\vec{X}_1 + \vec{X}_2 + \vec{X}_3}{3}$$
(2.18)

2.4.3. Hyper parameter optimization using Modified GWO

GWO in its conventional form can be a potential optimizer as presented and adopted in previous chapters. In this chapter the conventional GWO has been modified to address the average-based movement dynamics of the wolves. The optimum solution in conventional GWO is reached by average position of the corresponding wolves which implies the average weight for all the wolves during their positional changes. But this is not the case in actual. The position of the α wolf is closest to the prey at the beginning and gradually it is getting away from the prey. On the other hand the position of β and δ wolves can vary keeping the position of β wolves less than or equal to that of α wolves and position of δ wolves less than or equal to that of the β wolves with respect to the dominant wolf or prey. This implies that α wolves are not always dominant and its weight can decrease with the increase in the weight values of β and δ wolves. On the basis of the hypothesis that the α wolves are closest to the prey, the α wolves are most important in attacking the prey and the $X_1 \succ X_2 \succ X_3$ the variable weight values ω_1, ω_2 and ω_3 have been introduced with ω_1 varying from 1 to 1/3 and ω_2, ω_3 varying from 0 to 1/3, respectively. The modification can be represented as Eq. (2.19) to accommodate such weighting strategy.

$$\vec{X}(t+1) = \omega_1 \vec{X}_1 + \omega_2 \vec{X}_2 + \omega_3 \vec{X}_3$$
 where $\sum_{i=1}^3 \omega_i = 1$ (2.19)

The weight parameters ω_1, ω_2 and ω_3 were formulated with following assumptions;

The random movement of α , β and δ wolves are influenced by the degree of reaction of the prey targeted by the wolves.

The variation of the weight values is limited between 1 and 1/3 for ω_1 and 1/3 to 0 for ω_2 and ω_3 maintaining $\omega_1 > \omega_2 > \omega_3$.

The reaction of the prey is measured on the scale from 0 to 1 with 0 presenting the initial state of the prey when encircling of the wolves around the prey begins and 1 when the prey reacts back to the wolves with the maximum strength.

The α wolves retreat from the prey with ω_1 decreasing from 1 to1/3 where 1 represents the most active state of the wolves ie, the close position of the wolves with respect to the prey and 1/3 represents the passive state ie, the position farthest away from the prey under the influence of the reactionary response of the prey. The β and δ wolves come close to the prey and the associated weight values ω_2 and ω_3 change from 0 to 1/3 respectively.

The initial value of the weight ω_1 for the α is 1 when weight values ω_2 and ω_3 of the β and δ wolves is 0.

The reactionary response of the prey wolf is the random number backed up by the probability function. The computation value of such probability function depends on the cost of antipredator defense due to fear and is expressed by the function f(k,v) of the Holling type II functional response [28] model represented as Eq.(2.20)

$$f(k,v) = \frac{1}{1+kv}$$
(2.20)

Where, *v* denotes the population of predators and $k \ge 0$ is the level of fear.

The respective range of variation of the weight value of the α wolves and the reactionary response of the prey measured by the probability function under the attacks of the grey wolves are mapped to the scale of range from 1 to 1/3 and0 to1, respectively. Any random state η of the prey can correspond to the momentary weight value m of the α wolves. The relation of the states has been given in Eq. (2.21).

$$n=3(1-m)/2;$$
 where $0 \le n \le 1$
or
 $m=(3-2n)/2;$ where $\frac{1}{3} \le m \le 1$ (2.21)

The value of *m* decides the weight value ω_1 of α wolves

It can be noted here that the optimization was performed in binary domain as in previous cases. The solutions were encoded as binary string as described in Eq. (8) in chapter 2 under section 2.4. The three different optimization processes have been applied to the individual works carried out in respective chapters. The discussion of the result of optimization has also been presented in consolidated format in result section under the comparative analysis section of each chapters.

The cost function plays pivotal role in any search based optimization algorithm. This function depicts the final optimal solution which is arrived by minimizing the cost function (or maximizing in some cases) in iterative manner. The cost function in this work was adopted from Rere et al. [29] as expressed in Eq.(2.22).

$$O = \frac{1}{2} \left(\frac{\sum_{N} (y - \hat{y})^2}{N} \right)^{\frac{1}{2}}$$
(2.22)

where, *y* and \hat{y} are the desired and actual classification accuracies, respectively. *N* is the number of training samples. The stopping criteria was either exhausting the specified number of iterations (100 in our case) or meeting the value of *O* at zero for three consecutive iterations.

The values for hyperparameters were encoded in binary and the examples of encoded representations as considered for this work are shown in Table 2.5. It can be seen that each solution is 30 bit long binary code with the specified range of values. A pictorial example of the optimization using BPSO dynamics has been shown in Fig. 2.5.

Layer type	Variables	Range	Bit length	Encoded example
Convolution	Image size	{32,64,128,256}	2	00 (for 32)
	Im_row = im_column			
	No. of kernels	[4,128]	7	1000000 (64)
	Kernel size	[1,8]	3	110 (6)
	Stride size	[1,4]	2	00 (1)
	Total bit length		14	
Pooling	Kernel size	[1,8]	3	100 (4)
	Stride size	[1,4]	2	01 (2)
	Method	{0,1}	1	1 (1)
	 maxpooling - 0 meanpooling - 1 			

Table 2.5: The hyperparameter coding for BPSO algorithm

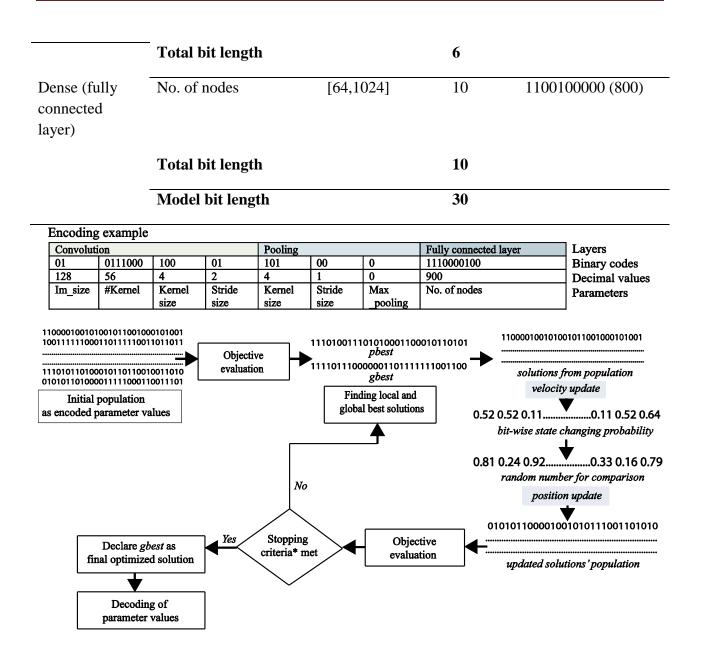


Fig. 2.5: Schematic representation of the BPSO algorithm.

2.5. Model performance evaluation

One of the important advantages of machine learning based implementation compared to the conventional instrumental method is the rigorous performance evaluation of the model prior actual implementations against different internal and external metrics. K-fold validation of the efficient methods to assess the model performance and consistency. In this case the

validation set is divided into equal k-fold and k-1 folds are subjected to training while rest fold is used for testing. In this manner it is guaranteed that each data is subjected to training and testing for at least once. In this thesis 10-fold cross validation has been used where 9 folds have been used for training and remaining 1 fold for testing. However, the 10-fold cross validation has been performed with number of times with different randomly validation dataset from the entire dataset. If the model can perform consistently well in this test with small standard deviation between the accuracies obtained with different folds then it can ascertained that the model is consistent in performance.

In terms of classification confusion matrixis one of the most popularly used method where the matrix is drawn with the actual and resulted true positive (TP), true negative (TN), false positive (FP) and false negative (FN) cases. As the name says TP reflects how many of classified true cases are actually true and TN reflects how many of classified false cases are actually false. The 'true' and 'false' is conventionally used but those can be directly mapped to a case 'belonging' to a particular class and 'not belonging' to that particular case. Classically the confusion matrix was reported for binary classifications (where there are only a positive and a negative case) as shown in Fig. 2.6 but it can be seamlessly extended to multi-class problem taking one class as true and rest all as false.

		Predicted		
		Positive	Negative	
ual	Positive	ТР	FP	
Actual	Negative	FN	TN	

Fig. 2.6: Confusion matrix for binary classification

Different important metrics are derived from the confusion matrix. Some of the important metrics as used throughout this thesis have been discussed in Table 2.6.

Table 2.6: Performance	evaluation metrics	derived from	confusion metrics
------------------------	--------------------	--------------	-------------------

Serial No	Metric	Expression	Implication
1.	Recall or True	e TP / (TP + FN)	This metric conveys
	Positive Rate (TPR)		how well the model can identify the positive cases that are actually positive. Hence higher value is desired.
2.	Specificity or True Negative Rate (TNR)		This metric conveys how well the model can identify negative cases which are actually negative. Hence higher value is desired.
3.	Precision	TP/ (TP + FP)	This metric denotes how much the model is precise or accurate among all those predicted positive and how many of them actual positive.

Chapter 2: Detection of	species and	maturity for m	edicinal plant leaves
F	- F		F

4.	F1_Score	2*(Precision*Recall)/(Precision	This metric is the
		+ Recall)	measure to maintain
		(incount)	balance between the
			precision and recall.
			This is important in
			case of uneven class
			distribution.
5.	Classification	Number of correct predictions	This is meant for
	accuracy	/Total number of predictions	evaluating the
	uccurucy	_	classification model.
		made	This implies the
			с <i>и</i> :
			fraction of
			predictions, the

As CNN does not use previously extracted features Cohen Kappa scoreis an important measure that can reflect the suitability of the automatically extracted features by CNN. It measures the inter-rater reliability of different classes and a higher value indicates betterment of extracted features.

The receiver operating characteristic (ROC)curve also plays important role in assessing the model potential. In this case the true positive rate (TPR) is plotted against false positive rate (FPR). The plot along with the area under the curve (ROC-AUC) depicts the performance. Commonly it is plotted against a no-skill naïve classifier as a diagonal line. Higher ROC-AUC conveys better performance in terms of classification accuracy.

2.6. Results and Discussions

The CNN classifier model has been implemented to carry out the classification process for different plant species and their maturity grading. The CNN has been implemented in python platform using the scikitlearn [30], keras [31] libraries and Tensorflow backend [32]. 30% of entire dataset was randomly selected for hyperparameter optimization using BPSO, GWO and the modified GWO algorithm. The convergence characteristicsare shown in Fig. 2.7 for 100 iterations. The plot of Fig. 2.7 shows that after 80 iterations the BPSO converges with more than 97% accuracy, the GWO converges with a little more than 98% accuracy and for modified GWO, the convergence varies with nearly 99% accuracy value. The hyperparameter finally arrived with modified GWO and as used for the presented results are consolidated in Table 2.7.

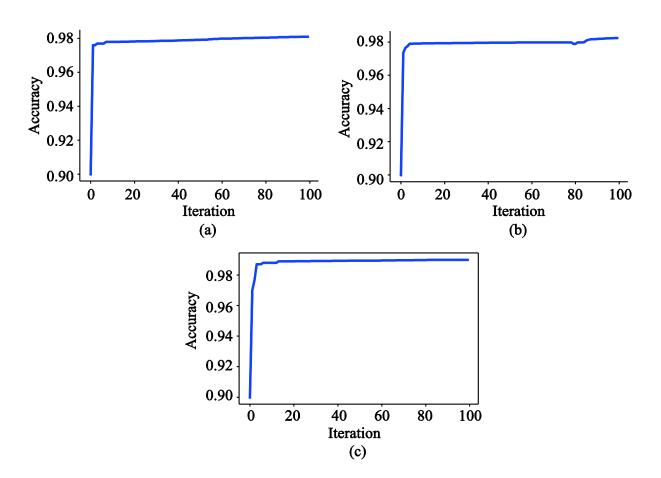


Fig. 2.7: Convergence plot for (a) BPSO,(b) GWO and (c) modified GWO optimizer

Layer types	Hyperparameters	Parameter
		values
Convolution 1	Image size	256×256
	No. of kernels	32
	Kernel size	3 × 3
	Stride size	1
Pooling 1	Kernel size	2
	Stride size	1
	Method	0
Convolution 2	Image size	128 ×128
	No. of kernels	64
	Kernel size	3 ×3
	Stride size	1
Pooling 2	Kernel size	4
	Stride size	1
	Method	0
Convolution 3	Image size	64×64
	No. of kernels	128

Table 2.7: Optimized hyperparameter settings of CNN

	Kernel size	5 ×5
	Stride size	2
Pooling 1	Kernel size	4
	Stride size	1
	Method	0
Flatten	Dimension	6
Dense	No of nodes	1024
Output	No. of nodes	3

Based on the convergence characteristics as given in the Table2.7, the modified GWO optimized CNN model has been chosen as the classifier for carrying out the species and maturity stage classification of the medicinal plants and all other metrics have been measured based on this chosen best.

The CNN by its convolution and pooling layer extracts the inherent features from the images. Also as the input image proceeds from outer to deeper layers more abstraction in feature extraction can be observed. This can be observed in Fig. 2.8 where the image from each layer of the model has been presented as a matter of proof that the model is working towards extracting the deeper features from the input images. As it can be seen in the input layer the image is visible as a plant leaf but the convolution layer and pooling layer following the input layer extracts the feature which is more about the shape and contour of the leaf. As the image proceeds through the network the extraction of features is more towards color and pixel correlation based as can be seen in the right end image.

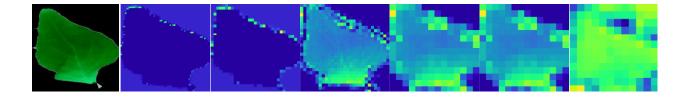


Fig. 2.8: Examples of feature extracted in different layers of CNN

2.6.1. Model validation

The model was validated using 10-fold classification [33]. It can be noted here that the entire dataset was partitioned in 60:20:20 ratios for training, validation and testing purpose. Hence, the all the validation results shown here are with that validation set which disjoint from training and testing set. The results of 10-fold cross validation are shown in Table 2.8.

Number	Training Data		Testing Data	
of folds	Loss	Accuracy (%)	Loss	Accuracy (%)
1	0.0114	98.31	0.0304	98.28
2	0.0319	99.94	0.0180	97.75
3	0.0154	99.91	0.0307	98.62
4	0.0072	98.97	0.0347	98.06
5	0.0313	99.60	0.0164	99.07
6	0.0338	98.28	0.0125	98.87
7	0.0157	98.84	0.0192	98.75
8	0.0048	99.83	0.0201	98.10

Table 2.8: Results of 10-fold cross validation

9	0.0097	99.58	0.0240	98.24
10	0.0147	99.91	0.0271	98.17
Average	0.018	99.32	0.023	98.39
Maximum	0.034	99.91	0.035	99.07
Minimum	0.005	98.31	0.013	97.75
Std. Dev.	± 0.011	± 0.662	± 0.007	± 0.417

Chapter 2: Detection of species and maturity for medicinal plant leaves

Table 2.8 reflects the consistency in the model performance. The accuracy for both training and testing set is in the tune of 98% with a considerably small (<1) standard deviation. At the same the loss values are also in the tune of 10^{-2} scale which has gone to as low as 10^{-3} scale in some cases. Such small loss is significant in terms of acceptability of model potential. Another important observation is the performance of the model with testing data which was not included in training is visibly close to the training dataset. This reflects the favorable generalization potential of the model as well.

Accuracy and loss are two important parameters to judge the model potential. In machine learning implementations plotting of those two parameters for training and validation sets is a popular measure to understand. The coherence of the plots between training and validation data reflects that the model is not biased and can address the over- and under-fitting issues of model. The over- and under-fitting problems are generally associated for cases where the model can give high accuracy to the training data but fails to perform with considerably accuracy when unknown test data is subjected. The accuracy and loss plots for the entire model as well for classification tasks for individual leaf species (neem, tulsi and kalmegh) under consideration have been shown in Fig. 2.8 for 50 epochs.

Fig. 2.9 conveys that the plots for accuracy and loss with training and validation dataset are similar in nature and trend. The observation remains same for loss and accuracy plots for individual species of leaves. However, the degree of accuracy and loss is varying between species. In none of the cases the gap between the plots at the end of epochs is not visibly high which reflects that the model is not biased. This visibly good in case of tulsi and kalmegh where the plots for training and validation are almost converging. In case of neem there is gap but it is considerably less. In terms of values in all the cases the accuracy is in the range of 96 – 98% while loss values are in the tune 10^{-2} . Overall the validation plots vouch the generalization potential of the model like the 10-fold cross validation results.

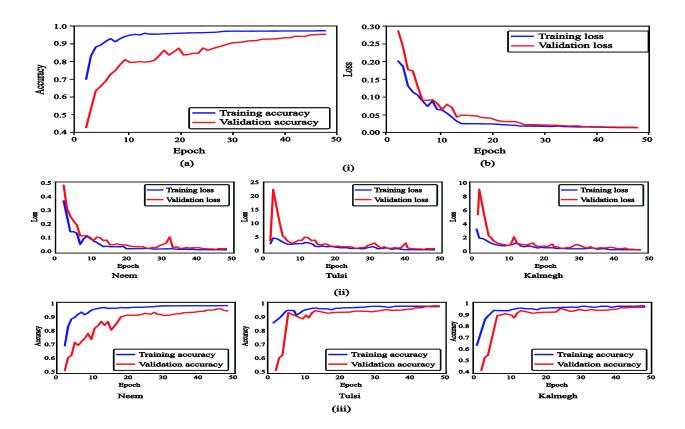


Fig.2.9:Model validation plots for (i) plots with entire training and validation set, (ii) loss plots for individual species and (iii) accuracy plots for individual species.

2.6.2. Evaluation against confusion matrix

The confusion matrices [34] for model performance with entire dataset and individual leaf species have been consolidated in Fig. 2.10. The values for derived metric described in section 2.3 have been presented in Table 2.9 and 2.10 for leaf species and maturity classification, respectively.

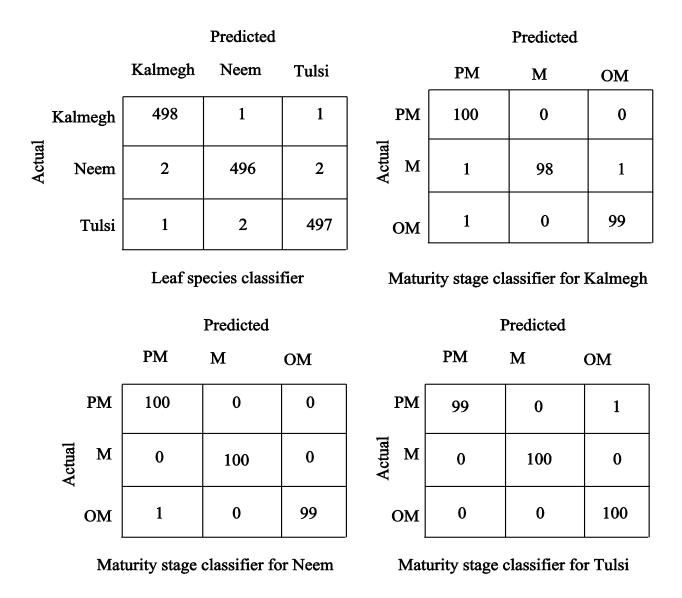


Fig. 2.10: Confusion matrix for leaf species classification and maturity classification for individual leaf species. The maturity stages premature, mature and over-mature have been abbreviated as PM, M and OM respectively.

Leaf Classes	Precision	Sensitivity/	FMeasure	Specificity
		recall		
Kalmegh	1.00	1.00	0.99	
Neem	0.99	0.98	0.98	
Tulsi	0.99	1.00	0.99	
Micro avg	1.00	0.99	0.99	
Macro avg	0.99	0.99	0.99	0.98
Weighted avg	1.00	0.99	0.99	

Table 2.9: Performance evaluation for leaf species classification

 Table 2.10: Performance evaluation for maturity stage classification

Maturity type	Precision	Sensitivity/ recall	FMeasure	Specificity
Premature	0.99	1.00	1.00	
Mature	0.99	0.98	0.98	
Overmature	0.99	1.00	0.99	
Micro avg	0.99	0.99	0.99	
Macro avg	0.99	0.98	0.99	0.98
Weighted avg	1.00	0.99	1.00	
	Premature Mature Overmature Micro avg Macro avg	Premature0.99Mature0.99Overmature0.99Micro avg0.99Macro avg0.99	Premature 0.99 1.00 Mature 0.99 0.98 Overmature 0.99 1.00 Micro avg 0.99 0.98 Macro avg 0.99 0.99	Premature 0.99 1.00 1.00 Mature 0.99 0.98 0.98 Overmature 0.99 1.00 0.99 Micro avg 0.99 0.99 0.99 Macro avg 0.99 0.98 0.99

Neem	Premature	1.00	0.99	0.99	
	Mature	1.00	0.99	0.99	
	Overmature	0.98	0.99	0.98	
	Micro avg	0.99	0.99	0.99	0.99
	Macro avg	0.99	0.99	0.99	
	Weighted avg	0.99	0.99	0.99	
Tulsi	Premature	0.99	0.98	0.99	
	Mature	1.00	0.99	0.99	
	Overmature	0.99	1.00	1.00	
	Micro avg	0.99	0.99	0.99	0.99
	Macro avg	0.99	0.99	0.99	
	Weighted avg	1.00	1.00	0.99	

The performance measures of the confusion matrix show that the model can visibly perform for species identification between three medicinal leaf species. In all the cases more than 495 unknown (not included in the training or validation sets) samples out of 500 samples have been correctly identified. Similarly in case of maturity stage identification about 99 samples out 100 have been correctly identified in terms of their maturity stage. The metric values presented in Table 2.9 and 2.10 echo the same facts. The overall accuracy in the range of 98 - 99% confirms the ability of the model to provide promising performance for both species and maturity classification. The precision and specificity values in the tune of 98% also convey that the model can identify the actual species and maturity of the subjected samples with considerable accuracy.

It can be observed that in some cases the accuracy and other metrics have reached even 100% it is because for some of the plant species the visual different is very prominent between the maturity levels. For instance, in case of neem leaves the greenness in the leaves considerably decrease when it turns to mature from premature but not such visual difference is present when it turns to over-mature in terms of color. However, the shape and creases occurs when it turns to over-mature. As CNN captures not only a single feature but an abstracted holistic features in cases where the classes are not visibly apart it can distinguish considerably. The F-Measure is also an important metric that provide the balance between sensitivity and specificity. In case the F-Measure is low the model turns to be a biased one which can either detect the positive cases with high accuracy but not the negative cases or vice-versa. But, in this case the F-Measure value is also more than 0.98 which conveys that in 98% cases the model can correctly identify the species and maturity stages of the leaves accurately.

2.6.3. Cohen kappa coefficient score

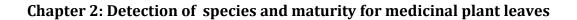
Cohen kappa [35] is one of the metric that assesses the inter rater reliability of different classes. The high value for the coefficient (near to 1) reflects goodness of the feature selection. The value of this coefficient is represented in Table 2.11 for the species classification and maturity classification. The estimated value for the coefficient is found to be 0.99 across all the species and maturity classes which convey the suitability of the extracted features by CNN for the subjected classification tasks.

Classifier	Classes taken for measurement	Cohen Kappa score	
Leaf species classifier	Kalmegh, Neem and Tulsi leaves	0.9988	
	Pre-mature, mature and over-mature		
Maturity stage classifier	Kalmegh	0.9998	
	Neem	0.9988	
	Tulsi	0.9980	

Table 2.11: Evaluation of Cohen Kappa score for Leaf species classifier and Maturity classifier

2.6.4. Receiver operating characteristics (ROC) curve

The ROC plots [36] for different classification task are shown in Fig. 2.11. It can be observed that for species the area under coverage is considerably high for all the three medicinal plants under consideration. The lowest ROC-AUC is also in the tune of 0.98 which conveys that all the classifiers can classify the actual species of medicinal leaf among different leaf species with more than 98% accuracy. In case of maturity stage classification, the area coverage for different maturity stages among different plants is consistently in the range of 0.98 - 1. That reflects the potential of the presented CNN model towards correct identification of leaf maturity. One thing can be noticed here that for the all the cases the ability of identifying premature leaves is almost 100% which convey the fact the visual difference between premature and mature or over-mature is very certain but the potential of the model is reflected by high accuracy to distinguish between mature and over-mature which are comparatively close in terms of their visual appearance and difficult to be segregated by human vision.



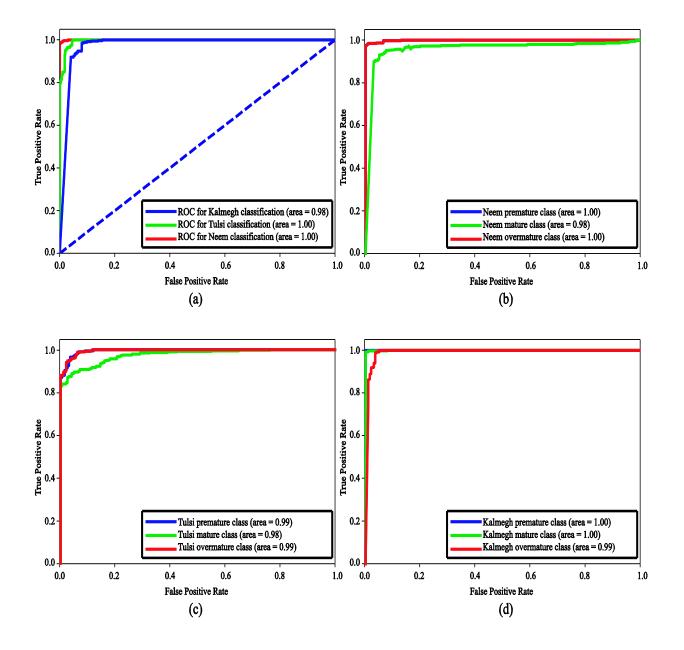


Fig. 2.11:ROC curves of classification of (a) species and maturity stages for (b) neem, (c) tulsi and (d) kalmegh leaves.

2.6.5. Comparative analysis

Table 2.12 presents a comparative analysis on the performance of CNN and other conventional classification algorithms, namely, artificial neural network with back propagation multilayer perceptron architecture (BPMLP) [37], support vector machine (SVM) [38] and random forest (RF) [39]. Unlike CNN all these algorithms need prior feature extraction. Hence, the statistical parameters mean, median, standard deviation, minimum and maximum values for individual color channels i.e. R, G, B were extracted as features. This resulted feature set dimension of 4500×5 which was again splitted into training, validation and testing sets with 60:20:20 ratios as CNN implementation. Apart from the conventional models some of the pre-trained CNN models namely AlexNet [40], VGG 19[41] and ResNet 50 [42] have also been included in the comparative analysis.

	Species classification/Maturity stage classification					
Classification	Accuracy	Sensitivity	Specificity	Precision	FMeasure	
Species	0.97	0.98	0.96	0.97	0.96	
Maturity	0.96	0.97	0.96	0.97	0.96	
Species	0.96	0.95	0.96	0.96	0.95	
Maturity	0.96	0.95	0.96	0.96	0.95	
Species	0.95	0.95	0.97	0.95	0.95	
Maturity	0.95	0.95	0.96	0.94	0.96	
	Species Maturity Species Maturity Species	ClassificationAccuracySpecies0.97Maturity0.96Species0.96Maturity0.96Species0.95	ClassificationAccuracySensitivitySpecies0.970.98Maturity0.960.97Species0.960.95Maturity0.960.95Species0.950.95	ClassificationAccuracySensitivitySpecificitySpecies0.970.980.96Maturity0.960.970.96Species0.960.950.96Maturity0.960.950.96Species0.950.950.97	ClassificationAccuracySensitivitySpecificityPrecisionSpecies0.970.980.960.97Maturity0.960.970.960.97Species0.960.950.960.96Maturity0.960.950.960.96Species0.950.950.970.95	

Table 2.12: Performance comparison of presented CNN model with other classifiers

Deep learning based

AlexNet	Species	0.96	0.94	0.95	0.96	0.96
	Maturity	0.94	0.94	0.96	0.97	0.94
VGG19	Species	0.93	0.93	0.94	0.95	0.96
	Maturity	0.94	0.93	0.95	0.96	0.96
ResNet50	Species	0.95	0.95	0.93	0.93	0.94
	Maturity	0.93	0.94	0.94	0.94	0.95
Presented	Species	0.99	0.99	0.98	1.00	0.99
CNN model optimized with BPSO	Maturity	0.99	0.99	0.99	0.99	0.99
	~ .	0.00			1.00	0.00
Presented CNN model	Species	0.99	0.99	0.98	1.00	0.99
optimized	Maturity	0.99	0.99	0.99	0.99	0.99
with GWO						
Presented	Species	0.99	0.99	0.98	1.00	0.99
CNN model optimized	Maturity	0.99	0.99	1.00	1.00	1.00
with						
modified GWO						

Chapter 2: Detection of species and maturity for medicinal plant leaves

Table 2.13 shows that CNN outperforms other classifiers under consideration. SVM performs similarly for both species and maturity stage detection tasks and performance is not good as BPMLP and RF. BPMLP and RF performs equivalently, but considering the computational complexity RF may be favored. The values computed by respective metrics carried out by the

Chapter 2: Detection of species and maturity for medicinal plant leaves

deep learning-based classifiers AlexNet,VGG19 and ResNet50 are not also as good as those presented in the CNN model developed in this work. CNN not only performs better than the other classifiers in comparison but also eliminates the feature extraction step. Hence, presented CNN based classifier can be considered as more potential method. It is clearly visible from the performance presentation of the optimized CNN that BPSO optimized CNN and the GWO optimized CNN are analogous in terms of both the species and maturity classification. The modified GWO has slightly higher impact on performance metric of the CNN model compared to the GWO approach.

2.6.6. GUI presentation

The GUI implementation for the species as well as the maturity classification of the leaves neem, tulsi and kalmegh has been presented in this chapter. The Fig 2.12 presents the species wise and maturity wise identification for any unknown leaf sample belonging to any of the respective species classes, neem, tulsiandkalmegh and to any of the three different maturity stages premature, mature and overmature. The prediction regarding the correct species or the maturity state has been expressed by the corresponding prediction vector. The prediction vector for the GUI has been expressed as the combination of 0 and 1. The species classification activity for any unknown sample of the medicinal plants has involved the prediction vectors [1.0.0], [0.1.0] and [0.0.1] for leaves kalmegh, neem and tulsi respectively. The maturity identification process involving the determination of premature , mature and overmature states for all different medicinal leaves respectively has included the prediction vectors [1.0.0], [0.1.0] and [0.0.1].

Medicinal Leaf species Classif	ication Window		Medicinal Leaf species Classification Window	w	
				Leaf Species Classifieir Classification result 1. o. o Leaf specie: Neem	
Load image	Classify leaf		Load image Clas	ssify leaf	
Train new datase	Ø Med Lo				
a) Medicinal Leaf species Classif		e Classifeir	Medicinal Leaf species Classification Wir	Maturity Stage Classifier Classification result [1.0.0	
	n Maturity sta	age: Mature Neem		Maturity stage: Pre-mature	Kalmegh
Load image	Classify maturity		Load image Cla	assify maturity	
Train new data:	set		Train new dataset		
		Classi	ification result 0.0.1 ification result 0.0.1 iturity stage: Over-mature Tu aturity	lsi	
(b)					

Fig. 2.12:Screenshot of GUI windows corresponding to the medicinal leaf (a) species and (b) maturity identification for the unknown samples.

2.7. Conclusion

This chapter has presented a promising computer vision framework based on CNN architecture towards classification of species and maturity of medicinal leaves. The details of variation of different bio-actives present in the medicinal lave and their accountability towards the maturity wise discrimination has been examined in justification to the problem. The development of an indigenous imaging chamber and its application in capturing images of plant leaves have been elaborated in this chapter. The chapter includes the procedure starting from the sample collection to CNN model development. It also highlights the use of BPSO,GWO and modified GWO optimization for hyperparameter optimization in order to get more generalization and performance of the CNN model. The performance of the modified GWO has shown slight improved performance towards the accuracy of classification. The validation of the model and classification results with unknown testing set has been evaluated against standard metrics which show that the presented method can achieve up to 98% accuracy. The comparative analysis has also been presented towards justification of using CNN over some of the conventional classifiers. On an overall assessment, by virtue of significant performance potential of the presented framework, it can be considered as an addition to the existing instrumental and analytical screening and sorting methods of plants and medicinal leaves.

Reference

- Manjunath B.S., OhmJ.R., Vasudevan V.V., Yamada A.(2001). Color and texture descriptors, IEEE Transactions On Circuits and Systems for Video Technology, 11(6), pp. 703-715.
- Rafiqa A.et.Al. (2013). Application of computer vision system in food processing- A review. J Eng Res Appl 3(6):1197–1205.

- Faridi H., Aboonajmi M. (2017). Application of machine vision in agricultural products. In: Proceedings 4th iranianinternational NDT conference, Olympic Hotel, Tehran, Iran, Feb 26–27.
- Yalcin H., Razavi S.(2016). Plant classification using convolutional neural networks, *Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics)*, pp. 1-5, doi: 10.1109/Agro-Geoinformatics.2016.7577698.Wilfa P et al (2016), Computer vision cracks the leaf code. PNAS 113(12):3305–3310.
- 5) Chaki J., Parekh R., Bhattacharya S. (2015). Recognition of whole and deformed plant leaves using statistical shape features and neurofuzzy classifier. In: IEEE Proceedings of 2nd international conference on recent trends in information system (ReTIS): 2015.
- Keivani M., Mazloum J., Sedaghatfar E., Tavakoli M.B. (2020). Automated analysis of leaf shape, texture, and color features for plant classification. Traitement du Signal 37(1):17–28. https://doi.org/10.18280/ts.370103.
- Eid H.F., Abraham A. (2018). Plant species identification using leaf biometrics and swarm optimization: a hybrid PSO GWO, SVM Model. Int J Hybrid IntellSyst 14(2):1–11.
- Turkoglu M., Hanbay D. (2019). Recognition of plant leaves: an approach with hybrid features produced by dividing leaf images into two and four parts. Appl Math Comput 352:1–14.
- Mahajan S., Raina A., Gao X.Z., PanditA.K. (2021). A plant recognition using morphological feature extraction and transfer learning over SVM and AdaBoost. Symmetry 13:356. https://doi.org/10.3390/ sym13020356.
- 10) Bhuiyan M.M., Abdullahil-Oaphy M., KhanamR.S., IslamM.S. (2020).MediNET: A Deep Learning Approach to Recognize Bangladeshi Ordinary Medicinal Plants Using CNN.
- 11) LeCun Y., Bengio Y., Hinton G.R. (2015). Deep learning. Nature 521(7553):436-444.
- Hinton E., Osindero S., TheY.W.(2006). A fast learning algorithm for deep belief networks. Neural Comput 18(7):1527–1554.
- Jaswal D., SowmyaV., Soman K.P. (2014). Image classification using convolutional neural networks. Int J Adv Res Technol 3(6):1661–1668.

- 14) Lipton Z.C., Berkowitz J. (2015). A critical review of recurrent neural networks for sequence learning, arXiv:1506.00019v4[cs.LG] 17 Oct, 2015.
- 15) Salle A., Villavicencio A. (2018). Restricted recurrent neural Tensor networks: Exploiting word frequency and compositionality. In: Proceedings of the 56th annual meeting of the association for computational linguistics (Short Papers): 8–13, Melbourne, Australia, July 15 – 20.
- 16) Sardogan M., Tuncer A., Ozen Y. (2018). Plant leaf disease detection and classification based on CNN with LVQ algorithm. In: 2018 3rd International conference on computer science and engineering (UBMK) (pp. 382–385). IEEE.
- 17) Deepalakshmi P., LavanyaK., Srinivasu P.N. (2021). Plant leaf disease detection using CNN algorithm. Int J InfSyst Model Des (IJISMD) 12(1):1–21.
- 18) Karthik R., Hariharan M., Anand S. et al. (2019). Attention embedded residual CNN for disease detection in tomato leaves. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105933.
- Jeon W.S., Rhee S.Y. (2017). Plant leaf recognition using a convolution neural network. Int J Fuzzy Log IntellSyst 17:26–34.
- 20) Sapijaszko G., MikhaelW.B.(2018). An overview of recent convolutional neural network algorithms for image recognition. In:2018IEEE 61st International midwest symposium on circuits and systems (MWSCAS), pp. 743–746. https://doi.org/10.1109/MWSCAS.2018.8623911.
- Yamashita R., Nishio, M., Do, R.K.G. (2018). Convolutional neural networks: an overview and application in radiology. Insights Imaging 9:611–629.
- 22) Traorea B.B., Foguema B.K., Tangara F. (2018). Deep convolution neural network for image recognition. Eco Inform 48:257–268.
- 23) Wang G.,Guo J., Chen Y., Li Y., Xu Q. (2019). A PSO and BFO-based learning strategy applied to faster R-CNN for object detection in autonomous driving.IEEE Access. https://doi.org/10.1109/ACCESS.2019.2897283.
- 24) ShahrakiM.H.N., Taghian S., Mirjalili S.(2020). An improved grey wolf optimizer for solving engineering problems, Expert Systems with Applications, vol. 166, p. 113917.

- 25) Mirjalili S., Mirjalili S.M., Lewis A. (2014). Grey wolf optimizer. AdvEngSoftw 69:46-61.
- 26) Wang Y., Zhang H., Zhang G. (2019).cPSO-CNN: An efficient PSO based algorithm for finetuning hyper-parameters of convolutional neural networks. Swarm EvolComput 49:114–123.
- 27) Wang X.,Zanette L., Zou X.(2016). Modelling the fear effect in predator-prey interactions, Mathematical Biology, J. Math. Biol. 73:1179–1204.
- 28) Dupke C., Peters A., Morellet N. *et al.* (2021).Holling meets habitat selection: functional response of large herbivores revisited. *Mov Ecol* 9, 45 (2021). https://doi.org/10.1186/s40462-021-00282-6
- 29) Rere L.M., Fanany M.I., ArymurthyA,M,(2016), Metaheuristic Algorithms for Convolution Neural Network. *Computational Intelligence and Neuroscience*, 2016, [1537325]. https://doi.org/10.1155/2016/1537325.
- 30) Buitinck. L. et. al. (2013). API design for machine learning software: experiences from the scikitlearn project. In: European conference on machine learning and principles and practices of knowledge discovery in databases. arXiv:1309.0238.
- 31) Chollet F. (2015).Keras. https://github.com/fchollet/keras, Accessed on 10 January 2020.
- 32) Abadi M.et.al.(2016). TensorFlow: A system for large-scale machine learning. In:12th USENIX Symposium on operating systems design and implementation (OSDI 16), USENIX Association:265–283.
- 33) Berrar D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology,1, Elsevier, 542 -545.
- 34) Santra A.K., Christy, C.J. (2012). Genetic algorithm and confusion matrix for document clustering. Int J ComputSci 9(1):322–328.
- 35) McHugh M.L. (2012). Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282.
- 36) Fawcett T. (2006). An introduction to ROC analysis. Pattern RecognLett 27:861-874.
- 37) Achkar R., Owayjan M., Harajli B., Khazaal D., Dbouk M., Magnifico G. (2019), Brain Tumor Classification Using Back Propagation Algorithm in MLP, 2019 Fourth International Conference

on Advances in Computational Tools for Engineering Applications (ACTEA), pp. 1-5, doi: 10.1109/ACTEA.2019.8851109.

- 38) Cristianini N, Shawe-Taylor J. (2000), An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge, Book website: www.support-vector.net.
- 39) Breiman L.(2001). Random Forests. Machine Learning, 45, 5-32.
 http://dx.doi.org/10.1023/A:1010933404324.
- 40) Xiao L., Yan Q., Deng S. (2017). Scene classification with improved AlexNet model, 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1-6, doi: 10.1109/ISKE.2017.8258820.
- 41) Bansal M., Kumar M., Sachdeva M., Mittal A. (2021). Transfer learning for image classification using VGG19: Caltech-101 image data set. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03488-z.
- 42) Celano G.G.A. (2021).A ResNet-50-Based Convolutional Neural Network Model for Language ID Identification from Speech Recordings. In Proceedings of the Third Workshop on Computational Typology and Multilingual NLP, pages 136–144, Online. Association for Computational Linguistics.

CHAPTER 3

SPECIES AND MATURITY GRADING OF VEGETABLES – CASE STUDY WITH TOMATOES

3.1Introduction

Vegetables are essential part of our daily food habit [1]. These provide required nutrients to our body that enhances immunity against several diseases [2]. Among all the vegetables, tomato isone of themost widely consumed vegetables across the world including India. Tomato has the unique capacity of reducing the risk of cancer, osteoporosis, and other different types of cardiovascular diseases [2]. The presence of the chemical compound like *lycopene* inside tomato renders its antioxidant properties [3].

Tomato is available in different species and maturity stages. Pear and roma are two popular varieties of tomato in India. In case of tomato fruit, the change in the maturity is expressed in terms of change in the peel color along with the textural change of the fruit skin. Since both the agro produces under consideration show biochemical reactions after harvesting it is important to monitor their maturity and assess the number of days it can be stored which is commonly referred as *days-to-rot*.

The work presented in this chapter has been published as:

Mukherjee G, Chatterjee A, Tudu B..(2022). A Computer Vision Approach Towards Maturity Stage Classification of Tomatoes Using Second Order Wavelet Features.In: Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H. (eds) Proceedings of International Conference on Data Science and Applications . Lecture Notes in Networks and Systems, vol 288. Springer, Singapore. https://doi.org/10.1007/978-981-16-5120-5_10 The different stages of ripening can be divided into three stages; namely, premature, mature and over-mature. Premature corresponds to unripe, mature with slightly ripen and over-mature with the fully ripen having the trends of growth towards the rotten stage at slow pace.

The detection of species and maturity plays pivotal role in terms of human health as well as economy of a country. For instance, if the days-to-rot can be predicted the harvested fruits can be well utilized in the supply chain to the supermarket avoiding the loss of rotten fruits. Some of the works utilizing various different techniques in this direction have been consolidated in the Table 3.1.

Dage technique	Mathad	Result
Base technique	Method	Result
Portable electronic nose	The PCA and LDA techniques	The accuracy value of
device attached to 10 metal oxide sensors [4]		100% has been
		achieved
The internal structures of the	The MR image information clubbed	The accuracy value of
tomato fruits has been meas-	with the classical analysis techniques in	90% has been obtained
ured by means of the two	tracking structural and physiochemical	in this process.
dimensional magnetic reso-	changes during the maturation of fruit.	
nance images.[5]		
Raman spectra in determina-	The method of self modelling mixture	The decrease in the
tion of the internal maturity	analysis for separating the Raman spec-	SID value with ripen-
of the tomato[6]	tra corresponding to the outer pericarp	ing of tomatoes is dis-
	and Teflon layer.	tinctly found in the
		Raman spectra.
Near infrared spectroscopy	The PCA and soft independent	The classification
technique in classification in	modelling of class analogy(SIMCA).	accuracy value of
terms of maturity and to		96.85% has been
predict about the textural		achieved.

Table 3.1: Some of the reported techniques for automatic grading of tomatoes

Chapter 3: Species and maturity grading of vegetables -case study with tomatoes

properties of the fruit [7]		
The visible and near infrared	The Bayesian and joint variety global	The procedure carried
spectroscopy for determining	classification model in predict the	out here resulted
the maturity of the green	tomato maturity	with the accuracyvalue
tomatoes[8]		of 85 %.
The fuzzy rule based	Mamdani fuzzy inference systems for	The classification
classification approach to	classifying tomato into six different	accuracies has been
determine the ripeness of	classes.	found to be 94.29%.
tomato. [9]		
Chemical sensors based	Tristimulus and PCA methods	Improved response of
analysis depending on the		PCA vouching for the
carbon nanotubes and carbon		electronic distinctions
nanocoils for assessing the		of the ripening stages
ripeness stages of tomato[10]		tomatoes

The instrumental methods include limitations like expensive instruments, time consuming and precise sample preparation process and lack of portability. Most of these techniques are destructive and invasive as well. On the other hand manual inspection is tedious, time consuming and subjective. Computer vision can be a promising proposition to address all such limitations of current instrumental and manual methods. The advancement in CNN has further enhanced the potential of computer vision models in different detection and prediction tasks for agro produces. This chapter elaborates a CNN based computer vision framework that can be used for species and maturity classification for tomatoes. A new swarm intelligence method called gray wolf optimization (GWO) has been adopted in this work to optimize the hyperparameters in order to enhance performance of the model in terms of accuracy as well as consistency.

3.2. Dataset preparation

3.2.1. Sample collection

Among variety of vegetables tomato was selected for this work due to its world-wide consumption and ready availability throughout the year. There are different species of tomatoes. In this work two of them namely,roma and pear were selected due to their ready availability in local market. All the samples of tomato under consideration were collected in the same season in order to avoid the seasonal effects. Three maturity stages were labeled as i.e. premature, mature and over-mature depending on their ripeness and days-to-rot. It is worth mentioning here that lowering the ripening stage makes longer days-to-rot in normal storage condition. Total 15000 tomatoes comprising of 7500 for each species were collected. For each of the maturity stages 2500 samples were collected. While procuring the maturity stage classification was done by botanists and the samples were preserved at 20°C until they were subjected for imaging.

3.2.2. Image acquisition

The indigenous imaging chamber as described in section 2.2.2 was used for this work. It can be noted here that, there are publicly available datasets for tomato classification but the motivation for dataset preparation was towards inclusion of more custom distortions and better observations as of those which can provide a more generalized classification model.

Due to the huge numbers of samples, in this case also multiple samples were captured in single imaging run and followed by automated image isolation process as described in Table 3.2. After isolation the background subtraction process was carried in order to increase the region of interest towards improving the model accuracy. Some of the results of the automated isolation and background subtraction are shown in Fig. 3.1.

Table 3.2: Tomato and banana image isolation algorithm

Step 1:The fruits were arranged in a row on the white sheet of white paper maintaining a fixed gap between samples.

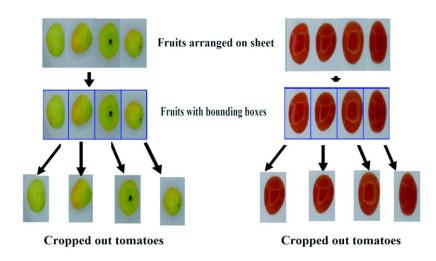
Step 2: A horizontal scan line was drawn from left to right crossing all the individual images of samples.

Step 3: The image was decomposed in R, G and B color channels. Pixel values were scanned along the scan line tracking the number of transitions corresponding to a particular color channel between two consecutive pixels with respect to the adaptive threshold value obtained using Otsu's algorithm. The selection of color channel and finding the threshold value has been described in detail in section 3.2.2.1. The number of fruits was tracked by counting the number of transitions.

Step 4:The horizontal length between the two extreme coordinates(left to right) along the scan line was measured along the *X*-axis and the measured length was divided by the number of fruits laid on the sheet to retrieve the location of the bounding box around each of the fruit.

Step 5:Each individual fruit along the line were surrounded by the respective bounding boxes based on the coordinate position detected in step 4.

Step 6:Finally the image of respective fruit under each bounding box was cropped into separate images.



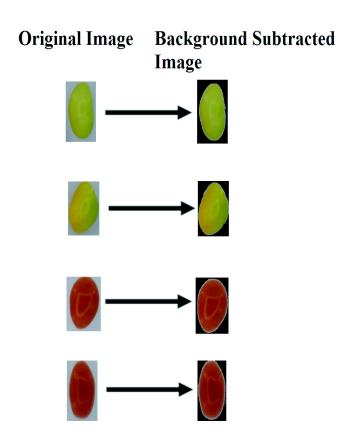


Fig. 3.1: Examples tomato isolation and background subtraction output

3.2.2.1. Channel selection and thresholding for image isolation

The color channel separation for one of the tomato image is shown in Fig. 3.2. As it can be seen that the color channels (R, G and B) are not similar in nature as that largely depends on the color of tomato skin. It can also be seen that the histogram of B channel is bimodal with a considerable gap between peaks. Hence this channel was subjected to the Otsu's segmentation. To automate this process randomly 100 images were selected for each species and maturity stage of tomatoes. The mean of adaptive threshold values was chosen as the threshold value for that species and maturity stage. For example, in this way the threshold value was 100 for pear mature class the value was taken as 80.

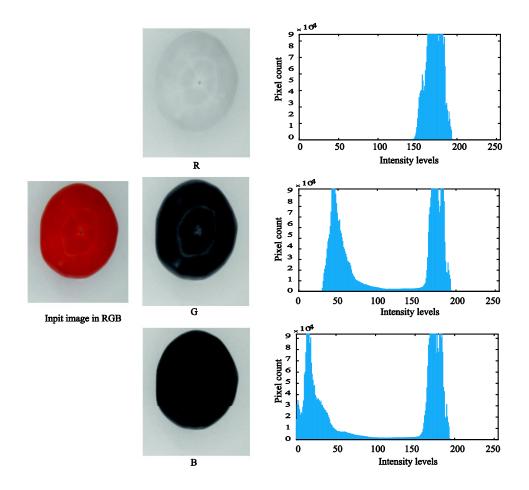


Fig. 3.2: Color channel dynamics for tomato images

3.3. TomNet – CNN model for species and maturity stage classification of tomatoes

This section presents the CNN model developed for tomato grading in terms of their species (roma or pear) and maturity stage (either of premature, mature and over-mature). For convenience purpose the model has been called TomNet throughout this thesis. Conventionally the CNN model consists of three distinct layers convolution layer, pooling layer and the final fully connected layer. The CNN model for this work consisted of 7 convolution layer each followed by max pooling layer. The output layer was connected to 3 fully connected layers. The filter size for convolution and max_pooling layer was chosen as 3×3 and 2×2 , respectively. The schematic representation of the model is shown in Fig. 3.3. The layer dynamics of TomNet are presented in Table 3.3. As it can be seen TomNet uses the BatchNormalization (batch_norm) function which significantly improves the performance of CNN models by faster training, improved regularization and avoiding internal covariate shifts. All these contribute towards higher potential of the model to avoid over-fitting problem.

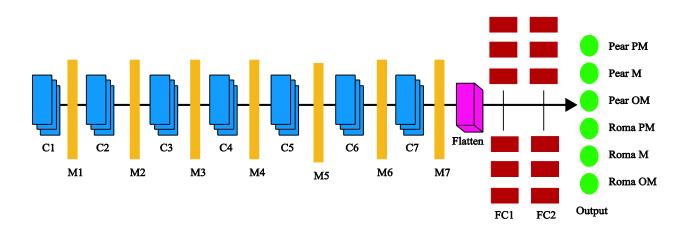


Fig. 3.3: Schematic representation of TomNet architecture

In training stage the learning rate was initiated at 0.005 and the batch size was maintained at 64. Due to the selection of *Adam* as optimization function no manual modulation of training rate was needed. Values for exponential decay rate in respect to first and second moment were 0.9 and 0.98, respectively. Examples of layer-wise output from different convolution layers have been shown in Fig. 3.4.

Layer type	Purpose	Mathematical expression
Convolution layer Conv_2d	Feature extraction through the non-linear activation function [11]	$Y_{k} = f(W_{k} * x)$ $Y_{k} - \text{ feature map of } k^{th} \text{ filter}$ $W_{k} - \text{ convolutional filter}$ x - input image $f(\cdot) - \text{ RelU } R(z) = \max(0, z)$
Pooling layer max_pooling2d	Reduces the spatial resolution of the feature maps followed by the introduction of the translation invariance to the small shifts and distortions which results into the reduced number of parameters to be learned [12].	$Y_{kij} = \max_{p,q \in R_{ij}} (X_{kpq})$ $Y_{kj} - \max \text{ pooled output } k^{th}$ feature map $X_{kpq} - \text{ element at the } (p,q)$ location contained in the pooling region $R_{ij} - \text{ the receptive field}$ around the location (i, j)
Dense layer	Fully connected layer for final decision with non-linear <i>softmax</i> activation function.[13]	around the location (i, j) $p(y = j \Theta^{(i)}) = \frac{e^{\Theta^{(i)}}}{\sum_{j=0}^{k} e^{\Theta^{(i)}_{k}}}$ $p(i, j) \text{ - probability of}$ belongingness to j^{th} class among total k classes $\Theta = \sum_{i=0}^{k} w_{i} x_{i}$

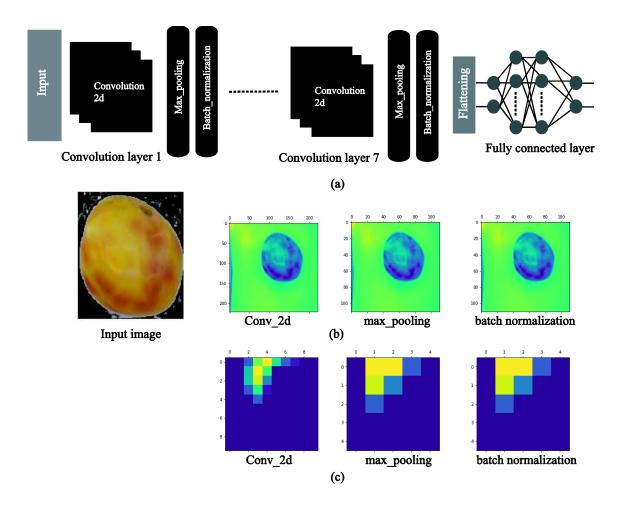


Fig. 3.4: Visualizing the output of TomNet model

Fig. 3.4 reflects the advantage of CNN architecture in extracting the abstract features from the images automatically which many of the conventional algorithms lack. For instance, Fig. 3.4 (b) shows the images from the initial convolution, max_pooling and batch normalization layers. It can be seen that in all these three images the shape of tomatoes can be identified. As the images forwards through the deeper layers such clear visibility of shape does not remain same and more inherent color, texture and pixel corellational features get extracted as can be seen in Fig. 3.4 (c). In this way TomNet can achieve feature extraction crucially that contain both surface level features like shape and more deeper levels of features like color distribution, pixel correlation and texture. Such deeper sensing mechanism enables TomNet towards higher accuracy and

generalization while avoiding many distortions like blurring and rotation during image capture stage.

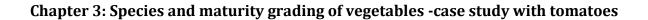
3.3.1. Hyperparameter optimization of the TomNet model

The hyperparameters of the TomNet model have been optimized by using the three most promising methods BPSO, GWO and the modified GWO. The architectural description of the appointed models has been described in the section 2.4 in details. The comparative analysis of the three optimizer have been carried out in terms of the convergence curves which is provided in the result and discussion section of this chapter.

3.4. Results and Discussions

For the classification of tomato fruit and its identification for maturity, the model Tomnet has been used. Total 7500 different samples of individual species of tomato with 2500 samples for each of the maturity grade have been considered for the presented results. For hyperparameter optimization 30% of entire dataset was randomly chosen which makes total 4500 samples with 2250 for each species and 750 samples of each maturity stage. The convergence plot based on the BPSO, GWO and modified GWO for 100 iterations are shown in Fig. 3.5.

The plot of Fig. 3.5 shows that after 80 iterations the BPSO [14] converges with more than 99% accuracy, the GWO [15] converges with a little more than 98% accuracy and for modifiedGWO, the convergence varies with nearly 98.5% accuracy value. The hyperparameter finally arrived with the BPSO as used for the presented results are consolidated in Table 3.4.



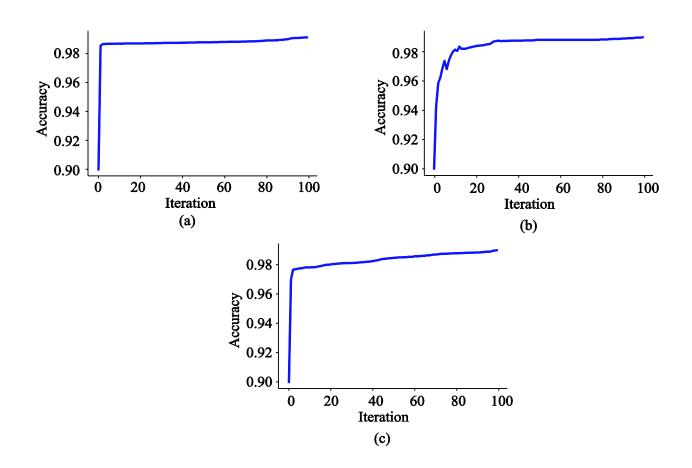


Fig. 3.5: Convergence plot for (a) BPSO, (b) GWO and (c) modified GWO optimizer

 Table 3.4: Hyperparameter settings of TomNet

Layer	Output shape	Number of
		parameters
conv2d_1 (Conv2D)	(510, 510, 32)	896
max_pooling2d_1	(255, 255, 32)	0
batch_normalization_1	(255, 255, 32)	128
conv2d_2 (Conv2D)	(253, 253, 32)	9248
max_pooling2d_2	(126, 126, 32)	0
batch_normalization_2	(126, 126, 32)	128
conv2d_3 (Conv2D)	(124, 124, 64)	18496
max_pooling2d_3	(62, 62, 64)	0

		1º C - 1	1 . 1 .	
Chapter 3: Species and	maturity ara	πιησ οτ νοσοτοη	10C -COCO CTIIAV W/	th tomatooc
Chapter 3, Species and	maturity grav	ume or veectab	ncs -last sluuv wi	un tomatoes
F F				

batch_normalization_3	(62, 62, 64)	256				
conv2d_4 (Conv2D)	(60, 60, 64)	36928				
max_pooling2d_4	(30, 30, 64)	0				
batch_normalization_4	(30, 30, 64)	256				
conv2d_5 (Conv2D)	(28, 28, 64)	36928				
max_pooling2d_5	(14, 14, 64)	0				
batch_normalization_5	(14, 14, 64)	256				
conv2d_6 (Conv2D)	(12, 12, 128)	73856				
max_pooling2d_6	(6, 6, 128)	0				
batch_normalization_6	(6, 6, 128)	512				
conv2d_7 (Conv2D)	(4, 4, 128)	147584				
max_pooling2d_7	(2, 2, 128)	0				
batch_normalization_7	(2, 2, 128)	512				
flatten_1 (Flatten)	512	0				
dense_1 (Dense)	256	131328				
activation_1 (Activation)	256	0				
dropout_1 (Dropout)	256	0				
dense_2 (Dense)	84	21588				
Output	6	510				
activation_2 (Activation)	6	0				
Total parameters: 479,410	Total parameters: 479,410					
Trainable parameters: 478,386	Trainable parameters: 478,386					
Non-trainable parameters: 1,02	Non-trainable parameters: 1,024					

Based on the convergence characteristics as given in the Fig 3.5, the BPSO optimizedTomNet model has been chosen as the classifier on the convergence characteristics performance shown in fig 3.5 for carrying out the species and maturity stage classification of the fruit tomato and all other metrics have been measured based on this chosen best.

3.4.1. Model validation

The model validation was performed using accuracy and loss plot with validation set which were non-overlapping 20% samples of the entire dataset. Validation plots have been shown in Fig. 3.6. The plots for accuracy show that for training set the model can reach upto 98% accuracy while for validation set it is about 96%. This reflects that the model can identify the unknown samples quite accurately in terms of their species and maturity stages. The loss values are also visibly less for validation set. Further the gap at the end between plots for training and validation set are also not big and both have similar trend. Hence, this can be considered as good generalization potential of the model to avoid possible over- and under-fitting problems.

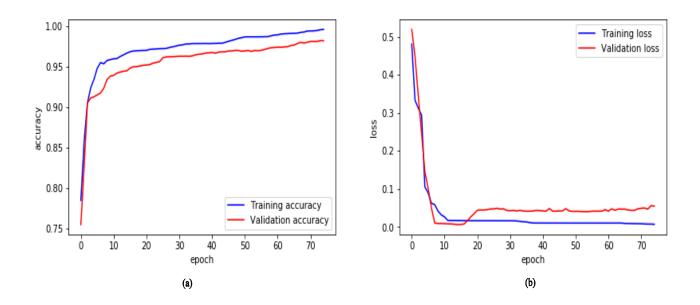


Fig. 3.6: TomNet validation using (a) accuracy and (b) loss plots.

The advantages of 10-fold cross-validation [16] have been stated previously in section 2.4.1. The result of this validation for TomNet model has been presented in Table 3.5. It conveys that the TomNet is consistent in performance. The average accuracy for training set is about 99% while it is in the tune of 98% for testing set. Another interesting observation is not much difference

between minimum and maximum values for both the training and testing sets. It along with low standard deviation values (<1) vouches the consistency of the model.

10-fold cross	Training	data	Validation data		
validation run	Loss	Accuracy	Loss	Accuracy	
1	0.0199	0.9897	0.053	0.9801	
2	0.0126	0.9934	0.043	0.9834	
3	0.0235	0.9965	0.034	0.9856	
4	0.0156	0.9943	0.054	0.9833	
5	0.0246	0.9974	0.044	0.9792	
6	0.0136	0.9899	0.051	0.9821	
7	0.015	0.9979	0.042	0.9784	
8	0.0166	0.9985	0.043	0.9863	
9	0.0126	0.9943	0.057	0.9833	
10	0.0172	0.9945	0.054	0.9892	
Average	0.1712	0.9947	0.475	0.9831	
Maximum	0.0246	0.9985	0.057	0.9892	
Minimum	0.0126	0.9897	0.034	0.9784	
Std. Dev.	0.0043	0.0031	0.007	0.0034	

 Table 3.5: 10-fold cross-validation results for TomNet model

3.4.2. Performance evaluation against confusion matrix

The confusion matrix [17] of the model performance with unknown (not been used for training and validation) testing set is presented in Fig. 3.7. As the testing set contains 20% non-overlapping samples of entire dataset each of the 6 classes under consideration has 500 samples.

Chapter 3: Species and maturity grading of vegetables -case study with tomatoes

			Predicted			
	Pear premature	Pear mature	Pear overmature	Roma premature	Roma mature	Roma overmature
Pear premature	495	0	0	2	2	1
Pear mature	0	490	0	6	1	3
Pear overmature	0	1	496	0	3	0
Roma premature	2	0	0	495	1	2
Roma mature	0	4	2	2	492	0
Roma overmature	1	2	2	0	0	495

Actual

Fig. 3.7: Confusion matrix for tomato species and maturity stage classification using TomNet

Fig. 3.7 shows that for each class most of the samples were correctly identified in terms of species and maturity stage. Class-wise maximum 4 samples out of 500 have been wrongly classified in case of roma mature which has been identified as pear mature. In all other cases the class-wise misclassification is not more than 2. Table 3.6 presents the metric values derived from the confusion matrix.

Specie	Maturity stage	Precision	Recall	F1-	Specificity
				score	
Pear	Premature	0.99	0.96	0.99	0.98
	Mature	0.99	0.98	0.98	0.98
	Overmature	0.99	1.00	1.00	0.98
Roma	Premature	0.99	0.97	0.99	0.99
	Mature	0.99	0.99	0.98	099
	Overmature	0.97	1.00	1.00	0.99
Overall	Micro average	0.99	0.99	0.99	0.98
model	Macro average	0.99	0.99	0.99	0.98
performance	Weighted average	1.00	0.99	0.99	0.99

Table 3.6: TomNet performance evaluation using metrics of confusion matrix

Table 3.6 shows that the precision and recall[18][19] values for maturity stage classification of both the species are varying between species. The range of values are 0.96 - 1 which shows the significant potential of the model. As it can be seen that for premature cases the recall values are comparatively lower which indicates the chances of some of the samples which does not belong to premature stages have been identified as premature. However, in terms of percentage this is not more than 4%. On the other hand the F1-score[20] is 98% and more which reflects good balance between specificity and sensitivity of the model. It can vouch the fact the model is able to classify species and maturity stages simultaneously with 98% accuracy.

3.4.3. Cohen kappa coefficient score

Cohen kappa metric value [21] is one of the indicators to judge the suitability and goodness of the automatically extracted features by the CNN model. The score for TomNet across species and maturity stage classifications have been shown in Table 3.7. It shows that the Cohen Kappa values for both the classification tasks is in the tune of 0.98 which ensures the appropriateness of the automatically extracted features of TomNet.

Table 3.7: Cohen kappa scores for TomNet

Classification types		Cohen Kappa Score
Tomato classes	Maturity type	
Pear	Premature	
	Mature	0.98
	Overmature	
Roma	Premature	
	Mature	
	Overmature	

3.4.4. Receiver operating characteristics (ROC) curve

The ROC curves [22] for different tasks performed by TomNet have been consolidated in Fig. 3.8. This curve also reflects that the model can potentially classify between maturity classes of different species with more than 97% accuracy. It can be noted that the classification potential for over-maturity stage of both the species are maximum which is significant for inventory and supply chain management. The over-mature fruits can be subjected for immediate consumption and food processing industries for minimizing the agro loss.

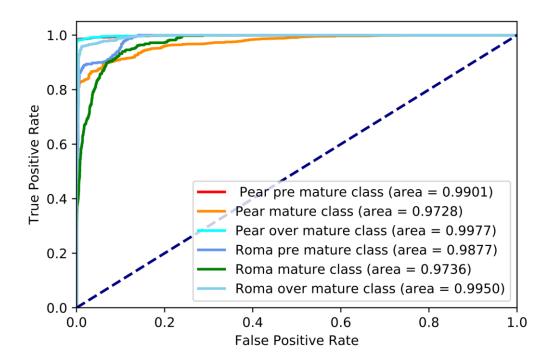


Fig. 3.8: ROC-AUC for different classification tasks usingTomNet

3.4.5. Comparative analysis

The comparative analysis between the performance of TomNet and some of the conventional classifiers like artificial neural network with backpropagation multilayer perceptron architecture (BPMLP)[23] ,support vector machine (SVM)[24] and random forest (RF) along with the deep learning principles based models AlexNet[25],VGG19[26],ResNet50[27] as well as pre-trained CNN models has been presented in Table 3.8. Like the medicinal leaves here also the color features of different color channels were used as featureset for conventional classifiers that need hand engineered features. Each of the models have been used comparatively for the classification of species and maturity both simultaneously.

		Species classification/Maturity stage classification				
	Classificati	Accuracy	Sensitivity	Specificity	Precision	FMeasure
Method	on					
BP MLP	Species and	0.97	0.85	0.96	0.96	0.97
	Maturity					
SVM	Species and	0.96	0.95	0.88	0.96	0.95
	Maturity					
RF	Species and	0.95	0.92	0.94	0.95	0.95
	Maturity					
Deep learni	ng based					
AlexNet	Species and	0.75	0.80	0.75	0.76	0.79
	Maturity					
VGG19	Species and	0.88	0.77	0.87	0.82	0.78
	Maturity					
ResNet50	Species and	0.76	0.79	0.77	0.79	0.80
	Maturity					
TomNet	Species and	0.98	0.97	0.97	0.98	0.98
model	Maturity					
optimized						
with GWO						
TomNet	Species and	0.98	0.98	0.98	0.98	0.98
model	Maturity					
optimized						
with						
modified						
GWO						
TomNet	Species and	0.99	0.99	0.98	0.99	0.99
model	Maturity					
optimized						
with BPSO						

Table 3.8: Comparative performance evaluation of TomNet

Chapter 3: Species and maturity grading of vegetables -case study with tomatoes

Table 3.8 shows that the TomNet model outperforms other classifiers under consideration. The performance of the RF model is not as good as BPMLP and SVM.BPMLPP and SVM performs equivalently .The values of respective metrics ,carried out by the deep learning based classifiers AlexNet,VGG19 and ResNet50 are not also as good as those presented in the model TomNet.The CNN model TomNet not only outperforms the other models it also eliminates the feature extraction step. Hence the CNN based modelTomNet has been considered as the more potential in comparison to the others. It is clearly visible from the performance presentation of the optimized TomNet, that GWO optimized TomNet and the modified GWO optimized TomNet are analogous in terms of both the species and maturity classification. The BPSO has slightly higher impact on performance metric of the CNN based TomNet model compared to the GWO and the modified GWO approach.

3.4.6. GUI presentation

Fig. 3.9 presents GUI implementation of the species-wise maturity information for unknown tomato sample belonging to any of the six categories namely premature, mature and overmature types of roma and peer tomatoes. The prediction regarding the correct species wise maturity states has been expressed by the corresponding prediction vectors. The prediction vectors for premature, mature and overmature states of the pear and roma species are expressed as [1.0.1.0.0], 1.0.0.1.0], [1.0.0.0.1], [0.1.1.0.0], [0.1.0.1.0] and [0.1.0.0.1]respectively for the unknown sample.

Chapter 3: Species and maturity grading of vegetables -case study with tomatoes

🖉 Tomato Species Wise Maturity Classification Window	🖉 Tomato Species Wise Maturity Classification Window
Tomato Species and Maturity Classifier Classification result 1.0.0.1.0 Species and maturity: Pear Mature Load image Classify tomato Train new dataset Species	Tomato Species and Maturity Classifier Classification result 0.1.0.1.0 Species and maturity: Roma Mature Load image Classify tomato Train new dataset
(a)	(b)
Tomato Species Wise Maturity Classification Window	🖉 Tomato Species Wise Maturity Classification Window
Tomato Species and Maturity Classifier Classification result [1.0.0.0.1] Species and maturity: Pear Over-mature Load image Classify tomato Train new dataset	Tomato Species and Maturity Classifier Classification result [0. 1. 0. 0. 1] Species and maturity: Pear Over-mature Load image Classify tomato Train new dataset
(c)	(d)
7 Tomato Species Wise Maturity Classification Window	🖉 Tomato Species Wise Maturity Classification Window
Tomato Species and Maturity Classifier Classification result 1.0.1.0.0 Species and maturity: Pear Pre-mature	Tomato Species and Maturity Classifier Classification result 0.1.1.0.0 Species and maturity: Roma Pre-mature
Load image Classify tomato	Load image Classify tomato
Train new dataset	Train new dataset
	(f)

(e) (f) Fig. 3.9: GUI windows corresponding to the tomato class and maturity identification for any unknown sample identified as (a) premature pear (b) mature pear (c) overmature pear (d) premature roma (e) mature roma and (f) overmatureroma.

3.5. Conclusions

This chapter has presented a promising computer vision framework based on CNN architecture towards classification of species and maturity of tomato fruit. The details of variation of different bio-actives and nutrients present in the fruit and their accountability towards the maturity wise discrimination has been examined in justification to the problem. The development of an indigenous imaging chamber and its application in capturing images of tomato fruit have been elaborated in this chapter. The chapter includes the procedure starting from the sample collection to CNN model TomNet development. It also highlights the use of BPSO, GWO and modified GWO optimization for hyperparameter optimization in order to get more generalization and performance of the TomNet model. The performance measurement of the BPSO algorithm has shown the slight improved performance towards the accuracy of calculation. The validation of the model and classification results with unknown testing set has been evaluated against standard metrics which show that the presented method can achieve up to 99% accuracy. The comparative analysis has also been presented towards justification of using the model TomNet over some of the conventional classifiers including deep learning based models. On an overall assessment, by virtue of significant performance potential of the presented framework, the same can be considered as an addition to the existing instrumental and analytical screening and sorting methods of tomato fruits of different species and maturity grades.

References

- Bhowmik D., Kumar K.P.S., Paswan S.. Srivastava S. (2012), Tomato-a natural medicine and its health benefits. J. Pharmacogn. Phytochem.1(1), 33–43.
- Saad A.M.Ibrahim A., El-Bialee N. (2016). Internal quality assessment of tomato fruits using image color analysis. Agric. Eng. Int.: CIGR J. 18, 339–352.

- Suarez M., Rodríguez R., Elena M., DíazC. (2008). Chemical composition of tomato (Lycopersiconesculentum) from Tenerife, the Canary Island. Food Chem., 106, 1046-1056.
- Gómez A.H., Hu G., Wang J., Pereira A.G. (2006). Evaluation of tomato maturity by electronic nose. Comput Electron Agric 54(1),44–52.
- Zhang L., McCarthy M.J.(2012). Measurement and evaluation of tomato maturity using magnetic resonance imaging. Postharvest BiolTechnol 67,37–43.
- Qin J., Chao K., Kim M.S.(2012). Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy. Postharvest BiolTechnol 71, 21–31.
- Sirisomboon P., Tanaka M., Kojima T., Williams P. (2012). Nondestructive estimation of maturity and textural properties on tomato 'Momotaro' by near infrared spectroscopy. J Food Eng 112(3),218–226.
- Tiwari G., Slaughter D.C., Cantwell M. (2013). Nondestructive maturitydetermination in green tomatoes using a handheld visible and nearinfrared instrument. Postharvest BiolTechnol86, 221– 229.
- 9) Goel N., Sehgal P. (2015). Fuzzy classification of pre-harvest tomatoesfor ripeness estimation an approach based on automatic rule learning using decision tree. Appl. Soft Comput. 36, 45–56.
- 10) Greenshields M.W.C.C. et. al. (2015). Non-destructive tomato ripeness determination using carbon nanostructure based chemical sensors: Application of tristimulus and principal component analysis methods. International Journal Electroactive Materials 3:10–14.
- Indolia S., Goswami A.K., MishraS.P., AsopaP. (2018). Conceptual understanding of convolutional neural network – a deep learning approach, International Conference on Computational Intelligence and Data Science (ICCIDS), Procedia Computer Science, Vol. 132, pp.679–688, DOI: doi.org/10.1016/j.procs.2018.05.069.
- 12) Yamashital R., Nishio M., DoR.K.G., Togashi1K.(2018), Convolutional neural networks: an overview and application in radiology, Insights into Imaging ,pp.611–629.

- 13) Traorea B.B., Foguema B.K., Tangara F. (2018). Deep convolution neural network for image recognition, Ecological Informatics, Vol.48. pp. 257-268.
- 14) Wang Y., Zhang H., Zhang G. (2019), cPSO-CNN: An efficient PSO based algorithm for finetuning hyper-parameters of convolutional neural networks. Swarm EvolComput 49:114–123.
- 15) Nadimi-Shahraki M.H., Taghian S.,Mirjalili S.(2020). An improved grey wolf optimizer for solving engineering problems, Expert Systems with Applications, vol. 166, p. 113917.
- 16) Berrar D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology,1, Elsevier, 542 -545.
- 17) Santra A.K., Christy C.J. (2012). Genetic algorithm and confusion matrix for document clustering. International Journal of Computer Science Issues (IJCSI), 9(1), 1694-0814.
- Hossin M., Sulaiman M. (2015). A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manage. Process, 5(2).
- 19) Silva V.A., Bittencourt II., Maldonado J.C. (2019). Automatic question classifiers: asystematic review. IEEE Trans. Learn. Technol.
- Sharma K.K., Seal A.(2019). Modeling uncertain data using Monte Carlo integration method for clustering. Expert Syst. Appl. 137, 100–106.
- 21) McHugh M.L. (2012). Interrater reliability: the kappa statistic, BiochemiaMedica. 22(3), 276-82.
- 22) Fawcett T. (2006). An introduction to ROC analysis. Pattern Recognition Letter, 27, 861–874.
- 23) Kanungo D.P., Naik B., Nayak J., Baboo S., Behera H.S. (2015). An improved PSO based back propagation learning-MLP (IPSO-BP-MLP) for classification, Computational
- 24) TianY. ShiY.,LiuX.(2012).,Recent advances on support vector machines research ,Technological and Economic Development of Economy, Vol. 18, No. 1, pp.5–33 [online] ISSN: 2029-4913, [print] ISSN: 2029-4921.
- 25) Liu Y., Li Z., Chen X., Gong G., Lu H.(2020). Improving the accuracy of SqueezeNet with negligible extra computational cost, *International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS)*, pp. 1-6, doi: 10.1109/HPBDIS49115.2020.9130577.

- 26) Zhang X., Zhou X., Lin M., Sun J., (2018), ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, Conference, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- 27) Dhankhar P. (2019). ResNet-50 and VGG-16 for recognizing Facial Emotions.International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.134.18.

CHAPTER 4

SPECIES AND MATURITY GRADING OF FRUITS – CASE STUDY WITH BANANAS

4.1 Introduction

Fruits are the major contributor of human nutrients. It is consumed across the world for protection against diseases and boosting the immunity. About 75 % of world economy depends on export and import of fruits. Apart from raw consumption, fruits are also used for processed foods and juices. They provide vitamins, minerals and carbohydrates. Different fruits have different bio-chemical compositions and they help human health accordingly. Grading of fruits in terms of species and maturity stage thus is an important research area. Among different fruits this work focuses on bananas which are one of the most popular fruits across the world. Bananas are available in large varieties and cultivated in most of the countries. However, Asian countries like India, Srilanka, Japan and China are some of the major suppliers of bananas.

Banana has about 15% share of food production market according Food and Agriculture Organization of the United Nation (FAO) [1]. The high fibre content of bananas helpsin improved functioning of digestive system. It is also rich in different minerals like potassium, calcium,manganese, magnesium, iron, folate, niacin, riboflavin and vitamin B6 those too contribute towards improved body functioning [2].

The work presented in this chapter has been published as:

Mukherjee G, Tudu B, Chatterjee A.(2022). A multi-channel convolution neural network driven computer vision system towards identification of Species and maturity stage of banana fruits: case studies with Martaman and Singapuri banana, Int. J. Computational Intelligence Studies, Vol. 11, No. 1, pp.1–23.

It has proven protective characteristics against heart, blood pressure related diseases and diseases like anemia. Bananas belong to Musa family and available in number of varieties. Among several species Singapuri and Martaman are two widely consumed varieties in India. These variants are visually different for instance Singapuri appears green while Martaman appears yellow however the tonal changes happen with the ripening stages for both the species.

The bio-chemical composition of bananas changes with maturity like all other fruits and vegetable. Hence, identification and grading of bananas plays important role in terms of market supply chain and inventory management. Another important factor for banana is it has different usages for different maturity stages, for example, unripen bananas are often consumed in fried snacks form while ripen and slightly over-ripen are consumed directly. Over-ripen but not rotten bananas are used for different processed food preparation like confectionaries and bakery items. One of the most visible change occurs in peel color of banana with change of maturity stage. Brown spots due to enzymatic reactions on the banana skin are also an important indicator of maturity and days-to-rot. Although manual method of grading is mostly used in local market it is limited by its grading and sorting speed and subjective nature of operations. Some of the reported methods to address this manual process have been briefly reviewed in Table 4.1.

Table 4.1: Some of the reported techniques for automatic grading of bananas

Base technique	Method	Result
The Computer vision	Four class of homemade dataset	The accuracy value for the
techniques for ascertaining	of the banana have been used	classification process of
ripening stages of banana.	based on the artificial neural	different maturity grades of
[1]	network backed frame work. The	the banana has been reported
	feature set used for the	at 97.75%
	experiment were thecolour,	

Image processing techniques in order to get the different maturity stages ofbanana on the basis of their colour and size values. [3]

Visible short wavelength near infrared spectra for the assessment of sugar and starch content in the banana.

[4]

BET monolayer procedure in studying Hygroscophic behaviour of the banana for the desorption analysis.[5]

The Convolutional Neural () Network(CNN) in identification of ripeness of the banana [6]

partial least square discrimination analysis for the maturity of banana . [7] brown spots and tamura statistical textural features.

The under mature, mature and over mature banana fruits have been subjected to the classifier on the basis of size and colour value features.

Banana pulp was used using the partial transmittance optical geometry.

Nanicao banana flours were used for the study of adsorption and desorption isotherms property by means of the BET and GAB model.

The four classes(unripe, through ripe, almost ripe and ripe) of ripening stages of the cavendishbanana has been identified with the CNN architecture with the SGD parameter optimisation. The hyperspectral imaging of the green bananas in different maturity, stages were subjected

maturity stages were subjected to the partial least square regressions and interval PLS The mean colour intensity algorithm has been reported at 99.1% and 85% accurate at differentiating the under mature banana.

The accuracy value of 94% has been reported for the green ripening ripe and overripe stages of banana.

The estimated value for the coeficient of determination has been found to be 0.97 ie the efficiency of the model has been expressed to a higher degree. The 94.12% accuracy has been achieved for training data and 72% accuracy value has been achieved for the test data.

The reported accuracy value for the maturity prediction of the banana fingers was nearly 100%.

	methods.	
Arduino device backed	The barlin banana with four	The accuracy prediction has
automated tool has been	different types of maturity	been found to be nearly
appointed to assess the	levels have been used to detect	100%.
maturity state of the	different maturity stages by	
banana fruit[8].	the principles of image	
	processing.	
The Convolution Neural	The data of different ripening	The accuracy value for the
Network(CNN) in	stages of the banana fruit has	determination of maturity
classification of the different	been used for classification using	value has been found very
ripening stages of the	the CNN architecture.	close tobe 92%
banana fruit[9].		
zNose in classification of	The PCA technique has been	The coefficient of
banana fruits based on the	used to identify the ripening	determination value was
ripening and maturity of the	stages of the banana fruit. The	estimated to be at 96%.
fruit [10].	fruit quality parameters were	
	tracked by using the Multiple	
	Linear Regression(MLR)	

Table 4.1 shows that computer vision due to its non-invasive, less-expensive and portable nature of operations can be a possible alternative for fruit grading as well. Despite several works the room of improvement and employment of CNN [11] architecture has become different from ones that have been reported are still open. This work explored the scope of a custom designed CNN architecture for simultaneous classification of species and maturity stages of bananas. The experimentation have been performed with an indigenous dataset prepared with banana samples procured from local market. The hyperparameter optimization has as well been presented. The model validation and performance analysis of the model for banana classification and grading have been presented in details.

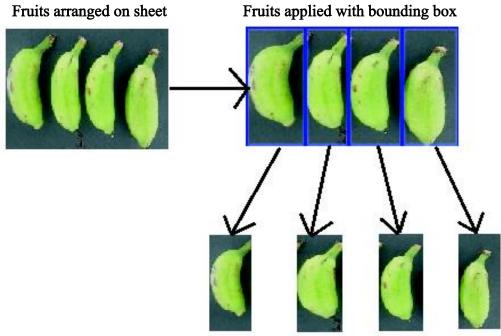
4.2. Dataset preparation

4.2.1. Sample collection

Bananas of two species under consideration were procured from local market and in the same season to avoid any major seasonal effects. For each species 1500 bananas were procured comprising of 500 bananas for each of the three maturity stages namely, premature, mature and over-mature. This made the total samples of 300 bananas. Like tomatoes in this case also the bananas were preserved in controlled environment at 20°C till they were subjected to imaging chamber.

4.2.2. Image acquisition

The indigenous imaging chamber as described in section 2.2.2 was used for this work. For better observations and experimentation flexibility the publicly available datasets were not used. The imaging policy was same as that for tomatoes as described in 3.2.2 and the same isolation and background elimination method described in Table 3.1 was adopted for this case as well. Nevertheless banana has separate color channel dynamics hence the adaptive thresholding process for this case has been elaborated in following section. Some of the examples of captures and isolated banana images have been presented in Fig. 4.1.



Isolated background subtracted banana images

Fig. 4.1: Examples of isolated and background subtracted banana images

4.2.2.1. Channel selection and thresholding for image isolation

The skin color of bananas is yellow dominated. Hence, the R and G channels contain the major information while blue (B) channel is expected give much differentiable peaks. This is evident from the channel-wise images of bananas shown in Fig. 4.2(a) and (b) for Martaman and Singapori, respectively. The color-channel images have been studies using the histogram distributions and shown beside the respective color channels. It can be seen that R and G channel histograms can be suitable candidate to differentiate the background from bananas as these histograms are visibly bimodal. Between R and G, later one show better valley between the peaks while in case R channel the rise of second peak is not that well separable. Hence, for this work the G channel was chosen and subjected to adaptive thresholding using Otsu's algorithm. Randomly 600 samples were chosen with normal distribution and the average of the adaptive

threshold values were almost 100. Thus for this work the threshold value 100 were used in the process described in Table 3.1 Step 3.

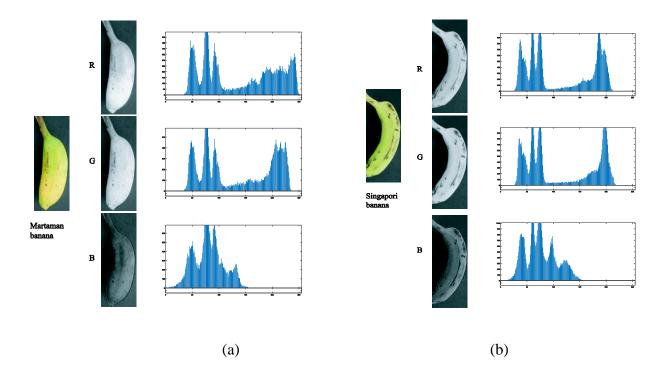


Fig. 4.2: Color channel dynamics for (a) Martaman and (b) Singapori banana

4.3. CNN model for species and maturity stage classification of bananas

In this work a multi-channel convolution network has been developed and explored for simultaneous detection of species and maturity stages. In case of TomNet there were 6 different nodes for 6 classes where 3 nodes were assigned for 3 maturity stages for each of the 2 species. Here, 2 different CNN architectures have been collaborated in channel-fashion, thus one channel provides the classification of species and another maturity stage as presented schematically in Fig. 4.3. The layer characteristics of convolution, pooling, batch normalization and fully connected remains same as described in section 2.3. This model uses another important mechanism called 'dropout' which is an important regularization technique to avoid overfittingproblem. In this model these layers have been placed after the convolution layer but they

can be accommodated after the pooling layer as well. In this technique during training some of the nodes' outputs are discarded in forward pass hence not updated during the weight update of backward pass. This provides faster training with higher generalization towards identification of unknown samples that were not included during training of the CNN [11]. The mathematical dynamics of the layers have been consolidated in Table 4.2 and the layer-wise feature extractions can be visualized as given in Fig. 4.4.

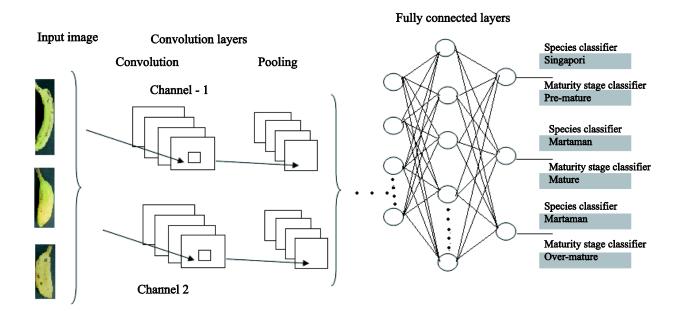


Fig. 4.3: Schematic representation of multi-channel CNN for banana species and maturity stage classification.

Table	4.2:Multi-channel	CNN	layer	dynamics	(Common	layer	presentation	for	both	the
chann	els)									

Layer type	Purpose	Mathematical expression
Convolution layer	Feature extraction through the non-linear activation function	$Y_k = f(W_k * x)$
Conv_2d	[12]	Y_k - feature map of k^{th} filter
		W_k - convolutional filter
		x – input image
		$f(\cdot)$ - RelU $R(z)$ =max $(0, z)$
Pooling layer	Reduces the spatial resolution of the feature maps followed	$Y_{kij} = \max_{p,q \in R_{ij}} \left(X_{kpq} \right)$
max_pooling2d	by the introduction of the translation invariance to the	Y_{kj} - max pooled output k^{th}
	small shifts and distortions	feature map $X_{\rm rest}$ shows at the ()
	which results into the reduced	X_{kpq} - element at the (p,q)
	number of parameters to be learned [13].	location contained in the pooling region
		R_{ij} - the receptive field
		around the location (i, j)
Dense layer	Fully connected layer for final decision with non-linear <i>softmax</i> activation function[14].	$p\left(y = j \mid \Theta^{(i)}\right) = \frac{e^{\Theta^{(i)}}}{\sum_{j=0}^{k} e^{\Theta^{(i)}_{k}}}$
		p(i, j)- probability of belongingness to j^{th} class among total k classes

$$\Theta = \sum_{i=0}^{k} w_i x_i$$

4.3.1. Hyperparameter optimization

The hyperparameters of the multi channel CNN model have been optimized by using the three most promising methods BPSO, GWO and the modified GWO. The architectural description of the appointed models has been described in the section 2.4 in details. The comparative analysis of the three optimizer has been carried out in terms of the convergence curves which is provided in the result and discussion section of this chapter.

4.4. Results and discussions

Following the convention in this case also the entire dataset of 3000samples were divided into 60:20:20 ratios for training, validation and testing purposes. For optimization 30% of entire dataset images were randomly selected with normal distribution. The convergence plot based on the BPSO, GWO and modified GWO for 100 iterations are shown in Fig. 4.4.

The plot of Fig. 4.4 shows that after 80 iterations the BPSO [15] converges with more than 99% accuracy, the GWO[16] converges with a little more than 98% accuracy and for modified GWO, there is no visible improvement in the convergence characteristics notified. The hyperparameter finally arrived with BPSO as used for the presented results are consolidated in Table 4.3.

The optimized hyperparameter settings have been presented in Table 4.3 and these have been used for all the results presented in this section. The layer-wise output have been consolidated in Fig. 4.5 which shows that as the image progresses through the deeper layer more abstract color and texture features are extracted.

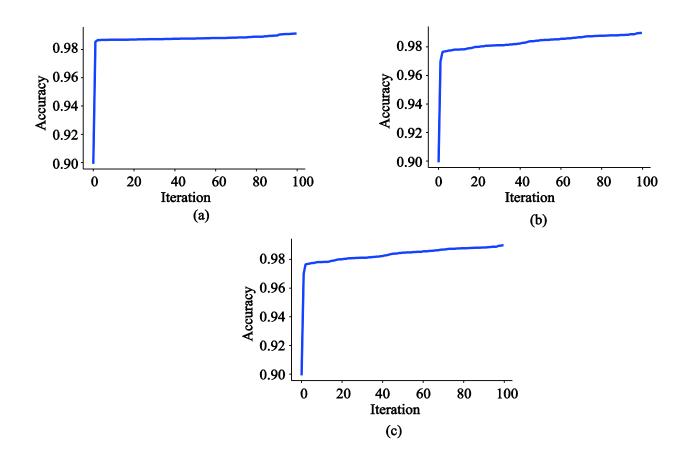


Fig. 4.4: Convergence plot for (a) BPSO,(b) GWO and (c) modified GWO optimizer

Table 4.3: Hyperparameter settings of multichannel CNN

Channel type	Layer(type)	Output shape	Number of parameters
Channel -1	Channel1 (InputLayer)	(None, 32, 32, 3)	0
Species	conv2d_1 (Conv2D)	(None, 30, 30, 32)	896
classification	dropout_1 (Dropout)	(None, 30, 30, 32)	0
	max_pooling2d_1 (MaxPooling2D)	(None, 15, 15, 32)	0

	batch_normalization_1 (BatchNormalisation)	(None, 15, 15, 32)	128
	conv2d_2 (Conv2D)	(None, 13, 13, 64)	18496
	dropout_2 (Dropout)	(None, 13, 13, 64)	0
	max_pooling2d_2 (MaxPooling2D)	(None, 6, 6, 64)	0
	batch_normalization_2 (BatchNormalization	(None, 6, 6, 64)	256
	flatten_1 (Flatten)	(None, 2304)	0
Channel-2	Channel2 (InputLayer)	(None, 32, 32, 3)	0
Maturity	conv2d_3 (Conv2D)	(None, 30, 30, 32)	896
stage classification	dropout_3 (Dropout)	(None, 30, 30, 32)	0
	max_pooling2d_3 (MaxPooling2D)	(None, 15, 15, 32)	0
	batch_normalization_3 (BatchNor	(None, 15, 15, 32)	128
	conv2d_4 (Conv2D)	(None, 13, 13, 64)	18496
	dropout_4 (Dropout)	(None, 13, 13, 64)	0
	max_pooling2d_4 (MaxPooling2D)	(None, 6, 6, 64)	0
	batch_normalization_4 (BatchNormalization	(None, 6, 6, 64)	256
	flatten_2 (Flatten)	(None, 2304)	0

concatenate_1 (Concatenate)	(None, 4608)	0
dense_1 (Dense)	(None, 128)	589952
dense_2 (Dense)	(None, 3)	387
Total params: 629,891		
Trainable params: 629,507		
Non-trainable params: 384		

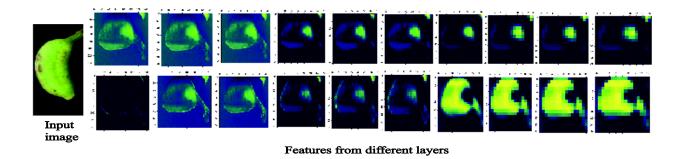


Fig. 4.5: Visual representation of feature extractions from different CNN layers.

Based on the convergence characteristics as given in the Fig 4.4, the BPSO optimized TomNet model has been chosen as the classifier on the convergence characteristics performance shown in fig 4.4 for carrying out the species and maturity stage classification of the fruit banana and all other metrics have been measured based on this chosen best.

4.4.1. Model validation

Model validation was performed using validation dataset (3000 samples) and the accuracy and loss plots for training and validation have been presented in Fig. 4.6. Since there are two distinct channel the validation of both channels have been presented separately. Fig. 4.6(a) and (b) corresponds to species classification while Fig. 4.6(c) and (d) corresponds to maturity

classification channel. It can be observed that both the channels provide about 98% accuracy with training set while 96% and 94% accuracy for species and maturity stage, respectively. In terms of loss species classifier can provide low value ($<10^{-2}$) and maturity classifier (~ 0.10) for training set. The values for validation sets are also considerably low in the tune of 0.10 and 0.15 for species and maturity classifier, respectively. It can be also seen that the difference between training and validation plots are considerably less at the end of epochs which convey the generalization potential of the model.

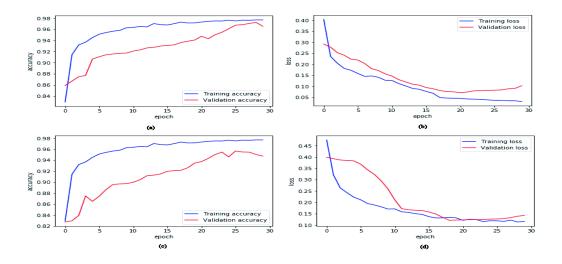


Fig. 4.6: Model validation for testing and validation set using accuracy and loss values

The 10-fold cross-validation [17] results have been provided in Table 4.4 and 4.5 for species and maturity channels, respectively. This time also the validation results show consistency between different folds with an average of 99% and about 98% accuracy for training and validation set, respectively. In case of loss values as well the performance potential is visible with low average values of 0.019 and 0.045 for training and validation set, respectively. The consistency of the model performance is reflected in the small standard deviation values for loss and accuracy in case of the training and validation data. The standard deviation is in the tune of 10⁻³ across all the cases which is significant towards the promising potential of the model across different folds.

Number	of Tra	aining data	Validat	ion data
folds	Loss	Accuracy	Loss	Accuracy
1	0.0199	0.9888	0.053	0.9766
2	0.0276	0.9934	0.033	0.9734
3	0.0235	0.9889	0.034	0.9756
4	0.0156	0.9843	0.054	0.9788
5	0.0246	0.9945	0.044	0.9792
6	0.0136	0.9803	0.051	0.9779
7	0.0175	0.9899	0.032	0.9785
8	0.0166	0.9985	0.043	0.9755
9	0.0126	0.9875	0.056	0.9753
10	0.0167	0.9945	0.047	0.9752
Average	0.0188	0.9901	0.0447	0.9766
Maximum	0.0276	0.9985	0.056	0.9792
Minimum	0.0126	0.9803	0.032	0.9734
Std. Dev	0.0049	0.0054	0.0091	0.0019

Table 4.4: 10-fold cross-validation results for species classification

Number of	Number of Training Data		Validatio	n data
folds	Loss	Accuracy	Loss	Accuracy
1	0.0301	0.9877	0.053	0.9771
2	0.0150	0.9899	0.033	0.9794
3	0.0135	0.9898	0.034	0.9697
4	0.0215	0.9937	0.054	0.9798
5	0.0204	0.9881	0.044	0.9699
б	0.0253	0.9965	0.051	0.9761
7	0.0175	0.9823	0.032	0.9784
8	0.0102	0.9993	0.043	0.9786
9	0.0166	0.9984	0.056	0.9798
10	0.0235	0.9885	0.047	0.9789
Average	0.0194	0.9914	0.0447	0.9767
Maximum	0.0301	0.9993	0.056	0.9798
Minimum	0.0102	0.9823	0.032	0.9697
Std. Dev.	0.0059	0.0054	0.0091	0.0039

Table 4.5: 10-fold cross-validation results for maturity classification

4.4.2. Performance evaluation against confusion matrix

The confusion matrix [18] for model performance with unknown test dataset has been presented in Fig. 4.7. In this case also two different confusion matrices have been presented to evaluate the performance of the model in individual channel. It can be seen that for species classification only 14 samples out of 600 unknown samples have been misclassified. The misclassification rate for both the species are almost equal and that is only 2% hence about 98% cases the species classifier channel could classify between species accurately. In case of maturity stage classifier the performance is equally promising. For premature cases the misclassification is highest but that too only 3% while for mature and over-mature that is 1% and 2%, respectively. Such low misclassification rates show about 98% potential of the maturity stage classifier to classify the maturity stage accurately. The different metrics in association to the confusion matrix have been consolidated in Table 4.6 and 4.7 for species and maturity stage channel, respectively.

Predicted

	Martaman	Singapuri
Martaman	294	6
Singapuri	8	292

Species classification

Actual

Predicted

	PM	Μ	ОМ
PM	97	1	2
Μ	0	99	1
ОМ	1	1	98

Maturity stage classification

Fig. 4.7: Confusion matrix for species and maturity stage classification

Actual

	Precision	Sensitivity/recall	FMeasure	Specificity
Martaman	0.98	0.99	0.98	0.98
Singapuri	0.99	0.98	0.99	0.20
Micro avg	0.98	0.98	0.98	
		0.98		
Macro avg	0.98	0.98	0.98	
Weighted avg	0.99	0.99	0.98	

Table 4.6: Classification performance of species classifier channel

 Table 4.7: Classification performance of maturity stage classifier channel

	Precision	Sensitivity/	FMeasure	Specificity
		Recall		
Premature	0.98	1.00	0.98	0. 98
Mature	1.00	0.98	0.98	
Overmature	1.00	1.00	1.00	
Micro Avegrage	0.99	0.99	0.99	
Macro Average	0.99	0.99	0.99	
Weighted avg	1.00	0.99	0.99	

Table 4.6 conveys that for both the species the classifier performs with high sensitivity and specificity values that reflect the ability to identify the correct specie of banana as well as identification of different species of banana mixed with one species. It can also be noted that the precision of identifying Singapori is slightly higher while recall is slightly lower compared to Martaman. The reason is the mature stage of both the banana species when both the bananas turns yellow so color features do not contribute much in classification. Nevertheless, the precision and recall values are never below 98% which vouches the potential of the multichannel CNN in species classification task. Similarly for maturity classification the performance presented in the Table 4.7 is considerably appreciable. At over-mature stage the peel characteristics of the bananas for these two species are quite different hence about 100% classifications could be achieved. For premature and mature stages the distinguishability is quite difficult particularly for Martaman bananas as in both the stages the overall appearance is yellow. Despite such difficult distinguishability the CNN model could identify the maturity stage correctly for more than 98% cases.

4.4.3. Cohen kappa score

The Cohen Kappa [19] score for different channels are presented in Table 4.8. It shows that in both the cases the scores are in the tune of 0.99. As this metric is one of such metrics that convey the suitability of the automatically extracted features by CNN, it can be assessed that despite two different tasks the single model could extract features that are suitable for different channels.

Classifier	Classes taken for measurement	Cohen Kappa score
Fruit species classifier	Martaman and Singapuri	0.9899
Maturity stage classifier	Pre-mature, mature and over-mature	0.9886

4.4.4. Receiver operating characteristics (ROC) curve

The ROC curves [20] for species and maturity channels have been consolidated in Fig. 4.8. In this figure the ROCs for maturity classification for Martaman and Singapuri have been shown separate for better visibility and observations. Fig. 4.8(a) shows that the species classifier channel has AUC about 99% which reflects significant potential of the model in species classification channel. The performance is in the same tune for maturity stage classification channels except the Singapuri premature stage where AUC is about 96% and the reason is the green component as the mature stage of this species as mentioned earlier.

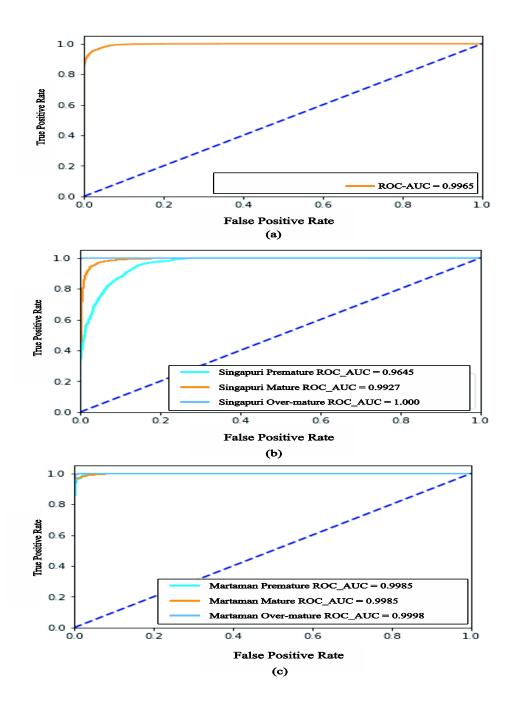


Fig. 4.8: The ROC and ROC-AUC for (a) species classifier channel and maturity stage classifier channel for (b) Singapuri and (c) Martaman.

4.4.5. Comparative analysis

The comparative analysis of the presented multichannel CNN model with other pre-trained CNN models and some of the conventional classifiers have been presented in Table 4.9. As in the case of tomatoes and medicinal leaves the channel-wise (R, G and B) statistical characteristics have been considered for preparation of dataset to use in case of conventional classifiers that need to be extracted as feature sets.

Species classification/Maturity stage classification						
Method	Classification	Accuracy	Sensitivity	Specificity	Precision	FMeasure
BP MLP	Species and Maturity	0.97	0.96	0.96	0.95	0.95
SVM	Species and Maturity	0.96	0.95	0.96	0.94	0.94
RF	Species and	0.95	0.92	0.94	0.95	0.95
	Maturity					
AlexNet	Species and Maturity	0.97	0.96	0.96	0.95	0.95
VGG19	Species and Maturity	0.97	0.97	0.97	0.96	0.95
ResNet50	Species and Maturity	0.96	0.96	0.97	0.96	0.96
CNN	Species and Maturity	0.97	0.97	0.97	0.96	0.96

Table 4.9: Performance comparison of presented model

Multichannel CNN (Species and maturity	Species Maturity	and	0.98	0.98	0.98	0.98	0.98
classifier)							
optimized with							
GWO							
Multichannel	Species	and	0.98	0.98	0.98	0.98	0.99
CNN (Species	Maturity						
and maturity							
classifier) with							
modified GWO							
Multichannel	Species	and	0.99	0.98	0.98	0.99	0.99
CNN (Species	Maturity						
and maturity							
classifier)							
optimized with							
BPSO							

Table 4.9 shows that the multichannel CNN outperforms the other conventional and deep learning based classifiers. The performance of BPMLP [21] and SVM [22] model is not as good as those of the deep learning models AlexNet [23], VGG19 [24] and ResNet50 [25] used in the classification process. It is also prominently visible from the table that the performance accuracy of the multichannel CNN model has also superseded that of the species and maturity classifier model and eliminates the steps of feature extraction and the corresponding time to considerable degree. Hence the multichannel species and maturity classifier model has the more potentiality over the other models. It is clearly visible from the performance presentation of the optimized multi channel CNN model, that GWO optimized CNN and the modified GWO optimized CNN are analogous in terms of both the species and maturity classification. The BPSO has slightly higher impact on performance metric of the CNNmodel compared to the GWO and the modified GWO approach.

4.4.6. GUI representation

The GUI implementation for the multichannel CNN model with channel 1 for species classification of martaman and singapuri banana and the channel 2 for maturity classification of each of the banana species as premature , mature and overmature have been represented in this chapter. Fig. 4.9 presents the species wise maturity information for any unknown banana sample belonging to any of the six categories namely premature, mature and overmature types of martaman and singapuri banana. The prediction regarding the correct species of banana has been determined by the channel -1 and correct maturity information of the banana sample has been determined by the channel -2. The prediction vectors corresponding to the species martaman and singapuri has been expressed as [1.0] and [0.1] respectively. Prediction vectors for premature, mature and overmature states of the martaman and singapuri banana species are expressed as [1.0.0], [0.1.0], [0.0.1], [1.0.0], [.0.1.0] and [0.0.1] respectively.

Banana Classification Window		🖉 Banana Classification Window 🔤 🛙 🕅
	Banana Species and Maturity Classifier	Banana Species and Maturity Classifier
Load image Train new datas	Classification result [1.0.1.0.0 Species Martaman Maturity: Pre-mature Classify Banana	Classification result 1.0.0.0.1. Species Martaman Maturity: Over-mature Load image Classify Banana Train new dataset
Banana Classification Window	(a) Banána Species and Maturity Classifier Classification result 0.1.1.0.0	(b) Banana Classification Window Banana Species and Maturity Classifier Classification result 0.1.0.1.0
Load image	Species Singapori Maturity: Pre-mature Classify Banana	Species Singapori Maturity: Mature Load image Classify Banana Train new dataset
i rain new data	aset (c)	(d)

Fig. 4.9: GUI windows corresponding to the banana class and maturity identification for any unknown sample identified as (a) premature martaman (b) over-mature martaman (c) premature singapori and (d) mature singapori.

4.5. Conclusions

This chapter presented a computer vision framework for multi channel model based on the CNN architecture towards the classification of species and maturity of the banana fruit using respective channel. The variation of different bio-actives and the nutrients present in the banana fruit and also their accountability towards the maturity based classification has been

experimentally assessed in justification of the problem. Indigenous imaging chamber has been appointed for the purpose of capturing images of banana fruits which has been elaborated in this chapter. This chapter focuses on the development of the multi-channel CNNmodel starting from the sample collection using the photographic chamber. It also highlights the use of BPSO, GWO and modified GWO optimization for hyperparameter optimization in order to get more generalization and performance of the multichannel CNN model. The performance measurement of the BPSO algorithm has shown the slight improved performance towards the accuracy of calculation. The model has been subjected to the validation and the classification result of the unknown testing set has been evaluated against the standard metrics. The comparison shows that the presented method can achieve upto 99% accuracy. The comparative analysis has also been presented towards the justification of using the model over some existing conventional and deep learning based models. On the all round assessment of the performance of the model on a significant scale confirms the presented framework to be the addition to the conventional instrumental and analytical screening and sorting methods of the banana fruits of different species and maturity grades.

References

- Fatma M. Nashat A.A. (2019). Ripeness classification of bananas using an artificial neural network, Arabian Journal for Science and Engineering, Vol. 44, No. 8, pp.6901–6910, King Fahd University of Petroleum & Minerals.
- Ahmed F.A., MohammedO.A., Samy S.A.N. (2019). Banana Classification Using Deep Learning, International Journal of Academic Information Systems Research (IJAISR), ISSN: 2643-9026 , Vol. 3, No. 12, pp. 6-11.
- Prabha D.S., Kumar J.S. (2015). Assessment of banana fruit maturity by image processing technique, J.FoodSci. Technol., Vol.52, No. 3, pp.1316–1327 [online] https://doi.org/10.1007/s13197-013-1188-3

- 4) Subedi P.P., WalshK.B. (2011). Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy, Postharvest Biol. Technol., Vol. 62, No. 3, pp.238–245.
- CardosoJ.M., Pena R.D.S. (2014)., Hygroscopic behavior of banana (Musa ssp. AAA) flour in different ripening stage, Food Bioproducts Process, Vol. 92, No. 1, pp.73–79.
- 6) AndasRamadhan Y., DjamalE.C.,KasyidiF.(2020).Identification of Cavendish Banana Maturity Using Convolutional Neural Networks ,Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management Detroit, Michigan, USA, August 10 - 14.
- Chu X., Miao P., ZhangK., Wei H., Fu H., Liu H., Jiang H., Ma Z. (2022). Green Banana Maturity Classification and Quality Evaluation Using Hyperspectral Imaging. Agriculture, 12, 530. https://doi.org/10.3390/agriculture12040530.
- 8) Sutan S.M., Prayogi I.Y., DamayantiR.,Djoyowasito G.(2020). Design to prediction tools for banana maturity based on image processing, International Conference on Green Agro-industry and Bioeconomy, JOP Conference Series Earth and Environmental Science 475(1):012010.
- 9) Leelavathy B., Sri Datta Y.S.S., Rachana Y.S. (2021). Quality Assessment of Orange Fruit Images Using Convolutional Neural Networks.Proceedings of International Conference on Computational Intelligence and Data Engineering. Lecture Notes on Data Engineering and Communications Technologies, vol 56. Springer, Singapore. https://doi.org/10.1007/978-981-15-8767-2_33.
- Rajkumar P., ChandrasekaranI.R., Wang N., Raghavan V.G.S. (2015). Classification of banana fruit maturity using zNose. AgricEngInt: CIGR Journal, 17(4):389-396.
- Khan A., Sohail A., Zahoora U., Saeed A. (2021). Basic Overview of CNN and its Architectural Survey.
- 12) Indolia S., Goswami A.K., Mishra S.P., Asopa P. (2018). Conceptual understanding of convolutional neural network–a deep learning approach, International Conference on Computational Intelligence and Data Science (ICCIDS) Procedia Computer Science, Vol. 132,pp.679–688, DOI: doi.org/10.1016/j.procs.2018.05.069.
- 13) Yamashital R., Nishio M., Do R.K.G. ,TogashilK.(2018) Convolutional neural networks: an overview and application in radiology, Insights into Imaging ,pp.611–629.
- 14) Traorea B.B., Foguema B.K. ,Tangara F.(2018). Deep convolution neural network for image recognition, Ecological Informatics, Vol.48. pp..257-268.

- 15) Wang Y., Zhang H., Zhang G. (2019).cPSO-CNN: An efficient PSO based algorithm for finetuning hyper-parameters of convolutional neural networks. Swarm EvolComput 49:114–123.
- Nadimi-Shahraki M.H., Taghian S., MirjaliliS.(2020). An improved grey wolf optimizer for solving engineering problems, Expert Systems with Applications, vol. 166, p. 113917.
- Berrar D. (2018). Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, 1, Elsevier, 542 -545.
- Santra A.K., ChristyC.J.(2012).Genetic algorithm and confusion matrix for document clustering. International Journal of Computer Science Issues (IJCSI), 9(1), 1694-0814.
- 19) McHugh M.L. (2012).Interrater reliability: the kappa statistic, BiochemiaMedica. 22(3), 276-82.
- 20) Fawcett T. (2006). An introduction to ROC analysis. Pattern Recognition Letter, 27, 861–874.
- 21) Kanungo D.P., Naik B., Nayak J., Baboo S., Behera H.S. (2015). An improved PSO based back propagation learning-MLP (IPSO-BP-MLP) for classification, Computational.
- 22) TianY. Shi Y., Liu X. (2012).Recent advances on support vector machines research ,Technological and Economic Development of Economy, Vol. 18, No. 1, pp.5–33 [online] ISSN: 2029-4913, [print] ISSN: 2029-4921.
- 23) Liu Y., Li Z., Chen X., Gong G., Lu H.(2020). Improving the accuracy of SqueezeNet with negligible extra computational cost, *International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS)*, pp. 1-6, doi: 10.1109/HPBDIS49115.2020.9130577.
- 24) Zhang X., Zhou X., Lin M., Sun J., ShuffleNet: (2018), An Extremely Efficient Convolutional Neural Network for Mobile Devices, Conference, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- 25) Dhankhar P. (2019). ResNet-50 and VGG-16 for recognizing Facial Emotions. International Journal of Innovations in Engineering and Technology (IJIET) http://dx.doi.org/10.21172/ijiet.134.18.

CHAPTER 5

PLANT LEAF DISEASE DETECTION – CASE STUDY WITH TOMATO LEAVES

5.1 Introduction

Early detection of plant diseases is an important step towards prevention of huge agricultural and economic loss [1]. It is difficult to perform manually in huge farming land but most of the diseases are caused by the fungal or bacterial organisms [2] and spread across the plants rapidly due to their infectious nature. Hence, computer vision has been a popular measure for this task which can be a part of electronic surveillance for farming areas. Different plants have different diseases, In our case the study has been presented with tomato plants since the species gradation and maturity stage identification have been already presented for tomatoes and availability of diseased leaves database in public domain. At the same point of time tomato is one of widely consumed agro produces across the world, therefore majorly contributes in the agro economy of producing countries.

The work presented in this chapter has been published as:

Mukherjee G, Chatterjee A, Tudu B .(2022) Identification of the types of disease for tomato plants using a modified gray wolf optimization optimized Mobile NetV2 convolutional neural network architecture driven computer vision framework. *Concurrency Computation Pract Exper.;e7161. doi: 10.1002/cpe.7161*t:

Out of different tomato leaf diseases, the seven main salient types are bacterial spot, early blight, late blight, leaf mold, septoria leaf spot, spider mites and target spots. Some of the sample images of the diseased leaves as collected from Plant Village database [3] have been presented in Fig. 5.1. Some of the major works reported in this direction have been consolidated in Table 5.1.

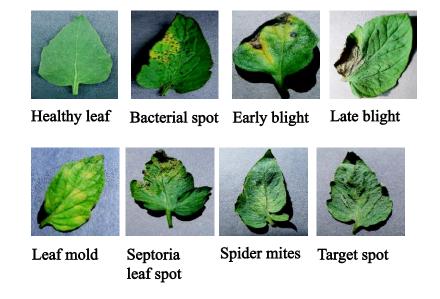


Fig. 5.1: Examples of tomato leaf diseases from Plant Village database

Base technique	Method	Result
Hybrid intelligent system in	Ten different her diseased samples has	The accuracu of
categorization and	been subjected to the hybrid	classification is varying
classification of diseases. The hybrid system comprises	intelligent system.	between the 94% to
of the Fuzzy inferences		98% on the basis of
naive Bayes, probabilistic		classifiers.
neural network and support vector machine		
classifiers.[4]		
The deep convolutional neu-	The symptom images has been separat-	The accuracy value of
ral network in detection of	ed from the diseased leaves of cucum-	93.4% has been ob-
four different cucumber	ber under some field condition and the	tained as the good

diseases.[5]	set of images have been subjected to	recognition of DCNN.	
	the DCNN.		
The CNN based SqueezeNet	The seven different diseases along	The accuracy value of	
architecture in identification	with the healthy tomato leaves have	87% has been	
of the tomato plant leaf	been chosen as the candidates for the	achieved in the classi-	
diseases. [6]	Squeezenet classifier based on the	fication process.	
	keras deep learning framework		
The CNN based model in	The neuroph based on the common	The accuracy value	
recognising the maize leaf	neural network has been used to	upto 99.9% has been	
diseases.[7]	train the model with the diseased	achieved through this	
	maize leaves.	process for the northern	
		con leaf blight.	
The RCNN and the mask	Four different deep convolution	The procedure carried	
RCNN model for the	models have been combined based on	out here resulted	
detection of tomato leaf	the two different object detection	with the accuracyvalue	
diseases.[8]	models. The open data source has been	of 99.64%.	
	used for the experimental purpose. The		
	mean average precision value has been		
	estimated		
CNN architecture in high	The selected high level features has	The classification	
level features of the rice	been proved to have the higher edges	accuracies has been	
diseases diagnosis.[9]	over the locallocal binary patterns and	found to be 95%.	
	the wavelet transform.		

Table 5.1 shows that the non-invasive and inexpensive natures of computer vision can be a promising solution for early detection of plant diseases. As elaborated in previous chapters CNN can play pivotally in this case as well. Some of the CNN based applications using pre-trained networks like AlexNet, GoogleNet, ResNet and others have been used and found to be significantly potential in this application. However, the possibility of employing a comparatively

Chapter 5: Plant leaf disease detection- case study with tomato leaves

lighter CNN model towards hand held mobile device based realization is an open room to explore. This motivated to explore the scope of MobileNetV2[10] for tomato leaf disease detection. MobileNetV2 is comparatively lighter in architecture and have proven potential for faster performance in different problems. For this work the CNN model has been developed using the MobileNetV2 layer dynamics.

Optimization of hyperparameters[11]for MobileNet V2 [12] is important to obtain optimum performance and generalization. In this work a modified gray wolf optimization (GWO) optimization [13] paradigm has been adopted for that. The optimized model has shown significant performance in terms of identifying the tomato diseases in the tune of 98% accuracy. The lightness of the model has also been compared with many pre-trained models and found to be promising for realization with low-configuration hardware setups.

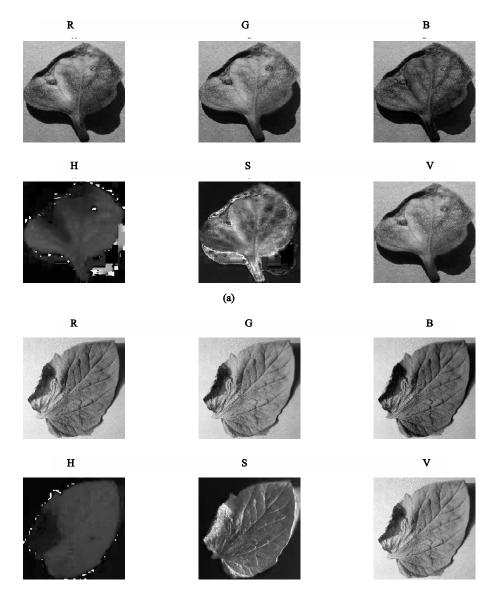
5.2. MobileNet V2 model for tomato leaf disease detection

5.2.1. Dataset preparation

As stated in previous section for this work the Plant Village dataset for tomato leaf diseases has been used. But, the images were subjected to the background subtraction which can contribute towards better understanding of region of interest and that can results into improved performance of classification model (MobileNet V2 in this case). The background segmentation involved the similar approach based on Otsu's thresholding as described in Table 3.2 of chapter 2 but as all are tomato leaves here and does not involve any species-wise classification the images were converted into hue, saturation and value (HSV) color space from the native RGB color space. The reasons of using HSV color space to obtain distinguishing color channel information as in RGB all the channels are almost equivalent and another important observation is the shadow present in most of the images which could not be avoided with RGB channels as shown in Fig.

Chapter 5: Plant leaf disease detection- case study with tomato leaves

5.2. Fig. 5.2 reveals interesting fact that the using the hue (H) channel of HSB color space serves two purposes; avoiding the shadow distortion present in the images since shadows are always dark (black) in terms of hue which provides significant difference in hue map from the hue of the object of interest and easier to find the real contour of the object. Although, CNN by its dynamics can handle different distortions but such preprocessing can accelerate the potential especially for cases where the architecture is lighter and requirement is for faster decision.



(b) Fig. 5.2: Color channel separations for diseased leaves with (a) early blight and (b) target spot diseases.

5.2.2. MobileNet V2 classification model development

MobileNetV2 is originated from MobileNet[14] architecture that is designed with 13 convolution blocks. The convolution block consists of convolution layer, pooling layer and batch normalization (batchNorm) layer. RelU activation function has been used to achieve the nonlinearity in the model. The fully connected layer is similar to previous discussions and the output layer consists of output nodes equal to the number of classes under consideration (8 in our case i.e. healthy and 7 types of diseases tomato leaves).

In MobileNetV2 the cost of computation in convolution layers has been reduced by the use of depth wise separable convolution blocks. Each convolution blocks consists of the two distinct convolution layers; depth-wise convolutional layer (D) and point-wise convolutional layer (P).TheD layer is concerned to the application of single filter to each of the input channels. The P layer then applies a filter to the combination of the output produced from the entire depth wise convolution. Figure 5.3 shows the split of convolution blocks which results into considerable reduction of computational expenses.

Considering *X* and *Y* as the input and output of convolution block feature map, *P* and *Q* as the input and output depth, respectively the input and output feature maps can be represented as $D_x \times D_x \times P$ and $D_y \times D_y \times Q$ where D_x and D_y are the spatial dimension of input and output feature maps, respectively. If the convolution is performed with the filter dimension $D_t \times D_t \times P \times Q$ with square kernel of size D_t the output feature map produced by convolution operation with padding and stride can be represented as Eq. (5.1) and the associated computation cost can be presented

as Eq. (5.2).

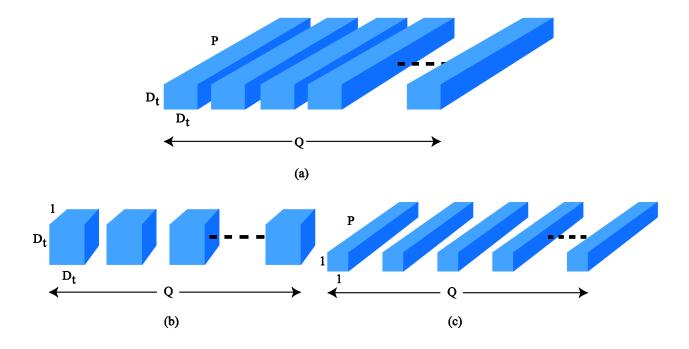


Fig. 5.3: Split in convolutional block(a) standard convolution filters (b) depth-wise and (c) point-wise convolution filters.

$$Y_{k,l,n} = \sum_{i,j,m} T_{i,j,m,n} X_{k+i-1,l+j-1,m}$$
(5.1)

$$C_\cos t = D_t \times D_t \times P \times Q \times D_x \times D_x$$
(5.2)

where, C_cost depends on the spatial dimension Dx and Dy The calculation of depth-wise convolution in each block/channel is performed using Eq. (5.3) where \hat{T} is the kernel of dimension $D_t \times D_t \times P$ and m_{th} is filter in \hat{T} that is applied to the mth channel in X in order to produce the mth channel of the filtered output feature map \hat{Y} . The C_cost for depth-wise convolution is performed as Eq. (5.4).

$$\hat{Y}_{k,l,n} = \sum_{i,j,m} \hat{T}_{i,j,m,n} \hat{X}_{k+i-1,l+j-1,m}$$
(5.3)

$$C_\cos t_{depth-wise} = D_t \times D_t \times P \times D_x \times D_x$$
(5.4)

The point-wise convolution is performed to combine the output of multiple depth-wise convolution channels and produce new features with 1×1 convolution. The output of point-wise convolution is finally

combined to that of depth-wise convolution [9] to form the depth-wise separable convolution results. The cost of depth-wise separable convolution can be calculated as Eq. (5.5).

$$D_C_{cost} = D_t \times D_t \times P \times D_x \times D_x + D_x \times D_x \times P \times Q$$
(5.5)

The cost ratio (CR) as calculated by Eq. (5.6) and (5.7) can be used to measure the reduction of cost of computation in MobileNetV2. The value of Q is usually greater than 10 which conveys that computation cost on using the depth-wise convolution is much less (approximately 8 to 9 times less) compared to the standard convolution with nominal drop of inaccuracy value produced.Width parameter and resolution parameter are two important hyperparameters of MobileNet architecture to achieve balance between efficiency and accuracy of the model. Including α and ρ as width and resolution parameter, respectively, the cost of depth-wise separable convolution can be presented as Eq. (5.8).

$$CR = \frac{D_t \times D_t \times P \times D_x \times D_x + D_x \times D_x \times P \times Q}{D_t \times D_t \times P \times Q \times D_x \times D_x}$$
(5.6)

$$CR = \frac{1}{Q} + \frac{1}{D_t^2}$$
(5.7)

$$D_C_{\text{cost}} = D_t \times D_t \times \alpha P \times \rho D_x \times D_x + \rho D_x \times D_x \times \alpha P \times \alpha Q$$
(5.8)

The back propagation principle of propagating error from the output layer is adopted for learning. The weight updates are achieved using mean square error (MSE) calculated as Eq. (5.9) where L and N are the number of layers and the number of outputs in the output layer, t^{I} and $[o_{1}^{L},...,o_{N}^{L}]$ are the target vector and the output vectors corresponding to the input vector I, respectively.

$$ER_{I} = \sum_{k=1}^{N} (o_{k}^{L} - t_{k}^{I})^{2}$$
(5.9)

Linear bottleneck layers are another important functional part of MobileNet V2 architecture.

The bottleneck layer consists of the three distinct convolution layers. The first layer has the dimension 1×1 and is concerned to the channel reduction. The next layer having 2×3 convolution is concerned to the extraction of spatial features. The last layer with the dimension 1

X 1 is concerned to the channel expansion. The bottleneck structure can further be developed by widening the channels in each of the convolutional layer. The inverted residual structure is following the converse idea of the classic bottleneck structure. It introduces the shortcuts between the linear bottlenecks. It plays a prime role in optimizing the model complexities to the higher degree. The inverted residual block has been introduced in the later version of the MobileNet. It takes as input the compressed tensors of low dimension and converts the same into higher dimension by means of the point wise convolution. The low dimensional feature tensors have been produced inside the inverted residual block by subjecting the structure to the depth wise convolution followed by the point wise convolution.

The schematic representation of MobileNetV2[15] architecture comprising of the one convolution layer, 17 bottleneck residual blocks ,one regular convolution layer ,global average pooling layer and finally classification layer as used for tomato leaf disease classification is shown in Fig. 5.4. The implementation of MobileNetV2 for leaf disease classification is shown in Fig. 5.5.

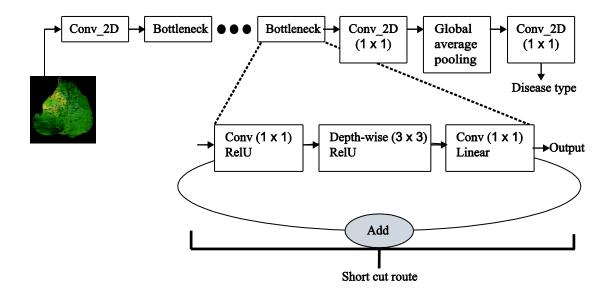


Fig. 5.4: The MobileNet V2 architecture used for tomato leaf disease classification.

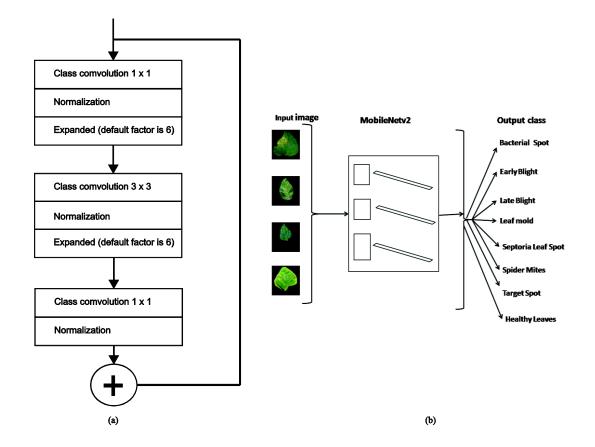


Fig. 5.5: Leaf disease classification using MobileNet V2 architecture (a) layered architecture and (b) classification operation.

The final layer has been exempted from the nonlinearity and finally feeds into the *softmax* layer for classification of different types of diseases. The first layer and the depth-wise convolution layers all maintain the strided convolution and the spatial resolution has been reduced down to 1 before reaching the fully connected layer by means of the final average pooling. MobileNetV2 preserves altogether 28 layers by counting the depth-wise and point-wise convolutions separately. The fully connected layer of the network has been entirely removed and all the weights of the model have been frozen up except the last four layers. Kernels and weights were updated by the gradient descent optimization algorithm. The degree of compatibility among different output predictions are measured by the loss function. Cross-entropy and the mean-squared error(MSE) are two most popular loss functions. Gradient is the partial derivative of the loss with respect to each learnable parameter. The weight updates occur following Eq(5.10).

$$w = w - \alpha * \frac{\partial L}{\partial w} \tag{5.10}$$

Where, α is the learning rate and L and w stand for the loss function and each learnable parameter, respectively.

5.2.3. Hyperparameter optimization using Modified GWO

The hyperparameters of the multi channel CNN model have been optimized by using the three most promising methods BPSO, GWO and the modified GWO. The architectural description of the appointed models has been described in the section 2.4 in details. The comparative analysis of the three optimizer has been carried out in terms of the convergence curves which are provided in the result and discussion section of this chapter.

5.3. Results and discussions

The MobileNetV2 model was trained using *Tensorflow* backend [16] with *Adam* [17] optimizer with the asynchronous gradient descentlike the InceptionV3 [18].Total 8000 images were taken for the experimentations consisting of 1000 leaves for each of the 8 classes. The optimization of hyperparameters was performed with 30% randomly taken samples and the convergence plot based on the BPSO,GWO and modified GWO for 100 iterations is shown in Fig. 5.6 and the features extracted from different layers of the model have been consolidated in Fig. 5.7.

The plot of Fig. 5.6 shows that after 80 iterations the BPSO [19] converges with more than 98% accuracy, the GWO[20] converges with a little more than 98% accuracy and for modified GWO, the convergence varies with nearly 98.5% accuracy value. The hyperparameter finally arrived with the BPSO as used for the presented results are consolidated in Table 5.2.

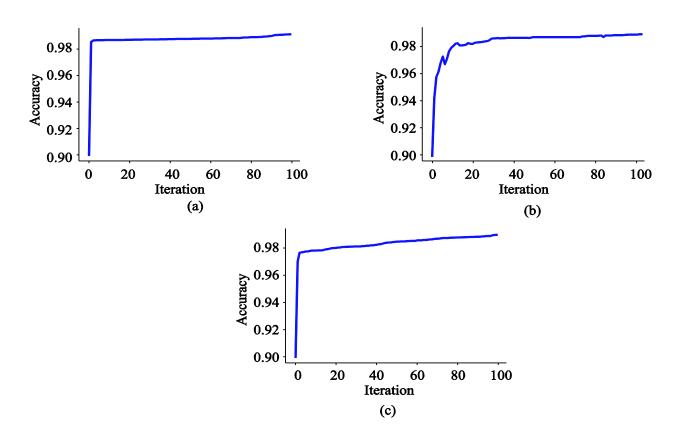


Fig. 5.6: Convergence plot for (a) BPSO, (b) GWO and (c) modified GWO optimizer

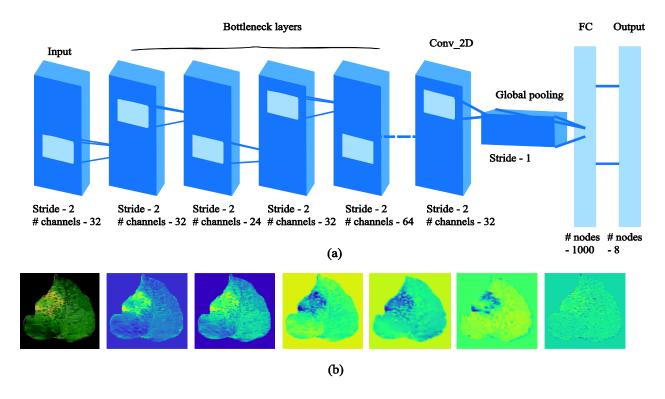


Fig. 5.7: Feature extraction by MobileV2 (a) layers and (b) images extracted from layers.

Figure 5.6 shows that at convergence modified GWO results about 98% accuracy with the optimized parameter settings. The functioning of the architecture in terms of deeper feature extraction is evident from Fig. 5.7. It can be seen that in the initial layers the image is visible as leaf but as the image progresses through the deeper layers more abstract features are getting extracted. This ensures automatic extraction and combination of different features like shape, color and textures along with their derived features by the split convolution layers. The optimum hyperparameter settings as arrived by the optimization and employed for all the results shown in chapter have been presented in Table 5.2.

Layer type	Variable	Range	
Conv2D	Image size	224X 224	
	Number of kernels	32	
	Kernel size	3 X 3	
	Stride size	2	
	Number of channels	32	
Bottleneck	Image size	112 X 112	
	Number of kernels	16	
	Kernel size	3X 3	
	Stride size	2	
	Number of channels	16	
Bottleneck	Image size	56 X 56	
	Number of kernels	24	

 Table 5.2:MobileNet V2 optimized parameter settings

	Kernel size	3X 3
	Stride size	2
	Number of channels	24
Bottleneck	Image size	28 X 28
	Number of kernels	32
	Kernel size	3X 3
	Stride size	2
	Number of channels	32
Regular Conv2D	Image size	7 X 7
	Number of kernels	320
	Kernel size	3X 3
	Stride size	1
	Number of channels	1280
Global average pooling	Image size	1280
	Number of kernels	32
	Kernel size	3X 3
	Stride size	-
	Number of channels	1

Global	average	Number of nodes	1000
pooling(Prediction dense	e layers)		
dense (Dense)layer		Number of nodes	8

Based on the convergence characteristics as given in the Fig 5.6, the modified GWO optimized MobileNet2 model has been chosen as the classifier on the convergence characteristics performance shown in Fig 5.6 for plant leaf disease detection and all other metrics have been measured based on this chosen best.

5.3.1. Model validation

Following the convention of the previous chapters and common practice in machine learning application domain here also the entire experimental dataset (8000 samples/images) was divided into 60:20:20 ratios for training, validation and testing. It can be noted that these sets were disjoined so testing set was not known to the trained and validated model. The accuracy and loss plots with the validation set to judge the generalization potential of the model is presented in Fig. 5.8. It shows the generalization potential of the model is presented in Fig. 5.8. It shows the generalization potential of the employed optimized MobileNetV2 architecture. The plots for validation and training are following the same trend and have very small gap at the ends. These small gaps convey the avoidance of biasness to particular class(es) by the model. The plots also confirm the potential to avoid under-fitting problems hence was expected to perform well when subjected to unknown testing set.

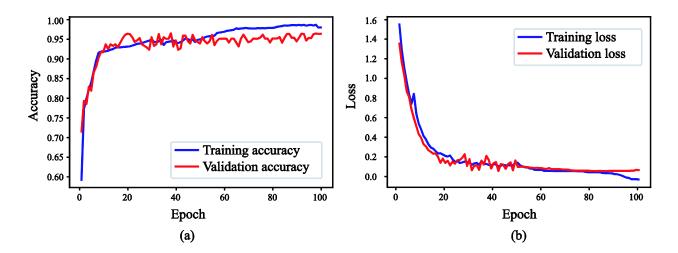


Fig. 5.8: Model validation plots for (a) accuracy and (b) loss.

The 10-fold cross-validation results are shown in Table 5.3. It echoes the similar observation as Fig. 5.8 in terms of generalization potential as the accuracy with training and validation sets are very close (both in the tune of 98%). The loss value for validation set is higher than that of training set which also convey practical realization ability and generalization potential of the model. Nevertheless, the loss value with validation set visibly small. The consistency of the model is reflected in the accuracy vs epoch plots which are also in same magnitude however the loss value for validation set is reflected by small gap between minimum and maximum values for both loss and accuracy along with considerably small standard deviation values.

Table 5.3: Results of 10-fold cross validation

Number	Training dat	ta	Validation d	lata
Offolds	Loss	Accuracy	Loss	Accuracy
1	0.0199	0.9888	0.053	0.9766
2	0.0276	0.9834	0.033	0.9834
3	0.0235	0.9889	0.034	0.9856
4	0.0156	0.9843	0.054	0.9888

5	0.0246	0.9845	0.044	0.9892
6	0.0136	0.9803	0.051	0.9879
7	0.0175	0.9899	0.032	0.9858
8	0.0166	0.9985	0.043	0.97655
9	0.0126	0.9875	0.056	0.97653
10	0.0167	0.9845	0.047	0.9852
Average	0.0188	0.98606	0.0447	0.983558
Maximum	0.0276	0.9899	0.0560	0.9892
Minimum	0.0126	0.9803	0.0320	0.9634
Std. Dev.	± 0.0049	± 0.0031	± 0.0091	± 0.0051

5.3.2. Performance evaluation against confusion matrix

The confusion matrix with the classification results obtained with the model has been shown in Fig. 5.9. For convenience of presentation the diseases have been abbreviated. The confusion matrix show that to the maximum 5 out of 200 leaves have been wrongly classified in case of bacterial spot diseased leaves while in case of target spot it is as low as 2 out of 200 leaves. On an average 3 out of 200 leaves have been misclassified for most the diseases and healthy leaf classes. This results into 98.5% overall classification accuracy which is considerably promising as many of the leaf diseases have same kind of appearance hence difficult to distinguish. The performance is further vouched by the metric values that have been listed in Table 5.4.

		BS	EB	LB	LM	SLS	SM	TS	HL
	BS	195	0	2	1	0	1	1	0
	EB	1	196	0	1	1	0	1	0
	LB	1	0	198	0	0	1	0	0
Actual	LM	1	0	0	197	0	2	0	0
Ac	SLS	0	1	1	0	198	0	0	0
	SM	1	0	0	0	1	198	0	0
	TS	1	0	0	0	0	1	196	0
	HL	0	0	1	0	0	1	1	197

Predicted

Fig. 5.9: The confusion matrix for the optimized MobileNetV2 classifier for test dataset (BS,EB,LB,LM,SLS,SM, TS and HL indicates bacterial spot, early blight, late blight, leaf mold, Septoria leaf spot, spider mites, target spot and healthy leaves, respectively)

 Table 5.4: Classification performance by MobileNet V2 architecture

Diseasetype	Precision(%)	Sensitivity(%)	FMeasure(%)	Specificity(%)
Bacterialspot	98	99	98	
Early blight	97	98	99	
Late blight	97	97	97	
Leaf mold	96	98	98	

Septoria leaf spot	97	97	97	
Spider mites	96	97	98	
Target spots	98	98	99	
Healthy leaves	97	98	98	98
Micro avg.	98	98	98	
Macro avg.	98	98	98	
Weighted avg.	99	99	98	

Table 5.4 conveys 98% sensitivity which indicates that the model can correctly identify the diseased leaves. The specificity value of 98% indicated that the chance of identifying a healthy leaf as diseased ones is very less (only about 2%). The overall accuracy is nearly 99% which further confirms the potential of the model. Finally, the F-measure values between 98-99% vouches the good balance between recall and precision which in-turns reflect the potential of the model to avoid over- and under-fitting while subjected to unknown samples.

5.3.3. Cohen Kappa score

The suitability and quality assessment of the automatic feature extraction with the presented model was evaluated using Cohen Kappa [21] measure. The result is shown in Table 5.5 and with the value of nearly 99% the suitability of extracted feature for the subjected goal can be confirmed.

Classifier	Classes takenfor measurement	Cohen Kappa Score(%)
MobileNetV2	Bacterial spot, Early blight, Late	
	blight, Leaf mold, Septoria leaf	00.07
	spot, Spider mites, Target spots,	98.87
	Healthy leaves	

<i>Table</i> 5.5:	Cohen Kappa	score for tomato	leaf disease	classifier
-------------------	-------------	------------------	--------------	------------

5.3.4. Receiver operating characteristics (ROC) curve

Fig. 5.10 shows the ROC curves [22] resulted with the presented model for different classes along with the corresponding ROC-AUC values. It can be seen that the AUC values are consistently in the range of (0.98 - 1). The AUC value of 1 in case of healthy leaves is important to note which conveys the fact the model can distinguish between healthy and diseased leaves with considerable accuracy. Apart from healthy leaves for diseases like light blight, leaf mold, spider might and septoria leaf spot the AUC is 1 as well. On an overall consideration the high AUC values can be important parameter to convey the significant potential of the MobileNetV2 classifier.

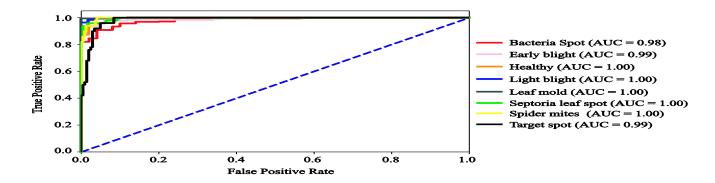


Fig. 5.10: ROC curves and ROC-AUC values for different classes resulted by optimized MobileNetV2 classifier.

5.3.5. Comparative analysis

Table 5.6 shows the comparative analysis between the performance of MobileNetV2 based model and other conventional as well as pre-trained CNN models. Since many of diseased leaves have spots and other marks in this case with the color features the contour features also have been extracted for classification using techniques that need hand engineered features.

	Classification of the diseased tomato leaves						
Method	Classification	Accuracy	Sensitivity	Specificity	Precision	FMeasure	
BP MLP	Diseased tomato leaves	0.94	0.94	0.93	0.95	0.95	
SVM	Diseased tomato leaves	0.95	0.95	0.95	0.94	0.94	
RF	Diseased tomato leaves	0.96	0.94	0.95	0.95	0.96	
AlexNet	Diseased tomato leaves	0.98	0.97	0.97	0.97	0.96	
VGG19	Diseased tomato leaves	0.95	0.96	0.96	0.97	0.96	
ResNet50	Diseased tomato leaves	0.95	0.95	0.96	0.96	0.97	
		0.97	0.98	0.97	0.97	0.97	

Table 5.6: Performance comparison of presented model

CNN						
MobileNetV2	Diseased tomato leaves	0.98	0.97	0.97	0.96	0.98
BPSO optimized MobileNetV2	Diseased tomato leaves	0.98	0.98	0.98	0.98	0.98
GWO optimized MobileNetV2	Diseased tomato leaves	0.98	0.99	0.98	0.98	0.99
Modified GWO optimized MobileNetV2	Diseased tomato leaves	0.99	0.98	0.98	0.99	0.99

The Table 5.6 shoes that the optimized MobileNetv2 architecture has got the higher score over the other deep learning and conventional classifiers. The performance of the BPMLP ,SVM and RF are not little less compared to the other deep learning based models AlexNet [23], VGG19 [24] and ResNet50 [25] used in the process of disease classification. It is also much evident from the table 5.6 that performance accuracies of the modified GWO optimized MobileNetV2 architecture has better performance over the CNN MobileNetV2 architecture optimized with the simple GWO and the BPSO. This model also reduced the time of computation to a considerable degree as it eliminates the steps of feature extractions. Hence the GWO optimized MobileNetV2 architecture has the more potential capability towards classification of different diseased leaves.

5.3.6. GUI representation

The GUI implementation of the MobileNetV2 model with modified GWO for detection of the diseased tomato leaves has been represented in this chapter. The Fig.5.11 presents the identified tomato plant diseases of unknown category. The prediction regarding the disease for the tomato sample has been done by the optimized MobileNetV2 model. The prediction vectors for different tomato leaf diseases under consideration are expressed as [0.0.0.0.0.0.0], [1.0.0.0.0.0.0], [0.1.0.0.0.0.0], [0.0.1.0.0.0.0], [0.0.0.1.0.0.0], [0.0.0.0.1.0.0], [0.0.0.0.0.1.0.0], [0.0.0.0.0.1.0.0], [0.0.0.0.0.0.1.0] and [0.0.0.0.0.0.1] respectively for the healthy leaf, bacterial spot, Early blight, Late blight, leaf mold, septoria leaf spot, spider mites and Target spot.

7 Tomato disease Classification Window	🖉 Tomato disease Classification Window
Tomato Leaf Disease Classifier Classification result Image Classify leaf disease Train new dataset	Tomato Leaf Disease Classifier Classification result 0.1.0.0.0.0 Disease type: Early blight
(a)	(b)
Load Image Classify leaf disease Train new dataset	Disease type: Late blight Load image Classify leaf disease Train new dataset
(c)	(d)
Classification result 0.0.0.1.0.0.0 Disease type: Leaf mold Load image Classify leaf disease	Classification result 0.0.0.0.1.0.0 Disease type: Septonia leaf spot
Train new dataset	Train new dataset
(c)	(f) Torrato disease Classification result Classification result Disease type: Target spot
Load image Classify leaf disease Train new dataset	Load image Classify leaf disease Train new dataset
(g)	(h)

Fig. 5.11: GUI windows corresponding to the tomato leaf disease identification for any unknown sample identified as (a) Healthy leaf (b) Bacterial spot (c) Early blight (d) Late blight (e) Leaf mold (f) Septoria leaf spot (g) Spider mites and (h) Target spot.

5.4 Conclusion

This chapter has presented the unique work on the computer vision based framework MobileNetV2 model optimized by the modified GWO architecture towards the detection of diseased leaf and the associated disease types. MobileNetV2 is the light weight variation of CNN model with relatively low complexities and functionalities but with similar computing capability. It also highlights the use of BPSO, GWO and modified GWO optimization for hyperparameter optimization in order to get more generalization and performance of model. The performance measurement of the modified GWO algorithm has shown the slight improved performance towards the accuracy of calculation.. The tomato plant leaves affected with different types of diseases has been experimentally assessed in justification to the problem. The performance of the optimized model has been validated with the test image sets comprising of ground truth image datasets of the diseased leaves obtained from the plant village database. The evaluation performance of the classifier against different metrics confirms the consistency of the model with considerable generalization potentiality. The comparison confirms the achievement of 98.5% accuracy. The optimized MobileNetV2 model has been compared to other existing conventional and deep learning based models. The overall performance assessment of the model confirms the presented framework to be the addition to other existing conventional instrumental methods for detection of any sort of leaf diseases for different plant species.

References

- Williams S.D., BoehmM.J.(2017). Plants Get Sick Tool, Retrieved from https://ohioline.osu.edu/factsheet/plpath-gen-1.
- Isleib J. (2018).Signs and symptoms of plant disease: Is if fungal, viral or bacterial? "Retrieved from,https://www.canr.msu.edu/news/signs_and_symptoms_of_plant_disease_is_it_fungal_viral _or_bacterial.
- Vinay P., Santhosh K.G., Aravind K.U. (2021). Classification of Tomato Plant Leaf Disease Using Neural Network" Proceedings of the International Conference on Innovative Computing & Communication. (ICICC)
 SSRN: https://ssrn.com/abstract=3747953 or http://dx.doi.org/10.2139/ssrn.3747953
- Mustafa M.S., Husin Z., TanW.K., MaviM.F., Farook R.S.M., (2020). Development of automated hybrid intelligent system for herbs plant classification and early herbs plant disease detection". Neural Computing and Applications, 1-23.
- Ma J., Du K., Zheng F., Zhang L., Gong Z., Sun Z.(2018). A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network, Computers and Electronics in Agriculture, vol. 154, pp. 18–24.
- 6) Hidayatuloh A., Nursalman M., Nugraha E. (2018) Identification of Tomato Plant Diseases by Leaf Image Using Squeezenet Model, *International Conference on Information Technology Systems and Innovation (ICITSI)*, 2018, pp. 199-204, doi: 10.1109/ICITSI.2018.8696087.
- Sibiya M., Sumbwanyambe M. (2019). A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional NeuralNetworks

 AgriEngineering. 1:119–131.doi: 10.3390/agriengineering1010009. [CrossRef] [Google Scholar]
- 8) Mim T.T., Sheikh M.H., Shampa R.A., Reza, M.S., IslamM.S.(2019). Leaves Diseases Detection of Tomato Using Image Processing, 2019 8th International Conference System Modeling and Ad-

vancement in Research Trends (SMART), pp. 244-249, doi: 10.1109/SMART46866.2019.9117437.

- Liang W., ZhangH., Zhang G.F., Cao,H.(2019). Rice Blast Disease Recognition Using a Deep Convolutional Neural Network. Sci Rep 9, 2869. https://doi.org/10.1038/s41598-019-38966-0.
- 10) Sandler M., Howard A., Zhu M., ZhmoginovA., Chen L.C. (2018). Mobilenetv2: Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 4510-4520. https://doi.org/10.1109/CVPR.2018.00474.
- Wang Y., Li H., Cai Z., Tang X., Yang Y. (2020). CNN Hyperparameter Optimization Based on CNN Visualization and Perception Hash Algorithm", *19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)*, 2020, pp. 78-82, doi: 10.1109/DCABES50732.2020.00029.
- Sinha D., Sharkawy M.E. (2019). Thin MobileNet: An Enhanced MobileNet Architecture, IEEE
 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference
 (UEMCON), pp. 0280-0285, doi: 10.1109/UEMCON47517.2019.8993089.
- 13) Mirjalili S., Mirjalili S.M., Lewis A. (2014). Grey wolf optimizer. AdvEngSoftw 69:46-61.
- 14) Sinha D., El-Sharkawy M. (2019). Thin MobileNet: An Enhanced MobileNet Architecture, *IEEE* 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), pp. 0280-0285, doi: 10.1109/UEMCON47517.2019.8993089.
- 15) Howard A.G., ZhuM., ChenB., KalenichenkoD., WangW., WeyandT., Andreetto M., Adam H.(2017). mMobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
- 16) Abadi M., Barham P., Chen J., Chen Z., DavisA., DeanJ., Devin M., Ghemawat S., Irving,G., JsardM. et.al.(2016).TensorFlow: A system for large-scale machine learning. *OSDI*,16,265-283.
- 17) Kingma D.P., BaJ. (2015).. Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980.

- 18) Bankar J., Gavai N.R. (2018). Convolutional Neural Network based Inception v3 Model for Animal Classification, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 7, Issue 5.
- Berrar D. (2019). Performance measures for binary classification. In: Ranganathan S, Gribskov M, Nakai K, Scho⁻⁻nbach C (eds)Encyclopedia of bioinformatics and computational biology. Academic Press, Oxford, pp 546–560. <u>https://doi.org/10.1016/</u> B978-0-12-809633-8.20351-8.
- 20) Mirjalili S., Mirjalili S.M., Lewis A. (2014). Grey wolf optimizer. AdvEngSoftw 69:46-61.
- 21) McHugh M.L. (2012). Interrater reliability: the kappa statistic. Biochem Med 22(3):276–282.
- 22) Fawcett T. (2006), An introduction to ROC analysis, Pattern Recognition Letters Vol. 27,pp. 861–874.
- 23) Liu Y., Li Z., Chen X., Gong G., LuH.(2020). Improving the accuracy of SqueezeNet with negligible extra computational cost, *International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS)*, pp. 1-6, doi: 10.1109/HPBDIS49115.2020.9130577.
- 24) Zhang X., Zhou X., Lin M., Sun J. (2018).ShuffleNet:. An Extremely Efficient Convolutional Neural Network for Mobile Devices, Conference, IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- 25) Sarwinda D., Paradisa R.H., Bustamam A., Anggia P. (2021).Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer,Procedia Computer Science,Volume 179, ,Pages 423-431,ISSN 1877-0509,https://doi.org/10.1016/j.procs.2021.01.025.

CHAPTER 6

Concluding Remarks

6.1 Introduction

Literature survey has revealed the importance of automatic identification, grading and screening of agro produces. However, it has also revealed the room of developing computer vision techniques particularly using emerging convolutional neural network (CNN) methodology. The computer vision technology can be advantageous in terms of low cost, easier implementation and high portability. The thesis presented detailed studies on different classification and prediction tasks in agro produces using computer vision framework and different deep learning architectures.

The species and maturity of medicinal plants were first to consider in this work. Medicinal plants have considerable contribution and healing power for human health due to different bio-actives present in them. However, the concentration of these bio-activates varies between species and maturity stages. This reveals the importance of identification of those two aspects for medicinal leaves. The work in this thesis presented a convolution neural network (CNN) based computer vision model which has shown high accuracy in grading of medicinal leaves, particularly three of them i.e. neem, tulsi and kalmegh, in terms of species as well as maturity stages.

The investigation on the scope of computer vision for screening species and maturity was carried forward for fruits and vegetables as those two are again major contributors of human nutrition. Among different fruits and vegetables, banana and tomato were chosen for experimentation. Maintaining the focus of the thesis in this case also CNN was used but CNNs were different in terms of architecture and parameter settings. In this case also visible model performance has been seen. Finding the right maturity of the medicinal leaves or the fruits for different species of the fruits tomato and bananas are much essential in order to get the maximum medicinal benefits.

Once the three major groups of agro produces, namely, medicinal plants, fruits and vegetables have been approached the work has been extended to identification of diseases in agro produces by means of identifying the leaf diseases. The motivation of the work was to early prediction of diseases which can in turn help to avoid huge agricultural and economical loss. In this case tomato leaves were chosen for experimentation and seven different diseases were considered. A different CNN architecture called MobileNet V2 has been explored to realize lighter yet efficient model. The classification results remain significant in this case as well.

Apart from the above mentioned implementations, the thesis also provide in-house dataset preparation technique using an indigenous imaging chamber, optimization of CNN parameters using soft computing methodologies and also some modifications of the existing conventional soft computing technique for enhanced performance. The highlights of the thesis can be listed as below;

- Development of the convolution neural network driven computer vision methodology incorporating the tuning of different layer dynamics of the CNN model.
- Exploring the feature extractions by individual CNN layers and making required changes in layer parameters for betterment.

- iii) Collection and imaging of different agro produces samples (except the leaf disease one) and making the image dataset with accurate labeling.
- iv) Developments of possible layer configuration in CNN, for example, multi-channel implementation for simultaneous identification of species and maturity stages.
- v) Optimization of the CNN models for improved accuracy and consistency of the models using computational intelligence methods like binary particle swarm optimization (BPSO), gray wolf optimization (GWO) and its modified version.
- vi) Exploring the scope of lighter CNN model, namely MobileNet V2 for possible implementation in real-life cases in order to obtain faster results.
- vii) Performance evaluation of all the models using standard metrics like confusion matrix and it's associated metrics, Cohen Kappa score, ROC_AUC, etc.

This chapter consolidates the major findings of the thesis, the specific attainment to the research questions framed in the 'Introduction' chapter and some major future works which can be possible extensions of this work.

6.2. MajorFinding

The major findings obtained during the research works on the detection of species of medicinal plant leaves, fruits and their corresponding maturity information can be presented as follows.

While detecting the species and the maturity information of the medicinal leaves, the UV
 –Vis spectroscopy has been carried out for the leaves neem, tulsi and kalmegh. The
 wavelength vs absorption plots has been obtained which shows the peaks for chlorophyll
 a , chlorophyll b and carotenoids which occur between the wavelength range 400 and
 700nm. It is obvious from the plots that the peaks are varying with maturity implying the

variation of containment of important biochemical constituents. The maturity wise variation of peaks in the curve provides distinctive estimation of the bio-actives and indicates the prospects of classification on the basis of maturities of leaves. However, the UV-vis spectroscopy and other spectroscopic methods are expensive and time taking despite their accuracy and precision. The computer vision model driven by the BPSO optimized CNN has shown about 99% accuracy. The presented model also shown considerable competitiveness while comparing to some of the most popularly used conventional classifiers and pre-trained CNN models.

- Detection of distinct species and maturity stages for fruits and vegetables also have shown about 98% accuracy. The results also have shown competitiveness against the popular conventional classifiers and some of the popular pre-trained CNN models. This study show that computer vision based model can be an important inclusion to the existing screening methods in retail chain of fruits and vegetable due to its easy implementation ability and faster yet efficient decision.
- The final experimentation work in terms of leaf disease identification also reveal promising potential of CNN driven computer vision framework. It has shown about 99% accuracy when tested with public domain leaf disease dataset. This can be of particular interest as realization of this has been done using a lighter CNN model, called MobileNetV2 and it is possible to integrate with the existing electronic surveillance system to avoid huge agricultural and economical loss by means of early predictions of leaf/plant diseases. Nevertheless, in this case as well the comparison of the presented model with other classification methods found motivating and competitive.
- In all the cases inclusion of CNN parameter optimization has played pivotal role. CNN is associated with considerable number of tunable parameters which affect the performance

of the CNN. Optimization not only improves performance but also causes improvement in terms of consistency. In this connection modification of BPSO and GWO found to be efficient while modification of GWO to address the movement of different wolf in hierarchical levels towards the prey instead of conventional averaging method.

- The thesis also throws lights on image capturing in an inexpensive indigenous imaging chamber along with pixel-scanning based image isolation method. This can be helpful for crops and fruits which are of individual small size. This can also be helpful for real-life implementations where numbers of samples can be pictured together and then can be isolated automatically for feeding into the computer vision classification model.
- Easier and simpler GUI development possibility using Python makes the presented method more realizable in real-world applications. It also provides better scaling possibilities considering IoT based application of computer vision in agro industry.

6.3. Answer to research questions

At the end of this thesis, the answers to the research questions, raised in the first chapter can be addressed as follows.

The concept of computer vision has been proved to be the successful means for determination of maturity of agro items in the noninvasive and nondestructive manner. CNN is an emerging approach of computer vision and demands no feature extraction from the objects like agro items in noninvasive manner. More over the deep learning model can easily be trained in supervised mode with the pool of indigenous datasets to reach considerable accuracy compared to the other existing classifiers as are shown in the current research results. This serves as the answer to the research question 1

- Deep learning based model is the good fit as a machine learning tool used for the classification of any objects on the basis of the image features. Diseased leaves are represented in different form having different colors and textural traits, however visible differences is often insufficient to distinguish between types of diseases by conventional classifiers. Deep learning tool is adept enough to classify different diseased leaves very efficiently. This can be of utmost important in terms of early prediction of rapidly spreading diseases in plant to avoid agricultural and financial loss. The researches carried out using this very principle offers good accuracy on public domain database towards the disease detection of different tomato plant leaves and therefore serve as the answer to the research question2.
- The regression model can be defined on the maturity values of leaves or fruits individually. The model thus formed serves as the predictor model which could be used to predict the maturity stage of any unknown leaf or fruit .The research question 3 therefore can be answered on this basis.
- The optimization of the deep learning models has been carried out by engaging the BPSO, GWO and modified GWO algorithms. The precision and accuracy result obtained with the differently optimized classifier models vary for the different types of datasets employed. The accuracy result with BPSO sometimes outweighs the accuracy results obtained from the other optimizer or vice versa. The research question 4 thus has been answered.
- The agro industry is very vast and deals with various kinds of agro products. Machine learning can be a boon for agro industry for inspection of maturities and species to get the best of the yields. Study of the deep learning model has been proved as a potential means of analysis for different agro produces for their maturity assessment and identification of

species, maturity stages as well diseases in agro produces. It is therefore possible to develop the model in user friendly manner to address such task in industries. The research question 5 has been thus answered.

6.4. Future scopes

The promising potential of the presented methods open up different research avenues as the future research scopes. Some of the major of those can be consolidated as follows.

- In this work only three medicinal plants namely, neem, tulsi and kalmegh has been considered for experimentation due to their ready availability and high medicinal values. This can be extended to many other such plants as a more holistic application.
- Like medicinal plants in case of fruits and vegetables as well the work can be extended to fruits other than banana and vegetables other than tomatoes. That will make the presented models more comprehensive in terms of wide-spread applications in cultivation and supply chain of agro industries.
- The architectures of CNN is a huge area to explore as there can numbers of variants in different aspects. Hence, exploring more on this front can also be a significant future research area.
- Considering the real-life scenario images with more distortions can be included in the experimental dataset so that the model becomes more robust and generous.
- One of the major future work directions is development of hand-held mobile device which can detect maturity and species of the agro produces on-the-spot without requirement of much instrumental setup. This can even be developed as an app in different mobile phone OS platforms. This can address the portability issues of most of the instrumental and analytical methods currently involved in food screening.

- Future works can also be directed towards development of more light yet efficient CNN model which will in-turn provide better convenience in terms of realization and time consumption in decision making.
- The study about identification of plant diseases has been carried out only for the tomato plant leaves in this thesis. The deep learning model has been used for the same. The similar model can be appointed for carrying out identifications of different disease types for different plants. There is a scope for assessing the gravity of diseases for any plant in future. Making the database of such diseases also can be a potential contribution to this domain as many local or regional fruits, vegetables and agro produces may not have publicly available dataset like in case of tomatoes.

6.5. Conclusion

The thesis explored the potential of deep learning methodologies driven computer vision models towards species and maturity classes grading of agro produces. Three major segments, namely, medicinal plants, fruits and vegetables, in the huge varieties of agro produces have been focused in this work. Alongside the potential of computer vision driven models in identification of leaf diseases have as well been studies and found promising. The optimizations of parameter settings also have shown significant contribution to the competitive performances. Considering the high accuracy and possible future developments this work can be a potential step towards development of hand-held devices that can detect species and maturity stages of the agro produces in production line or on-spot of buying. It can also be realized as an app for mobile devices. Scaling and integration of this work in IoT framework can be one of the future trends in emerging automation in food grading and screening.

Associate Professor ieni of Printing Engineering Jadavpur University, Salt-Jake Campus Kolkata - 700 098

Junjon Heekling-