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Abstract

Autonomous robots have played a significant role in civic applications in recent years. Automated
search and rescue mission is one such use case. In this application, a robotic swarm has the potential
to significantly improve the efficiency of the system with faster search and rescue of victims, early
evaluation and mapping of the environment, real-time monitoring, and surveillance operations. On
the other hand, the biological creatures often work together in groups in order to search for food, such
as swarming bees, flocking birds, schooling fishes, etc.

Motivated by the swarming characteristics of the creatures in order to surveillance an unknown
environment efficiently, a swarm of robots could be employed. However, the fundamental objectives to
model such a system are to preserve coherent behaviors and respond effectively to the environmental
stimuli during navigation across the environment. In this dissertation, our major aim is to establish a
fault-tolerant cohesive swarm searching for a target or multiple targets while navigating through an
unknown occluded environment. The proposed approach utilizes a novel trajectory planning scheme
for a robotic swarm employing a region-based shaped control technique to ensure that the system
maintains inert-agent cohesion throughout the mission. The control rules are modified during the
exploration phases to avoid challenging barriers based on the sensory information of all the agents
in the swarm. As a result, the adaptive feature of the control approach has been established to steer
the system towards the target. Subsequently, we witness adaptive inter-agent formation switching
among the swarm during navigation. Furthermore, in multi-path scenarios, the system can split into
sub-swarms and rejoins (if required).

Hence, the proposed approach can effectively be used in various environmental conditions,
including single or multiple targets, single or multiple pathways, and so on, such as a typical rescue
operation in which several victims may be found in different locations.

To validate the efficacies of the proposed control strategy as well as to examine the scalability
in terms of the number of agents in the swarm, extensive simulation studies along with real-time
experiments have been performed in different environmental conditions, as presented in this thesis.
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Chapter 1

Introduction

A robot is a device that is used to replicate human activities. It can perform a series of tasks
autonomously without any human intervention (if it is properly programmed). The field in which
such frameworks are studied and programmed, is typically called robotics [4]. It connects several
interdisciplinary engineering domains such as mechanical, electrical, computer science, electronics,
etc. for the productive operation of robotic hardware. Robots can be employed in several circumstances
where human efforts cannot be utilized because of environmental criticality and uncertainty. Nowadays,
robots are extensively being used in super-fine surgical procedures, rescue and search operations,
nuclear industry, high-temperature manufacturing industry, radioactive process industry so and so
forth [5], [6], [7]. Thus, robots can replace human interventions in many hazardous conditions as well
as in situations where human intrusions are not at all feasible.

The notion behind inventing robots to operate autonomously emerges in the 20th century. The
first physical robot has been constructed in 1961 for uplifting and piling the hot metal parts from a die
casting machine [8]. From the development perspective of these robots, it was realized that one day the
robots will mimic human behavior and execute tasks in a human-like fashion and will be part and parcel
of modern-day society. Considering this scenario, the researchers and scientists started to explore
various application areas where a unitary robot or several robots can be used to perform tasks thereby
either supplementing or replacing the human endeavor. Consequently, robotic science and technologies
started taking shapes engulfing the areas like modeling, analysis, and synthesis of controlled dynamics
of a solitary robot or a group of robots to cater to the need of a specific and specialized job. With the
evolution of robotics or to be more precise, mechatronics as a discipline, presently, robots are being
employed commercially to perform distinct tasks more accurately and reliably than human beings
in an inexpensive way. The realms which have embraced robotic mediations in serious practice are
the medical fraternity, manufacturing and assembly industries, mining, transportation trades, disaster
management, and military applications, just to name a few [9], [10], [11].
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However, from its nascent state till date the robotic science is more concerned about investigating
the efficacy of a single robotic framework like a single robot manipulator [12] or gripper [13] and
eventually, they are like to perform a series of sequential tasks.

Fig. 1.1 The Rescue robot, called RoboCue [1].

If we take an example of the rescue robot, namely RoboCue (as shown in Fig. 1.1) [1], which
had been developed to assist the operation team in search and rescue [14] of humans in a disaster
management situations like earthquake or Tsunami, we would observe that to execute the mission
successfully, the robot needs to perform a serial of sequential activities such as searching and locating
casualties, mapping of the environment, removing rubbles, etc. It also contains a manipulator and
gripper section (attached to the head) to provide medical assistance and rescue the victims. For
detecting trapped humans and gently loading the injured person onto the cart, it uses several sensors
like ultrasonic sensors, expensive infrared cameras, high-resolution vision sensors, etc. So, the
hardware architecture of such systems becomes complex [15]. Furthermore, to prioritize the task to
be performed, it has to decide (on its own) depending on the sensory data. Depending on the priority
of the task, the actuation will take place which is also reliant on the sensory information. Hence, to
achieve each task efficiently, the robot has to perform several activities, and consequently, the system
consumes a huge execution time [16] to complete the mission.

In light of the above example, we can list the following generic challenges that may arise for any
kind of robotic system [4].

1. Robustness: The robustness of a robotic framework defines the satisfactory performance of
the system in the presence of inaccurate sensing inputs or the failure of certain modules of the
system. As the mission objectives are entirely dependent on the performance of the robot, so,
even in the presence of erroneous sensing data or the failure of certain modules, the system
should behave appropriately.
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2. Execution Time: The time of execution to finish the mission is another important feature that
requires to be addressed when working in robotics. Considering the same example as described
earlier, if the robot consumes a large amount of time to complete the mission, then, the number
of casualties might increase. So, the time of execution should be as low as possible.

3. Handling Environmental Uncertainties: While working in a disaster-like environment, a
robot may face several environmental uncertainties. Thus, it should be programmed in such a
way that it has the capability to overcome such uncertainties. Otherwise, the performance of
the system may degrade, and it would create a severe impact on the mission accomplishment.

4. Autonomous Navigation: Finally, to navigate across the unknown environment, the robot
needs to plan its trajectory autonomously (i.e., without the help of any human operator) and
accordingly map the environment. The environmental mapping could assist the rescue team to
find the victim’s location.

To resolve the above challenges, the common idea is to deploy a number of robotic agents instead
of a single unit. The key idea behind this fact is that by employing such a framework, the time
of execution to complete the mission will significantly be reduced as the environment will now be
explored by several robots. Moreover, the robustness of the system is guaranteed as if a robotic agent
fails during the operation, its tasks could be performed by another agent (i.e., in a similar manner as a
human being does). To formulate such a system, it is to be presumed that each robot can accomplish
several activities with the aid of other robots in the team. So, the entire task will eventually be
distributed among them. The advantages of such a system are listed below:

1. Time efficient solution: As multiple robots are working together, so the effective execution time
to complete the mission will be reduced than the unitary one.

2. Enhancing robustness: During the mission, if any of the agents fails, its responsibilities could
be performed by another agent in the group, thus the robustness of the system increases more
than the solitary framework.

3. Handling environmental uncertainty: To prioritize the list of tasks, the system could employ
the sensing data of each robot of the team. Depending on this information, the system could
detect the upcoming uncertainties of the environment and act on them accordingly.

4. Flexibility of the system: As multiple robots are working together as a team, hence, robots
could dynamically allocate themselves to various tasks to match the necessities of the specific
environments as well as the operating conditions.

5. Task distribution: In a multi-robotic system, a complex task could be partitioned into several
sub-tasks so that each sub-task is allotted to different robots so that all of the sub-tasks could
be performed in a parallel fashion.
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The domain of robotics where the multi-robot systems have been studied is generally called
Swarm Robotics [17], [18], [19].

1.1 Swarm Robotics
Swarm robotics [18] is the subject that describes the coordination among a large number of simple
robots to accomplish a desired collective behavior. Such kinds of collective responses emerge from
the interactions among the robots with their surroundings. This sort of collective social behavior is
commonly observed in zoological species for example, in swarming of bees [20], in flocking of birds
[21], or in schooling of fish [22] as represented in Fig. 1.2. If we analyze the behavioral patterns of
these creatures, we find that ants do form a line in quest of food; same do the birds for searching for a
goal, be it food or the nest at the end of the day. The school of fishes and herd of cattle always swim
or move either for food or for evading and eluding the predators. From the previous discussion, it is
clear that the animal kingdom does employ its intelligence to survive against all kinds of odds. Hence,
the principles that are developed for a swarm of robots are often called swarm intelligence [23], [24].

(a) Swarming of Bees [20].
(b) Flocking of Birds [21].

(c) Schooling of Fish [22].

Fig. 1.2 Swarm aggregation principle inspired from the social creatures.

The word swarm was first introduced in [25]. In the paper, robots were characterized as cellular
systems that could work in an n-dimensional space without the involvement of any centralized unit.
They could collaborate among themselves to perform common goals. This idea was then extended in
[26] where the group of robots could act like the cells of a human body to accomplish a complex task.

In 1993, the first multi-robot system was developed inspired by the collective behavior of a natural
swarm [27]. After that, the research focus on swarm robotics was steered towards understanding and
thereafter simulating the cooperative behaviors exhibited by different creatures like birds, fish, and
others. Several studies were reported in later stages [28], [29], where the key issue was implanting
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the intelligent behaviors of the natural beings artificially in a multi-robotic system. Thus, natural
swarming principles had always been the main motivation behind the genesis of the science of swarm
robotics.

In this process of evolution of a structured robotic crew, gradually, some important notions were
further envisaged [18], [19], like the simplicity of swarm architecture, scalability of the system, the
self-organizing criterion of individual member and robustness of the entire group. The concepts were
devised to ensure the success of the planned mission. Even in the present day scenario, we find that
these properties are still very relevant and influence, at the same time, the basic building blocks of any
swarm robotic framework. Moreover, those characteristics are considered to be the benchmarks for
evaluating and distinguishing the efficacy of a swarm robotic system over the others employed for the
same assignment.

The next sub-section elaborates on the necessary properties of a swarm network which have been
derived from nature itself. The basic premise of our work is the stable formation of swam. Therefore,
in the following section, we would like to elucidate the terms robustness, scalability, flexibility, and
time-efficiency associated with the congregation of robots [19], [23], [24].

1.1.1 Robustness

In swarm robotics, one major challenge is that the system needs be fault-tolerant [30], [31], [32],
i.e., failure of an agent or agents will not create any hindrance towards the fulfillment of the mission.
Generally, failures of agents mainly occur due to failure of a sensor or actuator [31], [33]. To ensure
this robustness study [24] of the swarm system requires serious consideration. The term robustness is
defined as the degree to which a system can continue its functionalities in the face of partial failure
of its agents or when subjected to some other abnormal conditions. Therefore, in swarm robotics,
robustness refers to the capability of the system to work even if some of the individuals fail or there
are unpredictable situations in the environment. The social insects are extremely robust in nature as
they can finish their task successfully even after losing a few of their neighbors [34], [35].

In this work, we have sincerely addressed this issue and have devised a robust swarm network.

1.1.2 Scalability

Scalability [36], in general, of a network, is the ability to perform satisfactorily with widely varying
dimensions. The addition or elimination of individual elements or agents does not result in a drastic
change in the performance of the system. In the parlance of the present work, to warrant the scalability
aspect of a swarm of robots, it is necessitated that the associated control laws are executed perfectly
with any number of robots in the team. Thus, the performance of the system should be consistent
enough with a varied number of agents in the team. One important advantage of a scalable swarm
is that if an agent fails to perform its responsibilities during the mission, its pending tasks could be
performed by another agent in the group.
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Scalability has been thoroughly studied and ensured as far as our swarm robotic frameworks,
designed in this work, are concerned.

1.1.3 Flexibility

Flexibility [37] is the capability of the swarm system to adapt to changing environments. A swarm
robotic system should be developed in such a manner that it will be competent enough to deal with a
wide spectrum of environments and operating conditions. An environment may not be static always;
it might have several dynamic conditions that may obstruct the motion of the swarm towards the
destination. In those situations, flexibility, as well as adaptability, enables the swarm to self-organize
itself to fit into the occluded surroundings. In other words, the flexibility and adaptability of a system
allow the robots to dynamically position themselves to persist within a changing environment. In this
work, we have extended the notion of flexibility to include the fact that the robots do pursue their
tasks depending only on the philosophy of connecting and communicating. Here, connect implies
connecting to the sensors, and communicate means sharing information gathered via a connection.
Connect and communicate mode of operations do not require any infrastructure-based communication
network.

Accordingly, the goal-specific swarm navigation schemes proposed in this work always assure the
flexibility and adaptability of those despite circumstantial changes.

1.1.4 Time efficiency

Finally, the task completion time [38] is considered one of the major performance criteria of a
swarm robotic system. For a given task, the system needs to be intelligent so that it will consume
the minimum possible time to complete the task. Therefore, while designing such systems, it is
recommended to devise the overall control algorithms in such a way that a specific task or a series
of sequential tasks are completed in a time-efficient manner. To address this issue, in this work, we
have assumed a scenario in which a swarm of robots can approach a predefined goal in an unknown
occluded environment in minimum time. Moreover, we have endeavored to consider this aspect and
consequently have proposed a split-joint mechanism which we shall discuss later on in detail.

To conclude this sub-section, we can state that inspired by the biological systems, the researchers
and scientists endeavor to develop robotic systems that manifest swarm intelligence features similar to
the characteristics portrayed by the social animals. Hence, it is expected that a swarm robotic system
should be robust, scalable, flexible, and time-efficient in dynamic circumstances, and this work has
been carried out to present some new directions toward swarm navigation appropriately emphasizing
these measures.
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1.2 Challenges in Swarm Robotics
Several potential challenges are required to be solved while working in the field of swarm robotics
[19], [39]. Those are listed below.

1.2.1 Centralized vs. Decentralized Motion Planning

The first and foremost challenge that needs to be addressed while developing a swarm robotic system
is the motion planning of all the agents in the team [19], [7]. The term motion planning in robotics
defines a computational problem for attaining the continuity of movements of a robotic agent from
the source to the destination in dynamic circumstances such that the effective time consumption and
path length to reach the goal are less [40]. For a multi-robot system, the sequence of movements of
each robot should be computed in such a manner that there would not be any collision with the nearby
agents as well as impending obstacles. Moreover, as several robots are required to be controlled, thus,
the planning should be performed in a distributed fashion i.e., without any involvement of centralized
control architecture [41]. However, while planning the movement of the swarm in an obstructed
environment, researchers are often divided into groups based on their preferences for centralized
control or decentralized control [42]. Though each control proposition either cited in the literature or
being practiced [42] has its own merits and demerits, we here report two classical cases where the
conflict between the control schemes can be understood simply intuitively.

(a) Motion planning in solitary path condition. (b) Motion planning in multiple path condition.

Fig. 1.3 Challenges in motion planning of a swarm robotic framework.

Let us assume two scenarios as shown in Figs. 1.3a, and 1.3b, where a swarm of robots is required
to pass through the obstacles. In the first case, there exists a single path that directly connects the
initial location of the swarm and the ultimate goal. However, in contrast, we see that in the second
case, two different paths are available to the swarm for reaching the target. It is needless to say
that in both cases, the swarm should be able to identify and avoid the obstacles faced along. The
obstacle avoidance is facilitated with the help of sensing information gathered by the agents. In
subsequent chapters, we shall discuss how sensing information helps in avoiding the obstacles at
length. For the time being, let us consider the situations portrayed above. The solitary path scenario
poses typical challenges associated with the motion planning of a group of robots. However, the
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multi-path condition opens up two distinct possibilities based on which the agents can pass through
the obstacles. Those possibilities are

1. Robots can approach the target along any single path as dictated by a centralized control
algorithm [43].

2. They can split into sub-swarms and can explore both paths simultaneously. Hence, as investi-
gated further, a decentralized control scheme would be necessary [44].

In this context, we would like to reiterate our basic premise that all the agents in a robust formation
should reach the goal to execute the tasks assigned to them. In continuation to the above consideration,
we can observe that out of these two possibilities, the second approach is temporally more optimal
than the previous one as it provides a concurrent exploration of the entire environment.

Nonetheless, it has been observed and established in our work that a central control scheme fails
to accomplish such kind of optimum motion planning scheme. Therefore, in the swarm robotic motion
planning system, the main objective is that each agent in the swarm can autonomously plan its path
utilizing its sensing ability. Hence, during navigational steps, any decision has to be taken by the
robot itself so that the entire system can move in a decentralized manner. This consequence creates a
major challenge to develop a swarm robotic system.

1.2.2 Formation Control

The second important aspect which arises in this context is the formation control among the swarm
robotic system that describes how a swarm of robots will maintain a desired spatial pattern or shape
while navigating through an unknown environment [45]. Maintaining formation during the navigation
steps has several advantages over moving individually [46], [47]. One such benefit is to expose
only some of the agents to the proximity of enemies or to improve the group’s abilities by allowing
individuals to limit the perceptual focus to one small part of the environment. Hence, the basic
advantage of maintaining formation is to improve the robustness and efficiency of the system.

However, to achieve and maintain a spatial pattern in a swarm robotic system, different control
topologies are required to develop, and depending on the environmental condition, any of them can be
selected adaptively. To rationalize this statement, the following example is manifested.

Now, let us consider a scenario shown in Fig. 1.4, it is observed that the agents are initially placed
randomly. Afterward, while passing through the first set of obstacles, the system creates a hexagonal
formation in order to avoid the obstacles. However, as we can see, the next set of obstacles makes the
situation critical as the passage in between is constricted, and hence the swarm as a whole with its
earlier hexagonal shape will not be able to move through maintaining a bare minimum clearance from
the impediments. The bottom line is the formation of the robots, along a complete path with varied
kinds of obstacles, should be able to change in accordance with the varying nature of the obstructed
surroundings. Hence, formation control calls for an adaptive control mechanism that will serve the
above-mentioned purpose.
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Fig. 1.4 Challenges in formation control of a swarm robotic system.

From the above discussion, it is apparent that a dichotomy is associated with formation control.
We express the dichotomy in the form of a question that is

Whether a swam should maintain a fixed formation throughout its journey or it should be allowed
to reshape itself, say from a circle to an ellipse, depending on the dynamic nature of the surroundings?

The answer to this question will actually dictate the control law. And we find that there is no
contradiction between the situations mentioned in the question posed. Actually in real-life situations,
some of which may demand fixed formation, whereas, some other may call for formation switching
or change.

For example, maintaining a specific formation is sometimes utterly beneficial to accomplish some
archetypal tasks like object carrying, security patrolling, search and rescue mission, etc. [5], [48].
The reason behind this fact is to limit the sensory abilities by allowing individuals to focus only
on a given area depending on their position in the formation. This criterion may also increase the
ability of the team to navigate and reduce the decision-making time, for example, a flight pattern
of a group of drones allows one member to predict the likely positions and movements of others,
decreasing the number of factors that must be considered when making a change in movement. For
object transportation tasks, strict formation control is always needed as the object being carried can’t
change its shape. Hence, for this specific application, a strong inter-agent formation amongst the
agents of the swarm is essential. However, for the other applications, formation control along with
formation switching would be beneficial.

However, in an irregularly blocked environment, maintaining strict formation among a group
of robots is not often possible [45]. Maintaining fixed formation even becomes an unacceptable
proposition where the blockages change with time or the moving obstacles lead to a completely
dynamic milieu. In this kind of scenario, the group should be able to change their contour adaptively
to cope with the changing environmental conditions [49]. Therefore, adaptive control laws would
be required in such situations for the respective group [50]. The scenario where sustaining a fixed
formation, even in a static terrain has been depicted in Fig. 1.3a for clear understanding.

However, formation control needs more deliberation as it encompasses some other challenging
concerns down the line as well. The intricate concerns further are the stability of the formation,
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controllability of the formation control, robustness issues like safety and uncertainties associated with
the formation, etc. [51], [52]. It is obvious that these criteria pose vital challenges, particularly for the
swarm robotics navigational problem.

1.2.3 Task Assignment

The main purpose of employing a swarm of robots is to execute a specific task or a sequence of tasks
[53]. In this aspect, the most challenging problem for a swarm of robots is how to optimally allocate a
set of tasks to a group of robots such that the given assignments are accomplished optimally [54], [55],
[56]. This specific problem in robotics is known as Multi-robot Task Allocation (MRTA) problem [53],
[38], [57]. It is a complex problem especially when it comes to heterogeneous unreliable robots [53]
equipped with different skills and capacities which are required to perform various tasks collectively
with several requirements and constraints. In a lucid form, the above problem can be expressed as: in
an unknown environment, when a specific task is identified, the system should decide which agent (or
agents) is (or are) capable of performing this task efficiently? Based on this knowledge, the task is
required to be assigned to a robot or a sub-group of robots to perform it successfully.

Now, let us focus on a scenario as shown in Fig. 1.5, where a group of seven agents (as marked
by brown stars) are required to perform seven individual tasks (denoted by circles).

Fig. 1.5 Challenges in task assignment of swarm robotic system.

Some of the tasks are already identified by the system (red circles), and the rests are still unknown
to the system (white circles). These tasks can be completed by the swarm either concurrently or
sequentially as discussed below.

1. To perform each identified task concurrently, the swarm system will assign an agent or agents.
Therefore, to finish four identified tasks (as shown in Fig. 1.5), at least four agents will be
allotted. And the remaining agents of the swarm will explore the environment for searching the
unidentified tasks. Once an unknown task is recognized, it will be solved immediately by any
of the remaining agents as assigned by the swarm system.

2. To complete the identified tasks sequentially, the robotic swarm will approach each task. After
finishing this task successfully, the system will progress to the next task, and the process
continues until all of the identified tasks have been completed. Once this job is accomplished,
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the system would explore the environment for the unidentified tasks and perform them in a
similar fashion.

Out of these two approaches, it is obvious that the sequential method consumes a large execution
time to finish all the tasks compared to the concurrent-based approach. However, if we carefully
look into the above scenarios, we would observe that the sequential scheme is more robust than
the concurrent-based approach because it can handle the agent-failure situation, for example, while
performing a task, if an agent fails, the failure agent can easily be replaced by one standby agent of
the swarm.

Therefore, working with the MRTA problem, we need to focus on reducing the complexity of
the task by distributing among several agents [58] or increasing the performance of the system by
enhancing the robustness [57].

1.2.4 Inter-agent Communication

It is apparent that a swarm of robots can operate cooperatively and collaboratively only if there
exists a reliable communication system (amongst them) that helps in exchanging sensory data, state
information, information related to the executable and executed tasks, etc. [59], [60], [61]. Actually,
it is quite justified to claim that swarm robotics rest on two major pillars; one is control and the other
one is communication [62]. Presently, the field of communication or to be more precise the field
of wireless communication is undergoing paradigm shifts every alternate day. Thus, like control
design, devising a robust communication strategy with well-defined protocols is the call of the time
and requires extensive research in this area [62].

In robotics, generally, three types of communication arrangements are mainly used [6], i) environ-
mental interaction, ii) sensorial interaction and iii) communicational interaction.

For the environmental interaction process [61], an operator or a centralized controller is needed to
control the overall system. The function of such a control scheme is to plan the trajectory of an agent.
As a swarm robotic system contains more than one agent in the group, so, this protocol is not used in
swarm robotics.

The sensorial interaction [63] or the implicit communication system allows the inter-agent
interaction amongst the robots. An agent can sense its neighbors by using various sensors attached to
it. In this mode of communication, the robot itself performs various navigational functions such as
obstacle avoidance, leader following, collision avoidance, etc. by employing its sensory data [62]. To
communicate with the neighboring agents via the sensorial interaction topology, the radio or infrared
communication system [64] would be required.

The third technique i.e. communicational interaction or explicit communication introduces the
immediate transfer of information between two agents as a deliberate form of communication [65].
In this mode of interaction, the sender agent has the goal of sharing specific information like speech
or gesture recognition [225] with the collocutor agent. So, it is a direct and deliberate form of
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communication where, there is a clear associated intent for the transmitted information to be received
by another agent over a communication channel. Thus, to utilize such a communication protocol, an
agent must have a high efficient onboard communication component in the form of hardware.

In most of the swarm robotic applications, the sensorial interaction or the implicit communication
system has been employed as this protocol allows the robot to share the sensory information with
its neighboring agents. In this work, we also utilize a similar scheme for achieving inter-agent
communication amongst the swarm system.

Fig. 1.6 Challenges in inter-agent communication of swarm robotic framework.

1.2.5 Inter-agent Communication with link failure

To describe the hurdles faced in inter-agent communication of a swarm robotic system, as an example,
here we present a case in Fig. 1.6 with seven robotic agents. From the diagram, we note that all the
agents are initially connected via communication links to their immediate neighbors. Thus, each agent
in the team is permitted to interact with its neighboring agents only and as per this logic, we find that
agent 6 in the figure is connected to its neighboring agents 1, 5, and 7. Now, after a while during
navigation, let us assume that the communication links of agent 6 with its neighboring agents 1, 5,
and 6 have been broken down due to some reasons or others.

Fig. 1.7 Restructured system with single link establishment.
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Hence, in this case, to resume the navigation, the swarm would need to decide upon one of the
following possibilities.

1. All of the broken communication links are required to be restored with immediate effect (if
possible).

2. If the previous plan fails, then, the system would need to re-establish at least one communication
link with the agent 6. Let us assume that the link between agents 1 and 6 is re-initiated. Now,
the system is required to decide whether it can progress with the existing setup i.e., with a
single communication link between the agent 1 and 6 (as shown in Fig. 1.7.

Fig. 1.8 Restructured system by discarding the agent 6.

3. If all of the previous methods (i.e., cases 1 and 2) fail, then the only possibility is that the
system would discard agent 6 and continue the navigation with six agents. In this case, a new
communication architecture (as shown in Fig. 1.8) is expected to establish among the agents in
the swarm; so that, based on this framework, the system can approach further.

1.2.6 Other notable challenges

In swarm robotics, as large numbers of robots are operating, hence, miniaturization and cost-reduction
(to design those robots) are the key aspects [39], [66]. Those features are the main constraints in
creating a large group of robots; therefore the simplicity of an individual team member should be
emphasized. The integrity in the hardware framework often motivates the robotics researchers to
implement swarm-intelligent approaches for achieving meaningful behavior at the swarm level instead
of the individual level. Thus, the evolution of simple robots for swarm intelligence research is a very
important aspect of the field. The goals include keeping the cost of individual robots low to allow
scalability, making each member of the swarm less demanding of resources and more power or energy
efficient.
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1.3 Application areas of Swarm Robotics
The swarm robotics architecture has several benefits over traditional solitary robotic architecture
[67] in terms of quick and efficient accomplishment of the mission objectives even in complex
circumstances. Moreover, while navigating through a hazardous environment, the disappointment
of one robot should not prompt the catastrophe of the entire system [68]. Thus, a swarm robotic
system should always be robust to partial agent failure and should be flexible enough to the demands
of various missions [30]. In a multi-robot task allocation (MRTA) problem, when a complex task is
assigned to a group of robots [53], [57], it is needless to mention that the overall task is partitioned
into several subtasks and distributed among the various members of the team. So, the complexity
of the task and associated time criticality are reduced significantly in this process. Depending on
the above considerations, it is essential to mention that there are several application areas [69], [70]
where a swarm of robots can be deployed to perform several activities successfully. Some of them are
discussed below.

One of the most promising applications of swarm robotics is in disaster rescue missions [69], [71],
[72]. Customarily catastrophic management of a hazardous situation like earthquakes, tsunamis, or
even break out of a fire in a high-rise is fought against using mostly human power, where paramilitary
forces, commandos, special task forces, or even army peoples are deployed to salvage the situation.
Indeed this has been a long-drawn exercise but under these situations, along with the lives of the
mass to be rescued, the lives of the rescuers also face life threats. Hence, it has been felt that human-
led rescue or even surveillance operations call for automation to a certain degree [73]. Nowadays,
quadruped, or hexapod robots, drones, humanoids, or even simple robotic arms or manipulators,
which are duly equipped with necessary sensors and actuators, can perform tasks like human beings
[74]. Hence, in disaster rescue missions where the rescue workers cannot reach safely to detect the
presence of life, it is always beneficial to deploy swarms of heterogeneous robots [72]. Such kinds of
systems can also be useful in mining [75] or agricultural area surveillance [76].

Underwater area exploration [72], [75], [77] is a subject of extensive research in the recent
decades. The primary focus of this investigation is mostly on military applications such as mine
detection [75]. However, recent aerial disasters [224], where the airplane had disappeared in the
ocean, indicate the utility of underwater exploration. In such scenarios, a swarm of robots can be
employed for search and rescue under seawater [72], intelligent surveillance and reconnaissance [78],
multi-vehicle mission [79], and so on.

Presently, underwater areas are mostly inspected by the expensive Sound Navigation and Ranging
(SONAR)-equipped surface vessel [14] to navigate the whole surface area using a lawnmower
trajectory control approach. This procedure consumes a large investigation time. So, to reduce
the execution time of this application area, an autonomous swarm robotic system would be very
beneficial for exploring the entire zone. Controlling a swarm of robots in the underwater environment
poses several challenges, such as underwater communication, positioning estimation, unpredictable
disturbances, etc. [78]. The environmental disturbances due to climate changes, waves, wind, and
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ocean currents have a significant impact on robotic movement and stability. Thus, these kinds of
disturbances play a vital role in defining the degree of autonomy and mission planning.

Further, in military applications, swarms of robots can form an autonomous army. Recently, the
U.S. Naval forces have tested a swarm of autonomous boats that can steer and take aggressive actions
by themselves [78]. The boats are unmanned and can be fitted with any kind of small-scale arsenals
to prevent and destroy enemy vessels. As a case in point, a report by the Russian forces claimed
that during the Syrian Civil War, in 2018 [79], the main air-force base of Russia’s vast Hmeimim air
base in northwestern Latakia province was attacked by swarms of fixed-wing drones loaded with
explosives. Recently, the researchers of Harvard University [80] have devised a shape-modulated
cohesive swarm consisting of 1024 robots, and they have also demanded that the swarm is the largest
swarm existing in practice till date.

Other mention-worthy application areas where swarms of robots can play key roles are like tracing
of chemical plumes [81], exploration of unknown areas [82], and monitoring of environments [83].
Several issues related to these fields may be solved using swarms of micro-aerial vehicles which
are also being thoroughly explored nowadays [84], [77], [85]. The pioneering study of invasive
maneuvering of aerial swarms has been simulated in a laboratory environment using precise motion
capture systems and has been reported too in [86], [87]. Nonetheless, some recent works with
Shooting Star drones [46] have demonstrated that aerial vehicles can also be controlled in an outdoor
environment. Furthermore, Faigl et al [88] have shown that a team of micro aerial vehicles can
fly in a synchronous motion using Global Navigation Satellite System (GNSS) systems (such as
Global Positioning System (GPS)) and can even stabilize themselves autonomously using onboard
localization systems where GPS is unavailable. In addition to that, there are several application areas
where the concept of cooperative swarms in the form of unmanned ground and aerial vehicles has been
utilized and some of the areas are cooperative environment monitoring [83], simultaneous localization
and mapping [89], caging [90], moving target tracking [91], etc.

A huge progression has already been achieved as far as the real-life application of autonomous
swarms is concerned. The noteworthy advancement could be found in the field of manufacturing,
known as swarm 3D printing [70]. It is a digital manufacturing platform that utilizes a swarm of
robots having different functionalities to operate together for printing and assembling products based
on a digital design. The operating principles of this system are:

1. Separating the actual design into smaller components based on the geometry and compatibility
of the actual product

2. Allotting each component to a group of specialized robots for printing

3. Finally, assembling those printed materials to develop the actual product as defined by the
digital design.

This technology is particularly useful for the production of large structures and components,
where traditional 3D printing cannot be utilized due to the size of the manufactured product [92].
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While still in its nascent stage of development, swarm 3D printing is currently being commercialized
by several startup companies. Rosotics [93] is the first company to demonstrate a swarm 3D printing
system using a metallic payload to achieve metallic 3D printing from an airborne platform [94].

So far, we have attempted to present the inception of the concept of swarm robotics, its evolution
toward an overwhelmingly matured domain of interest, the challenges and issues associated with the
field along with probable application areas. A brief literature survey has helped us to establish the
present-day relevance of swarm robotics and the possible scope of carrying out meaningful research
endeavors in this area. Accordingly, now we take the privilege to outline our research pursuits that
have been reported in this dissertation.

1.4 Contributions of the present work
In this thesis, the motion planning aspect of a swarm robotics framework has been studied to achieve
a cohesive swarm that can adaptively change its inter-agent formation to avoid obstacles while
approaching the target in dynamic environments. The three main characteristics (such as robustness,
flexibility, and scalability) [18] that are generally witnessed in biological creatures are also considered
in this work. The robustness and scalability perspectives are managed while creating a cohesive
swarm, and the flexibility feature is controlled by consolidating the adaptive formation control scheme.
There are four key contributions of the present work that are enumerated below.

1. Our initial work (as explained in Chapter 3) is to achieve complete autonomy of a group of
robots (swarms) towards achieving a fixed mission. In this regard, we have proposed evolu-
tionary algorithm-based hierarchical control strategies for navigating the swarm through the
landscape to a predefined target position without crashing into static and dynamic obstacles.
The entire control proposition rests on three dedicated controllers: attraction controller (Eq.
3.3), repulsion controller (Eq. 3.4), and obstacle-avoidance controller (Eq. 3.21). To avoid
challenging barriers, the system can switch its formation while maintaining inter-agent cohe-
siveness during the mission. Moreover, the stability of the proposed controllers has also been
studied in the sense of Lyapunov.

2. As the evolutionary procedures typically consume a large amount of time to compute, hence,
with a scalable swarm, it is very challenging to complete the mission in a stipulated time. So,
in the next work (as detailed in Chapter 4), to overcome this limitation, an elliptical virtual-
region-based shape control scheme (Eqs. 4.31-4.35) has been introduced for path planning of a
swarm of robots. To alter the inter-agent formation among the agents in the group (based on
the upcoming environmental conditions), a spanning-tree assisted shape matching algorithm
has been proposed. To measure the robustness of the system, we have also revealed that the
control scheme can handle the situation well in the face of agent failure by making the system
fault-tolerant. Depending on the consequences, we can claim that the proposed control scheme
confirms the robustness, scalability, as well as flexibility of the swarm arrangement.
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3. Despite the optimal characteristics of the previous approach, the inter-agent cohesiveness
deteriorates significantly in constricted environments or narrow pathways where the shape of
the virtual ellipse is further expanded along the major axis while the minor axis is shrunken and
may culminate into a line-formation in an extreme scenario. To overcome such limitations, in
our next work (as discussed in Chapter 5), the elliptical regions have been replaced by arbitrarily
shaped polygonal virtual boundaries (Eqs. 5.5-5.8). A novel circle packing strategy has been
proposed for accommodating the agents inside the virtual boundary. As a consequence, more
agents could be placed inside the newly fitted virtual region, thus enhancing the inter-agent
cohesion in narrow corridors. The proposed framework is scalable in terms of an increasing
number of robotic agents. This approach produces robustness, scalability, flexibility as well as
strong inter-agent cohesiveness during the navigation.

4. Finally, we have addressed the navigational issue of a swarm of robots in multi-path/multi-target
scenarios (as illustrated in Chapter 6). The elliptical region-based shape control technique and
the traditional leader-follower scheme have been fused to split or merge the swarm. During
navigation, if the leader robot detects multiple pathways to proceed further, the parent swarm
will be broken down into several sub-swarms to perform the splitting phase. Nonetheless,
it might so happen that after a while, two or more paths would merge and create a single
common passage to progress further. In such a situation, if the obstacles do not create any
hindrance, the corresponding sub-swarms (operating in those passages) will be routed through
those converging paths in order to merge or rejoin. This approach also ensures robustness,
scalability, flexibility, and strong inter-agent cohesiveness during the mission.

5. All of the above-mentioned approaches are simulated in software settings with scalable agents
in the team. Additionally, real-time experiments (as presented in Chapter 7) have been carried
out to validate the efficacies of the proposed schemes. In this regard, raspberry-pi-controlled
two-wheeled mobile robots (locally fabricated), namely ’SonPI’ having Wi-Fi (802.11) com-
munication protocol and n array of five-sonar sensors, have been employed. The hardware
experimental outcomes illustrate the viability of the proposed control actions even in a dynamic
circumstance.

1.5 Organization of the Thesis
The objective of the present work is to create an adaptive cohesive swarm for an unknown occluded
environment that can autonomously change its inter-agent formation in response to the dynamic
environmental condition while approaching the target. Moreover, in the case of a multi-path or
multi-target scenario, the swarm can split into sub-swarms and then rejoin if needed. The remaining
portain of the thesis is organized as follows.
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• In Chapter 2, we have presented the literature surveys to solve the path planning and formation
control problems of a swarm robotic system. The major approaches which are generally used
to solve the formation control problems of a swarm robotic system, such as the Behavioral-
based approach, Leader-follower strategy, Swarm intelligence scheme, Artificial potential field
approach, and Virtual structural approach are surveyed thoroughly by mentioning the pros and
cons of each approach.

• In Chapter 3, we have proposed evolutionary algorithm-based hierarchical control strategies for
navigating a swarm to a predefined target location while avoiding static and dynamic obstacles.
Three dedicated controllers (attraction controller, repulsion controller, and obstacle-avoidance
controller) have been conceived. The stability of the controllers has also been investigated in the
sense of Lyapunov. The bio-inspired bat algorithm has been employed for switching the inter-
agent formation during the navigational steps to avoid obstacles. Then, several well-known
evolutionary schemes have been utilized to examine the performance of the proposed approach.
Finally, the simulation results and comparison analysis have been provided to describe the
feasibilities of the proposed approach.

• In Chapter 4, we have introduced a generalized adaptive control scheme that exploits an
elliptical region-based virtual shape control technique for avoiding obstacles in an unknown
occluded environment. A spanning tree-assisted shape matching algorithm has been proposed
to switch the inter-agent formation of a swarm robotic system even in a dynamic situation.
The fault tolerance capability, inter-agent cohesiveness, and scalability issue of the proposed
scheme have also been studied in this chapter. The simulation results and comparison analysis
describe the efficacies of the proposed approach.

• In Chapter 5, we have extended the elliptical region-based scheme for an arbitrarily shaped
polygonal region. The Elliptical Fourier Analysis (EFA) has been employed to etch the
arbitrarily shaped region. To accommodate all the agents inside the virtual polygonal boundary,
the circle packing strategy has been utilized. This proposed approach improves the inter-agent
cohesiveness of the system. The simulation results and comparison analysis describe the
viabilities of the proposed scheme.

• In Chapter 6, we have introduced the split-join aspect of the swarm robotic system under the
assumption that the unknown environment contains several pathways through which the group
should travel during the navigational process to approach multiple targets. So, for successful
and complete exploration of the environment, the patent-swarm of robots requires to be split
into several sub-swarms. Moreover, when two sub-swarms detect an identical pathway to
approach further, in this case, the sub-swarms will rejoin to form a super-swarm, and then
together as a group will progress. The traditional leader-follower approach has been integrated
with the region-based shape control scheme for achieving the above-mentioned objectives. The
simulation results and comparison analysis describe the effectiveness of the proposed strategy.
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• In Chapter 7, we have presented the hardware implementations of all the proposed techniques
in a detailed manner. Initially, the architectural framework of a single robotic framework
called ’SonPI’ has been described. After that, the outcomes of the experiments of each of
the proposed approaches, for example, evolutionary-based, virtual elliptical-region based,
arbitrarily shaped polygonal-region based, and finally, the split-rejoin schemes are thoroughly
presented. The detailed results of the hardware experiments and the comparison analyses
describe the significance of the proposed strategies.

• Chapter 8 summarizes the work of this thesis. It also points out the limitations of the present
work that could be addressed in the future.

1.6 Summary
In this chapter, we have summarized the evolution of swarm robotics in light of the unitary robotic
framework. Several characteristics of a swarm robotic system have been thoroughly addressed,
including scalability, robustness, flexibility, time efficiency, and so on. Furthermore, the issues in
multi-robot systems, such as centralized vs. decentralized schemes, formation control, task assignment,
inter-agent communication, etc. have been discussed. The potential application areas, such as disaster
management, underwater area exploration, unknown area surveillance, and so on where a swarm of
robots could be efficaciously used, have been meticulously discussed. Finally, the contributions and
organization of this thesis are presented.
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Literature Survey

2.1 Introduction
The coordination strategy among a swarm of robots plays a crucial role in order to plan the trajectories
of all the agents. So, the multi-objective cooperative control framework [95], [96] has been the subject
of extensive research in recent decades. To conceptualize the movement of a robotic group, scientists
from various fields are cooperating to formulate necessary arrangements such that the swarm must be
competent enough to adapt the best way of motion pattern, especially, when troublesome impediments
including dynamic obstacles show up in the environment [97], [98]. Therefore, it is necessary to
establish a control methodology among the individual members in the group to illustrate how a team
of homogeneous robots go through a territory without crashing into hindrances or other robots along
their paths while maintaining desired inter-agent formation as well.

Fig. 2.1 State of the art techniques of cooperative control framework.

There exist some multi-robot cooperative control strategies in the literature as shown in Fig. 2.1.
The behavioral-based approach, leader-follower scheme, swarm intelligence architecture, artificial
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potential field, and virtual structural-based method are now being utilized to solve the multi-robot
motion planning problem. We mainly discuss the state of the art of those control approaches (as
shown in Fig. 2.1) in the remainder of this chapter.

2.2 Behavioral-based approach
The first and foremost technique that has been introduced to control a multi-robot system is the
behavioral-based robotics [99], [100]. In this approach, [99], a set of predefined behavioral modules
such as keeping a specific formation, moving to a target, avoiding obstacles, etc. are implemented on
each robot, and the global behavior of the entire system is reliant on the combined behavior of each
agent in the group. So, a robotic group can perform a specific set of operations at a given instant of
time. To make the process more intelligent, in [101], [47], several sub-behaviors are implemented on
an agent, which is triggered sequentially based on the information as detected from the surrounding
environment. Moreover, the intensity of a behavior can be altered by adjusting some parameters
during the navigation [100].

This method is specifically suitable when a particular task is expected to perform by a multi-robot
system. The process is neither scalable in terms of the number of agents in the team nor time saving
to accomplish a specific task [53], [38]. Moreover, failure of an agent can create a significant effect
on the overall performance of the system; thus, the behavioral-based technique does not have any
fault tolerance capability [30], and in complex circumstances, it is difficult to guarantee the stability
of the overall system. Because of these reasons, this modality is generally not used in swarm robotics
navigational problems.

2.3 Leader-follower strategy
The second most relevant technology that has been employed to control a robotic swarm is the
leader-follower strategy [102], [103], [95]. In this approach [102], a particular robot has been selected
as the leader agent that will move along a predefined trajectory inside the environment, while the other
agents, called followers, will accompany the lead agent by keeping a certain distance among the other
agents in the group. Therefore, by commanding the leader robot only, the entire system can eventually
be managed, so this methodology is very simple to design and scalable in terms of the number of
agents in the group [95]. This approach is specifically reliant on the leader robot for accomplishing
an objective, so, the failure of that particular robot causes the entire mission to fail. Hence, such a
technique is fault-intolerant [30]. Furthermore, while navigating across the environment, the feedback
from the followers is not utilized by the lead robot hence the inter-agent cohesiveness becomes disjoint,
and any follower robot can be lost inside the environment if it is not able to track the motion of the
leader precisely [104].
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To overcome the above-mentioned challenges, it is necessary to build an updated control rule
for making the system fault-tolerant. In this aspect, the following methodologies have already been
proposed over the last decade. Those techniques which are the extended version of the traditional
leader-follower mechanism [104], [105], are described below.

2.3.1 Multiple Leaders approach

In this approach, multiple leaders are considered over the unitary leader framework [104], [106],
[107]. Hence, the failure of any leader robot would not create any impact on the performance of
the entire system [107]. In this scenario, the inter-agent cohesiveness of the entire group is solely
dependent on the number of leaders based on the control command provided to the leaders [108].
The distribution of few leaders limits the shape of the group, whereas the control complexity will be
increased significantly with too many leaders. Moreover, the distribution of tasks among the leaders
also creates a major issue [108], [109] as the dynamics of the system become complex with more
leader agents.

2.3.2 Dynamic Leader approach

To get rid of the above-mentioned situation and make the system robust as well as simple, the concept
of a dynamic leader has been introduced in [110], [111], [105]. In this approach [110], instead of
multiple leaders, it is presumed that any of the followers can be appointed as the lead agent during the
navigational procedure. Therefore, during the exploration steps, if the currently acted leader robot is
about to fail, then it can select any arbitrary agent (among the followers) as the lead and hand over the
navigational plan with it [105]. From the next iteration onwards, the navigation would be performed
by the newly elected leader robot to escort the swarm towards the target.

2.4 Swarm Intelligence
Next down the line, to build up a coordination strategy amongst a swarm of robots, the swarm
intelligence (SI) technique has been presented [112], [113]. The mentioned approach is completely
decentralized over all the agents in the framework [112], [2]. Inspired by the group foraging features
of the social insects, the SI scheme has evolved. The main hypothesis that has been utilized here
is called the self-organization principle [112], [114]. A group of self-organizing robots looks like
swarms as they travel across the environment, where every robot updates its position such that it
could maintain a protected separation from its neighboring agents [115]. The swarms likewise change
their formation to suit the need for variations in the operating environment [116]. This criterion
would allow the swarm to fit into narrow passages and to go around upsetting obstacles. To create the
self-organization among a robotic swarm, the bio-inspired strategies [114], [117], [118] are usually
employed. These methodologies imitate fruitful groupings of creatures in nature, for example, flocking
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of birds [21], foraging of bugs [119], schooling of fish [22], and swarming of honey bees [20]. In this
aspect, inspired by the flocking behavior of birds, the pioneering work has been proposed in [120].
This work has been emerged based on three basic principles such as Separation: to avoid local crowd,
Alignment: to move towards the average heading of the neighboring mates, and Cohesion: to steer
towards the average position of the local flock-mates.

Inspired from the above literature, several algorithms to create a coordination scheme among a
swarm of robots on the ground of evolutionary techniques have been proposed, which are listed below.

2.4.1 Genetic Algorithm

The Genetic Algorithm (GA), introduced in [121], [122], is a metaheuristic optimization algorithm
based on the mechanics of the natural adoption process. The basic principle behind this scheme is
to mimic the notion of the survival of the fittest [123] to simulate the rules as witnessed in a natural
system where the strong leads to adapt and survive while the weak tends to perish.

In the multi-robot path planning problem, GA is mainly applied to shorten the path length of each
agent in the group [124]. In [125], the probabilistic road-map scheme has been fused with GA in
order to study the efficiency of attaining a viable route. The non-dominated sorting genetic algorithm
(NSGA-II) has been used in [126] for optimizing the path length of a multi-robot system. The above
work has been extended in [127] to improve the path length, safety, and smoothness. Moreover,
the adaptive schemes are modeled in [128], [129] to bypass the local trap, early convergence, and
optimum path length for enhancing the Pareto-optimal solutions. In [130], GA has been applied to
the directed acyclic graph for improving the computational efficiency hence, the mentioned process
would generate multiple feasible minimum paths. An improved crossover mutation operator has been
modeled in [131] for static environmental conditions. In [132], the potential field method is integrated
with NSGA-II to enhance the smoothness of the path for a multi-robot system. Furthermore, a virtual
structural approach has been introduced for an agent to approach the target safely while avoiding
obstacles. Depending on the above state of arts, we can mention that for swarm robotic motion
planning architecture, GA can optimize the path length; however, in presence of obstacles, using the
traditional operators such as crossover, mutation, etc. the feasibility of the solution degrades.

2.4.2 Ant Colony Optimization

Ant Colony Optimization (ACO) is one of the well-known evolutionary techniques motivated by
the foraging behaviors of ants [133], [134], [135]. There are four major components (such as
ant, pheromone, daemon action, and decentralized control) that are employed to create the ACO
algorithm for mimicking the exploration and exploitation of the search space. The pheromone is
a chemical substance spread by ants over the route they travel, and its intensity changes over time
due to evaporation [136]. To design the ACO algorithm, it is assumed that each of the ants drops
pheromones while moving across the search space, and the amounts of pheromones indicate the
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intensity of the trail that assists to determine the direction of the path of the succeeding ants. So, this
activity is considered the global information of the system. To gather all of the global information
for deciding the convergence criterion, the Daemon action is performed. Finally, the decentralized
action is implemented to make the algorithm robust and flexible within a dynamic environment so
that it offers optimum performance during the failure of ants. Thus, these components would result in
a cooperative interaction that leads to the emergence of shortest paths [133], [134].

In [137], ACO with backtracking characteristics has been adopted for a robotic system to obtain
the shortest path for approaching the goal with collision avoidance. For a dynamic scenario, the ACO
algorithm has also been applied in [133]. In [138], [139], [140] updated rules with penalty functions
are added in ACO in order to get the shortest path for a multi-robot framework. These specific schemes
have been named the Shortest Path Ant Colony Optimization (SPACO). In [141], [142], [143] ACO
algorithm has been applied for a multi-robot system that is operating in an unknown environment with
static obstacles in different orientations. In those works, the environments are considered as a grid
map with an identical number of rows and columns. Based on the sensory information of every robot,
the map has been updated in each time step.

2.4.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an efficient optimization technique introduced in [144]. It
adopts a simple mechanism to imitate the swarming behavior of birds [21] and fish [22] by managing
the particles to search for the global optimal solutions [144], [145]. This specific evolutionary
algorithm is very efficient to solve multi-dimensional problems, thus, it has immense applications in
the path planning of a swarm of robots. Moreover, the PSO algorithm does not use the gradient of
the problem being optimized, so it does not require the optimization problem to be differential [146].
Therefore, stochastic problems can also be solved efficiently using PSO [146], [147].

In swarm robotics motion planning problems, the PSO algorithm has been applied very frequently
than the other well-known meta-heuristic techniques. In [148], inspired by the flocking behavior
of birds, the fuzzy logic has been integrated with PSO for navigating a swarm of robots in a static
environmental condition. To obtain the shortest path of a robot in dynamic circumstances, PSO has
been employed in [97] including the adaptive inertia weight rule. Moreover, in [149], a probabilistic
roadmap (PRM) has been fused with PSO to get a time-efficient solution in terms of path length. In
this work, PSO does global planning, whereas, local planning is performed by PRM. The efficiency of
this technique has also been compared with the negative PSO (NPSO) and PRM. In [150], the artificial
potential field (APF) scheme has been merged with PSO. In this approach, the primary drawback
occurs due to the lack of heuristic information; the proposed algorithm easily falls into the local
extremal. To circumvent this issue, the GA has been fused with PSO in [151] such that the crossover
and mutation mechanisms of GA maintain the diversity of the particles in the iterative process, and
hence, the particles will converge to the global optimum point. In [152], an improved linear PSO
algorithm with adaptive acceleration factors has been introduced to improve the convergence timing
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of the algorithm. The above work has been extended further for hybrid PSO with GA in [153]. To
enhance the accuracy of path planning of a multi-robot architecture, a multi-objective optimization
strategy has been employed in [154], where, to modify the search functionality, standard PSO is
applied, then, the chicken swarm algorithm is introduced to eliminate the stagnant particles. Although
these improvements enhance the planning performance relative to the standard PSO to a certain
extent, however, this scheme does not solve the problems of path planning. Moreover, the algorithmic
complexity and the local convergence problem caused by the lack of heuristic information remain.
To solve this specific problem of the PSO algorithm, owing to the lack of heuristic information, the
authors propose a heuristic elastic PSO path planning algorithm in [155], [98].

2.4.4 Artificial Bee Colony

Artificial Bee Colony (ABC) is one of the most recent swarm intelligence algorithms. It is introduced
in [156], and while analyzing the performance of ABC [157], it is witnessed that it performs better than
several other meta-heuristics approaches. This algorithm is proposed based on the intelligent behavior
of the honey bees in searching for food sources, known as nectar, and the sharing of information about
that food source among other bees in the nest. This algorithm is claimed to be as simple and easy to
implement as PSO [156], [158].

In [159], the authors offer a distributed control rule for a multi-robot system based on ABC
while expressing it as an optimization problem. The proposed solution has been applied to solve
transportation problems for a swarm of robots (30 robots). Moreover, a comparative analysis has been
performed to show the effectiveness of the proposed scheme. To solve the navigational problem of
swarm robots in a multi-target unknown environment, a robust procedure based on the ABC strategy
has been presented in [160]. The mentioned approach has two steps. First, depending on the sensory
information, the intermediate path connects the starting point and current point of the mobile robot via
several common points. The second step is the optimization step in which the ABC-based evolutionary
algorithm has been used to smoothen the intermediate path such that the resultant path is collision-free
and shorter. Numerous benchmark maps (having different scenarios) are employed to verify the
viability of the proposed approach. Finally, in [161] a unique feature of the ABC algorithm, namely
the Arrhenius ABC algorithm (aABC) has been introduced for solving robot path planning problems.
This idea originates from the exclusive concept given by Arrhenius. Based on the outcomes, it is
observed that the exploration capability of the ABC algorithm is improved significantly, thus, it can
be concluded that aABC is a better choice than ABC for solving complex optimization problems like
robotics path planning problems. Furthermore, the proposed method can also be applied to different
categories of problems.
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2.4.5 Other notable techniques

There are so many other evolutionary algorithms available that can also be used or have already been
used for solving the multi-robot motion planning problems such as Bacterial Foraging Optimization
Algorithm (BG) [162], Differential Evaluation (DE) [163], Firefly Algorithm (FA) [118], Bat Algo-
rithm (BAT) [113], etc. However, those methods are not discussed thoroughly in this thesis because
the purpose of this section is to introduce and discuss the well-known and commonly used SI-based
approaches that are mainly employed to solve the swarm robotic motion planning problem till date.

2.5 Artificial Potential Field
In multi-robot path planning problems, the method that has been commonly used to attain a collision-
free navigational path towards the goal in an unknown occluded environment is called the Artificial
Potential Field approach (APF) [51], [52], [164]. In this scheme, the environment has been treated
as the electrostatic potential field with the robot configured as a point. The process combines an
attraction force towards the target and a repulsive force from the obstacles and the neighboring agents.
So under the joint influence of those control forces, a collision-free path is produced towards the target
in a time-efficient manner; thus, in several well-cited works, this methodology is normally utilized
[164], [96], [165].

In [166], [167], the notion of APF has been fused with the consensus protocol to address the
navigational problem for a multi-robot system under a variety of assumptions on the network topology
with directed or undirected information flow. The proposed approach produces robust output in the
face of an obstructed environment with static obstacles. In [51], [52], the most powerful studies
based on the principle of APF have been introduced. In those works, the agent-to-agent interactions
are assumed to be the ’attraction-repulsion’ type; so, each agent seeks to be in a position that is
comfortable relative to its neighboring agents. Attraction indicates the grouping and cohesiveness
criteria for a robotic swarm. On the other hand, to avoid static obstacles and inter-agent collisions, the
repulsion mechanism has been formulated. Moreover, the stability of the proposed control approach
has also been analyzed. In [164], the authors have integrated the leader-follower scheme with APF
to avoid the collision of multiple unmanned aerial vehicles (UAVs) in 3-D space. One agent has
been selected as the virtual leader that will fly through the desired trajectory using APF, whereas,
the followers would track the leader for maintaining the formation flight. For avoiding inter-agent
collision among the UAVs, a repulsion action has been proposed. Finally, the simulation results
have been provided to analyze the efficacies of the proposed scheme. Recently, one work has been
published in [96], where the authors have discussed a novel decentralized controller inspired by APF
for aggregation of a robotic swarm in the absence of communications. Employing the control strategy,
they have proved that the stable aggregation among a robotic swarm is possible to achieve using only
a local sensing scheme with no inter-agent communication. Furthermore, the APF methodology has
also been employed to achieve the swarm split control of a multi-agent system [165]. The simplistic
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attraction-repulsion controller schemes have been proposed so that based on the user input, a patent
swarm can split into several clustered sub-swarms along the direction perpendicular to the common
heading direction of agents.

Based on the above discussions, the main advantages of the APF approach are listed below:

1. Employing attractive and repulsive control actions, a swarm of robots can be controlled in a
decentralized manner for the static environmental condition.

2. This specific method ensures scalability in terms of the number of agents in the swarm.

3. Formulating a suitable attraction-repulsion control action, it is possible to achieve a cohesive
swarm operating across an unknown environment.

2.6 Virtual Structural approach
Finally, the virtual structural (VS) approach has been discussed for driving a swarm of robots in an
occluded environment while maintaining a specific inter-agent formation. In this approach [168],
[169], the desired pattern that needs to be followed by the system is considered as a single entity,
and the desired motion is assigned to the respective structure. Hence, all the agents in the team will
maintain a rigid formation as a geometric relationship exists between the locations of the agents with
respect to the virtual structure [170]. Therefore, in the face of challenging obstacles, it is impossible to
alter the current formation, and this specific approach is not even scalable for the number of agents in
the team. In this aspect, another method has been proposed to control a robotic swarm for building a
formation by applying the constrained optimization [48]. This approach has also encountered similar
problems as that of the virtual structural technique as the complexity of the constrained relationships
increases with an increasing number of agents; thus, this method is not suitable for controlling a large
number of robots.

To get rid of those situations, recently, a region-based shape control scheme has been proposed
in [171], [172]. In this approach, each robot in the group stays within a predefined region while
maintaining a certain distance from each other. The defined region can be specified as various shapes;
hence, depending on the desired shape, various kinds of inter-agent formations could be formed.
The robots in the group are only required to communicate with their neighbors and not the entire
population. The system is scalable so that any robot can attach or leave the formation without affecting
the other robots. In [173], the authors extend the above idea to a group of homogeneous mobile
robots moving into the desired region. A multilevel structural approach has been employed to present
different shapes of swarm robots in the desired region. The APF technique has been combined to
control the robots in forming the desired formation shape. Finally, simulations and experiments are
performed to demonstrate the effectiveness of the proposed approach. In [174], the flocking behavior
is combined with the shape control scheme to achieve the regional shape formation of a multi-agent
system. It has been shown that all the agents in the team can acquire the same speed while moving
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into the desired region. The stability of the proposed control action has also been studied. In [175],
the multi-objective region reaching the control scheme for a multi-agent system has been presented.
Two distributed control algorithms are formulated for the cases of static and moving target regions.
The proposed control scheme is scalable, and the convergence criteria are proved to be stable in the
sense of Lyapunov.

To compare the performances of all the above-mentioned literature holistically, we list our
observations below.

1. In behavioral-based approaches [99]-[47], it is difficult to analyze the entire system analytically
to realize insights into the control problems. Therefore, the convergence criterion cannot be
measured here; thus, maintaining formation among the agents in the group is not possible. So,
this approach is usually not used in multi-robot path planning problems.

2. In the Leader-Follower schemes [102], [105], the function of the followers is to track and
maintain the desired distance to their respective leaders; so, the inter-agent formation becomes
rigid. Creating rigid formation in a dynamic environment is often undesirable to fulfill the
mission objectives. Moreover, the stated approach is fault-intolerance [101], i.e., the failure of
leaders will lead to the failure of the entire mission.

3. In swarm intelligence procedures [112], [113], all the agents in the swarm will self-organize
themselves based on the upcoming environmental situation. The performance of this process is
observed to be very robust for a dynamic environment. However, to achieve self-organization
among the robots generally, evolutionary methods are employed. To execute such algorithms
in a real-robotic platform, it is difficult to achieve the desired performance, as such techniques
consume a large amount of time before concluding. So, this methodology is only limited to
software simulation.

4. The artificial potential approaches [51], [167] are produced robust output in the swarm robotics
path planning problems. However, the major problem is that a robot can easily be trapped at the
local minimum point before reaching the target. The stated approach is solely dependent on the
formulation of the attraction and repulsion control actions; hence, creating the desired formation
and altering it based on the upcoming environmental situation; are difficult to achieve.

5. As mentioned previously, the virtual-structural approaches [168], [170] are not scalable in
terms of the number of agents in the team. Furthermore, with enhancing agents in the swarm,
the complexity of the problem will increase significantly sometimes; it would be challenging
to converge to a specific solution.

6. The region-based shape control scheme [171], [172] is found to be robust to analyze the
performance in all of the above respects. However, till today, it has not been applied for a
dynamic situation, where, the estimated area should be adaptive enough so that all the agents
could change their position within the stipulated region for avoiding obstacles. This specific
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criterion is very essential for the fruitful operation of a swarm robotic framework in static and
dynamics environmental conditions.

2.7 Summary
In this chapter, we have summarized the literature surveys for solving the multi-robot navigational
problem. Initially, the behavioral-based approach has been articulated, along with its merits and
demerits. Then, the traditional leader-follower scheme has been discussed. To make a leader-follower
system to be fault-tolerant, the multi-leader approach and the dynamic leader strategy have also
been discussed. After that, the swarm intelligence technique, as well as, the important evolutionary
methodologies to solve the multi-robot navigational problem have been addressed. Then, we have
discussed the literature survey of the artificial potential field-based scheme. Finally, the virtual
structural method, the most recent technique to solve the navigational problem, has been mentioned.



Chapter 3

Evolutionary-algorithm based motion
planning of a swarm of robots

3.1 Introduction
The motion planning [163] of a robot is a computational problem. It is necessary to determine the
sequence of movements of the robot from the source location to the destination such that there would
not be any collision with the nearby barriers. For a unitary robotic platform, such kind of planning
can be accomplished by a dedicated human operator [43]. However, in the context of a swarm robotic
path planning problem, employing a human operator is not feasible as a human operator cannot plan
the trajectories of each robotic agent in the swarm at a single point of time [48]. In the case of a
swarm, if the number of agents is pretty less, a non-automated solution could be thought of. But
gripping manual control over a perfect swarm with a sufficiently large number of agents is simply
impossible. Moreover, manual control has its limitations, like quite a localized range of operation.
In safety-critical situations, the role of a human operator gets severely delimited, and hence the
implementation of manual control is notionally rejected. In spite of all these reasoning, the bottom
line of robotic research is to create an automated system with either a single robot or a swarm of
them and to minimize human intervention. So, to design a swarm robotic framework, in particular,
an automated control solution (for each agent) would be required to lead the entire system from the
source to the destination.

In this chapter, we have mainly addressed the issues of automated path planning and obstacle
avoidance for a swarm of robots working in an occluded 2D environment. The main objective of
the work presented in this chapter is to ensure that all the robotic units would be able to approach
a predefined target autonomously based on the sensing information of each agent. Further, it has
been conceived that the agents would be significantly cohesive with each other to form a well-defined
swarm. During the navigation, how the behavior of the swarm has to be altered to avoid challenging
dynamic barriers is primarily taken into account in this study. First and foremost, to plan such a path
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Fig. 3.1 The attraction and repulsion control actions acting on ith and jth agents.

for the swarm from the start position to the endpoint, suitable controllers need to be devised. Second,
to achieve such an efficacious path planning mechanism, in a constrained situation, it is found that
tuning certain gains of the controllers required, in this situation, is utterly necessitated during the
navigational process.

With this introduction, in this study, we attempt to address the above-mentioned issues and
present the controllers that are synthesized based on the sensory information gathered from the nearby
obstacles. Evolutionary techniques have been employed here to tune those controllers’ gains.

3.2 The Backdrop
Consider a group of N identical robotic agents is operating in 2D-plane (as shown in Fig. 3.1). The
motion dynamics of the ith agent can be expressed as [51], [52]

ẋi = vi

v̇i = ui
(3.1)
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is the control input of the ith agent. It is assumed that an agent can sense the position and velocity of
its neighboring agents (Ni). Under this specific assumption, the agent-to-agent interactions are chosen
to be attraction-repulsion type [51], [164] that refers to the fact that each agent seeks a comfortable
position in the swarm relative to its neighbors [142]. Thus, the control input (ui) for the ith agent
would be defined as

ui =−ua
i +ur

i (3.2)
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where ua
i and ur

i represent the attraction and repulsion forces acting on the ith agent that would be
generated from the dedicated attraction and repulsion control actions. Fig. 3.1 represents one such
instance with ith and jth agents (positioned at xi = (px

i , py
i ), and x j = (px

j, py
j) respectively) of the

swarm. The directions of the attraction and repulsion control forces are also presented in the respective
figure.

Now, the question we pose that how the agents will create a cohesive swarm and approach the
target while preserving the strong inter-agent bonding in a cluttered environment (full of static and
moving obstacles) employing the attraction-repulsion control actions (vide Eq. (3.2))? In this study,
strong cohesion [52] refers to the closeness amongst the group members of the swarm.

So, in order to ensure a cohesive swarm, the agents are required to create an agent-interconnected
formation. However, in the presence of obstacles (assuming the distance between two obstacles
does not allow the swarm to maintain the formation); the system has to alter its swarm shape to pass
through those obstacles. All these concerns could be mitigated by designing attraction and repulsion
controllers. In the following subsection, therefore, we discuss the detailed control mechanism that
would be required for the group of agents to evolve as a perfect swarm.

3.3 Control mechanism for the swarm robotic system
The proposed control framework contains three hierarchical control schemes, such as attraction
control, repulsion control, and obstacle avoidance control. The function of the attraction controller
is to create a cohesive swarm, whereas, the repulsion control will actuate to avoid the inter-agent
collision. And the obstacle avoidance controller will ensure to bypass the nearby obstacles.

3.3.1 Attraction controller

As the name suggests, the task of the attraction controller is to generate necessary force amongst the
members of the group (force acting between a member and its neighboring member) so that all the
members of the swarm may remain enclosed in a planar region, thus creating a well-shaped swarm.
In other words, the main purpose of this controller is to achieve grouping of all the agents and to
guarantee cohesion [166], [52] among all the agents in the team.

The main features of the attraction controller [51], [52] are to 1) steer an agent towards the average
heading, and 2) move towards the average position of the swarm. So, under the actuation of this
controller, an agent would approach the average position of the swarm while maintaining an identical
heading with respect to its neighboring agents. Therefore, the generalized form of the force produced
by the attraction controller (ua

i ) for the ith agent to the average position (x̄) of the swarm and the
average heading (v̄) of the neighboring agent can be represented as [167]

ua
i = ka

i (xi − x̄)+ kv
i (vi − v̄) (3.3)
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where, ka
i > 0 and kv

i > 0 are the strength of attraction, x̄= 1
N ∑N

k=1 xk and v̄= 1
Ni

∑Ni
k=1 vk are the average

position and the average heading of the group respectively. Hence, depending on the control action
(ua

i ), the force of the ith agent will be directed towards (xi − x̄) while maintaining similar orientation
towards the average heading (v̄) of its neighboring agents Ni. Thus, for the N number of agents, an
evolving behavior of the group would be created where all the agents attempt to dynamically attain
aggregate position and velocity and finally would manage to get close to each other and eventually
move in the same direction with nearly the same velocity.

However, the sole activation of this controller may result in an inter-agent collision. Hence, to
alleviate this problem, a repulsion controller is to be devised. It is needless to say that the repulsion
controller should act in tandem with the attraction controller.

3.3.2 Repulsion controller

Theoretically, the role of the attraction controller is to force the agents to be as close as possible so as
to create and form a swarm. However, it might so happen that due to the attraction force the distance
between two agents at any instant would become zero. So the immediate effect would be a collision
between the agents and in the worst case that might lead to agent breakdown thereby compromising
the strength of the swarm and intuitively, we can claim that the strength is empirically proportional to
the number of active agents at a point of time. Hence a repulsion controller is conceived.

A repulsion controller produces a repulsive force between two agents so that they can repel each
other (despite the presence of the force of attraction working on the agents concerned). So the forces
generated by the two controllers would act in the opposite directions and our aim is to strike a balance
so that the agents would remain close to each other and at the same time they would be allowed to
maintain a predefined minimum distance between them. Thus a repulsion controller would not disturb
a swarm formation. Instead, the controller would judiciously increase the area of the swarm and
negate the possibility of agent collision. Because of the repulsion controller, each member of the
group will enjoy a region around them where they can execute some unconstrained motion with two
degrees of freedom.

We reiterate that the function of the repulsion controller is to avoid the inter-agent collision
and maintain the safest distance from the neighboring agents [51], [52]. So, the force exerted by
the repulsion control action is to increase the distance between two agents such that the inter-agent
collision could be avoided (Fig. 3.1). Based on this principle, the repulsion control (ur

i ) acting on the
ith agent with respect to the jth neighbor can be represented as
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where kr
i > 0 is the magnitude of the repulsion force, rs

i is the region of repulsion around the ith agent,
and xi j = ||xi − x j|| is the is the Euclidean distance between the ith and jth agents respectively as
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shown in Fig. 3.1. Thus, under the activation of the repulsion controller, the ith agent will be directed
along (xi − x j). Here, the parameter δ defines a unique distance to trigger the repulsion action as
shown in Fig. 3.2. When, (δ × (rs

i )
2) is less than x2

i j (as shown in Fig. 3.2(a)), the repulsion regions

Fig. 3.2 Force distribution of the attraction-repulsion controllers based on the term (δ × (rs
i )

2).

of the ith and jth agents will not overlap, hence, the attraction force will actuate to form a cohesive
swarm. So, here, the magnitude of the repulsion forces of both the agent will be less as compared to
the attraction forces. Thus, ua

i > ur
i , and ua

j > ur
j. However, in the contrary condition, when (δ × (rs

i )
2)

is greater than x2
i j (Fig. 3.2(b)), the repulsion regions of the ith and jth agents will overlap. As a

consequence, there is a high possibility of collision between the agents. So, in this kind of situation,
the magnitudes of the repulsion forces are required to be greater than the attraction forces so that the
distance between those agents could be increased. Hence, ua

i < ur
i , and ua

j < ur
j. And, the respective

forces are required to be activated in the opposite directions of both the agents in order to maintain a
safe distance.

Therefore, depending on the joint activation of the attraction-repulsion control actions, the ith and
jth agents of the swarm will approach the average position with identical heading while maintaining a
safe distance between each other. The following theorem establishes the stability of the controllers.

Theorem 1: In light of the parameter δ , there exists a force balancing condition, where, ua
i = ur

i .
Employing this principle, we need to find the limiting value δ , so that the above-mentioned control
laws become stable. The corresponding analytical proof has been given below.

proof : Combining Eqs. 3.3 and 3.4, we get

ui =−ka
i epi − kv

i evi + kr
i ∑

j∈Ni

exp

 
−

x2
i j

δ × (rs
i )

2

!
× (xi − x j) (3.5)

where, epi(= xi − x̄) and evi(= vi − v̄) are the attraction error of the ith agent from the average position
and heading of the group respectively.

Now, let us assume that the error dynamics [52] of the swarm system is defined as E =

[ET
1 ET

2 ... ET
N ]

T ; where Ei =
h
epi evi

i
. Therefore, from Eq. 3.5, the error dynamics becomes

ėpi = evi

ėvi = v̇i − ˙̄v
(3.6)
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where ˙̄v = 1
N ∑N

l=1 ul . As all the agents are identical in nature, ka
i = ka, kv

i = kv, kr
i = kr and rs

i = rs for
all i ∈ N. Therefore, ėvi becomes

ėvi = ui −
1
N

N

∑
l=1

ul =−kaepi − kvevi + kr ∑
j∈Ni

exp

 
−

x2
i j

δ × rs2

!
× (xi − x j)

+
1
N

"
ka

N

∑
l=1

epl + kv
N

∑
l=1

evl − kr
N

∑
l=1

"
∑
j∈Ni

exp

 
−

x2
l j

δ × rs2

!
× (xl − x j)

## (3.7)

From Eq. 3.7, it is observed that ∑N
l=1 epl = ∑N

l=1(xl − x̄) = 0, and ∑N
l=1 evl = ∑N

l=1(vl − v̄) = 0.
Now, let us assume that the last term of Eq. 3.7 is equal to G, so,

G =−kr

N

N

∑
l=1

"
∑
j∈Ni

exp

 
−

x2
l j

δ × rs2

!
× (xl − x j)

#
(3.8)

The generalized form of Eq. 3.8 can be written as (assuming all agents are neighbors, i.e.
Ni = {1,2, ...,N}),

G =−kr

N

N

∑
l=1

"
N

∑
j=1

exp
�
− ||xl − x j||2

δ × rs2

�
× (xl − x j)

#
(3.9)

Now, if we exand Eq. 3.9, we would get

G =−kr

N
[[exp(− ||x1 − x2||2

δ × rs2 )(x1 − x2)+ exp(− ||x1 − x3||2
δ × rs2 )(x1 − x3)

+ ...+ exp(− ||x1 − xN ||2
δ × rs2 )(x1 − xN)]

+ [exp(− ||x2 − x1||2
δ × rs2 )(x2 − x1)+ exp(− ||x2 − x3||2

δ × rs2 )(x2 − x3)

+ ...+ exp(− ||x2 − xN ||2
δ × rs2 )(x2 − xN)]

+ ...+

+[exp(− ||xN − x1||2
δ × rs2 )(xN − x1)+ exp(− ||xN − x2||2

δ × rs2 )(xN − x2)

+ ...+ exp(− ||xN − xN−1||2
δ × rs2 )(xN − xN−1)]] (3.10)

From Eq. 3.10, it is seen that for each agent there will be an equal and opposite force exerted on it by
its neighbors for stabilizing the entire system. Therefore, the final result of G should be equal to zero.
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Hence, based on the above outcome, Eq. 3.7 could be modified as

ėvi =−kaepi − kvevi + kr ∑
j∈Ni

exp

 
−

x2
i j

δ × rs2

!
× (xi − x j) (3.11)

Now, expanding the exponential term (while neglecting the higher order terms) of Eq. 3.11, we
get

ėvi =−kaepi − kvevi + kr ∑
j∈Ni

"
1−
 

x2
i j

δ × rs2

!#
× (xi − x j) (3.12)

Hence, the error dynamic equation can be evaluated as (from Eqs. 3.6, and 3.12)

ĖT
i = Ai ×ET

i +Bi

h
φ r

i −φ δ
i

i
(3.13)

where Ai =

"
0 1

−ka −kv

#
, Bi =

"
0
1

#
, φ r

i = kr ∑ j∈Ni(xi − x j), and φ δ
i = kr ∑ j∈Ni

�
x2

i j

δ×rs2

�

(xi − x j).
To prove the stability of Eq. 3.13, we have considered the following (generalized) Lyapunov

candidate [175] function such that the corresponding function is positive definite. Now, for the system
to be stable (as per the Lyapunov stability theorem), the time-derivative of the candidate function is
required to be negative definite.

Vi(Ei) = ET
i PiEi (3.14)

The time-derivative of Eq. 3.14 becomes

V̇i(Ei) = ĖT
i PiEi +ET

i PiĖi (3.15)

Inserting the values of ĖT
i , and Ėi from Eq. 3.13 into Eq. 3.15, we get

V̇i(Ei) =−ET
i QiEi +2ET

i PiBi(φ r
i −φ δ

i ) (3.16)

where, Qi = −(PiAi +AT
i Pi). Therefore, considering the entire system, the Lyapunov candidate

becomes

V̇ (E) =
N

∑
i=1

V̇i(Ei) =
N

∑
i=1

h
−ET

i QiEi +2ET
i PiBi(φ r

i −φ δ
i )
i

(3.17)

In order to prove the stability in the sense of Lyapunov, V̇ (E) should be negative semi-definite;
hence the rightmost term of Eq. 3.17 needs to be less than or equal to zero which corresponds to
φ r

i ≤ φ δ
i . Thus, from Eq. 3.13, we get

kr ∑
j∈Ni

(xi − x j)≤ kr ∑
j∈Ni

 
x2

i j

δ × rs2

!
(xi − x j) (3.18)



38 Evolutionary-algorithm based motion planning of a swarm of robots

Solving Eq. 3.18, we get
xi j ≥

√
δ × rs (3.19)

In a simplistic scenario (considering Fig. 3.2(a)), we can conclude that to balance the attraction
and repulsion forces between the ith and jth agents, the minimum possible value of xi j is required to
be at least 2rs. Hence, to satisfy Eq. 3.19, the limiting value of

√
δ should be at least equal to 2 for

achieving the force balance condition between the ith and jth agents. So, in this case, xi j ≥ 2× rs.
Under this specific consideration, the Lyapunov stability holds true and theorem 1 has been proved
successfully.

In an obstacle-free environment, the swarm system will reach the destination under the influence
of the attraction and repulsion control actions as described in the earlier section. However, we can
intuitively place our arguments that in an obstructed environment, the path planning of the swarm
would be heavily dependent on the presence of static or moving impediments. The swarm needs to
detect those obstacles well in advance and the free passage as well through which it would be able to
pass. Obstacle detection and path planning are dependent on many factors, like sensory information.
Hence, it is judicious to devise a dedicated controller, namely an Obstacle Avoidance Controller which
will act in an integrated manner with the attraction-repulsion controllers. In the following sub-section,
we discuss the obstacle avoidance controller in detail.

3.3.3 Obstacle avoidance controller

For avoiding obstacles by an agent, we have devised an obstacle-avoidance control law such that the
overall system becomes capable enough to bypass upcoming hindrances while maintaining inter-agent
cohesiveness with its adjacent agents. The following assumption has been taken to accomplish this
objective.

Assumption: Each agent of the team is equipped with an array of distance sensors (such as Sonar
[125] or Lidar [176]). Hence, in the presence of obstructions, the relative distance of the nearby
obstacles can be sensed (vide Fig. 3.3) if the obstacle is within the field-of-view (FOV) of any one of
the sensors.

Fig. 3.3 Sensing and estimating the nearby obstacles [Ox(t),Oy(t)].
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Now, during the navigation of the ith agent (located at xi(t) = [px
i (t), py

i (t)]) at the tth time,
we assume that an obstacle is within the sensing FOV of that particular agent as shown in Fig.
3.3. Moreover, the sensed distance of the obstacle from the kth sensor is di(t). Hence, based on
the distance information obtained from the kth sensor, the approximate position of the obstacle
(O(t) = [Ox(t),Oy(t)]) can be calculated as (Fig. 3.3)

"
Ox(t)
Oy(t)

#
=

"
px

i (t)
py

i (t)

#
+di(t)×

"
cos[θi(t)+βi(t)]
sin[θi(t)+βi(t)]

#
(3.20)

where, θi(t) and βi(t) are the orientations of the sensor and the ith agent with respect to the world-
coordinate-frame-of-reference.

Fig. 3.4 Triggering of the obstacle-avoidance controller based on the sensed distance di(t).

Now, if the sensed distance (di(t)) is greater than the repulsion range (rs) for the ith agent, the
possibilities of collision of that agent with the corresponding obstacle would be less (Figs. 3.3, and
3.4). And hence, the associated control law employing the attraction-repulsion action (vide Eq. 3.5)
can actuate the agent towards the target.

Now, if di(t)≤ rs, then, the risk of collision with the obstacle is high, so, in order to avoid such
situation, an obstacle avoidance control law (uOA

i ) is required to be triggered for the ith agent. And,
based on this control action, a generalized force along the direction of (xi(t)−O(t)) will be produced
as shown in Fig. 3.4. Thus, analytically, this specific control action can be defined as [51]

uOA
i = kOA

i exp

 
−di(t)2

(rs
i )

2

!
× (xi(t)−O(t)) (3.21)

Where, kOA
i > 0 is the obstacle avoidance gain. Therefore, from the Eq. 3.21, we can conclude that

when, di(t)>> rs; i.e., the sensed distance of the obstacle is far as compared to the repulsion range
of the agent, uOA

i → 0. Hence, this specific control action will only be activated, when, di(t)≤ rs.
Now, to describe the activation of this specific control action, we need to look into Fig. 3.4.

In this figure, we have shown two agents, A, and B navigating across the environment such that
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they are maintaining the force balance condition (as defined in Theorem 1). Hence, the Euclidean
distance between them should be equal to 2× rs. The sensed distances of the nearby obstacles
by those two agents are dA, and dB respectively. The blue, red, and green arrows are representing
the directions of the attraction, repulsion, and obstacle-avoidance control forces respectively. Now,
during the navigation, if the sensed distance of the obstacle is less than rs for any agent, then the
obstacle-avoidance control law will be triggered for that specific agent. Otherwise, employing the
attraction-repulsion control rules, the environment will be explored by those agents.

Fig. 3.5 Avoiding moving obstacle by an agent and its corresponding trajectories of movement in various time-steps.

Using the proposed obstacle-avoidance control action, the swarm would readily circumvent static
impediments while approaching the destination. However, in presence of dynamic obstacles, how
this controller would behave, is mainly described below (referred to Fig. 3.5). In this aspect, we have
assumed that the velocity of the obstacle is less than or equal to the relative velocity of the swarm.

While designing the control law for the dynamic scenario of the ith agent, we are specifically
assuming that the obstacle is approaching towards the agent. At the tth

1 time, the position of the agent
and the obstacle are xi(t1) ∈ [px

i (t1), py
i (t1)], and O(t) ∈ [Ox(t1),Oy(t1)] respectively, such that the

sensed distance of the obstacle from the agent is di(t1)> rs. Hence, uOA
i (vide Eq. 3.21) would not

be triggered. At the tth
2 time, both the obstacle and the agent are approaching towards each other,

subsequently, the sensed distance (di(t2)) of the obstacle from the agent is di(t1) > di(t2) > rs and
uOA

i is in the idle mode. After a certain time, a situation may occur, where the obstacle is within the
repulsion region of that agent as shown in Fig. 3.5. In this case, the sensed distance of the obstacle
from the agent is less than or equal to the repulsion region rs. Thus, uOA

i will be activated to generate a
repulsive force in the reverse direction until the distance of the obstacle from the agent will be greater
than rs. After avoiding the obstacle, the agent will again approach the target (T ) under the actuation of
the attraction and repulsion controllers (vide Eq. 3.21). The complete control mechanism representing
the overall system is further explained in the following section.
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3.4 Block diagram representing the complete control mech-
anism

As per the control laws, we can infer that the proposed mechanism contains three hierarchical control
strategies, namely attraction, repulsion, and obstacle-avoidance controllers which will execute in a
parallel fashion inside an agent. Fig. 3.6 represents the proposed architectural overview for the agent
in the swarm. Depending on the control inputs from the attraction, repulsion, and obstacle-avoidance
controllers, the agent block generates its position information (including the location coordinate of its
neighboring agents) and the obstacles’ sensing information. Based on those outputs, the controller
blocks will be activated and generate necessary control inputs for the agent block.

Fig. 3.6 Block diagram of the proposed control architecture with hierarchical scheme of the ith agent.

Now, combining all the agents in the swarm, the block diagram of the entire system is shown in
Fig. 3.7. From the figure, it is observed that each agent will be actuated based on the control inputs
generated from the controller blocks until the entire swarm is reached the location of the target.

The main objective of the proposed approach is to place an agent inside the environment such
that there would not be any repulsive force from its neighboring agents or obstacles, hence, allowing
it to approach the target safely while forming a cohesive swarm with the other agents of the team.
Subsequently, when all of the agents are stabilized with a collision-free distance from their neighbors,
a unique formation will emerge amongst them. To achieve this objective, we need to formulate an
optimization function for tuning the gains of the attraction controller (ka =

h
ka

1 ka
2 ... ka

N

i
,kv =

h
kv

1 kv
2 ... kv

N

i
of Eq. 3.3), repulsion controller (kr =

h
kr

1 kr
2 ... kr

N

i
of Eq. 3.4), and obstacle

avoidance controller (kOA =
h
kOA

1 kOA
2 ... kOA

N

i
of Eq. 3.21) for each agent during the navigation

towards the target. In the following section, we have mainly discussed about this formulation
procedure.
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Fig. 3.7 Block diagram of the proposed control scheme for the entire system.

3.5 Formulation of the Optimization function
To formulate the optimization function, we first need to address the following question: in a cluttered
environment (full of static and moving obstacles), how will the arbitrarily positioned agents form a
cohesive group, create formations (absence of any obstacles), and avoid obstructions (if required) by
changing the present inter-agent formation in a decentralized manner?

To solve this challenge, it is necessary to intelligently actuate the controllers (vide in Eqs 3.3, 3.4,
and 3.21) so that in an obstacle-free situation; only the attraction-repulsion controller is activated,
whereas in an occlusion scenario, the obstacle-avoidance controller is activated along with the
attraction-repulsion controller. Therefore, it is important to adaptively regulate the controller gains
(ka,kv,kr, and kOA) based on the current environmental condition. If the gains remain constant
throughout the navigation, three possible scenarios may have occurred as enumerated below.

1. If the attraction and repulsion gains are too high compared to the obstacle-avoidance gain,
the system may fail to avoid obstacles. The reason behind this fact is that the attraction and
repulsion functions are only utilized for iterative path-planning (not for avoiding obstacles).
So, if these gains are larger than the obstacle-avoidance gain, the system would navigate across
the environment without avoiding any obstacles.

2. If the obstacle-avoidance gain is larger than the attraction-repulsion gains, then the system
would prioritize avoiding obstacles above path planning. As a consequence, the system would
lose inter-agent cohesiveness.

3. If all of the gains are identical, then, in the narrow pathways, the magnitude and direction of
the control forces become equal and opposite. As a result, the system may be unable to proceed
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further (stuck on this specific point of the path), and hence, a deadlock condition could have
arisen which prohibits the system to accomplish the objectives.

So, the fundamental goal of developing the optimization function is to let an agent adapt the
associated gains in each time step based on the current environmental condition. Analytically, this
function (Θi) for the ith agent at the tth instance can be defined as

min < Θi(t)>= ka
i ×||x̄(t)−T ||+ kv

i × (vi(t)− v̄(t))+ kr
i

Ni

∑
j=1

� ||xi(t)− x j(t)||
2rs −1

�

+
1

kOA
i ×d2

i (t)
i ∈ [1,2, ...,N]

(3.22)

Where T is the location of the target and Ni defines the set of neighboring agents around the ith agent.
The optimization function Θi(t) needs be minimized during the tth navigational step based on the
following aspects:

1) The Euclidean distance between the average position of the swarm (x̄(t)) with respect to the
target (T ∈ ℜ2) should be minimum (the first term of Eq. 3.22).

2) The heading of the ith agent should be similar than the average heading of the swarm, hence,
the second term (vi(t)− v̄(t)) of Eq. 3.22 should be minimum.

3) For avoiding the inter-agent collision as well as producing a swarm like structure, the cohesive
term (the third term of Eq. 3.22) is required to be minimized.

4) Finally, to bypass the nearest obstacles, the distance (di(t)) between an agent and the obstacle
is expected to be maximized (the fourth term of Eq. 3.22).

So, the minimization of the function Θi(t) of the ith agent (at the tth time) is dependent on the
current environmental condition as sensed by that agent, the positions of its adjacent agents, and the
location of the goal by tweaking the controllers’ gains (ka,kv,kr, and kOA).

So, from Eq. 3.22, we have seen that the proposed optimization problem is a 4-dimensional
problem, hence, employing any classical optimization techniques [177], [178] such as dynamic
programming, this problem cannot be solved as it is NP-hard [178]. So, we have used evolutionary
techniques for solving the optimization function and obtaining the optimal values of the controllers’
gains as described in Eq. 3.22. Initially, we have employed the traditional Particle Swarm Optimization
(PSO) algorithm [98], [140]. To evaluate the performance of the PSO scheme, we have explored
another optimization technique, called the Bacterial foraging optimization (BG) algorithm [162],
[163] to minimize the function Θi(t).
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3.6 Solution methodologies
The main reason for choosing the evolutionary algorithms is that these techniques employ a heuristic-
based approach for solving problems that cannot be easily solved in polynomial time, such as
classically NP-Hard problems, and anything else that would take too long to exhaustively process
[177], [178].

3.6.1 Tuning gains using PSO scheme

The PSO algorithm [140], [149] is an evolutionary method that iteratively optimizes a problem by
improving a candidate solution with respect to a given measure of quality. It solves a problem by
generating a population of candidate solutions, called particles. And those particles are allowed to
move around in the search space using a simple mathematical formula based on the particle’s position
and velocity. Finally, from the positions of all of the particles, the global best solution has been
acquired. The reasons for choosing the PSO algorithm are as follows:

1. PSO is mainly used to obtain the global optimum point of various nonlinear functions.

2. Inspired by the social behavior of birds and fish, this method is mainly useful for problem-
solving in groups.

3. The multidimensional problem can also be solved using the PSO procedure.

The detailed PSO algorithm can be found in Appendix 1.
From the simulation output (as shown in Fig. 3.11), it is observed that using PSO, although

the swarm can approach the target successfully, however, the proposed approach does not maintain
any inter-agent cohesiveness during the navigational steps. So, forming a cohesive swarm is not
possible using the PSO-based approach. Hence, we have extended this work with another well-known
evolutionary approach, namely Bacterial Foraging Optimization (BG) scheme [162].

3.6.2 Tuning gains using BG scheme

The BG algorithm is one of the nature-inspired optimization algorithms based on the foraging
characteristics of the E.coli bacteria [179], [180]. The self-adaptability of an individual in bacterial
foraging activities has concerned a great deal of interest today. BG has already been employed
in several engineering problems such as RFID network planning [181], complex network [182],
transmission loss reduction and machine learning [183] etc. The main feature of this scheme is to
eliminate bacterium with poor foraging strategies and favors the propagation of genes of those bacteria
that have successful foraging strategies [179]. The corresponding algorithm has four sub-phases;

1. Chemotaxis: It is the mechanism by which a bacterium moves by taking small steps while
hunting for nutrients [176], and the main notion of BG is to replicate the chemotactic movement
of virtual bacteria in the problem search space.



3.6 Solution methodologies 45

2. Swarming: In this phase of operation, when a single bacterium reaches the goal position, it
delivers an attraction signal to other agents so that they can swarm together [179].

3. Reproduction: In this process, the group of bacterium splits into two groups based on their
cost function value: the highest value means the least healthy bacteria whereas the lowest cost
function value indicates the healthiest bacteria [179].

4. Elimination & Dispersal: In this final step, the group of bacteria which has the lowest cost
function value is eliminated. Whereas, the other group exists in its current location [180].

The detailed BG algorithm can be found in Appendix 2.
From the simulation result (as shown in Fig. 3.12), it is observed that the swarm employing the

BG-based scheme always maintains inter-agent cohesiveness during the navigation towards the goal.
However, in a constricted passage, because of the strict cohesiveness characteristics, often this method
fails to plan the next path for the robotic swarm, thus, the system approaches the deadlock condition.
Whereas, in PSO, non-such situations have been observed.

So, in order to reap the benefits of both strategies, we have employed some hybrid procedures
as explained below. Here, we expect that the fusion of the BG and PSO approaches would provide
sufficient cohesiveness even in the narrow pathways.

3.6.3 Tuning gains using hybrid technique

The hybrid procedures have been developed using the concepts of BG and PSO principles.

BGPSO approach

The BGPSO approach [184] combines both the BG and PSO schemes. The main objective of this
approach is to exchange social information using PSO and find a new solution by the elimination-
dispersal phase of BG. The detailed flowchart of the BGPSO scheme is shown in Fig. 3.8.

From the above flowchart, it is seen that the PSO algorithm starts after the elimination-dispersal
loop of the BG scheme in order to get the global optimal point. In this approach, we have not
received any mention-worthy improvement; the simulation result follows a similar trend as that of
PSO. However, the main reason for reporting this algorithm is to gain insight into the fusion techniques
so that the merits of the PSO and BG schemes could be further exploited.

PSO assisted BG approach

In this approach, the BG and PSO have been fused in a sequential fashion [185]. As we previously
mentioned that the BG scheme often approaches the deadlock condition in a narrow passage. So,
to overcome this, PSO initiates assisting the system to avoid the deadlock situation. So, in this
method, BG executes the majority of times. PSO only executes when the system fails to move further
employing the BG scheme. The flowchart of the proposed algorithm is shown in Fig. 3.9.
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Fig. 3.8 Flowchart of the BGPSO fusion technique.

Fig. 3.9 Flowchart of the PSO assisted BG fusion technique.
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From the simulated output (as shown in Fig. 3.13), we can infer that the inter-agent cohesiveness
reduces specifically when PSO starts. Moreover, the performance of the proposed algorithm has been
degraded with scalable agents in the swarm.

To make an adjustment between the two critical conditions (i.e. PSO and BG approaches), we
have proposed a hierarchical navigation scheme inspired by the echolocation principle of the BAT
algorithm [186], [187] to ensure flexible connectivity during the movement towards the target in
dynamic scenarios. The work endeavors to generate a self-organizing formation control strategy
for a multi-robot system and adaptive switching of the group formation based on the environmental
condition to ascertain that the individual robots could avoid a collision from the nearby obstacles and
neighboring robots while approaching the desired location. The corresponding approach has been
described in the next section. The reasons behind the choosing BAT algorithm are:

1. It utilizes a frequency tuning phenomenon to expand the diversity of the solution in the
population.

2. Moreover, it applies the automatic zooming strategy to adjust the exploration and exploitation
during the search process by changing the pulse-emission rates and loudness when searching
for prey.

3. Finally, among all the other swarm intelligence schemes, the bat algorithm can be implemented
in real scenarios as it consumes less execution time as compared to the other techniques.

3.6.4 Tuning gains using BAT scheme

All the bats apply echolocation to detect distance and estimate the surroundings in some supernatural
way [188]. They fly arbitrarily with a speed of vi having a fixed frequency fi with fluctuating
wavelength ξ , and loudness A0 to chase for pray. Bats can instinctively modulate the wavelength
(or frequency) of their emitted pulses and modify the pulse emission rate r ∈ [0,1], and loudness
A0 ∈ [0,1], contingent upon the closeness of the object. In this paper, it is assumed that the loudness
can shift from a substantial (positive) A0 = 1 to a minimum constant Amin = 0, and frequency fi fires
on a bounded interval of [0, fmax]. In light of these approximations, the basic steps of the bat strategy
are depicted as follows.

Every bat is characterized by its position xi(t), speed vi(t), frequency fi, loudness Ai(t), and the
pulse emission rate ri(t) in a d-dimensional search space. The updated position (xi(t +1)) and speed
(vi(t +1)) at the (t +1)th time step are given by [189]

fi = fmin +β × ( fmax − fmin)

vi(t +1) = vi(t)+ fi × (xi(t)− x∗)

xi(t +1) = xi(t)+ vi(t +1)

(3.23)

where β ∈ [0,1] is the randomly generated number, x∗ is the current global best solution.
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Fig. 3.10 Flowchart of the proposed Bat Algorithm.

One optimal solution is selected among the best solutions for the local search method and then
the random walk is applied that can be expressed as [189]

xnew = xold +ζ × Āt (3.24)

where Āt represents the average loudness of all the bats together, ζ ∈ [−1,1] is the random number
for representing the direction and intensity of the random walk.

The Loudness and the Pulse emission rate must be reassigned as iteration continues. When a
bat gets nearer to its prey, the loudness A typically increases and the pulse emission rate r decreases
which are represented by the following equations [188]

Ai(t +1) = αAi(t)

ri(t +1) = ri(0)[1− e−γt ]
(3.25)

where α , γ are constant, ri(0) and Ai are the random values and Ai(0) and ri(0) are in the range of
[0−1] and [0−1] respectively. The algorithmic flowchart is represented in Fig. 3.10.

3.7 Simulation Results
To measure the efficacies of the above-mentioned approaches, we have performed a sequence of con-
textual simulations utilizing MATLAB 2015a software environment with the Intel-core i7 processing
unit. The simulation results and discussions are explained in the upcoming sections.
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Table 3.1 Parameters used in PSO

Parameters Value
Number of particles 50
Number of iteration 50
Local weight (c1) 1.5
Local weight (c2) 1.5
Inertia weight (w) 0.5

Dimension of search space 4

3.7.1 Performance analysis of PSO scheme

To study the performance of the PSO scheme, the values of the various parameters are shown in Table
3.1.

PSO based swarm agents position trajectories
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Fig. 3.11 Swarm agent position trajectories using PSO.

One of the simulation outcomes is presented in Fig. 3.11. The main objective of the optimization
technique is to maximize the probability of cohesion while approaching the target by minimizing the
chance of collision with obstacles and nearby agents.

In this particular study, the environment is designed with static obstacles (black=-lines), static
boundaries (magenta-lines) and 1 dynamic obstacle (red-circle). The initial positions of all the agents
are shown in blue-cross. The locations of the swarm (blue-star) and the positions of the dynamic
obstacle at different instances of time are presented by numeric numbers. The location of target is
shown in green-cross, and the area of the workspace is chosen to be [40×40] unit2.

Starting from the randomized positions (as shown in 1 of Fig. 3.11), all the agents are approaching
the target under the influence of the controllers as described in Eqs. 3.3, 3.4, and 3.21. At t = 15
sec., the agents are forming a swarm-like pattern (as shown in 2 of Fig. 3.11). In the next course of
movement, the obstacles come within the field-of-view (FOV) of the swarm. In order to avoid the
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Table 3.2 Parameters used in BG

Parameters Value
Number of bacteria 100

Number of chemotaxis step 5
Number of swim 4

Number of reproduction step 4
Elimination-dispersal 2

Probability 0.25
Dimension of search space (w) 4

same, the inter-agent formation has been sacrificed (3 of Fig. 3.11). Finally, all the agents has been
reached to the target location at t = 192 sec (4 of Fig. 3.11).

From the above outcome, it is needless to mention that using PSO, although the swarm can
approach the target successfully, however, there does not exist any inter-agent cohesiveness while
avoiding obstacles. So, forming a cohesive swarm is not possible using the PSO-based approach.
Hence, we have extended this work with another well-known evolutionary approach, namely Bacterial
Foraging Optimization (BG) scheme [162].

3.7.2 Performance analysis of BG scheme

The parameters that have been chosen for this study are presented in Table 3.2.
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Fig. 3.12 Swarm agent position trajectories using BG.

In this simulation (as presented in Fig. 3.12), it is seen that starting from the initial position
(marked by 1), all the agents get converged into a specific formation (marked by 2 of Fig. 3.6). In
presence of the obstacles (both the static and moving obstacles), the inter-agent formations have not
been altered (shown in 3, and 4 of Fig. 3.6). Finally, the entire system has reached the target at t =
259 sec.
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From the above result, we can infer that the inter-agent cohesiveness is strictly preserved in
the BG-based approach. However, here, the main drawback is that in a constricted region, often
the BG-based scheme fails to plan the next path of the swarm. The reason behind this fact is that
maintaining tight cohesiveness is the key feature of the BG approach, so, keeping a specific inter-agent
formation does not allow the swarm system to pass through that path. As a consequence, the system
approaches the deadlock situation. Hence, to get the benefits from both the strategies (PSO and BG);
we have fused them to form a hybrid approach.

Fig. 3.13 Swarm agent position trajectories using PSOABG.

3.7.3 Performance analysis of hybrid scheme

From the simulation result of the PSO-assisted-BG approach (as shown in Fig. 3.13), it is observed
that four agents (as marked by the red star) create a quadrilateral formation in order to form strict
inter-agent cohesiveness. With this specific formation, the system is able to avoid obstacles. After
that, a typical situation arrives, where the strict formation does not allow them to pass through narrow
obstructions. In such kinds of scenarios, PSO starts, and as a consequence, the strict cohesiveness
breaks so that all the agents in the swarm can easily avoid those obstacles. After avoiding it, BG starts
again, and the whole system is converted into the previous formation and reached the desired location
successfully.

From the above outcome, we can witness that the inter-agent cohesiveness significantly reduces
when PSO starts to operate. So, this hybrid procedure does not fulfill our expectations.
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3.7.4 Performance analysis of BAT scheme

To check the performance of the BAT algorithm, we have performed a few simulations (in the same
software environment as stated above) with varying environmental conditions. For this study, the
values of the various parameters are shown in Table 3.3.

Table 3.3 Parametric values chosen for the BAT algorithm

Parameter Value Parameter Value
N 6 rs

i i ∈ [1,2, ...,N] 1
δ 4 T [35,35] unit

Amin 0 A0 1
r [0 to 1] fi [0 to 1]
β [0 to 1] ζ [−1 to 1]
α 0.05 γ 0.95

One of the simulation outcomes is shown in Fig. 3.14. Starting from the randomized positions,
all the agents are fused into an arbitrary pattern to form a swarm-like architecture. At t = 15.5 s,
a pentagonal shape has been created by the team. After sensing the static hindrances, distinctive
formations (i.e. quadrilateral, and elliptical) are produced among the agents at t = 37.4 sec and
t = 57.33 sec respectively. Suddenly, the path has been obstructed by a dynamic obstacle. To keep
away from the same, the current formation has been reshaped into a rectangle at t = 75.51 sec. Finally,
when all obstacles are avoided, initial pentagonal-formation has been recovered at t = 149.21 sec,
and the entire system has reached the target zone with the specific formation at t = 200 sec.

BAT-Algorithm based Swarm agent position trajectories
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Fig. 3.14 Swarm agent position trajectories using BAT algorithm.

From the outcomes of the simulation, we have observed that for preserving grouping and cohesion
as well as circumventing obstacles, several new formations have been accomplished within the swarm
during the navigation towards the goal. Moreover, the initial and final formations are identical
which represents the nonexistence of the obstacle-avoidance controller during the obstruction-less
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environment. Similarly, without the influence of any formation controller, the swarm can restructure
itself; hence, this control scheme is called self-organizing formation control.

3.8 Performance Comparisons
To measure the performance of all the above-mentioned techniques, we have chosen the following
performance indices; such as inter-agent cohesiveness, formation adaptability with environmental
constrain, path length, and algorithm convergence time. The detailed comparative analysis is given
below.

3.8.1 Cohesiveness measure with different gain parameters

As mentioned previously, in every course of the movement, all of the algorithms evaluate the con-
trollers’ gains (ka, kv, kr, and kOA) with respect to the surrounding environment while minimizing the
function Θi for the ith agent. A comparison study has been conducted to evaluate the mean and the
standard deviation of the coefficients for all the agents during the navigation as presented in Table 3.4.

Table 3.4 Comparison with other well-known swarm intelligence techniques

Algorithm
ka kr kv kOA

Mean Std Mean Std Mean Std Mean Std
BG 8.8 0.22 8.97 0.48 0.36 1.03 0.19 0.43
PSO 3.03 0.5 4.95 2.26 1.05 1.20 4.6 7.09
BAT 4.4 0.09 6.64 0.42 0.31 0.52 2.5 0.87

BGPSO 3.8 0.5 2.75 2.71 2.41 2.63 6.37 9.91
PSOABG 8.02 1.42 8.20 1.83 0.99 2.15 1.68 4.52

While comparing the strict formation (BG) and no formation (PSO) cases, it is observed that
for strict formation, ka (mean=8.8, standard deviation (std)=0.22) and kr (mean=8.97, std=0.48) are
relatively higher than kOA (mean=0.19, std=0.43), whereas for no formation scenario, reverse condi-
tion is observed ((mean(ka)=3.03, std(ka)=0.5), (mean(kr)=4.95, std(kr)=2.26) and (mean(kOA)=4.6,
std(kOA)=7.09)). Moreover, the variations of evaluated parameters for no formation are much higher
than strict formation which is probably the main reason for non-arrangement situation. In BAT
algorithm approach, less variations in the evaluated parameters have been seen ((mean(ka)=4.4,
std(ka)=0.09), (mean(kr)=6.64, std(kr)=0.42) and (mean(kOA)=2.5, std(kOA)=0.87)) and the param-
eters are within the definite limits of the above two cases which assesses flexible cohesiveness and
smarter path planning of the swarm.

These results are also compared with the trivial BGPSO along with the PSOABG scheme.
Representative plots of the evaluated coefficients for the first agent in the team are shown in Figs.
3.15 – 3.18. For BGPSO, kOA provides additional enforcement for avoiding undesirable hindrances,
hence cohesiveness fails to achieve like PSO, whereas in PSOABG, though the inter-agent cohesion is
mostly achieved (as BG runs a majority of times) hence, mean(ka) is alike as BG with slightly greater
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Fig. 3.16 Repulsion gain.
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variations, but cohesiveness breaks when troublesome snags are in the field-of-view (FOV) of any
agent and then PSO starts. This inference confirms the effectiveness of the BAT algorithm in the
multi-robot path-planning problem.

3.8.2 Formation switching vs. obstacle sensed

In order to study the flexibility of the swarm system, the mean distance of all agents with respect to
the group centroid is calculated. From this evaluated value, the probability of cohesiveness (CI) is
calculated. Table 3.5 represents a detailed analysis. For strict formation (BG), this value is nearly
constant; hence the probability of achieving formation is high with less variation (having mean and
coefficient-of-variation (COV) of 0.97 and 0.01 respectively). While in the case of no-formation
(PSO), as there is no grouping among agents, the probability of CI is lower with some variation
(mean=0.57 and COV=0.21). Here, each agent is attempting to evade obstruction individually without
any collaboration from its neighbors. However, for the BAT-based flexible formation, the controllers
are always endeavoring to maintain cohesiveness among agents by slightly deforming the current
pattern (if possible). Hence, the evaluated value is marginally lesser than strict formation whereas
larger than no-formation with a small variation (mean=0.95 and COV=0.02) as formation needs to be
sacrificed often for avoiding slow-moving hindrance. In comparison with the fusion techniques such
as BGPSO (mean=0.53 and COV=0.21) and PSOABG (mean=0.82 and COV=0.08), it is seen that the
results are not comparable with the BAT. The plot is shown in Fig. 3.19.

Table 3.5 Cohesive Index (CI), Success Rate and Path Length Comparison

Algorithm
CI Success Rate

of Reaching Target
Mean Path

Length
Mean

Coefficient
of Variation

BG 0.97 0.01 52% 67.94
PSO 0.57 0.21 100% 53.97
BAT 0.95 0.02 99.3% 55.82

BGPSO 0.53 0.21 100% 54.73
PSOABG 0.82 0.08 98.5% 63.75

3.8.3 Comparison of success rate and path length

In any kind of robotic path-planning framework, the preliminary goal is to increase the success
rate and reduce the path length. In this paper, similar assessments have been presented for the said
parameters (the entire outcomes can be found in Table 3.5) with the various techniques. It is observed
that maximum-success-rate and minimum-path-length are accomplished by the no-formation (PSO)
scenario, whereas lowest-success-rate and highest-path-length are achieved by the strict-formation
(BG) instance. However, for formation-switching (BAT) circumstances, the success rate is much
higher than BG and the path length is slightly higher than PSO. Henceforth, it can be claimed that our
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Fig. 3.19 Sensed Obstacle vs. Formation Change.

proposed technique can be an appropriate alternative to others for ensuring solidity in terms of path
length, success rate, and inter-agent coordination.

3.8.4 Analyzing the capability of formation switching of each scheme

To characterize a particular formation (as shown in Fig. 3.20), the Euclidean distance of the nearest
neighbors is taken into consideration. Hence, the distance matrix (Fi ∈ ℜ2) of the ith agent with
respect to its neighboring agents Ni can be written as

Fi = ∑
j∈Ni

xi j; xi j ≤ 2rs (3.26)

Thus, the entire distance matrix (FN×N) becomes

F =
h
FT

1 FT
2 ... FT

N

iT
(3.27)

Fig. 3.20 An example of "strict" rectangular formation of 6 agents.
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For a specific formation, λmin (which is the minimum eigenvalue of the distance matrix F in the
Eq. 3.27) will be strictly bounded over the entire region [190]. The various algorithmic outcomes in
terms of λmin are shown in Fig. 3.21. From the figure, it is seen that for the BG-inspired technique
the λmin-boundary region is the smallest (region E) which is occurred due to the strict cohesiveness
among the agents. For the PSO-inspired method, the boundary region (region A) spreads over the
entire region due to the lack of inter-agent cohesiveness. This inference can easily be witnessed from
the figure. For the other techniques, such as BGPSO (region B) and PSO-assisted-BG (region C) the
entire boundary is partially intersected by the regions A and E because of the feeble coordination
among the agents. For the bat-inspired method (region D), there is a small intersection with the
region A and a large overlapping with the region E that ensures the formation switching hypothesis.
Moreover, in the obstacle-less environment, region D will be overlapped with region E. Hence, from
this observation, we can conclude that the bat-inspired scheme is functioning like the BG-inspired
technique in obstacle-less environments which is already claimed in [187].
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To analyze the scalability in terms of the number of agents in the team, we only consider the
BAT-based approach because of the following reasons.

1. Considering the PSO-based approach, it is seen that the system does not follow any inter-agent
cohesiveness. So, with increasing agents in the swarm, the cohesiveness further degrades.
Hence, the PSO-based approach has not been considered for the scalability analysis.

2. For the BG-based approach, the system maintains strong cohesiveness throughout the explo-
ration step. However, with increasing agents in the team, the complexity of the inter-agent
formation would be significantly increased, hence, the success rate reduces. So, for the
scalability analysis, we would not consider the BG-based approach.
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Table 3.6 Scalability analysis with various number of agents

No. of
Agents

Algorithm convergence time (in sec.)
Circle based

robot gathering [2]
Proposed strategy

in software simulation
6 357 200
12 698 386
30 1225 812

3.8.5 Scalability analysis

The scalability has been analyzed with various numbers of agents in the team against the performance
of the BAT-based control structure so far as the convergence time is concerned. The results are
represented in Table 3.6. In order to assess the performance of the proposed scheme, the results are
compared with the circle-based gathering technique as presented in [2]. From Table 3.6, it is observed
that with an increasing number of agents, our BAT-based method outperforms the Circle-based Robot
Gathering procedure [2] in terms of the algorithm convergence timing.

From all of the above analysis, we can argue that in the multi-robotics smarter path-planning
situation, the bat-inspired technique would be a robust alternative in terms of obstacle-avoidance,
shortest-path-planning, and approaching target while maintaining strong inter-agent cohesiveness.

3.9 Summary
In this chapter, to achieve complete autonomy of a group of robots (swarms) towards achieving
a fixed mission, we have proposed an evolutionary algorithm-based hierarchical control strategy
for navigating the swarm through the landscape to a predefined target position without crashing
into static/dynamic obstacles. The entire control proposition rests on three dedicated controllers:
attraction controller, repulsion controller, and obstacle-avoidance controller. The stability of the
proposed controllers has also been studied in the sense of Lyapunov. After that three traditional
evolutionary algorithms, namely Particle Swarm Optimization (PSO), Bacterial Foraging (BG), and
BAT algorithms have been employed in order to measure the performance of the system. From the
outcomes, we have observed that the PSO-based system ensures less cohesiveness with the lowest
time of arrival to the goal, the BG-based system confirms the highest cohesiveness with the highest
time of arrival, and the BAT-based technique follows adaptive cohesiveness with the lowest time of
arrival. The simulation results describe the efficacious the proposed approach.



Chapter 4

Geometric region based motion planning
of swarm robots

4.1 Introduction
The motion planning of a group of robots is a computational problem in which the collective behavior
of the swarm emerges through the interactions between individual robots with their neighboring agents,
as well as the surrounding environment [63], [65]. In chapter 3, we have employed the evolutionary-
based approach [162], [98], [188] in order to design the motion plan of a multi-robot system. However,
the major drawback of the scheme is the computational time [189], [186] i.e., the process consumes
huge execution time to yield a solution. Thus, this solution may not be implementable in the real
environment.

In this chapter, to alleviate the above-mentioned problem, we have introduced an adaptive control
scheme that exploits a geometrical region-based virtual shape control technique for avoiding obstacles
in an unknown occluded environment of a swarm of robots working in a 2D environment. The
proposed control action is a two-level hierarchical control scheme [191] where a local controller
running inside an agent is responsible for actuating the agent to its target location while maintaining a
specific distance from its neighboring agents. So, the local controller, as it appears to be, is not a single
controller. Instead, two controllers, namely, the Convergence Controller and the Formation Controller
are working in tandem inside this control architecture. In this context, we would like to mention
that as per the local control logic, the swarm is required to converge inside the virtual geometrical
region under the influence of the Convergence controller. Furthermore, it must maintain a precise
formation to avoid inter-agent collision (realized by the Formation controller). As the attraction-
repulsion control rule described in chapter 3 may not be sufficient to meet the above requirements, the
Convergence-Formation control pair has been idealized to do so.

On the other hand, the global controller, acting as a supervisory control mode, is accountable
for detecting the nearby obstacles and updating the parameters of the virtual geometrical region per
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iteration by employing the sensory information from all the agents in the swarm. The concept of a
virtual geometric region will be duly explained in this chapter. The block diagram of the proposed
two-level hierarchical control scheme has been displayed in Fig. 4.1. The green and red rectangular

Fig. 4.1 Block diagram of the proposed control scheme.

boxes in the diagram indicate the global and local control actions respectively. Each agent in the
swarm which is equipped with distance sensors to sense the distance of the nearby obstacles (d ∈ ℜ2),
triggers the local controller inside it. The position of an agent is denoted by x ∈ ℜ2. Depending on
the distance of the nearby obstacles, the obstacle-detection controller (of the global control action)
evaluates available free space b f s ahead. Employing this variable and the location of the desired target
T , the obstacle avoidance controller then computes the coordinate (Oc ∈ ℜ2) of the center of a virtual
geometrical region. Once the virtual region’s information has been exchanged with the agents, the
local control action of each agent activates to calculate the error between its current position and the
center-location coordinate of the geometrical contour. Based on this error variable, the convergence
controller actuates for an agent to accumulate it inside the virtual region. When all the agents approach
the virtual zone, they produce a specific formation (specified as (ρ ◦∆)) under the influence of the
formation controller.

The Convergence and Formation controllers are part of the local controller that executes inside
a robotic agent. The distance sensors are responsible to sense the nearby environment. The global
controller employs an obstacle detection rule for locating open space inside the environment and
an obstacle avoidance law for updating the structural parameters of the virtual region. The desired
location specifies the coordinates of the target, whereas the desired formation defines the inter-agent
pattern that the swarm must maintain throughout the navigation.

With this introduction, now, we would explain the detailed proposition and evaluation of the
control scheme along with the dynamics of the robotic swarm in the subsequent sections.
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4.2 Dynamics of a swarm robotic system
Consider a group of N robotic agents in a 2D space are approaching towards a predefined target
T ∈ ℜ2 simultaneously. The motion dynamics of the ith agents, positioned at xi ∈ ℜ2, can be written
as [51]

ẋi = ui; ∀i = {1,2, ...,N} (4.1)

Where, ui ∈ ℜ2 represents the control input acting on the ith agent for approaching the target while
maintaining a specific distance from its neighboring agents. The reason behind maintaining a specific
distance from the nearest agents is to create a formation in the swarm.

Hence, the control input (ui) is required to be devised in such a manner that while approaching T ,
all the agents will avoid the obstacles by forming a swarm-like framework in order to maintain the
desired pattern.

To solve this hypothesis, in this work, we have borrowed the idea of a region-based shape control
scheme [171] where a virtual circular region will be initially chosen as the standard region. All the
agents are required to be accumulated inside it. During the course of movement, the parameters of
the circles will be updated based on the agents’ sensory information. And the process will continue
until the swarm reaches the target. The overall idea is presented in Fig. 4.2 where the green-dashed
lines represent the region of sensing to find out the open space for the swarm to pass on through the
environment.

Fig. 4.2 Geometric region based swarm robotic path planning scheme.

To achieve the above-mentioned objectives, our proposed two-level hierarchical control scheme is
already displayed in Fig. 4.1. In the upcoming sections, we would explain the detailed modeling of
the local and the global control actions.
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4.2.1 Modeling of Local Controller

The function of the local control action is not only to actuate an agent towards the target location but
also to maintain a safest distance from the nearby agents in the swarm. So, this specific controller is
executed inside each agent of the group. As stated earlier, the local controller can be perceived as a
two-level controller comprising the Convergence Controller followed by the Formation Controller as
shown in Fig. 4.1. The detailed functionality of each controller is explained below. However, before
discussing the controllers let us introduce the concept and need for a virtual geometric structure.

Virtual Geometric Structure

A virtual structure is a small geometrical region inside the environment that is devoid of any obstacles
[171]. To etch it inside an environment based on the sensing information, either a human operator
[72] or a super-efficient robot [115] could be utilized. In this chapter, we use this technique to
navigate a swarm of robots in an unknown area for avoiding obstacles. Depending on the sensory
information of all the agents in the swarm, the virtual geometrical region will be formed in each time
step. Subsequently, each robot is required to converge inside that region. Thus, during the exploration,
several virtual regions will be created for guiding the system to approach the target while avoiding
nearby impediments. To prevent the inter-agent collision and accumulate an agent inside the virtual
contour, the Convergence-Formation control pair has been formulated in this work as discussed below.

Before moving on to the next section, we would like to state that we have taken the following
assumption.

Assumption 1: Assuming a circular virtual structure, having a center at Oc = [xc,yc], and radius
rc (which should be reliant on the number of agents in the swarm) is created inside the unknown
environment (as shown in Fig. 4.3).

Fig. 4.3 Converging agents with desired formation inside the virtual geometrical region.
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In Fig. 4.3, we have shown six agents to be moved inside a virtual circular region having center
at Oc = [xc,yc], and radius rc. In addition, the agents are required to maintain a specific formation
inside the virtual region as presented in Fig. 4.4. The shape of the formation is defined as (ρ ◦∆)

Fig. 4.4 Desired Formation pattern inside the virtual region as mentioned in Fig. 4.3.

where ρ ∈ ℜN×N is the desired inter-agent distance matrix, ∆ ∈ ℜN×N is the associated adjacency
matrix [192], and the operator ◦ is the matrix element-wise multiplication or the Hadamard product
[193]. From Fig. 4.4, it is seen that in order to maintain the specific formation, agent 1 is required
to be connected to agents 2, 3, 5, and 6. So, these agents are considered as the neighbors of agent 1.
Similarly, for agent 2, the neighbors are 1, and 3; for agent 3, the neighbors are 1, 2, 4, and 5; so on
and so forth. Hence, depending on the desired formation pattern (as shown in Fig 4.4), the parameters
ρ and ∆ could be defined as

ρ =




ρ11 ρ12 ρ13 ρ14 ρ15 ρ16

ρ21 ρ22 ρ23 ρ24 ρ25 ρ26

ρ31 ρ32 ρ33 ρ34 ρ35 ρ36

ρ41 ρ42 ρ43 ρ44 ρ45 ρ46

ρ51 ρ52 ρ53 ρ54 ρ55 ρ56

ρ61 ρ62 ρ63 ρ64 ρ65 ρ66




;∆ =




0 1 1 0 1 1
1 0 1 0 0 0
1 1 0 1 1 0
0 0 1 0 1 0
1 0 1 1 0 1
1 0 0 0 1 0




(4.2)

where, ρi j = ρ ji.
So, the desired formation (ρ ◦∆) would be

ρ =




0 ρ12 ρ13 0 ρ15 ρ16

ρ21 0 ρ23 0 0 0
ρ31 ρ32 0 ρ34 ρ35 0
0 0 ρ43 0 ρ45 0

ρ51 0 ρ53 ρ54 0 ρ56

ρ61 0 0 0 ρ65 0




; (4.3)
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Therefore, the desired distance between the ith agent with respect to the jth neighbor is represented by
the [ρ ◦∆]i j.

To converge inside the virtual region along with the desired formation, the Convergence-Formation
control pair is needed to be executed in tandem as explained below.

Convergence Controller

The Convergence Controller is mainly responsible for actuating an agent towards the center of the
virtual region. So, this specific action is considered as the first level controller of the local control
action (Fig. 4.1). As per the control schema, when a virtual region having center at Oc(t), is formed
(assumption 1), the ith agent positioned at xi(t) will trigger the Convergence Controller for approaching
towards Oc(t) (Fig. 4.2). Analytically the Convergence Control function (ui

cc) for the ith agent is
defined as [52]

ui
cc =−ki

c(t)× (xi(t)−Oc(t)) (4.4)

where ki
c(t) is the associated convergence gain. So, under the influence of ui

cc, the ith agent will
approach towards Oc(t) at the tth time.

The sole activation of this control action in all the agents in the swarm may result in an inter-agent
collision. Thus, the Formation Control action is required to be activated in tandem.

Formation Controller

The Formation control has been utilized in this work not only to create the desired formation but also
to avoid the inter-agent collision. So, this specific action is considered as the second level controller
of the local control action (Fig. 4.1). Mathematically, the function of this controller (ui

f ) for the ith

agent is defined as

ui
f = ki

f (t)
N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[ρ ◦∆]i j

�
× (xi(t)− x j(t))

�
(4.5)

Where ki
f (t) is the generalized formation gain, ||xi j|| = ||xi(t)− x j(t)|| is the Euclidean distance

between at the tth time, [ρ ◦∆]i j is the desired distance that needs be maintained by the agent i with
respect to the jth neighbor. So, when ||xi j||< [ρ ◦∆]i j, the repulsion force ui

f will be large to generate
a force in the reverse direction of (xi(t)− x j(t)) until ||xi j||= [ρ ◦∆]i j and vice versa.

Combining Eq. 4.4, and Eq. 4.5, the dynamics of the local controller of the ith agent at the tth

time can be expressed as (from Eq. 4.1)

ẋi =−ki
c(t)× (xi(t)−Oc(t))+ ki

f (t)
N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[ρ ◦∆]i j

�
× (xi(t)− x j(t))

�
(4.6)

Therefore, if we analyze the function of the local controller, we would observe that under the
actuation of this particular controller, all the agents in the swarm will approach towards the virtual
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circular region (centered at Oc(t)) while creating a specific inter-agent formation as defined by (ρ ◦∆)
(Fig. 4.3). Now, it is to be noted that the above-mentioned actions should be performed within a finite
time τ , otherwise, the time to complete the whole mission will be large. And it will significantly affect
the performance of the system. The following theorem can be used to determine the value of τ .

Theorem 1: Consider a multi-robot system with N number of agents as described by Eq. 4.6, the
ith agent will converge inside the virtual circle, defined by Brc(Oc) to form a swarm, where the radius
of the circle (rc) will be

rc =
Nk f

ki
c

× [ρ ◦∆]× exp(−1)

and the convergence will happen within a finite time

τ = max
i∈N

{− 1
2ki

c
ln(

r2
c

2Vi(0)
)}

.
Proof : Let V i = 1

2(e
i)2 is the Lyapunov function [166] of the ith agent, such that ei = (xi −Oc) is

the associated error between the current location of the agent with respect to the coordinate of the
circle’s center (as shown in Fig. 4.3), so, ėi = (ẋi −Oc) as Oc is constant. Taking derivative of the
Lyapunov function, we get

V̇ i = eiėi = ei × (ẋi −Oc) (4.7)

Inserting the values of ẋi from Eq. 4.6, we obtain

V̇ i =−ki
c(e

i)2 + ki
f (t)

N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[ρ ◦∆]i j

�
× (xi − x j)ei

�
(4.8)

To analyze the effect of the formation, we consider that all the agents are interconnected and equidistant
from the ith agent, hence, we can assume that

[ρ ◦∆]i j = [ρ ◦∆]; ∀ j ∈ {1,2, ...,N}

Now, as per the Lyapunov exponential stability theorem [166], the time-derivative of the candidate
function (V̇ i) is required to be negative-definite, i.e. V̇ i < 0. Hence, the right-most term of Eq. 4.8
should be less than zero, which corresponds to

ei >
ki

f

ki
c

N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[ρ ◦∆]

�
× (xi − x j)

�
(4.9)

From Eq. 4.9, it is observed that the error inequality is dependent on the positional information of the
ith agent. So, if we maximize the function, we would obtain the positional-independent error function.
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Hence, the time-derivative of the above function with respect to (xi − x j), we obtain

δ
δ (xi − x j)

"
ki

f

ki
c

N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[ρ ◦∆]

�
× (xi − x j)

�#
= 0 (4.10)

This corresponds to

N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[ρ ◦∆]

�
− exp

�
− ||xi j||
[ρ ◦∆]

�
× xi − x j

ρ ◦∆

�
= 0 (4.11)

Solving the above equation, we get

N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[ρ ◦∆]

��
1− xi − x j

ρ ◦∆

��
= 0 (4.12)

So,
(xi − x j) = [ρ ◦∆] (4.13)

Inserting the result of Eq. 4.13 into Eq. 4.9, we obtain

ei >
ki

f

ki
c

N

∑
j=1, j ̸=i

[exp(−1)× [ρ ◦∆]] (4.14)

Now, as we consider that all the agents are equidistant from the ith agent, then, Eq. 4.14 could be
written as

ei >
(N −1)ki

f

ki
c

× [exp(−1)× [ρ ◦∆]] (4.15)

From the above equation, we can infer that as time t → ∞, the ith agent converges inside the virtual
circular region (Brc(Oc)) having radius of r′c =

(N−1)ki
f

ki
c

× [exp(−1)× [ρ ◦∆]].
However, in our case, the ith agent is required to converge inside the virtual circular region

(Brc(Oc)) within a finite time τ . So, for the exponential stability of the system, we further consider
that

rc =
Nki

f

ki
c

× [exp(−1)× [ρ ◦∆]] (4.16)

As, rc > r′c; therefore it is ensured that the ith agent will converge inside the virtual circle (Brc(Oc))
within a finite time τ . And furthermore, as the agent i is an arbitrary agent of the swarm, the above
result hold true ∀ j ∈ [1,2, ..,N].

Now, to obtain the upper-bound of τ , we need to perform the following calculation. As we already
obtain that V̇ i is negative-definite, so for ei ≥ rc; from Eq. 4.8, we can get

V̇ i ≤−ki
c × (ei)2 (4.17)
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Inserting (ei)2 = 2V i (Lyapunov candidate function) on the above equation, we get

V̇ i ≤−2ki
cV

i (4.18)

The analytical solution (of V i) of the above equation should satisfy the following criterion.

V i ≤V i(0)e−2ki
cτ (4.19)

Thus, for ei = rc; we have V i = 1
2 r2

c . So, from the derivation, we can infer that the ith agent will enter
within the vicinity of virtual circular region (Brc(Oc)) at time τ , when the RHS of Eq. 4.19 satisfies

V i(0)e−2ki
cτ =

1
2

r2
c (4.20)

Solving Eq. 4.20, we could get the upper-bound of τ as

τ ≤− 1
2ki

c
ln(

r2
c

2Vi(0)
) (4.21)

Since i ∈ {1,2, ...,N} is a finite set, hence max(τ) should exist which proves the Theorem 1.
In addition to that, inside the virtual circular region Brc(Oc), all the agents should create and

maintain a specific formation. The following theorem is presented to confirm this hypothesis.
Theorem 2: Consider the multi-robot system with N number of agents as described by Eq 4.6,

inside the circular-region Brc(Oc), all the agents of the swarm will maintain a specific formation
defined by [ρ ◦∆].

Proof: To prove this theorem, first of all, we need to formulate the formation error of the system.
In a multi-robot system, the term formation error refers to the difference in distance between the
desired and actual formations. So, in our case, the formation error of the system could be defined as

e f =
N

∑
i=1

∑
j∈Ni

�
(ρ ◦∆)2 − ||xi j||2

�2
(4.22)

From Eq. 4.22, we can infer that when the desired formation as defined by (ρ ◦∆) is perfectly matched
with respect to the current locations of all the agents in the swarm, then, ||xi j|| = (ρ ◦∆), which
subsequently results in e f = 0 (Fig. 4.3). Now, for a desired formation (ρ ◦∆) as mentioned in Eq.
4.5, individual robot’s contribution should be in such a manner that e f is reduced to zero or can attain
a minimum value.

Now, we consider that Vf =
1
2(e f )

2 is the generalized Lyapunov candidate function [166]. Taking
derivative of the Lyapunov function, we get

V̇f = e f ė f (4.23)
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Computing ė f from Eq. 4.22, we obtain

ė f =−4× ∑
j∈Ni

�
(ρ ◦∆)2 − ||xi j||2

�
(||xi j||) (4.24)

Inserting this result in Eq. 4.23, we get

V̇f =−4× (e f )
2 × ∑

j∈Ni

(||xi j||) (4.25)

From the above equation, it is observed that Eq. 4.25 is always negative definite for any values of
xi j, which stabilizes the control law of the formation error. Thus, under the influence of the local
controller, now, it is proven that all the agents will converge within the virtual region (Brc(Oc)) with
the desired pattern as defined by (ρ ◦∆).

However, during the navigational process, the sensors attached within an agent should be executing
in parallel with the local controller that would assist in estimating the next location of the virtual
region. This functionality is solely governed by a dedicated global controller, as shown in Fig. 4.1.
Before, moving into the detailed procedures, following assumptions are made.

Assumption 2: Each agent in the team is equipped with m number of distance sensors (such as
Lidar [194], and Sonar [195]) spaced at z radian apart such that an overall 2π radian is covered by an
agent.

Assumption 3: Inside the virtual region, the ith robot knows or senses the relative positions its
neighboring agents (Ni).

4.2.2 Modeling of Global Controller

The global controller, acting in a supervisory control mode, is accountable for detecting the nearby
obstacles and updating the parameters of the virtual region in each and every iteration by using the
sensory information gathered by all the agents. Hence, in this work, the role of the global controller
(which can also be viewed as a centralized controller) is to detect the free space ahead (which is
realized by the first level of the global controller, i.e., the obstacle-detection controller) and to fit a
virtual circle inside it for the safest navigation of the swarm through the environment (performed by
the second level of the global controller, i.e., the obstacle-avoidance controller). The topological
model of the corresponding scheme is presented in Fig. 4.1.

Obstacle Detection Controller

The first level of the global controller, namely obstacle detection controller is utilized to sense the
nearby obstacles of the swarm. As per the assumption 2, each agent in the swarm will sense the
distance of the neighboring obstacles by employing all of the sensors attached to it. Let us assume
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that di(t) =
h
di

1 di
2 ... di

m

i
is the distance matrix of the m sensors for the ith agent such that

di(t) = {di(t) | di(t)≥ (rc − ||xi(t)−Oc(t)||)} (4.26)

However, it is to be noted that the possibilities of presence of any obstacles outside the virtual region
(Brc(Oc)) is much higher than inside. Hence, it is beneficial for an agent to sense an obstacle outside
the virtual boundary. To achieve this objective, the sensor specific threshold limit has been chosen to be
(rc − ||xi(t)−Oc(t)||). Hence, an agent will only sense an obstacle if it is outside the virtual boundary.

Depending on this information, the predicted positions of the obstacles (R̃i(t) =
h
R̃x

i (t) R̃y
i (t)

iT
)

with respect to the global coordinate frame-of-reference will be

"
R̃x

i (t)
R̃y

i (t)

#
=

"
px

i (t)
py

i (t)

#
+

m

∑
j=1

"
di

j(t)+

"
cos[( j−1)z+β i(t)]
sin[( j−1)z+β i(t)]

##
(4.27)

Where xi(t) =
h

px
i (t) py

i (t)
iT

is the current position of the ith agent and β i(t) is the orientation of

that agent with respect to the global coordinate frame of reference at the tth time.
In a special situation, it may happen that the ith agent is eclipsed by the jth neighbors such that

||xi − x j||> (rc − ||xi(t)−Oc(t)||) and that may cause a sensing error. In such scenarios, the location
of the predicted obstacles’ will be updated as

R̃(x,y)
i (t) = {R̃(x,y)

i (t) | R̃(x,y)
i (t) ̸= x j(t)} ∀ j ∈ Ni (4.28)

Now, ∀i ∈ [1,2, ...,N], the position of the sensed obstacles can be computed as (shown in Fig. 4.5)

R̃(x,y)(t) =
h
R̃(x,y)

1 (t) R̃(x,y)
2 (t) ... R̃(x,y)

N (t)
i

(4.29)

In Fig. 4.5, we have shown one such instance where the current positions of the agents are marked in
blue star, and the location coordinates of the sensed obstacles are marked in red cross.

After sensing, now, we need to determine the closest distance among the obstacles to fit in a
virtual region (either a circle or an ellipse). In this aspect, specifically, we assume that there always
exists a single path through which the swarm can progress toward the goal. This specific functionality
is performed by the second level of the global controller, namely the obstacle avoidance controller.
The detailed design is presented below.

Obstacle Avoidance Controller

The function of this controller is not only to determine the closest distance among the obstacles but
also to decide and evaluate the structural parameters of the virtual boundary.

To compute the minimum distance among the locations of the sensed obstacles, we need to first
segment the sensed points into two clusters. These clusters would provide the associated free space
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Fig. 4.5 Identification of the distance between the two nearest sensed obstacles using the k-means clustering algorithm..

available between the two nearest obstacles. The clustering has been performed using the traditional
k-means clustering algorithm [196] (with k = 2). The outcome of the k-means algorithm is presented
in the green-dashed-contour of Fig. 4.5.

After the clustering, we will measure the center coordinates of the clustered sections to determine
the free space available for traversing the swarm. Hence, the Euclidean distance between the center
coordinates of the clustered sections will provide the minimum distance among the obstacles. In Fig.
4.5, the magenta arrow depicts the free space between two obstacles through which the swarm is
required to be passed on.

Fig. 4.6 (a) Representative elliptical structure. (b) Basic concept behind the parameter estimation of the virtual-ellipse.
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Let us assume a scenario as shown in Fig. 4.6 that the evaluated center-coordinates of the clustered
sections are ro1(t) ∈ ℜ2 and ro2(t) ∈ ℜ2 respectively. The associated orientations of these two points
with respect to the center of the virtual structure Oc(t) are θ1 and θ2 respectively at the tth time. So,
the available free-space (b f s) between these two points is

b f s = ||ro1(t)− ro2(t)|| (4.30)

Now, we need to insert a virtual region (either a circle or an ellipse) inside the available free space b f s

for navigating the swarm. To fit in a virtual region inside the sensed free space, the controller has to
first decide whether a circle will be fitted or an ellipse will replace it. And accordingly, the structural
parameters of the region will be updated.

To fit an ellipse, the controller requires renewing the structural parameters based on the available
free space (b f s), which is mainly portrayed here. A representative virtual ellipse is shown in Fig.
4.6(a), where Oe(t) = [xe(t),ye(t)] is the location of the elliptical center, ve(t) is the velocity vector
toward the target T (xg,yg), θ(t) is the orientation of the elliptical major axis (a(t)) with respect to the
horizontal axis, αe(t) = tan−1(T −Oe(t)) is the orientation of the ellipse with respect to the target,
and b(t) is the length of the minor axis at the tth time. So, the dynamic equation of an elliptical
structure can be represented as (Fig. 4.6(a)).




xe(t +1)
ye(t +1)
ve(t +1)
θ(t +1)
αe(t +1)
a(t +1)
b(t +1)




=




xe(t)
ye(t)
ve(t)
θ(t)
αe(t)
a(t)
b(t)




+




ve(t)∗ cos(θ(t))∗dt
ve(t)∗ sin(θ(t))∗dt

0
0
0
0
0




+dt ∗




0
0
uv

uθ

uαe

ua

ub




(4.31)

Where, the control inputs uv, uθ , uαe , ua, and ub will estimate the next footprint of the virtual ellipse,
as represented in Fig. 4.6. The velocity (uv) and angular control inputs (uθ ) could be evaluated as

uv = kvcir ||Oe(t)−T ||; uθ = αe(t)−
θ1 +θ2

2
(4.32)

where, kvcir is the gain of the translation-velocity controller for approaching towards T , θ1 and θ2 are
the orientations of the two nearest obstacles, having locations at ro1(t) and ro2(t) from the elliptical-
center Oe(t) respectively (shown in Fig. 4.6(b)). On the other hand, the orientation control input (uαe)
could be calculated as

uαe = tan−1(T −Oe(t)) (4.33)

Therefore, the control inputs uθ and uαe will try to align the major axis of the virtual ellipse toward
the target, and maintain a perfect orientation in order to pass through the sensed obstacles.
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Now, to determine the length of the major and minor axis of the elliptical structure, the control
inputs ua and ub are required to be computed. The corresponding control inputs could be calculated
by the following equations.

ub =





rc if b f s ≥ rc

b f s else
(4.34)

Where, rc is the existing circular radius. From the above equation, we can infer that if the sensed
distance (b f s) is greater than the circular radius rc; then, the virtual circular region could be fitted
inside the free space. However, the main problem occurs when b f s is less than rc. In such kinds of
situations, a virtual ellipse would be fitted in place of the circle. And, the length of the minor axis of
the ellipse will be b f s. Now, we assume that the area of the circular region is Ac = πr2

c . So, to place an
ellipse in place of the circle, the prior information of the circular area has been utilized to determine
the control input ua. Thus, the control input ua is evaluated as

ua =
r2

c

ub
(4.35)

Once, the virtual ellipse has been adjusted in the available free space, all the agents are expected
to converge inside the newly created region with the formation as defined by (ρ ◦∆). The above-
mentioned control methodology would work well in an environment having static obstacles only.

However, in dynamic obstacle’s scenario, this hypothesis may not be optimum, so, we need
to formulate a generalized way of finding b f s in such kind of circumstances. Let us assume that
an obstacle is moving with a constant velocity and it is inside the sensing range of the swarm.
Hence, at the tth

1 time, the predicted locations of the sensed obstacles’ are R̃(x,y)(t1), such that
R̃(x,y)(t1) = {r1,r2, ...,rn} ∈ ℜ2×n, and [ro1(t1),ro2(t1)] are the nearest obstacles’ locations. To fit in a
virtual circle/ellipse inside the sensed free-space (b f s), the average Euclidean distance (AD(t1)) from
the midpoint of the points [ro1(t1),ro2(t1)] with respect to each element of R̃(x,y)(t1) can be calculated
as

AD(t1) =
1
n

n

∑
i=1

h
{||ri −R|| | ri ∈ R̃(x,y)(t1)}

i
(4.36)

Where, R =
ro1 (t1)+ro2 (t1)

2 is the midpoint of the points [ro1(t1),ro2(t1)] and n is the number of sensed
obstacles. The similar analysis is performed at the tth

2 time (t2 > t1) considering the same midpoint (R)
as previous. Let us assume that the corresponding value is AD(t2). Now, to estimate the free-space
(b f s(t2)) inside the environment at the tth

2 time, the following operation is carried out

b f s(t2) = ||ro1(t1)− ro2(t1)|| if AD(t2)≥ AD(t1) (4.37)

Now, if AD(t2) < AD(t1), i.e. the moving obstacle blocks the estimated free-space, then the same
procedure (as in Eqs. 4.36 and 4.37) will be reiterated for tth

3 time. Once, the free-space is correctly
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estimated for the dynamic obstacles, the same procedures as mentioned in Eqs. 4.31-4.35 are followed
by the global controller to fit in an ellipse or circle inside the sensed free space.

Now, one major thing to be noted is that while pushing the agents inside the newly created region,
the inter-agent formation is required to be updated as well. Otherwise, some of the agents might be
outside the stipulated region in order to maintain the previous formation. So, to update the formation
inside the virtual region, the second level of the local control law, i.e., the formation control has to be
modified. The upcoming section will address this specific issue.

4.3 Changing formation inside the virtual region: updated
Formation Controller

To change the inter-agent formation inside the newly created virtual region, the adjacency matrix
(∆) and the desired distance matrix (ρ) among the agents in the swarm are required to be updated.
As a consequence, the parameter (ρ ◦∆) as in Eq. 4.5 would be modified. However, to automate
the scheme during the navigational process, we have proposed an algorithm, namely spanning-tree-
assisted-shape-matching algorithm that would adjust the parameter (ρ ◦∆). After the adjustment, the
formation control law of the local controller would be updated.

4.3.1 Spanning-tree expansion of a graph

A spanning tree (S) [197] of an undirected graph (G) is defined as a subgraph which is a tree that
contains all of the vertices of G with a minimum possible number of edges. Tree of graph [192] can
be defined as the connected unidirectional graph with no cycles. Hence, the spanning tree of a graph
is a maximal set of edges of the graph that includes no cycle, or the minimal set of edges that connect
all the vertices of the graph. If we consider a unidirectional graph with six numbers of edges (Fig.
4.7), two possible spanning trees with their corresponding adjacency matrices are provided as well.

Now, we are assuming a graph G with v number of vertices, having non-zero eigenvalues of
[ρ1,ρ2, ...,ρv−1] of the graph Laplacian L. Then, the possible number of spanning trees of G [192]
would be

S(G) =
1
v
× (ρ1 ×ρ2 × ...×ρv−1) (4.38)

In our problem, L will be directly evaluated from the adjacency matrix ∆, and the degree matrix D.
Hence, a number of spanning-tree matrices S will be generated by the well-known cut-formation
technique [198].

After spanning-tree expansion, there will be numerous numbers of possible trees that can replace
the existing formation in order to be inside the virtual elliptical region. However, to select the best
one out of the possible alternatives, we should have an algorithm for generating the optimum one.
The shape matching scheme can be employed in this regard as explained below.



76 Geometric region based motion planning of swarm robots

Fig. 4.7 Spanning trees of a graph having six numbers of edges.

4.3.2 Shape matching algorithm

The shape-matching algorithm has been utilized to obtain the best-spanning tree that can be employed
as the current formation structure of the swarm. One important aspect to be noted is that maintaining
the specific formation as obtained from the spanning tree expansion; the swarm should be within the
virtual structure. To achieve this objective, we have chosen the virtual elliptical region as the template
shape, then, sequentially evaluate the maximum correlation [199] to determine the mismatch factor of
all the shapes as obtained from the spanning tree expansion.

Fig. 4.8 Mismatch factor calculation of a template shape vs. an experimental shape.

4.3.3 Mismatch factor calculation

In this specific computation, one shape is considered as the template shape (the virtual elliptical region
in our case), and the other one is considered as the experimental shape (the graph as obtained from the
spanning expansion) as shown in Fig. 4.8. Then, the maximum correlation method has been utilized



4.3 Changing formation inside the virtual region: updated Formation Controller 77

by superimposing the experimental shape on the template shape. Depending on the superimposing
result, the mismatch factor (ζ ) is evaluated as defined by the following equation [199]

ζ =
Z

Z +X
(4.39)

Where, X is the area of intersection of the experimental shape and the template shape. If we assume
the template shape as A, and experimental shape as B, then, X would be A∩B. And, the value of Z is
evaluated by the following equation

Z =

�
A∪B
A∩B

�
(4.40)

After the computation, the graph (out of the spanning trees) which has a minimum mismatch factor
(ζ ), is considered as the updated structure of the formation for the swarm. From this specific graph,
next the adjacency matrix (∆) and the desired inter-agent distance (ρ) have been evaluated. Based on
this outcome, the formation control law of the local controller will be updated. The entire spanning-
tree-assisted-shape-matching algorithm is presented in algorithm 1. Once, the local control law has

Algorithm 1 Spanning-tree-assisted-Shape-matching algorithm
1: procedure UPDATEDADJACENCYMATRIX(∆)
2: if b ≤ 2r then
3: Ae = formVitualCircle(b,r);
4: if conHull(ρ ◦∆)≥ Ae then
5: for i = 1 : S do
6: ∆(i) = cutFormationSpanningTree();
7: ∆d(i) = ρ ◦∆(i);
8: ζ (i) = shapeMatching(conHull(∆d(i)),Ae);
9: end for

10: index = min(ζ );
11: ∆ = ∆(index);
12: end if
13: end if
14: end procedure

been updated for all the agents in the swarm, the system will actuate towards the newly created virtual
elliptical region with the updated formation. The simulation result of this proposed approach can be
found in Sec. 4.6.1.

One important issue of any kind of swarm robotic navigational problem is the scalability which
defines the efficiency of the algorithm to work with the scalable agents in the team. In the following
section, we elaborate on the scalability aspect of our proposed algorithm.
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4.4 Scalability analysis with updated Formation Control
Law

To analyze the scalability of the proposed approach in terms of the number of agents in the team,
it is required to mention that with a large number of robotic agents, maintaining strong inter-agent
cohesiveness is more beneficial than realizing a specific formation [52] which would improve the
robustness of the system [200]. Therefore, if we can attain a certain level of cohesiveness among the
agents [20], [21], [22], then any kind of desired pattern could be possible to achieve by updating the
formation-term of the Eq. 4.8 which is already presented in the previous section. So, in this section, to
analyze the scalability of the system, we have preferred to study the cohesiveness over the formation.

For achieving reliable and efficient navigation of a large group of robots in an unknown occluded
environment, one possible approach is to keep close to the teammates such that the risk of possible
interference among the distinct groups is significantly reduced [51]. This type of unique feature is
usually observed in the biological systems [20], [21], [22]. In the swarm robotics framework, this
postulate is known as inter-agent cohesiveness. In this work, to attain a similar objective we improvise
the formation controller such that with the increasing number of agents, the group will maintain a
certain level of cohesiveness. Therefore, Eq. 4.8 has been modified as

ẋi =−ki
c(t)× (xi(t)−Oe(t))+ k f

N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[Rs ◦∆]i j

�
× (xi(t)− x j(t))

�
(4.41)

Where, Rs is assumed to be the minimum distance that each robot in the team is required to maintain
from its neighboring agents to circumvent inter-agent collision inside the virtual region as well as
to maintain a strong inter-agent cohesiveness. Theorem 3 has been provided to justify the above
assumption.

Theorem 3: Consider a robotic system with N number of agents as shown in Eq 4.41, inside the
elliptical-virtual-region Bre(Oe), having a major and minor axis of a(t) and b(t) respectively, the ith

agent should maintain a certain distance of Rs from its neighboring agents in order to attain stability
such that

||xi j||≥ [Rs ◦∆]i j

and all the members of the swarm would achieve a maximum cohesiveness inside Bre(Oe), if

Rs =

r
a(t)×b(t)

N

Proof: Let Gi =
1
2 eieT

i is the generalized Lyapunov function [167] for the ith agent, where
ei = xi(t)−Oe. Then taking the derivative along the trajectory of the ith member, we obtain the
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following equation.

Ġi = ei

"
−ki

cei + ki
f

N

∑
j=1, j ̸=i

�
exp

�
− ||xi j||
[Rs ◦∆]i j

�
(xi − x j)

�#
(4.42)

Expending the exponential term of Eq. 4.42, while neglecting the second and higher order terms, we
obtain

Ġi =−ki
ce2

i + ki
f ei

N

∑
j=1, j ̸=i

��
1− ||xi j||

[Rs ◦∆]i j

�
(xi − x j)

�
(4.43)

In order to maintain the stability of the system, Ġi of Eq. 4.43 is required to be negative semi-definite,
i.e. Ġi ≤ 0, which will only satisfy, if,

�
1− ||xi j||

[Rs◦∆]i j

�
≤ 0, hence,

||xi j||≥ [Rs ◦∆]i j (4.44)

Therefore, the ith-agent is required to maintain a minimum distance of Rs from its jth neighbor inside
Bre(Oe) that has a major and minor axis of a(t) and b(t) respectively.

Assuming N agents are converged inside Bre(Oe) (having an area of π ×a(t)×b(t)), therefore, to
accommodate all the agents separated by a distance of Rs from neighbors at the tth time, i.e. to achieve
a maximum inter-agent cohesiveness inside the virtual region, the following condition is required to
be satisfied

N ×πR2
s = πa(t)b(t)

that generates

Rs =

r
a(t)×b(t)

N
(4.45)

The simulation result with the scalability aspect is shown in Sec. 4.6.2.
In any kind of multi-robot path-planning problem, the major hurdle is to make the system fault-

tolerant [31], [32] i.e. failure of an agent or agents may not hamper the mission accomplishment.
In robotics, the agent failure is mainly occurred due to the sensing failure or the actuation failure
[31], [33]. In our scheme, the sensing failure can be easily handled by the supervisory controller,
because during navigation, each robot is required to transmit the sensing information to the controller.
However, during the actuation failure [201], the robot may not progress further but may transmit the
erroneous information to the supervisory controller which might create a major problem for assessing
the next footprint of the virtual structure.

4.5 Handling agent-failure condition
To handle this, we implement an additional decision block inside the global controller so that the
agent’s failure can be detected earliest. This specific block evaluates the error margin (e(t)) of all the
agents with respect to the center of the virtual structure (Oe(t)) in each iteration. Hence, for the ith
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agent, this error-margin (ei(t)) at the tth time will be

ei(t) = xi(t)−Oe(t) ∀i ∈ N (4.46)

When an actuation fault occurs inside an agent, the time derivative of the error margin is solely
governed by the relative velocity of the virtual region’s center. From this information, the faulty
agent/s can be easily identified. After the detection, the structural information of the virtual region is
required to be modified for reducing the redundant area requirement. Hence, the control input ua will
be modified as (from Eq. 4.35)

ua =
r2

c

ub
× N −N′

N
(4.47)

Where N′ indicates the number of failure agents. The simulation results of the above-mentioned
approaches are given below to measure the efficacy of our proposed scheme.

4.6 Simulation results and Discussions
This section presents exhaustive simulation results to demonstrate the performance of the proposed
global and local controllers. All simulations are performed in the same software-hardware environment
as mentioned in Sec. 3.7. Several maze-like obstructed environments have been defined, where a
team of scalable agents, initially placed in arbitrary locations, are required to assemble inside a virtual
region and approach the target location T while circumventing the barriers. In this simulation study,
the following parameter values have been chosen, given in Table 4.1.

Table 4.1 Parametric value chosen in the simulation

Symbol Description value
N Number of agents 6

T (xg,yg) Location of the Target [35 unit, 35 unit]
Oc(xc,yc) Initial location of the Virtual Circle [5 unit, 5 unit]

rc Initial radius 2.5 unit
m Number of distance sensors 8
z Sensor’s spacing 450

k f Formation gain 5
kvcir Translation velocity gain 10

4.6.1 Simulation study with small number of agents with spanning-
tree-assisted-shape-matching scheme

The complete simulation results are shown in Fig. 4.9. Primarily, a virtual circle is created at Oc with
a radius of r(initial) = rc (referred to Table 4.1). All agents are forced to be inside the virtual region
under the impact of the convergence controller. After converging inside the stipulated region, the
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formation controller is triggered for a desired inter-agent formation. Initially, a triangular formation
has been chosen (vide Fig. 4.4). The corresponding adjacency matrix (∆triangular) will be

∆triangular =




0 1 1 0 0 0
1 0 1 1 0 1
1 1 0 0 1 1
0 1 0 0 0 1
0 0 1 0 0 1
0 1 1 1 1 0
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Fig. 4.9 Swarm-agent position trajectories in different instances in an occluded environment with the proposed technique.

After developing the desired triangular formation inside the virtual region (Fig. 4.9b), the group
approaches the target T . For dodging the obstacles, the circle is marginally deformed into an ellipse.
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However, the previous triangular formation is still maintained (Fig. 4.9c). At t = 67.31 sec. (Fig.
4.9d), the shape of the ellipse is significantly changed because of the challenging obstacles. To
accommodate all the agents inside it, a new formation has been generated by the swarm. A similar
phenomenon has also been observed at t = 118.48 sec.(Fig. 4.9e), where the agents are creating a
quadrilateral formation inside the virtual region. Finally, when all obstacles are avoided, a pentagonal
formation has been developed, and the entire system reaches the target zone at t = 171 sec (Fig. 4.9f).

4.6.2 Simulation study with scalable agents in the swarm

To analyze the performance of the scalability aspect, we have performed a simulation with 50 numbers
of agents in the team. In this simulation study, we have designed a maze-like obstructed environment
of 80×80 unit2 of an area where the chain of obstacles leads to a narrow corridor for the swarm to
pass as shown in the Fig. 4.10.
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Fig. 4.10 Simulation result of the proposed scheme with 50 agents: magenta-cross represents the initial positions of the agents, blue-stars
and black-contours are the locations of the agents and the virtual-regions at various instances respectively, the obstacles are marked by
red and the final position of all the agents are marked by brown.

In this simulation study, a team of 50 robots is expected to be inside a predefined virtual-circular
region as marked ’1’ in Fig. 4.10. In the next step, the contour has been constricted for accommodating
all the agents inside it in order to obtain a strong inter-agent cohesion (’2’ in Fig. 4.10) based on the
agents’ sensory information. To avoid narrow passages, the circle has been reshaped into an ellipse
under the actuation of the global controller (’3,4,5’ in Fig. 4.10). Finally, all the agents have reached
the target location approximately at t = 150 sec.

4.6.3 Simulation study to handle the agent-failure condition

To study the performance of the proposed control action during the agent failure, a simulation has
been done with 50 agents in a similar environment as stated in the earlier section. The entire result is
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Fig. 4.11 Performance of the proposed control scheme during agent failures: magenta-cross represents the initial positions of the agents,
blue-stars and black-contours are the locations of the agents and the virtual-contours at various time instances respectively, the obstacles
are marked by red, the green-cross defines the goal-location and the brown-stats represent the failure agents.
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represented in Fig. 4.11. At t = 5 sec., all the agents are progressing towards the predefined virtual
region under the actuation of the local controller for obtaining a strong inter-agent cohesiveness as
shown in Fig. 4.11a. To avoid obstacles, the initial structure has been reshaped into an ellipse at
t = 14 sec (Fig. 4.11b). Suddenly, the actuation failure occurs in a few agents in the team. However,
it is not yet identified by the global controller. Consequently, the global controller does not treat the
situation as an exception and in a default mode creates a constricted elliptical structure as shown in
Fig. 4.11c. Once the failed agents are recognized, a new elliptical contour is generated by the global
controller having an area less than the previous one (Fig. 4.11d). At t = 160 sec., another instance is
shown where a few agents fail to move further and it is properly detected by the respective controller
(Fig. 4.11e). Finally, rest of the agents arrive at the target location at t = 250 sec as shown in Fig.
4.11f. From the Fig. 4.11, although it appears that the robots are traveling an equal distance during
the discrete time periods, however, the covered distance is not identical.

4.7 Performance analysis
In this section, the performances of all the proposed control actions are analyzed. Initially, the
formation control aspect of the spanning-tree assisted shape matching scheme is studied, then, the
proposed scalability approach along with the agent-failure handling strategies are analyzed. Finally, to
address the efficacies of the proposed approach, the inter-agent cohesiveness, and the travel variance
index [202], [203] have been compared with some recent well-cited literature.

4.7.1 Spanning-tree assisted shape matching scheme
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Fig. 4.12 Performance analysis of the shape matching scheme.

Fig. 4.12a represents the evaluated values of the radius/axes that govern the circle-to-ellipse
conversion over time. Initially, the circular radius (rc) is increased to some extent because of the
erroneous sensing, as the agents are impending towards the virtual boundary. When reached and
settled with the desired formation, tangible sensing takes place. Depending on this information, the
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circle is redesigned into an ellipse, having major (a) and minor (b) axes. The entire information
is depicted in Fig. 4.12a. The obstacle’s sensing information adjusts the length of the two axes
simultaneously and almost symmetrically to cope with the area requirement.

In Sec 4.2, we have discussed the rule behind the alteration of the shape of the virtual structure
based on the obstacles’ sensing information. In general, the change in formation is dependent on
the relative position of the obstacles. To illustrate this phenomena, a vector (SO(t)1×U ) has been
computed for every tth instances, such that

SO(t) =
h
n1 n2 ... nU

i
t

(4.48)

where ni denotes the number of robots that have sensed the ith;∀i ∈ {1,2, ...,U} obstacle at the tth

time, and U defines the total number of obstacles. Hence, the obstacle-sensing index (SOI(t)) at the
tth interval is defined as

SOI(t) =
max(SO(t))

∑ [SO(t)]
(4.49)

To explain the consequence of formation change depending on the sensing of obstacles, the
standardized formation error (FE) is plotted along with SOI against time which is portrayed in Fig.
4.12b. The equation of formation error (FE) could be found in Eq. 4.22. Initially, the agents are
configured into the desired formation (i.e., triangular); so, FE gradually reduces. With the rising
SOI, several new formations are produced (by spanning-tree assisted shape-matching algorithm)
that results in FE increasing to some extent (during evaluation) and then reducing to the smallest
value (when the formation is realized). Finally, when all the obstacles are avoided, the SOI becomes
low. In this scenario, a fixed and rigid formation is created among the swarm; subsequently, FE gets
stabilized as seen in the figure.

4.7.2 Performance analysis of the proposed scheme with scalable agents
involving agent-failure

In this section, we have analyzed the performance of the controllers with scalable agents. The study
has been extended to handle the exception condition that leads to agent failure (Fig. 4.13). Moreover,
to analyze the efficacies of the proposed scheme, the inter-agent cohesiveness and the travel variance
index [202], [203] have been compared with some recent literature. The results are presented in Figs.
4.14, and 4.15 respectively.

Before comparing the evaluated area and axis length of the virtual regions, we would like to
mention that the result as shown in Fig. 4.13 is simulated with 50 agents, operating in an unknown
environment as described in Figs. 4.10, and 4.11 respectively.

During the navigational process (as presented in Fig. 4.10), the mean evaluated area of the virtual
region is computed as 57.65 unit2 having a standard deviation of 1.09 unit2. Hence, it can be claimed
that the computed area of the virtual regions during the exploration is almost identical.
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Fig. 4.13 Parametric comparison of the virtual regions with 50 agents in normal (Fig. 4.10) and agent failure conditions (Fig. 4.11).

To compare the evaluated areas of the virtual-region during the agents’ failure scenario (Fig. 4.11),
it is observed that for 5%, 10% and 20% agent-failure, the final computed areas of the virtual structure
are 55.19 unit2, 52.56 unit2 and 47.80 unit2 respectively which is nearly matched with our theoretical
outcomes (Eq. 4.35). From this result, we can claim that the proposed controllers are performing
as per our expectations during the agent-failure scenario. While comparing the axes length of the
virtual regions for all the above-stated circumstances, it is observed that when all the obstacles are
circumvented, the virtual structure has been reshaped into a circle i.e. the elliptical major and minor
axis are converged to an identical value as shown in the Fig. 4.13.
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Fig. 4.14 Cohesiveness comparison for 50 agents.

To analyze the inter-agent cohesiveness, we compute the structural density [204] of the swarm for
all iterations. Two agents in the group are considered to be cohesive if the Euclidean distance between
them is greater than or equal to Rs and less than 2Rs (Theorem 3). Hence, the structural density (D(t))
can be defined as the ratio of the number of cohesive links to the maximum number of links (after
discarding the self-loops), as shown in Eq. 4.50

D(t) =
∑N

i=1 ∑N
j=1 gi

j(t)

N(N −1)
;gi

j =





1 if 2Rs > ||xi j||≥ Rs

0 otherwise
(4.50)
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The result is shown in Fig. 4.14. From the plot, it is observed that when the obstacle density is
high, i.e. the robotic group is fully obstructed and the structural density attains a maximum value
in our proposed approach. This ensures a strong inter-agent connection that maximizes inter-agent
cohesiveness. Comparing with the other techniques, the lowest inter-agent cohesion is witnessed in
[96] when there is no internal communication among the agents during the movement. In another
work [202], the cohesiveness is found to be reduced because of the self-organization principle among
the agents during the advancement towards the target.
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Fig. 4.15 TVI comparison with the scalability of agents.

To analyze the travel time, we have exploited the concept of travel-variance-index (TVI) [202]
with the various number of agents in the swarm. It defines the variation of the travel distances of
all the agents (i.e. N) during the navigational process. So, a TVI value of 1 indicates that all of the
agents in the swarm move almost the same distance during collective motion towards the target. As a
consequence, each robot consumes the same amount of energy during the navigation, extending the
lifetime of the system. So, for the N number of agents, it can fluctuate from 1/N (the worst case) to 1
(the best case). TVI (LV ) can analytically be defined as [204]

LV =

�
∑N

i=1 xi
�2

N ×∑N
i=1(xi)2

(4.51)

In our analysis (as shown in Fig. 4.15), we have observed that with an increasing number of agents
the value of the TVI is close to 1 in our proposed approach. On the other hand, for the no inter-agent
communication scenario [96] LV is deteriorating as the travel distances of all of the agents fluctuate
due to lack of communication. Similarly, for the self-adaptive organization method [202], the TVI is
degrading with the increasing number of agents in the team.

4.8 Summary
In this chapter, we have proposed a novel virtual structure switching technique for a robotic swarm
to avoid obstacles in an unknown challenging environment. Initially, a circular region is consid-
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ered for accommodating all agents with a specific formation inside the shape. In order to dodge
obstructions, the virtual region is modified to an ellipse of equivalent area, additionally; the existing
inter-agent formation is updated based on the newly arrived virtual-shape information. Furthermore,
we establish the scalability aspect of our proposed technique to prove that within the virtual region
each agent maintains strong inter-agent cohesiveness. Moreover, to handle the agent failures during
the navigational process, our control strategy can identify the faulty robots and thereby update the
virtual region’s information adaptively. To illustrate the performance of the proposed control actions,
extensive simulation studies have been carried out for various scenarios. The comparison results show
the considerable potency of our scheme.



Chapter 5

Polygonal virtual-region based motion
planning of a swarm of robots

5.1 Introduction
Swarm behavior is defined as the collective motion of a large number of self-propelled entities working
together to achieve a common goal [27], [28], [165]. For a swarm of robots, the objective is to work
collaboratively for achieving desired goals in order to successfully complete a mission [148], [160],
[202].

In the previous chapter (Chapter 4), we have proposed an adaptive control scheme that utilizes a
geometric region-based virtual structural technique for avoiding obstacles in an unknown environment.
A virtual-circular region initially created, is considered for accommodating all the agents, with a
specific formation, inside the structure. The circular structure is then modified to an ellipse of an
identical area to that of the circle so as to dodge obstructions and thereby, topologically creating a
narrow path to pass through for the swarm. To circumvent the challenge, the virtual circular shape
has been forcefully (with the help of suitable controllers) modified to an ellipse having a larger major
axis in either direction depending on the nature of the constriction. It is needless to say that the
formation switching eventually results in an alteration of the current inter-agent formation. Though
this technique can provide an adaptive solution in swarm robotics path planning problems, however in
a narrow pathway (through which the group cannot pass while maintaining the current formation),
the shape of the virtual ellipse is further expanded along the major axis while the minor axis is
shrunken (to achieve the equal-area criterion) and that, in an extreme scenario, may culminate into a
line-formation. Consequently, the inter-agent cohesiveness is reduced significantly [205]. Further,
a marginal sensing error of an agent can easily detach it from the group which would significantly
reduce the robustness of the framework [205].

To alleviate this problem, in this work, we set our objective to maximize the robustness of the
swarm framework by enhancing the inter-agent cohesiveness such that failure of agent/agents due to
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sensing error or battery run out or for any other reason like collapse due to hard collision, whatsoever,
the remaining robotic swarm could maintain an arbitrarily shaped formation and can continue to
pursue the goal. Hence, the notion of an arbitrarily shaped virtual boundary or randomly chosen
boundary (in place of the virtual ellipse) has been conceived. The rationale behind this assumption
is to carve out an effective surface area that is certainly greater than the area of consideration for an
ellipse or circle. Hence, more number of agents can be accommodated inside the newly fitted virtual
region which automatically increases the inter-agent cohesion in a narrow corridor. Moreover, the
framework is scalable in terms of an increasing number of robotic agents.

Fig. 5.1 Block diagram representation of the proposed system; Φ represents the virtual-boundary, cs represents the set of coordinates of
the circles’ center fitted inside Φ.

Here also (like the control scheme proposed in Chapter 4), we have employed a two-level
hierarchical control scheme [191] where a local controller running inside an agent is only responsible
for actuating the agent to its target location while avoiding inter-agent collision with its nearby agents.
On the other hand, the global controller, acting in a supervisory control mode, is responsible for
detecting the nearby obstacles, etching arbitrary shaped virtual boundary regions, and packing circles
inside the virtual contour. The block diagram of the overall control scheme is shown in Fig. 5.1.
The green and red rectangular boxes in the diagram indicate the global and local control actions
respectively. Each agent in the swarm which is equipped with distance sensors to sense the distance
of the nearby obstacles (d ∈ ℜ2), can trigger the local controller inside it. The position of an agent is
denoted by x ∈ ℜ2. Based on the detection of the nearby obstacles, the global controller computes an
arbitrarily shaped virtual region (Φ) in each iteration, followed by packing circles (inside Φ). The set
of coordinates of the circles’ center is denoted as cs ∈ ℜ2. Following that, the global controller will
execute a circle-assignment strategy to allocate circles to each agent in the swarm. Assuming that the
coordinate of the assigned circle for the ith agent is ci

s ∈ cs. The global controller shares this particular
information with each agent in the swarm. After receiving this message, the local controller of each
agent attempts to push the agent into the designated circle. The next iteration begins when all of the
agents have arrived at their targeted circular locations. Finally, when, the arbitrarily shaped virtual
region reaches the desired target location, the process ends.
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With this introduction, now, we would explain the problem statement and evaluation of the control
scheme along with the dynamics of the robotic swarm in the subsequent sections.

5.2 Problem description
At the very onset, let us assume that a team of N robotic agents in a 2-dimensional topological space
Ω ∈ ℜ2 are approaching towards a predefined target location T ∈ ℜ2. The motion dynamics of the ith

agent, positioned at xi ∈ ℜ2, can mathematically be characterized as [51]

dxi

dt
= fi(xi) ∀i = {1,2, ...,N} (5.1)

where the function fi(xi) defines the local control input of the ith agent for approaching T while
evading obstacles and maintaining solid cohesiveness among the other members of the team. Now
the question is how to formulate fi(xi) such that all agents will form a swarm-like architecture for
dodging the challenging hindrances while approaching T in an unknown occluded environment?

Fig. 5.2 Swarm-robotics path planning based on an arbitrarily shaped boundary fitting strategy. The virtual-boundary (Φ) is represented
by the red-contour. Each agent (marked by brown-star) is associated with a repulsion region of rs. The dotted circular regions within Φ
represent the packed circles.

One thing to keep in mind is that the arbitrarily shaped polygonal region (Φ), so evolved, is
extremely difficult to define analytically. Thus, locating the boundary of Φ, in general, the perimeter
of the region poses a serious challenge. Hence, to tackle this particular issue, in this work, we employ
the circle packing strategy [206], [207]. Already we have discussed that an agent can easily identify
a specific circular region as it is the simple planar geometrical shape that can be described by even
simpler mathematics. Hence if we can conceive the irregularly shaped virtual polygon to be composed
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of a number of non-overlapping circles, then the respective controllers can easily push an agent to the
center of such a circle within the virtual region. In the circle packing strategy, instead of decomposing
the virtual region into circles, the controllers start inserting pre-defined circular regions within the
virtual region. In other words, the controllers do pack circles within the aforementioned region and
subsequently assign a circle for each agent and then actuate the agent towards the circle. In this way,
the agents are finally forced to move into the virtual region Φ (Fig. 5.2). Thus, as per the circle
packing technique, at least N number of circles (where N defines the number of agents in the swarm)
are required to be packed within the Φ. The controllers are designed as follows. For each agent, a
specific circle will be allotted utilizing a circle assignment strategy by the global controller. After
assigning the circular regions for every agent, the local controller will be actuated so that an agent
could approach its allotted circular region while avoiding the inter-agent collision. As a consequence,
a strong inter-agent cohesiveness will be built up amongst the agents in the swarm (as presented in
Fig. 5.2).

To handle the above-mentioned challenge, we use the two-level hierarchical control scheme (as
defined in Chapter 4). The control strategy has already been displayed in Fig. 5.1. In the upcoming
sections, we would explain the detailed modeling of the local and the global control actions.

5.3 Modeling of Local controller
The purpose of the local control action is not only to actuate an agent towards the target zone but
also to keep it at a safe distance from the other agents of the swarm. So, this specific control action
is executed inside each agent of the group. As per the objectives of the controller, it is perceived
that the local control action is nothing but an attraction-repulsion controller [51], [52]. So, for the ith

agent, this specific control scheme could be modeled as the summation of the attraction and repulsion
controllers [51], [52]. Thus, it can be expressed as (from Eq. 5.1)

fi(xi) =− f a
i (xi)+ f r

i (xi)

=−ki
a × (xi − cs)+ ki

r ×
N

∑
j=1, j ̸=i

�
exp

�
− xi j

2× rs
i

�
× (xi − x j)

� (5.2)

where f a
i (xi) and f r

i (xi) are the attraction and repulsion functions with the associated gains ki
a and ki

r

of the ith agent respectively. cs ∈ ℜ2 is defined as an arbitrary point inside the virtual boundary Φ.
The information of cs will be provided by the global controller (after executing the circle assignment
strategy) in each step of movement. xi j is the Euclidean distance [170] between the agent i and j such
that xi j = ||xi − x j|| and rs

i is the region-of-repulsion of the ith agent [52].
To formulate the problem more precisely, the following assumptions are made:
Assumption 1: Considering all the agents are identical in nature, presume that the associated

attraction-gain, repulsion-gain and the region-of-repulsion are similar ∀i ∈ {1,2, ...,N}, which can be
defined as: ki

a = ka, ki
r = kr and rs

i = rs.
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Assumption 2: Each agent in the group is equipped with m number of distance sensors (such as
Lidar [194] and Sonar [195]) spaced at a certain (z) radian apart.

For a successful path-planning, initially, each agent needs to sense the nearby obstacles. As all the
agents are furnished with the distance sensors, at the tth time-instance, the sensed obstacle’s distance
di(t) around the ith agent will be

di(t) = {di(t) | dthre+ ≥ di(t)≥ dthre−} (5.3)

where di(t) =
h
di

1 di
2 ... di

m

i
t

is the distance-matrix of the m sensors, dthre+ and dthre− are the
sensor specific threshold limits such that dthre− > 2rs.

Once, di(t) has been collected by the ith agent, it will share this particular information with the
global controller. Depending on the sensory information of all the agents in the swarm, the global
control will evaluate the coordinates of the sensed obstacles in order to etch the arbitrarily shaped
polygonal virtual region as explained in the upcoming section.

5.4 Modeling of Global controller
The global controller, operating in supervisory control mode, is responsible for recognizing surround-
ing impediments and updating the virtual polygonal region in each iteration using the sensory data
acquired by all the agents. Hence, in this work, the role of the global control action can be viewed as
a centralized controller (Fig. 5.1).

5.4.1 Recognizing nearby obstacles

To identify the nearby obstacles, the global controller utilizes the sensed obstacles’ distance (di(t);∀i∈
[1,2, ...,N]) information of all the agents in the swarm. Based on this, it will evaluate the estimated
obstacles’ position R̃i(t) = [R̃x

i (t) R̃y
i (t)]

T with respect to the global coordinate frame of reference,
can be written as

R̃x
i (t) = px

i (t)+
m

∑
j=1

�
di

j(t)× cos[( j−1)z+θ i(t)]
�

R̃y
i (t) = py

i (t)+
m

∑
j=1

�
di

j(t)× sin[( j−1)z+θ i(t)]
� (5.4)

where xi(t) = [px
i (t) py

i (t)]
T is the present location of the ith agent and θ i(t) is the orientation of the

agent with respect to the global coordinate frame of reference at the tth instance.
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Therefore ∀i ∈ [1,2, ...,N], the predicted obstacles’ locations R̃(t) = [R̃x(t) R̃y(t)]T will be

R̃x(t) =
h
R̃x

1(t) R̃x
2(t) ... R̃x

N(t)
i

R̃y(t) =
h
R̃y

1(t) R̃y
2(t) ... R̃y

N(t)
i (5.5)

Eq. (5.5) will provide the coordinate information of the nearby sensed obstacles (within the range
of [dthre− ,dthre+] from the present location of the agents) with respect to the global coordinate frame
of reference. Once, the coordinates of the nearby obstacles have been determined, the next aim of the
global controller is to fit in a virtual arbitrarily shaped polygonal boundary region inside the sensed
space as explained below.

5.4.2 Arbitrarily shaped polygonal boundary fitting

A polygon is a two-dimensional geometrical figure with a finite number of sides. Any polygon consists
of connected short straight line segments. Triangles, rectangles, and hexagons are some examples of
polygons. However, an arbitrarily shaped polygon, which we call our virtual region (etched by the
global controller), cannot be defined with the help of a known geometrical shape and it may contain
an infinite number of small line segments. Thus, in this chapter, we refer to the fitted virtual regions
as the arbitrarily shaped polygonal boundary regions.

For obtaining an arbitrary outline from the detected obstacles’ coordinates (R̃(t)), there are
several methods available in the literature for identifying a boundary. To name a few we can mention
propositions like polygonal curve fitting [208], the principle-components based morphological analysis
[209], the Eigenshape analysis [210], the Elliptical Fourier Analysis [211], [212] (EFA) and so on
and so forth. Out of these methods, EFA is a robust way of drawing the shape of a 2-D region by
taking the Fourier Transform [211] on the evaluated coordinates of the sensed obstacles’ data.

Background of EFA

EFA is first introduced in 1982 by Kuhl and Giardina [211] to quantitatively define a closed contour
in a morphological form. It has two sets of equations containing sine and cosine terms [212], one
is for x-coordinates, and the other is for y-coordinates. Combining these two equations for different
harmonics, a series of overlapping ellipses could be obtained which would approximate the boundary
of the arbitrarily shaped virtual region.

We know that a periodic non-sinusoidal waveform can be expressed as a summation or superposi-
tion of a number of sinusoidal or cosinusoidal waveforms having a fundamental frequency component
and some higher harmonic components (at times, a dc signal can also be present) with the help of
Fourier Analysis by determining the Fourier Coefficients [211]. This idea has been extended for
EFA. With the help of this technique, an arbitrarily shaped region can be decomposed into a series of
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intersecting ellipses, the superposition of which would result in a non-geometrically defined region
(vide Fig. 5.3).

Fig. 5.3 Generating the boundary of the virtual region by superposing the elliptical components.

The major difference between traditional Fourier series [211] and EFA is that the latter utilizes
two sets of equations for each harmonic as an ellipse is planer topology. Thus, for each harmonic, four
coefficients (αn, βn, γn, and δn) are obtained for defining the boundary region of an elliptical contour.
On the other hand, the Fourier series [211] employs a single periodic non-sinusoidal function, with
each harmonic consisting of only two coefficients (an, bn).

In this problem, the EFA technique has been applied to the evaluated coordinates of the sensed
obstacles (of each of the agents) to etch the arbitrarily-shaped virtual region by the global controller.
From these location coordinates, by EFA, the harmonic coefficients are evaluated and the ellipses are
constructed.

Now we try to justify the fact why the EFA technique has been used in this work. It is needless
to say that if we join the sensed obstacles’ location coordinates (or in general the sensed data) in a
proper sequence, then also, we could obtain the boundary of the arbitrarily shaped virtual region. In
our situation, however, the agents individually and simultaneously share their sensed data at every
time instant with the global controller. But the global controller does not have any mechanism to map
the sensed positions topologically on and around the obstacles. So the global controller cannot decide
whether the position sensed by agent 1 is to be connected to the point sensed by agent 2 or it should
be connected to the position sensed by some other agent, say agent 7. As a result, the global controller
fails to generate the virtual region by successively joining the points. Therefore, we need to use the
EFA technique to approximate the boundary of the virtual region by summing a series of overlapping
ellipses.

The detailed methodology of the EFA technique is explained below.

Methodology of EFA technique

As mentioned earlier, in the EFA technique, there are two sets of equations including sine and cosine
terms [211] to reconstruct the virtual region Φ(t) at the tth time. Mathematically, the EFA equations
are defined as [212]
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Φx(t) = α0 +
∞
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n=1
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)

� (5.6)

where (Φx(t),Φy(t)) are the evaluated points on the perimeter of the virtual boundary at the tth time,
αn, βn, γn, and δn are the EFA coefficients, α0, and γ0 are the horizontal and vertical offsets (which
are equivalent to the DC components of simple Fourier analysis), n defines the number of harmonic
element, and T is the time period of the fundamental component.

While evaluating the contour (Φ(t)), ∆ti is the time required for drawing the line-segment of the
contour that links R̃i−1(t)→ R̃i(t) and V is the total time taken to draw the entire contour having k
number of coordinates, so V = ∑k

i=1 ∆ti. Therefore, the EFA coefficients are described as [212]
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(5.7)

In most of the cases, the constriction is not symmetrical about (X ,Y )-axis; hence, the horizontal and
the vertical offsets of the contour can be computed as [212]
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(5.8)

where ζi = ∑i−1
j=1 ∆R j

x − ∆Ri
x

∆ti ∑i−1
j=1 ∆t j, ηi = ∑i−1

j=1 ∆R j
y − ∆R j

y
∆ti ∑i−1

j=1 ∆t j, and ζ1 = η1 = 0.
As per the outcomes of the above-mentioned process (Eqs. 5.6)-5.8), each set of four coefficients

(αn, βn, γn, and δn) produce an ellipse with a certain orientation and starting point as defined by α0,
and γ0, having an identical major and minor axis. The resultant contour (Φ(t)) will be obtained by
adding all of the computed coefficients (Eq. 5.6).

We reiterate that the basic notion behind the EFA procedure is that once the location coordinates
of the sensed obstacles (R̃(t)) are identified, then the coefficients of EFA are evaluated (vide Eq. 5.6
for n = 1, i.e., the first harmonic sinusoids Φx(t) and Φy(t) based on the evaluated coefficients and
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(a) Elliptical contour for n = 1.
(b) Outcome of EFA scheme for
n = 1.

Fig. 5.4 Outcomes of the EFA technique for the first harmonic, i.e. for n = 1.

are shown in Fig. 5.4b. Combining Φx(t) and Φy(t), a perfect elliptical contour will be produced (Fig.
5.4a).

Now, increasing the value of n, i.e., for higher harmonics (n > 1), again a set of coefficients
values could be obtained. Adding those coefficients as per Eq. 5.6 and combining Φx(t) and Φy(t), a
gradually distorted virtual contour could be obtained. One such example has been shown in Fig. 5.5
for n = 14.

(a) Elliptical contour for n = 14.
(b) Outcome of EFA scheme for
n = 14.

Fig. 5.5 Outcomes of the EFA technique for the 14th harmonics, i.e. for n = 14.

In this way, if we go on increasing the value of n, the EFA algorithm results in a virtual contour
that matches the shape of the constriction as provided by the obstacles.

One such example can be seen in Fig. 5.6 where n = 14 and k = 100. 14 agents (indicated by blue
circles) in the swarm detect the coordinates of obstacles (magenta dots) during a navigational step.
If we apply the EFA procedure to these evaluated coordinate data, we can get an elliptical contour
(red ellipse of Fig. 5.6) in the first harmonic. If we compute the 14th harmonic of EFA coefficients
because there are 14 agents in the swarm, we would obtain a green-marked arbitrary-shaped region,
which perfectly identifies the free space across the environment [213].

Once the boundary has been created, all agents are required to approach the newly created virtual
boundary region. This would lead to approximate path planning thereby forming a complete swarm-
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Fig. 5.6 EFA based virtual-boundary fitting: blue-circles represent the agents’ present location, magenta-dots represent the detected
obstacles’ coordinates

like architecture. This proposition would also maximize inter-agent cohesiveness. To converge within
the boundary (Φ(t)), each agent will have to minimize its current position with respect to a point
nearest to it and located on the boundary of Φ(t) continuously (vide the attraction term of Eq. 5.2).

Now, as per our proposed strategy, Φ(t) so evolved, is an arbitrarily shaped polygonal region.
Hence, it is very difficult to express Φ(t) analytically. Thus, locating a point on the perimeter of Φ(t)
for an agent poses a series problem.

Therefore, to tackle this challenge, we need to apply intelligent techniques such that all agents
will move towards some specific points inside the contour for accomplishing a strong inter-agent
cohesion. Consequently, we utilize the traditional circle-packing concept [206], [207] such that the
virtual-region is fitted with N (i.e. the number of agents in the team) number of identical circles, each
having a radius of rs (i.e. repulsion region of each agent).

5.4.3 Packing circles inside the virtual region

While packing circles inside the virtual contour, it should be noted that each circle should be inside
the virtual region such that no two circles would intersect with each other and the maximum area
should be covered by the fitted circles. Moreover, out of many well-known circles packing methods
[206], [207], the lattice-packing [214] technique is one of the robust techniques which allows a dense
packing of circles with less execution time. Hence in this work, we have employed this technique.

Preliminaries of Lattice packing scheme

Let us assume that U⃗ = {⃗u1, u⃗2, ..., u⃗r} is a set of r independent vectors in an r-dimensional space Er

and M, the generator matrix, is an r× r matrix formed by the r vectors. Then for any integer vector
x⃗ = (x1,x2, ...,xr)

T , Mx⃗ is called the lattice point in Er [207]. Therefore, the set of integer vector x⃗
will form a lattice structure LU .
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For each lattice LU , there will be a polyhedron B in Er which is formed by the set of vertices,
[v1,v2, ...,vr], such that vi = Me⃗i for 1 ≤ i ≤ r. So, B is called the basis block of LU which would
form a tile in Er. In 2D space, the basic block is a parallelogram which is also called as the basis
parallelogram [207]. The necessary condition behind fitting identical circles is that each lattice LU

permits packing of circles having radius rs if the Euclidean distance between any pair of lattice point
is greater than or equal to 2rs.

Once the set of lattices have been formed, our next target is to fit circles inside the outline. To do
so, the translational based lattice packing technique [206] has been utilized as discussed below.

Two dimensional Lattice packing with Translation

For packing circles having radius rs inside the arbitrary boundary Φ, we assume that the entire domain
Φ is treated as a single cell [214].

Let us assume that Φ is an n-vertices polygon, and U = {⃗u1, u⃗2} is the basis of the lattice LU

on the plane P such that LU allows packing of a set of S number of identical circles, such that
S = [(S1,S2, ...,SR) | R ≥ N] having radius rs. Next, we need to identify a set of N number of circles
s, such that s ⊂ S and n(s) = N ≤ R (where n(s) defines the number of elements in s), which are
completely lain within the boundary region Φ. In order to achieve this, we compute the Minkowski
difference (MD) [207] which can analytically be defined as

Φq
M = (Φ⊖Sq) ∀q ∈ [1,2, ...,R] (5.9)

where ⊖ is the MD operator [207], Φq
M is the region which decides whether a circle Sq is within the

boundary region Φ. Sq is accommodated inside Φ, i.e. Sq ⊂ s, if and only if Φq
M = /0.

While experimenting with the translational lattice packing technique, it is often observed that
when the boundary region is narrow with-respect-to the N number of agents in the team, this method
may not generate N number of identical circles inside Φ.

If we consider Fig. 5.7(a), we would observe that inside the arbitrarily-shaped boundary region
(Φ) employing the two-dimensional lattice packing technique, six identical circles could be fitted.
However, if the number of agents (N) is more than six (assuming N=8), then, the lattice packing
technique is unable to pack N numbers of circular regions. In such kinds of scenarios, an updated
method is required to be used such that at least N numbers of circles would be fitted within Φ.
To achieve this objective, in this chapter, we use a new scheme, called the trimming and packing
technique. This specific technique is only executed inside the global controller during the navigational
steps if the lattice packing strategy fails to generate the N number of circles. The detailed methodology
of the proposed approach is discussed below.
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Fig. 5.7 Packing circles inside the virtual boundary (Φ) with different techniques: (a) Translation Lattice packing can fit 6 circles (b)
Trimming and Packing can fit 8 circles.

Trimming and Packing technique

Considering the outcome of the lattice packing technique in the preceding section (Fig. 5.7(a)), we
have seen that the circles are mostly packed in the middle of the boundary region Φ. Hence, there
exist some circles which cannot be wholly fitted within the boundary of Φ (as presented in Fig. 5.7(a)).
Therefore, there exists some unpackable free spaces scattered through the boundary of Φ.

To utilize those small areas in an intelligent way, the trimming technique has been used which
tries to push the circles from the middle of Φ towards the boundary and thus, attempts to create some
free spaces in the central areas for packing more circles. In the next step, the virtual triangles and
trapeziums are fitted in those free spaces in order to constitute a lattice pattern [215].

Therefore, as per the trimming procedure, initially, the arbitrary-shaped region Φ is partitioned
into a set of triangles or trapezoids. In Fig. 5.7(b), we can see that a good number of such triangles
and/or trapezoids are engraved within the region. After that, to obtain at least N number of sub-regions,
it may be necessary to merge some of the neighboring triangles or trapezoids (if the numbers of such
virtual sub-regions created so far are greater than the number of agents N).

Before trimming, already we have seen that a good number of circles are initially fitted (Fig.
5.7(a)), and then pushed towards the boundary region. Hence, if we can further fit in at least N more
number of circles, then we will be in a safe position to claim that N plus number of circles have been
fitted in the entire virtual region Φ. Subsequently, in those N number of sub-regions, N number of
circles would be packed and agents will then be pushed to the centers of those N number of circles
having a radius of rs.

Hence, the algorithmic steps of the trimming technique could be defined as:

1. The unpackable free spaces of Φ is initially partitioned into N number of cells (by forming
virtual triangles and trapeziums). The set of cells defines a dual-graph GN such that each
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vertex v of GN is for a cell and an edge connects two vertices if the corresponding cells share a
common overlapping area.

2. The process repeats until GN = /0.

Once, the above-mentioned trimming algorithm creates N number of cells within the free spaces
of Φ, the packing technique (as mentioned in the earlier section) will fit circles in each of the cells.

The main advantage of the trimming and packing procedure is that as the packable cells are always
connected, the unused areas are less as compared to the two-dimensional lattice packing strategy.

One such outcome of the trimming and packing technique has been shown in Fig. 5.7(b). From
the figure, we have seen that the two-dimensional lattice packing solution could manage to pack six
circles within Φ, whereas, the trimming and packing scheme can pack eight circles.

After the execution of this algorithm, the virtual region (Φ) is packed with N number of identical
circles (each with a radius of rs). Let us assume that the set of circular-centers are cs = {c1

s ,c
2
s , ...,c

N
s }.

After evaluating the centers of the circular regions, each agent needs a circle to be allocated such that
all the agents can efficiently approach their allotted circles without blocking the path of another agent.
To handle this specific condition, we have implemented a circle assignment strategy for the ith agent,
which is described as

ci
s = {c | argmax

c∈cs

||xi(t)− c} ∀i ∈ {1,2, ...,N} (5.10)

Once the circles’ are allotted, our next target is to actuate the N number of agents towards the N
number of circles’ by firing the local controller of each agent in the swarm.

5.5 Convergence of agents inside the circular region
The local controller will be activated to enforce each and every agent to be inside Φ. Subsequently,
each agent will approach towards the assigned circle’s center. Therefore, the attraction-term of the
local control action of the ith agent can be modified as (from Eq. (5.2))

fi(xi) =−ka × (xi − ci
s)+ kr ×

N

∑
j=1, j ̸=i

�
exp

�
− xi j

2× rs

�
× (xi − x j)

�
(5.11)

To summarize the proposed two-level control action in a swarm robotics path planning problem,
we can state that in an occluded environment, each agent can successfully approach the target while
maintaining strict cohesiveness with the other agents in the group. The next section represents the
effectiveness of the complete control strategy. In this aspect, we would like to mention that all of the
simulations are performed in the same software-hardware environment as mentioned in Sec. 3.7.
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5.6 Simulation results and discussions
This segment presents the simulation result to demonstrate the performance of the proposed controllers
in an obstructed environment which consists of several regular and irregular-shaped obstacles having
narrow corridors as shown in Fig. 5.8. A team of 14 robots initially placed in arbitrary scattered
positions (marked by blue-cross) are required to form a swarm-like framework and approach towards
the target T while circumventing barriers. In this simulation study, the following parametric values
have been chosen (Table 5.1).

Table 5.1 Values of the Parameters

Parameter Description Value
N No. of agents 14
Ω Topological Space [50 unit, 50 unit]
T Target Location [35 unit, 35 unit]
ka Attraction Gain 22.4
kr Repulsion Gain 190.45
rs Repulsion Region 1 unit
m No. of Distance Sensors 8
z Sensor’s Spacing 450

k No. of Points 100
n Fourier Harmonics 14

dthre+ Upper Threshold Limit 5 unit
dthre− Lower Threshold Limit 0.5 unit

Primarily, based on the agents’ sensing information, an arbitrarily shaped virtual boundary
(marked as red-contour) has been created under the activation of the EFA-guided virtual boundary
fitting controller (i.e. the global controller), followed by N number of packed-circles (marked by
black-circles) inside the virtual region as shown in Fig. 5.8a. Then, the circles are allotted for each
agent by the global controller employing the circle assignment scheme. After assigning the circles for
all of the agents, the local controller will be activated in each agent for actuating the agent towards
its assigned circular region. At approximately t = 12 sec (Fig. 5.8a), all of the 14 agents have
successfully arrived to their assigned circles (marked by blue-star). Then, each agent starts sensing
the nearby obstacles and shares the information with the global controller. A compact contour is
created (as the free space ahead is narrower) followed by 14 assigned circles so that all agents can
form a swarm (presented in Fig. 5.8b). Once they arrive at the assigned circular zone at t = 29
sec, the free space ahead gets more slender. Therefore, in order to preserve the swarm, an adaptive
ellipsoidal-based contour is created (shown in Fig. 5.8c). In this situation, since the translational
lattice packing technique fails to pack 14 circles inside the stipulated region, hence, the trimming
and packing method has been initiated to fit 14 circles with optimal circumferences inside the virtual
region, followed by the circle-assignment strategy.

At t = 60.2 sec, all the agents have successfully arrived inside the allocated circles (Fig. 5.8c).
After that, again a newly shaped arbitrary region is formed ahead with 14 packed circles (represented
in Fig. 5.8d). After arriving at the stipulated circular regions, the swarm has successfully avoided
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(b) at t = 28.97 sec.
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(c) at t = 60.2 sec.
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(d) at t = 94.3 sec.
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(e) at t = 153.2 sec.
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Fig. 5.8 Virtual Region based swarm-agent position trajectories in different instances in an occluded environment: blue-crosses represent
agents’ initial position, blue-star represents agents’ current location, and green-cross represents the target location.
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Fig. 5.9 Time vs. Distance between two-nearest sensed obstacles vs. the unused area inside the virtual boundary.

the irregularly-shaped obstructions at t = 94 sec. Now, the path of the swarm has been blocked by a
pair of regular-shaped snags (black-box as shown in Fig. 5.8e). In order to evade the same, a virtual
contour along with the fitted circles has been generated and all the agents reach inside the region
at t = 153.2 sec. Finally, when all the obstacles are successfully avoided, the virtual region again
reshapes into a circular contour with the packed circles. All the agents effectively reach to the target
location T at t = 250 sec (referred to the Fig. 5.8f).

To study the performance of the proposed strategy as compared to the other schemes, the analyses
and comparisons are provided in the upcoming sections.

5.6.1 Time vs. distance and Unused area

To measure the optimized circles’ fitting inside Φ(t), we have calculated the unused area (denoted by
UAΦ(t)) inside the boundary (Φ(t)) after packing the circles at the tth time which can analytically be
evaluated as

UAΦ(t) = AΦ(t)−N ×πr2
s (5.12)

where AΦ(t) is the present area of the evaluated contour Φ(t). At the same time, the distance between
two nearest sensed obstacles are measured (from Eq. 5.5). Let us assume that b f s(t) is the Euclidean
distance between two nearest obstacles r1(t) and r2(t) at the tth time. The corresponding nearest
obstacles distance (b f s(t)) vs. the unused area (UAΦ(t)) plot is represented in Fig. 5.9.

From the Fig. 5.9, it can be argued that when the distance between two-nearest obstacles is less i.e.
the free space ahead is very narrow, the virtual boundary is fitted in such a manner that the maximum
N number of circles can be packed inside it which will subsequently reduce the unused area. In our
simulation result, this argument can be clearly observed i.e. when the distance between two-nearest
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obstacles is minimum (the minimum point of the blue-curve), the effective unused area (UAΦ(t))
inside Φ(t) attains a minimum value which would significantly increase the inter-agent cohesiveness.

5.6.2 Comparative analysis

In this section, we compare our proposed approach in terms of the agents’ cohesiveness and execution
time during the movement towards the goal against the two other well-known techniques: [200] relies
on the global pose information of every agent, and [96] uses a decentralized controller that does not
require the global positioning information of an agent.
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Fig. 5.10 Comparison of Inter-agent graph density vs. normalized obstacle density

To evaluate the cohesion inside a virtual boundary, we measure the structural density [216] of the
swarm inside the contour. We assume that N agents are forming a graph (GNs) where the vertex set is
equal to the number of agents in the team. Moreover, two agents are assumed to be interconnected if
the distance between them is greater than or equal to 2rs and less than or equal to 4rs i.e.

ei j =





1, if 4rs ≥ xi j > 2rs

0, otherwise
(5.13)

where rs is the region of repulsion of each agent. Then the structural density (D(t)) of the graph GNs

at the tth instance can be defined as the ratio of the number of present links to the number of possible
links after discarding the self-loops [182], i.e.

D(t) =
∑N

i=1

h
∑N

j=1 ei j(t)
i

N(N −1)
(5.14)
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At the same time, the normalized obstacles’ density is calculated based on the agents’ sensing
information. The entire plot is represented in Fig. 5.10.

From the Figure, it is observed that when the obstacle density is higher i.e. all the agents’ are
fully surrounded by the barriers, the graph density or the structural density attains a maximum
value in the proposed strategy, which signifies strong inter-agent connection and thus maximizes
the agents’ cohesiveness. In this specific situation, all agents are strictly connected with each other
for maximizing inter-agent cohesion. Comparing with the other techniques, the lowest inter-agent
cohesion is observed when there is no internal communication among the agents [96]. For the
elliptical-based fitting technique (as mentioned in Chapter 4), the cohesiveness is reduced because of
the structural flexibility of the elliptical structure.
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Fig. 5.11 Time Complexity Comparison

While comparing the execution time (as depicted in the Fig. 5.11) with the varying number of
agents in the team, it is observed that our proposed method takes the least time to actuate a team of
14 robots towards the target in spite of planning several activities during the journey. The scalability
analysis is further carried out considering 50, 200, and 400 agents in the team. As expected, it is
seen that with the increasing number of agents in the team the execution time for the trimming is
increased significantly. However, in most cases, the trimming strategy provides better packing density
but suffers from a large execution time. In contrast, the translational-based technique cannot produce
such a quality trimming and as a result, the algorithm runs faster. Hence, we have fused these two
methods to reap the benefits of both.

5.7 Summary
In this chapter, we have proposed an arbitrary-shape control technique for avoiding obstacles in
an unknown challenging environment. In order to evade the obstacles, more specifically from the
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narrow pathways and corners, arbitrarily shaped virtual-region followed by a number of packed circles
are produced which result in a strong inter-agent cohesiveness among the agents for achieving a
swarm-like architecture. In these regards, we have proposed a two-level hierarchical control scheme.
To illustrate the performance of the proposed controllers, simulation results have been presented. The
comparison studies verify the effectiveness of the proposed approach.



Chapter 6

Exploration of Multiple Unknown Areas
using Splitting and Merging Technique

6.1 Introduction
In all our previous works (as described in Chapters 3, 4, and 5), we have specifically assumed that
there exists a single path through which the swarm can progress towards the target. However, a
real environment may not be that simple; it may contain several pathways through which the group
may travel during the navigational process. Hence, for successful and complete exploration of the
environment, the parent-swarm of robots requires to be split into several sub-swarms [217]. Moreover,
during navigation, if there is only a single path available ahead through which a few sub-groups
can travel further at the same time, under such situation, it would not be wise enough to segregate
the agents in the groups but to combine them so that they can form a stronger and energy efficient
super-group. Hence, in this circumstance, we need to conglomerate the agents belonging to the
sub-groups, previously traversing different paths into a coherent swarm that would walk through the
single pathway, thus approachable ahead of the joint where the multiple tracks met. We believe that
this perception represents the complicated labyrinth-like plan [226] of most of the cities.

To address the multi-path navigation issue, the present chapter adopts the elliptical region-based
shape control strategy (vide Chapter 4) where each agent in the swarm is required to converge inside
an elliptical region without having any collision. Additionally, the process utilizes the traditional
leader-follower scheme [111], [218], where the function of the leader robot is to fit in virtual regions
during the navigational steps using the sensing information from the follower robots. However, when
multiple pathways are detected to proceed further for justifying a purpose (like multiple targets) during
navigation, then a decision has to be taken by the leader to explore all the paths by splitting the parent
swarm. To accomplish this decision-making task, the leader robot shares the sensing information with
a dedicated centralized controller. In this work, the function of the central controller is only to create
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sub-regions. The trajectory planning is solely performed by each of the agents in the swarm based on
the created sub-regions. Thus, the main purposes of adopting the centralized controller are

1. Creating sub-swarms by fitting in multiple elliptical virtual regions along each path.

2. Selecting agents for each of the sub-groups.

3. Assigning new leader robots (for each of the sub-swarms).

Once the leaders are specified, the remaining process would be carried out by them along each path
like a single-path solution. Additionally, it might so happen that after a while, two or more paths
merge, forming a single passage. In that situation, the proposed controller will guide the sub-swarms
routed through those converging paths to merge or rejoin. This specific approach shall conserve all
the swarms (full of their energies) without letting them get lost and subsequently remain unused. One
such scenario is shown in Fig. 6.1.

Fig. 6.1 Splitting and merging of a swarm during navigation.

From Fig. 6.1, it is seen that a team of 12 agents is exploring an unknown environment while
preserving a specific formation within a virtual region. The magenta and black stars represent the
leader and follower agents respectively, and the virtual regions are highlighted in violet contours.
Suddenly, during the exploration phase, the leader agent detects three possible pathways to navigate
further. In such kind of scenario, the parent swarm will be split into three sub-swarms (each with
a leader agent), as illustrated in the figure, and the process continues. Then, after a while, two
paths converge to form a single corridor through which the sub-swarms (operating in these paths)
are required to be headed. As a consequence, the sub-swarms navigating through those paths are
merged to create a super-swarm that effectively approaches the target while the third sub-swarm alone
approaches the second target.
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For achieving the above-mentioned objectives i.e. splitting and merging of a swarm of robots
during the navigational phase, we employ the region-based shape control architecture (referred to
Chapter 4). In the upcoming section, we recapitulate the previous control and sensing mechanisms
briefly.

6.2 Background
The region-based shape control scheme (Chapter 4) consists of two dedicated controllers, namely
global and local controllers. To produce a virtual elliptical contour, each agent in the swarm is required
to sense the surrounding environment first. Based on this sensing information, the global controller
adjusts the parameters of the elliptical shape. Depending on the geometry information of the elliptical
zone, agents are actuating their local controllers to accommodate themselves inside it. The detailed
sensing-actuation framework is discussed below.

6.2.1 Sensing

We assume that N numbers of robotic agents are operating in an unknown environment. Each agent
in the team was equipped with m number of distance sensors [195], [194], with a spacing of 2π/m
radian apart from each other. At the tth time, the distance of the sensed obstacles di(t) around the ith

agent would be
di(t) = {di(t)} scuh that dth+ ≥ di(t)≥ dth− (6.1)

where di(t) =
h
di

1 di
2 ... di

m

i
t

is the distance-matrix of the m sensors, dth+ and dth− are the sensor

specific threshold limits. Based on those information, the location of the sensed obstacles R̃i(t)
with-respect-to the world coordinate frame of reference could be predicted as (for the ith agent at the
tth time) "

R̃x
i (t)

R̃y
i (t)

#
=

"
px

i (t)
py

i (t)

#
+

m

∑
j=1

"
di

j(t)×
"

cos[( j−1)z+θ i(t)]
sin[( j−1)z+θ i(t)]

##
(6.2)

where, xi(t) = [px
i (t) py

i (t)]
T is the present location of the ith agent, θ i(t) is the orientation of that

agent with respect to the global coordinate frame of reference at the tth time, and z = 2π/m.
The basic philosophy behind the sensing scheme is the fact that all the agents would individually

estimate the locations of nearby obstacles and would pass on the data to the global controller. Upon
receiving this information from all the agents, the global controller would estimate the free space
ahead and fit in a virtual elliptical region to accommodate all the agents inside it.

6.2.2 Modeling of Global Controller

For defining the global controller, again we assumed that after consolidating the predicted locations
of the nearby obstacles from all the agents in the team, the controller would create a matrix R̃(t) =
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[R̃x(t) R̃y(t)]T in the tth time as

R̃x(t) =
h
R̃x

1(t) R̃x
2(t) ... R̃x

N(t)
i

(6.3)

R̃y(t) =
h
R̃y

1(t) R̃y
2(t) ... R̃y

N(t)
i

(6.4)

Depending on R̃(t), the global controller estimates the free-space (b f s(t)) ahead. The detailed
procedure for determining the free-space estimation can be found in Chapter 4. After evaluating the
free-space (b f s(t)), a virtual-elliptical contour having a center at Oe(t) is duly fitted inside that region,
and this information is shared with each agent in the swarm for activating the local controller.

6.2.3 Modeling of Local controller

Upon receiving the information regarding the center of the virtual region (Oe(t)), the local controller
of each agent would be triggered. Specific control action of the ith agent at the tth time is derived as

ẋi =−kc × (xi(t)−Oe(t))+ k f

N

∑
j=1, j ̸=i

�
exp

�
− ||xi(t)− r(t)||

rs

�
× (xi(t)− r(t))

�
(6.5)

where, kc and k f are the associated attraction and repulsion coefficients, r(t) is the location of the
closest agent or obstacle (which one is nearest), and rs is the minimum distance (i.e. repulsion region)
that are required to be maintained by the ith agent from r(t).

Thus, under the actuation of the local controller, the ith agent would approach towards Oe(t) while
avoiding collision from the neighboring agents and obstacles as defined by the term r(t).

This control schema, as reported by us, worked well when the environment contains a solitary
path, leading towards the target (as discussed in Chapter 4). However, in reality, there might have
several pathways and/or multiple targets. To solve these challenges, the swarm needs to be broken
down into separate subgroups. In other words, while exploring the unknown environment, if the
swarm detects more than one path to travel further, then it would split into sub-swarms adaptively.
The present work is, actually, an extension of our previous work (as described in Chapter 4). The
present considerations alleviate the real-time restriction put on the notion of a single path scenario
that may not be truly realistic.

In the proposed work, we generalize and endeavor to conceive a more convincing picture, in
the context of tasks to be performed during surveillance and rescue operations, which often call for
aiming at multiple targets/victims, following different tracks. Further, in this work we have kept the
provision for the merger of sub-swarms, in case, two or more paths lead to the same target. Thus, they
can eventually merge to form a larger set of sub-swarms to ensure the life and conservation of energy
of each agent as well as the collective swarm. We reiterate that in this proposition we attempt to make
our control strategy to be scalable, to be able to make or break the swarms/sub-swarms, and not to
lose any agent under any circumstances. Our approach is to have all the N numbers of agents fully
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active, either as a member of a sub-team or as a member of the original team. To substantiate this fact,
we reiterate that unless some hardware failure deactivates an agent, we would always try to maintain
the number of active agents participating in the exploration process as declared during the initiation
of the mission.

Before moving on to the detailed procedures, in this work, we have explicitly considered the
following assumptions.

Fig. 6.2 Block diagram representation of the proposed split-merge system.

Assumption 1: In this chapter, we have relabeled the global and local control actions (as stated
previously) as the Obstacle Avoidance Controller (OAC) and the Convergence Controller (CC)
respectively. All the agents in the swarm are capable of executing both the control actions (if needed)
inside their processing unit.

Assumption 2: At the beginning of the navigational procedure, the user would select an arbitrary
agent as the leader robot, in which both the Obstacle Avoidance and Convergence Control actions
would be executed. The remaining agents are considered as the follower robots, where the Convergence
Control action is only operating and the OAC is in the idle mode (as shown in Fig. 6.2).

The block diagram of the proposed control action is presented in Fig. 6.2. The OAC and CC are
both running inside a leader agent, whereas CC is only executing inside a follower agent, as shown
in the diagram. During the navigational phase, OAC is in charge of adjusting the parameters of the
virtual elliptical region, while CC is responsible for actuating an agent inside the virtual contour.

During splitting, a number of sub-swarms will be produced from the parent swarm under the
influence of a centralized controller. Subsequently, a leading agent for each of the sub-swarm will be
assigned for assisting the swarm in path planning.

During the rejoining phase, two or more sub-swarms will be merged to create a super-swarm. In
this case, a leader agent will be allotted for the super-swarm for guiding the swarm to navigate.
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Fig. 6.3 A small section of the environment having multiple pathways.

Therefore, as per the navigational plan, initially, the agents, which are acting as followers, sense
and evaluate the nearby obstacles and share this information with the leader of the team. Upon
receiving this from all the agents, the leader agent actuates the OAC to estimate the next coordinates
of the virtual structure (as discussed in Chapter 4) and broadcasts this message to the followers for
actuating the CC. In the presence of multiple paths, this methodology may not work; hence, the
control laws are required to be updated such that sub-swarms can be formed from the parent swarm
(i.e. for splitting to occur). To create sub-swarms, we need to consider the following aspects: 1)
detecting the tracks, 2) forming sub-regions for each of the tracks by fitting in a virtual region in each
of the tracks, 3) identifying the agents for each subgroup, 4) promoting leader for each sub-swarm
(vide Figs. 6.1 and 6.2 respectively).

These aspects are addressed in the following section.

6.3 Creation of Sub-swarm
To create sub-swarms, first of all, the leader should identify (from R̃(t) (Eqs. 6.3, 6.4)) whether there
are multiple paths ahead or not. Sub-swarms will only be created if multiple pathways are detected,
otherwise, the process remains the same as stated in Chapter 4.

Let us assume a scenario that at the (t + τ)th time, there exist multiple paths ahead and it is
within the sensing range (dth+) of most of the agents (as shown in Fig. 6.3). Incorporating the
sensing information from all the followers, the leader computes the location coordinates of the nearby
obstacles (R̃(t + τ) ∈ ℜ2) (refer to Eqs. 6.2, 6.3, and 6.4). The significance of R̃(t + τ) can be
explained in a lucid form with the help of a simple analogy exhibited by the human brain. If an
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unobstructed path that could be taken by a person is to be decided by him or her, the eyes of that
person sense the void area lying ahead along the track, thus, acting as sensors, and to be precise
the clearance of the passage is also roughly estimated by the eyes. Thus, in this work, the location
coordinates of the nearby obstacles (R̃(t + τ)) actually indicate the void space ahead.

Our eyes (positioned somewhat distantly from the open space) with the help of our brain do so by
actually calculating and joining the x− y coordinates of the points lying on the gateway of the track.
Thus we can conceive that a contour is actually carved which represents the shape of the doorway to
the free space. The depth of field (in the case of a multi-path scenario) designates the overall clearance
of the path. In Fig. 6.3, we have simulated this scenario with the help of distance sensors mounted on
the agents only. In this context, we specifically mention that for identifying the presence of multiple
paths, we have not used any cameras.

In Fig. 6.3, we have portrayed the fact that each agent in the swarm senses the presence of a void
space ahead (R̃i(t + τ));∀i ∈ [1,2, ...,N]. The x and y coordinates (i.e.,

�
R̃x

i (t + τ)), R̃y
i (t + τ))

�
of

Eqs. 6.3 and 6.4) designate the location of clear space. The entire x vs. y values of R̃(t + τ) along
the void space have been plotted as a brown curve in Fig. 6.3 having a pronounced peak, which
determines the maximum average distance of the clearance as estimated by all the agents. Likewise,
we find that the environment does have a second path. The same procedure has been carried out to
identify it to be yet another path. The value of the peak, in this case, is less. The rationale behind this
fact is that the swarm is oriented (clear from the diagram) in such a manner that the average number of
agents is comparatively far away from that passageway. And hence the average maximum in y-values
is less than the previous one. It is needless to mention that, in general, the brown contours will assume
shapes and peaks depending on the orientation of the virtual region (encircling the agents) with respect
to the orientations of the paths. Moreover, it is apparent from the above discussion that whenever
the leader detects multiple peaks (as depicted in Fig. 6.4) during the navigation, it will come to a
conclusion that multiple lanes are available (the number being equal to the number of peaks detected)
to continue further. Once, the multi-paths have been detected, some necessary actions are expected to
be performed by the swarm system sequentially and those steps can heuristically be enumerated as

1. Depending on the number of tracks, the free spaces along the paths are required to be estimated
first from R̃(t + τ).

2. In each estimated free space, a virtual elliptical contour is required to be fit in.

3. Based on the effective areas of the virtual regions, the agents are required to be clustered
proportionally into several sub-groups, thus constituting the sub-swarms.

4. For each of the sub-swarm, a corresponding leader agent needs to be promoted for advancing
further.

To process the above-mentioned operations, a high computing processor would be required that
may not available in any of the robotic units. So, when the leader detects multiple paths ahead, the
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corresponding sensing information R̃(t + τ) is passed on to a specialized high computing centralized
controller from the leader agent for splitting the swarm.
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Fig. 6.4 The sensing coordinates R̃(t + τ) plot with detected peaks.

6.3.1 Estimation of free-spaces

To detect the number of tracks from the coordinates of sensed obstacles R̃(t + τ) = [R̃x(t + τ), R̃y(t +
τ)], the centralized controller employs the similar approach as described in the earlier section. So, the
free spaces are required to be estimated next through which the swarm may navigate further (shown
in Fig. 6.5).

Let us assume that s = {s1,s2, ...,sq};∀si ∈ ℜ2 are the set of the coordinates of the peaks as
obtained from R̃(t + τ). After identifying these, the controller searches for two local minimum
points around each peak (i.e., the leftmost and rightmost points lying along the opening of that path
correspond to a peak as shown in Fig. 6.5). Therefore, the local minimum points (li ∈ [li

1, l
i
2]) around

the ith peak (si) is

li = li such that
�

dR̃(t + τ)
dt

���
li
≈ 0 &

d2R̃(t + τ)
dt2

���
li
> 0

�
(6.6)

Hence, the free space (bi
f s) between the minimum points (li

1, l
i
2) around the ith peak (si) will be

bi
f s = ||li

1 − li
2|| (6.7)

Thus, for q number of peaks, a set of free spaces b f s = {b1
f s,b

2
f s, ...,b

q
f s} has been obtained and for

each free-space (bi
f s), a virtual elliptical contour is expected to be fitted in for the successful navigation



6.3 Creation of Sub-swarm 117

Fig. 6.5 Estimation of free spaces to fit in virtual regions.

of the swarm. In this aspect, it is demanded that the area of each contour should be optimally evaluated
such that agents are proportionately distributed in each of those regions.

6.3.2 Fitting in virtual-elliptical sub-regions

The main purpose of fitting in multiple virtual regions (in each of the sensed free spaces) is to
create sub-swarms such that the parent swarm would be divided into sub-groups to explore the entire
environment. Let us assume that Ae is the minimum area that would be required to accommodate N
number of agents, thus, Ae = N ×π(rs)2, where rs is the identical region-of-repulsion of each agent
in the team. Therefore, the area of the ith virtual region is defined as

Ai
e =

bi
f s

∑q
i=1 bi

f s
×Ae; ∀i ∈ [1,2, ...,q] (6.8)

Based on the above outcome, the length of the major-axis (ai) of the ith elliptical region (Oi
e(t + τ)) is

evaluated as

ai =
Ai

e

π ×bi
f s

(6.9)

And, the minor axis length (bi) of the ith elliptical region (Oi
e(t + τ)) will be equal to bi

f s.
Hence, the ith virtual structure has an area of Ai

e, major and minor axis lengths of ai and bi

respectively. Subsequently, the coordinate of the elliptical center can be defined as

Oi
e(t + τ) =

 
li
1,x + li

2,x

2
,
li
1,y + li

2,y

2

!
(6.10)
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where, li
1 = (li

1,x, l
i
1,y) and li

2 = (li
2,x, l

i
2,y) are the coordinates of the local minimum points around the

peak si (Fig. 6.5). The same process is iterated to estimate q number of virtual regions. Once the
virtual regions are created, our next aim is to split the parent swarm into sub-swarms based on the
areas of the sub-regions, such that all the agents are well-distributed in each of the sub-swarms.

6.3.3 Identifying agents for each sub-group

As per our formulations (Eqs. 6.8 and 6.9), we can emphasize the fact that the shapes and areas of the
virtual contours are not identical. Thus, based on the above fact, the number of agents in each of the
sub-swarm would be proportionately identified. Therefore, the number of agents (SGi) that can be
accommodated inside the ith virtual region (Oi

e(t + τ)) (having an area of Ai
e), can be evaluated as

SGi =
bi

f s

∑q
i=1 bi

f s
×N; ∀i ∈ [1,2, ...,q] (6.11)

where bi
f s is the free-space around the ith peak (si) and N is the total agents in the swarm. The same

process iterates for the q number of sub-regions. So, from Eq. 6.11, the number of agents that can be
accommodated inside the ith sub-swarm will be SGi. Thus, combining the q number of sub-regions,
the total number of agents should be equal to N, hence,

q

∑
i=1

SGq = N (6.12)

Selection of agents in each sub-group

After deciding the number of agents in each sub-group, the next goal of the central controller is to
select agents for each of the sub-groups. In this aspect, we have assumed that the controller knows the
location of each agent in the swarm. Moreover, from Eq. 6.11, we know that for the jth sub-swarm,
SG j number of agents has to be assigned. So, to allocate SG j number of agents to the jth sub-swarm
∀ j ∈ [1,2, ...,q], the following condition has been checked (for all the available agents)

SG j = {i} such that
�

argmin
i∈N

||xi j(t + τ)||
�

(6.13)

where, xi j(t + τ) = ||xi(t + τ)−O j
e(t + τ)|| is the Euclidean distance between the current location

of the ith agent (xi(t + τ)) with-respect-to the center-coordinate of the jth virtual region (O j
e(t + τ))

at the (t + τ)th time. Hence, as per the outcome of Eq. 6.13, those agents are selected for the jth

sub-group, which are comparatively nearer (with respect to the rest of the agents) to the center of the
jth virtual region. And, the numbers of agents that would be selected for the jth sub-group, should be
always less than or at best equal to (SG j).
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After the selection of agents, the central controller is now in charge of assigning leader robots for
each of the sub-regions. In this aspect, we assume that all of the agents in the swarm are identical in
nature.

6.3.4 Promoting a leader agent for each sub-swarm

The main requirement of assigning a lead robot (for each of the sub-groups) is that it will escort its
team to progress further while initiating the OAC (Fig. 6.1). Thus, it will solely estimate the virtual
region for its team, employing the sensory information of its followers, so that the corresponding
sub-group can autonomously approach the target. To assign a leader agent (L j) for the jth sub-swarm,
the central controller searches for an agent (amongst the agents) of that specific sub-group which is
nearest to the center of the jth virtual-region O j

e(t + τ). Hence, L j would be defined as

L j = k such that
�

argmin
k∈SG j

||xk(t + τ)−O j
e(t + τ)||

�
(6.14)

To summarize the responsibilities of the central controller holistically, we reiterate that during the
exploration of an unknown environment by a robotic swarm, if the leader senses multiple paths ahead,
it will pass on this information along with the sensing data (R̃) to a dedicated centralized controller.
The role of the central controller is to identify the free spaces (b f s), fit in virtual-elliptical regions in
each of the free spaces, cluster agents to create sub-swarms, and finally select the leader agent for
each sub-group. Once the lead agents are endorsed, the centralized controller broadcasts the leader
agents’ information to all the follower agents and the sub-swarms’ information to all the lead agents.
After that, the leader of each sub-group will take care of the navigational process of its sub-swarm.

Next, we perceive a scenario, where we consider that there is only a single path available ahead
through which a few sub-groups can travel further at the same time [219]. This implies that after a
while, some of the separate tracks detected earlier, merge into a single path. In such kind of situation,
the agents in those groups would combine in order to form a stronger and energy-efficient super-group.
Consequently, in the next section, we have addressed the issue of rejoining some of the sub-swarms to
form a super-swarm.

6.4 Rejoining of sub-swarm
To illustrate the rejoining or merging phenomenon, we presume a scenario where two sub-groups,
namely Ωi(t + τ) and Ω j(t + τ) respectively approach towards a single target along two different
paths at (t + τ)th time. However, after a while, there exists a single lane ahead, through which they
have to travel at the same time (as shown in Fig. 6.6).

In such a kind of scenario, two possibilities emerge realistically; either the sub-groups will
approach the target sequentially along the path ahead, or they would merge to form a unified group
and then proceed towards the target. Creating a group (the constraint is the free space available
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Fig. 6.6 Rejoining of two sub-swarms.

onwards) is always beneficial in terms of maintaining cohesiveness, ensuring fault-tolerance, and
less communicational and computational overhead along with promising an energy-efficient scalable
swarm system. Thus, in presence of a solitary track and/or unique target, the sub-groups would rejoin
to create a super-group. It is needless to say that the process of rejoining two or more sub-swarms
will be completely controlled by the central controller. For rejoining to happen, the respective leaders
of the sub-groups communicate with the central controller. In this aspect, the function of the central
controller is to decide upon the rejoining phase while assessing the area of intersection between the
next virtual structures as computed by the leaders individually before merging. If there is no area
of intersection, the process continues as it is, otherwise, the merging would happen between the
sub-groups while fitting in an elliptical region (consolidating the virtual structural information of
those sub-groups) by the centralized controller.

We assume that at the time instant (t + τ1) (where, τ1 > τ), two virtual sub-swarms, defined
as Ωi(t + τ1) and Ω j(t + τ1) have been etched by the leaders of the respective sub-groups, having
SGi and SG j number of agents respectively (vide Fig. 6.6). The regions are having the centers at
Oi

e(t + τ1) and O j
e(t + τ1), and minor-axis lengths of bi and b j respectively. The virtual regions have

been drawn with black dotted lines in Fig. 6.6. We find that there is an area of intersection between
those virtual regions. Upon receiving this information from the leaders, the function of the central
controller is to create an elliptical region such that the agents in those sub-groups could accommodate
themselves into the newly developed virtual region (hence, merging or rejoining happens). To create
the virtual region, the central controller requires estimating the length of the minor and major axis of
the elliptical structure that can be evaluated as

b(t + τ1) = max(bi(t + τ1),b j(t + τ1)) (6.15)
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a(t + τ1) =
Ai

e(t + τ1)+A j
e(t + τ1)

π ×b(t + τ1)
(6.16)

where b(t + τ1), a(t + τ1) are the length of the minor and major axis of the newly formed elliptical
region, Ai

e(t + τ1) and A j
e(t + τ1) are the areas of the virtual structures as estimated by the leaders of

the ith and jth subgroups respectively.
Therefore, for n numbers of subgroups to be merged at the tth time, the length of the minor and

major axis of the resulting elliptical region would be

b(t) = max{b1(t),b2(t), ...,bn(t)} (6.17)

a(t) =
∑n

i=1 Ai
e(t)

π ×b(t)
(6.18)

where Ae(t) =
h
A1

e(t) A2
e(t) ... An

e(t)
i

are the set of area of the n number of subgroups at the tth

time. Therefore, the resultant area of the final structure can be determined by the following theorem.
Theorem 1: If n numbers of virtual regions having different structural areas (namely, A1

e , A2
e , ...,

An
e) with varying number of agents in each substructure (assuming Q1, Q2, ..., Qn) are required to

merge, then, the minimum area (A) of the final structure to accommodate all the agents should satisfy

A ≥ π(rs)2 ×
n

∑
i=1

�
Qi�

where rs defines the region-of-repulsion of each agent.
Proof: To accommodate Qi number of agents having a repulsion region of rs (each agent), the

minimum required area (Ai
e) of a virtual structure will be

Ai
e ≥ π(rs)2 ×Qi; ∀i ∈ {1,2, ...,n} (6.19)

Now, to merge n numbers of virtual regions, we consider that the lengths of the minor and major axis
of the final contour are b and a respectively; such that

b =max{b1, b2, ..., bn} (6.20)

a =
∑n

i=1 Ai
e

π ×b
(6.21)

Moreover, the resultant area (A) of the final region should be

A = π ×b×a (6.22)

Equating Eqs. 6.21 and 6.22, we obtain

A =
n

∑
i=1

Ai
e (6.23)
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Now, comparing Eqs. 6.19 and 6.23, we get

A ≥ π(rs)2 ×
n

∑
i=1

(Qi) (6.24)

Thus, the theorem 1 has been proved.
So, from the above results, we can infer that to place all the agents inside an amalgamated virtual

region, the minimum area of that region would be dependent on the number of agents to be merged
and their associated repulsion regions. After forming the region, the central controller assigns a
lead agent (which is nearest to the center of the newly formed contour (Eq. 6.14) for that specific
super-swarm so that it can guide its team to progress further.

To demonstrate the performance of the proposed strategy, we have performed several software
simulations and hardware experiments that are provided in the subsequent section. All simulations
are performed in the same software-hardware environment as mentioned in Sec. 3.7.

Table 6.1 Parameters chosen for the simulation study

Symbol Description Value
dthre+ Max. threshold limit 5 unit
dthre− Min. threshold limit 2 unit

m Number of distance sensors 8
kc Attraction coefficient 12
k f Repulsion coefficient 2.5

6.5 Results and Discussions
In this simulation study, we have specifically designed some environments that consist of obstacles
and single or multiple targets having narrow corridors as shown in Figs. 6.7, 6.9, and 6.11 respectively.
The parametric values as displayed in Table 6.1 have been chosen for the simulations.

Case 1: Sub-swarm creation in a multi-target environment

In this study, a team of 50 robots is expected to reach the predefined target locations (as represented by
the black cross) while avoiding static obstacles (marked in the red line) in a topological environment
having an area of 100× 100 unit2 as shown in Fig. 6.7. In order to achieve a coherent swarm,
the region-of-repulsion (rs) of each agent has been chosen to be 3.2 units. At the beginning of the
simulation, an arbitrary agent is selected as the lead agent (black-star), and the rest are acting as
followers (blue-star). Based on the sensory information of every agent, the leader creates a virtual
region as shown in ’station 1’ of Fig. 6.7. To accumulate inside that region, the convergence controller
of all the agents is fired after that. The initial contour has been constricted further to accommodate
all agents inside it for achieving a strong inter-agent cohesiveness among them (’station 2’ of Fig.
6.7). At t = 16 sec, the lead robot identifies multiple paths ahead (in this simulation three different
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Fig. 6.7 Creation of sub-swarms in a multi-target environment with 50 agents in the group.

paths ahead) based on the sensory information of all the agents in the team. Hence, it shares this
specific data with the centralized controller. As per the outcomes of this controller, three different
virtual regions (thus, three sub-swarms) are created to be fitted in the three different passage ways.
In addition, one lead agent has been elected for each sub-group and the authority of path-planning
has been transferred to the leaders. Subsequently, all the sub-swarms are approaching their target
locations (’station 3’ of Fig. 6.7) at t=20 sec. Finally, all the sub-groups have successfully reached
their destinations approximately at t = 82 sec (’station 4’ of Fig. 6.7).
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The length of the major, and minor axis and the areas of the virtual subregions of the above
experiment are presented in Fig. 6.8. From the figure, it is observed that at t = 15 sec, the effective
area of the virtual region is around 500 unit2, which is almost equal to the minimum required area for
the virtual region to accommodate 50 agents (having rs of 3.2 units) as displayed in ’station 2’ of Fig.
6.7. At t ≈ 16 sec, the process of sub-group creation has been started inside the central controller.
At t ≈ 20 sec, three sub-swarms are configured, and they are approaching to their respective targets
(’station 3’ of Fig. 6.7).

As the sensed free-space of subgroup 1 is wider than others, the number of agents in this subgroup
is larger which effectively enhances the area of that specific sub-swarm (Fig. 6.8). Moreover, it is
perceived that the summation of the areas of all the subgroups is nearly equal to the area of the virtual
region which is created just before the formation of the sub-groups (’station 2’ of Fig. 6.7).
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Case 2: Split and rejoin in an obstructed environment

To observe the split-join aspect, a simulation has been performed with 100 agents in an environment
having a dimension of 40× 40 unit2 with a single target (as shown in Fig. 6.9). In this study, the
region-of-repulsion (rs) of each agent has been specified to be 0.5 unit. During the navigational steps,
the lead agent creates several virtual-regions based on the sensory information of all the agents in
the team (station 1 and station 2 of Fig. 6.9). At t = 10 sec, the parent swarm has been split into two
sub-groups (the environment demands so) under the influence of the centralized controller (station
3 of Fig. 6.9) and the process continues until t = 45 sec (station 4 of Fig. 6.9). After that, the two



6.5 Results and Discussions 125

lanes merge into a single track, and it is leading toward the target. To handle this situation, both the
sub-swarms rejoin to form a cohesive super-swarm (station 5 of Fig. 6.9). Finally, the entire group
arrives at the destination at t = 60 sec (station 6 of Fig. 6.9).
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Fig. 6.10 Axis length and area computation of the subgroups during the split-join scenario (case 2) with 100 agents in the swarm.

To analyze the split-join behavior of the proposed scheme, axis lengths, and areas of the virtual
regions during the navigational steps are computed as shown in Fig. 6.10. From the figure, it is seen
that at t = 8 sec, the effective area of the virtual region is around 150 unit2 which is nearly equal to the
minimum required area to accommodate 100 agents (having rs of 0.5 unit). From this time onwards,
the parent swarm is divided into two subgroups. At t = 45 sec, the merging phase has been started.
At the end of this stage, the effective area of the super-warm is observed to be 150 unit2. Therefore,
from the above results, we can claim that using the virtual-region-based shape control approach, it is
possible to create cohesive swarms/sub-swarms in multi-target/multi-path scenarios.

Case 3: Sub-swarm creation in a multi-target environment occluded with both static
and dynamic obstacles

Finally, to measure the efficacy of the proposed scheme in a similar scenario (as depicted in Fig. 6.7)
with dynamic obstacles, simulation has been performed with 50 agents as shown in Fig. 6.11. Here
also we assume rs to be 3.2 units. Several virtual-elliptical regions are created during the course of
the movement (shown in Figs. 6.11a, and 6.11b). Suddenly, because of multiple paths, the swarm is
split into three subgroups (Fig. 6.11c) at t = 35 sec. At t = 50 sec, two obstacles are approaching
towards the subgroup 2 (Fig. 6.11d). To avoid those obstacles, a constricted elliptical region has been
developed by the lead agent at t = 62 sec (Fig. 6.11e). Finally, all the sub-swarms have successfully
reached to there respective target locations at t = 85 sec (Fig. 6.11f).
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Fig. 6.11 Sub-swarm creation of 50 agents in an dynamic environment with multiple targets.
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To assess the performance of the proposed scheme in a dynamic scenario, the axis length and
areas of the virtual regions are computed during the navigational process as shown in Fig. 6.12. From
the figure, it is noticed that the presence of dynamic obstacles does not change the effective areas
of the sub-swarms. However, the axis lengths are significantly altered for subgroup 2 during the
period of t = 55 sec to t = 70 sec where the moving obstacles are blocking the path of that respective
subgroup. The above feature defines the usability of the proposed strategy in the swarm robotics path
planning problem.

0 10 20 30 40 50 60 70 80A
x

e
s

 l
e

n
g

th
 (

u
n

it
)

0

10

20

30

40
Major axis of Group 1
Minor axis of Group 1
Major axis of Group 2
Minor axis of Group 2
Major axis of Group 3
Minor axis of Group 3
Major axis of parent swarm
Minor axis of parent swarm

Time (in sec)
0 10 20 30 40 50 60 70 80

A
re

a
 (

u
n

it
2
)

0

500

1000

1500
Group 1
Group 2
Group 3
Parent swarm

sub-swarm
creation

sub-swarm
creation

axes length changing
due to dynamic

obstacle

Fig. 6.12 Axis length and area computation of 50 agents in dynamic obstacles’ scenario (case 3) in multi-target environment.

6.5.1 Performance analysis

To analyze the efficacies of the proposed scheme, we have executed each simulation multiple times.
Based on those outcomes, we have analyzed the performance in terms of the inter-agent cohesiveness,
execution time, and scalability of agents.

Inter-agent Cohesiveness

Two agents i and j are considered to be cohesive if they maintain at least (2× rs) distance between
themselves, where rs is the region-of-repulsion of each agent. So, to analyze the inter-agent cohe-
siveness, we compute the structural density [216] of the swarm in each iteration. Mathematically, the
structural density (D(t)) can be defined as the ratio of the number of cohesive links to the maximum
number of links, thus, the expression of D(t) at the tth time for N numbers of agents would be

D(t) =
∑N

i=1

h
∑N

j=1 gi
j(t)
i

N(N −1)
(6.25)
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where, gi
j(t) =





1, if ||xi j||≤ 2rs

0, otherwise
, ||xi j|| is the Euclidean distance between agents i and j. So, for a

highly cohesive swarm where all of the agents are maintaining at least (2× rs) distance from each
other, the value of D(t) would be close to one, whereas, for a loosely coupled swarm, its value will be
near to zero.

Here again, we take the liberty to depict the different cases that we have simulated earlier for
analyzing the performance of the proposed control scheme for investigating D(t).

Scenario 1: Splitting and rejoining of the swarm in an obstructed environment with only static
obstacles (Fig. 6.9).

Scenario 2: Splitting of the swarm in an obstructed, multi-target environment with static and
dynamic obstacles (Fig. 6.11).
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Fig. 6.13 Inter-agent cohesiveness analysis in scenario 1 for 100 agents in the swarm.

Analyzing the average structural density in scenario 1 (Fig. 6.9) in different time windows (Fig.
6.13), we have observed that the inter-agent cohesions, in the beginning, are less as all the agents are
attempting to accommodate inside the virtual region (’station 1’ of Fig. 6.9). In this specific situation,
the area of the virtual region is large, thus, the agents are loosely coupled inside it. As a result, the
structural density is reduced. After that, based on the environmental condition two sub-swarms are
formed (’station 3’ of Fig. 6.9). Here, the areas of the virtual regions of both the sub-swarms are
smaller than the parent swarm. As a consequence, all of the agents within the virtual territories would
maintain strong cohesiveness, resulting in an increasing structural density score (Fig. 6.13). Finally,
during rejoining phase (’station 5’ and ’station 6’ of Fig. 6.9), again the area of the super-swarm
becomes larger than the areas of the sub-swarms, thus, the cohesiveness reduces, subsequently, the
structural density decreases (Fig. 6.13).

In Scenario 2 (Fig. 6.11), initially, the structural density (as shown in Fig. 6.14) is less because
of the converging characteristics of the swarm inside a huge virtual region (Figs. 6.11a, and 6.11b).



6.5 Results and Discussions 129

Time window

1 1.5 2 2.5 3 3.5 4

S
tr

u
c

tu
ra

l 
D

e
n

s
it

y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Meadian

75% Quartile

25% Quartile
Sub-swarm 1

at t = 0 sec 
to t = 35 sec

at t = 76 sec 
to t = 180 sec

at t = 36 sec 
to t = 75 sec

at t = 181 sec 
to t = 325 sec

Sub-swarm 3
Sub-swarm 2

Fig. 6.14 Inter-agent cohesiveness analysis in scenario 2 for 50 agents in the swarm.

After that, three sub-swarms are produced (Fig. 6.11c) from the parent swarm. As the areas of all
the sub-swarms are less than the parent swarm, the inter-agent cohesiveness, as well as structural
densities, get increased during this time frame (Fig. 6.14). To bypass incoming moving obstacles
(Figs. 6.11d, 6.11e), the area of the sub-swarm 2 is further constricted, however in this particular state,
the length of the major axis of the virtual elliptical region is comparatively higher than the minor axis.
As a result, the agents are spread inside the region to avoid the dynamic obstacles. So, the structural
density reduces during this time window (Fig. 6.14). Finally, when all the obstacles are avoided, the
inter-agent cohesiveness, as well as structural density, attains a steady-state value.

In this specific study, it should be noted that the average inter-agent cohesiveness in scenarios 1
and 2 are around 0.55 and 0.6 respectively (Fig. 6.13, and 6.14). In light of these outcomes, we can
conclude that an agent is strongly virtually connected or maintaining at least (2rs) distance to more
than 50% of total agents during the navigational process.

Scalability of agents

In this chapter, the scalability of agents has been studied with respect to the inter-agent cohesiveness
(by computing the structural density) and mission completion time (or execution time).

Evaluating structural densities for scenario 1 and scenario 2 as shown in Figs. 6.15 and 6.16
respectively, it is observed that with increasing agents (in the swarm), the average cohesions are
exhibiting a decreasing trend. This phenomenon is quite obvious because, with increasing agents in
the swarm, the areas of the virtual regions will be enhanced. As a result, for a large swarm, an agent
cannot maintain (2rs) distance with its neighboring agents in the swarm.

From the outcomes, we should note one important feature of our proposed approach is that with
500 and 1000 agents (in a team), the average structural densities are observed to be around 0.43, 0.4
(for scenario 1), and 0.325, 0.31 (for scenario 2) respectively. In light of these outcomes, we might



130 Exploration of Multiple Unknown Areas using Splitting and Merging Technique

Number of agents
1 2 3 4 5

S
tr

u
c
tu

ra
l 
D

e
n

s
it

y

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8 Mean structural density

50 100 250 500 1000

Fig. 6.15 Comparison of Structural density with scalability of agents in scenario 1.
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conclude that even with 1000 agents in a swarm, an agent maintains strong cohesiveness with at least
30% of the total agents by employing our proposed technique.
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Fig. 6.17 Comparison of Execution time with scalability of agents in scenario 1.

Comparing the executing time with scalable agents (Figs. 6.17, and 6.18), it is seen that the
mean execution time is following an increasing pattern. Moreover, while simulating with 1000 agents
for scenarios 1 and 2, the proposed scheme consumes around 425 sec and 5900 sec respectively
to complete the mission objectives. Now, if we look into the deviation plots (of Figs. 6.17, and
6.18), we would observe that the variations of execution times are reduced with scalable agents in the
swarm. The reason behind this fact is that as per the navigational rule, each agent shares the location
coordinates of the sensed nearby obstacles with the leader agent. Based on that information, the leader
agent evaluates the virtual regions in each step of movement. Thus, for a large swarm, the computed
regions would be optimal as the numbers of sensing coordinates are considerable. As a result, the
time variations for large swarm will be less.

Now, statistically, we have examined the deviation plots of Figs. 6.17, and 6.18 to assess the
repeatability and variability of the proposed scheme. The detailed analysis can be found in Figs. 6.17
and 6.18, as well as Tables 6.2, and 6.3 respectively.

Table 6.2 Statistical analysis on the execution time with scalable agents for scenario 1

No. of
Agents

Mean
time

(in sec)

std
(in sec) COV

1st quartile
(Q1)

(in sec)

3rd quartile
(Q3)

(in sec)

IQR
(Q3 −Q1)
(in sec)

Median (Q2)
(in sec)

Max.
time

(in sec)

Min
time

(in sec)
50 43.18 7.06 0.164 37.26 49.19 11.9 42.94 55.9 31.03

100 58.69 4.92 0.085 54.55 63.03 8.48 58.87 67.28 50.02
250 124.95 2.9 0.023 122.47 127.4 4.93 124.88 129.99 120.00
500 237.41 1.47 0.006 236.09 238.7 2.6 237.45 239.97 235.00

1000 461.52 0.87 0.002 460.73 462.26 1.53 461.53 462.99 460.00

In Scenario 1, we have only considered the split-merge aspect of a robotic swarm in a static
circumstance. The simulation result for 100 agents in the swarm is shown in Fig. 6.9. The results
of the statistical analysis are presented in Fig. 6.19, and Table 6.2. We can make the following
observations based on the results.
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Fig. 6.18 Comparison of Execution time with scalability of agents in scenario 2.

1. The mean and median of the variations in execution time grow as the number of agents in the
swarm increases.

2. The standard deviation, coefficient of variation, and inter-quartile range decrease as the number
of agents in the team rise.
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Fig. 6.19 Analysis on scalability of agents with execution time of scenario 1.

In Scenario 2, we have examined the splitting feature of the robotic swarm in a dynamic envi-
ronment. The results of simulations for 50 agents in the swarm are depicted in Fig. 6.11. From the
statistical analysis, as shown in Fig. 6.20, and Table 6.3 with scalable agents, it is observed that

1. The mean and median execution times increase as the number of agents enhances, whereas the
standard deviation, coefficient of variation, and inter-quartile range are following a decreasing
trend with the scalable agents.
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Table 6.3 Statistical analysis on the execution time with scalable agents for scenario 2

No. of
Agents

Mean
time

(in sec)

std
(in sec) COV

1st quartile
(Q1)

(in sec)

3rd quartile
(Q3)

(in sec)

IQR
(Q3 −Q1)
(in sec)

Median (Q2)
(in sec)

Max.
time

(in sec)

Min
time

(in sec)
50 340.54 11.6 0.034 330.6 350.8 20.13 340.6 360 320

100 603.27 7.75 0.013 597.01 609.7 12.68 602.9 617.3 590
250 1460.17 5.77 0.004 1455.9 1466.03 10.05 1461.3 1471 1451
500 2850.92 3.5 0.0012 2848.1 2854.1 5.98 2851.2 2857 2845

1000 5615.91 2.32 0.0004 5613.9 5617.9 4.06 5615.8 5620 5612

From the outcomes of the analysis, we have witnessed similar results as obtained from the
simulation outputs, i.e., the mean and median execution times increase, and the standard deviation,
coefficient of variation, and inter-quartile range decrease with the scalable agents of the swarm. The
fundamental reason behind this fact is that as the number of sensing points increases with scalable
agents, the leader agent evaluates optimal virtual regions in each step of movement. Thus, the same
procedure would not be repeated in the next iteration. Subsequently, the standard deviation, coefficient
of variation, and inter-quartile range reduce.

6.5.2 Performance Comparison

To determine the efficacies of the proposed approach, we have performed comparative analyses
with the other techniques cited in the literature and the metrics are inter-agent cohesiveness and the
convergence times of the well-cited algorithms vis à vis our control proposition while ensuring the
scalability of the agents in the swarm.

For scenario 1 (i.e., static obstacle avoidance case as shown in Fig. 6.9), we have investigated the
performance of our proposed solution and compared the same with the performance of some other
existing solutions [165], [217] and [219] where the split-merge aspect is considered for a robotic
swarm operating in an environment having only static obstacles. The results are presented in Figs.
6.21 and 6.22.
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Fig. 6.21 Structural density comparison with other techniques in scenario 1.

The variation of the cohesiveness index with the number of agents in the swarm for scenario 1 has
been plotted in Fig. 6.21. From the plot, it is evident that all the techniques (including the proposed
one) exhibit a decreasing pattern with an increasing number of agents in the team. So, we can infer
that when there are fewer agents in the team, inter-agent cohesion increases, and vice versa. Also,
we observe that our proposed approach outperforms the previous strategies [165], [217] and [219] in
the presence of static barriers and narrow pathways. Moreover, in [165], the authors have explicitly
imposed tight inter-agent cohesiveness in their control design. Even then when we compare their
techniques with ours, we find that our strategy improves the inter-agent cohesion in general. The
rationale behind this fact is that as per our control proposition, all the agents are required to converge
inside the virtual region etched by the leader agent.

1 2 3 4 5

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

0

50

100

150

200

250

300

350
Raghuwaiya et. al [217]
Novoth et. al [219]
Chen et. al [165]
Proposed approach

25 75 1005010
Number of agents

Fig. 6.22 Execution time comparison with other techniques in scenario 1.

Finally, comparing the execution times (Fig. 6.22), it is perceived that even with 100 agents in the
swarm, our proposed solution consumes less time than the other traditional techniques because when
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an agent approaches a specific virtual region, it does not need to communicate with its neighboring
agents, hence, our proposed scheme allows all the agents to navigate independently.

Since the above-mentioned works have not considered an environment for dynamic obstacles;
hence, for scenario 2, we compare our results with [44] and the performance comparisons have been
shown in Figs. 6.23 and 6.24 respectively.
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Fig. 6.23 Structural density comparison with other techniques in scenario 2.
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Fig. 6.24 Execution time comparison with other techniques in scenario 2.

While we compare the performances of the proposed technique with that of [44] in the dynamic
environment (scenario 2), it is observed that the inter-agent cohesion reduces and the execution time
increases with the number of agents in the swarm for both of the approaches. The performance
comparisons are presented in Figs. 6.23 and 6.24. However, the cohesiveness of our method is
substantially higher than [44], and the execution time is less. The key reason behind this fact is that in
[44], the convex optimization strategy was applied to the image data as captured by each agent in the
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group. Depending on this output, the position of that agent had been calculated irrespective of the
location of its neighboring agents. In dynamic conditions, this particular mechanism assisted each
agent of the group in deciding whether to split or merge. In our case, we achieve similar consequences
by employing the data from the distance sensors only. So, our technique is much more efficacious
than the previous schemes in both static and dynamic circumstances.

6.6 Summary
In this chapter, we have conceptualized a novel approach to perform the split-join aspect of a robotic
swarm. The region-based shape control scheme has been linked with the leader-follower methodology
to achieve the splitting and merging of a swarm of robots. The proposed control method can effectively
be applied in multi-target as well as multi-path scenarios. Moreover, in the face of the incoming
dynamic obstacles, the swarm can break into sub-swarms autonomously. Two sub-swarms moving
along the same path can rejoin to form a super-swarm (if required) utilizing the offered procedure.
The entire control proposition is dependent on the creation of the virtual elliptical regions during
the navigation steps. Additionally, the leader-follower architecture has been adopted to optimize the
overall performance of the system. To synthesize the control scheme, it is verified that the proposition
would be sufficiently scalable in terms of the number of agents in the swarm, sub-swarm, and super-
swarm. Furthermore, within a team, all the agents will maintain cohesiveness among themselves
during the navigational steps. To illustrate the performance of the proposed control action, several
simulation results have been performed for various scenarios. The performance analysis shows the
efficacies of the proposed scheme.



Chapter 7

Hardware Implementation

7.1 Introduction
In this chapter, we provide the results of the hardware implementation of the proposed control methods
as described in Chapter 3 to Chapter 6. To assess the performance of the various control actions, we
conduct several experiments in real environments with diverse environmental scenarios containing
static and dynamic obstacles. Furthermore, to analyze the scalability of the proposed control systems
in terms of the number of agents in the swarm, various experiments have been performed with scalable
two-wheeled mobile robots.

The architectural overview of the robots has been described in the upcoming section. The motion
planning of a multi-robot system using the bat algorithm-based evolutionary approach is then tested
in different environmental conditions. After that, we examine the geometrical-region-based shape
control scheme with scalable agents in the team, followed by the polygonal-region-based approach.
Finally, we provide the hardware implementation result of the split-join scheme. The detailed results
and analysis of all the experimental outcomes are given below.

7.2 Architectural framework of the robotic platform and
environments

The architectural framework of the robotic platform has been described in this section. In this regard,
we would like to point out that we do not employ any off-the-shelf hardware for the experiments; we
design and fabricate the platforms ourselves. The detailed architectural overview (as shown in Fig.
7.1) is explained next.

The designed two-wheeled Unmanned-Ground-Vehicle (UGV) models (namely, SonPI) as shown
in Fig. 7.1a is controlled by a Raspberry pi based 1.4 GHz, ARM quad-core processor. The hardware
architecture is outlined in Fig. 7.1b. The WiFi floater (IEEE 802.11) provides a communication
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Fig. 7.1 Architectural overview of the test platform.

channel among the UGVs and the centralized server. To sense the current position, the high-precision
wheel-encoders [220] are attached to the wheels. These will also help to estimate the relative positions
of the neighboring agents. To detect the nearest obstacles and to apply the proposed algorithms, each
robot in the team is equipped with 5 Sonar modules (HC-SR04 [186]) spacing at 450 apart (so that it
can sense up to 1800 around itself). The collected sonar data from Arduino ATMega328 are passed on
to the pi-board via I2C communication protocol [221] for sharing with the controller block. Based on
this information, the necessary actuation is passed on to the wheel-actuators of all the agents either
distributively or via the central controller.

The bat-algorithm-based approach (as outlined in Chapter 3) has initially been implemented on
the proposed system. Then, the geometric-region-based approach (as described in Chapter 4) has
been performed. Next, down the line, the polygonal-region-based scheme (as explained in Chapter 5)
has been studied. Finally, the split-join strategy (as proposed in Chapter 6) has been examined on the
real robotic platform. The algorithmic implementations and test results are described in the upcoming
sections.

7.3 Implementation of bat algorithm-based approach
To implement the bat algorithm (discussed in Chapter 3) in robotic setups, we have employed the
affordable sonar sensors (HC-SR04 [186]) that are working in 5V DC power supply to estimate the
distance of the nearest barriers for mimicking the echolocation principle of bats. All of the sensors are
operating at a constant frequency ( fmax) of 40 kHz while generating 8 cycle-burst of ultrasonic pulses
(r) that are very similar to the typical values of the real bats [187]. Depending on the sensing data
as collected by a robot, further processing has been performed on the Raspberry pi unit. During the
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navigational process, sometimes an agent/agents may get stuck at some local minimum points. In this
kind of scenario, the loudness (A) and pulse emission rate (r) of the respective sensors are modulated
in software to obtain the global best solution.

The entire hardware testing has been divided into four parts: initially, an investigation has been
executed in an obstacle-less environment. After that, it has been extended to cluttered environments
with static obstacles and low-complex dynamic obstacles. Finally, the previous experiment has been
continued for several moving obstacles.

7.3.1 Design consideration

It is apparent that during the navigational process, the position of each robot is indeed mostly sensed
by the wheel-encoders. However, the wheel-encoders may introduce errors in getting the position of
each robot. To overcome this shortcoming, in addition to the wheel-encoders, we have employed an
overhead camera too [222], under the assumption that the camera can cover the entire workspace and
at the same time, can accurately evaluate the positions of all the agents in the team in each iteration by
employing Lucas-Kanade optical flow technique [223]. Thus, the camera acts as a complementary
sensor placed in yet another feedback loop (the vision loop) for the controlled system, the comparator
of which computes an error function between the sensed positions of the camera and the encoder,
for each agent in every time steps. This generates a corrective motion signal through which each
robot updates its position and hits the desired location coordinates. This multi-loop control strategy,
eventually, reduces the wheel encoders’ error.

After each iteration/time step, once the positions of all the robots are duly sensed (sensed through
the overhead camera), the relative positions of all the neighbors of a given agent can be easily
determined. The information about the relative positions amongst the robots is broadcast over the
entire swarm. Hence, the positional information of the complete swarm topology is available to
each and every agent in the swarm, thus making an agent capable enough to identify its neighbors
irrespective of the distance between the agent and one or some of its neighbors. In the next step, using
this information, the attraction/repulsion control action is actuated to maintain the strong inter-agent
cohesiveness as discussed in Chapter 3.

7.3.2 Results and discussions

The bat algorithm-based motion planning approach has been tested in four different cases; the initial
study contains the formation control of three robotic agents in an obstacle-less environment. The
next investigation includes several scalable agents forming adaptive formations in static environments.
In experiment 3, we have experimented with four robots in a low-complex environment. Finally, in
experiment 4, a complex environment has been created with a dynamic occluded environment to
measure the adaptability of formation with four agents in the swarm.



140 Hardware Implementation

Case 1: Achieving formation in obstacle-less environment

In this experiment, it is shown how quickly a formation can be accomplished among the robots in an
obstacle less environment. Three robots, starting from some arbitrary locations (as shown in Fig. 7.2a),
are progressing towards a target. At t=38 sec., a triangle-formation has been achieved as represented
in Fig. 7.2b. In Fig. 7.2c, it is shown that while maintaining the requisite formation, all the agents are
approaching further at t=71 sec.

(a) at t = 2 sec. (b) at t = 38 sec.

(c) at t = 71 sec.

Fig. 7.2 Three robots maintain a specific formation while operating in an obstacle-less environment.

Case 2: Approaching target with adaptive formation in static environments

In this case study, two experiments have been performed with scalable agents in the team. The
environments are designed with static obstacles/boundaries with narrow pathways to validate the
viability of the proposed control action.

Three agents in the team

In this experiment, three robots are employed such that they are required to reach a predefined target
location (marked in green-cross of Fig. 7.3). Starting from some arbitrary positions (shown in Fig.
7.3a); all the robots create a triangular-formation (Fig. 7.3b) at t=21 sec. While maintaining the
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(a) at t = 1 sec. (b) at t = 21 sec.

(c) at t = 27 sec. (d) at t = 62 sec.

(e) at t = 183 sec. (f) at t = 249 sec.

Fig. 7.3 Three robots are approaching the target location in an environment having static obstacles.



142 Hardware Implementation

same, they are approaching further at t=27 sec. (Fig. 7.3c). Suddenly, the path is being obstructed
by a narrow passage (shown in Fig. 7.3d), and consequently, the agents are changing their current
inter-agent pattern for avoiding the barrier. At t=183 sec., a line-formation has been accomplished by
the agents to pass through the narrow zone (Fig. 7.3e). Finally, they have reached the target location
at t=249 sec (Fig. 7.3f).

Four agents in the team

In this experiment, four robots have been used to reach a predefined target location (marked in
magenta cross of Fig. 7.4). For recognizing the agents by the overhead camera, a specific marker
has been attached to each robot. During the navigational process, several inter-agent formations (as
shown in Fig. 7.4b, 7.4c) have been created by the multi-robot system for avoiding obstacles. Finally,
all the agents have reached the goal location at t = 245 sec (Fig. 7.4d).

(a) at t = 0 sec. (b) at t = 15 sec.

(c) at t = 32 sec. (d) at t = 245 sec.

Fig. 7.4 Four robots are approaching the target locations in an environment having static obstacles.

Case 3: Approaching target in a low-complex dynamic environment

In this case study (as shown in Fig. 7.5), the experimentation has been conducted with four robots,
in a low-complex dynamic environment that contains static obstacles/boundaries (black-line) and a
moving obstacle (brown-ellipse). Starting from some randomized positions (as displayed in Fig. 7.5a),
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all the agents are progressing towards the goal (magenta-cross). At t = 19 sec (vide Fig. 7.5b), it is
observed that a rectangular-formation is created among the agents which is sustained until t = 30 sec
(Fig. 7.5c). After that, a moving obstacle which is advancing towards the swarm has been sensed. To
avoid that triangular-formations have been developed among the agents as presented in Figs. 7.5d
and 7.5e respectively. Finally, all the agents have reached the goal location successfully at t = 304 sec
while forming the initial rectangular shape as depicted in Fig. 7.5f.

(a) at t = 0 sec. (b) at t = 19 sec.

(c) at t = 30 sec. (d) at t = 72 sec.

(e) at t = 99 sec. (f) at t = 304 sec.

Fig. 7.5 Four robots are approaching the goal locations in a low-complex environment having one moving obstacle.
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Case 4: Approaching target in a complex dynamic environment

Our conclusive experiment has been performed with four robots in a complex environment having
dynamic obstacles and static boundaries (vide Fig. 7.6). Starting from the arbitrary positions (Fig.
7.6a), all the robots are producing several new formations (as shown in Figs. 7.6b, 7.6c, 7.6d, and
7.6e) in order to avoid dynamic obstacles while navigating towards the goal location through the
narrow pathways. After avoiding all the moving obstacles, a rectangular-like shape has been created
by the multi-robot system (Fig. 7.6f). Finally, all the robots have reached the goal location at t = 575
sec (Fig. 7.6g).

(a) at t = 0 sec. (b) at t = 49 sec.

(c) at t = 75 sec. (d) at t = 180 sec.

(e) at t = 258 sec. (f) at t = 434 sec.

(g) at t = 575 sec.

Fig. 7.6 Four robots are approaching the goal location in a complex dynamical environment having three moving obstacles and narrow
pathways.
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From all of the above experimental outcomes, we have discovered that by employing the bat
algorithm-based approach, an agent with open space ahead always leads the swarm system during
navigation. For example, in Fig. 7.6, it can be seen that the blue-marked agent has open space ahead
7.6a during the initialization of the experiment. Thus, in the entire navigation, this particular agent is
leading the swarm toward the direction of the target.

7.3.3 Performance analysis

To analyze the performance of the proposed technique in the above-mentioned case studies, we have
computed the time complexity, the inter-agent formation error, and the mean path length (of all the
agents in the team) for all of the experiments. The analyzes are shown in Fig. 7.7, and Tables 7.1,
7.2, and 7.3 respectively. The following metric has been evaluated in each iteration to determine the
formation error

FE = 1− ∑N
i=1 ∑N

j=1 Ωi(t)

N(N −1)
; Ωi

j =





1 if 2rs ≥ ||xi j||≥ 3rs

0 otherwise
(7.1)

where N defines the number of robots in the team, rs is the associated repulsion region between
the agent i and j. Two agents (assuming i and j) are expected to be in formation if the Euclidean
distance (||xi j||) between them is between 2rs and 3rs. Therefore, from the outcome of Eq. 7.1, we can
conclude that the formation error (FE) can fluctuate from 1 (worst case with no inter-agent formation)
to 0 (best case with all the agents in formation). The time vs. formation error plot is presented in Fig.
7.7.
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Fig. 7.7 Evaluated formation-errors and time complexities of the above-mentioned case studies.

In obstacle-less condition (case 1), the mean and standard deviation (sd) of the formation error is
low for both the software simulation and hardware experimentation as in this scenario, all the agents
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Table 7.1 Evaluated parameters in obstacle-less environment (case 1)

No. of
agents

Time complexity
(in sec.)

Formation error Path length
S/W H/W S/W

(in unit)
H/W

(in cm.)S/W H/W mean sd mean sd
3 35 71 0.09 0.01 0.21 0.05 50.5 51.2

Table 7.2 Evaluated parameters in static environments (case 2)

No. of
agents

Time complexity
(in sec.)

Formation error Path length
S/W H/W S/W

(in unit)
H/W

(in cm.)S/W H/W mean sd mean sd
3 98 249 0.13 0.2 0.25 0.19 51.82 53.07
4 100 245 0.26 0.2 0.32 0.21 54.41 57.93

are approaching the target while maintaining a specific inter-agent formation (Table 7.1 and Fig. 7.7).
The mean path lengths are almost similar for both the software and hardware.

While comparing the performance with the scalable agents in the static environments (case 2), it
is seen that adding one robot to the team does not create much impact on the overall time consumption
of the system (Table 7.2) as the dimensions and the location of goals in both the environments are
identical. While analyzing the formation error, it is perceived that the mean error of 4 robots is greater
than the mean error of 3 robots. The primary reason behind this fact is that the triangular shape
is much more structurally flexible than the quadrilateral shape in terms of sustaining cohesiveness.
Finally, to compare the mean path length, we have witnessed that the path length of 4 agents is greater
than the path length of 3 agents.

While examining the performance of the proposed scheme in dynamic environments (cases 3 and
4) (Table 7.3), it is seen that though the dimensions and location of targets of both the environments
are identical, the multi-robot system in case 4 consumes a considerable amount of time as compared
to the system in case 3 because of the varying complexity of the environments. Moreover, due to
the adaptive formation features of the framework for avoiding obstacles during the navigation, the
mean formation error and the path length are high for case 4 than in case 3. Hence, from all the above
consequences, we can conclude that in any kind of environmental conditions with scalable agents
in the team, a multi-robot system can eventually reach the goal location while impending difficult
barriers with our proposed solution.

Table 7.3 Evaluated parameters in dynamic environments (case 3 and 4)

Environmental
complexities

Time complexity
in H/W (in sec.)

Formation error
in H/W Path length

in H/W (in cm.)mean sd
Low 304 0.37 0.25 62.11
High 575 0.47 0.41 69.5
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Table 7.4 Comparison analysis with circle-based gathering technique [2]

EC No. of
robots

TC
(in sec.) Formation error Path length

(in cm.)
CG
[1] Prop. CG [1] Prop. CG

[1] Prop.mean sd mean sd

Low
3 451 260 0.1 0.05 0.27 0.22 60.03 59.27
4 612 304 0.17 0.12 0.37 0.25 61.85 62.11

High
3 1169 466 0.22 0.04 0.37 0.32 68.34 67.03
4 Fail 575 Fail Fail 0.47 0.41 Fail 69.5

7.3.4 Comparative analysis

In this section, to evaluate the efficacies of the proposed solution, we have compared the performance
of the system with the other well-cited literature in terms of the formation error, goal-reaching
capability, execution time or time complexity (TC), and scalability. In this aspect, we would like to
mention that the comparative analyses have been performed in similar environmental conditions as
specified in cases 3 and 4 with scalable agents in the team. The corresponding results are shown in
Tables 7.4 and 7.5.

Initially, we have examined the performance of the proposed system with the circle-based
gathering scheme [2] (Table 7.4). Comparing the formation error in low-complex conditions with
scalable agents, we observe that the circle-based gathering scheme [2] performs better than the
proposed method in terms of maintaining a specific formation during the navigational steps. The
main reason behind this fact is that during the exploration of the multi-robot system, the circular
structure always sustains rigidity, so the formation error is low that subsequently improving the
inter-agent coordination. However, in highly complex environments (including narrow passageways)
with scalable agents, the circle-based system often fails to reach the goal location with the gathering
principle. Moreover, if an environment allows them to pass through a narrow corridor (case 4 with 3
agents in the group), then we have witnessed that the execution time to arrive at the goal location is
quite large as compared with our proposed technique. Hence, from the outcomes, we can confirm the
superiority of the stated methodology in low as well as highly complex circumstances.

To check the superiority of the proposed bat algorithm, we have examined our system with another
bat-inspired technique, namely, the binary cooperative bat algorithm [3]. The results are shown in
Table 7.5. In the cooperative binary bat scheme, the velocity factor is mapped into a probability value
between zero and one, and then based on that factor, the position of a bat will be updated to one or
zero by comparing the mapped velocity and a random number. Experimenting with the framework
(having 4-agents in the team) with the binary bat scheme in low (case 3) and high-complex (case 4)
conditions, we observe that the formation errors and the consumed times remain nearly equivalent
for both the schemes during the situations of the environment where the obstacle-density is low (i.e.
before changing the initial formation and after achieving formation in the final step). However, in
presence of dynamic obstacles and/or narrow pathways, the performance of the binary bat procedure
(for both the formation error and consumed time) has significantly deteriorated because of the velocity
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Table 7.5 Comparison analysis with Binary bat algorithm [3]

Environment Phases FE (µ ±σ ) Duration (in sec.)
Binary
bat [3] Prop. Binary

bat [3] Prop.

Low complex
(case 3 with

4 agents)

Before changing
initial formation 0.36±0.21 0.37±0.2 0−30 0−32

After changing
initial formation 0.59±0.3 0.52±0.27 31−185 33−123

Achieving
final formation 0.25±0.1 0.18±0.05 186−345 124−304

High complex
(case 4 with

4 agents)

Before changing
initial formation 0.3±0.27 0.28±0.25 0−44 0−50

Avoiding 1st
moving obstacle 0.79±0.2 0.73±0.26 45−124 51−88

Avoiding 2nd

and 3rd

moving obstacles
0.57±0.31 0.45±0.22 125−459 89−290

Achieving
final formation 0.24±0.19 0.13±0.049 460−725 291−575

saturation principle. Often, it is seen that the algorithm gets stuck on the local minimum points. For
overcoming that situation, the algorithm requires to be iterated (one more time) with the updated
sensing data and then searching for the global solution. This phenomenon would significantly enhance
the time of operation of the binary bat scheme and, subsequently, the formation error increases. In
our proposed procedure, we have handled such situations while modulating the pulse emission rate
(r) and loudness (A) of the sensors in the software environment, so that they can be applied in real
scenarios. Because of this reason, our solution consumes less execution time than the binary bat
method. Therefore, interpreting all the comparisons, we can conclude that the mentioned scheme
could be an alternative to the swarm robotics path planning problem.

7.3.5 Drawbacks

The main drawbacks of this approach are:

1. The time complexity is significantly increased with an increasing number of agents in the team.

2. During the experiments, if an agent gets stuck at the local minimum points, then, to overcome
this issue, the loudness and the pulse emission rate are required to be modulated in software.
This procedure consumes a large amount of time to execute.

3. Other than that, in this experiment, we have only considered the behavior of the bat-based
scheme. However, we are not able to implement the BG and PSO approaches in the test
platform because of the algorithmic constraints.
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7.4 Implementation of virtual geometric-region approach
In these experiments, the local control actions are executed inside the pi board of each robot, and
the global controller is running on a specialized unit having an Intel-core i7 processor with 16 GB
of RAM. In this control approach, each UGV only needs to know the coordinate information of the
virtual region’s center for triggering the local controller. The attached sonar sensors are employed to
sense the nearby environment for estimating the next footprint of the virtual structure (as discussed in
Chapter 4).

7.4.1 Experimental procedure

In this experimental procedure, as per our design criteria, the sensing and actuation processes are
running in parallel. The sampling rate of each sensor is 200 Hz. The sensed data acquisition time
has been fixed to 250 msec. and after every 250 msec., the collected sonar data are sent to the global
controller. Based on this collected sensing data from all the robots, the K-means clustering (where
K=2) algorithm is performed. Typically, the algorithm consumes 50 msec. to compute. As a result of
this algorithm, the nearest obstacle locations [r01 ,r02 ], and the average Euclidean distance AD(t) are
evaluated. To ensure the correct estimation, the same procedure is followed for another 250 msec.
Depending on this information, the sensed free-space b f s has been estimated by the global controller.
In this experiment, we are assuming that any of the moving obstacles would not hit the swarm within
1 sec.

7.4.2 Results and discussions

To assess the performance of the proposed strategy in a complex environment, we have carried out
several experiments with the varying number of robots in the team. The environment contains static
obstacles, boundaries, and moving obstacles (e.g., programmable playing cars). The results are
presented below.

Three-robots operating in a cluttered environment

In this experiment, we have employed 3 robotic agents which are required to reach the desired goal in
an obstructed environment as shown in Fig. 7.8. The environment, having a dimension of 350×175
cm2, is a replication of the simulated environment (as depicted in Fig. 4.5 of Chapter 4) which
contains 2 moving obstacles (programmable playing cars), 3 static obstacles, and static boundaries.

After the initial triggering of the local control action, all the robots are forced to converge inside
the virtual circle while the robots do etch a triangular form (Fig. 7.8a). At around t = 22.59 sec.,
for fitting within the narrow corridor with a sharp corner, the virtual circle is reshaped into a virtual
ellipse of an identical area (Fig. 7.8b) based on the real-time sensory information sent by all the
robots. To accommodate all agents inside the virtual region, a line-formation (let us call it an inclined
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(a) at t = 1.1 sec. (b) at t = 22.6 sec.

(c) at t = 35.48 sec. (d) at t = 107.31 sec.

(e) at t = 178.5 sec. (f) at t = 251 sec.

Fig. 7.8 Swarm agent position trajectories in a real environment with the proposed strategy: the green-cross represents the goal location
and the red-contours represent the location of the virtual-structure at the various instances.
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column-formation) has been formed. Next, we observed that the robots, at t = 35.48 sec, create
a new line-formation, which compared to the previous one looks like a row-formation (Fig. 7.8c)
for avoiding obstacles. After dodging all the snags, the entire group has reached the goal zone at
t = 251.08 sec with the initial triangular-formation (Fig. 7.8f).
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Fig. 7.9 Evaluated area and axis length of the virtual regions in the real experiment as shown in Fig. 7.8.

While comparing the experimental result with the simulated one as shown in Fig. 7.9, it is
observed that the mean area of the virtual region is around 10.96 cm2 having a standard deviation
of 1.06 cm2 which generates the coefficient-of-Variance (COV) of 0.097, on the other hand, for the
simulation study, the value of COV is around 0.022 (having a mean area and standard deviation
of 10.82 cm2 and 0.24 cm2 respectively). Moreover, the major and minor axis lengths during the
experimentation are also provided in Fig. 7.9.

Six-robots operating in a cluttered environment

In this experiment, we have employed 6 two-wheeled mobile robots (as shown in Fig. 7.10). Starting
from an initial position (as shown in Fig. 7.10a), all the agents are triggered by the actuation of
the local controller. Consequently, all the robots try to assemble inside the virtual elliptical region
(refer to Fig. 7.10b) while at the topmost level, the global or supervisory control unit generates a
control law based on the sensory information from all the robots. To avoid obstacles (both static and
dynamic), several virtual elliptical contours of identical areas are being generated as shown in the
figures. Specifically, at t = 219 sec, a constricted elliptical region (where the length of the major axis
is much greater than the minor axis) has been formed. In order to fit into the constricted corridor, the
control law forces the robots to form a line (Fig. 7.10c). Finally, all the agents reach the goal location
at t = 615 sec successfully.

The basic premise of this work is the fact that, in all iterations, the area of the virtual regions will
remain constant. However, it is apprehended that the sensing inaccuracies caused by the sensors may



152 Hardware Implementation

(a) at t = 0 sec. (b) at t = 172 sec.

(c) at t = 219 sec. (d) at t = 271 sec.

(e) at t = 391 sec. (f) at t = 615 sec.

Fig. 7.10 Swarm agent position trajectories in a real complex environment with the proposed strategy: the green-cross represents the goal
location and the red-contours represent the location of the virtual-structure at various instances.
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change the identical area requirement in real scenarios. To analyze this fact, we have evaluated the
area of the virtual regions of the above-mentioned experiment (refer to Fig. 7.10) and have compared
the same with the simulated one. We have observed that the mean evaluated area of the virtual region
is around 32.07 cm2 having a standard deviation of 0.14 cm2 which generates the coefficient-of-
variance (COV) of 0.02. On the other hand, for the simulation study, the value of COV is around
0.001 (having a mean area and standard deviation of 32.067 cm2 and 0.0074 cm2 respectively) as
shown in Fig. 7.11b. The lengths of major and minor axes during the navigation process are also
shown in Fig. 7.11a. From the result, it is observed that the virtual areas vary only slightly (and also
within quite an acceptable limit) in the hardware experimentation. Moreover, to analyze the data
(i.e. the evaluated areas of the virtual region) statistically (refer to Fig. 7.11c), it is seen that with
an increasing number of agents in the team, the variations in areas of the virtual regions are being
reduced. The pattern can be corroborated theoretically. The reason behind this is the fact that with
the increasing number of agents, the number of sensing points in real-time increases. Consequently,
the estimation error (positive/negative) associated with the sensing process of the robots gets almost
nullified (ideal situation) and effectively decreases significantly (actual situation). So, we find that in
our work we could establish a very strong statistical correlation between hardware experimentations
and software simulations. Through these analyses, we can conclude that our proposed control strategy
is satisfactorily immune to sensor noise. Or in other words, it seems that the control algorithm
synthesized in this work is substantially robust so far as sensor noise is concerned.

7.4.3 Comparative analysis

Table 7.6 Running time comparison with agent’s scalability (L-F = Leader-Follower)

Number
of agents

Vision
based

L-F [103]
(in sec.)

Proposed scheme

with L-F
(in sec.)

with Centralized
controller
(in sec.)

Simulation

50 192 250 150
100 396 503 307
200 823 1022 616
400 1722 2057 1253

Experiment

2 171 195 143
3 291 342 251
4 525 606 433
5 732 858 527
6 944 1029 615

To examine the effectiveness of the proposed strategy in both the simulations and hardware exper-
iments, we assess the running time of the swarm for reaching the goal location with scalable agents
in the team in an identical environment as depicted in Fig. 7.10. For the purpose of comparison, we
borrow the concept of Leader-Follower framework [103] in our present work, where the adjustments
of virtual regions are performed on a raspberry-pi (4GB of RAM) based leader robot. Hence, the
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global controller resides inside that robot, so, no additional centralized controller is employed in this
experiment. The results are shown in Table 7.6. From the outcomes, we can argue that though the
leader-follower method can serve the purpose successfully, it consumes more time than the proposed
centralized control approach.

Now, we are incorporating the hardware implementation result of the polygonal virtual-region
approach in this next section.

(a) at t = 53 sec. (b) at t = 112 sec.

(c) at t = 367 sec.

Fig. 7.12 Swarm-agent position trajectories in a real environment with the proposed control technique.

7.5 Hardware experimental results of polygonal virtual re-
gion approach

In this study, the same experimental steps as in the preceding section are used. However, as noted in
Chapter 5, the main differentiating point is that the path of the robotic swarm is guided using arbitrarily
shaped virtual polygonal regions with a circle packing scheme. In the previous case (Chapter 4),
motion planning has been performed using geometric virtual regions (circle and ellipse).
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The experimental implementation contains three robotic agents that are required to approach the
target location. The detailed outcome is shown in Fig. 7.12.

Primarily (Phase I of Fig. 7.12a), starting from some randomized locations (orange-circles) all
the robots form an arbitrary boundary (red-contour) with three packed-circles (yellow-disks) inside it
in Phase II under the actuation of the global controller. At t = 42 sec, all the robots have arrived inside
the allotted circles under the influence of the local controller to form a swarm-like architecture. Once
reached inside the specific zones, a new arbitrary boundary is created based on the distance sensing
information along with the packed circles (Phase III). At t = 100 sec (shown in Fig. 7.12b), all the
robots have reached the assigned circular zone while preserving strong cohesiveness among them.
After that a new boundary region is created along with three packed-circles at t = 112 sec (Phase IV).
Finally, the entire group reaches the target zone successfully at t = 367 sec (Phase V) as represented
in Fig. 7.12c.

Finally, a similar hardware architecture has been utilized to study the efficacies of the split-join
aspect in multi-robot navigational problems.

7.6 Hardware implementation results of splitting-merging
approach

To assess the performance of the proposed strategy in a complex environment, we have carried out
several experiments with the varying number of robots in the team. One such outcome is shown in
Fig. 7.13. In this experiment, the environment has a dimension of 390×170 cm2, containing static
obstacles and boundaries with multiple tracks. Out of 6 UGVs, an arbitrary agent is selected as the
lead agent (magenta-circle), and the rest are acting as followers (cyan-circle).

Starting from initial positions (as shown in Fig. 7.13a), all the agents are approaching (under
the actuation of CC) a virtual region (red-ellipse) as etched by the lead agent. At t = 36 sec, all
are assembled inside the virtual-region (refer Fig. 7.13b). After that, the lead robot detects two
different lanes ((red-ellipses)) to move further. Thus, the control has been passed on to the centralized
controller. As per the outcome of the central controller, two sub-swarms (each having a lead agent)
have been formed. Now, the path-plan has been solely carried out by the respective leaders (Figs.
7.13c and 7.13d). At t = 220 sec, it is observed that the created virtual regions (red-dotted ellipse) are
overlapped as both the tracks merge to a common passage. As a consequence, the two sub-swarms
rejoin under the influence of the central controller (Fig. 7.13e). Finally, the entire system reaches the
goal location at t = 385 sec successfully (Fig. 7.13f).

Plotting the lengths of the elliptical axes and areas of this experimental study (Fig. 7.14), it is
observed that the splitting phase has been started around t = 36 sec. Before this time instance, the
area of the virtual region was 3120 cm2, the major and minor axis lengths were 48.75 cm and 20.4 cm
respectively. As the repulsion range of each agent is around 11.3 cm, hence, we can infer that the
agents do not produce a cohesive swarm as of now. After that, the sub-swarms are created with an
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(a) at t = 0 sec. (b) at t = 36 sec.

(c) at t = 55 sec. (d) at t = 220 sec.

(e) at t = 262 sec. (f) at t = 385 sec.

Fig. 7.13 Hardware implementation results of the proposed split-merge control approach with 6 agents in the team.
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equal number of agents. So, the elliptical areas, as well as axis lengths of those sub-swarms, are found
to be very close to each other. At t = 260 sec, the sub-swarms are initiating to rejoin for creating a
super-swarm. Finally, when the super-swarm has reached the destination, the structural area of the
virtual region is found to be around 2400 cm2, thus producing a cohesive swarm.
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Fig. 7.14 Axis-lengths and the computed areas of the virtual-structures in the hardware experiment.

Table 7.7 Statistical analysis on the execution time with scalable agents for the hardware experiment

No. of
Agents

Mean
time

(in sec)

std
(in sec) COV

1st quartile
(Q1)

(in sec)

3rd quartile
(Q3)

(in sec)

IQR
(Q3 −Q1)
(in sec)

Median (Q2)
(in sec)

Max.
time

(in sec)

Min
time

(in sec)
4 309.7 22.71 0.0733 289.84 328.86 39.02 309.53 350.53 270.71
5 349.56 16.11 0.0461 335.48 363.45 27.97 350.19 376.45 321.89
6 386.77 14.72 0.0381 373.74 399.19 25.45 386.58 411.96 362.02

Statistical analysis of hardware experiment

In the hardware experiment, we have created a sophisticated environment to validate our proposed
methodology. The experimental studies have been carried out with four, five, and six robots in a
similar environment as shown in Fig. 7.13. To verify the consequences as obtained from the statistical
analysis of the simulation outcomes, we perform a similar study on the execution times with scalable
agents in the swarm. The results are presented in Table 7.7, and Fig. 7.15.

From the outcomes of the analysis, we have witnessed that the mean and median execution times
increase, and the standard deviation, coefficient of variation, and inter-quartile range decrease with
the scalable agents of the swarm.

Therefore, from the outcomes, we can conclude that whether software simulations or real-world
experiments, our analysis follows an identical pattern. The fundamental reason behind this fact is that
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Fig. 7.15 Analysis on agents’ scalability with execution time of hardware experiments.

as the number of sensing points increases with scalable agents, the leader agent evaluates optimal
virtual regions in each step of movement. Thus, the same procedure would not be repeated in the
next iteration. Subsequently, the standard deviation, coefficient of variation, and inter-quartile range
reduce.

7.7 Limitation of the hardware experiments
The work could have been better presented if only we could arrange for a real swarm of robots,
including at least 15 to 20 robots. The scalability of the proposed work could have been established
in steps. Unfortunately, till now, we could fabricate only 6 robots (the time progression is one to
three to four and then six) due to both temporal and cost constraints. The patterns (that we have
observed in hardware simulation with these robots) have entailed us to strongly extrapolate the pattern
of dynamics of a swarm of robots in real-time. This limitation in experimentation has tried to be
traded off with the help of extensive simulation works and statistical analysis of the real-time behavior
of the swarm. In this respect, we argue that from the experimental outcomes, it is apparent that our
proposed solution would work in real-time too where the issue of scalability would be complied with
satisfactorily.

7.8 Summary
In this chapter, we have implemented a hardware framework to test the proposed control strategies
as discussed in Chapters 3, 4, 5, and 6. Several environments have been created with static and
dynamic obstacles. Initially, we test the bat algorithm-based evolutionary approach. To measure the
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adaptability of the proposed system, several complex dynamic environments have been created. The
performance of the proposed system has been compared with the circle-based gathering approach and
Binary bat scheme. After that, we have tested the virtual geometrical region approach with scalable
agents in the swarm. The proposed scheme is compared with the traditional leader-follower approach.
Then, we perform hardware experimentation of the polygonal region technique. Three-wheeled robots
have been employed to test the viability of the proposed controller. Finally, the split-join aspect
has been implemented with six mobile robots. Based on the outcomes and comparative studies, we
can conclude that the proposed algorithms provide desired outcomes as per our expectations and
outperform the existing techniques.



Chapter 8

Conclusion

In this dissertation, we have established a fault-tolerant cohesive swarm searching for a target or
multiple targets while navigating through an unknown occluded environment. The proposed adaptive
control laws can successfully drive the system towards the target point while avoiding obstacles during
the exploration steps. The brief summaries of the thesis have been presented below.

8.1 Summary of the Dissertation
In Chapter 3, we have proposed a novel adaptive formation control strategy employing the bat
algorithm-based evolutionary technique for a multi-robotic framework to handle the traditional obsta-
cle avoidance problem. Three stabilized controllers have been formulated to trigger simultaneously on
each agent in order to approach the target autonomously (i.e., without any human action). Moreover,
to dodge the nearest (static/ dynamic) obstacles, decentralized self-organized flexible patterns are
developed among all the agents in the group for accomplishing strong inter-agent cohesiveness.
Our extensive simulation results and the hardware implementations demonstrate the viability of the
proposed control scheme. From the discussions, we have identified several interesting behavioral
patterns of the bat algorithm over the other well-known swarm intelligence techniques.

In Chapter 4, we have employed the concept of the geometrical region-based shape control
technique of a swarm of robots to avoid obstacles in an unknown environment. To realize this
objective, a virtual circular region is considered initially for accommodating all the agents having
a strong inter-agent cohesion inside the contour. For dodging obstructions, the virtual region is
further modified to an ellipse of an equivalent circular area. All of the agents are required to position
themselves inside the created region (circle or ellipse) to attain strong cohesion. The proposed
system can also handle the agent failure condition during the navigational process. To illustrate the
performance of the proposed control actions, extensive simulation results are provided in various
scenarios. The comparison results demonstrate the effectiveness of the proposed scheme. Furthermore,
this technique is also examined in real environments with a team of two-wheeled mobile robots.
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In Chapter 5, we have proposed an arbitrarily shaped polygonal region-based control technique for
avoiding obstacles in an unknown challenging environment. To evade the obstacles, more specifically
in the narrow pathways and corners, an arbitrarily shaped virtual region is initially created. To
accommodate the agents inside the virtual boundary, several identical circular regions are packed
employing the circle packing strategy. Finally, circles are allotted to each of the agents for forcing the
robots toward the assigned circles. As per the outcome of the proposed approach, we observe strong
inter-agent cohesiveness among the agents during the navigation. To illustrate the performance of the
proposed controllers, simulation results along with hardware implementation have been presented.

In Chapter 6, we have conceptualized a novel approach to perform the split-join aspect of a
robotic swarm. The region-based shape control scheme has been linked with the leader-follower
methodology to achieve the splitting and merging of a swarm of robots. The proposed control method
can effectively be applied in multi-target as well as multi-path scenarios. Moreover, in the face of the
incoming dynamic obstacles, the swarm can break into sub-swarms autonomously. Two sub-swarms
moving along the same path can rejoin to form a super-swarm (if required) utilizing the offered
procedure. To synthesize the control scheme, it is verified that the proposition would be sufficiently
scalable in terms of the number of agents in the swarm, sub-swarm, and super-swarm. Furthermore,
within a team, all the agents will maintain cohesiveness among themselves during the navigational
steps. To illustrate the performance of the proposed control action, simulation results along with
hardware experimentation have been performed in various scenarios. The performance analysis shows
the efficacies of the proposed scheme.

Finally, in Chapter 7, we have presented the hardware framework to test the proposed control
strategies as discussed in Chapters 3, 4, 5, and 6. Several environments have been created with
static and dynamic obstacles. Initially, we have tested the bat algorithm-based evolutionary approach.
To measure the adaptability of the proposed system, several complex dynamic environments have
been created. The performance of the proposed system has been compared with the circle-based
gathering approach and Binary bat scheme. After that, we have tested the virtual geometrical region
approach with scalable agents in the swarm. The proposed scheme is compared with the traditional
leader-follower approach. Then, we perform hardware experimentation of the polygonal region
technique. Three-wheeled robots have been employed to test the viability of the proposed controller.
Finally, the split-join aspect has been implemented with six mobile robots. Based on the outcomes
and comparative studies, we can conclude that the proposed algorithms provide desired outcomes as
per our expectations and outperform the existing techniques.

In this context, the contributions of this thesis are reiterated as follows:

8.2 Contributions
1. In the initial work of this thesis, we propose a bat algorithm-based evolutionary technique

for a multi-robot system for achieving a fixed mission. In this aspect, we have formulated
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three dedicated controllers to perform the following operations during the navigation. 1).
approaching the target, 2). avoiding static and dynamic obstacles, 3). maintaining inter-agent
cohesiveness. The stability of the proposed controllers is studied with the help of a Lyapunov
candidate function. The simulation results, comparative analyses, and hardware outcomes
demonstrate the efficacy of the proposed scheme.

2. The evolutionary approaches generally consume a large amount of time to compute, hence
with a scalable swarm, it is very challenging to complete the mission in a stipulated time. So,
to overcome this limitation, in our next work, we propose a novel region-based shape control
approach for the path planning of a swarm of robots. In this control scheme, the trajectories of
the agents have been controlled by either a virtual circular region or a virtual elliptical region.
To alter the inter-agent formation depending on the environmental condition, a spanning-tree
assisted shape matching algorithm has been offered. The proposed framework can handle the
situation well in the face of agent failure, thus making the system fault-tolerant. The simulation
results, comparative analyses, and the hardware experimental outcomes confirm the robustness,
scalability, as well as flexibility of the swarm arrangement.

3. Despite the optimal characteristics of the previous approach, the inter-agent cohesiveness
deteriorates significantly in constricted environments or narrow pathways where the shape of
the virtual ellipse is further expanded along the major axis while the minor axis is shrunken and,
in an extreme scenario, may culminate into a line-formation. To overcome such limitations,
in our next work, the elliptical region has been replaced by an arbitrarily shaped polygonal
virtual region under the assumption that more agents can be accommodated inside the newly
fitted virtual region. The proposed methodology enhances the inter-agent cohesion in narrow
corridors, and the framework is scalable in terms of an increasing number of robotic agents.
The hardware and software outcomes demonstrate the viability of the proposed approach in
terms of scalability, flexibility as well as strong inter-agent cohesiveness.

4. Finally, we have addressed the navigational issue of a swarm of robots in multi-path/multi-target
scenarios. Here, we adopt the elliptical region-based shape control technique and the traditional
leader-follower scheme. During the navigation, if the leader robot detects multiple pathways to
proceed further, the parent swarm will be broken down into several sub-swarms, thus, splitting
will occur. Furthermore, it might so happen that after a while two or more paths would merge
and create a single common passage. In that situation, the sub-swarms, functioning in those
paths, will be routed through those converging paths to ultimately merge/rejoin. This approach
also ensures robustness, scalability, flexibility, and strong inter-agent cohesiveness.

5. All of the above-mentioned approaches are simulated in software settings with scalable agents
in the team. Moreover, to validate the efficacies of the proposed schemes, several real-time
experimentations have been performed with raspberry-pi controlled two-wheeled mobile robots,
namely ’SonPI’ having Wi-Fi (802.11) communication protocol, equipped with an array of
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five-sonar sensors. Our experimental outcomes provide the efficacies of each of the proposed
approaches.

As per the outcomes of the software and hardware experiments, we can conclude that the proposed
scheme could effectively be used in swarm robotics path planning problems.

8.3 Future Directions
Several problems remain open in the research of this dissertation which are listed below.

1. In this dissertation, we mostly focus on the adaptive behavior of a swarm of robots for avoiding
obstacles inside an unknown occluded environment. However, in some application areas such
as carrying an object from a source location to the destination employing a robotics swarm,
strict formation control is utterly required. The region-based shaped control strategy could be
used in order to achieve tight formation amongst the robots for transporting an object from one
location to another.

2. We have not specified or tested the performance of the swarm in the presence of a noisy
environment, such as the deep sea or deep space, in this research. In these types of situations,
each agent in the swarm should have an additional control law to avoid the noise. This work
could be expanded further in light of such circumstances.

3. Last but not the least, we have primarily used two-dimensional scenarios such as wheel robots
to evaluate our proposed algorithms. These strategies, on the other hand, might be useful in
three-dimensional circumstances, such as with drones or quadcopters.
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Appendix 1
The traditional PSO [140] algorithm is presented below

1. The algorithm is initialized with a random particle population to search the
optima by updating generations. Each particle has three main properties: the
current position posi, velocity veli, and the personal best position in the search
space yi.

2. In each repetition, the position of the particles are updated using pbest (personal
best), and gbest (global best) by minimizing the objective function as defined in
Eq. 3.22.

3. After finding the best values, each particle will update using a modified velocity
and position as shown below

velk+1
i = w× velk

i + c1 × rand1(pk
best,i − posk

i )+ c2 × rand2(gk
best,i − posk

i )

(1)
posk+1

i = posk
i + velk+1

i (2)

where, velk+1
i , velk

i are the velocities of the ith particle at the (k+1)th, and kth

iterations respectively, posk+1
i , posk

i are the positions of the ith particle at the
(k+1)th, and kth iterations respectively, c1, c2 are the positive constants, rand1,
and rand2 are the random variables with uniform distribution between 0 and 1,
and w is the inertial weight.

4. The process continues until all particles are exhausted and the final gbest is the
optimal solution.



Appendix 2
The Bacterial Foraging Optimization algorithm (BG) contains four-sub phases

[179] that are explained below.
Chemotaxis: This process simulates the movement of an E. coli cell through

swimming and tumbling via flagella. An E.coli bacterium can move in two different
ways. It can swim for a while in the same direction or it may tumble, and alternate
between these two modes of operation for the entire lifetime. Suppose θ i( j,k, l) repre-
sents ith bacterium at jth chemotactic, kth reproductive and lth elimination-dispersal
step. C(i) is the size of the step taken in the random direction specified by the tumble
(the run length unit). Then in computational chemotaxis (θ i( j+1,k, l)), the movement
of the bacterium may be represented by [176]

θ i( j+1,k, l) = θ i( j,k, l)+ c(i)
∆(i)p

∆T (i)∆(i)
(3)

where, ∆ represents a vector in the random direction in [−1,1].
Swarming: When a single bacterium reaches in the goal position, it delivers an

attraction signal to other agent so that they can swarm together. The mathematical
representation for swarming can be represented by

Jcc(θ , p( j,k, l)) =
s

∑
i=1

j
s

∑
i=1

jicc(θ ,θ
i( j,k, l))

=
s

∑
i=1

"
−dattractant ×

 
−wattractant

p

∑
m=1

(θm −θ i
m)

2

!#

+
s

∑
i=1

"
−hrepellent ×

 
−wrepellent

p

∑
m=1

(θm −θ i
m)

2

!#
(4)

where, Jcc(θ , p( j,k, l)) denotes the cost function that needs to be minimized iteratively
while optimizing the parameters p present in each bacterium. The another parameters
dattractant , wattractant , hrepellent , and wrepellent are to be chosen adaptively.

Reproduction: To formulate the reproduction technique, after Nc chemotactic step
size, the health of all bacteria is sorted in ascending order, based on their accumulated
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