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Abstract 
 

 

 
Conventional machining of hybrid titanium matrix composite (TMC) is very intricate due to its 

superior characteristics of corrosion resistance, superior strength-to-weight ratio, fatigue and 

abrasion resistance. It is expansively necessary for aerospace, bio-medical and automobile 

industries. In recent diverse modern multi-disciplinary industries like automotive, aerospace 

and biomedical there is a comprehensive usage of titanium matrix composite (TMC) for its 

exceptional strength and resistant properties. The prime scope of this investigation deals with 

the development of a novel TMC by laser engineering net shaping (LENS) process and recent 

state-of-the-art of advancement of tribo-mechanical and metallurgical properties like Young’s 

modulus (550 GPa), co-efficient of thermal expansion (8.6x10-6 /K), hardness (396 HV), yield 

strength in compression (945-1020 MPa), ultimate compressive strength (1020-1096 MPa) and 

elongation (25-32.5%). Laser process parameters like laser power (P), scan speed (V) and 

energy input/area (E) are varied. The microstructure and characterization depict an outstanding 

interfacial bonding between TiB2 and Ti where the best parametric combination is identified. A 

novel optimization algorithm named as desirable genetic algorithm (DGA) is proposed in this 

research. The objective functions determined by desirability function are further incorporated in 

genetic algorithm in MATLAB R2018a to improve the optimized solution. Multi-objective 

optimization (MOO) is developed by Box-Behnken design (BBD) and mathematical model is 

projected considering response surface methodology (RSM) on output responses like cooling 

rate (CR) and hardness (H), and legitimated by confirmation tests. ANOVA is incorporated for 

seeking the contributing effects and significance of the parameters. Optimal solution achieved 

after DGA, when P is 350.956 W, V is 12.371 mm/s, E is 49.475 J/mm
2
, CR is -3146515.795 



 



XX 
 

K/s and H is 395.097 HV, and combined overall desirability is 0.838. Optimization is 

additionally enhanced by 20.049% of CR and 0.229% of H when evaluated with DGA. 

 

Further the investigation deals with the development of another new-fangled optimization 

algorithm termed desirable grey relational analysis (DGRA) which is a combination of 

desirability and grey relational analysis. Here, the predicted responses obtained from 

desirability function are further analyzed with the experimental results obtained from WEDM 

by varying power (P), time off (Toff) and peak current (IP) which are regarded as chief input 

process parameters. Comparative analysis is projected by FTOPSIS along with FAHP for 

criteria weights between experimental and proposed MOO algorithm. RSM is conducted on 

BBD model (3 factor / 3 levels) DOE on output responses like material removal rate (MRR), 

surface roughness (SR), kerf width (KW) and over cut (OC). Satisfactory outcomes are 

obtained authenticated by confirmatory test. To obtain the significance of these models, 

ANOVA is again incorporated. Optimal solution is obtained by desirability approach to achieve 

the most excellent output responses which are additionally improved by 1.75%, 0.73% and 

1.02% when contrasted with desirability to FTOPSIS, FTOPSIS to DGRA, and desirability to 

DGRA respectively. 

 

Keywords: Laser engineering net shaping; Wire electro-discharge machining; Desirable grey 

relational analysis; Desirable genetic algorithm; Microstructure; Multi-objective optimization
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1. Introduction 

A composite is developed from more than two essential constituents with appreciably 

diverse physical and chemical characteristics combined to manufacture a component with 

enhanced and better uniqueness compared to the individual elements. These composites possess 

greater strength, much lighter and cheaper than other conventional materials. Composites have 

wider applications in aerospace, automotive industries, space, defense and in underwater because 

of its improved mechanical, physical and tribological properties like elevated specific strength, 

resistance to corrosion and wear, improved strength-to-weight, high stiffness, abrasion, impact 

resistance, etc. Composites are classified under: reinforced concrete, fibre-reinforced polymers, 

composite wood, ceramic matrix composites, metal matrix composites, advanced hybrid 

composites. Ceramic comprises of an inorganic metal and non-metal mainly bonded in covalent 

or ionic bonds. This word is referred to a product obtained through the action of fire upon earthy 

product. The most primitive ceramics created by humans were pottery objects made of clay 

combined with silica which was heat-treated, hardened and sintered. Afterwards, ceramics 

were fired for creation of soft multi-colored products, diminishing porosity by using glassy, 

amorphous coatings on pinnacle of crystalline substrates. Recently, semiconductors are widely 

manufactured by new ceramic materials. Ceramics have towering melting point, lofty hardness, 

elevated thermal conductivity, and elevated corrosion and wear resistance. The combination of 

two or more of these materials together produce a new material called composite material which 

has better and enhanced characteristics than the monolithic alloys. Ceramics are defined as non-

metallic and inorganic materials manufactured from minerals or chemically processed powders. 

Ceramics are characteristically crystalline amalgams produced amid metallic and non-metallic 

elements like alumina (Al2O3), silica, silicon carbide (SiC). Wide applications of ceramics are in 
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engine components, medical components, computer peripheries, electronic gadgets, cutting tools, 

etc.  

Titanium based composites are strong, light and durable advanced hybrid composites with 

outstanding properties like corrosion resistance, fatigue resistance, etc. These hybrid composites 

are highly used in various industries like automobile, aerospace, biomedical, chemical, food etc 

as indicated by Gu et al. [1]. Currently, titanium is extensively used in medical grounds for its 

exceptional bio-compatibility with advanced growth in bones and other tissues. Titanium is used 

for its vast applications in miscellaneous medical equipments like, dental, hips, bones, and knees 

replacement enucleation and a range of other surgical instruments as obtained by Elias et al. [2]. 

However, machining of titanium alloys and composites by conventional methods is very 

complicated because tool wear occurs at elevated speed and temperature which affects highly to 

other machining characteristics like surface finish as obtained by Younas et al. [3]. In addition, 

Kumar et al. [4-7] pointed out other limitations like high initial cost, ease of availability and 

manufacturability. The microstructure and mechanical characteristics of titanium by altering 

different environmental conditions was studied by Saji et al. [8] and Fleck et al. [9].  

Niu et al. [10] reinforced Ti with TiB2 by using induction skull melting (ISM) and inferred 

superior characteristics in the developed titanium matrix composite (TMC). Nevertheless, for 

widespread prospects of better applications of TMCs, enhanced performance with low 

manufacturing cost must be incorporated. Their properties have to be improved with suitable 

processing technology, resulting in the best replacements of other expensive metallic materials 

for intricate designing of complex shapes. Hence, this exploration has led to the development of 

TMC by laser engineering net shaping (LENS) process. LENS engages powdered metals and 

ceramics for production of accurate functional parts. It generates multifaceted, net-shape 
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components in an extremely superior method unwaveringly from powders with minimal 

processing, enhancing the production rate. LENS provides a line-by-line, net-shaping mechanism 

for manufacturing of complicated components obtained from computer aided design geometry. 

The most imperative deposition factor is powder feed rate. LENS inhabits ceramic and metal 

powders for fabricating complex and broken shapes. A layer-by-layer methodology is 

incorporated for manufacturing computer aided design (CAD) specified precision parts. The 

powdered metal is positioned to the tip of the laser beam’s focal point by nozzle-deposition 

technique. Nozzle deposition technique [11] is used to supply the powder at the focus of the laser 

beam. An important advantage of LENS process is to manufacture complicated and graded 

hollow components coalescing different materials using multiple powder feeders. LENS is 

employed for re-commissioning of damaged components which were earlier considered 

unrestorable, thereby developing enhanced microstructure formation of TMCs [10, 11]. Attar et 

al. [11] developed TMC and inferred powder feed rate to be the most imperative deposition 

parameter throughout LENS process. LENS process provides an advantage of producing 

complex and intricate hollow components with the help of multiple powder feeders. Hu et al. 

[12, 13] examined an assortment of 98.4 wt.% of pure titanium with 1.6 wt.% of boron roughly 

about 4 hrs in LENS under different processing conditions and obtained improved characteristics 

of TMCs. Increment of laser power transformed non-uniform distribution of Ti-TiB at 125 W to 

a partial and fine 3D network at 175 W to a full 3D network with excellent mechanical properties 

at 200 W. Attar et al. [14] constructed Ti-TiB hybrid composites by LENS in an assortment of 

powdered mixture of 98 wt.% pure titanium with 2 wt.% boron and inferred a coarse 

microstructure because of elevated cooling rate, but very little research has been made so far for 

the development of Ti-TiB2 composite using LENS process. Machining titanium with maximum 
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precision and in minimum time is a major concern in biomedical research. Titanium is highly 

chemically responsive towards various tool materials at elevated temperature. Therefore, work 

hardening, high temperature generation, excessive cutting pressure and vibrations are serious 

issues for proper machining as inferred by Khan et al. [15]. Hence, proper tool material of the 

wire must be selected for appropriate machining of titanium alloys and composites.  

1.1. Laser Engineering Net Shaping (LENS) 

LENS provides an effective alias of direct metal deposition (DMD) where energy deposition is 

directed under the categorization of additive manufacturing (AM) process as designated by 

American Society for Testing and Materials (ASTM). DMD merges powder from the feeding 

nozzle with the help of laser as designed by CAD and other numeric control technologies. An 

elevated laser beam power is employed for creating a melt pool on the substrate and concurrently 

powder feeding is carried over the melt pool for consolidation. The metal powder is then 

supplemented from the nozzle over the melt pool by traversing the laser beam. By this method, 

independent delivery of the powder and the laser beam is operated irrespective of the orientation 

position. This LENS process is susceptible to powder flow behavior as the powder is sent by the 

nozzle which in turn provides a consolidated pathway of preferred volume and surface quality of 

texture [10, 11]. This latent process assures manufacturing suppleness of multifaceted silhouette 

deposition of wide variety of challenging materials. Appropriate process parameters are to be 

selected for acquiring the optimality condition and solution of performance measures. Various 

powder materials can be supplied for fabrication of functional graded objects of different hybrid 

alloys and composites. Nozzle deposition technique [11] and powder feed rate [11] are the two 

important parameter of LENS process. A competent powder delivery system distributes 

uniformly the powder with high accuracy to the laser-substrate interaction zone [11]. A powder 
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delivery is hence the most vital component for uniform transportation of stream efficiently to the 

interaction zone of laser- melt pool-substrate. LENS process is cost effective and time saving. The 

powder is carried from powder feeder by transport or carrier gas or by gravity-driven technology. 

The particles of the powder progress through an assortment of various channels/ chambers which 

are inside the nozzle, thus having collisions with nozzle wall to provide a stream of powder 

particles which are directed at a laser spot. Transformation of phase by melting and solidification 

takes place after that for fabrication with XY table movement. The deposition head consisting of 

powder delivery nozzle shifts up vertically following each layer. The complete process is 

conceded in an inert environment for protecting the melt pool from oxidation. Fig. 1.1 provides 

the graphical representation diagram of components of LENS method where laser beam is scanned 

on the substrate. The basic components of this process are computer numeric control (CNC), 

CAD model, laser system, powder feeder and feedback control system. Interaction of beam with 

substrate results in generation of localized melt pool. Subsequently, the delivery of powder is 

carried by the nozzle over the interaction zone. Then this zone fuses with the incoming powder 

resulting in bond formation with the substrate. Development of LENS process occurred at Sandia 

National Laboratories at nineties to which resulted in excellent improvement by employing 

multiple material processing and utilizing blended powder feeders. The process of LENS is more 

commercialized and successful amongst all direct energy deposition (DED) processes. Advantages 

of LENS are: 

� Horizontal, vertical and inclined orientation can be obtained by deposition technique with 

the assistance of additional axis of work stage. 

� Variety of blended powder can be processed. 

� System envelope size is not a constraint, so manufacturing of intricate and graded void 
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components coalescing diverse materials by means of multiple powder feeders can be 

done. 

� The process is relatively appropriate for repairing and coating applications on flat and 

round surfaces. 

� Functional grading can be accomplished in-situ, with the help of different powder 

combination. 

� Higher deposition rates are obtained than the powder bed fusion process. 

� Minimal heat affected zone is obtained.  

 

Fig. 1.1. Components of LENS process 

Disadvantages of LENS are: 

� Efficiency of process with proper powder utilization is a challenge. 

� The resolution of deposition is lower than some other AM processes. 
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� The deposition of unsupported structures is an issue while using a limited axis work stage. 

� Inter-track porosity and high dilution ratio are some common defects. 

� Requirement of post-processing operations are mandatory for improvement in surface 

finish and geometrical accuracy. 

� Powder particle size may result in a hazardous work environment. 

1.2. Wire electro-discharge machining (WEDM) 

WEDM as depicted in Fig. 1.2, employs a wire as the tool electrode with electro-thermal 

mechanism for precision manufacturing. Both the workpiece and wire electrode (tool) are 

inundated in dielectrics. Dielectrics act as electrical insulator and then machining occurs with the 

incidence of the electrical discharge. Therefore, a gap is created on the wire advancement 

towards the workpiece and higher voltage is generated breaking the dielectric and generating the 

electrical discharge initiating a spark between the wire-workpiece interfaces. The dielectric 

becomes an ionized gas and turns into plasma bubble. The plasma bubble collapses, vigouring 

the cutting material to disperse into the dielectric, creating small craters leading to wire failure 

and rupture. This process continues approximately around 2,40,000 times per second removing 

the metal and a precision cut is formed. A flushing flow of dielectric acts as a coolant of the wire 

removing the scattered particles. As the wire erodes, a WEDM machine continuously supplies 

un-sullied wire from a reel and dumps the used eroded wire to trash bin for recycling. WEDM is 

an advanced EDM of unconventional machining group. Materials which are electrically 

conductive are machined with the help of electro-thermal system by a succession of distinct 

discharges in the gap of workpiece and electrode inundated in dielectrics. There is an occurrence 

of excessive lofty temperature where discharge transpires causing removal of molten surface 

materials of the workpiece. The dielectric flushes the unwanted fragments from the arena of the 
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Fig. 1.2. Schematic diagram of WEDM 
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WEDM has major application in modern industries in metal cutting as it achieves a better 

dimensional accurateness and fine surface finish compared to other non-traditional processes. 

The operating cost is also lesser compared to other processes. The complicatedness which 

bumped into die sinking EDM is evaded by WEDM, because the multifaceted design tool is 

reinstated by poignant relative movement of the conductive wire and guides. WEDM provides 

the best substitute for machining exotic, conductive, elevated strength and temperature resistive 

advanced ceramic composites with an aim of creating obscure products. Nowadays, CNC is 

commenced into WEDM which is itself most important boon in machining era.  

1.2.1. Basic principle of WEDM process   

WEDM generates an impulse voltage between the gap of electrode wire and workpiece, all the 

way through a servo system, and machining occurs by generation of innumerable sparks 

inundated in dielectrics. The basic principle is creation of a difference in voltage by power 

supply between the electrode and workpiece as depicted in Fig. 1.2. During the approach of the 

tool towards the workpiece, there is an increment in strength of the gap’s electric field till the 

separation of the tool in the dielectric, resulting in machining of workpiece. A plasma channel is 

occurred due to the ionization of the dielectric. At cathode point the electrode wire is connected 

and at anode the workpiece is connected. When the tool approaches towards the workpiece at 

some threshold point, the insulating liquid breaks down and small discharges are generated. A 

temperature range of 8000
0
C-12,000

0
C exists between the gaps. The plasma channel is 

fragmented during the power off time reducing the temperature and flushing away the molten 

particles. When discharge occurs, there is a collapsibility of plasma channel and occurrence of 

vapor bubble which explodes inside the dielectric. The evicted material is reddened away but 
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some portions of the melt re-solidify over workpiece surface termed as recast layer. Three basic 

conditions that WEDM works correctly: 

1. The gap must be maintained in an optimum range. Here, the impulse power breaks 

creating discharging of sparks and the battered workpiece also flushed away. Larger gap 

results in improper breaking and indecent spark discharging. And smaller gap results in 

short circuit where no spark discharging will happen. 

2. The process must be carried in an insulated liquid like deionized water which will act as a 

discharging medium and should also afford proper flushing and cooling. 

3. The discharge timing must be very minimal because the released heat is not sufficient to 

affect the workpiece with limiting energy.  

1.2.2. Components of WEDM setup   

The WEDM components are: 

(i) Power supply: It creates sufficient voltage difference between the wire and the workpiece to 

melt and vaporize the material from the wire surface. The frequency of the pulse is around 1 

MHz resulting in abridged crater and improved surface finish.  

(ii) Dielectric medium: Deionized water and in some research papers kerosene are used as 

dielectric medium. Deionized water is preferable due to its accessibility, enviable thermal 

properties, squat viscosity and almost freed from polluted environment. Small viscosity results in 

competent flow whereas lofty cooling rate gives emaciated recast layer. 
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(iii) Positioning system: It is a computer numeric two-axes controlled system where wire 

approaches to workpiece but it must be capable to sense any short circuit created by the gap and 

the debris.  

(iv) Wire drive: This mechanism serves two functions; one being continuous delivery of fresh 

wire and the other to keep the wire in proper tension. While traversing towards the machining 

zone, the diamond wire guides protect the fresh wire. Again while travelling the spool, the wire 

pass all the way through a succession of tensioning rollers.  

1.2.3. Dielectric used in WEDM 

Deionized water and kerosene are used as dielectric medium in WEDM system. In some 

researches kerosene with little amount of SiC abrasives are also used. But the most favorable 

dielectric is the deionized water because it is readily available, it has low viscosity, it is non fire 

hazard, it has high cooling rate and high MRR. Due to high cooling rate, there is a slender white 

layer produced over the workpiece surface. This dielectric helps in machining as well as flushing 

of the unwanted debris. After proper filtration, the deionized water is recycled to reduce the cost. 

Resins may be used to keep a constant resistivity of this dielectric.                                                                                    

1.2.4. Wire electrode  

In WEDM a slender single-strand metal wire (diffused zinc coated brass) is supplied towards the 

workpiece, inundated in dielectric medium of deionized water. During machining wear of the 

electrode is high, but this does not affect the performance as fresh wire with appropriate tension 

is supplied continuously from a spool as a straight wire. Here, wire diameter of 0.25 mm is used 

in WEDM process. Nowadays, stratified wires are used as wire electrodes, where copper is the 

parent material and a thin layer of zinc is made on it, for carrying more current and higher MRR.                            
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1.2.5. Process parameters of WEDM   

Different process parameters of WEDM are: 

(i) Power (P): Power is the main process parameter in WEDM which supplies current and 

voltage to create spark erosion. 

(ii) Peak current (IP): It is the highest current obtainable for every pulse from power supply 

which is the average of the amperage that is supplied to the electrode for discharge in the spark 

gap deliberated in a complete cycle.  

(iii) Pulse-on time (Ton): This is the duration of the electric discharge that arises between the gap 

of tool and workpiece where material is removed. 

(iv) Time off (Toff): In this time duration, there is no spark in the machining gap, rather the 

eroded debris are removed from the machining zone as well as cooling takes place  during this 

time interval. 

(v) Pulse frequency: Pulse frequency is the number of times per second for the current to be 

turned on/off. This sparking frequency has greater influence on the surface finish. Larger spark 

gaps are created by lower frequency for rapid material removal with irregular surface finish and 

elevated frequencies with miniature gaps create smooth surface finish.   

(vi) Wire velocity: It is an important criterion in WEDM process. High wire velocity results in 

non-uniform discharge and more wastage of wire resulting in higher operating cost. Lower wire 

velocity results in frequent breakage of wire hampering productivity. So optimum wire velocity 

is a must criterion in WEDM for efficient machining operation. 

(vii) Gap voltage: It is the voltage across the gap during the current flow. 
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(viii) Wire tension: It is the tension created during wire feeding which is essential for proper 

machining. 

(ix) Flushing pressure: It is kept at optimum level so that the dielectric can redden away the 

battered particles from the machining zone, otherwise it will create short circuit between the 

electrodes resulting wire rupture.   

1.2.6. Prime Performance Measures 

(i) Material Removal Rate (MRR): MRR involves in the productivity of all manufacturing 

industries. It is the rate of removed quantity of the workpiece material when machining time is 

considered (mm
3
/min); hence the characteristic efficiency of the machine is determined. From 

Fig. 1.3, it is pragmatic that superior MRR is accomplished with deionized water when 

contrasted to kerosene. It is primarily because of the adherence of carbon to the tool surface 

which defends the tool electrode’s erosion in case of deionized water. But with kerosene, dense 

abrasives get accrued in between the gap of the electrode causing instability in the discharge. The 

increment of MRR for deionized water is due to the increment of the discharge current (power) 

as the removal of the material is easily obtained by increasing the density of the current [16]. The 

MRR increases and reaches a threshold value with the enhancement of pulse on time duration 

but then diminishes. For higher MRR; Peak current (IP), Time on (Ton) and Pulse Duration (PD) 

are the main input process parameters and the other factors are less significant according to past 

literature [4-7]. This is mainly due to the increment of plasma channel and sufficient current 

density for proper stable discharge to the threshold value and decreases beyond due to 

occurrence of large carbon content forming large amount of recast layer. At high PD, increase in 

the localized temperature decomposes the carbon leading to lower the MRR value. It is also 
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unswervingly proportional to the discharge pulse energy which is again dependent upon the 

servo voltage and capacitance. Thus, at elevated voltage wider gap is formed, leading to high 

discharge. The capacitance establishes the frequency, larger crater forms at the lower frequency. 

MRR is also affected largely by hardness. Lower hardness and melting temperature cause higher 

MRR which is determined by Niu et al. [10]. According to Lin et al. [16], higher MRR is 

obtained with the increment in PD. MRR also augments with the amplification in IP. The MRR 

enhances linearly with the PD with deionized water, but enhances non-linearly upto the optimum 

zone and then reduces when kerosene is used. Electrode wear ratio (EWR) amplifies with PD 

with kerosene rather than deionized water as obtained by Chen et al. [17]. This research also 

provides a comparative correlation using kerosene and deionized water with silicon carbide (SiC) 

abrasive concentration as dielectrics.  

 

Fig. 1.3. MRR obtained in different dielectrics [17] 

It is observed from Fig. 1.3, the maximum value of MRR is obtained after using 90g/l SiC 

concentration in the dielectric fluid. MRR decreases beyond this value due the occurrence of 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 30 60 90 120

M
a

te
r
ia

l 
R

em
o

v
a

l 
R

a
te

 (
M

R
R

) 

(m
m

3
/m

in
)

Abrasive concentration (g/l)

Distilled Water Kerosene



16 

 

greater amount of abrasive particles and large carbon content which forms large amount of recast 

layer on further increment of SiC concentration. 

(ii) Surface Roughness (SR): SR is another important parameter which has a great impact on the 

performance characteristics of the machined components. It mainly varies with the discharge 

current followed by PD. Low discharge current and PD results in better SR. Proper selection of 

tool material is essential as SR depends on it. PD highly affects SR. From Fig. 1.4, it is evident 

that the experimental SR directly depends on PD; higher the PD more is the SR, and it has been 

validated by the past research works [3-7, 16-18]. Increasing PD enhances the feed rate thus 

allowing greater discharge energy penetrating into the surface of work-piece material forming 

deep crater wear. SR augments with the discharge current for any material of the WEDM 

electrode. SR hence enhances with the discharge current. The best ‘Ra’ value obtained 

experimentally is 1.31 µm (IP, 3A, PD, 4 µs).  

 

Fig. 1.4. Experimental SR with variation of peak current and pulse duration on WEDM [17] 
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Improved surface finish can be accomplished at elevated values of servo speed because of rapid 

erosion of particles. An augmentation in servo voltage amplifies SR because of more number of 

collisions between ions and electrons resulting in higher MRR. Therefore, for the sake of better 

surface finish, low standard value of servo voltage is required. Superior the pulse-off time, lower 

is the value of SR. The higher pulse-off time supplies better cooling effect and sufficient time to 

flush the unwanted debris. High dielectric pressure results in total removal of particles resulting 

in better surface finish. Low wire speed causes more melting of material due to higher energy 

and hence high MRR is obtained causing high SR. High wire speed causes instability in 

machining as less energy density occurs resulting in lower melting of material causing 

irregularities in the surface. Therefore, to obtain better surface finish, optimum wire speed is 

necessary [16, 17]. Low wire tension is the root cause of amplified vibration during the 

machining, and high wire tension may result in breakage. The wire feed rate is another important 

dependant parameter affecting SR. Superior surface finish may be achieved with inferior 

machine feed as obtained by Alias et al. [18]. 

1.2.7. Process characteristics 

In WEDM, various complicated shapes like micro holes, press tools, micro electrodes, etc are 

fabricated by removing a bulk of material guiding the wire through U and V drive systems. 

However, there are some process responses that are responsible for generating good quality 

products which are given below: 

(i) Surface finish: The surface generated after WEDM process should be smooth enough for 

excellent precise product. It will be better if the surface roughness value is kept lower than 5 µm. 
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(ii) White layer: To minimize the white layer thickness, deionized water is carried as dielectric 

medium for its enhanced cooling rate. 

1.2.8. WEDM applications 

WEDM has vast applications in today’s manufacturing industries like: 

� Used vastly in automotive, aerospace, die making, medical, optical, dental, jewellery and 

other R&D areas. In this research WEDM on titanium based hybrid composite is selected 

basically highlighting its applications on bone replacement, artificial knee-joint 

fabrication, dental, medical, aerospace wings, impeller and automobile valve pins 

manufacture. 

� WEDM reduces the overall fabrication and machining time and also reduces operating 

cost than the other conventional and unconventional machining processes. 

� Machining of extrusion dies and powder metallurgy compacted dies. Used in precision 

gauges, keyways, gears, shafts, axles, prototype production, punches and dies. 

1.2.9. Advantages of WEDM 

� Contactless machining of the workpiece, hence mechanical and residual stresses are 

eliminated. 

� Electrode fabrication is not required. 

� WEDM can be used in most of the electrically conductive metals and alloys heedless of 

their mechanical properties. 

� Machining is user friendly and does not need extreme precautions and attention.  
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2. Literature Review 

Development of titanium matrix composite (TMC) necessitates an incredibly cautious 

concentration in current sustainable manufacturing environment. These hybrid composites are 

durable, strong, light and flexible with outstandingly improved properties like resistance to 

fatigue and corrosion, which has vast usage in diverse modern industries like biomedical, 

aerospace and automobile [3, 15]. Conventional techniques are extremely complicated to 

machine and manufacture these composites due to porosity at soaring temperature and rough 

surface finish ensuing in unwarranted wear [4-7]. Niu et al. [10] employed ISM on titanium (Ti) 

with TiB2 reinforcements, and acquired better characteristics in TMC. Results inferred ISM is 

socially feasible to fabricate TiB2/TiAl composite, but the research gap lies on the question of 

better feasibility of the development of Ti-TiB2 composite using LENS process. Reinforcements 

of TiB2 were mixed proportionately with Ti [10] and obtained improved mechanical properties in 

developed TMC. However, for prevalent projection of superior relevance with improved 

efficiency ought to be integrated. Apposite processing technology is pragmatic for enhancement 

of tribo-mechanical properties, following the unsurpassed substitution of additional costly metals 

intended for complicated designs. Consequently, laser engineering net shaping (LENS) method 

is therefore proposed for the growth of TMC. LENS populates powders of ceramics, metals and 

other alloys to manufacture complex broken shapes. A line-by line, net-shaped method, is 

integrated for development of meticulous parts as obtained from CAD geometry. Nozzle-

deposition system is implemented for the positioning of the powdered metal at tip of the laser 

beam focus. Powder feed rate [11] was the major essential parameter in this deposition technique 

for the TMC development by LENS. Major advantage of LENS is mass production multifaceted 

and obscure hollow components by using multiple powder feeders. Hu et al. [12, 13] obtained an 
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assortment of mixture (98.4 wt.% pure titanium + 1.6 wt.% boron) for approximately 4 hrs and 

then engaged for LENS under different processing conditions. Increment of laser power 

transformed non-uniform distribution of Ti-TiB at 125 W to a partial and fine 3D network at 175 

W to a full 3D network with excellent mechanical properties at 200 W. Attar et al. [14] 

manufactured Ti-TiB hybrid composites through LENS from a combination of hybrid mixture 

(98 wt.% pure titanium + 2 wt.% boron powder) and inferred a coarse microstructure because of 

enhanced rate of cooling, but very little research has been made so far for the development of Ti-

TiB2 composite using LENS process. 

Enormous preliminary cost, complexity in manufacturability and lenience in availability are 

significant restrictions and concerns while developing these hybrid composites [19]. 

Mathematical model founded by Box-Behnken Design (BBD) of response surface methodology 

(RSM) was incorporated using desirability function [4-7] coupled with Taguchi method, and 

multi-objective optimization (MOO) was identified. RSM was also coupled with TOPSIS [20, 

21] for better optimal solution but the research gap lies on maximizing productivity at nominal 

cost by using such empirical decision making approaches which needs proper validation. Results 

from analysis of variance (ANOVA) endowed with the parametric significant interactive and 

quadratic effects. Yu et al. [22] employed ANOVA of multi response optimization of laser 

cladding and obtained the influence of the trend using contour and surface plots. There was an 

improvement in the response targets, and it was pragmatic that the optimized cladding layer was 

more effective than the other cladding layers in microstructural characterization. Selective laser 

melting (SLM) [23] on TMC was performed and obtained superior wear resistance and refined 

microstructure. TiB whiskers were found to be properly synthesized due to excellent bonding. 

Improved grain refinement was observed by microstructural analysis and improved 
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microhardness was obtained on the increment of TiB2 contents. Worn depth and wear rate was 

also decreased with the enhancement of TiB2 contents. Cheng et al. [24] investigated 

microstructure and mechanical properties of Ti-6Al-4V by incorporating laser metal deposition 

technique. Martensitic microstructure and improved strength was obtained because of elevated 

cooling rate by a novel annular laser metal deposition (ALMD) technique. Chen et al. [25] 

deliberated the effects on various laser parameters based on eminence of prediction model 

derived from support vector machine (SVM) of coating characteristics by laser cladding of TiC 

ceramic powders. The results inferred that laser spot diameter, laser power and pre-placed 

powder thickness provided essential contribution. Shivakoti et al. [26] also proposed a predictive 

model using RSM coupled with desirability and analyzed the optimal condition by incorporating 

Nd:YAG laser. Various process parameters of laser were considered like lamp current, scanning 

speed and pulse repetition rate. Sensitivity analysis was carried on the experimental runs and also 

on the predictive models. Optical microscopic and scanning electron microscope (SEM) images 

were also examined for quality facets of laser marking on gallium nitride. Similar parametric 

MOO was examined on laser beam welding NiTinol sheets by desirability coupled with 

metaheuristic techniques [27]. Various possessions of process parameters on mechanical 

properties were investigated. Gao et al. [28] investigated parametric optimization on laser-arc 

welding based on hybrid fiber. A novel optimization algorithm combining genetic algorithm 

(GA) with Kriging was projected for determining the optimal weld geometry. Micro-hardness 

and microstructures were analyzed varying various process parameters of laser welding. Taguchi 

L25 array of experiments were conducted depending on four-factor and five-levels. The novel 

model was developed for optimal solution for maximizing penetration depth, minimizing bead 

width and ensuring bead reinforcement at a desired value. Metallographic characterizations with 
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experimental investigations were carried by Kumar et al. [29] on Ti-6Al-4V components using 

fiber based laser beam for welding by using RSM and GA. The correlation of laser process 

parameters with performance measures were computed via regression models. The significance 

and contributions of process parameters were identified along with the optimal solution. It was 

inferred that power and speed offered in welding contributed to the maximum. Direct effect of 

laser power during welding was noted while inverse effect was observed for welding speed. 

Wang et al. [30] proposed a hybrid intelligent technique for optimization and simulation of laser 

transmission welding (LTW) and validated with the experimental results. Finite element method 

(FEM) in combination with RSM and GA was analyzed on the thermal model for improvement 

of the veracity of the predicted results in minimum experimental time. Desirability was 

integrated with the developed optimization algorithm for achieving the optimality for 

enhancement of the efficiency and quality of the welding. Results inferred that the proposed 

novel integrated optimization tool executed excellently in optimum performance of LTW 

method. Parametric optimization was investigated by back propagation neural network couple 

with Taguchi method and GA. This proposed statistical method BPNN-GA [31] showed 

improved results in the efficiency and stability of the laser beam. Weisheit et al. [32] provided a 

thorough understanding of the advancement of titanium aluminide by direct laser cladding. 

Excellent mechanical properties were inferred from the microstructure and characterization.   

TMCs show evidence of superior microstructure and characterization during LENS [32, 33]. 

Porosity occurrence [34, 35] and lofty fluctuations in cooling rate [36] result in heterogeneity. 

Qiu et al. [35] affirmed that optimization is extremely vital to acquire multi-response parametric 

solution for successful production of TMCs by LENS. Sterling et al. [36] obtained lofty 

fluctuations in thermal heating and cooling that resulted in anisotropy of the LENS samples for 
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the presence of porosity. The researchers used LENS process for the fabrication of Ti based 

composites for biomedical purpose, with superior ductility and strength as compared to the 

conventional counterparts. Manjaiah et al. [37] endowed with detailed information on diverse 

optimization processes and pointed on surface integrity of WEDM on TMC. The cutting speed 

was unswervingly proportional to IP. SR increased with increase in IP and PD but got 

decremented with pulse interval. Coated wires were obtained to be more favorable than the 

uncoated wires due to the decrement of oxide formation [36, 37]. Manjaiah et al. [37] presented 

combined information in the application of electric-discharge machining (EDM) and WEDM on 

TMC and identified the research gaps. The review also provided knowledge on the different 

optimization processes and highlighted the analysis of surface integrity like surface roughness, 

surface topography, surface metallurgy, layer formation and residual stress generation in WEDM 

on titanium based composites. 

Bose et al. [38-40] proposed two new MOO algorithms termed as desirable genetic algorithm 

(DGA) [38] and desirable grey relational analysis (DGRA) [39, 40] for improvement in the 

optimized solution process parameters and performance measures in machining of hybrid TMC. 

Several investigations have been carried out for the enhancement of performance criteria by 

integrating advanced miscellaneous statistical methods like GA [41-43], artificial neutral 

network (ANN) [44-48], etc; however the optimal parametric combination of laser performance 

measures are yet to be explored. It is pragmatic from the past researchers that very less 

investigators have recognized the optimal solution of the laser performance measures after LENS 

process. Hence, the prime scope of this investigation is to develop a novel TMC with enhanced 

tribo-mechanical properties and to obtain the optimal parametric combination by varying 

important laser process parameters on various performance measures like cooling rate (CR) and 
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hardness (H). A novel MOO algorithm named as desirable genetic algorithm (DGA), where the 

objective functions obtained from desirability function, are further incorporated in GA in 

MATLAB R2018a for improvement in the optimized solution of the laser parametric 

combinations. ANOVA is incorporated for determining the reasonability of the mathematical 

model and the significance of the parameters. 

Machining of titanium matrix composite (TMC) require a very vigilant attention in modern 

sustainable manufacturing arena. TMCs are strong, flexible, light and durable with exceptionally 

superior properties like corrosion and fatigue resistant and used in different aerospace, 

biomedical and automobile industries [49]. Mouralova et al. [50, 51] obtained a comparison on 

the surface and sub-surface topography of WEDM on structural materials like titanium and 

aluminium, and obtained greater productivity and superior characteristics of titanium at the effect 

of manufacturing cost. Manufacturing and machining of these hybrid composites by 

conventional techniques are enormously difficult due to the occurrence of uneven surface finish 

at lofty temperature resulting in excessive wear [4-7]. Large initial cost, ease of availability and 

manufacturability are the important limitations which are the prime concern while machining 

these TMCs [4]. RSM had been used in desirability function [5] of BBD on WEDM on pure 

titanium where Ton, Toff and IP were obtained as the key factors for obtaining the optimized 

output responses like dimensional deviation, MRR and wire wear (WW) ratio. The authors 

further examined the recast layer and surface crack density [6] and obtained the contribution of 

the same factors on SR by MOO using Taguchi method coupled with RSM and desirability. For 

sustainable manufacturing, grey relational analysis [52, 53] was projected to combine with 

various optimization techniques like analytical hierarchy process (AHP) for criteria weights [3, 

15] coupled with RSM and regression analysis [53, 54]. The effects of machining parameters 
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with the cutting conditions (cryogenic, dry and wet) were examined for MOO. ANOVA results 

provided the significance and contributing effects of various interactive and quadratic effects of 

the parameters. TOPSIS [54, 55] was considered to be the appropriate decision making technique 

for determining the optimized condition because of its simplest computational procedure where 

infinite number of criteria and alternatives can be considered with easy implementation 

algorithm. Majumder et al. [56] carried WEDM on nitinol, a smart shape memory alloy and 

predicted the various surface roughness responses using general regression neural network 

(GRNN) coupling with fuzzy MOORA. Pulse-on time and discharge current were obtained to be 

the main contributing factors and ANOVA results showed the significance of the interactive 

parameters. A novel MOO algorithm known as MOPSO-TOPSIS [57] was proposed for 

machining Cu-MWCNT composite coated on 6061Al electrode. MOPSO was used for 

determination of non-dominated optimal solutions and TOPSIS was used for identification of the 

most desirable optimal solution. This novel technique may be used for MOO of TMC as similar 

contribution of process parameters were obtained and authenticated with the help of 

confirmatory tests. FTOPSIS [58-60] technique provides successful solutions in realistic 

problems where the decision makers provide opinions based on linguistic data. The judgment 

was acted on the decision of different decision makers (DM) which had been articulated by 

means of crisp numbers. However, in different realistic factual life circumstances, penchant 

model of an individual was inexact and DM was inept to place crisp numbers for comparison of 

judgments. Therefore, this limitation can be overcome by using FTOPSIS [58-60] which is a 

combination of TOPSIS [20, 21, 54, 55] and fuzzy theory [60, 61]. The added advantage is 

obtaining the criteria weights by FAHP [61, 62] based on their goals and importance, therefore 

obtaining the fuzzy ranking.     
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Nourbakhsh et al. [63] investigated experimentally on WEDM on titanium based alloys and 

composites. A Taguchi L18 DOE was applied. Cutting speed was unswervingly proportional to 

the peak current and pulse interval. SR incremented with the augmentation of pulse width and 

decremented with the pulse interval. Hsieh et al. [64] attained outstanding experimental results 

on Ti35.5Ni49.5Zr15 and Ti50Ni49.5Cr0.5 alloys and inferred about highest feeding rate without wire 

rupture in the process of WEDM. SR got enhanced with rising pulse duration of the machined 

TiNiX. As the pulse duration decreased, the oxide formation also got diminished. Therefore, the 

favorable condition was to incorporate coated wires instead of using the uncoated wires to obtain 

uniformity, as obtained by Kuriakose et al. [65]. The authors obtained uniform surface roughness 

with moderate discharge energy pulse. It was also obtained by Han et al. [66] that superior 

surface finish occurred with the apposite pulse energy in reversed polarity machining. Sharma et 

al. [67] performed BBD-RSM to examine the DOE. Cutting rate improved with the increment in 

pulse-on time and with the enhancement of peak current; and got decremented with the 

enhancement of the pulse-off time and the servo voltage affecting the surface roughness in a 

similar fashion. For improvement in the optimal solution of WEDM machining of the novel 

TMC, Bose et al. [68, 69] developed the novel MOO algorithm DGRA and improved the 

production with minimum machining time and cost. Further, Bose et al. [70-72] developed a 

novel method in selection of excellent and new hybrid green composite with the help of 

advanced MCDM techniques, compared with the experimental results and obtained excellent 

industrial applications for clean and sustainable energy recovery. The authors used ANOVA to 

obtain the significant input process parameters and concluded the dependency of input 

parameters on output responses of WEDM. Various researchers [73-84] have carried out their 

efforts for the development of WEDM performance of titanium based alloys and composites by 
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proposing various statistical techniques like ANN, MOGA-II, ANFIS, NSGA-II, desirability 

method, GRA, FTOPSIS, FAHP, PSO, etc, but still the limitation lies on the fabrication of 

complex shapes by the above methods and obtaining the optimal result. Hence, LENS process is 

suggested for better feasibility of the development of TMC which is socially viable and entirely 

accepted in social environment.  

Yildiz et al. [85] introduced hybrid novel algorithms based on Nelder-Mead coupled with whale 

optimization for design and real-life manufacturing applications. The scope was to accelerate the 

convergence speed globally for solving such real-time manufacturing problems. The researchers 

[86] again coupled with another novel optimization named Harris hawks for solving such 

complex problems. A metamodel annealing with simulation [87] was projected for MOO of 

design strictures and a case study was optimized on highway guardrails for investigation of its 

performance having minimum weight and minimum value of acceleration severity index. Results 

inferred that this hybrid optimization algorithm is an extremely effective approach for real-life 

designing manufacturing problems. Several researchers [88, 89] used self adaptive techniques of 

meta-heuristic algorithms for reliability based optimization of design problems in aerospace and 

automobile sectors. The novel algorithm was very useful for solving the complex problems of 

aerodynamic analysis of the unmanned aerial vehicle and comparative performance were 

obtained based on hyper volume indicator. Recently various novel optimization algorithm [90-

99] were developed in the automobile sectors namely moth-flame algorithm coupled with RSM, 

mine blast algorithm, equilibrium algorithm coupled with response surface-based metamodel, 

multi-verse optimization coupled with Harris hawks and grasshopper, salp swarm for structural 

design of automobile components, spotted hyena for reduction of weight in automobile brake 

components. A new modified adaptive differential evolution [100] was proposed for MOO of a 
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cam mechanism with offset deciphered roller follower. The simulation results indicated the 

robustness and effectiveness of this novel algorithm [101, 102] for real-life design and structural 

problems.  

From the precedent literature it is apparent that very few researchers have identified the optimal 

solution in the proposed arena and there is an immense scope of improvement in the optimal 

solution by MOO of machining of WEDM on this developed TMC by LENS. Table 2.1 depicts 

the summary of prime literature reviews with research gaps. Therefore, this thesis aims to 

discover the influence of different process parameters on various performance measures like 

enhanced MRR, minimum SR, minimum KW and minimum OC of a developed novel material 

of titanium-titanium diboride (Ti-TiB2) by LENS process and are compared with the past works. 

A novel composite is developed by LENS process by identifying the optimal process parameters. 

The other major scope is to explore the optimality set of WEDM on this developed TMC by 

using a novel DGRA optimization algorithm. BBD mathematical model with 3 factors 3 levels 

DOE is premeditated using RSM design matrix. A 17 grouping of run-orders with 5 center points 

is used in a full quadratic mathematical model. This research aims to enhance the mechanical 

properties and the microstructure depicts an excellent interfacial bonding of TiB2 with Ti. To 

investigate the conformity of the experimental and predicted results, these results have been 

compared with an advanced MCDM method known as FTOPSIS coupled with FAHP for criteria 

weights. These experimental and predicted results are further compared and correlated with 

FTOPSIS coupled with FAHP for criteria weights for analyzing the conformity for various 

industrial applications. The   reasonability of the developed mathematical model is confirmed by 

ANOVA. Sensitivity analysis has also been conceded for studying the robustness and sensitivity 

of four decision makers’ preference on optimal machining condition.   
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Table 2.1. Summary of prime literature reviews with research gaps 

AUTHORS 

(YEAR)  

RESEARCH FINDINGS  RESEARCH GAPS  

Niu et al. [10] 

(2012) 

TiB2 as reinforcements  in ISM process and obtained 

improved mechanical properties  

Optimal solution is not identified  

Attar et al. [11] 

(2017)  

Relative study of raw titanium manufactured by different 

laser process 

Development by LENS process  

Qiu et al. [35] 

(2015)  

Production of hefty Ti–6Al–4V structures through 

undeviating laser deposition  

Microstructural characterization  

Sterling et al. [36] 

(2016)  

Exhibited the LENS samples and inferred feeble fatigue 

properties  

Porosity presence  

Hu et al. [12, 13] 

(2018)  

Mixture powder of titanium with 1.6 wt.% boron  Proper MOO analysis  

Attar et al. [14] 

(2014)  

LENS of TMC with 2 wt.% boron  Development of Ti-TiB2 

composite using LENS  

Manjaiah et al. [37] 

(2014)  

Consolidated information on the application of EDM and 

WEDM on titanium based composite  

Novel optimization method is to 

be incorporated  

Nourbakhsh et al. 

[63] (2013)  

Experimentally investigated WEDM on titanium based 

alloys and composites by Taguchi L18 DOE  

BBD and CCD are to be examined 

Kumar [42] (2019)  Measurement of responses and process parameters 

optimization  

GA and MOGA can be coupled 

with desirability  

Younas  et al. [3] 

(2019)  

MOO for sustainable turning Ti6Al4V alloy using GRA 

and AHP  

GRA + desirability is yet to be 

developed 

Khan et al. [15] 

(2020) 

MOO on turning of Ti-6Al-4V under various 

environmental conditions by GRA 

Work hardening, high temperature 

generation, excessive cutting 

pressure are serious issues for 

proper machining 

Ananthakumar et al. 

[20] (2019) 

RSM with TOPSIS is used for optimization of plasma arc 

cutting of Monel 400™ 

FTOPSIS may be used with RSM 

for better result analysis 

Jin et al. [23] (2021) Refined microstructure and enhanced wear resistance with 

excellent mechanical characteristics are obtained on TMCs 

by selective laser melting (SLM) 

Worn depth and wear rate are the 

challenges in the developed matrix 

Cheng et al. [24] 

(2021) 

Microstructure of Ti-6Al-4V components by annular laser 

metal deposition  

Improved strength was obtained at 

the cost of martensitic 

microstructure 

Kumar et al. [29] 

(2017) 

Laser Power and speed contributed to the maximum speed Direct effect of laser power with 

inverse effect was observed 

Abidi et al. [41] 

(2018) 

MOGA-II was conceded on micro-electrical discharge 

machining  

MOGA-II may be coupled with 

desirability for comparative 

analysis 
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Kumar [43] (2018) Investigations experimentally for MOO of SR using GA Better optimal solution is yet to be 

identified 

Mouralova et al. 

[49-51] (2018) 

Analysis of surface morphology of WEDM on titanium 

alloys and composites 

Uneven surface finish at high 

temperature following excessive 

wear 

Kavimani  et al. [53] 

(2019) 

MOO in WEDM process through hybrid methods Proper optimization analysis  is 

needed 

Ramesh et al. [54] 

(2016) 

Measurement and optimization of SR and tool by coupling 

with GRA, TOPSIS and RSM methods 

Gap lies in the comparative 

analysis coupling with 

RSM+GRA+FTOPSIS 

Shandilya et al. [73] 

(2020) 

MOO on machining of Inconel-825 using WEDM Comparative analysis of WEDM 

with TMC and Inconel-825 is 

needed 

Yildiz [85, 86] 

(2019) 

Novel Whale–Nelder–Mead to solve problems based on 

design and manufacturing  

Desirability may be coupled with 

these MOO methods 

Yildiz [91, 92] 

(2020) 

Moth-flame optimization and  mine blast algorithm and 

response surface methodology 

Desirability may be coupled with 

these MOO methods 

Yildiz [96, 97] 

(2020) 

Spotted hyena optimization algorithm for automobile 

components 

Desirability may be coupled with 

these MOO methods 

  

ANOVA provides the dependency of linear, quadratic and interactive effects of all the process 

parameters over the performance measures where peak current is the most contributing factor 

influencing the DGRA of MOO. Improved tribo-mechanical and biocompatible properties are 

obtained in the developed novel TMC when compared to pure titanium to make complex shapes 

for various industrial and biomedical applications. 

2.1. Objectives of the research 

Within the scope of the literature review, enough information is not available about the 

development and fabrication of LENS of Ti-TiB2 taking pure titanium as base material 

reinforcing with a varying weight percentage of titanium diboride, and machining with WEDM. 

Therefore, the objectives of the present research work are: 
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� This research includes three major stages: (i) Developing a novel Ti-TiB2 hybrid 

composite for various automotive, aerospace, and biomedical applications; (ii) Using the 

LENS process for the composite development and optimizing the process parameters; 

and (iii) Using WEDM to machine the TMC and to obtain the optimal process parameters 

for the best performance using a novel optimization algorithm.   

� To obtain the better mechanical, metallurgical, and tribological properties of the hybrid 

TMC. This research aims to provide the current state-of-the-art of enhancement of tribo-

mechanical properties. 

� To investigate various output performance measures like cooling rate (CR) and hardness 

(H) while the development of TMC by LENS process. 

� To analyze the microstructural characterization of the hybrid composite using SEM 

micrographs. 

� To acquire the optimal process parameters while machining the samples by WEDM.  

� To investigate various output performance measures like MRR, SR, KW, and OC and 

optimization can be done accordingly by different optimization techniques. 

� New process models implementing novel optimization algorithms are to be developed to 

decrease inaccuracy caused by machine vibration, chatter, and wire deflection. 

2.2. Novelty of the research 

� In this present investigation, the objective functions obtained from desirability function 

are further incorporated in genetic algorithm (GA) in MATLAB R2018a for 

improvement in the optimized solution. This combination of desirability with GA 

outcomes the novelty in MOO named as desirable genetic algorithm (DGA) where the 

predicted responses are also considered along with the experimental responses. Main 
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advantage of incorporating this novel DGA technique is more accuracy and robustness. 

The actual and predicted responses are in near proximity with one another. This novel 

DGA method has additional superiority in accomplishing the MOO solution. 

� Novel multi-objective optimization algorithm called desirable grey relational analysis 

(DGRA) is proposed for determination of optimal solution on the performance measures 

of the WEDM. The novelty lies in its dual optimization technique where predicted 

responses obtained from desirability function is coupled with GRA, which has not yet 

been covered by the past researchers. The main advantage of DGRA lies in the 

consideration of the predicted responses as obtained from desirability method with the 

actual experimental responses; therefore the numbers of total responses are incremented 

even in single and multi-objective optimization problems. As a result, in this method 

more accuracy is obtained along with enhanced percentage of improvement. 

� A novel titanium matrix composite (TMC) is developed by laser engineering net shaping 

(LENS) process. This research provides the current state-of-the-art of enhancement of 

tribo-mechanical properties like corrosion, wear, fatigue resistant and biocompatible 

properties when compared to pure titanium and other titanium alloys, to make complex 

shapes for various industrial applications, and other biomedical applications specifically 

in bones, hips, dental problems, knee replacement enucleation and has an assortment of 

different surgical instruments. 
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3. Materials and Research Methodology 

The hybrid composite is developed using LENS (MR7, Optomec, United States of America) 

process following three major steps namely pre-processing, development and post-processing. In 

pre-processing, pure titanium raw powder (98 wt.%) as base material is reinforced with boron 

powder (2 wt.%) as secondary phase reinforcement for the composite development. After proper 

mixing of the powders, the mixture is dried in a vacuum oven at around 90
0
C for removal of any 

moisture content. In LENS process, a 500 W fiber laser doped by ytterbium with continuous 

wave is used for the composite development in LENS. LENS merges powder from the feeding 

nozzle with the help of laser as designed by CAD and other numeric control technologies. An 

elevated laser beam power is employed for creating a melt pool on the substrate and concurrently 

powder feeding is carried over the melt pool for consolidation. The metal powder is then 

supplemented from the nozzle over the melt pool by traversing the laser beam. Independent 

delivery of the powder and the laser beam is operated irrespective of the orientation position. 

This LENS process is susceptible to powder flow behavior as the powder is sent by the nozzle 

which in turn provides a consolidated pathway of preferred volume and surface quality of 

texture. The powder is carried from powder feeder by transport or carrier gas or by gravity-

driven technology. The particles of the powder progress through an assortment of various 

channels/ chambers which are inside the nozzle, thus having collisions with nozzle wall to 

provide a stream of powder particles which are directed at a laser spot. Transformation of phase 

by melting and solidification takes place after that for fabrication with XY table movement. The 

deposition head consists of powder delivery nozzle shifts up vertically following each layer. The 

complete process is conceded in an inert environment for protecting the melt pool from 

oxidation. The sample powders are maintained in a box containing argon (Ar) and oxygen (O2) 
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smaller than 10 ppm and laser power from 150 - 400 W, with a scan speed of 10-15 mm/s when 

the powder feed rate is maintained at 2.3 g/min. The best parameter obtained is 350 W laser 

power with 10 mm/s scan speed.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1. Flowchart of the composite development 

Fig. 3.1 indicates the complete flow chart of composite development. Eq. (1) [11] portrays the 

energy input/area ( E ):  

.

P
E

V D
=                                                      (1)  

Raw powders [pure Ti (98 wt.%) 

+ B (2 wt.%)] in LENS 

Proper mixing and drying in a 

vacuum oven (90
0
C) to release 

locked-in moisture contents  

Composite development (500 W 

continuous wave ytterbium-

doped fiber laser) 

Dried powder is kept in an 

atmosphere of (Ar + O2 < 10 ppm) 

using optimum laser power 350W 

at scan speed of 10 mm/s, when 

powder feed rate = 2.30 g/min  

Post-fabrication + polishing using 

a solution of 100 ml HNO3 + 100 

ml HF + 300 ml H2O solution 

Composite is developed and ready 

for WEDM machining  
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P  illustrates laser power,V  represents scan speed, and D reveals laser beam diameter (which is 

0.5 mm).  The mixture powder absolutely melts with the optimum incident energy lying between 

50 and 70 J/mm2. When entire powder melting is accomplished, the deposits emerge to familiar 

towering temperatures because of extreme heat upsurge. The consecutive overheating and quick 

cooling may pilot to the creation of internal stresses. Post-fabrication grinding and polishing is 

necessary to remove the tiny surface cracks and porosity apparently because of the liberation of 

locked-in residual stresses. Further investigation is performed on the characterization of 

microstructure, hardness, and other mechanical properties. Post-processing includes polishing to 

remove the miniature surface cracks and porosity to release the entrapped residual stresses. The 

polished samples are etched by 100 ml HNO3 + 100 ml HF + 300 ml H2O solution. For 

examining in particular the uniformity in microstructure and deposits’ quality, standard light 

microscope (Olympus BX51M, Japan) is used. Scanning electron microscope (SEM, Phenom 

proX, Phenom-World B.V., Netherlands) is used for detecting microstructural characterization.  

The dimension of the developed sample is 11 mm in diameter and 16 mm in height as depicted in 

Fig. 3.2(a). Machined sample after WEDM is portrayed in Fig. 3.2(b).  

 

Fig. 3.2(a) Developed TMC after LENS process; and (b) after WEDM 
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This novel developed TMC possesses enhanced tribo-mechanical properties as illustrated in table 

3.1. An apparent comparison of enhanced and superior tribo-mechanical properties with other 

akin aerospace alloys and composites has been recognized when contrasted with the precedent 

investigators [3, 11, 14, 15]. The developed TMC (Ti-TiB2) acquires improved tribo-mechanical 

characteristics like enhanced strength-to-weight ratio at eminent temperature, improved resistant 

to wear, fatigue, corrosion, excellent strength and bio-compatibility. The novel characteristics 

developed in this TMC are: Young’s modulus (550 GPa), co-efficient of thermal expansion 

(8.6x10
-6

 /K), Hardness (396 HV), Yield strength in compression (945-1020 MPa), Ultimate 

compressive strength (1020-1096 MPa) and Elongation (25-32.5%). Vicker’s microhardness 

measurements are conceded (500 gm load for 10 s) at an average of 10 measurements. These 

results can compared with the TMC developed by Attar et al. [11, 14] where parameters obtained 

were: Young’s modulus (529-540 GPa), co-efficient of thermal expansion (8.6x10
-6

 /K), 

Hardness (392 HV), Yield strength in compression (940-1010 MPa), Ultimate compressive 

strength (1016-1092 MPa) and Elongation (26.5-36.4 %).  

Fig. 3.3(a) depicts the schematic diagram of the TMC developed after LENS process which 

signifies very fine and excellent distribution of TiB2 particles adjacent to the bigger Ti powders. 

Fig. 3.3(b) represents the formation of TMC developed by selective laser melting (SLM) process 

[23] which portrays semi-reacted TiB2 particles with unreacted TiB2 and in-situ creation of 

needle-shaped TiB (whiskers) with partially formation of TiB owing to a weak interfacial 

bonding [14]. SLM uses powder-based deposition technique where high laser energy is 

mandatory for complete melting owing to a greater difficulty of proper formation of these 

intermetallic compounds as these TMCs have high melting point causing increment in viscosity. 
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This limitation can be surmounted by using LENS process as it is a nozzle-deposition technique 

with powder feed rate as an additional parameter. 

 

 

Fig. 3.3. TMC formed after (a) LENS process and (b) after SLM 

Table 3.1. Comparative properties of TMC with other alloys [3, 11, 14, 15] 

Mechanical Property Material 

Ti-TiB2 

(Ti-2.0 

wt.%B) 

Ti-1.6 

wt.%B 

Pure Ti Ti6Al4V Ti6Al6V-

2Sn 

Ti-10V-

2Fe-3Al 

Inconel 

718 

Density (g/cm
3
) 4.41 4.48 4.5 4.43 4.54 4.65 8.22 

Hardness (HV) 396 392 180-184 285-342 361 303 361-438 

Young’s modulus 

(GPa) 

550 529-540 116 114 110 110 200 

Yield strength (MPa) 945-1020 940-1010 140 880 980 900 1170 

Ultimate strength 

(MPa) 

1020-1096 1016-1092 220 950 1050 970 1350 

Ductility (%) 25-32.5 26.5-36.4 54 14 14 9 16 

Fracture toughness 

(MPa m
1/2

) 

78 72 70 75 60 - 96.4 

Thermal conductivity 

(W/mK) 

6.8 6.8 17 6.7 6.6 7.8 11.4 
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4. Theoretical and statistical foundations 

4.1. Mathematical model design by RSM 

RSM [3-7] is mainly competent flourishing statistical technique in lieu of a compilation of 

mathematical techniques, stratagems of designs based on statistics and strategies of experimental 

design and statistical inferences. It is used for improvement of quadratic and interactive effects in 

the midst of the different variables. The output responses in terms of performance measures are 

considered in this experimental and statistical investigation. The experimental performance 

measures output responses which are considered for the present statistical and experimental 

investigation. Eq. (2) represents the fitness function of a second-order polynomial: 

2

1 1 1, 1

m m m

o i i ii i ij i j
i i i j

Z a a x a x a x x e
= = = >

= + + + +∑ ∑ ∑
⌣ ⌣ ⌣

⌣ ⌣ ⌣⌣ ⌣ ⌣⌣ ⌣ ⌣
⌣ ⌣ ⌣ ⌣

⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣ ⌣
                                   (2) 

Z
⌣

represents the output response; , , ,o i ii ij
a a a a⌣ ⌣⌣ ⌣⌣
⌣ ⌣ ⌣ ⌣

symbolize regression coefficients; m
⌣

represents 

the experimental factors; i
⌣

corresponds to linear effect; j
⌣

corresponds to quadratic effect; 

&
i j

x x⌣ ⌣
⌣ ⌣

signifies the interactive effects on variables; e
⌣

 represents random error.  

For the development of the material, design expert 11 software based on RSM-BBD, has been 

conceded on sixteen (16) run-orders for experimentation having four (4) center points. A 3-

factor/3-level design of experiments (DOE) is anticipated for obtaining the MOO solution of CR 

and H as acquired experimentally from LENS process. Low, medium and high levels, 

characterized by -1, 0, and +1, are incorporated in the DOE for obtaining the objective function. 

Table 4.1 specifies the detailed DOE of the developed TMC with their predicted and actual 

results. 
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Table 4.1. RSM-BBD design of experiments of composite development 

Run 

Order 

Space 

Type 

A: Laser 

power 

(W) 

B: Scan 

speed 

(mm/s) 

C: Energy 

input/area 

(J/mm
2
) 

R1: Cooling 

Rate (K/s) 

Pred R1 

(K/s) 

R2: 

Hardne

ss (HV) 

Pred 

R2  

(HV) 

1 IBFact 275 10 80 -2912981.669 -2892557.9 392 392.25 

2 IBFact 400 12.5 80 -2921796.193 -2913517 397 396.375 

3 IBFact 400 12.5 20 -2898138.021 -2903599 396 396.625 

4 IBFact 150 15 50 -8850853.189 -8822150.2 390 390.125 

5 IBFact 275 10 20 -2866357.76 -2832193.9 393 392.5 

6 IBFact 275 15 80 -4874821.303 -4908985.2 394 393.5 

7 IBFact 400 15 50 -3515644.346 -3489759.6 397 397.125 

8 IBFact 400 10 50 -2327964.069 -2356667 396 395.875 

9 IBFact 275 15 20 -4922132.983 -4942556.7 394 393.75 

10 Center 275 12.5 50 -4135723.086 -4111679.7 392 393 

11 Center 275 12.5 50 -4113077.143 -4111679.7 393 393 

12 Center 275 12.5 50 -4090493.371 -4111679.7 393 393 

13 IBFact 150 12.5 80 -7324544.229 -7319083.3 389 389.375 

14 IBFact 150 10 50 -5802567.97 -5828452.7 389 388.875 

15 IBFact 150 12.5 20 -7293929.657 -7302208.9 390 389.625 

16 Center 275 12.5 50 -4107425.371 -4111679.7 393 393 

 

For machining of the developed TMC by WEDM again RSM-BBD methodology of 17 grouping 

of experimental run-orders in a full quadratic mathematical model with 5 center points is carried 

in design expert 11 software. A 3-factor/3-level DOE is projected in this research for obtaining 

the optimal solution of MRR, SR, KW and OC after machining with WEDM on TMC obtained 

after LENS. Table 4.2 indicates the detailed experimental designs of the mathematical model for 

machining Ti-TiB2 hybrid composite and their corresponding actual and predicted results. 
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Table 4.2. RSM-BBD design of experiments of WEDM 

Std Run 

A B C R1 R2 R3 R4 

Pow

er 

(W) 

Tim

e 

Off 

(µs) 

Pea

k 

Cur

rent 

(A) 

Materi

al 

Remov

al Rate 

(mm
3
/

min) 

Predict

ed 

MRR 

(mm
3
/

min) 

Surfac

e 

Rough

ness 

(µm) 

Actual 

Value 

SR 

Transfor

m 

Predic

ted 

value 

Kerf 

Width 

(mm) 

Predic

ted 

KW 

(mm) 

Over 

Cut 

(mm) 

Predic

ted 

OC 

(mm) 

P Toff IP MRR 
Pred. 

MRR 
SR 

SRT=1/s

qrt(SR) 

Pred. 

SRT 
KW 

Pred. 

KW 
OC 

Pred. 

OC 

10 1 7 30 5 3.5136 3.5202 0.895 1.0570 1.0639 0.36 0.3608 0.11 0.1108 

7 2 6 25 10 3.1812 3.1827 1.378 0.8519 0.8593 0.33 0.3288 0.08 0.0788 

2 3 8 20 8 4.0262 4.0125 0.942 1.0303 1.0345 0.41 0.4100 0.16 0.1600 

17 4 7 25 8 3.3388 3.3866 0.857 1.0802 1.0675 0.34 0.3480 0.09 0.0980 

1 5 6 20 8 3.423 3.4253 0.697 1.1978 1.1980 0.35 0.3520 0.1 0.1020 

14 6 7 25 8 3.43 3.3866 0.878 1.0672 1.0675 0.35 0.3480 0.1 0.0980 

9 7 7 20 5 3.876 3.8917 0.771 1.1389 1.1422 0.38 0.3792 0.13 0.1292 

15 8 7 25 8 3.416 3.3866 0.911 1.0477 1.0675 0.35 0.3480 0.1 0.0980 

16 9 7 25 8 3.416 3.3866 0.899 1.0547 1.0675 0.35 0.3480 0.1 0.0980 

11 10 7 20 10 3.542 3.5377 1.213 0.9080 0.9002 0.35 0.3488 0.1 0.0988 

12 11 7 30 10 3.6584 3.6404 1.576 0.7966 0.7941 0.34 0.3412 0.09 0.0912 

13 12 7 25 8 3.332 3.3866 0.845 1.0879 1.0675 0.35 0.3480 0.1 0.0980 

5 13 6 25 5 3.2328 3.2153 0.743 1.1601 1.1566 0.36 0.3592 0.11 0.1092 

8 14 8 25 10 3.7592 3.7799 1.592 0.7926 0.7953 0.37 0.3712 0.12 0.1212 

3 15 6 30 8 3.2472 3.2609 0.923 1.0409 1.0367 0.36 0.3600 0.11 0.1100 

4 16 8 30 8 4.0052 4.0029 0.988 1.0061 1.0058 0.38 0.3780 0.13 0.1280 

6 17 8 25 5 3.9858 3.9811 0.968 1.0164 1.0097 0.39 0.3908 0.14 0.1408 

 

4.2. Desirability 

The desirability [4-7] approach is vastly recommended for its simplified form of algorithm where 

individual response’s weightage and importance are extremely flexible with each other. It is also 

immensely suggested due to the flexibility in the individual weightage of performances and its 

importance. It converts individual response to utility values delimited by the domain 0 1
i

d< <⌣
⌣

      

(
i

d⌣
⌣

represents individual desirability of response). Superior desirability of a response depends 

on the higher value. Criteria weights 
i

w⌣
⌣

 resemblances the shape of desirability function. Z
⌣
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signifies output response, D
⌣

 showcases overall desirability where individual response is 

prearranged depending on the importance r
⌣

 which is comparative to other responses as 

designated in Eq. (3). Importance of 3 signifies neutral importance, greater than 3 portray 

superior importance, and 1 represents lowest importance.  

For a goal to be maximum, desirability is identified using Eq. (3): 

0 ;

;

1 ;

i

i i

w

i i

i i i i

i i

i i

Z Low

Z Low
d Low Z High

High Low

Z High

 <
 
  − 

= < <  
−  

 
>  

⌣

⌣ ⌣

⌣

⌣ ⌣

⌣ ⌣ ⌣ ⌣

⌣ ⌣

⌣ ⌣

⌣

⌣
⌣ ⌣

⌣

                                                                         (3) 

Table 4.3 signifies the importance with limits and goals for the matrix development. Laser 

process parameters like P, V and E are in range, assigned as 3 and kept as neutral; and the main 

performance measures like CR is given the maximum importance of 5 whereas H is assigned an 

importance of 4 for better comparison. The goal of H is to be maximum and the magnitude of 

CR is to minimum but due to the ‘-ve’ sign the goal has to be maximized for better optimized 

solution. 

Table 4.3. Goals and importance of matrix development 

Name of Parameter Goal Lower 

Limit 

Upper Limit Importance 

A:Laser Power range 150 400 3 

B:Scan Speed range 10 15 3 

C:Energy input/area range 20 80 3 

Cooling Rate maximize -8.85E+06 -2.33E+06 5 

StdErr(Cooling Rate) minimize 17559.5 30414 3 

Hardness maximize 389 397 4 

StdErr(Hardness) minimize 0.119678 0.267609 3 
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Table 4.4 represents the goals, importance values and their lower and upper limits for machining 

by WEDM. P, Toff and IP is in range and assigned as 3 as these are the neutral input process 

parameters; and both MRR and SR are assigned an importance of 5 for giving maximum 

importance as these are the main performance measures. MOO is carried for WEDM of Ti-TiB2 

hybrid composite is acquired using D-optimality also called desirability approach. The lower and 

upper limits of goals with their importance are assigned to all parameters and responses as 

depicted in table 4.4. All the input process parameter goals are set in range with importance as 

3(+++). The objective is to achieve maximum MRR, therefore, goal of MRR is assigned to 

maximize with top priority of 5(+++++); minimum SR, therefore, goal of SR is allotted to 

minimize with top priority of 5(+++++); KW and OC also to be kept minimum, so the goal is 

assigned to minimize with an importance of 4(++++); and all the standard errors to be kept 

minimum with least importance.  

Table 4.4. Numerical optimization goals and importance by WEDM 

Name Goal Lower Limit Upper Limit Importance 

A:Power is in range 6 8 3 

B:Time Off is in range 20 30 3 

C:Peak Current is in range 5 10 3 

MRR maximize 3.1812 4.0262 5 

StdErr(MRR) minimize 0.0174479 0.0348209 1 

SR minimize 0.792553 1.1978 5 

StdErr(1/Sqrt(SR)) minimize 0.00634902 0.0126708 1 

KW minimize 0.33 0.41 4 

StdErr(KW) minimize 0.00165345 0.0032998 1 

OC minimize 0.08 0.16 4 

StdErr(OC) minimize 0.00165345 0.0032998 1 

 

For the criteria of minimum goal, the boundary value of 0 and 1 reinstates their position under 

the identical boundary conditions. Eq. (4) signifies D
⌣

: 
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1

1

i
i

n r
r

i

i

D d
=

∑ 
=  
 
∏

⌣
⌣

⌣ ⌣
⌣

⌣
⌣

⌣⌣
                                      (4) 

n
⌣

indicates the number of responses and 
i

r⌣
⌣

represents the target value in th
i
⌣

response.  

4.3. Desirable Genetic Algorithm (DGA) 

For finding the best solution associated to problems based on the relevance of philosophy of 

evolutionary biology, a method is invented known as genetic algorithm (GA). GA employs 

genetic inheritance, selection by natural instincts, crossover, mutation and reproduction. GA 

incorporates genetic programming (GP) based on methodologies like genetic and evolutionary 

computation (GEC) [41-43]. It is employed by computer simulations by MATLAB software for 

MOO problems. For optimization problems, individuals are characterized by abstract 

representations termed as chromosomes, which are members in space. In this present 

investigation, the objective functions obtained from desirability function are further incorporated 

in GA in MATLAB R2018a for improvement in the optimized solution. This combination of 

desirability with GA outcomes the novelty in MOO named as desirable genetic algorithm (DGA) 

where the predicted responses are also considered along with the experimental responses. Main 

advantage of incorporating this novel DGA technique is more accuracy and robustness. The 

actual and predicted responses are in near proximity with one another. This novel DGA method 

has additional superiority in accomplishing the MOO solution. Here, an iterative progression is 

proposed which develops an effective individual set, termed as population, towards an objective 

function, known as fitness function. Alternative encodings are developed by binary strings. It is 

extremely simplified and possesses stylized biological simulation. Fig. 4.1 entails the detailed 

flow chart of DGA. A population of individuals is randomly generated based on probabilistic 
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distribution generally uniform in multiple steps called generations. From the current population, 

every generation and individuals are randomly selected based on certain fitness application by 

means of crossover ratio which is then tailored by mutation for obtaining a new population. A 

swap over of genetic objects called as crossover indicating structural mechanism that attributes 

machine learning for searching MOO problem. Selection criteria resemblances the relevance of 

complete fitness decisive factors to decide about the reproduction. Replication is the 

dissemination of former to subsequent generation individuals. Mutation is the amendment of 

chromosomes for solitary individuals. 

 

 

 

 

 

 

 

 

Fig. 4.1. Flowchart of novel desirable genetic algorithm 

 

 

START 

Random 

generation of 

first population 

Checking 

of fitness 

function 

If OK, PRINT END 

If not OK, 

ITERATE 

Evaluate the 

chromosome’s 

fitness in generation 

Selection of 

qualified individual 

for mutation and 

crossover 

Evaluation of 

chromosome’s 

fitness  

Matching of mutation 

and crossover 

Proper selection of 

parent individual 

and population of 

next iteration  



48 

 

4.4. Desirable Grey Relational Analysis (DGRA) 

Prof. Deng in 1982 invented grey relational analysis (GRA) [52, 53] which is based on grey logic 

system where information based on continuum quality and quantity appear from black to white, 

through grey. Here, the information associated with the quantity and quality constitutes a 

continuum from zero to complete information, resembling from black through grey and to 

conclude with white. Therefore, for such multifaceted multi response optimization problems, an 

assortment of MCDM techniques are used in statistical analysis for attaining the most excellent 

and optimal set of results with maximum productivity and minimum cost. Therefore, in this 

research a novel optimization algorithm called DGRA is proposed for the enhancement and 

improvement of optimized results after obtaining from desirability function. The prime novelty 

lies in its dual optimization technique where predicted responses obtained from desirability 

function are coupled with GRA, which has not yet been covered by the past researchers. Taguchi 

method coupled with DGRA is adopted to recognize the most imperative influencing process and 

performance parameters. The predicted responses acquired from desirability function are 

considered along with the actual experimental responses which are then coupled with GRA, 

therefore increasing the number of responses in single and MOO problems. The main advantage 

of DGRA lies in the consideration of the predicted responses as obtained from desirability 

method with the actual experimental responses; therefore the numbers of total responses are 

incremented even in single objective optimization and MOO problems. As a result in this method 

more accuracy is obtained along with enhanced percentage of improvement. Hence, added 

accuracy is attained in this technique with superior percentage of improvement. DGRA steps are 

highlighted below: 
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Step 1: Normalization: The normalization is rated between 0 to 1 where all the predicted and 

experimental responses are considered. Higher the improvement for MRR and lower the 

improvement for SR, KW and OC as depicted by Eq. (5): 

( ) min ( )
;

max ( ) min ( )
( )

max ( ) ( )
;

max ( ) min ( )

i i

i i

i

i i

i i

Y k Y k
Higher the better

Y k Y k
X k

Y k Y k
Lower the better

Y k Y k

 −
 

− 
=  

− 
 − 

⌣ ⌣

⌣ ⌣

⌣

⌣ ⌣

⌣ ⌣

⌣ ⌣⌣ ⌣

⌣ ⌣⌣ ⌣
⌣⌣

⌣ ⌣⌣ ⌣

⌣ ⌣⌣ ⌣

                      (5) 

( )
i

X k⌣
⌣⌣

 is the function obtained after the generation of DGRA, ( )
i

Y k⌣
⌣⌣

attained from experimental 

runs, min ( )
i

Y k⌣
⌣⌣

, max ( )
i

Y k⌣
⌣⌣

represents minimum and maximum assessment of ( )
i

Y k⌣
⌣⌣

and i
⌣

signifies the run-orders for thk
⌣

response. 

Step 2: Computation of Desirable Grey Relational Coefficient (DGRC): It is computed by Eq. 

(6): 

min max

max

( )
( )

i

oi

k
k

ξ
ζ

ξ

∆ + ∆
=

∆ + ∆
⌣

⌣

⌣
⌣⌣

⌣ ⌣                (6)                         

i
ζ ⌣
⌣

 portrays DGRC, ( )
oi

k∆ ⌣

⌣
represents the offset value flanked by reference (considered as 1.00), 

ξ
⌣

 signifies characteristic coefficient (selected at 0.5) [52, 53], 
min∆ signifies least value and 

max∆

portrays highest value of ( )
oi

k∆ ⌣

⌣
. 

Step 3: Computation of Desirable Grey Relational Grade (DGRG): The multi-objective values 

are converted to equivalent single objective value by Eq. (7): 

1

1
( )

n

i i

k

k
n

δ ζ
=

= ∑
⌣

⌣ ⌣
⌣

⌣⌣ ⌣
⌣                            (7) 
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i
δ ⌣
⌣

 signifies DGRG whose range is in between 0 to 1, n
⌣

 represents the run-orders, where highest 

DGRG value corresponding to best possible parameters and performance measures and 

considered as rank 1.   

4.5. FTOPSIS 

TOPSIS coupled with fuzzy logic [55] is correlated for the measurement of distance of 

alternatives from ideal solutions. Positive ideal solution (PIS) maximizes superior the 

improvement and lowers the improved type criteria in case of negative ideal solution (NIS). 

Here, judgment based on several decision makers (DM) is articulated with crisp numbers. 

However, in different realistic circumstances, preference model of an individual is inexact and 

DM is inept to place crisp numbers for contrasting the judgments, inferring the system to be 

inexact and DM is incapable for providing the crisp numbers. Therefore, this limitation can be 

overcome by using FTOPSIS [58-60] which is a combination of TOPSIS [20, 21, 54, 55] and 

fuzzy theory [60, 61] methodology. A Triangular Fuzzy Number (TFN) is identified by a triplet 

M = (l, m, u) signifying lower, median and upper values of M as shown in Fig. 4.2.  

 

Fig. 4.2. Triangular Fuzzy Number (M) 
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The membership function ( )
M

xµ is shown in Eq. (8): 

0,

,

( )

,

0,

M

if x l

x l
l x m

m l
x

x u
m x u

m u

if x u

µ

< 
 − ≤ ≤

− 
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 
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                                                            (8)                                                                         

The distance between two TFN M1 = (l1, m1, u1) and M2 = (l2, m2, u2) can be calculated using 

vertex method as given by Eq. (9): 

( ) ( ) ( ){ }
1

22 2 2

1 2 1 2 1 2 1 2

1
( , )

3
d M M l l m m u u

 
= − + − + −  

                      (9) 

The implementation of FTOPSIS is shown: 

Step 1: Formation of decision matrix, D  as depicted by Eq. (10): 

; 1, 2,....., ; 1, 2,.....,ijD x i m j n = = = 
⌢

                        (10) 

where, m
⌢

represents number of alternatives indicating experimental runs (17) and n  depicts 

number of criteria indicating output responses (4) like MRR, SR, KW and OC. An assumption of 

decision group of k members is considered for the rating of assignment to the criteria and 

alternatives. Here, 4k = , is assumed where each DM is chosen from four (4) decision makers. 

The fuzzy rating of th
k DM about the alternative 

i
A is designated as ( , , )k k k k

ij ij ij ij
x l m u=  and the 

weight is indicated by 1 2 3( , , )k k k k

j j j jw w w w= , w.r.t. to criterion
j

C . 
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Step 2: Calculation of aggregated fuzzy ratings of alternatives and criteria weights using Eq. (11) 

and Eq. (12): The aggregated fuzzy rating of ( , , )k k k k

ij ij ij ijx l m u= of 
th

i alternative w.r.t. th
j criterion 

is given below in Eq. (11): 

{ } { }
1

1
min , , max

K
k k k

ij ij ij ij ij ij
k k

k

l l m m u u
K =

= = =∑                        (11)  

The aggregated fuzzy weight is shown in the Eq. (12): 

{ } { }1 1 2 2 3 3

1

1
min , , max

K
k k k

j j j j j j
k k

k

w w w w w w
K =

= = =∑                       (12)           

By incorporating fuzzy scale as shown in table 4.5, rates individual criterion with apposite 

linguistic expressions depending on importance of machining responses as shown in table 4.6. 

The combined DM matrix is hence calculated and shown in table 4.7.  

Table 4.5. Fuzzy scale of responses 

Importance Fuzzy numbers 

Lowest (L1) (0, 0, 0.1) 

Lower (L2) (0, 0.1, 0.3) 

Low (L3) (0.1, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.7) 

High (H3) (0.5, 0.7, 0.9) 

Higher (H2) (0.7, 0.9, 1) 

Highest (H1) (0.9, 1, 1) 

 

Table 4.6. Importance by DM 

Response DM1 DM2 DM3 DM4 

MRR H1 H2 H1 H3 

SR H2 H1 H3 H2 

KW H3 M M L3 

OC M M L3 M 
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Table 4.7. Combined decision makers’ matrix 

Criteria  Response Combined Decision makers’ matrix  

B MRR 0.5 0.9 1 

NB SR 0.5 0.875 1 

NB KW 0.1 0.5 0.9 

NB OC 0.1 0.45 0.7 

 

Step 3: Normalization of decision matrix using Eq. (13): 

2

1

ij

ij
m

ij

i

x
r

x
=

=

∑
⌢                            (13) 

where, ij
r represents normalized decision matrix. By the support of fuzzy scale as depicted in 

table 4.5, individual DM rates individual criterion with the help of appropriate linguistic 

terminologies depending on the importance of performance measures as revealed in table 4.6 and 

the aggregated fuzzy weights are considered using FAHP method [61, 62] as illustrated in table 

4.7. The mean of the fuzzy weights are calculated using centre of area (COA) method which is 

computed from fuzzy geometric mean value. As the summation of COA is larger than 1 hence 

normalized weight 
j

w⌣
⌣

of each response is calculated whose summation must be equal to 1 for 

obtaining accurate outcomes. 

The vector normalization [62] of the decision matrix is given by Eq. (14) for beneficial criteria 

(B) and Eq. (15) for non-beneficial criteria (NB) or cost criteria. Vector normalization is 

employed in FTOPSIS approach because in numerous different realistic circumstances, 

preference model of an individual is inexact and DM is inept to place crisp numbers for 

contrasting the judgments, inferring the system to be inexact, therefore fuzzy environment is 

considered using TFN for more accuracy and precision for higher production at minimum cost. 
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Fuzzy scale of criteria weights for FAHP is depicted in table 4.8 and the relative importance 

matrix (4x4) for the output responses are computed as depicted by table 4.9.  

Table 4.8. Fuzzy scale of criteria weights for FAHP 

Fuzzy Number Linguistic importance Triangular Fuzzy weights 

1 Equal (1, 1, 1) 

2 Weak (1, 2, 3) 

3 Not Bad (2, 3, 4) 

4 Preferable (3, 4, 5) 

5 Good (4, 5, 6) 

6 Fairly Good (5, 6, 7) 

7 Very Good (6, 7, 8) 

8 Absolute  (7, 8, 9) 

9 Perfect (8, 9, 10) 

 

Table 4.9. Relative importance matrix (4x4) for the output responses 

Response MRR SR KW OC 

MRR (1, 1, 1) (1.0491, 1.5280, 2.0891) (1.2841, 1.6723, 2.1853) (0.9246, 1.2160, 1.6548) 

SR (0.4787, 0.6544, 0.9532) (1, 1, 1) (1.3761, 1.9029, 2.5212) (0.9030, 1.2524, 1.6841) 

KW (0.4576, 0.5980, 0.7787) (0.3966, 0.5255, 0.7267) (1, 1, 1) (0.9448, 1.3392, 1.8135) 

OC (0.6043, 0.8224, 1.0815) (0.5938, 0.7984, 1.1074) (0.5514, 0.7467, 1.0584) (1, 1, 1) 

 

After the pair-wise comparison of the fuzzy matrices, the fuzzy weight j
wɶ is determined by Eq. 

(16): 

( )
1

1

1 2 1 1..... ; ..... n
j j n j j j jnw r r r r where r a a a

−
 = × + + + = × × × ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ                                       (16) 

The aggregated fuzzy weights are computed by FAHP [61, 62] as depicted in table 4.10.  
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Table 4.10. Fuzzy weight calculation using FAHP 

Response Fuzzy Sum of Each Row Fuzzy Synthetic Extent Degree of Possibility (Mi > Mj) Degree of 

Possibility 

(Mi) 

Normalized 

weights 

MRR 4.2579 5.4163 6.9292 0.1966 0.3176 0.5108   1 1 1 1.0000 0.346 

SR 3.7578 4.8098 6.1585 0.1735 0.2820 0.4540 0.8786   1 1 0.8786 0.304 

KW 2.7991 3.4627 4.3189 0.1293 0.2030 0.3184 0.5153 0.6472   1 0.5153 0.179 

OC 2.7495 3.3675 4.2473 0.1270 0.1974 0.3131 0.4923 0.6227 0.9705   0.4923 0.171 

Sum  13.5643 17.0563 21.6539 Consistency Ratio (CR) = 0.0368                                  

Consistency Index (CI) = 0.03312 

Sum  2.8863 1.000 

 

According to extent analysis method [62] as proposed by Chang, all items are considered and 

extent analysis is presented on each goal
i

g ɶ . Hence, mɶ values of extent analysis are attained by 

Eq. (17): 

1 2, ,...., ( 1, 2,...., )m

gi gi gi
M M M i n=ɶ

ɶ ɶ ɶ
ɶ ɶ                         (17) 

where; ( 1,2,......, )j

gi
M j m=
ɶ

ɶ
ɶ ɶ are TFNs. 

The steps are:  

(i) Synthetic extent value w.r.t its object is defined by Eq. (18), obtained from Eq. (19) and Eq. 

(20), and shown in table 4.10: 
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and; 
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and the inverse vector is computed using Eq. (21): 
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(ii) The degree of possibility as shown in table 4.10, of ( ) ( )2 2 2 2 1 1 1 1, , , ,M l m u M l m u= ≥ =  is 

defined by Eq. (22): 

( ) ( ) ( )( )
1 22 1 sup min ,M MV M M x yµ µ ≥ =                          (22) 

or can be also equivalently expressed as in Eq. (23): 

( ) ( )
22 1 1 2 ( )MV M M highest M M dµ≥ = =∩                        (23) 

where; d signifies the ordinate of the highest intersection point. 

(iii) The degree of possibility of a convex fuzzy number if found to be greater than kɶ convex 

fuzzy numbers ( 1,2,...., )
i

M i k=ɶ
ɶɶ can be defined by Eq. (24): 

( ) ( ) ( ) ( )

( )

1 2 1 2, ,..., .....

min ; ( 1, 2,..., )

k k

i

V M M M M V M M and M M and M M

V M M i k

 ≥ = ≥ ≥ ≥ 

= ≥ =

ɶ ɶ

ɶ
ɶɶ

                              (24) 

An assumption is taken as per Eq. (25): ( ) ( )min
i i k

d A V S S′ = ≥ɶ ɶ ɶ                               (25) 

for 1,2,...., ;k n k i= ≠ɶ ɶ ɶɶ . Then the weight vector is calculated by Eq. (26): 

( ) ( ) ( )1 2( , ,....,
T

nw d A d A d A′ ′ ′= ɶ
ɶ                         (26)  
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where; ( 1, 2,...., )
i

A i n=ɶ
ɶ ɶ are of nɶ  elements. 

(iv) Then the normalized weights are calculated by Eq. (27):  

( ) ( ) ( )( )1 2, ,.....,
T

j nw d A d A d A= ɶ                                    (27) 

The normalized weightage summation is equal to 1 showing the consistency which provides the 

main concern of solitary alternative compared to the others. 

(v) Furthermore, Saaty introduced the consistency index (CI) and consistency ratio (CR) for the 

measurement of deviation level from consistency by Eq. (28): 

,
1

m n CI
CI CR

n RI

λ −
= =

−
                         (28) 

where; 
m

λ is the maximum eigen-value and n is the order of pair-wise comparison matrices. RI

is the random index which is considered to be 0.9 [39] of 4n = order. In this research, CI 

obtained is 0.03312 and CR as 0.0368. CR obtained is less than 0.10 which proves the 

consistency of the matrix [39]. The values are incorporated in the table 4.10.                                

Step 4: Multiplication of normalized decision matrix with criteria weights or normalized weights 

as obtained from step 2, to determine the weighted normalized fuzzy decision matrix, V  as 

depicted in Eq. (29):    

.ij ij j
mxn

V v r w = =                             (29) 

Step 5: Computation of FPIS and FNIS: 

( ) ( ){ }'

1 2( , ,....., ) , 1, 2,....,
n i ij i ij

FPIS v v v Max v j K Min v j K i m+ + += = ∈ ∈ =� � �                             (30)  



58 

 

( ) ( ){ }'

1 2( , ,....., ) , 1, 2,....,
n i ij i ij

FNIS v v v Min v j K Max v j K i m− − −= = ∈ ∈ =� � �                            (31) 

where, K fits in superior the improved criterion and '
K fits in inferior the improved criterion. In 

this present research, MRR is considered to be beneficial criteria (higher the improved type) 

whereas SR, KW and OC are considered to be non-beneficial criteria (inferior the improved 

kind).  

Step 6: Computation of the distances of every alternative from FPIS and FNIS: 

( )
1

, ; 1 ; 1
n

i ij j

j

D d v v j ton i to m
+ +

=

= = =∑                                     (32) 

( )
1

, ; 1 ; 1
n

i ij j

j

D d v v j ton i to m
− −

=

= = =∑                        (33) 

FPIS and FNIS are then computed for the accuracy estimation of experimented results using Eq. 

(30) and Eq. (31). Therefore, intervals between FPIS and FNIS are determined using Eq. (32) 

and Eq. (33). Eq. (9) is used to compute intervals of two TFN and the propinquity of entity 

experimental run to the superlative solution is determined by Eq. (22). 

Step 7: To find the closeness co-efficient CC illustrated as in Eq. (34): 

; 1 ; 0 1i
i

i i

D
CC i to m CC

D D

−

+ −
= = ≤ ≤

+
                                  (34) 

Higher the closeness co-efficient, better ranking is obtained. Table 4.11 depicts the ranking of 

DGRA and FTOPSIS on performance measures where rank 1 is run 2 of DGRG 0.7233 in 

DGRA; whereas, run 5 of CC 0.7286 is considered to be rank 1 in case of FTOPSIS. Table 4.12 

depicts the response of these advanced MCDM approaches for the means of DGRG and 



59 

 

FTOPSIS where it is clearly identified that peak current provides maximum main effect in both 

the approaches designated to be rank 1.    

Table 4.11. DGRA and FTOPSIS ranking on performance measures 

Machining Parameters Performance Measures 

Run  P (W) : A Toff (µs) : B IP (A) : C i
CC  

i
δ  

RANK 

(FTOPSIS) 

RANK 

(DGRA) 

1 7 30 5 0.523314 0.5520243 10 15 

2 6 25 10 0.339028 0.7233158 16 1 

3 8 20 8 0.495486 0.5685061 12 13 

4 7 25 8 0.591262 0.6391668 3 3 

5 6 20 8 0.728564 0.6333009 1 4 

6 7 25 8 0.552917 0.6024239 5 7 

7 7 20 5 0.667441 0.5930627 2 10 

8 7 25 8 0.524247 0.5965464 9 9 

9 7 25 8 0.533045 0.598332 7 8 

10 7 20 10 0.395223 0.5814148 14 11 

11 7 30 10 0.360584 0.6474989 15 2 

12 7 25 8 0.552344 0.602861 6 6 

13 6 25 5 0.582395 0.5547221 4 14 

14 8 25 10 0.263495 0.5093703 17 17 

15 6 30 8 0.428801 0.5208223 13 16 

16 8 30 8 0.532356 0.6184054 8 5 

17 8 25 5 0.512737 0.5795287 11 12 

Mean of 
i

CC  = 0.5048964 Mean of 
i

δ  = 0.5953707 
  

 

Table 4.12. Response table for the means of DGRG and FTOPSIS 

Symbol Machining 

Parameters 

MCDM Level 1 Level 2 Level 3 Main effect 

(max-min) 

RANK 

(FTOPSIS) 

RANK 

(DGRA) 

A Power (W) FTOPSIS 0.519697 0.522264 0.451018471 0.071245575 3   

DGRG 0.60804 0.6014812 0.568952624 0.039087641   2 

B Time off 

(µs) 

FTOPSIS 0.571678 0.4946078 0.461263856 0.110414558 2   

DGRG 0.594071 0.6006963 0.584687716 0.016008611   3 

C Peak 

Current (A) 

FTOPSIS 0.571472 0.5487801 0.339582462 0.231889492 1   

DGRG 0.569834 0.5978183 0.615399963 0.045565527   1 

 

It is inferred that different rankings are obtained by DGRA and FTOPSIS because of 

consideration of various and unique decision makers on all 4 responses. Novel DGRA is a 
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simpler form of MOO where responses are analyzed on 17 experimental and predicted values, 

however in FTOPSIS relative normalized decision matrix is computed on all the 17 experimental 

runs along with criteria weights in FAHP method which is much more complex. It is also 

observed that Mean of Closeness Co-efficient of FTOPSIS is 0.5048964 and Mean of Desirable 

Grey Relational Grade is 0.5953707, inferring 17.924% improvement with DGRA method. 
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5. Results and discussions 

5.1. Measurement of performance measures of composite development 

The experimental runs are obtained by varying foremost input laser process parameters as 

obtained by RSM-BBD like laser power (P) allocated by “A” at 150-400 W, scan speed (V) 

allocated by “B” at 10-15 mm/s and energy input/area (E) allocated by “C” at 20-80 J/mm
2
 

calculated from Eq. (1). Hardness measurement (average of 10 measurements) is computed using 

Vicker’s microhardness (load of 500 g for 10 s). Table 5.1 represents the particulars of 12 

experimental run-orders of performance measures of composite development. It is pragmatic that 

elevated cooling rates are engendered at squat energy input/area because of the increment in 

thermal gradients in close proximity to the vicinity of melt pool. Likewise, with the enhancement 

of the energy input/area there is a decrement in the thermal gradients owing to the decrement in 

cooling rate also.  

Table 5.1. Performance measures of composite development 

Exp. No. 

  

Laser 

power: P 

(W) 

Scan 

speed: V 

(mm/s) 

Energy 

input/area: 

E (J/mm
2
) 

Melting 

Temperature: 

Tm (K) 

Temperature 

variation 

during 

cooling (K) 

Cooling 

Rate (K/s) 

Hardness 

(HV) 

P V E Tm dT dT/dt H 

1 150 10 30 1732 1434 -5859635.4 392 

2 150 15 20 1734 1436 -8813987.5 391 

3 200 10 40 1738 1440 -4431579.4 394 

4 200 15 26.67 1741 1443 -6675095.4 393 

5 250 10 50 1744 1446 -3574869 392 

6 250 15 33.33 1750 1452 -5406896.2 393 

7 300 10 60 1753 1455 -3016256.6 395 

8 300 15 40 1759 1461 -4561776.3 395 

9 350 10 70 1763 1465 -2621022.5 396 

10 350 15 46.67 1768 1470 -3958416 396 
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11 400 10 80 1772 1474 -2321659.5 395 

12 400 15 53.33 1780 1482 -3520393.6 393 

 

The cooling rate (
dT

dt
) [11] in K/s can be calculated by Eq. (35): 

2
2

dT V
k T

dt P
π

 
= − ∆ 

 
              (35) 

where; melting temperature is Tm in K, ambient temperature is Ta in K (298 K), thermal 

conductivity is k (6.8 W/mK), laser power ( P ), scan speed (V ) and temperature variation during 

cooling (K) which is T Tm Ta∆ = −  .  

From Eq. (35), it is inferred that cooling rate augments with the enhancement in scan speed and 

dwindles with the augmentation of laser power. At 150 W laser power low melting is observed 

and maximum cooling rate of -8813987.5 K/s is observed at 15 mm/s scan speed. Here, 

minimum hardness of 391 HV is obtained which is enhanced by the increment of laser power 

and scan speed. The optimum cooling rate (-2621022.531 K/s) and enhanced hardness of 396 

HV are obtained 350/10 laser process parameter which is the best case amongst all the laser 

process parameters. During processing below 40 J/mm
2 

energy input/area low melting of the 

mixture powder occurs resulting non-uniform distribution with irregularities with weak 

interfacial bonding of Ti matrix. With the increment in energy input/area between 50 to 70 

J/mm2 good melting occurs with uniform deposits. Optimum condition is achieved at 70 J/mm2 

with optimum cooling rate and enhanced hardness at experimental run number 9. With further 

increment to 80 J/mm
2
 energy input/area overheating followed by rapid cooling occurs leading to 

significant internal stresses generation at experimental run number 11. Here, although minimum 
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cooling rate (-2321659.5 K/s) and greater amount of harness (395 HV) occurs, there is an 

occurrence of overheating caused by severe burns where unstable deposits are formed with 

cracking. Enhanced heat is developed resulting in overlapping layer-by-layer deposition and 

formation of thick deep cracks. This illuminates that with the enhancement of energy input/area 

there is a decrement in cooling rate during LENS processing.         

5.2. Microstructure and characterization 

SEM is used for determining the microstructure and characterization. Fig. 5.1 establishes the 

development of microstructure by LENS on TMC at an unchanging scan speed of 10 mm/s. Fig. 

5.1(a) identifies a capricious distribution of TiB2 discrepancy region within the dispersal of Ti-

matrix at 200 W laser power which implies a non-uniform distribution with TiB2 deficient zone 

within the Ti-matrix.  However, good melting with an uncouth microstructure at 250 W laser 

power is depicted in Fig. 5.1(b). However fine but partial bonding between Ti and TiB2 particles 

are formed when it is increased to 300 W as depicted in Fig. 5.1(c) corresponding to good 

melting with fine but partial bonding sandwiched between Ti and TiB2 elements. On further 

increment of laser power to 350 W, more formations of white layers occur signifying fine 

dispersion of TiB2 particles owing to fully 3d quasi-continuous networking inferring enhanced 

tribo-mechanical properties and excellent interfacial bonding which infers copious 3d pseudo-

continuous arrangement owing to excellent interfacial bonding as designated by Fig. 5.1(d). 

Table 5.2 represents the detailed observations from the characterization of SEM microstructure. 

At 150 W laser power low melting is observed with some irregularities and crack formations. 

Complete melting only occurs at 350 W, but further increment of laser power to 400 W causes 

over heating which leads to crack formation.  
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Fig. 5.1. SEM images at scan speed: 10 mm/s: (a) 200 W, (b) 250 W, (c) 300 W, and (d) 350 W, respectively 

 

Fig. 5.2. Crack formations at diverse laser power/ scan speed: (a) 350/15, (b) 400/10, and (c) 400/15, respectively 

SEM images of crack formations at different laser power/ scan speed are represented in Fig. 5.2. 

Fig. 5.2(a) represents good melting with tiny surface cracks at 350/15. Fig. 5.2(b) depicts 

minimum cooling rate at 400/10 causing overheating by severe burns owing to unstable deposits 

with cracking, and in Fig. 5.2(c) overheating owing to unstable deposits arises which results in 
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deep thick crack formation during post-processing at 400/15. Overall, defective deposits occur 

resulting in meager melting with huge amount of porosity resulting in large crack formation by 

the combination of laser power and scan speed. 

Table 5.2. Observations from SEM microstructure 

Exp. No. Observations 

1 Low melting with some irregularities are formed 

2 Maximum cooling rate with crack formations occurs 

3 Capricious distribution of TiB2 discrepancy region within the dispersal of Ti-matrix occurs 

4 Partial melting of powder and excessive porosity occurs 

5 Good melting occurs with coarse microstructure 

6 Melting is improved with visible cracks and surface porosity 

7 Good melting occurs with fine but partial bonding. Cracks are formed after polishing 

8 Good melting occurs with uniform deposits when white layers start occurring   

9 Optimum cooling rate is obtained. Proper melting with uniform deposit. No visible defects. 

More white layers are appeared signifying excellent spreading of TiB2 particles which infers 

copious 3d pseudo-continuous arrangement owing to excellent interfacial bonding 

10 Good melting occurs with tiny surface cracks 

11 Minimum cooling rate occurs. Overheating causing by severe burns where unstable deposits 

are formed with cracking 

12 Overheating owing to unstable deposits occurs which cracked during post-processing 

 

5.3. ANOVA and Multi-objective optimization of composite development 

In 1918, Ronald Fisher discovered a statistical tool named as ANOVA for analysis of statistical 

problems which splits a hardnosed group of inconsistency acquired from information set into 

methodical arbitrary factors, where statistical influence is obtained by the systematic factors 

whereas random factors do not influence the data sets. ANOVA test is carried to determine the 

contribution and influence of independent variables and their quadratic and interactive effects in 

a regression analysis. Advantages of ANOVA over other existing methods are: its robust design 

and enhancement of statistical power. The two-way ANOVA reduces the randomness and 

provides the interactive effects of the process variables, which is highly accurate for determining 
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MOO problems. Here, ANOVA is used for determining the optimal solution for machining TMC 

using maximum signal to minimum noise ratio technique. Here, statistical sway is attained by 

organized factors while there are no influences of random factors on the information sets. 

Regression analysis is conceded for ANOVA test to ascertain the contribution and persuade of 

linear, quadratic and interactive effects on different variables. The foremost advantages of 

ANOVA when contrasted to additional accessible techniques are robustness and statistical power 

augmentation. The two-way ANOVA decreases the unpredictability and offers major 

contribution of the input process variables on the interactive effects that is extremely precise for 

formative MOO problems. Table 5.3 depicts the abridged ANOVA table. The “significant” 

criterion is reliant on “P>F" which must be less than 0.05. Apart from C, which is energy 

input/area and AC, BC under CR, everyone is significant. For CR, quadratic mathematical 

objective function is the best fitted. The “Lack of Fit F-value” of CR is 0.0864 indicates “not 

significant” which can be inferred that the mathematical model is outstanding for fitting. “Pred 

R²” of CR is 0.9981 is in realistic harmony with “Adj R²” of CR of 0.9997. R
2
 of CR is 0.9999 

that infers excellent result as it is in close proximity to 1 making an allowance for a good signal. 

Adeq Prec. of CR is 232.8724 in lieu of a copious signal computing signal-to-noise ratio. 

Acceptable exactness ought to be superior than 4. “F-value” of CR is 4792.7 and H is 147.27. 

For H, linear mathematical objective function is the best fitted. Except C, each and every one is 

significant. The “Lack of Fit F-value” of H is 0.6105 necessitates not significant criteria. “Pred 

R²” of H is 0.9535 is near proximity with “Adj R²” of H of 0.9669. Adeq Prec. is 34.4674 

signifying an ample signal. This model also navigates in the design space for it excellent fitting 

with observed values.  
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Table 5.3. Abridged ANOVA table 

Source CR H 

F-value p-value F-value p-value 

Model 4792.7 < 0.0001 147.27 < 0.0001 

A-Laser 

Power 

31424.02 < 0.0001 427.64 < 0.0001 

B-Scan 

Speed 

6904.13 < 0.0001 13.64 0.0031 

C-Energy 

input/area 

0.291 0.609* 0.5455 0.4744* 

AB 701.72 < 0.0001 - - 

AC 0.0098 0.9243* - - 

BC 1.79 0.2296* - - 

A² 4025.19 < 0.0001 - - 

B² 33.4 0.0012 - - 

C² 43.74 0.0006 - - 

Lack of 

Fit 

6.07 0.0864* 0.8889 0.6105* 

R² (CR) = 

0.9999 

Adj R² 

(CR) = 

0.9997 

Pred R² 

(CR) = 

0.9981 

Adeq Prec 

(CR) = 

232.8724 

 

R² (H) = 

0.9736 

Adj R² 

(H) = 

0.9669 

Pred R² 

(H) = 

0.9535 

Adeq Prec 

(H) = 34.4674 

* not 

significant 

 

Fig. 5.3 reveals surface plot of P and V on CR demonstrating the involvement of the major input 

laser process parameters on CR. CR augments with the enhancement in V but diminishes with 

the enhancement in P. This is due to the fact of increment in number of deposition in the net-

shaping layers from LENS process because of the enhancement of V. Larger the V, more the 

deposited layers, and enhanced is the heat transfer rate. Now, when P increases, the temperature 

of the preceding deposit enhances leading to decrement in temperature gradients in close 

proximity to melt pool of the liquid and as a result CR decreases. Fig. 5.4 portrays 3-d surface 

plot of P and E on CR. It is pragmatic that elevated CR is engendered at low E because of the 

increment in thermal gradients near the vicinity of melt pool. Likewise, with the enhancement of 

E there is a decrement in the thermal gradients owing to the decrement in CR also. Fig. 5.5 

elucidates 3-d surface plot of V and E on CR which resemblances almost linear plot. This can be 
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explained as CR increases with the increment in V, but decreases almost linearly with the 

increment in E. This illuminates that mounting E diminishes CR during LENS processing. Fig. 

5.6 portrays the enhancement of H with amplification of P and V. Fig. 5.7, it is pragmatic that H 

also boosts with the augmentation of P and E. Fig. 5.8 elucidates 3-d surface plot of V and E on 

H which clarifies stable optimum characteristics with the enhancement of V and E as E does 

little contribution to H which can be validated from table 5.3. It is perceptible that because of the 

enhancement of P and V, there is also an improvement in H due to complete melting and cooling 

with uniform deposits with the formation of more white layers. There is an occurrence of fine 

dispersion of reinforcement particles to Ti-matrix resulting in fully 3d quasi-continuous 

networking owing to excellent interfacial bonding and superior hardness. The objective functions 

for CR and H are given by Eq. (36) and Eq. (37), respectively: 

2 2 2

CR 4.112E 06 2.201E 06A 1.032E 06B 6698.12C 4.652E 05AB

1739.10AC 23483.90BC 1.114E 06A 1.015E 05B 1.161E 05C

= − + + + − + − + +

+ + − + + + + +
             (36)               

H  393.00 3.50A 0.6250B 0.1250C= + + + −
                                         

(37)  
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Fig. 5.3. Surface graph (P vs. V) on CR 

 

                          Fig. 5.4. Surface graph (P vs. E) on CR 
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                    Fig. 5.5. Surface graph (V vs. E) on CR 

 

 

                             Fig. 5.6. Surface graph (P vs. V) on H 
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                 Fig. 5.7. Surface graph (P vs. E) on H 

 

 

                          Fig. 5.8. Surface graph (V vs. E) on H 

Hardness (HV)

389 397

X1 = A: Laser Power

X2 = C: Energy input/area

Actual Factor

B: Scan Speed = 12.3711

  20

  30

  40

  50

  60

  70

  80

150  

200  

250  

300  

350  

400  

388  

390  

392  

394  

396  

398  

H
a
rd

n
e
ss

 (
H

V
)

A: Laser Power (W)
C: Energy input/area (J/mm^2)

395.097395.097

Hardness (HV)

389 397

X1 = B: Scan Speed

X2 = C: Energy input/area

Actual Factor

A: Laser Power = 350.956

  20

  30

  40

  50

  60

  70

  8010  

11  

12  

13  

14  

15  

388  

390  

392  

394  

396  

398  

H
ar

d
n
e
ss

 (
H

V
)

B: Scan Speed (mm/s) C: Energy input/area (J/mm^2)

395.097395.097



73 

 

Fig. 5.9 represents the desirability of individual laser process parameters, performance measures 

and combined desirability. MOO solution is accomplished after DGA whilst P is 350.956 W, V 

is 12.371 mm/s, E is 49.475 J/mm2, CR is -3146515.795 K/s and H is 395.097 HV, and 

combined desirability is 0.838. The individual desirability of the three major laser parameters are 

1, CR as 0.874511 and H as 0.762088, and overall combined desirability is 0.837584.  

 

Fig. 5.9. Desirability of individual laser process parameters, performance measures and combined desirability 

Eq. (36) and Eq. (37) are now further incorporated in GA in MATLAB R2018a, obtained after 

desirability function, where the predicted responses are also considered along with the 

experimental responses. Main advantage of incorporating this novel DGA technique is more 

accuracy and robustness. Both the responses are in close agreement with each others. This novel 

DGA has additional ascendancy in accomplishing the MOO solution. The lower and upper 

bounds of the laser process parameters are incorporated by Eq. (38-40) below: 
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150  A  400<= <=                         (38) 

10  B  15<= <=                         (39) 

20  C  80<= <=                         (40) 

A thorough investigation has been carried and optimum criteria have been selected. The optimal 

setting of the genetic contrivance decides the selection to be remainder and cross-over fraction to 

be 0.8. Cross-over is heuristic with a ratio of 1.4. Mutation is uniform with a ratio of 0.2. 

Migration is forward. Population is considered to be 100 initially.  

 

Fig. 5.10. Multi-objective optimized solution using DGA 

Fig. 5.10 depicts multi-objective optimized solution where the ramp diagram indicates the 

improved optimal solution by DGA method. Fig. 5.11 portrays the fitness and generation plot 

A:Laser Power = 350.956

150 400

B:Scan Speed = 12.3711

10 15

C:Energy input/area = 49.4753

20 80

Cooling Rate = -3.14652E+06

-8.85085E+06 -2.32796E+06

StdErr(Cooling Rate) = 17126.9

17559.5 30414

Hardness = 395.097

389 397

StdErr(Hardness) = 0.158066

0.119678 0.267609

Desirability = 0.838

Solution 1 out of 1
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after application of DGA when Fig. 5.11(a) resemblances the fitness value for CR and Fig. 

5.11(b) portrays the fitness value for H. The best fitness and mean fitness of both the 

performance measures of CR and H are in close proximity with each other. It is pragmatic that 

there is a decrement of the mean fitness with the increment in iteration numbers. In case of CR, 

function tolerance is obtained after 68 iteration number and in case of H, it is 60.  

(a)           Fitness value for CR (b)             Fitness value for H 

  

Fig. 5.11. Fitness vs. Generation plot after DGA: (a) Fitness value for CR, (b) Fitness value for H 

The ranges of these iterations with generations are provided in Fig. 5.12 which corresponds to 

scores and generation plot after DGA where Fig. 5.12(a) represents scores for CR and Fig. 

5.12(b) indicates scores for H, where the best, worst and mean scores are highlighted. 

Optimization is further improved by 20.049% of CR and 0.229% of H when evaluated with 

DGA as depicted in table 5.4 which illustrates the analysis of sensitivity of the parametric MOO 

for DGA method where excellent %improvement has been obtained. 
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(a)           Scores for CR (b)             Scores for H 

  

Fig. 5.12. Scores vs. Generation plot after DGA: (a) Scores for CR, (b) Scores for H 

Table 5.4. %improvement in MOO using DGA 

Laser Process Parameters Laser Performance Measures 

Laser 

power: 

P (W) 

Scan 

speed: V 

(mm/s) 

Energy 

input/area: 

E (J/mm
2
) 

Output 

Responses 

Combined 

desirability 

after DGA 

Cooling Rate 

(K/s) 

Hardness 

(HV) 

% 

improvement 

(%) 

350 10 70 Measured 

0.838 

-2621022.531 396 20.049 (CR) 

350.956 12.371 49.475 Predicted by 

DGA 

-3146515.795 395.097 0.229 (H) 

 

5.4. Machining of the sample by WEDM 

The experimental runs are conceded in a CNC WEDM (model number: AF 35/ONA; capacity 

of: 1060mmX750mmX400mm and UV axes: 120X120 with 1500 kg; accuracy: +- 0.005) which 

is portrayed in Fig. 5.13. The constant parameters are: wire diameter (0.25 mm) of diffused zinc 

coated brass, medium of dielectric is deionized water (conductivity 20 mho), servo voltage is 

maintained at 52 V, open arc voltage is kept at 80 V, wire tension at 18 kgf, wire feed at 10 

mm/min dielectric flush at 25 kg/cm
2
, polarity at 2 and finish at 0. Dimension of the developed 

cylindrical sample used for the WEDM is of diameter 11 mm and height 16 mm. Power (P) 
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factor A (6W, 7W, 8W), Time off (Toff) factor B (20µs, 25µs, 30µs) and Peak Current (IP) 

factor C (5A, 8A, 10A), by low, medium and high levels, as designated by RSM in Design 

Expert 11 software, are considered to be the most influencing parameters, keeping the other 

parameters constant.  

 

Fig. 5.13. Experimental setup of WEDM 

The details of the mechanical properties of the developed TMC are depicted in table 3.1. An 

enhanced heat conductivity of the wire with proper wire tension and wire feed is necessary to 

avoid sharp temperature gradient leading to high stress and recast layers. Table 4.2 depicts the 

detailed design matrix of RSM where various output responses like material removal rate 

(MRR), surface roughness (SR), kerf width (KW) and over cut (OC) are measured and their 

effects are investigated. The parameters and their levels are determined by the specification of 

the CNC WEDM machine of machining titanium based alloys and composite materials. The 
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process parametric selections with their criteria levels are found to influence the MRR, SR, KW 

and OC.  

5.5. Measurement of MRR, KW and OC 

MRR is the quantity of material eliminated from the sample per unit machining time when the 

electrical discharge transpires in the dielectric of WEDM machine. As the wire advances towards 

the workpiece, a gap is created resulting in high voltage generation thus disintegrating the 

dielectric. Electrical discharge initiates a spark between the wire-workpiece interfaces creating 

plasma bubble which then collapses eroding the machined material to disperse into the dielectric. 

Hence material removal takes place in this electro-thermal mechanism. Higher MRR results in 

advanced productivity of the manufacturing arena. Therefore, increment in power and peak 

current leads to high current density resulting in high discharge and improved MRR. MRR and 

OC are computed with the help of Eq. (41) and Eq. (42) below. Cutting speed (Vc) is one of the 

machining criteria which is directly recorded from the monitor of WEDM machine, KW is 

recorded from the profile projector and OC is calculated according to the Eq. (42). After the 

stabilization of Vc, values are measured after 2 mm (t) machining from the commencement of 

the cut. Proper stabilization of Vc is essential for accuracy. First cut first pass is incorporated for 

2 mm (t) machining. 

( )3
MRR  Vc *  KW *  t mm / min=                          (41) 

( )OC  KW –  d mm=                           (42) 

(where‘d’ is the wire diameter which is 0.25 mm) 
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5.6. Measurement of SR 

SR is another important response which is deliberated by the divergences from the standard 

surface. Larger the deviations, rough will be the surface conditions. Rough surface conditions 

will be exhibited with greater deviations. For the measurement of SR, Mitutoyo SJ-210 portable 

surface roughness tester is used where a mean of five measurements of Ra value are considered 

to eliminate variations for each machining condition. 

5.7 ANOVA for MRR  

ANOVA is again used to acquire the optimal solution by using maximum signal to minimum 

noise ratio method. ANOVA implies “F-value” of the MRR model used in this research is 92.21 

depicting the significance of the model with a 0.01% chance for the generation of noise. The 

“significant” criteria about the model terms is when “P>F" is less than 0.05. Here, A, B, C, BC, 

A², B², C² are significant. When the values of “P>F" is greater than 0.1, then they are rendered as  

“not significant”. AB and AC may be considered as not significant as their values are higher than 

0.05 but less than 0.1 and may be eliminated. The “Lack of Fit F-value” of 0.27 entails the “Lack 

of Fit” is not significant when contrasted with the “pure error”. Only a chance of 84.68% is there 

for a “Lack of Fit F-value”, that may occur due to noise. If it is not significant then the response 

of the model is excellent for fitting. “Pred R²” of 0.9657 value is in pragmatic conformity with 

the “Adj R²” of 0.9809 and it is in close conformity as the difference is less than 0.2. R
2
 is 

0.9916 which is excellent as it close to 1 and PRESS is 0.0437 which is very less considering a 

good signal. Adeq Precision is 27.730 representing an adequate signal measuring the signal to 

noise ratio. Enough accuracy ought to be larger than 4. Therefore, this model is accomplished to 

steer in design domain. Table 5.5 signifies ANOVA on MRR where it is clear that this developed 
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model is extremely fitted with the observed values. Fig. 5.14 provides an apparent understanding 

about the residuals which are located near the vicinity of the straight line demonstrating the 

normal distribution of the errors. Fig. 5.15 represents the random scattering of the residuals 

causing it structure less. Fig. 5.16 portrays the perturbation plot designating the contribution of 

all input process parameters to MRR. Fig. 5.17 illustrates the Box-Cox plot for transformation of 

power on MRR signifying the best lambda (1.22) and current lambda (1.0) where the CI value 

for the lambda is (-3.14, 5.01) and the current lambda is in the design space. Fig. 5.18 infers the 

close agreement of actual and predicted responses of MRR.  

Table 5.5. ANOVA on MRR for WEDM machining of TMC 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 1.26 9 0.1404 92.21 < 0.0001 significant 

A-Power 0.9110 1 0.9110 598.48 < 0.0001 * 

B-Time Off 0.0354 1 0.0354 23.28 0.0019 * 

C-Peak Current 0.0273 1 0.0273 17.94 0.0039 * 

AB 0.0060 1 0.0060 3.94 0.0877 
 

AC 0.0072 1 0.0072 4.76 0.0654 
 

BC 0.0573 1 0.0573 37.68 0.0005 * 

A² 0.0345 1 0.0345 22.68 0.0021 * 

B² 0.1656 1 0.1656 108.77 < 0.0001 * 

C² 0.0107 1 0.0107 7.04 0.0328 * 

Residual 0.0107 7 0.0015 
   

Lack of Fit 0.0018 3 0.0006 0.2668 0.8468 not significant 

Pure Error 0.0089 4 0.0022 
   

Cor Total 1.27 16 
    

R² = 0.9916 Adj R² = 0.9809 
 

Pred R² = 0.9657 Adeq Precision = 27.7302 PRESS = 0.0437   * significant 
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Fig. 5.14. Normal plot of residuals related to MRR 

 

Fig. 5.15. Residuals and Predicted plots on MRR 
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Fig. 5.16. Perturbation plot of MRR 

 

Fig. 5.17. Box-Cox plot on MRR 
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Fig. 5.18. Predicted and Actual responses of MRR 

Hence, the mathematical model’s equation for MRR is revealed in Eq. (43): 

2

MRR 3.40 0.3407A 0.0672B 0.0584C 0.0387AB 0.0422AC

0.1186BC 0.0905A 0.1983B² 0.0531C²

= + + − − + −

+ + + +
                       (43) 

From ANOVA result, the two-sided 95% confidence significant process parameters are P, Toff 

and IP. From Fig. 5.19, it is realistic that MRR augments with the enhancement in P but 

decreases with the augmentation of Toff. The shared response graph from Fig. 5.20 recognizes 

that MRR augments with the enhancement in P and IP. Fig. 5.21 clarifies that MRR augments 

with the augmentation in P and IP, but augments with the diminution in Toff. The optimal zone 

is obtained in between 25-28 µs of Toff, as MRR diminishes here and increases further with the 

decrease in Toff. MRR is highly dependent on the electrical conductivity and thermal 

conductivity. With the increment in P and IP, it is apparent that MRR also improves due to the 
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amplification of heat energy. MRR reduces with the augmentation in Toff because of the 

generation of lesser amount of discharges for an explicit time. Consequently, higher Toff 

outcomes in lesser melting in the gap and improper flushing of the ejected material occur with 

the dielectric flow. Therefore, minimum Toff is requisite for sustaining an effective machining 

condition for higher MRR. 

 

Fig. 5.19. Surface plot (P with Toff) on MRR 
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Fig. 5.20. Surface plot (P with IP) on MRR 

 

Fig. 5.21. Surface plot (Toff with IP) on MRR 
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5.8. ANOVA for SR  

To obtain the significance of the process parameters with maximum signal to minimum noise 

ratio is very exigent task for the machining of TMC. Inverse square-root transformation on the 

SR is implemented as required by the Box-Cox plot as shown Fig. 5.25 and ANOVA is 

performed. “P>F” lesser than 0.05 are significant. ANOVA implies SR model’s “F-value” 

(121.83) which infers about its significance with a 0.01% chance for the noise. Here, A, B, C, 

AB, AC, C² are significant and the rest BC, A², B² are not significant and can be eliminated. The 

“Lack of Fit F-value” of 0.33 entails the “Lack of Fit” is not significant. Only 80.65% chance is 

there for a “Lack of Fit F-value” this big may occur due to the noise. If it is not significant then 

the response of the model is excellent for fitting. The “Pred R²” of 0.9706 is in pragmatic 

harmony with the “Adj R²” of 0.9855 with close compliance as the difference is less than 0.2. R
2
 

value is 0.9937 which is excellent as it tends to 1 and PRESS is 0.0065 which is very less 

considering a good signal. Adeq Precision is 37.0949 representing a sufficient signal. Table 5.6 

represents ANOVA on SR for machining TMC where it is very much clear that the model which 

is developed is highly fitted with the observed values.  

Table 5.6. ANOVA on SR for WEDM machining of TMC 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 0.2210 9 0.0246 121.83 < 0.0001 significant 

A-Power 0.0218 1 0.0218 108.28 < 0.0001 * 

B-Time Off 0.0167 1 0.0167 82.76 < 0.0001 * 

C-Peak Current 0.1309 1 0.1309 649.63 < 0.0001 * 

AB 0.0044 1 0.0044 21.83 0.0023 * 

AC 0.0017 1 0.0017 8.68 0.0215 * 

BC 0.0002 1 0.0002 0.9782 0.3556 
 

A² 0.0004 1 0.0004 1.81 0.2199 
 

B² 0.0005 1 0.0005 2.33 0.1711 
 

C² 0.0682 1 0.0682 338.17 < 0.0001 * 
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Residual 0.0014 7 0.0002 
   

Lack of Fit 0.0003 3 0.0001 0.3282 0.8065 not significant 

Pure Error 0.0011 4 0.0003 
   

Cor Total 0.2224 16 
    

R² = 0.9937 Adj R² = 0.9855 
 

Pred R² = 0.9706 Adeq Precision = 37.0949 PRESS = 0.0065 * significant 

 

Fig. 5.22 also bestows about the residuals which are located near the vicinity of the straight line 

demonstrating the normal distribution of the errors. Fig. 5.23 represents the random scattering of 

the externally studentized residuals causing it structure less and inside the design boundary. Fig. 

5.24 portrays the perturbation plot on SR representing the contribution of all the input process 

parameters to SR, and peak current (factor C) contributes highest impact on SR. Fig. 5.25 

elucidates the Box-Cox plot for power transforms on SR signifying the best lambda (-0.51) while 

the current lambda (-0.5) exactly coincides inferring excellent results. CI for the lambda is (-

1.67, 0.46) and the current lambda is in the design space. Fig. 5.26 infers a very close conformity 

with the actual and predicted SR responses.  

 

Fig. 5.22. Normal plot of residuals related to SR 
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Fig. 5.23. Residuals and Predicted plots on SR 

 

Fig. 5.24. Perturbation plot of SR 

Predicted

E
xt

e
rn

a
ll
y 

S
tu

d
e
n
ti
ze

d
 R

e
si
d
u
a
ls

Residuals vs. Predicted

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

0.7 0.8 0.9 1 1.1 1.2

4.81963

-4.81963

0

-1.000 -0.500 0.000 0.500 1.000

0.6

0.8

1

1.2

1.4

1.6

A

A

B

B
C

C

Perturbation

Deviation from Reference Point (Coded Units)

S
R
 (
µ
m

)



89 

 

 

Fig. 5.25. Box-Cox plot on SR 

 

Fig. 5.26. Predicted and Actual responses of SR 
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Hence, the mathematical model for SR is provided in Eq. (44): 

( )1/ Sqrt SR   1.10 0.0527A 0.0461B 0.1279C 0.0332AB 0.0207AC

0.0070BC 0.0093A² 0.0105B² 0.1339C²

= + − − − + +

− − + −
                   (44) 

While machining TMC the ANOVA result signifies that the two-sided 95% confidence 

significant process parameters are P, Toff and IP. From the Fig. 5.27, SR augments with the 

enhancement of P and Toff, but the variation is very less. Fig. 5.28 portrays the enhancement of 

SR with the enhancement of P and IP. Fig. 5.29 clarifies that SR improves with the augmentation 

in IP and diminishes with the augmentation in Toff.  

 

Fig. 5.27. Surface plot (P with Toff) on SR 
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Fig. 5.28. Surface plot (P with IP) on SR 

 

Fig. 5.29. Surface plot (Toff with IP) on SR 
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this reason. Improper flushing results in deeper and wider crater generation producing a rough 

surface. Therefore P and IP should be kept very less for smooth surface generation. It is also 

evident that if there is an augmentation in Toff then there is a reduction of SR due to the 

occurrence of fewer discharges for a meticulous period ensuing in less amount of crater 

formation resulting in lesser micro-damage. For acquiring excellent surface finish Toff should be 

higher.  

5.9. ANOVA for KW and OC  

Fig. 5.30 explains the Box-Cox plot on KW signifying the best lambda (1.6) while the current 

lambda (1.0) exactly coinciding providing excellent results. CI value for the lambda is (-3.16, 

5.25) and the current lambda is in the design space. Hence, the developed second-order equation 

for KW is portrayed in Eq. (45): 

KW  0.3507 0.0185A 0.0065B 0.0125C 0.0100AB 0.0027AC

0.0027BC 0.0160A² 0.0110B² 0.0042C²

= + + − − − +

+ + + −                            

(45) 

 

Fig. 5.30. Box-Cox plot on KW 
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Table 5.7 indicates the abridged ANOVA table for performance measures of WEDM machining 

of TMC which clearly contrasts between the characteristics of all the output responses. 

Table 5.7. Abridged ANOVA table for WEDM machining of TMC 

Source MRR SR KW OC 

F-value p-value F-value p-value F-value p-value F-value p-value 

Model 92.21 < 0.0001 121.83 < 0.0001 52.87 < 0.0001 52.87 < 0.0001 

A-

Power 

598.48 < 0.0001 108.28 < 0.0001 196.03 < 0.0001 196.03 < 0.0001 

B-Time 

Off 

23.28 0.0019 82.76 < 0.0001 24.4 0.0017 24.4 0.0017 

C-Peak 

Current 

17.94 0.0039 649.63 < 0.0001 91.44 < 0.0001 91.44 < 0.0001 

AB 3.94 0.0877* 21.83 0.0023 29.26 0.001 29.26 0.001 

AC 4.76 0.0654* 8.68 0.0215 2.17 0.1843* 2.17 0.1843* 

BC 37.68 0.0005 0.9782 0.3556* 2.17 0.1843* 2.17 0.1843* 

A² 22.68 0.0021 1.81 0.2199* 78.85 < 0.0001 78.85 < 0.0001 

B² 108.77 < 0.0001 2.33 0.1711* 37.27 0.0005 37.27 0.0005 

C² 7.04 0.0328 338.17 < 0.0001 4.83 0.064* 4.83 0.064* 

Lack of 

Fit 

0.2668 0.8468* 0.3282 0.8065* 0.2614 0.8504* 0.2614 0.8504* 

R² 

(MRR) 

= 

0.9916 

Adj R² 

(MRR) 

= 0.9809 

Pred R² 

(MRR) 

= 0.9657  

Adeq 

Prec 

(MRR) 

= 

27.7302 

PRESS 

(MRR) 

= 0.0437   

Pure 

Error 

(MRR) 
= 0.0089 

     

R² (SR) 

= 

0.9937 

Adj R² 

(SR) = 

0.9855 

Pred R² 

(SR) = 

0.9706 

Adeq 

Prec 

(SR) = 

37.0949 

PRESS 

(SR) = 

0.0065 

Pure 

Error 

(SR) = 

0.0011 

      

R² 

(KW) = 

0.9855 

Adj R² 

(KW) = 

0.9669 

Pred R² 

(KW) = 

0.9434 

Adeq 

Prec 

(KW) = 
28.6272 

PRESS 

(KW) = 

0.0004 

Pure 

Error 

(KW) = 

0.0001 

      

R² (OC) 

= 

0.9855 

Adj R² 

(OC) = 

0.9669 

Pred R² 

(OC) = 

0.9434 

Adeq 

Prec 

(OC) = 

28.6272 

PRESS 

(OC) = 

0.0004 

Pure 

Error 

(OC) = 

0.0001 

    * not 

significant 

 

Fig. 5.31 explains the Box-Cox plot on OC signifying the best lambda (1.18) while the current 

lambda (1.0) exactly coinciding providing excellent results. CI value for the lambda is (-0.32, 

2.42) and the current lambda is in the design space. The equation for OC is provided in Eq. (46): 
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OC  0.1007 0.0185A 0.0065B 0.0125C 0.0100AB 0.0027AC

0.0027BC 0.0160A² 0.0110B² 0.0042C²

= + + − − − +

+ + + −                  

(46) 

 

Fig. 5.31. Box-Cox plot on OC 

While machining TMC the ANOVA result signifies that the two-sided 95% confidence 

significant process parameters are P, Toff and IP. From the Fig. 5.32, KW augments with the 

enhancement of P and Toff. Fig. 5.33 portrays the enhancement of KW with the enhancement of 

P and IP. Fig. 5.34 clarifies that KW also increases with the augmentation in IP and Toff. The 

enhancement of KW is due to longer spark duration resulting in greater heat and thermal energy 

resulting in improper melting and improper flushing ensuing blow holes, crater formation and 

generation of residual stresses. Therefore P and IP must be low for lower KW. It is also evident 

that if there is an increment in Toff then there is an increment of KW due to high discharges and 

irregular plasma channels.  
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Fig. 5.32. Surface plot (P with Toff) on KW 

 

Fig. 5.33. Surface plot (P with IP) on KW 
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Fig. 5.34. Surface plot (Toff with IP) on KW 

From the Fig. 5.35, OC augments with the enhancement of P and Toff. Fig. 5.36 portrays the 

enhancement of OC with the enhancement of P and IP. Fig. 5.37 clarifies that OC also increases 

with the augmentation in IP and Toff. As OC is directly proportional to KW therefore all the 

reasons are exactly the same for increment of KW and OC due to the raise of P, Toff and IP. 
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Fig. 5.35. Surface plot (P with Toff) on OC 

 

Fig. 5.36. Surface plot (P with IP) on OC 
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Fig. 5.37. Surface plot (Toff with IP) on OC 
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Fig. 5.38. Combined perturbation plot on performance measures 
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Fig. 5.38 portrays the combined perturbation plot on the output responses indicating the 

contribution of all the three input process parameters to all the output responses. There is a 

random scattering of the residuals resulting in structure-less within the design boundary and 

close agreement with the experimental and predicted results. All these values coincide with each 

other providing excellent results depicting its navigation in design space. 

5.10. Multi-objective optimization of WEDM parameters and responses 

Fig. 5.39 corresponds to the multi-objective optimized solution of WEDM on Ti-TiB2 hybrid 

composite depending on the above D-optimality technique. The graphical and numerical 

optimizations are applied and the results are validated. From the graph, it is pragmatic that the 

main objective of optimization is improving as the slope of MRR is upwards which concludes 

higher the MRR, better is the productivity. The responses of KW and OC are in decreasing slope 

resembling lower the better condition. Since, the domain of SR is transposed; therefore its 

upward slope actually signifies lower the better criteria. The optimized solution is attained when 

P is 7.3704 W, Toff is 27.8665 µs, IP is 9.70767 A, MRR is 3.60565 mm
3
/min, SR is 1.39197 

µm, KW is 0.34542 mm, OC is 0.09542204 mm, StdErr(MRR) is 0.0227795,  StdErr(SR) is 

0.00828911, StdErr(KW) is 0.0021587, StdErr(OC) is 0.0021587 and combined desirability is 

0.716. From Fig. 5.40, the individual desirability of all the input process parameters is obtained 

as 1, signifying 100% desirability, and MRR as 0.50231, SR as 0.864192, KW as 0.807245, OC 

as 0.807245, StdErr(MRR) as 0.69311, StdErr(1/Sqrt(SR)) as 0.69311, StdErr(KW) as 0.69311, 

StdErr(OC) as 0.69311 and overall combined desirability is 0.715931 (considered as 0.716). This 

graph infers the individual desirability of the parameters and combined desirability of the 

parameters and responses signifying multi-objective optimized value. All the individual and 

overall desirability is greater than 0.5 (50%) signifying excellent results. It also represents the 
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overall interaction of performance and process parameters of the optimized solution where the 

optimal solution of all the individual responses is highlighted along the graphs of the process 

parameters. Fig. 5.41 represents overall interactions of performance and process parameters of 

the optimized solution. 

 

Fig. 5.39. Multi-objective optimized solution of WEDM 
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Fig. 5.40. Desirability of input process parameters and output responses 
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Fig. 5.41. Overall interactions of performance and process parameters of the optimized solution 
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Fig. 5.42 portrays the variation of 2-d contour plots of different performance measures where a 

relationship can be built between two process parameters while keeping the other parameter at 

medium level. MRR is an extensive performance response which vastly impacts productivity and 

cost. Therefore, much preference is to be given for superior MRR in machining for improvement 

in production minimizing the overall cost. From table 5.7, it is pragmatic that power is the most 

significant process variable which influences greater in MRR, while peak current is the most 

significant process variable in case of SR. There is an augmentation of MRR with the 

enhancement of P but a subsequent reduction occurs with the augmentation in Toff as depicted 

by Fig. 5.42(a). Fig. 5.42(b) portrays a large amplification of MRR with the enhancement of P 

and IP, as there is an amplification of heat energy which increases the plasma energy and MRR 

is unwaveringly proportional to plasma. Fig. 5.42(c) illustrates the enrichment of MRR with the 

rise in IP and P, but intensifies with the decrement in Toff due to the occurrence of insufficient 

amount of discharges of plasma. From the Fig. 5.42(d), it is apparent about the augmentation of 

SR as P and Toff augments. From Fig. 5.42(e), it is obvious that SR gets increased with the 

augmentation in P and IP. Fig. 5.42(f) conjectures about the augmentation of SR, when IP 

augments but further decreases when Toff lessens, due to the occurrence of extended spark 

duration ensuing in additional discharge energy per spark. Therefore, it is pragmatic that with the 

increment in Toff, SR gets abridged due to the formation of squat discharges for a precise period 

ensuing in small crater formation. Thus, Toff should be higher for smooth surface finish. Similar 

results are obtained in Fig. 5.42(g-i) in determining the KW responses with the process 

parameters. With the increase in P and IP, KW and OC increases but with the increment in Toff 

both decreases; which hence designates that with the adherence of molten metal there is a 

formation of micro voids. This is due to weak interaction of plasma jet to the sample at superior 
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cutting speed. With the increment of the discharge the cutting speed increases resulting in 

elevated concentration of plasma energy leading to swift melting and hence the molten metal 

vaporizes increasing the MRR. Fig. 5.42(j-l) represents the same for OC response. It is pragmatic 

that since OC is directly proportional to KW therefore the dependency of these parameters 

exhibit similar results for both the performance measures KW and OC. In all these figures 

minimum zone symbolizes in blue and maximum zone symbolizes in red contours.  
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(j) (k) (l) 

 
 

 

Fig. 5.42. Contour plots of performance measures: (a) P vs. Toff on MRR, (b) P vs. IP on MRR, (c) Toff vs. IP on 

MRR, (d) P vs. Toff on SR, (e) P vs. IP on SR, (f) Toff vs. IP on SR, (g) P vs. Toff on KW, (h) P vs. IP on KW, (i) 

Toff vs. IP on KW, (j) P vs. Toff on OC, (k) P vs. IP on OC, (l) Toff vs. IP on OC 

Fig. 5.43 represents the surface plot of overall desirability considering the P and Toff parameters 

keeping IP as medium value and constant. It is pragmatic that desirability enhances with the 

combining effect of increment in P and decrement in Toff. Similarly, both P and IP show an 

augment in the desirability with their enhancement, keeping Toff to be invariant and in medium 

level, as evident from Fig. 5.44. But from Fig. 5.45, it is clear that the overall desirability can be 

improved in higher IP but lower Toff, when P is kept constant and in medium level. Hence, an 

optimum point is essential for MOO analysis.  
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Fig. 5.43. Desirability graph of P vs. Toff 
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Fig. 5.45. Desirability graph of Toff vs. IP 
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The means of DGRG (DGRGm) is 0.5953707 which is in close proximity of the rank 17 of run 

14 (0.5093703). The difference of the DGRG values between two successive rankers is very 

nominal inferring superior results in MOO problems. By considering the overall effects in 

DGRA, IP is inferred to be rank 1, P to be rank 2 and Toff to be rank 3. Ranking signifies the 

contribution of each process parameters to all the four performance measures. Fig. 5.46 portrays 

% improvement and comparative study between DGRA, desirability and Kumar et al. [4]. It is 
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when compared with Kumar et al. [4] the % improvement is 2.3%. From the graph it is evident 

that in every experimental runs DGRA and desirability is superior to Kumar et al. [4]. However, 

much exploration in comparison with DGRA to GA and ANN in future has to be endeavored for 

better optimal results.  

 

Fig. 5.46. % improvement and comparative study 

5.11. Confirmation tests with validation 

After successful optimization, the optimized result is validated using confirmatory tests. % error 

is represented by Fig. 5.47 that communicates palpably delegating a nominal divergence 

involving the actual and results. The %error of both the performance measures is below 1.4% 

which infers excellent result and robustness. Fig. 5.48 and Fig. 5.49 signify confirmation graphs 

between the predicted and experimental performance measures following outstanding 

concurrence and close proximity with one other. The data mean lies in the existence inside the 

province of 95% PI low and 95% PI high which infers the validation of test results.  
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Fig. 5.47. % Error computation of performance measures of composite development

Fig. 5.48. 
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Fig. 5.48. Confirmatory graph on Cooling Rate 
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Fig. 5.49. Confirmatory graph on Hardness 

Table 4.1 depicts the RSM-BBD design of experiments of composite development and table 4.2 

provides all the details of the experimental runs of the WEDM of the developed Ti-TiB2 hybrid 

composite as obtained by the RSM-BBD model, where the actual and predicted values of RSM-

BBD output responses MRR, SR, KW and OC are mentioned and are in close conformity. Fig. 

5.50 represents % error which clearly indicates that the deviation of actual from predicted is very 

nominal giving excellent results. % error of all output responses of experimental runs are below 

2% except for the KW (2.35 %) and OC (8.89 %) of run 4 which has to be minimized by taking 

new experimental reading in same input condition. Fig. 5.51-5.54 represents confirmatory graphs 

of actual and predicted output responses with respect to experimental runs which represent 

excellent agreement of test results. From table 5.8, results are validated using confirmatory tests 
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0.73% when evaluated with FTOPSIS to DGRA and 1.02% when evaluated with desirability to 

DGRA. The output responses are improved to a greater extent when compared with the 

experimental and the predicted optimized results. MRR is improved by 1.463%, SR by 13.221%, 

KW by 1.594% and OC by 6.024%. The confirmation graphs between the predicted and 

experimental performance measures following outstanding concurrence and close proximity with 

one other. All the performance measures are enhanced to a superior extent when evaluated with 

the experimental and the predicted optimized results. From the above figures it is evident that 

nominal deviations are there which can be due to machine chatter; unstable vibration and 

improper dielectric flush which can again be controlled at optimum conditions. 

 

Fig. 5.50. % Error calculation of performance measures after WEDM 
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Fig. 5.51. Confirmatory graph on MRR responses 

 

Fig. 5.52. Confirmatory graph on SR responses 
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Fig. 5.53. Confirmatory graph on KW responses 

 

Fig. 5.54. Confirmatory graph on OC responses 
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Table 5.8. Results of confirmatory test after WEDM 

Response Solution Predicted Mean Predicted Median 95% PI low Data Mean 95% PI high 

MRR 3.60565 3.60565 3.53474 3.5352 3.67657 

SR 1.39314 1.39197 1.31093 1.42659 1.48076 

KW 0.34542 0.34542 0.3387 0.3475 0.352141 

OC 0.0954204 0.0954204 0.0887 0.0975 0.102141 

 

Table 5.9. Validation test and %improvement in MOO using DGRA in WEDM 

Machining Parameters WEDM Performance Measures 

Power 

(W) 

Time 

Off 

(µs) 

Peak 

Current 

(A)  

Responses Optimized 

value 

% 

improvement 

(%) 

MRR 

(mm3/min) 

SR 

(µm) 

KW 

(mm) 

OC(mm) 

7 30 10 Measured   3.6584 1.576 0.34 0.09 

7.3704 27.8665 9.70767 Predicted by Desirability 0.716 1.75 3.60565 1.39197 0.34542 0.09542204 

6 20 8 Predicted by FTOPSIS 0.7285637 0.73 % improvement (%) 

6 25 10 Predicted by DGRA 0.7233158 1.02 1.462981709 13.2208 1.594118 6.02448889 
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6. Conclusions 

6.1. Conclusions 

This present investigation infers the development of a novel TMC by LENS process, 

microstructural characterization, and optimization of performance measures of composite 

development and machining by WEDM. The optimal solution of laser performance measures is 

determined using a novel MOO called DGA and WEDM performance measures by a new MOO 

named DGRA. The experimental results are further compared with advanced MCDM methods 

like FTOPSIS for % improvement analysis. The chief concluding points from this present 

investigation are: 

1. CR is inversely proportional to energy input/area. Enhanced CR stimulates stumpy 

energy input/area because of the increment in thermal gradients near the vicinity of the 

melt pool and vice-versa. CR also augments with the enhancement in V and diminishes 

with the enhancement in P. 

2. H augments with the increment in the combining effect of P and V and the merging effect 

of P and E; but remains invariable in the combination of V and E. Optimum results are 

obtained at an elevated hardness of 396 HV and cooling rate of -2621022.531 K/s at 

350/10 laser process parameter. 

3. The developed novel TMC possesses superior tribo-mechanical properties when 

fabricated after the LENS process. SEM images infer the optimum and best condition of 

laser parameters at 350 W laser power and 10 mm/s scan speed. More formation of white 

layers is evident portentous excellent dispersal of TiB2 particles owing to proper 

interfacial bonding. Complete melting only occurs when the laser power is 350 W, but 
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additional augmentation in laser power to 400 W causes overheating owing to thick crack 

formation. 

4. The optimized solution is attained after the desirable genetic algorithm when P is 350.956 

W, V is 12.371 mm/s, E is 49.475 J/mm
2
, CR is -3146515.795 K/s, and H is 395.097 HV, 

and combined desirability is 0.838. Optimization is additionally enhanced by 20.049% of 

CR when evaluated with DGA. 

5. MRR and SR enhance with an increment of P and IP. MRR also amplifies with a 

reduction in Toff. SR enhances with an increment in IP and decreases with an increment 

in Toff. KW and OC are directly proportional to P, IP, and Toff. Therefore, minimum 

values of these performance measures are mandatory for better results and productivity. 

6. It is pragmatic that MRR is highly dependent on electrical and thermal conductivity. 

When P and IP increase, it is evident that MRR also improves for the high amplification 

of heat energy resulting in a high discharge current. MRR reduces with the enhancement 

of Toff due to low discharge current. Therefore, higher Toff results in lesser melting in 

the gap. Also, higher Toff results in improper dielectric flushing of removed material.  

7. The augmentation of SR with the enhancement of IP and diminishes with the 

enhancement in Toff is due to longer spark duration, ensuing in more discharge energy 

per spark. It is also perceptible that due to enhancement in Toff, there is a reduction in SR 

due to low discharges for a conscientious period ensuing in minor crater formation with a 

negligible micro-damage. 

8. The developed novel TMC fabricated by the LENS process possesses improved tribo-

mechanical properties like Young’s modulus (550 GPa), coefficient of thermal expansion 

(8.6x10
-6

 /K), Hardness (396 HV), Yield strength in compression (945-1020 MPa), 



119 

 

Ultimate compressive strength (1020-1096 MPa) and Elongation (25-32.5%), and the 

microstructure depicts an excellent interfacial bonding of TiB2 with Ti. 

9. The WEDM process parameters at the optimized solution are P, 7.3704 W, Toff, 27.8665 

µs, IP, 9.70767 A, and performance measures are MRR, 3.60565 mm
3
/min, SR, 1.39197 

µm, KW, 0.34542 mm, and OC, 0.09542204 mm. The desirability of all the input process 

parameters is 1, MRR is 0.5023, SR is 0.8642, KW is 0.8072, OC is 0.8072, and 

combined desirability is 0.716. 

10. The variation in the ranking of performance measures in both the MCDM methods is 

because in FTOPSIS (coupled with FAHP), equivalent normalized weights are 

considered in the weightage matrix of DM. This weightage matrix is dependent on the 

COA criteria. But in DGRA, no such criteria weights are considered. FTOPSIS deals 

with only the experimental output responses but DGRA considers both the experimental 

and predicted responses. DGRG mean value (0.5953707) is higher than that of the 

closeness coefficient mean value of FTOPSIS (0.5048964) owing to better results in 

optimization under DGRA. The mean values of 
iCC  is 0.5049 and of 

iδ  is 0.5954, 

indicate better-optimized results in the proposed algorithm DGRA with an improvement 

of 17.924 %. 

11. Sensitivity analysis has been conceded for robustness and sensitivity of four decision 

makers’ preference on the optimality of the performance measures for the DGRG means, 

and FTOPSIS means where it is pragmatic that peak current contributes the maximum 

main effect in both the MCDM methods, thereby being designated as rank 1. 

12. The graph between actual and predicted output responses depicts excellent conformity, 

which convinces this research to be on the correct path. The confirmatory tests infer the 



120 

 

validated results where the data mean is within the domain space of 95% PI low and 95% 

PI high. 

13. Optimization is further improved by 1.75%, 0.73%, and 1.02% when contrasted with 

desirability to FTOPSIS, FTOPSIS to DGRA, and desirability to DGRA. MRR is 

improved by 1.463%, SR by 13.221%, KW by 1.594%, and OC by 6.024%. 

Results infer that this novel DGA technique has more ascendancy in accomplishing the optimal 

solution in MOO problems. Also, the TMC is favorable for machining with the most efficient 

non-traditional machining process WEDM. Results infer that the approach of DGRA has 

superiority in obtaining the optimal solution rather than the desirability function in multi-

objective optimization problems. Results conclude that the DGRA technique has more 

dominance in achieving the optimal solution over the desirability function in MOO problems.  

6.2. Achievements 

The achievements of the work lie in the characterization and microstructural analysis of the 

experimental run-orders of LENS developed novel TMC. Major input laser process parameters 

are varied and optimal solutions for performance measures are identified. Furthermore, the 

experimental results are compared with novel MOO called DGA and improved results are 

obtained by % improvement. The chief contributions of this present investigation are: 

1. The prime novelty of this research lies in the proposed algorithm of the optimization 

technique called desirable genetic algorithm which is a combination of desirability 

function and genetic algorithm where a new titanium composite material is developed by 

LENS, which minimizes the error and validates the experimental results. 
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2. Further, another novel optimization algorithm is developed known as desirable grey 

relational analysis which is a combination of desirability function and grey relational 

analysis where machining is carried on the developed TMC and an optimal solution is 

identified. Improved tribo-mechanical properties are developed and the microstructure 

depicts an excellent interfacial bonding of TiB2 with Ti. 

3. The experimental and the predicted results are then compared with the multi-criteria 

decision-making (MCDM) method like FTOPSIS coupled with FAHP for criteria weights 

and improved statistical results are obtained. The investigation is done on the response 

surface methodology on performance measures like MRR, SR, KW, and OC. 

4. An optimal solution is identified and authenticated after the confirmatory tests, where the 

experimental and predicted results provide excellent conformity and close agreement 

with each other. 

5. This research work provides the contemporary state-of-the-art of enhancement of tribo-

mechanical properties like corrosion, wear, fatigue resistant and biocompatible 

properties, when compared to pure titanium and other titanium alloys, to make complex 

shapes for various industrial applications, and other biomedical applications specifically 

in bones, hips, dental problems, knee replacement enucleation and have an assortment of 

various other surgical instruments. 

6.3. Scope for Future Works 

� The presented work relates to the development of novel TMC by LENS process and 

machining by WEDM, which can be additionally deployed for advanced hybrid composite 

materials reinforcing with Ti-6Al-4V, IN625, and IN718 by varying the % composition 

of mass or volume. Proper distribution of powder stream can be obtained by 
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incorporating powder transport and functional grading. The varying proportion of 

distribution of powder flux which designates the mass flow rate can be further studied in 

deposition modeling. 

� This model can be further improved with the optimality test of combination of powder 

flow over melt pool, for the study of multi-track and multi-layer deposition. Complete 

analysis of thermal responses can be performed for diverse scanning techniques and 

assortment of strategies of depositions. 

� A promising area can be the investigation of deposition directions on quality and 

accuracy, adaptive process control, and deposition strategy to manifest the anisotropy of 

the fabrication process. 

� In the future, more advanced MOO techniques like ANN and PSO may be incorporated 

with the desirability function to maximize production at minimum cost in the smallest 

amount of machining time for sustainable manufacturing.  

� Also, other process parameters like wire tension and wire feed can be varied along with 

the existing process parameters used in this research to obtain the effects on other 

performance measures like specific cutting edge and wire wear rate along with the 

existing output responses and combined desirability can be obtained for maximum and 

cost-effective products in least machining time for sustainable manufacturing. 

� More tribo-mechanical and metallurgical properties can be determined. TEM and XRD 

can be incorporated in the future. CCD can be implemented and compared with the 

existing RSM-BBD model which may be much more economic and efficient for 

machining complicated complex silhouettes. Better alternatives of dielectrics and 

recycling of wire electrodes can be implemented in the future for better results. 
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