NAME OF THE EXAMINATION: B.E. POWER ENGINEERING FOURTH YEAR SECOND SEMESTER - 2022

SUBJECT: DIGITAL SIGNAL PROCESSING (HONS.)

TIME: 4 HOURS

FULL MARKS: 70

Use Separate Answer Sheets for Part A and Part B

PART A

Answer Q1 and any SIX (6) questions from the rest

- Choose the correct option for any FIVE questions:

 (i) Resolve the following discrete sequence x(n) into a sum of weighted impulse sequences.
- (5@1 = 5) [CO1]

 $x(n) = \{2, 4, 0, 3\}$

- a) $2\delta(n)+4\delta(n-1)+3\delta(n-3)$
- b) $2\delta(n)+4\delta(n-1)+3\delta(n-2)$
- c) $2\delta(n+1)+4\delta(n)+3\delta(n-2)$
- d) $2\delta(n-1)+4\delta(n)+3\delta(n-2)$
- (ii) If x(n) is a discrete-time signal, then the value of x(n) at non-integer value of 'n' is?
- [CO1]

- a) Zero
- b) Not defined
- c) Positive
- d) Negative
- (iii) The amplitude scaling of a sequence x(n) by a factor a is given by
 - a) y(n) = x(n-a)
 - b) y(n) = ax(n)
 - c) y(n) = a + x(n)
 - d) y(n) = x(an)
- (iv) Determine the value of the summation:

[CO1]

$$\sum_{n=-\infty}^{\infty} \delta(n+3)(n^2+n)$$

- a) 9
- b) 3
- c) 6
- d) 12
- (v) Which one of the following is not a characteristic of a deterministic signal?

[CO1]

- a) Exhibits no uncertainty
- Instantaneous value can be accurately predicted
- c) Can be represented by a mathematical equation
- d) Does not have a non-zero value

[CO3] In discrete signal, if y[n] = x [kn] and k > 1 then ___ (vi) a) Some samples are added to x[n] b) Some samples are lost from x[n] c) It has no effect on samples d) Samples will be increased with factor k [CO1] Which of the following is an example for non-causal system? (vii) a) $y[n] = \frac{1}{3} \{x[n-1] + x[n] + x[n-2]\}$ b) $y[n] = \frac{1}{2} \{x[n-1] + x[n]\}$ c) $y[n] = \frac{1}{3} \{x[n-1] + x[n] + x[n+1]\}$ d) $y[n] = \frac{1}{2} \{x[n] + x[n-2]\}$ [CO3] Find value of the convolution $h[n-1]*\delta[n-1]$, $\delta[n]$ being the impulse sequence. a) h[n] b) h[n-1] c) h[n-2] d) h[n+1] Answer any SIX (6) Questions What are the advantages and disadvantages of digital signal (3) [CO1] (a) processing over analog signal processing? Express the signal shown in Fig, 1 as the sum of singular (2)[CO3] (b) functions and sketch. x(n)2 3 5 6 4 Fig. 1 (1) [CO1] Draw a schematic diagram to explain interrelationship between (a) the basic elements of a Digital Signal Processing System [CO3] (4) A discrete-time signal x(n) is shown in Fig. 2. Sketch each of the (b) following signals and express them in sequence representation form. (a) x(-n)(b) x(n + 2)(c) 3x(n-2)(d) x(-n+2)

2

3.

- 4 (a) How do you classify a discrete signal as "Energy signal" or (2) [CO1] "Power signal"?
 - (b) Check whether the following signals are periodic or not. If the signal is periodic, find its fundamental period.
 - a) $x(n) = e^{j(\pi/4)n}$ b) $x(n) = \cos \frac{\pi}{3}n + \sin \frac{\pi}{4}n$
- 5 (a) How do you differentiate between static and dynamic discretetime systems? [CO1]
 - (b) Find whether the following systems are causal or not: (6) [CO1]
 (a) y(n) = x(2n)(b) $y(n) = \sin[x(n)]$
- 6 (a) Differentiate between *memory* and *memory-less* discrete-time (1) [CO1] systems with relevant examples.
 - (b) Determine if the systems described by the following inputoutput equations are linear or nonlinear. (4) [CO1]

a)
$$y(n) = x(n^2)$$

b) $y(n) = e^{x(n)}$

- 7 (a) Justify or rectify the following statement with adequate (1) [CO1] explanation in relation to discrete-time statement: "A system is said to be linear if it satisfies superposition principle"
 - (b) Check whether the following discrete-time systems are BIBO (4) [CO1] stable or not.

(a)
$$y(n) = ax(n) + b$$

(b) $y(n) = ax(n)x(n-1)$

- 8 (a) What are scaling and distributive properties of discrete (5) [CO1] convolution?
 - (b) Find convolution of the two signals shown ion Fig. 3: (4) [CO2]

Fig. 3

- 9 (a) Draw block diagram representation of the system described by (2) [CO1] the difference equation:
 - y(n) = x(n) + 3x(n-1) + 2x(n-2)(b) A DSP system is described by the linear difference equation y(n) = 0.2x(n) 0.5x(n-2) + 0.4x(n-3)Given that the digital input sequence $\{-1, 1, 0, -1\}$ is applied to

Given that the digital input sequence {-1, 1, 0, -1} is applied to this DSP system, determine the corresponding digital output sequence.

PART B

Answer All Questions

(10)[CO1] 1 If $Z\{x(n)\} = X(z)$ prove that $Z\{a^n, x(n)\} = X(z/a)$ Find the Z-transform of $a^n x(n) + a^{-n} x(n-1)$ and hence derive its (10)[CO2] ROC, if it exists. (8+2)2. For a signal $x(t) = 2\sin(wt) + 3\cos(3wt + \frac{\pi}{3}) + 0.5\sin(4wt + \frac{\pi}{6})$ [CO2] derive the amplitude and phase spectrum. What should be the minimum sampling frequency if w = 6.28 rad/sOR (10)Derive the amplitude spectrum of a single rectangular pulse of duration [CO2] 10 sec and height 2V. 3. (i) Starting from definition of Fourier Transform of a periodic signal (5) [CO3] x(t) derive a suitable formulation for the inverse Fourier using X(w)(ii) A periodic signal y(t) is passed through a S/H circuit with sampling (10)time T_s to yield $y^*(t)$. If $F\{y(t)\}$ is Y(w), derive $F\{y^*(t)\}$. (15)Calculate the Average Energy/bit for Binary Amplitude Shift Keying [CO3] (BASK) with 50% depth of modulation for a modulated signal represented by $s_i(t) = A_i Cos(2\pi f_c t + \varphi), 0 \le t \le T_s, i = 1,2$

----- End of Question paper -----