B.E. POWER ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2022

Subject: Materials Science Subject Code: PE/ES/B/T/222

Time: 3 Hr Full Marks: 70

Part-I

1. Chose th	e correct Answer of the	following Questions	s (Any TEN) 1x10=10
i. Repea	atable entity of a crystal struc	ture is known as	
(a) Crystal	(b) Lattice	(c) Unit cell	(d) Miller indices
ii. α-Irot cell?	n has body-centered cubic cry	ystal structure. How m	any Fe atoms are in each unit
(a) 6	(b) 4	(c) 8·	(d) 2
(a) Distance	ic packing factor is between two adjacent atom d area fraction of atoms on a		e fraction of atoms in cell
	Ily materials with	crystal structure, can	be easily deformed in room
(a) FCC	(b) BCC	(c) HCP	(d) SC
v. Dislo	cation is a def	ect	
(a) Surface	(b) Point	(c) Line	(d) Volume
vi. Most	often machine components	subjected to repeated I	oad, are failed by
(a) Bucklin		(c) Fatigue	(d) All
vii. Time	dependent yield is known as	3	
(a) Fracture	이 경기 있는 경기를 연하는 것이 되는 것이 없는 것이 없는 것이 없다.	(c) Buckling	(d) Creep
viii. Creep	rate in Secondary stage		
(a) Decreas	es (b) Roughly Steady	(c) Increases	(d) Sharply Increases
	single-component condensed ases that can co-exist	system, if degree of fi	reedom is zero, maximum number
(a) 0	(b) I	(c) 2	(d) 3
x. A liquid phase produces two solid phases during			reaction up on cooling.
(a) Eutectic		(c) Peritectic	(d) Peritectoid
xi. Weig	th percentage of Carbon pres	sent in Eutectoid steel	
(a) 0.008	(b) 0.08	(c) 0.8	(d) 1.8
xii. Liqui	id- Solid-1 + Solid-2. This ty	pe of reaction is know	n asreaction.
(a) Peritect	ic (b) Entectic	(c) Peritectoid	(d) Eutectoid

4X10=40

- 2. (i) Which types of bond(s) is/are present in the following materials?
 - (a) Metal, (b) Ceramic and (c) Polymer.
 - (ii) What are the Miller Indices of the following points: (2, 3, 5); (-2, 1, 3).
 - (iii) Show the (110) plane and [110] direction in a simple cubic system with neat sketch.
 - (iv) What is dislocation? How it can be measured?

3+2+2+3

- 3. (i) How Resiliance and Toughness of a material can be measured from tension test?
 - (ii) Calculate the Packing Fraction of FCC crystal system.
 - (iii) What is Frenkel defect and schottky defect?

2+4+4

- 4. (i) What is DBT temperature?
 - (ii) Which Hardness measuring method should be used for a large sized component?
 - (iii) Explain, why tension test is not applicable for determining young modulus for small sample? Which test is preferable?
 - (iv) Explain the Fracture Mechanism for Ductile Material (with neat sketch). 2+1+3+4
- 5. (i) A Tensile test was conducted on a mild steel specimen to Find out: (i) Yield Stress (σ_y),
 - (ii) Ultimate Tensile stress (UTS) (σ_u), (iii) Fracture Stress (σ_f), (iv) Percentage of

Elongation, (v) Young Modulus (E), (vi) Modulus of Resilience. The required data from the test are as follows:

Initial Dimensions: Diameter: 12.5mm, Gauge length: 50mm.

Final Dimensions: Diameter: 8mm, Gauge length: 62.5mm.

Load at Yield point: 4500 kg, Maximum load: 7500, Fracture load: 5000kg.

At a certain point within elastic limit, load 1200kg, ΔI= 0.035mm.

- (ii) Why Izod and Charpy test is performed? What is the difference between these two tests?
- (iii) Differentiate between cold and hot working?

5+3+2

- (i) Write down the ranges of Carbon (%) present in (a) Hypocutectoid steel, (b) Hypocutectic
 cast iron.
 - (ii) What is Pearlite and Bainite?
 - (iii) Why maximum 6.67% Carbon is dissolved in Iron- Carbon system?
 - (iv) Write down the Hume Rothery Rule. Where it is the used?

2+2+2+4

- 7. (i) Draw the Stress-Strain Diagram of Mild Steel material and illustrate the following points:
 - (a) Elastic Limit, (b) upper yield point, (c) lower yield point (d) ultimate tensile stress
 - (ii) Differentiate between screw and edge dislocation.
 - (iii) What is Annealing process? What are the types of Annealing?

4+2+4

- 8. (i) What is the Degree of Freedom (F) for two component (C) system? Only Temperature is variable in the system and three phases is present in the system?
 - (ii) What is Tempering process? Write its importance.
 - (iii) Why Fatigue Fracture occurred in materials? What are the precautions to avoid fatigue? What is high cycle fatigue and what is low cycle fatigue? 2+3+5

Part-III

Answer the following Questions (Any TWO)

2X10=20

- (i) What is Curie temperature? What are the Curie Temperatures of (a) Co and (b) Ni?
 (ii) Give definition with example of each type material: (a) Para-Magnetic, (b) Anti Ferro-Magnetic, (c) Ferri-Magnetic.
- 10. (i) What is Magnetic hysteresis?
 - (ii) What is difference among Hard Magnet, Soft magnet and Semi Hard Magnet?
 (iii) Which properties should be taken care for design the following components of Ultrasupercritical coal generation system: (a) Superheater (b) Rotating buckets. Also mention the preferred material for above components.
- 11. (i) Write down the Mechanical Properties of CNT.
 - (ii) Explain the procedure of production of CNT with sketch for Chemical Vapor Deposition (iii) Write down the limitations of Nanotubes.

 3+5+2
- 12. (i) What is Nanofluid? How Nanofluid can be used in Automobile industry?
 - (ii) Write down the uses of Nanofluid in industry for Heat Transfer applications.
 - (iii) Write down the Difference between SWCNT and MWCNT.

3+4+3