7. i) Define convergence of a series $\sum_{n} x_{n}$. Let $\sum_{n=1}^{\infty} x_{n}$ be a convergent series then show that $\lim _{n \rightarrow \infty} x_{n}=0$. Show that the converse may not be true.

3
ii) Discuss the convergency of following series:
a) $\frac{1}{3}+\frac{1 \cdot 2}{3 \cdot 5}+\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{3 \cdot 5 \cdot 7 \cdot 9}+\ldots .$.
b) $\frac{1}{\sqrt{2 \cdot 1}}+\frac{1}{\sqrt{3 \cdot 2}}+\frac{1}{\sqrt{4 \cdot 3}}+\frac{1}{\sqrt{5 \cdot 4}}+\ldots . . \quad 3 \frac{1}{2}+3 \frac{1}{2}$

Bachelor of Engineering In Metallurgical and

Materials Engineering Examination, 2022

(1st Year, 2nd Semester)

Mathematics II

Time : Three hours
Full Marks: 100

(50 Marks for each Part)

(Use separate answer script for each Part)
(Symbols and notations have their usual meanings)

PART - I (50 Marks)

Answer any Five questions.

1. i) Give an example (with justification) of a continuous function $\quad f: \mathbb{C} \rightarrow \mathbb{C}$ which is nowhere differentiable.
ii) Show that the function

$$
f(z)=\left\{\begin{array}{cc}
\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}} & \text { for } x^{2}+y^{2} \neq 0 \\
0 & \text { for } x^{2}+y^{2}=0
\end{array}\right.
$$

satisfies CR-equations at the origin but $f^{\prime}(0)$ does not exist.
2. i) If $f: \mathbb{C} \rightarrow \mathbb{R}$ is holomorphic then show that f is a constant function.
ii) Show that $u=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$ is harmonic. Find the harmonic conjugate of u.
3. i) Find the Laurent series expansion of $f(z)=\frac{z}{(z+1)(z+2)}$ about the point $z=-2$. Also discuss the nature of the singularity at $z=-2$.
ii) Using Cauchy's Residue Theorem, evaluate $\int_{C} \frac{d z}{z^{2}(z-1)}$ where $C:|z|=3$. $6+4$
4. State Cauchy's Integral Formula for $n^{\text {th }}$ derivative of an analytic function then evaluate
$\int_{C} \frac{e^{z} d z}{(z+1)^{2}(z-1)}$ where $C:|z|=\sqrt{2}$
5. i) Find the Fourier series for the function $f:(-\pi, \pi) \rightarrow \mathbb{R}$ defined by $f(x)=e^{-a x}$.

Hence prove that
$\frac{\pi}{\sinh \pi}=2\left(\frac{1}{2^{2}+1}+\frac{1}{3^{2}+1}+\frac{1}{4^{2}+1}+\ldots \ldots\right)$.
ii) Determine the half range Fourier sine series for $f(x)=x(\pi-x)$ in $0<x<\pi$.
6. i) Find the Fourier Transformation of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m}, m>0$.
b) Reverse the order of the integral $\int_{1 / 3}^{2 / 3} d x \int_{x^{2}}^{\sqrt{x}} f(x, y) d y$
c) Evaluate: $\int_{0}^{1 / 2} d y \int_{y}^{1} e^{x^{2}} d x$.
5. i) Find the volume of the region bounded by $x=0$, $y=0, z=0$ and $x+y+z=1$ planes using b) triple integration.
ii) Evaluate $\iint_{D}\left(x^{2}-y^{2}\right) d x d y$, where D is the region bounded by $x-y=-1, \quad y-x=0$ and $x y=1$, $x y=2$.
iii) Find the length of the arc of the parabola $y^{2}=16 x$ from vertex to an extrimity of lotus return.

3
6. i) Define limit of a sequence.
ii) Define a bounded sequence. Show that a convergent sequence must be bounded. Show that the converse may not be true.
iii) Let $x_{1}>1$ and $x_{n+1}=2-\frac{1}{x_{n}}$ for $n \geq 1$. Show that $\left\{x_{n}\right\}$ is convergent sequence. Hence find the limit of the sequence.
b) Discuss the convergence of the following integrals:
i) $\int_{0}^{\pi} \frac{\sqrt{x}}{\sin x} d x$
ii) $\int_{1}^{\infty} \frac{d x}{x \sqrt{x^{2}+1}} d x$
3. a) Define Gamma function $\Gamma(n)$.

Show that $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} d x=\frac{\Gamma(c+1)}{(\log c)^{c+1}}, c>0$.
b) Show that $\Gamma(n+1)=n \Gamma(n)$ for $n>0$.
c) Define Beta function $B(m, n)$. Convert the integral $\int_{0}^{1} \frac{d x}{\left(1-x^{3}\right)^{1 / 3}}$ as a scalar multiple of $B(m, n)$ for suitable m and n.
d) Show that $B(m, n)=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x \quad 3+2+2+3$
4. a) State the Leibnitz's rule for differentiation under the integral sign. Assuming the validity of differentiation under integral sign, show that $\int_{0}^{1} \frac{x^{m}-1}{\log x} d x=\log (m+1), m>-1$.
ii) If $a>0$ then show that $\int_{0}^{\infty} \frac{x^{2}}{\left(a^{2}+x^{2}\right)^{4}} d x=\frac{\pi}{(2 a)^{5}}$. $6+4$
7. Evaluate :
i) $L^{-1}\left\{\frac{s}{(s+a)\left(s^{2}+1\right)}\right\}$
ii) $L^{-1}\left\{\ln \frac{s^{2}+1}{s(s+1)}\right\}$
iii) $Z^{-1}\left\{\ln \frac{2 z^{2}+3 z}{(z+2)(z-4)}\right\}$ $4+3+3$

PART - II (50 Marks)

Answer any Five questions. 5×10

1. a) Let $I_{m, n}=\int \sin ^{m} x \cos ^{n} x d x$, where m and n being positive integers, greater than 1 . Show that $I_{m, n}=\frac{\sin ^{m-1} x \cos ^{n+1} x}{m+n}+\frac{m-1}{m+n} I_{m-2, n}$ for $m>2$.
b) Deduce an appropriate reduction formula and hence show that $\int_{0}^{\pi / 2} \sqrt{\sin x} \cos ^{5} x d x=\frac{64}{231}$. $5+5$
2. a) Define improper integral. Is $\int_{0}^{1} \frac{\sin x}{x} d x$ an improper integral? Justify.
