7. i) Define convergence of a series
$$\sum_{n=1}^{\infty} x_n$$
. Let $\sum_{n=1}^{\infty} x_n$ be a

convergent series then show that $\lim_{n\to\infty} x_n = 0$. Show that the converse may not be true. 3

ii) Discuss the convergency of following series:

a)
$$\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \frac{1.2.3.4}{3.5.7.9} + \dots$$

b) $\frac{1}{\sqrt{2\cdot 1}} + \frac{1}{\sqrt{3\cdot 2}} + \frac{1}{\sqrt{4\cdot 3}} + \frac{1}{\sqrt{5\cdot 4}} + \dots$ $3\frac{1}{2} + 3\frac{1}{2}$

Ex/BS/MET/MTH/T/122/2022

BACHELOR OF ENGINEERING IN METALLURGICAL AND MATERIALS ENGINEERING EXAMINATION, 2022

(1st Year, 2nd Semester)

MATHEMATICS II

Time : Three hours

Full Marks: 100

(50 Marks for each Part)

(Use separate answer script for each Part)

(Symbols and notations have their usual meanings)

PART – I (50 Marks)

Answer any *Five* questions. 5×10

- 1. i) Give an example (with justification) of a continuous function $f : \mathbb{C} \to \mathbb{C}$ which is nowhere differentiable.
 - ii) Show that the function

$$f(z) = \begin{cases} \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} & \text{for } x^2 + y^2 \neq 0\\ 0 & \text{for } x^2 + y^2 = 0 \end{cases}$$

satisfies CR-equations at the origin but f'(0) does not exist. 3+7

- 2. i) If $f : \mathbb{C} \to \mathbb{R}$ is holomorphic then show that f is a constant function.
 - ii) Show that $u = \frac{1}{2} \ln (x^2 + y^2)$ is harmonic. Find the harmonic conjugate of u. 3+7

[Turn over

[2]

3. i) Find the Laurent series expansion of

$$f(z) = \frac{z}{(z+1)(z+2)}$$
 about the point $z = -2$. Also discuss the nature of the singularity at $z = -2$.

ii) Using Cauchy's Residue Theorem, evaluate

$$\int_{C} \frac{dz}{z^2(z-1)} \text{ where } C: |z| = 3.$$
 6+4

4. State Cauchy's Integral Formula for *n*th derivative of an analytic function then evaluate

$$\int_{C} \frac{e^{z} dz}{(z+1)^{2} (z-1)} \text{ where } C: |z| = \sqrt{2}$$
 2+8

5. i) Find the Fourier series for the function $f:(-\pi,\pi) \to \mathbb{R}$ defined by $f(x) = e^{-ax}$.

Hence prove that

$$\frac{\pi}{\sinh \pi} = 2\left(\frac{1}{2^2+1} + \frac{1}{3^2+1} + \frac{1}{4^2+1} + \dots\right).$$

- ii) Determine the half range Fourier sine series for $f(x) = x(\pi x)$ in $0 < x < \pi$. 7+3
- 6. i) Find the Fourier Transformation of $e^{-|x|}$. Hence

show that
$$\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m > 0$$
.

[5]

b) Reverse the order of the integral $\int_{1/3}^{2/3} dx \int_{x^2}^{\sqrt{x}} f(x, y) dy$

c) Evaluate:
$$\int_0^{1/2} dy \int_y^1 e^{x^2} dx$$
. 4+2+4

- 5. i) Find the volume of the region bounded by x = 0, y = 0, z = 0 and x + y + z = 1 planes using b) triple integration. 4
 - ii) Evaluate $\iint_D (x^2 y^2) dx dy$, where *D* is the region bounded by x - y = -1, y - x = 0 and xy = 1, xy = 2.
 - iii) Find the length of the arc of the parabola $y^2 = 16x$ from vertex to an extrimity of lotus return. 3
- 6. i) Define limit of a sequence.
 - ii) Define a bounded sequence. Show that a convergent sequence must be bounded. Show that the converse may not be true.

iii) Let
$$x_1 > 1$$
 and $x_{n+1} = 2 - \frac{1}{x_n}$ for $n \ge 1$. Show that $\{x_n\}$ is convergent sequence. Hence find the limit of the sequence. 6

[Turn over

b) Discuss the convergence of the following integrals:

i)
$$\int_0^\pi \frac{\sqrt{x}}{\sin x} dx$$

- $ii) \quad \int_1^\infty \frac{dx}{x\sqrt{x^2+1}} dx \qquad 3+3$
- 3. a) Define Gamma function $\Gamma(n)$.

Show that
$$\int_0^\infty \frac{x^c}{c^x} dx = \frac{\Gamma(c+1)}{(\log c)^{c+1}}, \ c > 0$$

- b) Show that $\Gamma(n+1) = n\Gamma(n)$ for n > 0.
- c) Define Beta function B(m, n). Convert the integral

$$\int_{0}^{1} \frac{dx}{(1-x^{3})^{1/3}}$$
 as a scalar multiple of $B(m, n)$ for

suitable *m* and *n*.

d) Show that
$$B(m,n) = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+n}} dx$$
 $3+2+2+3$

 a) State the Leibnitz's rule for differentiation under the integral sign. Assuming the validity of differentiation under integral sign, show that

$$\int_0^1 \frac{x^m - 1}{\log x} dx = \log(m + 1), \ m > -1.$$

ii) If
$$a > 0$$
 then show that $\int_{0}^{\infty} \frac{x^2}{(a^2 + x^2)^4} dx = \frac{\pi}{(2a)^5}$.
6+4

i)
$$L^{-1}\left\{\frac{s}{(s+a)(s^2+1)}\right\}$$
 ii) $L^{-1}\left\{\ln\frac{s^2+1}{s(s+1)}\right\}$
iii) $Z^{-1}\left\{\ln\frac{2z^2+3z}{(z+2)(z-4)}\right\}$ 4+3+3

PART – II (50 Marks)

Answer any *Five* questions. 5×10

1. a) Let $I_{m,n} = \int \sin^m x \cos^n x dx$, where *m* and *n* being positive integers, greater than 1. Show that

$$I_{m,n} = \frac{\sin^{m-1} x \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} I_{m-2,n} \text{ for } m > 2.$$

b) Deduce an appropriate reduction formula and hence

show that
$$\int_0^{\pi/2} \sqrt{\sin x} \cos^5 x dx = \frac{64}{231}$$
. 5+5

2. a) Define *improper integral*. Is $\int_0^1 \frac{\sin x}{x} dx$ an improper integral? Justify. 2+2