B.Mechanical. Examination, 2022 (2nd YR, 2nd SEM.) MATHEMATICS - IV

Full Marks :

Time: Three hours
Use Separate Answer Script for each Part

Part - I (50 Marks)

Answer any 5 questions
 $10 . \times 5=50$

1. Find the Z-Transformations of the following functions:
(i) $f(n)=\cos n x$
(ii) $f(n)=n a^{n}$
2. Solve the equation using Z-Transformation
(i). $f(n+2)-3 f(n+1)+2 f(n)=0$, given : $f(0)=1, f(1)=2$.

$$
(i i) . \quad f(n+1)+2 f(n)=n, \text { given }: f(0)=1
$$

3. Find the Laplace Transformations of the following functions:

$$
\begin{aligned}
& \text { (i) } f(t)=\frac{t}{T}, \quad 0<t<2 T \\
& =1, \quad t>2 T \\
& \text { (ii) } \quad f(t)=t^{100} \\
& \text { (iii) } f(t)=\sin \sqrt{t}
\end{aligned}
$$

(4) Solve the equation using Laplace Transformation:
(i) $y^{\prime \prime}+9 y=0$, given : $y(0)=0, y^{\prime}(0)=2$
(ii) $\frac{d^{2} x}{d t^{2}}-2 \frac{d x}{d t}+2 x=0$, given : $x(0)=x^{\prime}(0)=1$
5. Find the Fourier Transformations of the following functions

$$
\begin{gathered}
\text { (i) } e^{-|t|} \quad(i i) f(t)=5 e^{-10 t^{2}} \\
(\text { iii }) f(t)=1, \text { when }|t| \leq t_{0} \\
=0, \text { otherwise. }
\end{gathered}
$$

6. State Dirichlet's conditions for convergence of a Fourier series. Find the Fourier series of the function

$$
\begin{aligned}
& f(x)=0, \text { when }-\pi<x \leq 0 \\
& \quad=\frac{\pi x}{4}, \quad \text { when } 0 \leq x \leq \pi
\end{aligned}
$$

Deduce also

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

7. Find the Fourier series of the function

$$
f(x)=x \sin x, \quad \text { when }-\pi<x<\pi
$$

Deduce also

$$
\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\ldots \ldots
$$

Mechanical Engineering Second year Second semester Examination, 2022 Subject: Mathematics - IV Subject Code : ME(M2)/BS/B/MATH/T/221

(Use a separate Answer script for each part.)

PART II (50 Marks)

(Notations and Symbols have their usual meanings)
Answer any five questions:
(All questions carry equal marks)

$$
10 \times 5=50
$$

1. The following numbers give the weights of 55 students of a class. Prepare a frequency table with starting weights 40 units and length of each class interval is 10 units :

$$
\begin{aligned}
& 42,74,40,60,82,115,41,61,75,83,63, \\
& 53,110,76,84,50,67,65,78,77,56,95 \\
& 68,69,104,80,79,79,54,73,59,81,100, \\
& 66,49,77,90,84,76,42,54,69,70,80 \\
& 72,50,79,52,103,96,51,86,78,94,71 .
\end{aligned}
$$

(i) Draw the histogram and frequency polygon of the above data.
(ii) Find the mean, median and mode from the constructed frequency table.

$$
4+6
$$

2. a) Define
(i) arithemtic mean,
(ii) geometric mean,
(iii) harmonic mean
of the grouped and ungrouped data.
b) If A, G and H are respectively the arithmetic mean, geometric mean and harmonic mean of a frequency distribution, show that $A \geq G \geq H$, mentioning the case when equality holds.

$$
4+6
$$

3. a) Find out the mean deviation from mean, standard deviation and quartile deviation from the following table :

Wages in Rs.	No. of labourers
Above 0	685
Above 100	500
Above 200	423
Above 300	389
Above 400	209
Above 500	73
Above 600	50
Above 700	0

b) Show that the sum of absolute deviations about median is least.

$$
6+4
$$

4. a) Define correlation coefficients between two random variables. Show that this coefficient always lies between -1 and 1 . Deduce the case when equality holds.
b) Calculate the correlation coefficient for the following heights (in inches) of fathers (X) and their sons (Y) :

$\mathrm{X}:$	65	66	67	67	68	69	70	72
$\mathrm{Y}:$	67	68	65	68	72	72	69	71

$$
4+6
$$

5.(a) Explain what are regression lines, why are there are two such lines. Also, derive their equations.
(b) Fit a parabola of second degree to the following data :

$\mathrm{X}:$	0	1	2	3	4
$\mathrm{Y}:$	1	1.8	1.3	2.5	6.3

$$
4+6
$$

6. (a) State the axioms of probability. Derive the classical definition of probability from it.
(b) For n events $A_{1}, A_{2}, \ldots, A_{n}$, show that

> i) $P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P\left(A_{i}\right)-(n-1)$
> ii) $P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)$

$$
4+6
$$

7. a) ' n ' different objects $1,2, \ldots, n$ are distributed at random in n places marked $1,2, \ldots, n$.

Find the probability that none of the objects occupies the place corresponding to its number.
b) If n letters are randomly placed in correctly addressed envelopes, prove that the probability that exactly r letters are placed in correct envelopes is given by

$$
\frac{1}{r!} \sum_{k=0}^{n-r}(-1)^{k} \frac{1}{k!} ; r=1,2, \ldots, n
$$

$$
5+5
$$

8. a) State and prove Bayes' theorem.
b) There are three urns having the following compositions of black and white balls :

> Urn $1: 7$ white, 3 black balls
> Urn $2: 4$ white, 6 black balls
> Urn $3: 2$ white, 8 black balls.

One of these urns is chosen at random with probabilities $0.2,0.6$ and 0.2 respectively. From the chosen urn two balls are drawn at random without replacement. Calculate the probability that both these balls are white.

$$
5+5
$$

