BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING EXAMINATION, 2022

(1st Year, 1st Semester)

MATHEMATICS I

Time: Three hours

Full Marks: 100

(50 marks for each Part)
Use Separate Answer scripts For each Part

Part - I

Answer any 5 questions

 $10\ \times 5 = 50$

1. Test for convergence of the following series.

5 + 5

a.

$$\frac{5}{124} + \frac{7}{235} + \frac{9}{346} + \frac{11}{457} + \dots$$

b.

$$\frac{1+2}{2^3} + \frac{1+2+3}{3^3} + \frac{1+2+3+4}{4^3} + \dots$$

2. a. Show that

5 + 5

$$\lim_{n\to\infty}n^{\frac{1}{n}}=1$$

b. Verify whether the sequence is convergent or divergent:

$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{n+n}$$

3. a. Use Lagrange M.V.T, prove that $\sqrt{101}$ lies in between 10 and 10.05.

5 + 5

b. Find the value of

$$\lim_{x \to 0} \sin x^{-2\tan x}.$$

[Turn over

4. a. Show that the function

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}} \quad when \ (x,y) \neq 0$$
$$= 0, \quad when \ (x,y) = 0$$

is continuous at (0,0).

b. Find the few terms of Maclaurin's expansion of

$$e^{ax}\cos by$$

5. a. Show that the point of inflexion of

$$5 + 5$$

5 + 5

$$y^2 = (x-a)^2(x-b)$$

lies on line

$$3x + a = 4b$$

b. Find the asymptote of the curve

$$y = \frac{ax}{x - b} + ax$$

6. State and prove Euler theorem for homogeneous function.

10

Using it prove that if

$$V = \log[x^3 + y^3 + z^3 - 3xyz],$$

then

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)V = \frac{3}{x + y + z}$$

7. a. Find the maximum value of

$$5 + 5$$

$$x^2 + y^2 + z^2$$

subject to

$$ax + by + cz = p$$

b. Find the radius of curvature at its maximum point.

$$y = xe^{-x}$$

EX/ME(M2)/BS/B/MATH/T/111/2022 B.MECHANICAL. EXAMINATION, 2022 (1ST YR, 1ST SEM) MATHEMATICS-I

FULL MARKS:

TIME: 3 HOURS

ANSWER ANY 5 QUESTIONS

PART - II

 $10 \times 5 = 50$

1.

(a) Define upper and lower integrals for a bounded function f defined on [a, b]. Prove that for a bounded function f defined on [a, b], [2+3=5]

$$\int_{a}^{b} f(x)dx \le \int_{a}^{\bar{b}} f(x)dx.$$

(b) A function $f:[0,1] \to \mathbb{R}$ is defined by $f(x) = e^{x/2022}$. Find $\int_{\underline{0}}^{1} f(x)dx$ and $\int_{0}^{\overline{1}} f(x)dx$. Deduce that f is Riemann integrable and find $\int_{0}^{b} f(x)dx$.

2.

(a) Using Riemann integration theory, show that

[5]

$$\frac{1}{2} < \int_0^1 \frac{dx}{\sqrt{4 - x^2 + x^3}} < \frac{\pi}{6}.$$

(b) Show that $f(x) = [x^2]$ is Riemann integrable on [0, 2.5] and hence show that [3]

$$\int_0^{2.5} f(x)dx = 12 - \sqrt{2} - \sqrt{3} - \sqrt{5} - \sqrt{6}.$$

(c) Give an example of a function $f:[a,b]\to\mathbb{R}$ which is not Riemann integrable but |f| is Riemann integrable on [a,b]. [2]

3.

(a) Discuss the convergence of the following integral

[5]

$$B(m,n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx.$$

[Turn over

EX/ME(M2)/BS/B/MATH/T/111/2022

(b) Prove that
$$\int_0^1 \frac{x^2}{\sqrt{1-x^4}} dx \times \int_0^1 \frac{1}{\sqrt{1+x^4}} dx = \frac{\pi}{4\sqrt{2}}.$$

(c) Prove that
$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 [2]

[3]

4.

2

- (a) Show that the volume of the solid obtained by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the axis of x is $\frac{4}{3}\pi ab^2$. [5]
- (b) Evaluate the integration $\int_0^{\pi/2} \sqrt{\sin x} dx$ by correct up to four significant figures, taking 8 intervals by Simpson's 1/3 Rule. Discuss the geometrical interpretation of Simpson's 1/3 Rule.

5.

- (a) Compute the value of $\iint_{\mathcal{R}} y dx dy$, where \mathcal{R} is the region of the first quadrant bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (b) Evaluate the integration $\int_0^1 \cos x dx$ by correct up to four significant figures, taking 5 intervals by Trapezoidal Rule. Discuss the geometrical interpretation of Trapezoidal Rule. [4+1=5]

6.

(a) Change the order of integration

$$I = \int_0^1 \int_{\sqrt{x}}^1 e^{\frac{x}{y}} dx dy$$

and hence find the value.

(b) Show that the volume of the solid obtained by revolving the cardioid $x = a(\theta + \sin \theta)$ and $y = a(1 + \cos \theta)$ is $\frac{3}{2}\pi a^3 (\pi^2 - 1)$. [5]

7.

(a) Show that the function

$$f(x) = \begin{cases} 0, & x \in [0, 1] \cap \mathbb{Q} \\ 1, & x \in [0, 1] \cap \mathbb{Q}^c \end{cases}$$

is not Riemann integrable.

[3] (b) Prove that $\Gamma\left(\frac{1}{9}\right)\Gamma\left(\frac{2}{9}\right)\times\cdots\times\Gamma\left(\frac{8}{9}\right)=\frac{16\pi^4}{3}$. [3]

(c) Show that
$$\int_0^1 \frac{1}{(1+x)(2+x)\sqrt{x(1-x)}} dx \text{ is convergent.}$$
 [4]