Ref. No.: Ex/ME(M2)/ES/B/ET/T/113/2022 B.E. MECHANICAL ENGINEERING FIRST YEAR FIRST SEMESTER - 2022 Subject: ELECTRONICS Time: 3Hrs Full Marks:100

Instructions: Use Separate Answer scripts for each Group / answer any five questions etc.

Different parts of the same question should be answered together.

Answer any two(2) from (a), (b) and (c) :	
1. (a) i. Forbidden energy gap for silicon is .	
ii. Semiconductors have temperature coefficient of resistance.	
iii. The conductivity of an intrinsic semiconductor with temperature.	
iv. The mobility of charge carriers has the unit	
v. Why intrinsic semiconductors behave like an insulator at low temperatures?	
vi. Define diffusion current and drift velocity in a semiconductor. [1+1+1+1+3-	+3
(b) i. An ideal diode offers resistance when forward biased and resistance when it is reverse biased.	
ii. Draw and explain the VI characteristics of a PN junction diode. Write the volt-ampere equation for a PN diode (explain meaning of each symbol)	
iii. What is forbidden energy gap? Explain.	
iv. Draw the energy band diagram for a PN junction diode under open circuited	
condition.	
[2+4+2+	-2]
(c) i. What is Fermi level? What happens to Fermi level when temperature is increased? ii. Name the elements which are used as N-type impurities and P-type impurities.	
iii. What do you mean by transition capacitance in PN-junction?	
iv. What is meant by the term "Barrier potential"? What is the value for Germanium diode? [3+2+3+2]	
11. What is meant by the term Barrier potential : What is the value for Germanian diode: [3+2+3+2]	
Answer any three(3) from (a), (b), (c) and (d):	
2. (a) i. Draw the circuit diagram of bridge rectifier and explain its operation.	
ii. Discuss the working of full-wave rectifier circuit with shunt capacitor filter, give the output voltage	
waveform.	
iii. Define clamper. [4+4+2]	
m. Define clamper.	
(b) i. An n-channel depletion type MOSFET is operated in the pinch off region. If I_{DSS} =15mA and V_P =-4V, calculate I_D when : V_{GS} =-3V and V_{GS} =+2.5V. ii. Compare depletion type MOSFET and enhancement type MOSFET.	
ii. Compare depiction type MOSPET and enhancement type MOSPET.	
iii. Draw and explain different operating regions in the drain characteristics of depletion type MOSFET. [3+2+	·5]
(c) i. Draw an emitter bias circuit and obtain the value of d.c. voltage and currents in the circuit.	
ii. For a fixed bias circuit using silicon npn transistor, the value of β is 100. If $V_{CC}=6V$, $R_{C}=2K\Omega$	
and R_B =530K Ω then determine its operating point.	
iii. Define stability factor. [4+4+2]	
[,,,,_]	
(d) i. State whether the statement is true or false:	
i.i In P-type semiconductor, the majority carriers are hole.	
i.ii A full-wave rectifier utilizes only positive half cycle.	
i.iii For a half-wave rectifier: $PIV = 2V_m$.	
i.iv A transistor can be treated as a two port network.	
ii. Distinguish between zener breakdown and avalanche breakdown.	
-	
[Turn over	

iii. What is I_{CBO} and I_{CEO} ? Define thermal runway in BJT. [4+3+3]

Answer any one(1) from (a), (b) and (c) in this block:

- 3. (a) i. Define IC.
 - ii. What is differential inputs and common inputs in op-amp?
 - iii. Define slew rate.
 - iv. Draw and explain the subtractor circuit using an op-amp.

[2+2+2+4]

- (b) i. Write the properties of an ideal op-amp.
 - ii. Explain virtual ground in an op-amp.
 - iii. Draw the circuit diagram of an op-amp integrator and show that output voltage is an integration of the input voltage. [3+3+4]

Answer any three(3) from (a), (b), (c) and (d):

- 4. (a) i. Convert base of the following numbers:
 - i.i. $(65.35)_{10} \equiv (?)_{16}$
 - i.ii. $(7CA3)_{16} \equiv (?)_{10}$
 - i.iv. $(1745.246)_8 \equiv (?)_{16}$
 - ii. Obtain 2's complement of (111010)2 and (101011)2.
 - iii. Subtract $(10010)_2$ from $(110101)_2$ and $(1001)_2$ from $(1101)_2$ (without converting base). [6+2+2]
 - (b) i. State De-Morgan's theorem. Show its logic implementation.
 - ii. Simplify the following Boolean expression:

$$f = (A + \overline{BC}) + (\overline{A + \overline{BC}})$$
 and $f = AB + ABC + \overline{AB} + A\overline{BC}$ [4+6]

(c) i. Realize the Boolean expressions using basic gates $f = (D(\overline{A} + B) + \overline{B}CD)$ and

$$f = \left(\overline{AB} + A + \overline{B + C}\right)$$

- ii. Add (48)10 and (27)10 using BCD numbers.
- iii. Convert (1001)2 to gray code and (1100)2 gray code to binary code.

[6+2+2]

- (d) i. Draw the symbols of universal gates. Write their truth table (for 2-input gate).
- ii. Realize AND, OR and X-OR using only NAND gates.

[4+6]

Answer any one(1) from (a) and (b):

- 5. (a) i. Distinguish between combinational circuit and sequential circuits.
 - ii. What is flip-flop?
 - iii. Describe the working of SR flip-flop with circuit diagram and truth table.

[3+3+4]

- (b) i. What is the difference between latch and flip-flop?
 - ii. What is clock? What is the purpose of the clock signal?
 - iii. Draw the circuit diagram of JK flip-flop.
 - iv. What is race around in JK flip-flop?

[2+3+2+3]