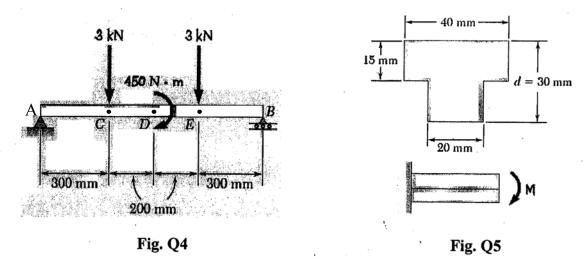
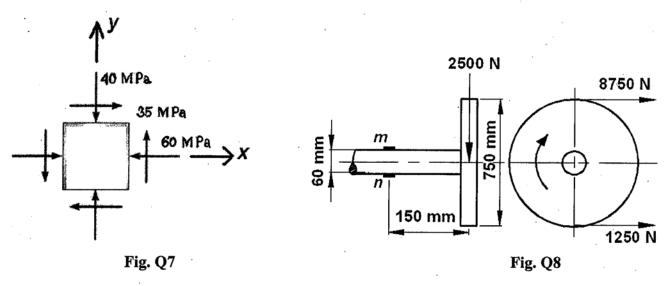

B.E. MECHANICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM - 2022

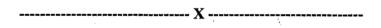
SUBJECT: STRENGTH OF MATERIALS


Time: 3 Hours Full Marks: 100

Any missing data may be assumed with suitable justification Symbols/notations carry its usual meanings For Question Q7, the figure should be drawn in graph paper ANSWER ANY TEN QUESTIONS


- Q1. The rod ABC, as shown in Fig. Q1, is made of an aluminum for which E = 70 GPa. Knowing that P = 6 kN and Q = 42 kN, determine (a) the maximum normal stress developed, (b) the deflection of point A, (c) the deflection of point B.
- Q2. A rod (Fig. Q2) consisting of two cylindrical portions AB and BC is restrained at both ends. Portion AB is made of steel (E_s =200 GPa, α_s =11.7×10⁻⁶/°C) and portion BC is made of brass (E_b =105 GPa, α_b =20.9×10⁻⁶/°C). Knowing that the rod is initially unstressed, determine the compressive force induced in the rod ABC when there is a temperature rise of 50°C.
- Q3. The aluminum rod BC (G=26 GPa) is bonded to the brass rod AB (G=39 GPa) (Fig. Q3). Knowing that each rod is solid and has a diameter of 12 mm, determine the angle of twist (a) at B, (b) at C.

- Q4. Draw the complete shear force and bending moment diagrams for the beam shown in Fig. Q4. Neglect the mass of the beam.
- Q5. The beam shown (Fig. Q5) is made of a nylon for which the allowable stress is 24 MPa in tension and 30 MPa in compression. Determine the largest couple M that can be applied to the beam.


- **Q6.** A simply supported prismatic beam of length L carries a uniformly distributed load of intensity ω for its entire span. Determine (a) the equation of the elastic curve, (b) the maximum deflection, (c) the slope at the right support. Take EI=constant.
- Q7. Draw Mohr's circle for the given state of stress (Fig. Q7), and determine, from the Mohr's circle, (a) the principal planes, (b) the principal stresses.
- **Q8.** A 60 mm diameter shaft supported in bearings carries a 750 mm diameter pulley weighing 2500 N at an overhanging end of the shaft as shown in **Fig. Q8**. Calculate the principal tensile stress at the section *mn* if the horizontal belt tensions are as shown in the figure.

- **Q9.** Derive Euler's critical load for a fixed-pinned column of length L. Take EI=constant.
- Q10. Drawing suitable neat figures, derive membrane stress equation for an axi-symmetric thin-walled pressure vessel subjected to internal pressure.
- Q11. Derive expressions for axial deflection and stiffness of a closely coiled helical spring with usual notations.

Q12. Answer any two: [5+5]

- (a) Explain pure bending of beams.
- (b) Explain slenderness ratio of a column.
- (c) Derive the following: $\frac{dM}{dx} = V$.

