BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING EXAMINATION, 2022

(1st Year, 1st Semester)

ELECTRONICS

Time : Three hours	Full Marks: 10
Answer any two(2) from (a), (b) and (c): 1. (a) i. Define Intrinsic and Extrinsic semiconductors with example. ii. Draw the Energy band diagram of p-n junction diode. iii. Define ripple factor of a rectifier. iv. What is thermal run-away? v.Explain the conduction mechanisms for an n- type semiconductor. vi.Define Intrinsic and Extrinsic semiconductors with example. [1+1+1+1+3+1]	+ 3]
(b) i. An ideal diode offers resistance when forward biased and resistance when it is reverse biased.	ance
ii. Draw and explain the V-I characteristics of a p-n junction diode for both forwand reverse bias condition.	vard
iii. What is forbidden energy gap? Explain. iv. Explain the working principle of a Zener diode. [2+4+2+2]	
(c) i. What is Fermi level? What happens to Fermi level when temperature is increa ii. Name the elements which are used as N-type impurities and P-type impurities.	ased?
iii. What do you mean by transition capacitance in PN-junction? iv. What is meant by the term "Barrier potential"? What is the value for Gern	manium diode? [3+2+3+2]
Answer any three(3) from (a), (b), (c) and (d): 4. i) Derive the expression and calculate the value for (i) dc load current, (ii) rectification efficiency of a center tapped full wave rectifier ii) Draw a positive diode clamper circuit. Explain its operation iii) A 10 V peak sinusoidal voltage is applied to the input of a positive diode limit with proper bias to limit the output to +5 V. [4+4+2]	
 (b)i) Draw and explain the input and output characteristics of a bipolar junction transistor operated in common base (CB) mode. ii) What do you mean by biasing of a transistor? Draw the basic three configurations of n-p-n transistor. iii) Derive the relationship between α and β of BJT. Given α = 0.98, find the vaβ. [3+2+5] 	•
 (c) i) Draw and explain the transfer characteristics of an ideal OPAMP. ii) Draw and explain the output characteristics of an enhancement mode MOS iii) Explain the pinch-off phenomenon in JFET with a neat diagram. 	SFET. [4+4+2]

[Turn over

- (d) i) What are the advantages of negative feedback in an amplifier.
- ii) Derive the voltage gain for an inverting and a non-inverting amplifier using OPAMP.
- iii) Explain the working principle of OP-AMP integrator and differentiator with proper circuit diagram and suitable input and output waveforms. [4+3+3]

Answer any one(1) from (a), (b)

- 3. (a) i. What is an integrated circuit?
 - ii. What is common-mode rejection ratio, input bias current, input offset voltage and output offset voltage of an operational amplifier?
 - iii. Define slew rate.[2+6+2]
- (b) i. Describe the use of an operational amplifier as an adder.
 - ii. Explain virtual ground in an op-amp.
 - iii. Explain how square and triangular waveforms can be produced using OP AMPs. [3+3+4]

Answer any three(3) from(a), (b), (c) and (d):

- 4. (a) i. Convert base of the following numbers:
 - i.i. $(7864)_{10} \equiv (?)_{16}$
 - i.ii. $(7.FD6)_{16} \equiv (?)_8$
 - i.iv. $(5157.632)_8 \equiv (?)_{16}$
 - ii. Obtain 2's complement of (11101011)2 and (10101100)2.
 - iii. Add (46)10 and (27)10 using BCD numbers. [6+2+2]
 - (b) i. State De-Morgan's theorem. Show its logic implementation.
 - ii. Simplify the following Boolean expression:

$$f = (A + B)(\bar{A}\bar{C} + C)(\bar{B} + AC)$$
 and $f = A + \bar{A}B + \bar{A}\bar{B}C + \bar{A}\bar{B}\bar{C}D.$ [4+6]

(c) i. Obtain the minimal sum of products expression for the following function and implement the same using only NAND gates.

$$f(A, B, C, D) = \sum m(1,3,7,11,15) + \sum d(0,2)$$

- $f(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2)$ ii. Realize the Boolean expressions using basic gates $f = \{D(\overline{A+B}) + \overline{B}(C+D)\}$ and $f = \overline{B}(C+D)$ $(\overline{ABC} + A + \overline{B+C}).[6+4]$
- (d) i. Draw the symbols of universal gates. Write their truth table (for 2-input gate).
- ii. What is half-adder? Design a half-adder using only NOR gates.

[4+6]

Answer any one(1) from (a) and (b):

- (a) i. What is D flip-flop?
- ii. Describe the working of SR flip-flop with circuit diagram and truth table.
- iii. What is the advantage of D flip-flop over an SR flip-flop?
- iv. What is clock? What is the purpose of the clock signal? [2+4+2+2]
- (b) i. What is meant by edge triggering?
 - ii. Give the difference between positive edge triggering and negative edge triggering.
 - iii. Explain the operation of master slaveflip-flop and show how the race around condition is eliminated in it. [2+2+6]