Ref. No.: Ex/IEE/PC/H/T/321/2022

B.E. Instrumentation & Electronics Engg. 3rd Year, 2nd Semester Examination 2022 SUBJECT: Advanced Process Control

Time: 03 hours Full Marks: 100

[CO1]:

- 1. a) What is meant by an ideal or impulse sampler?
 - b) Prove that a practical sampler is equivalent to an ideal sampler followed by an attenuator. 5
 - c) A Zero-order Hold (ZOH) introduces an additional dead-time of 0.5T (T is the sampling period) in discrete time control systems Justify 3
- 2. For the discrete time system described by the difference equation

$$x(k+2)-3x(k+1)+2x(k)=u(k)$$
.

. Find its response x(k) for the unit-impulse input u(k) at k = 0, when x(k) = 0 for $k \le 0$. 10

OR

A system is described by the following difference equation:

$$x(k+2)-1.5x(k+1)+0.5x(k)=u(k)$$
,

where x(0) = 1 and $x(1) = \frac{5}{2}$. Find its response x(k) for a unit-step input u(k) applied at k = 0. 10

[CO2]: Answer any Four questions (from 3 to 7):

- Why Routh-Hurwitz stability criterion cannot be directly applied for sampled data control systems?
 For the characteristic equation, F(z) = z⁴ 2z³ + 1.5z² 0.1z 0.02 = 0, determine the stability of the system using Jury's test.
- 4. Using the bilinear transformation $r = \frac{z-1}{z+1}$ and Routh-Hurwitz criterion test the stability of the discrete time control system with characteristics equation: $F(z) = z^4 1.2z^3 + 0.07z^2 + 0.3z 0.08 = 0$.
- a) Find the pulse transfer function of the digital PID controller considering 'backward difference' and 'trapezoidal integration' rules, and draw the parallel realization diagram of its digital program implementation.
 - b) Consider the digital controller defined by

$$D(z) = \frac{M(z)}{E(z)} = \frac{5(0.25z^{-1} + 1)}{(1 - 0.5z^{-1})(1 - 0.1z^{-1})}$$

Draw the parallel realization diagram of its digital program implementation.

6. For the close-loop system shown below:

Find the unit step response of the system, when $G_{\mu}(s) = \frac{1}{(S+1)}$.

12

7. Discuss about the steady state error analysis of discrete time control systems. 12

[CO3]:

- a) What are the approaches to solve the problem of loop interaction in multivariable control systems?
 Derive the relative gain array (RGA) for a 2×2 (TITO) multivariable control system.
 - b) In what situation decoupling is required in a multivariable control system? Design the decoupler for a 2×2 closed-loop control system for a complete decoupling. 2+6

[CO4]:

- a) Providing the block diagram of a simple fuzzy logic controller (FLC) explain the role of its various computational blocks.
 - b) Write down the steps involved in designing a Fuzzy Logic Controller (FLC). Mention the flexibilities and limitations of FLC design. 4+4