B. Ins. & Elec. Engineering 3rd Year 2nd Semester Examination 2022 ANALOG MOS CIRCUIT DESIGN

FULL MARKS: 100 TIME: 3 HOURS

List of Course Outcomes (CO):

CO1: Classify and analyze different types of MOS amplifiers (K4, A1-recognize)

CO2: Explain and interpret the importance of differential amplifiers (K3, A1)

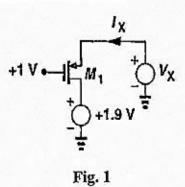
CO3: Describe and explain the behavior of current mirrors (K2, A1)

CO4: Explain and analyze the frequency response of MOS amplifiers (K4, A1)

Instructions to the Examinees:

- Each module is mapped with the corresponding CO
- Attempt questions from ALL the modules
- Alternative questions exist within a module, not across the modules
- -Different parts of same question should be answered together
- Clearly state any assumption and derive the necessary equation(s) for calculation
- Unless otherwise stated, use the device data shown in Table I and assume $V_{DD} \doteq 3 V$ where necessary

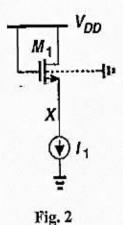
Table I


	Value	Unit
$V_{th,n}$	0.7	v
$V_{th,p}$	-0.8	. V
Ύn	0.45	$V^{1/2}$
Υp	0.4	$V^{1/2}$
$\mu_n C_{ox}$	50	$\mu A/V^2$
$\mu_p C_{ox}$	25	$\mu A/V^2$
λ_n	0.1	V-1
λ_p	0.2	V-1

MODULE 1

(ATTEMPT ANY FOUR FROM THE FOLLOWING)

1.


- (a) Write down the condition for a p-MOS device to operate in the saturation region.
- (b) Sketch I_X and trans-conductance of the transistor as a function of V_X for the circuit in Fig. 1 as V_X varies from 0 to V_{DD}.

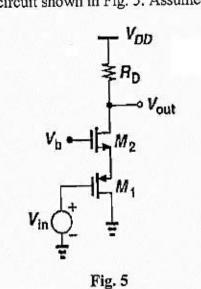
2+8

2.

- (a) What do you understand by body effect? How does it affect the threshold voltage of MOSFET?
- (b) Draw the MOS small-signal model by taking channel-length modulation and body effect into your consideration.
- (c) Sketch g_m and g_{mb} as a function of the bias current I_1 in Fig. 2.

3+2+5

Draw and explain the transfer characteristics of the circuit shown in Fig. 3. Sketch the drain current and trans-conductance of the MOS device as a function of the input voltage.


Fig. 3

4. Sketch v_{out} versus v_{in} for the circuit in Fig. 4 as v_{in} varies from 0 to V_{DD} . Identify the important transition points.

$$V_{b2}$$
 M_3
 V_{b1}
 M_2
 M_1

Fig. 4

5. Calculate the voltage gain of the circuit shown in Fig. 5. Assume $\lambda \neq 0$ and $\gamma \neq 0$

10

10

10

MODULE 2

(ATTEMPT ANY THREE FROM THE FOLLOWING)

6.

- (a) What do you mean by differential signals?
- (b) Show that the equivalent G_m for a differential amplifier falls to zero for $\Delta v_{in} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$, where the symbols enjoy their usual significances.

2+8

7.

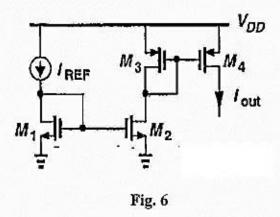
- (a) What is the significance of tail current source in a differential amplifier? Explain,
- (b) Plot the input-output characteristics of a differential pair as the device width and tail current vary.
- (c) How is the input common-mode level of a differential amplifier limited?

3+5+2

8. A differential pair uses input NMOS devices with W/L = 50/0.5 and a tail current of 1 mA. What is the equilibrium overdrive voltage of each transistor? How is the tail current shared between two sides if $v_{ln1} - v_{ln2} = 50$ mV? What is the equivalent G_m under this condition?

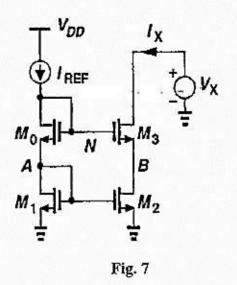
10

9.


- (a) Under which condition a common mode input signal produces non-zero differential output? Explain.
- (b) Find out the expression for differential gain by considering mismatches in trans-conductance of two MOS devices and non-ideal tail current source.

3+7

MODULE 3


(ATTEMPT Q. No. 9 AND ANY ONE FROM THE REST)

10. Find out the drain current of M_4 in Fig. 6 if all of the transistors are in saturation.

8

11. In Fig. 7, assuming all of the transistors are identical, sketch I_X and V_B as V_X drops from a large positive value.

12

12. In Fig. 8, sketch V_X and V_Y as a function of I_{REF} . If I_{REF} requires 0.5V to operate as a current source, what is its maximum value?

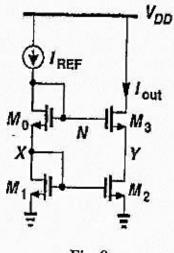


Fig. 8

MODULE 4

(ATTEMPT ANY ONE FROM THE FOLLOWING)

13. Calculate the transfer function of the circuit shown in Fig. 9.

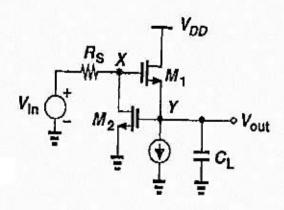
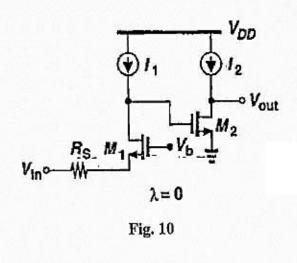



Fig. 9

14. Estimate the poles of the circuit in Fig. 10 below.

12

10

10