B.E. INFORMATION TECHNOLOGY FOURTH YEAR SECOND SEMESTER - 2022

DIGITAL IMAGE PROCESSING

Time: Four Hours

Full Marks: 70

CO₁

- (a) Differentiate between binary image and gray scale image. What do you mean by N₄ (p), N_D (p) and N₈ (p)? What is digital path in an image? Explain with example
 - (b) Write the algorithm to find out 8-connected component of binary-image. Give an-example.
 [5+5=10]

or

- 2. (a) If 1048576 number of bits require for a 8-bit gray scale image of size 512 × m. Find the value of m. What is dynamic range in a gray scale image?
 - (b) Compute the three type of distance between P and Q in the image block as below

_		1	+
_		Q	-
	TWT (TOTAL)		
			-
			100
	Р		1
_			_

(c) Define brightness, hue, saturation and chromaticity. How purest green and magenta can be presented in hexadecimal, when black and white are represented by 000000 and F F F F F respectively.

[2+3+5=10]

CO₂

- 3. (a) What is the importance of image transformation?
 - (b) Compute the Haar transform of the image block

5	10	15	11
		15	
5	11	11	8
4	10		5

[2+8=10]

- (a) When do we need digital image negative? What is bit plane slicing? What is weighted average filter? Illustrate with example.
 - (b) Perform Histogram equalization for given image block (gray scale [0,15]) in below and give the output image.

12 7 7 3 3 10 6 10 8 8 8 4 5 5 4 10 4 7 5 3 11 9 6 9 7 8 9 7 11 5 6 5 4 5 7 6

[5+10=15]

or

5. (a) What do you mean by bit plane slicing? Find all the bit planes of the following 4-bit image

8 12 9 11 10 6

(b) Calculate the first derivative and second derivative for the given image strip below

96677882461442678899

[7+8=15]

CO4

 (a) Write the steps of basic global thresholding technique. Using basic global thresholding technique segment the following image in below.

2	2	1 1 2 3 3 6	6	8 8 6 6 7 8	8
1	2	1	8	8	8
2	2	2	2	6	7
1	3	3	7	6	7
3	1	3	2	7	6
212131	2	6	7	8	887768

Or

Find the edge map in the given image using the Sobel gradient operator and use T = 20 as the threshold for edge detection

9	9	9	9	9	9	9	2	2
9	8	9	9	9	9	2	2	2
9	9	9	9	9	9	3	2	2
9	9	9	9	9	2	2	2	2
7	9	9	9	9	2	2	2	2
9	9	9	9	2	2	2	2	2
9	9	9	9	2	2	2	4	2
9	9	9	2	2	2	2	2	2
9	9	2	2	2	2	1	2	2

(b) Define opening and closing morphological operation. Let f be gray scale image, and let b be a flat structuring element. What would happen if we erode f by b and dialte f by b?

[10+5=15]

CO5

 (a) When external and internal representation are required? What is chain code? Determine the boundary chain code for given image based on 8-connectivity.

(b) What are the regional descriptors to describe a region?

[8+2=10]

CO6

- (a) What is lossy and lossless image compression? What is fidelity criteria? Define BTC (block Truncation Coding) with example.
 - (b) Encode the following sequence "abdceb" using the arithmetic coding. The probability of each character is given below

Source Symbol	Probability	Initial subinterval
a	0.2	[0.0, 0.2)
b	0.2	[0.2, 0.4)
С	0.3	[0.4, 0.7)
d	0.1	[0.7, 0.8)
e	0.2	[0.8, 1.0)

Encode the following sequence "abfedee" using the huffman coding. The probability of each character is given below

Source Symbol	Probability	
a	0.4	
b	0.3	
c	0.1	
d	0.1 -	
e	0.06	
f	0.04	

[4+6=10]

CO1: Review the fundamental concepts of digital image processing (K2)

CO2: Analyze images in the transform domain using different transforms like FT, DCT, HT, KLT, etc. (K3)

CO3: Demonstrate the techniques for image enhancement. (K3)

CO4: Illustrate different techniques of Image segmentation including morphology. (K3)

CO5: Interpret-image-representation and description techniques. (K3)

CO6: Describe and illustrate various image compression techniques. (K3)