B.E. INFORMATION TECHNOLOGY THIRD YEAR SECOND SEMESTER - 2022 INFORMATION SECURITY

Time: 3 hours Full Marks: 100

CO1:

Attempt any two (2) questions

2x5 = 10

- a) Explain in detail the various aspects of security.
- b) Explain the cryptanalytic attacks with diagrams?
- c) What is Perfect Secrecy? Describe a system that achieves it.

CO₂

Attempt any three (3) questions

3x5=15

a) Find the inverse of the following matrix whose entries are considered as modulo 26.

$$\begin{pmatrix} 11 & 13 \\ 2 & 3 \end{pmatrix}$$

- b) Use Extended Euler method to calculate 5⁻¹ mod 8.
- c) Consider the group (Z_{13}^*, \times) and find all the primitive roots of the group.
- d) In the Galois field $GF(2^8)$ modulo $x^8 + x^4 + x^3 + x^2 + 1$, calculate the product 0011 1001 times 0110 1100.

CO3:

a) Attempt any one (1) question

10

- Explain the following terms respect to the keys of DES.
 - A. Weak key
 - B. Semiweak key and
 - C. Possible weak key

What is the probability of randomly selecting a weak, a semi-weak, or a possible weak key?

ii. A block cipher is operates on 4-bit blocks. For one particular key K, it implements the following permutation:

m											A					
E _K (m)	1	В	5	C	7	Е	2	A	4	9	F	D	0	3	6	8

Using this key K, decrypt the following three ciphertexts according to the indicated modes of operation.

A. ECB: 188B06

B. CBC: 301B2

C. CFB: 10F6D

b) Attempt any three (3) questions

3x5 = 15

- The matrix given in CO2(a) is used as a key to a Hill cipher to encrypt a four length string. For a
 given ciphertext 'YGFI', find the corresponding plaintext.
- ii. Discuss the security of additive, multiplicative and affine ciphers against known plaintext attacks.
- iii. How the S-boxes of DES are designed? Explain this with a tabular representation of the S-boxes (no need to consider the complex mathematical computation in GF). Suppose S-Box 3 is given below and '100011' is given as input to the S-Box 3. What will be the output?
- iv. State four advantages that counter mode has over either CBC or CFB mode.

CO4:

Attempt any three (3) questions

3x5 = 15

- a) An RSA encryption routine calculates the value me mod n using a square-and multiply algorithm. During the execution of that algorithm, you can briefly hear a buzzing sound (through radio-frequency interference) on an AM radio receiver located near the computer. You record that sound, and discover that it is actually the following sequence of two different sounds H and L: HHLHHLHLHLHLL. 'H' and 'L' represent low sound. What is the value of e?
- b) Here is a trivial example. Bob chooses p = 11 and $e_1 = 2$, and d = 3 $e_2 = e_1^d = 8$. So the public keys are (2, 8, 11) and the private key is 3. Alice chooses r = 4 and calculates C_1 and C_2 for the plaintext
- c) Form the given Elliptic curve $y^2 = x^3 + x + 1$ in GF(13), find the points on the given curve.
- d) Construct a table for the Discrete Logarithm to solve the problems like $y \equiv 5^x \mod 11$.

CO5:

b) Attempt any one (1) question

8

. Consider the following key agreement scheme between two entities Alice and Bob. Alice and Bob want to communicate using a conventional encryption system. To create a key for this system they use a key distribution center, KDC, which publishes n = pq but keeps p and q secret. Alice randomly chooses a number R_a, 0 < R_a < n and sends R³_a mod n to the KDC. Similarly, Bob randomly chooses a number R_b, 0 < R_b < n, and sends R³_b mod n to the KDC. Since KDC knows both p and q, it can find R_a and R_b. The KDC sends R_a+ R_b mod n to Alice who finds R_b by subtracting her known number R_a. R_b is now the key agreed by Alice and Bob.

Is the above agreement is free from the man-in-the-middle attack? Discuss it.

- Explain briefly the concepts: one-way function, one-way hash function, trapdoor one-way function.
 Describe how a one-way hash function may be used for message authentication.
- c) Attempt any two (2) questions

2x6=12

- i. Is digital signature safe? Can someone falsify it?
- ii. Explain how public key cryptography may be used for identification.
- iii. Describe the goals an ideal password authentication scheme should achieve.

CO6:

Attempt any three (3) questions

3x5 = 15

- a) What is image encryption? Why do we need a special class of encryption methods for images?
- b) When an image encryption method is said to key sensitive? How do you measure the key sensitivity of a method?
- c) Let I_{MXN} be a gray scale image, design an invertible poly-alphabetic substitution method to change the value of the pixels.
- d) Design a method using Fibonacci numbers to change the position of the pixels of a square image.
- CO1: Identify, explain and illustrate different types of security attacks and terms related to Cryptography (K2)
- CO2: Develop knowledge about mathematical concepts required in cryptography. (K3)
- CO3: Illustrate Symmetric Key Cryptosystems and relevant mathematical concepts. (K3)
- CO4: Illustrate Asymmetric Key Cryptosystems with relevant mathematical concepts. (K3)
- CO5: Demonstrate Message integrity algorithms and Message Authentication Algorithms.(K3)
- CO6: Understand and Describe image encryption and its performance measures. (K2)