B. E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING EXAMINATION, 2022

(2nd Year, 2nd Semester)

MECHANICAL OPERATION

Time: Three hours

Full Marks: 100

(50 Marksd for each Part Use separate Answer Script for each Part

PART - I (50 Marks)

GROUP A

Answer any two questions

 $10 \times 2 = 20$

- 1. What are the different types of sedimentation processes? Derive the expression for free settling velocity. 4+6=10
- 2. Derive the equation for the filtration process operating in a constant pressure system.
- 3. What is filter aid? Briefly describe on flocculation process. Write the role of different flocculating agents. 2+4+4=10

Group B

Answer any two questions

 $15 \times 2 = 30$

- 4. (a) Differentiate sedimentation and flocculation process.
 - (b) In a Type-I sedimentation process following data were obtained:

t (min)	0	60	80	100	130	200	240	420
C (mg/L)	300	189	180	168	156	111	78	27

Column height = 1.8m; loading rate = 25 m^3 /day-m². Calculate overall removal efficiency.

3+12=15

- 5. (a) What are the different types of filtration processes?
 - (b) The following data were obtained in a constant filtration unit for filtration of a yeast suspension.

t (min)	4	20	48	76	120
V (1 filtrate)	115	365	680	850	1130

Characteristics of the filter as follows:

 $A = 0.28 \text{m}^2$; $C = 1920 \text{ kg/m}^3$; $\mu = 2.9 \times 10^{-3} \text{ kg/m-s}$; $\alpha = 4 \text{ m/kg}$

- (i) Determine the pressure drop across the filter, (ii) Determine the filter medium resistance, (iii) determine the size of filter for the same pressure drop to process 4000 l of cell suspension in 20 min. 3+12=15
- 6. (a) What is centrifugation coefficient? Derive the correlation between centrifugation coefficient and flow rate.
 - (b) Yeast cells are recovered from a fermentation broth by using a tubular centrifuge. Sixty percent (60%) of the cells are recovered at a flow rate of 12 l/min with a rotational speed of 4000 rpm. Recovery is inversely proportional to flow rate.
 - (i) To increase the recovery of cells to 95% at the same flow rate, what should be the rpm of the centrifuge?
 - (ii) At a constant rpm of 4000 rpm, what should be the flow rate to result in 95% cell recovery?

5+10=15

B. E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING EXAMINATION, 2022

(2nd Year, 2nd Semester)

MECHANICAL OPERATION

Time: Three hours Full Marks: 100

(50 Marksd for each Part Use separate Answer Script for each Part PART - II (50 Marks)

Q.1 is compulsory & answer any two from the following questions:

- 1. (i) If a non-spherical particle with sphericity 0.875 is to be compared with a spherical particle of diameter 0.2 inch in diameter. Estimate the surface area to volume ratio of the non-spherical particle?
 - (ii) What information is carried by the symbol 12/14 mesh screening analysis, technically?
 - (iii) In a screening operation, the following data is obtained for a particle with sphericity 0.92 and density 19,500 kg/m³ in a Tyler Standard Screen as follows:

Mesh	Screen opening D _{pi} (mm)	Mass fraction retained(x _i)
4	4.699	0.000
6	3.327	0.615
8	2.362	0.278
10	1.653	0.024
Pan		0.083

For the material between 6 and 8 mesh size, estimate A_w in mm²/gm

- (iv) In the above problem, estimate the volume-surface mean diameter.
- (v) In the above problem, estimate the average particle diameter between 6 and 8 mesh size and between 8 and 10 mesh size. $5\times2=10$
- 2. Write short notes on

4×5=20

- (i) cut-off diameter (ii) Sphericity (iii) Difference between toothed-roll crusher and smooth-roll crusher (iv) Difference between Ideal Screen and Actual Screen
- 3. In a crushing operation, 125 kW is required to reduce the size from 3.5 inch to 1 inch @ feed rate of 120 tons /hr. Estimate the work index of the material, (ii) How much power is required for the same material to be reduced from a size of 1.75 inch to 0.25 inch in diameter @ feed rate of 120 tons/hr? (iii) what would be the final dimension of the particle of the same material if the same power is applied to crush the material from initial dimension of 2.5 inch?

 20
- 4. The screen analysis shown in the following table applies to a sample of crushed quartz with density 2,650 kg/m³ and the sphericity Φ s = 0.571. For the material between 14-mesh and 35-mesh in particle size, calculate (i) A_w in m²/gm (ii) volume mean diameter (iii) volume-surface mean diameter (iv) mass mean diameter

Mesh	Avg. particle dia. (mm)	Mass fraction retained (x _i)
14	1.409	0.000
20	1.001	0.257
28	0.711	0.159
35	0.503	0.054
Pan	-	0.53