BFTBE 2nd Year Even Semester Examination 2022 CHEMICAL ENGINEERING KINETICS

Time: 3 hrs

Full Marks: 100

Use a separate Answer-script for each Part

Part I (50 marks)

Answer question no. 1 and any two from the rest.

1. In a microbial laboratory, three test tubes containing microbial cultures are placed in three hot baths, maintained at different temperatures 70°C, 80°C and 90°C respectively. The following values of time-temp combination with respect to the no. of microorganisms (N) have been determined from the experiment. (20)

For 70°C		For 80°C		For 90°C	
Time	No. of	Time	No. of	Time	No. of
, t (s)	microorganis	, t (s)	microorganism	, t (s)	microorganism
	m, N		s, N		s N
0	10^{6}	0	10^{6}	0	10^{6}
30	10 ⁵	30	104	30	10 ⁵
60	104	60	10^{3}	60	10^{3}
120	10^{3}	120	10 ²	120	550
180	500	180	50	180	150
300	10	300	1	300	1

Calculate how long it will take for the reduction of microorganisms to 1 in 10000 at 82°C.

2. Reactant A decomposes in a batch reactor, A --- Products

The composition of A in the reactor is measured at various times with results shown in the following columns 1 and 2. Find a rate equation using the integral method to represent the data. (15)

Time (t, s)	Concentration (CA, mol/liter)		
0	$C_{A0} = 12$		
30	10		
50	8		
70	6		
90	3		
110	2		
130	1		

- 3. Explain the reaction rate mechanism for the enzyme-substrate reaction. (15)
- 4. Equate an nth order rate equation using the time-concentration combination data given below. (15)

Time (t, s)			Concentration (CA, mol/liter)			
0			$C_{A0}=10$	_		
5			8			
10	g e ^{-v}		6			
15			4			
25			## 1	1,000		
50			2			
100						

Ref. No.: Ex/FTBE/PC/B/T/225/2022

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING SECOND YEAR SECOND SEMESTER EXAM 2022

Subject: CHEMICAL ENGINEERING KINETICS

Part-II (50 Marks)

Answer any four from the following questions

- 1. The rate of drop in concentration of a gaseous reactant A with the solid reactant B is found to be first order whereas the rate of reaction experimentally found in a stirred tank batch reactor to be of 2nd order with respect to the remaining concentration of A. Which is controlling the rate,
 - a) Reaction b) Diffusion c) Both?

12.5

- 2. In a shrinking core model of a solid reactant B has its initial spherical diameter unchanged due to accumulation of ash while gaseous reactant A reacts. If the initial diameter of B is 1 cm and finally reaches diameter of core of 0.5 cm, what is the conversion of B?

 12.5
- 3. From the following figures of solid particle reactant B as shown below, find where will be the maximum rate of reaction per unit surface occur during a reaction with A in gas phase?

12.5

- 4. A gm of solid spherical particle of specific gravity 2.5 is ground to a powder of fines of 10 angstrom particles, determine the surface area of powdered mass. 12.5
- 5. What will be the time required to reduce completely the slab of B as in the above figure of Q3, if the specific gravity and molecular mass of B are 1.5 and 20 respectively and the reaction is, A+B→ products with r=0.2 cm? Assume ash diffusion control with De=0.08 cm²/sec and oxygen (A) in air is taken as 21% at atmospheric pressure and 30°c.