Ex/BS/FTBE/MTH/T/122/2022

BACHELOR OF ENGINEERING IN FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING EXAMINATION, 2022

(1st Year, 2nd Semester)

MATHEMATICS II

Time : Three hours

Full Marks : 100

(50 Marks for each Part)

(Use separate answer script for each Part)

(Symbols and notations have their usual meanings)

PART – I (50 Marks)

Answer *Q. No. 1* and any *three* from the rest.

1. Evaluate
$$\int_0^1 x^3 (1-x^2)^{\frac{5}{2}} dx$$
. 5

2. a) Using a double integral, prove that $\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}; \quad a,b > 0.$ 7

i)
$$\int_{0}^{1} \frac{dx}{(x+1)(x+2)\sqrt{x(1-x)}}$$

ii)
$$\int_{0}^{1} \frac{\sin x + \cos x}{(1-x^{3})^{\frac{1}{5}}} dx$$
 8

[Turn over

3. a) Evaluate
$$\int_0^\infty e^{-ax} \frac{\sin nx}{x} dx$$
, $a > 0$ by using Leibnitz's

- rule and hence deduce that $\int_0^\infty \frac{\sin nx}{x} dx = \frac{\pi}{2}$. 5
- b) Find the area of the cardioid $r = a(1 + \cos \theta)$. 5

c) If
$$I_n = \int_0^{\pi/2} x^n \sin x dx$$
 and $n > 1$, show that

$$I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}.$$
 5

- 4. a) Evaluate $\iiint xyzdxdydz$, the field of integration being the positive octant of the ellipsoid $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} + \frac{z^2}{\gamma^2} \le 1$.
 - b) Give an example of a series $\sum x_n$ such that $\sum x_n$ is convergent but $\sum x_n^2$ is divergent. 2
 - c) Show that the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \cdots$ is conditionally convergent. 5

5. a) Test the convergence of the series
$$\sum \frac{(-1)^{n+1}}{\sqrt{n}}$$
. 5

b) If
$$I_n = \int x^n \cos(ax) dx$$
 and $J_n = \int x^n \sin(ax) dx$, then
show that $aI_n = x^n \sin(ax) - nJ_{n-1}$. 3

- 7. a) Prove the linearity property of Laplace Transform for $F_1(t)$ and $F_2(t)$.
 - b) If $L\{F(t)\} = f(s)$, then show that $L\{F(at)\} = \frac{1}{a}f(\frac{s}{a}).$

c) If
$$L\{F(t)\} = f(s)$$
, then show that
 $L\left\{\int_{0}^{t} F(x)dx\right\} = \frac{1}{s}f(s)$. $3+3+4$

- 8. a) Find the Laplace transform of the following:
 - i) $6\sin 2t 5\cos 2t$
 - ii) $te^{at}\sin at$

b) Show that
$$\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} dt = \frac{\pi}{4}$$
. $3+3+4$

4. a) If $f(z) = \frac{z^2 + 5z + 6}{z - 2}$, does Cauchy's theorem apply

- i) when the path of integration C is a circle of radius 3 with origin as centre.
- ii) when the path of integration C is circle of radius 1 with origin as centre.
- b) Expand in the series for the function

$$f(z) = \frac{1}{z^2 - 3z + 2}$$
 in the regions (i) $|z| < 1$, (ii)
 $1 < |z| < 2$, (iii) $|z| > 2$ 2+8

- 5. a) State Cauchy's residue theorem.
 - b) Using Cauchy's residue theorem, evaluate the

integral
$$\int_C \frac{e^{2z}}{(z+1)^4} dz$$
, where $C: |z| = 3$.

c) Show that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) = 4 \frac{\partial^2}{\partial z \cdot \partial z}$$
, where $z = x + iy$
and $\overline{z} = x - iy$.

6. Find the Fourier series for the function $f(x) = x^2$ in $[-\pi, \pi]$ and hence deduce the following :

i)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$

ii) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$ $6+2+2$

- c) A sequence $\{x_n\}$ is given by $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2x_n}$ for $n \ge 1$. Show that $\lim_{n \to \infty} x_n = 2$. 4
- d) Show that

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$
 3

PART – II (50 Marks)

Answer any *Five* questions. 5×10

1. a) Let
$$f(z) = z^2$$
 and z_0 be any fixed point, then show that

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = 2z_0.$$

- b) Show that the function f(z) = xy + iy is continuous everywhere but not differentiable.
- c) Define Analytic function and Harmonic function.
 3+3+4
- 2. Prove the necessary condition that the function f(z) = u(x, y) + iv(x, y) is differentiable at a point $z_0 = x_0 + iy_0$ is that the partial derivatives u_x , u_y , v_x and v_y exists and $u_x = v_y$, $u_y = v_x$ at the point (x_0, y_0) . 10
- 3. Prove that the function $u(x, y) = x^3 3xy^2 + 3x^2 3y^2 + 1$ satisfies Laplace's equation and find the corresponding analytic function f(z) = u(x, y) + iv(x, y). 3+7 [Turn over