B.E. ELECTRONICS AND TELE-COMMUNICATION ENGINEERING SECOND YEAR SECOND SEMESTER EXAM - 2022

Data	Structures And Algorithms	Time: 3 hours	Full Mark	ks: 100
Ansv	ver All Questions.			
Q1	 (a) Define a stack and mention its two primitive operations. (b) Show how a stack can be implemented using linked lists. (c) What is a postfix expression? Use a stack to evaluate the following postfix expression: 6, 2, 3, +, -, 3, 8, 2, /, +, *, 3, ^, 2, +, \$ Here, '\$' marks end of input and '^' denotes exponentiation. Show your steps. (d) Briefly explain two different applications of a stack for data processing. 			2+2 5 2+5
		OR		
	(a) Define a queue and mention its tw(b) Discuss a fixed memory implement(c) Define a circular queue. Justify its(d) Show how a queue can be used to pseudocodes implementation of entry	ntation of queue. effectiveness. model traffic control at a turning point. Sho	ow using	2+2 5 2+4 5
Q2	 (a) Define O, Θ, Ω notations. (b) Prove or disprove: 3n² + 4n² log (c) Find the solution to the recurrence method. 	e relation $T(n) = 2T(\sqrt{n}) + 1$ using the so	ubstitution	6 4 10
	(a) Given: $T(n) = T\left(\frac{3n}{4}\right) + 1$. Find the solution to the recurrence method.	OR he tight asymptotic bound for $T(n)$. Ind $g(n) = O(h(n))$, then $f(n) = O(h(n))$ he relation $T(n) = 2T(\sqrt{n}) + 1$ using the so	ubstitution	5 5 10
Q3	your example. Show that a complete (b) What do you mean by traversal of	n an example. Mark the leaf and non-leaf not binary tree of depth d has $(2^d - 1)$ non-lea f a binary tree? Show different types of trav	f nodes.	2+2+3 2+6
	complete binary tree of depth 3. (c) Construct the binary tree with the inorder traversal form: <i>DGBAHEICF</i>	preorder traversal form: <i>ABDGCEHIF</i> and Show your steps.	the	5
Q4	not height-balanced. You should first the first data as the root.	onstructed with nodes as 8, 6, 10, 4, 7, 9, 11 show the step-by-step construction of the t	, 3, 5, 2 is ree taking	2+2 3+3
	c) Define order and size of a graph w d) Show that the number of edges in a e) Prove or disprove: The graph K_5 is	a complete bipartite graph of order $2n$ is n^2 .		2+2 3 3

Ex/ET/PC/B/T/225/2022

Q5	(a) Write a recursive procedure for the Quick Sort algorithm including a separate code for	6
	the partition process.	
	(b) Apply the algorithm in (a) to sort the dataset 25, 57, 48, 37, 12, 92, 86 in the ascending	5+3
	order. Analyze the time-complexity of your solution.	

(c) Consider the dataset in (b). How can you find the key = 86 in the above dataset? 3+3 Analyze the time-complexity of your solution.

OR

(a) Write a procedure for the <i>Bubble Sort</i> algorithm.	6
(b) Apply the algorithm in (a) to sort the dataset 25, 57, 48, 37, 12, 92, 86 in the ascending	5+3
order. Analyze the time-complexity of your solution.	
(c) Consider the dataset in (b) after sorting has taken place. How can you find the $key = 86$	3+3
in the above sorted dataset? Analyze the time-complexity of your solution.	