Ex/BS/ET/MTH/T/122/2022

BACHELOR OF ENGINEERING IN ELECTRONICS AND

TELE-COMMUNICATION ENGINEERING EXAMINATION, 2022

(1st Year, 2nd Semester)

MATHEMATICS II

Time : Three hours

Full Marks : 100

(50 Marks for each Part)

(Use separate answer script for each Part)

PART – I

Group – I

Answer *any five* questions. Each question carry 5 marks.

1. Show that the sequence $\{x_n\}$ defined by $x_n = \left(1 + \frac{1}{n}\right)^n$ is

convergent and the limit lies between 2 and 3.

2. Show that for any
$$a > 0$$
, $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

3. Show that the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$
 is conditionally convergent.

4. Define the radius of convergence of a real power series. Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{n!(5x+3)^n}{(n+1)^2 + 4n}.$$

[Turn over

5. Define the limit superior and the limit inferior of a sequence. Find the limit superior and limit inferior of the

sequence
$$\left\{1 + \frac{\left(-1\right)^n}{n}\right\}$$
.

- 6. Let $x_n = \frac{1+2+3+...+n}{n^2}$. Show that $\{x_n\}$ is bounded monotone sequence and $\lim x_n = \frac{1}{2}$.
- 7. Examine the convergence of the following series:

i)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}} \right)^{-n^{3/2}}$$
 ii) $\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}} \right)^{n^{3/2}}$

8. Examine the convergence of the infinite series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$.

Answer any five questions. Each question carry 5 marks.

- 9. Evaluate $\iint_R \sqrt{x^2 + y^2} dx dy$, the region of integration being *R*, the region of the *xy*-plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 10. Compute the surface area of the sphere $x^2 + y^2 + z^2 = a^2$.
- 11. Evaluate $\iiint xyzdxdydz$, over the region bounded by $x \ge 0, y \ge 0, z \ge 0$ and $x + y + z \le 1$.

5. a) Evaluate Laplace inverse transform of
$$\log\left(\frac{s+3}{s+2}\right)$$
.

b) Solve by Laplace transform method the following simultaneous differential equations : 6

- >

$$\frac{dx}{dt} = 2x - 3y$$
$$\frac{dy}{dt} = y - 2x$$

- 6. a) Find the Fourier Transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{\cos mx}{1+x^{2}} dx = \frac{\pi}{2} e^{-m}, \ m > 0$ 5
 - b) State the convolution theorem in Fourier transform. Using this theorem evaluate the integral $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)} \cdot 5$
- 7. a) Define Z-transform of a function undefined for discrete values of n (= 0, 1, 2, ...) and $u_n = \theta$ for $n < \theta$. Find Z-transform of $\cos \theta$ and $\sin n\theta$.
 - b) Solve the differenc equations by Z-transform.

$$y_{n+2} + 2y_{n+1} + y_n = n$$
 with $y_0 = y_1 = 0$. 6

2. a) If
$$0 < |z-1| < 2$$
 then express $f(z) = \frac{z}{(z-1)(z-3)}$ in
a series of positive and negative powers of $(z-1)$.

- b) Show that $\omega = \frac{i-z}{i+z}$ maps the real axis of z-plane into the circle $|\omega| = 1$.
- 3. a) If f(z) is a regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2}\right) |f(z)|^2 = 4 |f'(z)|^2 \qquad 4$
 - b) Determine the poles of the following functions and the residue of each pole : 6

i)
$$\frac{z^2 - 2z}{(z+1)^2(z^2+1)}$$
 ii) $\frac{1 - e^{2z}}{z^4}$

4. a) Expand in Fourier series $f(x) = x + x^2$, $-x < x < \pi$.

Hence prove that
$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$
 6

b) Determine the half-range Fourier cosine series for

$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} < x < \pi \end{cases}$$

$$4$$

- 12. Show that the Improper integral $\int_0^\infty e^{-x} x^{n-1} dx$ exists if n > 0.
- 13. Change the order of the integration and evaluate the integral $\int_0^1 dy \int_y^1 e^{x^2} dx$.

14. If
$$I_n = \int_0^{\pi/4} \tan^n x \, dx$$
, then show that $I_{n+1} + I_{n-1} = \frac{1}{n}$.

- 15. By applying MVT of Integral calculus, show that $\frac{1}{3\sqrt{2}} \le \int_0^1 \frac{x^2}{\sqrt{1+x}} dx \le \frac{1}{3}.$
- 16. Assuming the validity of differentiation under the integral sign, show that $\int_{0}^{\pi/2} \frac{\log(1+y\sin^{2}x)}{\sin^{2}x} dx = \pi(\sqrt{1+y}-1), \text{ where } y > -1.$ **PART – II (50 marks)** Answer *any five* questions. 1. a) Show that the function $u = \frac{1}{2}\log(x^{2}+y^{2})$ is
 - Harmonic and find its Harmonic conjugate. 6

b) Evaluate
$$\int_{C} \frac{z^2 - z + 1}{z - 1} dz$$
, where C is the circle
(i) $|z| = \frac{1}{2}$ (ii) $|z| = 2$.

[Turn over