Bachelor of Engineering in Electronics and

 Tele-Communication Engineering Examination, 2022
(1st Year, 2nd Semester)

Mathematics II

Time : Three hours
Full Marks : 100
(50 Marks for each Part)
(Use separate answer script for each Part)

PART - I
 Group - I

Answer any five questions. Each question carry 5 marks.

1. Show that the sequence $\left\{x_{n}\right\}$ defined by $x_{n}=\left(1+\frac{1}{n}\right)^{n}$ is convergent and the limit lies between 2 and 3 .
2. Show that for any $a>0, \lim _{n \rightarrow \infty} \sqrt[n]{a}=1$.
3. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ is conditionally convergent.
4. Define the radius of convergence of a real power series. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n!(5 x+3)^{n}}{(n+1)^{2}+4 n}$.
5. Define the limit superior and the limit inferior of a sequence. Find the limit superior and limit inferior of the sequence $\left\{1+\frac{(-1)^{n}}{n}\right\}$.
6. Let $x_{n}=\frac{1+2+3+\ldots+n}{n^{2}}$. Show that $\left\{x_{n}\right\}$ is bounded monotone sequence and $\lim x_{n}=\frac{1}{2}$.
7. Examine the convergence of the following series:
i) $\quad \sum_{n=1}^{\infty}\left(1+\frac{1}{\sqrt{n}}\right)^{-n^{3 / 2}}$
ii) $\quad \sum_{n=1}^{\infty}\left(1+\frac{1}{\sqrt{n}}\right)^{n^{3 / 2}}$
8. Examine the convergence of the infinite series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$.

Group - II

Answer any five questions. Each question carry 5 marks.
9. Evaluate $\iint_{R} \sqrt{x^{2}+y^{2}} d x d y$, the region of integration being R, the region of the $x y$-plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
10. Compute the surface area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
11. Evaluate $\iiint x y z d x d y d z$, over the region bounded by $x \geq 0, y \geq 0, z \geq 0$ and $x+y+z \leq 1$.
5. a) Evaluate Laplace inverse transform of $\log \left(\frac{s+3}{s+2}\right)$.

4
b) Solve by Laplace transform method the following simultaneous differential equations :

$$
\begin{align*}
& \frac{d x}{d t}=2 x-3 y \tag{6}\\
& \frac{d y}{d t}=y-2 x
\end{align*}
$$

6. a) Find the Fourier Transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{\cos m x}{1+x^{2}} d x=\frac{\pi}{2} e^{-m}, m>0$
b) State the convolution theorem in Fourier transform. Using this theorem evaluate the integral $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}$.
7. a) Define Z-transform of a function undefined for discrete values of $n(=0,1,2, \ldots)$ and $u_{n}=\theta$ for $n<\theta$. Find Z-transform of $\cos \theta$ and $\sin n \theta$.
b) Solve the differenc equations by Z-transform.
$y_{n+2}+2 y_{n+1}+y_{n}=n$ with $y_{0}=y_{1}=0$.
6
8. a) If $0<|z-1|<2$ then express $f(z)=\frac{z}{(z-1)(z-3)}$ in a series of positive and negative powers of $(z-1)$.
b) Show that $\omega=\frac{i-z}{i+z}$ maps the real axis of z-plane into the circle $|\omega|=1$.
9. a) If $f(z)$ is a regular functon of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
b) Determine the poles of the following functions and the residue of each pole :
i) $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+1\right)}$
ii) $\frac{1-e^{2 z}}{z^{4}}$
10. a) Expand in Fourier series $f(x)=x+x^{2},-x<x<\pi$.

Hence prove that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .$.
b) Determine the half-range Fourier cosine series for

$$
f(x)=\left\{\begin{array}{cc}
x, & 0<x<\frac{\pi}{2} \\
\pi-x, & \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

12. Show that the Improper integral $\int_{0}^{\infty} e^{-x} x^{n-1} d x$ exists if $n>0$.
13. Change the order of the integration and evaluate the integral $\int_{0}^{1} d y \int_{y}^{1} e^{x^{2}} d x$.
14. If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$, then show that $I_{n+1}+I_{n-1}=\frac{1}{n}$.
15. By applying MVT of Integral calculus, show that $\frac{1}{3 \sqrt{2}} \leq \int_{0}^{1} \frac{x^{2}}{\sqrt{1+x}} d x \leq \frac{1}{3}$.
16. Assuming the validity of differentiation under the integral sign, show that $\int_{0}^{\pi / 2} \frac{\log \left(1+y \sin ^{2} x\right)}{\sin ^{2} x} d x=$ $\pi(\sqrt{1+y}-1)$, where $y>-1$.

PART - II (50 marks)

Answer any five questions.

1. a) Show that the function $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is Harmonic and find its Harmonic conjugate. 6
b) Evaluate $\int_{\mathrm{C}} \frac{z^{2}-z+1}{z-1} d z$, where C is the circle (i) $|z|=\frac{1}{2} \quad$ (ii) $|z|=2$.
