EX/EE/ PE/B/T /421F/ /2022

B.E Electrical Engg.4th Year 2nd Sem. Examination, 2022 (4th Year, 2nd Semester)

ELECTIVE-II ADVANCED LIGHTING CALCULATION & DESIGN

Time: Four hours

Full Marks: 70 (35 marks for each part)

Use separate Answer-script for each part

PART-I

Answer Q no.1

- 1. A square area of each side 42m length is illuminated by placing one pole at the middle of each side of the area. The poles are of 15 m height and each one carries 4x400W SON floodlights. Using the given diagram of Fig. 1, and showing each step clearly, find out the following:
 - i) the Utilisation Factor,
- ii) the average horizontal illuminance on the area, when all the lamps are made ON.
 - iii) a) If 25%, 50% and 75% of the lamps are made OFF, what illuminances will you get?
 - b) Draw a curve showing the variation in illuminances.
- iv) How will you save power from 5pm to 5am switching the lamps properly as well as providing necessary illuminance to public/users?

Given: the total initial lamp lumen = 48.5 Klm, the depreciation factor = 0.88, the maintenance factor = 0.6, the atmospheric loss factor = 0.7. Photocopy of Fig.1 is attached, submit the diagram if used.

[Turn over

Answer Any two Questions from rest

2. (a) Explain the method of Illuminance calculation from a circular shaped diffused area source. If it is of 3ft diameter, find the illuminance at a point vertically 8ft.below. If the source diameter is made doubled, four times, what will be the illuminance values at that point?

Drawing a graph, show the variation.

5

- (b) Write short notes:
 - (i) One Floating type and one Machine operated type Emergency Lighting system.
 - (ii) Classification of Flood-Lights as per Indian Standard and American Standard.
- 3. (a) A tube light is mounted direct above the front-edge of a work bench of 0.8 m width. Both are 2.5 m long and the mounting height is 2.2 m. The transverse intensity is 500 cd at all angles. Find the illuminance at the centre above the front edge, explaining each step.
- (b) Compare Spherical and Cylindrical Illuminance with suitable diagrams and explain them . 4
- (c) Mention any eight important places in your Department, where emergency lamps should be fitted.
 - 4. Describe with necessary diagram, any two:
 - (a) Parallel Plane Aspect Factor.

4

2

- (b) Battery powered transistorized inverter system to be used for Non-Maintained Emergency Lighting.
- (c) Any of the three guidelines for the selection of Flood Lighting Equipment. 3

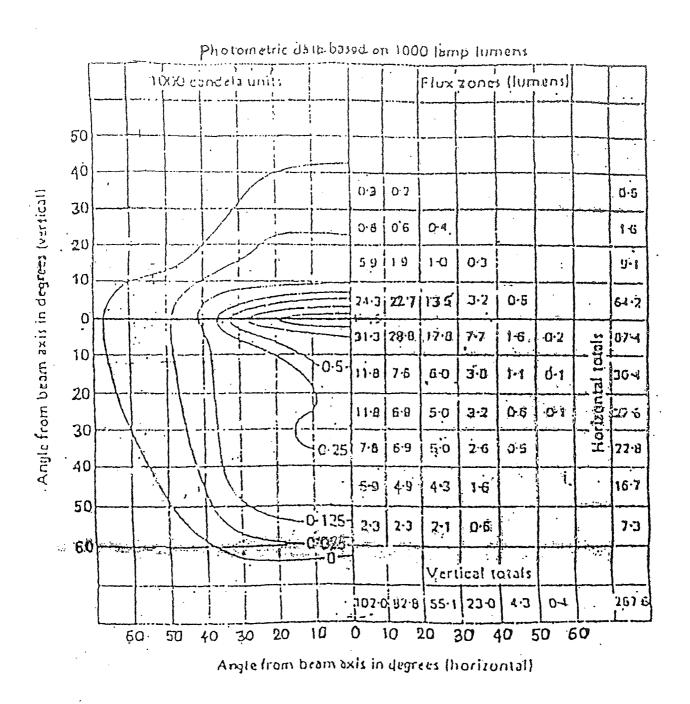


Fig. 1 Zonal flux and isocandela diagrams for floodlighting.

Ref.No. Ex/EE/PE/B/T/421F/2022

B.E.ELECTRICAL ENGG. Examination 2022 [4th Year; 2nd Semester]

Subject: ADVANCED LIGHTING CALCULATION AND DESIGN

Time: 3 hours

Use Separate Answer script for each part

Full Marks: 70

(35 marks for each Part)

Part-II ANSWER ALL QUESTIONS

0.1.

- A) What are the advantages and challenges of daylight integrated artificial lighting system?
- B) Write down the procedure of measurement of diffuse daylight efficacy and global daylight efficacy.
- C) Write down the mathematical expressions of Daylight Coefficient and state how it differs from the Daylight Factor as daylight prediction tool.
- D) The U-factor, SHGC and VLT are considered as essential selection parameters of a glazing system explain.

3+4+4+4=15

OR

Q.1.

- A) Derive the mathematical expression of point-specific horizontal illuminance due to unobstructed sky from basic law of illuminance.
- B) Describe (i) physical principle, (ii) characteristics and (iii) applications of any one from the following daylighting systems
 - (I) Louvers and blind system; (II) Light guiding shades.

7+8=15

OR

Q.1.

- A) Write down the CIE SSLD model and explain its applicability with suitable diagram.
- B) Briefly discuss on the conceptual design metrics of daylighting design.

7+8=15

Q.2.

- A) What are the major objectives of roadlighting design?
- B) Write down the thumb rules of pole layout with suitable diagram.
- C) Briefly discuss the luminance based design parameters of roadlighting design.

4+4+7=15

\underline{OR}

Q.2.

- A) What is luminance coefficient? Write down, in step, the computational procedure of average road surface luminance within a span of a road surface for single-sided pole installation.
- B) State the assessment procedure of threshold increment in connection to roadlighting design and explain how the threshold increment is considered as a measure of disability glare.

8+7=15

Q.3.

- A) Explain the pay back method in connection to a lighting installation.
- B) Write down the components of capital cost and running cost of lighting installation

3+2=5