Bachelor of Electrical Engineering Examination, 2022 4th Year, 2nd Semester

Advanced Control Theory

Full Marks: 70

Answer both parts on the same answer script

Part-I

Answer any three questions from this part (all questions carry equal marks)

Two marks for neat and well-organized answerscript

1. a) Discuss the common sources of nonlinearity in plants.

4+4+3

- b) What is static non-linearity? Give two examples of static nonlinearity.
- c) What is hysteresis? Explain why it is called a nonlinearity with memory.
- 2. a) Explain what is meant by "Equilibrium Point" of a nonlinear dynamic system.

2+3+6

b) A nonlinear system is expressed as follows:

$$\dot{x}_1 = -x_1 + x_2$$

$$\dot{x}_2 = 2x_1 - 8x_2 - 5x_1^2 - x_1^3$$

- (i). Determine the equilibrium points of the above system.
- (ii). Linearize the above system about ALL its equilibrium points.
- 3. a) State Lyapunov's <u>2nd</u> theorem. What are its limitations?

3+8

b) The dynamics of an unforced nonlinear system is described by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \left(x_1^2 + x_2^2 \right) \\ -x_1 - x_2 \left(x_1^2 + x_2^2 \right) \end{bmatrix}. \text{ Using the function } V = \frac{1}{2} \left(x_2^2 + x_1^2 \right) \text{ as}$$

the Lyapunov function, investigate the stability of the system about its equilibrium point at the origin.

4. a) Enumerate the advantages and disadvantages of on-off control.

6+5

b) With schematic diagrams explain how an on-off type temperature control system functions. Sketch the necessary controller characteristics.

[Turn over

Ref. No: Ex/EE/PE/B/T/421A/2022

5. a) What is a phase plane plot?

3+8

- b) With suitable phase plane diagrams discuss how the stability of standard second order systems with different pole locations may be analyzed by their phase portraits.
- 6. A satellite attitude control system has forward-reverse type of thrusters and a controller with proportional plus derivative control with dead zone.

4+2+5

- a) Draw the block diagram of the above system.
- b) Sketch the controller characteristics.
- c) With the help of a phase plane plot investigate the stability of the system.

Part II

Answer any three questions from this part (all questions carry equal marks)

Two marks for neat and well-organized answerscript

7. a) Explain the difference between the terms 'Structured uncertainty' and 'Unstructured uncertainty.

6+5

b) Check for the robust stability of the system whose characteristic polynomial is given by

$$p_5 s^5 + p_4 s^4 + p_3 s^3 + p_2 s^2 + p_1 s + p_0 = 0$$
,
where
 $p_5 \in [1, 1], p_4 \in [35, 40], p_3 \in [61, 64], p_2 \in [35, 36],$
 $p_1 \in [11, 15] \text{ and } p_0 \in [52, 58].$

8. A process plant given by $G_1(s) = \frac{2}{(s+1)(0.01s+1)}$ is modeled by using the

3+5+3

transfer function $G_2(s) = \frac{2}{s+1}$. Compare (i) the open loop unit step responses, (ii) the closed loop unit step responses and (iii) the frequency responses of the plant and its model.

Ref. No: Ex/EE/PE/B/T/421A/2022

9. a) What is the physical significance of H_2 norm of a signal?

2+4+5

- b) Given a transfer function $G(s) = \frac{16}{(s+1)(s+2)^2(s+4)}$. Find $||G||_2$.
- c) For the system with transfer function $G(s) = \frac{0.2s+1}{s+1}$, find $||G||_{\infty}$.
- 10. a) What is an observer? What are its uses? Explain with the help of a block diagram.

6+5

b) Design a full order observer for observing the second state variable for the following continuous time system so that the observer poles are located at -5, -5

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0.01 \end{bmatrix} u \; ; \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x} \; .$$

11. a) Explain the meaning of the term 'quadratic performance index'.

1+10

- b) Explain what is meant by the following terms giving an example in each case:
 - (i) The tracking control problem
 - (ii) The regulator control problem
 - (iii)The terminal control problem
 - (iv) The minimum-time control problem
 - (v) The minimum energy control problem
- 12. A regulator contains a plant described by

6+2+3

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \; ; \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

and has the performance index

$$J = \int_{0}^{\infty} \begin{bmatrix} x^{T} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} x + u^{2} dt.$$

Determine

- a) the Riccati matrix P
- b) the optimal control law
- c) the closed loop eigenvalues.