B. E. ELECTRICAL ENGINEERING EXAMINATION, 2022 (THIRD YEAR, Second Semester)

Nonlinear and Optimal Control

Part-I

Time: Three hours

Full Marks 100 (√50 marks for each part)

Use a separate Answer-Script for each part

Q1a) Considering all the viewpoints, distinguish between autonomous and non-autonomous systems. Justify your answer. (CO1) 6

Q1b) Consider the following scalar differential equation.

$$\dot{x} = f(x) = x^2$$

Show the direction of the vector field. Ascertain the stability of the equilibrium point. (CO1)

4

Q2) Derive the describing function of the element whose input-output characteristic is shown in figure P-2. Show that the required describing function equals the sum of the describing functions of relay with dead-zone and amplifier with dead-zone. (CO2)

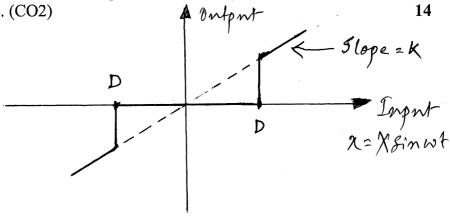


Fig. P-2: Input-Output Characteristic of the Nonlinear Element

EX/EE/PE/H/T/326A/2022

<u>OR</u>

Q2) Consider the nonlinear differential equation (CO2)

$$\ddot{y} - (0.1 - \frac{10}{3}\dot{y}^2)\dot{y} + y + y^2 = 0$$

- i) Find all the singular points of the system.
- ii) Classify the singular points.
- iii) Sketch the phase portrait in the neighbourhood of the singular points.

14

Q3) Write short notes on any two

8+8

- i) Lyapunov's Indirect Method (CO3)
- ii) Jump Resonance (CO1)
- iii) Minimum Time trajectory (CO2)
- Q4) Determine the stability of the system described by the following equation using Lyapunov's Direct Method. (CO3) 10

$$\dot{x} = Ax$$

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$

Ref. No.: Ex/EE/PE/H/T/326A/2022

B.E. ELECTRICAL ENGINEERING THIRD YEAR SECOND SEMESTER – 2022 NONLINEAR AND OPTIMAL CONTROL (HONS.)

(50 Marks for this part)

Part-II

Answer any THREE questions.

Different parts of the same question should be answered together. Two marks will be given for neat and well organized answer.

- 1. a) State the advantages and disadvantages of optimal control.
- c) Explain how selection of the mathematical model may influence the design of the optimal control law.

$$[6+10=16]$$

- 2. a) Explain the following with proper diagram:
 - (i) Control history, (ii) State trajectory, (iii) Admissible control, (iv) Admissible trajectory
- b) Formulate a suitable optimal control problem for a second order underdamped servo system with a given tolerance for steady state error of $\pm 1\%$ and percent overshoot of 5% from the steady state value for unit step input.

- 3.a) What is performance measure and what is its role in optimal control problem?
- b) Describe the classification of optimal control problems based on various performance measures.

$$[2+2+12=16]$$

- 4. a) Explain the following with example:
 - (i) Closeness of Functions, (ii) Increment of Functional (iii) Variation of a Functional
- b) Let x be a continuous scalar function defined for $t \in [0, 1]$. Find the variation of the functional:

$$J(x) = \int_0^1 [x^2(t) + 4x(t)]dt$$

[3x3+7=16]