B.E.ELECTRICAL ENGINEERING SECOND YEAR SECOND SEMESTER EXAMINATION, 2022

SIGNALS AND SYSTEMS

Full Marks 100

Time: Three hours
Use a separate Answer-Script for each part

(50 marks for each part)

Question No.	PART I	Marks
	Answer any THREE questions Two marks reserved for neatness. Give proper units wherever necessary.	
1. (a)	Give a well-labeled free-hand sketch for the derivative of the signal $x(t)$ shown in Fig. [A], and express $x(t)$ as a sum of singularity functions.	Ž
	$ \begin{array}{c} x(t) \\ 2 \\ \\ t = 8) \end{array} $ parabola (zero slope at t = 8)	
	$ \begin{array}{c c} 0 & 4 & 8 \\ \hline & \text{Fig. [A]} \end{array} $	2+6
(b)	Introduce the concept of total energy and average power of signals. Hence define energy signals and power signals.	
	Consider the voltage signal $x(t) = 5(t-2)^2 \left[u(t-2) - u(t-4) \right] \text{ mV}$. Examine whether $x(t)$ is a power signal or energy signal or none. Give appropriate unit wherever necessary.	3+5
2(a)	Two non-interacting linear time-invariant (LTI) systems with impulse responses $g(t)$ and $h(t)$ are in cascade, where $g(t) = 1 - e^{-0.2t}$ for $1 \le t \le 5$,	
	and 0 otherwise.	10

Determine the expression for the impulse response of the

combination. Do not use any transform method.

 $h(t) = e^{-0.1t} \quad \text{for } 0 \le t \le 6,$

and 0 otherwise.

Question No.	PART I	Marks
(b)	If $x(t) * z(t) = \int_{-\infty - \infty}^{t} \int_{-\infty - \infty}^{\tau} x(\lambda) d\lambda d\tau$, what function does $z(t)$ represent? Give relevant derivation, starting from the definition of	6
2 (a)	convolution. If a current signal is $f(t) = \delta(3t^2 - 7t + 2) \mu A$, obtain the values	
3. (a)	of $\int_{-\infty}^{+\infty} f(t)dt$ and $\int_{0}^{1.5} f(t)dt$, where t is in s.	6
(b)	Give an appropriate definition for the signal $q(t) = -4\delta(t+2)$. State the properties of $q(t)$.	6
(c)	Define duty cycle and AC coupled crest factor of periodic trains of rectangular pulses.	4
4. (a)	Determine the exponential Fourier series for the periodic signal $x(t)$ shown in Fig. [B]. Sketch the double sided amplitude and the phase spectra, up to 3^{rd} harmonic.	7
4)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b)	The autocorrelation function of a power signal $x(t)$ is $R_x(\tau) = 3 \sin c^2(2\tau) \cdot Cos(20\pi\tau)$. Determine the expression for	7+2
	the power spectral density $S_x(f)$ of $x(t)$, and sketch $S_x(f)$ as a function of f , with proper labeling. Use any valid relation between $R_x(\tau)$ and $S_x(f)$ without proof.	
	What is the average power in the signal $x(t)$?	

Question No.	PART I	Marks
(b)	In the L-R circuit shown in Fig. [C], L is 100 mH and R is 10 Ω . $ \begin{array}{c c} & L \\ & X(t) \\ \hline & R & X(t) \end{array} $	9
	Fig. [C] The input voltage signal is $x(t) = 5 + 10 \cos(64\pi t - 5^{\circ}) + 4 \cos(128\pi t - 10^{\circ}) + 2 \cos(256\pi t - 30^{\circ}).$ The steady state output signal in volt is $y(t)$. Derive the expression for $y(t)$. Give detailed derivation.	
5. (a) (b) (c)	Write short notes on <u>any two</u> of the following. Parseval's formula for periodic signals and energy signals. Frequency response of second order system. Fourier transforms of unit DC signal, signum function and unit step.	8+8

Ref. No.: Ex/EE/PC/B/T/224/2022

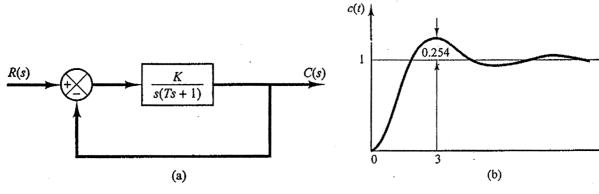
B. E. ELECTRICAL ENGINEERING 2ND YEAR 2ND SEMESTER EXAMINATION, 2022

Subject: SIGNALS & SYSTEMS Time: Three Hours Full Marks: 100

Part II (50 marks)

Question 1 is compulsory

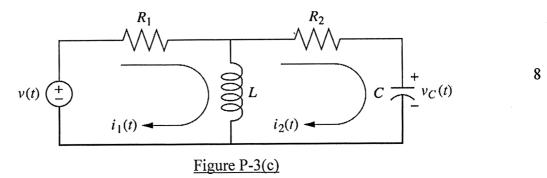
Answer Any Two questions from the rest (2×20)					
Question . No.		Marks			
Q1 Answer any Two of the following:					
	(a)	Determine if the system $y(t) = \dot{x} + x(t)$ is time-invariant, linear, causal, and/or memoryless?	5		
	(b)	Derive state equations for the following system $\ddot{y}(t) + 2\dot{y}(t) + 4y(t) = 2u(t)$.	5		
	(c)	Find the initial value of $\frac{df(t)}{dt}$ for $F(s) = \mathfrak{L}[f(t)] = \frac{2s+1}{s^2+s+1}$	5		
	(d)	Find an analog simulation that converts feet into inches utilizing the full amplifier range of 0 to \pm 10 volts and is capable of converting up to 5 feet.	5		
Q2	(a)	 (i) Define damping ratio (ξ) and undamped natural frequency (ω_n) for a second order system? (ii) Show that the locus of the poles of a 2nd order system for ξ varying from 0 to 1, with ω_n held constant, will be a circle of radius ω_n with its center at origin. 	4+4		
	(b)	The unit impulse response of an LTI system is the unit step function $u(t)$. Find the response of the system to an excitation $e^{-at}u(t)$.	4		
	(c)	When the system shown in Figure (a) is subjected to a unit-step input, the system output responds as shown in Figure (b). Determine the values of K and T from the response curve. Assume steady-state value of 1 and time scale to be in seconds.	8		
R	(s)	C(s) $C(s)$ $C(s)$			



Ref. No.: Ex/EE/PC/B/T/224/2022

Q3 (a) State (i) Initial Value Theorem and (ii) Final Value Theorem.

- 2+2
- (b) Solve the following differential equation using the Laplace Transform method $\ddot{y} + 4\dot{y} + 20y = 2\dot{x} x$, with, x(t) = u(t) (unit step), y(0) = 0, $\dot{y}(0) = 1$
- 8
- (c) Obtain the transfer function $V_C(s)/V(s)$, for the network shown in Figure P-3(c).

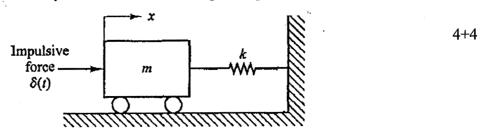


- Q4 (a) (i) Define state equation and output equation for an LTI system.
 - (ii) Consider an LTI system given by the transfer function:

$$G(s) = \frac{10s + 10}{s^2 + 5s + 10}$$

Obtain the state-space model of the system in the phase variable canonical form.

(b) Consider the mechanical system as shown in Figure. Suppose the system is at rest initially. At *t*=0 it is set into motion by a unit impulse force. Obtain the transfer function model for the system. Derive the state space representation of the system.



Q5 (a) (i) Draw analog simulation diagram for the following system.

$$\ddot{x} + 8\dot{x} + 25x = 500, \qquad x(0) = 40, \dot{x}(0) = 150,$$

with, $|x|_{max} = 50, \ |\dot{x}|_{max} = 250.$

- (ii) Obtain magnitude-scaled analog simulation of the system to utilize the full amplifier range of 0 to +10 volts without any overloading.
- (b) Draw the asymptotic Bode magnitude plot for the system having a transfer function

$$G(s) = \frac{10s}{(s+1)(s+5)^2}$$