
B. Construction Engineering 2nd year 2nd Semester Examination - 2022

Subject: Theory of structure-I PART-I(Full Marks-50)

Use Separate answer sheet for each part.

Answer all the questions.

B. CONS. ENGG. 2ND YR. 2ND SEM. Examination - 2022

Subject: THEORY OF STRUCTURES - I

Time: Three hours

PART - II

Full Marks: 50

Answer questions as well as parts there of SERIALLY. Different parts of the same question should be answered together. Answer question No. 1 & any two of the rest. Please start answering a NEW question or part thereof from a new page for the sake of brevity.

CO1 & CO5 [18]	[1] Explain a Beam-Column. [COI] Prove that for a beam column with an axial load P at each of the jointed ends, the expression for bending moment at mid span is $[M]_{x=L/2} = WL/4$ [1+0.25 $\pi^2(P/P_E)$ + $\approx WL/4$, with an error equal to or less than 10%, when P is such that $P/P_E \le 1/25$, where $W =$ a lateral lateral span of the beam, $P_E =$ Euler critical load & L is the effective span of the beam column. [CO5]	<i>] OR</i> load at =18]
CQ5	[2] Answer any two(2) from (a), (b) & (c) in this block: [16 X 2	= 32]
[32]	(a) The ends of a vertical column are pin jointed & the top is free to move axially, but lateral movement at the both e prevented. The top is subjected to an axial thrust P together with a moment M about the weakest axis of the stanchio relevant flexural rigidity of the stanchion in that direction being EI . Show that maximum bending moment in the stanchion is either M or $M/\sin \mu L$, where $\mu = \sqrt{(P/EI)}$ depending on whether P is less than or greater than kP_c , P_c being the value of 'k'.	n, the nchion
	(b) Determine the expression of maximum compressive & tensile stress of a slim long column with initial curvature	in the
	plane of the least radius of gyration, subjected to axial load P with effective length I . Determine the experimental an as pro-founded by $Southwell$ in the case of this column.	
	(e) A column of length 'L' fixed at the base is dragged by a chord tied to its top to make a bent shape as in the below making a small angle '9' with the vertical. The top end is deflected by a distance ' δ ' from the vertical that a state of elastic instability occurs when the load 'P' is such that $tan \mu L/\mu L + a/L$. Prove