B. E. CONSTRUCTION ENGINEERING 2ND YEAR 2ND SEMESTER - 2022

SUBJECT: Soil Mechanics I

Time: Three Hours

Full Marks: 50

	Question No.						Marks			
CO1 [07]		Answer any one from question (1) and question (2) in this block								
	Q1.	Liquid limit test was conducted on a soil sample. The test data are as follows:								
		Number of blows:	31	35	28	18				
		Weight of wet soil and container:	25.93	25.27	53.99	24.89				
		Weight of dry soil and container:	23.97	23.98	52.30	23.40				
		Weight of container:	20.96	21.99	49.74	21.23				
		Calculate the liquid limit of the soil	sample.				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	Q2a.	For a fine grained soil the following Liquid limit: 55% Plastic Limit: 22% Natural Moisture content: 40% % finer than 75 micron = 20% Find (i) Plasticity index (ii) Lic Comment on the consistency and based on the above test results.	quidity I	ndęx (ii <u>i</u>)	Activity					
	Q2b. i) ii)	State whether the following statements are True or False. Clay is an aggregate of microscopic and submicroscopic particles derived from the chemical decomposition of rock constituents. Peat is a incompressible material								

B. E. CONSTRUCTION ENGINEERING 2ND YEAR 2ND SEMESTER - 2022

SUBJECT: Soil Mechanics I

Time: Three Hours

Full Marks: 50

	Question No.				W.					3000700			Mark
CO2 [10]	Q3.	Answer any this block	l grair										
		data are as fol	nucleon.										
		Sieve size (mm)	4.7	5 2.	00	1.18	0.60	0.425	0.30	0.15	0.0	75	
		Weight retained (gm)	-		-	0.01	0.02	0.03	0.17	0.12	2 0.4	16	
		HYDROMETER ANALYSIS											
		Time (minutes)	0.5	1.0	2.0	4.0	8.0	15.0	30.0	60.0	120.0	1440.0	
		Hydrometer reading	1.030	1.029	1.02	28 1.024	1.018	1,014	1.010	1.009	1.007	1.005	
		Total soil sample taken for test = 50 gm											
		Specific gravity of soil solid = 2.67									10		
		Viscosity of water = 7.83milipoise											
		Specific gravity of water = 0.9963											
		Meniscus correction = +0.0005											
		Diameter of c/s area of cylinder = 7.2cm										N DAY	
		Volume of the hydrometer bulb = 100cc									d v		
		h = 16.3cm											
		Distance from neck to hydrometer reading 1.030 is 1.46cm											
		Distance between major graduations, i.e. between 1.025 & 1.030 etc. is 1.75cm.											
		Draw the grain size distribution curve and find out the percentage o sand, silt and clay.										ge of	
	Q4.	Visual identification and laboratory test results of two nos of soil samples are as follows. Write down the classification symbol and description of the soil samples.											

B. E. CONSTRUCTION ENGINEERING 2ND YEAR 2ND SEMESTER - 2022

SUBJECT: Soil Mechanics I

Time: Three Hours

Full Marks: 50

	Question No.			Marks						
	i)	Colour : brownish grey Natural moisture content: 32% Liquid limit : 37%								
	ii)	Plastic Limit: 24.6%								
		Sieve analysis test results of a soil sample are given below.								
		Sieve Size (mm) 10.0 4.75 2.36 1.18 0.600 0.425 0.300 0.150 0	0.075	05						
		Percent finer 100.0 95.0 78.0 50.0 25.0 20.0 12.5 5.0	2.0							
		Colour: Yellowish brown Relative density: Dense								
	Q5a.	Write short note								
	i)	Identification of organic soil		03						
	ii) Q5b. Q5c.	Dry strength and dilatancy test for identification of soil		05						
		If the liquid limit and plastic limit of a soil is 55% and 25% respectively, IS Classification of the soil sample will be								
		i) CI ii) CH iii) MI iv) MH								
		If D_{60} , D_{30} & D_{10} of a soil sample are 1.60mm, 1.20mm and 0.08 respectively, find out Uniformity co-efficient and Co-efficient curvature								
CO3 [08]	Q6a.	State whether the following statements are True or False. i) If the hydraulic gradient is more, discharge of water through the soil sample will be more. ii) Sand is less permeable than clay								
	Q6b.	In a falling head permeability test the initial head (at t = 0) is 50cm head drops by 4cm in 12 minutes. Calculate the time required to retest if the final head is to be 20cm.								

B. E. CONSTRUCTION ENGINEERING 2ND YEAR 2ND SEMESTER - 2022

SUBJECT: Soil Mechanics I

Time: Three Hours

Full Marks: 50

	Question No.					Mark	
	Q6c.						
CO4	Q7.	The subsoil	l profil	e at a site is given below.		10	
[10]		Depth (m) From To Description Parameters		The same of the sa			
	x	0.0	6.0	Loose brownish grey silty sand	$\gamma = 1.78 t/m^3$		
		1	12.00	Medium stiff grey silty clay	$\gamma = 1.82 \text{t/m}^3$		
		12.00	20.00	Medium dense yellowish brown silty sand	$\gamma = 1.88t/m^3$		
		THE RESIDENCE OF THE PARTY OF T	level,	sure with depth. If the water table what will be the change in effection of the change in effective the			
CO5		the ground depth? Take	level, te γ _w = l	what will be the change in effection of the change in effection (0.00t/m ³). The contraction (8), question (9)	ve pressure at 20.00m		
CO5 [15]	Q8.	Answer an question (1 The time r (drained at days) will is same pression.	level, te γ _w = 1 ny three 11) in the required both to it take the course income	what will be the change in effective to the chan	on thick clay layer in the field under the	05	
	Q8.	Answer an question (1 The time r (drained at days) will i same pressifree to drain A normally depth of 5 foundation in the midd compression 1.20 respect	te γ _w = 1 ny three ny three 11) in the require the both to it take from y conso 5.0m from at a de don inde ctively.	what will be the change in effection (9, 1.00t/m³. The from question (8), question (9), this block I for 50% consolidation of a 20 op and bottom) in the laboratory is for a 5m thick identical clay layer	on if the clay layer is to placement of a the pressure increment on is 0.30kg/cm². The the soil are 0.35 and 1.800 t/m³. The water	05	

B. E. CONSTRUCTION ENGINEERING 2ND YEAR 2ND SEMESTER - 2022

SUBJECT: Soil Mechanics I

Time: Three Hours

Full Marks: 50

Question No.		Mark
Q10b.	The soil profile at a site is shown in figure. Ground water table is at a depth of 5.00m below ground level at present. The ground water table was 10.0m below the ground level in the past.	03
	Take nit weight of water = 1.00t/m ³ .	
	Assume $\gamma = 1.750 t/m^3$ above water table and $\gamma_{sat} = 1.850 t/m^3$ below water table.	
	Find out the over consolidation ratio at the midpoint of the clay layer.	
	Ground level	W.
	Sand Present ground water table 5.00m	
	15.00m	
	Clay $\gamma_{sat} = 1.700 t/m^3$ 23.00m	
Q11a.	During a consolidation test, void ratio changed from 0.7738 to 0.7714 when the pressure applied from zero to 0.25 kg/cm ² . The initial height of the specimen is 20.0mm.	03
	Calculate the change in height of the specimen due to pressure increment. Also calculate the co-efficient of volume compressibility.	
Q11b.	For a clay soil, the co-efficient of permeability and co-efficient of volume compressibility are 1x10 ⁻⁷ cm/sec and 0.0300cm ² /kg. Find out the co-efficient of consolidation.	02

B.E Construction Engineering 2nd year 2nd semester examination 2022

Soil Mechanics-I

EX/CON/PC/B/T/223/2022

Part-II

Full Marks-50 Time – 3 hours

Assume relevant data if required. In this paper where numerical data contains the word 'A' means the last digit of your examination roll number.

Answer any two questions.

Q-1. Following data refres to a standard proctor test conducted in a laboratory.

Water content (%) 8.5 12.3 13.75 15.5 18.2 20.2

Weight of moist sample (kg) 1.8 1.94 2.0 2.05 2.03 1.98

Consider Sp gravity of soil solid as 2.A

(a) Draw the moisture density curve and determine maximum drydensity and optimum moisture content. (12)

(b) Draw zero air void line curve. (6)

© Explain sand replacement method with its objective . (7)

Q-2. The results of a series of CU tests conducted on clayey sample are given below. Determine the shear strength parameters with respect to total as well as effective stresses using Mohr circle and compare the results obtained using numerical approach.

(20)

Cell pressure (kN/m²) 100 300 500

Deviator stress at failure (kN/m²) 13A 48A 64A

Pore pressure at failure (kN/m²) 4A 14A 29A

Compare the results obtained using numerical approach

(b) Can the shear strength parameter of soil be obtained using unconfined compression test with higher reliability. Justify your answer. Q-3.

(a) Define void ratio, degree of saturation, specific gravity and moisture content of a soil using block diagram and establish correlation between those parameters.

(b) If 5.6 kg/cm² uniformly distributed load is acting on a circular area of 150 mm dia flexible circular footing, calculate and draw the variation in vertical stress up to a depth of 2.0 m below from the load surface at an incremental depth of 250 mm. (7)
 © Explain the formula of vertical stress distribution for an embankment loading. (5)

(d) Write notes on 2:1 method. (5)