Bachelor in Computer Science and Engineering 2nd Year, 2nd Semester Exam 2022 Graph Theory and Combinatorics

Time: 3 Hrs Full Marks: 100

Write answers to the point. Make and state all the assumptions (wherever made). ALL PARTS OF A QUESTION SHOULD BE ANSWERED TOGETHER

Section A Answer all questions

 $[10 \times 2.5 = 25]$

- (1) Which of the following sequences can not be the degree sequence of any graph? Give reasons
 - (I) 7, 6, 5, 4, 4, 3, 2, 1
 - (II) 6, 6, 6, 6, 3, 3, 2, 2
 - (III) 7, 6, 6, 4, 4, 3, 2, 2
 - (IV) 8, 7, 7, 6, 4, 2, 1, 1
- (2) Prove that in finite graph, the number of vertices of odd degree is always even.
- (3) Let G be a simple connected planar graph with 13 vertices and 19 edges. State the number of faces of the graph
- (4) Construct a 8-vertex tree whose Prüfer code is: (1,8,1,5,2,5).
- (5) How many edges can there be in a forest with p components having n vertices in all?
- (6) Let $G(x) = \frac{1}{(1-x)^2} = \sum_{i=0}^{\infty} g(i)x^i$, where |x| < 1. What is g(i)?
- (7) n couples are invited to a party with the condition that every husband should be accompanied by his wife. However, a wife need not be accompanied by her husband. What are the number of different gatherings possible at the party?
- (8) How many different strings can be made by reordering the letters of the word "S U C CESS"?
- (9) What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7?$
- (10) What is the generating function for the sequence 1, 1, 1, 1, 1, 1?
- Section B Answer any Five(5) Questions. You can keep your answer in the "Combinatorial Form" $[5 \times 6 = 30]$
 - (1) We have Rs n. Every day we buy exactly one of the following products: candy (Rs 1), chocolate (Rs 2), ice-cream (Rs 2). What is the number M_n of possible ways of spending all the money?
 - (2) Prove by Induction that every third element in a Fibonacci sequence is an even number.
 - (3) Show that the minimum number of ordered pairs of non-negative numbers that should be chosen to ensure that there are two pairs (a, b) and (c, d) in the chosen set such that, $a \equiv c \mod 3$ and $b \equiv d \mod 5$ is 16.
 - (4) What is the closed form expression for the generating function of the sequence $\{a_n\}$, where $a_n = 2n + 3$ for all n = 0, 1, 2, ...?
 - (5) In how many ways can a given positive integer $n \geq 2$ be expressed as the sum of 2 positive integers (which are not necessarily distinct). For example, for n=3, the number of ways is 2, i.e., 1+2, 2+1.

(6) In how many ways can a given positive integer $n \ge 3$ be expressed as the sum of 3 positive integers (which are not necessarily distinct). For example, for n=4, the number of ways is 3, i.e., 1+2+1, 2+1+1 and 1+1+2.

Section C Answer any Five(5) Questions

 $[5 \times 6 = 30]$

- Prove or disprove (i) K₅ is non-planar (ii) K_{3,3} is planar.
- (2) A graph is d-regular if every vertex has degree d. For a d-regular graph on n vertices, show that at least one of d and n is even
- (3) Prove that in a connected graph, any two longest paths have at least one vertex in common.
- (4) Prove or disprove: No digraph contains an odd number of vertices of odd outdegree or an odd number of vertices of odd indegree.
- (5) Let F and H be two disjoint connected non-Eulerian regular graphs and let $G = (F + H).K_1$; that is, G is obtained from F and H by adding a new vertex v and joining v to each vertex in F and H. Prove that G is Eulerian.
- (6) Show that the Petersen graph does not have a Hamilton circuit, but the subgraph obtained by deleting a vertex v has a Hamilton circuit.

Section D Answer any one question

[15]

- (1) In an undirected graph G with n vertices, vertex 1 has degree 1, while each vertex $2, \ldots, n-1$ has degree 10 and the degree of vertex n is unknown. Give reasons why the following statements are TRUE or FALSE
 - (a) There is a path from vertex 1 to vertex n :- TRUE
 - (b) There is a path from vertex 1 to each vertex $2, \ldots, n-1$. :- FALSE
 - (c) Vertex n has degree 1 :- FALSE
 - (d) The diameter of the graph is at most \(\frac{n}{10}\). :- FALSE
- (2) Let v be a vertex in a connected graph G(V, E). Prove that there exists a spanning tree T(V, E') of G(V, E) such that the distance of every vertex from v is the same in G(V, E) and in T(V, E')