Bachelor of Computer Science Examinations, 2022

(First Year, Second Semester)

MATHEMATICS

Time: Three hours

Full Marks:100

(50 marks for each part)

Use separate answer script for each part Symbols/Notations have their usual meanings

Part-I

Answer any five questions.

- 1. (a) Examine the nature of the series $(\frac{2^2}{1^2} \frac{2}{1})^{-1} + (\frac{3^3}{2^3} \frac{3}{2})^{-2} + (\frac{4^4}{3^4} \frac{4}{3})^{-3} + \dots \infty$. (5)
 - (b) Show that the sequence $\{x_n\}$, where $x_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}}$ converges. (5) Find $\lim_{n \to \infty} x_n$.
- 2. (a) Prove that $\int_{0}^{\infty} e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$; a > 0. Hence using differentiation under integral sign, show that $\int_{0}^{\infty} x^{2n} e^{-ax^2} dx = \frac{\sqrt{\pi}}{2} \frac{1.3.5...(2n-1)}{2^n a^{(n+1)/2}}$.
 - (b) Discuss the convergence of the integral $\int_{1}^{\infty} \frac{\sin x}{x^2} dx$. (5)
- 3. (a) Given $x_n = (a^n + b^n)^{\frac{1}{n}}$, where 0 < a < b. Show that the sequence $\{x_n\}$ (3) converges to b.
 - (b) Discuss the convergence of the series $\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \dots \infty$. (3)
 - (c) Prove that $\int_{0}^{1} dx \int_{0}^{1} \frac{x-y}{(x+y)^3} dy \neq \int_{0}^{1} dy \int_{0}^{1} \frac{x-y}{(x+y)^3} dx$. Does the double integral $\iint_{E} \frac{x-y}{(x+y)^3} dx dy$ exist if E = R[0,1;0,1]. Justify your answer.
- 4. (a) Show that $\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{(2m-1)}\theta \cos^{(2n-1)}\theta \ d\theta$. Using it prove that (5)

[Turn over

$$\int\limits_0^{\frac{\pi}{2}} \sin^p\theta \cos^q\theta d\theta = \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{2\Gamma(\frac{p+q+2}{2})}, \text{ where } p,q>-1.$$

- (b) Prove that $\Gamma(a)\Gamma(1-a) = \pi cosec(a\pi), \ 0 < a < 1.$ (5)
- 5. (a) Evaluate $\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^2}} \frac{dy}{(1+e^y)\sqrt{1-x^2-y^2}}$ by changing the order of integration. (3)
 - (b) Using the transformation x + y = u, y = uv show that $\int_{0}^{1} dx \int_{0}^{1-x} e^{\frac{y}{x+y}} dy = \frac{1}{2}(e-1)$. (4)
 - (c) Evaluate by Green's theorem $\int_{\Gamma} (x^2y \ dx + xy^2 \ dy)$ where Γ denotes the closed path formed by y = x and $y^3 = x^2$ in the first quadrant described in the positive sense.
- 6. (a) Evaluate $\iint_R (x^2 + y^2) dx dy$ over the region R bounded by xy = 1, y = 0, (5) y = x, x = 2.
 - (b) Use Stoke's theorem to find the line integral $\int_C (x^2y^3dx + dy + zdz)$, (5) where C is the circle $x^2 + y^2 = a^2$, z = 0.
- 7. (a) Find the reduction formula for $\int \sin^m x \cos^n x \, dx$, where m and n are both positive integers. Hence evaluate $\int_0^{\frac{\pi}{4}} \sin^4 x \cos^3 x \, dx$.
 - (b) Prove that the volume common to the sphere $x^2 + y^2 + z^2 = a^2$ and the cylinder $x^2 + y^2 = ay$ is $2(3\pi 4)\frac{a^3}{9}$.

Ex/BS/CSE/MTH/T/122/2022

Bachelor of Computer Science Examinations, 2022

(First Year, Second Semester)

MATHEMATICS II

Time: Three hours

Full Marks:100

50 marks for each part)

Use separate answer script for each part Symbols/Notations have their usual meanings

Part-II

Answer any five questions.

1. (a) Find the inverse Z-transform of

(5)

$$F(z) = \frac{4z^2 - z}{(z-3)(z+2)^2}.$$

(b) Using Z-transform, solve the difference equation

(5)

$$f(n+2) + 4f(n+1) + 3f(n) = 0, \ f(0) = 1, f(1) = 1.$$

- 2. (a) Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function f(x+iy) = u+iv such that u = constant. Prove that f = constant.
 - (b) Show that the real and imaginary parts of the function

(3)

$$f(z) = z^2 - iz + 3 + i$$

satisfy Cauchy-Riemann equations.

- (c) Evaluate $\oint_C f(z)dz$ using Cauchy's Integral Formula, where $f(z) = \frac{\sin(z)}{(z \frac{\pi}{2})^3}$ (4) and C is the circle $|z \frac{\pi}{2}| = 1$.
- 3. (a) Find the points of isolated singularities of the function $f(z) = \frac{z^2}{\sin(z)}$. (6) If any of them is a pole, find its order.

- (b) Evaluate $\oint_C f(z)dz$, where $f(z) = \frac{z-1}{(z^2+2)z^2}$ and C is the circle |z| = 2. (4)
- 4. (a) Find the Fourier series of the function $f(x) = x + x^2$, $-\pi < x < \pi$. (6) Hence prove that

$$\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

(b) Let f(x) be an odd function in [-l, l] with period 2l. If the Fourier series expansion of f(x) is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n cos(\frac{n\pi x}{l}) + b_n sin(\frac{n\pi x}{l})\right),$$

then find $a_0, a_n, b_n, n = 1, 2, 3....$

- 5. (a) State the Fourier integral expansion theorem. Are the conditions in the theorem necessary and sufficient? (4)
 - (b) Find the Fourier transform of f(x) defined by $f(x) = \begin{cases} 1, & -a < x < a \\ 0, & \text{elsewhere} \end{cases}$. (6) Hence, using Parseval's identity for Fourier transform, prove that

$$\int_0^\infty \frac{\sin^2 ax}{x^2} dx = \frac{\pi a}{2}.$$

- 6. (a) Find the Laplace transform of $(t^2 3t + 2)e^{5t}$. (3)
 - (b) If F(t) is a periodic function of 2π then find its Laplace transform, where (3)

(4)

$$F(t) = \begin{cases} \sin t & 0 \le t < \pi, \\ 0 & \pi \le t \le 2\pi. \end{cases}$$

(c) Using Laplace transform and convolution theorem, show that

$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\} = \frac{t\sin at}{2a}.$$

7. (a) Using Laplace transform, solve the following differential equation: $(D^2 + 2D + 5)y = e^{-t}sint, \quad y(0) = 0, \ y'(0) = 1.$

where $D = \frac{d}{dt}$

(b) State the sufficient conditions for Laplace transform of a function. (2)