BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FOURTH YEAR SECOND SEMESTER EXAM - 2022

Design of Foundation PART-I

[Use code: IS: 6403, IS: 2131 & IS: 8009]

Total = 100

This Part = 60

(b)	foundation.	ite a short note on 'Location and Depth Criteria' in design of shallow indation. scuss in brief about the 'interference effect' in shallow foundation design.										[8 +6]
2. (a)	Column carrying a superimposed load of 1350 kN is to be founded in sand as shown in the Figure below. Calculate the settlement of the foundation (3.5m x 3.5m) using the following method: (a) Elastic method (b) SPT method (c) Buisman method											
	3.5	б. 	ι. 		Y =	ine Sand = 1.78 t/r = 0.9 t/n	 → l . n³	5m	6.0			
	6.0 —				Cin	. Cand			_	<u>, </u>		
						e Sand .95 t/m³			_	<u>.</u>		[16+ 10]
	6.0 — 9.0 — Depth (m)	0.75	1.5	2.25			4.5	5.25	6	6.75	7.5	[16+ 10]
	9.0 _	0.75	1.5	2.25	y = 1	.95 t/m³	4.5	5.25	6 26	6.75	7.5	

Ref. No.: Ex/CE/5/T/408/2022

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FOURTH YEAR SECOND SEMESTER EXAM - 2022

Design of Foundation PART-I

[Answer All the Questions]

[Use code: IS: 6403, IS: 2131 & IS: 8009]

Total = 100

This Part = 60

Ref. No.: Ex/CE/5/T/408/2022

BACHELOR OF ENGINEERING (CIVIL ENGINEERING) FOURTH YEAR SECOND SEMESTER – 2022 Subject: DESIGN OF FOUNDATION (PART II) TIME 3 HOURS FULL MARKS 40 USE SEPARATE ANSWERSCRIPTS FOR EACH PART (USE IS:2911 CODE)

 Design a pile group proposed to be constructed to carry 600-ton column load at a site with subsoil stratification as given below:

0-4m Brownish grey silty clay/clayey silt; Bulk density 1.85 t/m³; Cohesion 3.5 t/m²; mv=0.004m²/ton

4-14m Dark grey / grey silty clay/clayey silt with decomposed wood; Bulk density 1.70 t/m³; Cohesion 2.5 t/m²; mv =0.006m²/ţon

14-18m Bluish grey silty clay/clayey silt with kankars; Bulk density 1.90 t/m³; Cohesion 6.5t/m²; mv =0.003m²/ton

18-40m Brownish grey / mottled brown silty clay/clayey silt with traces of fine sand; Bulk density 2.00 t/m^3 ; Cohesion 6.5 t/m²; mv =0.003m²/ton

Take a suitable diameter and length of the pile.

- For the pile group as designed in Q1 and soil stratification given in Q1 determine the settlement of the pile group for the given load.
- 3(a) Discuss the criteria for determination of horizontal capacity of a bored cast-in-situ vertical pile.
- (b) Determine the lateral / horizontal capacity of a single pile of diameter 600mm and length 20m constructed in a sand deposit with properties given below:

0-10m Loose brownish grey silty sand N=10 blows/30cm, Bulk density 1.82 t/m³, phi = 30°
10-20 m Medium grey silty sand N=26 blows/30cm, Bulk density 1.90 t/m³, phi = 33°
20-30m Dense brownish grey silty sand N=45 blows/30cm, Bulk density 1.95 t/m³, phi = 35°
You may use relevant IS code. [5+10=15]