Ref No: EX/CE/PE/B/T/422F/2022

### Bachelor of Civil Engineering Examination 2022

(4th Yr 2nd Sem)

#### Solids and Gaseous Waste Management

Time: 4 hour

Full Marks: 70

(35 marks for Part 1 & 35 marks for Part 2)

Use separate answer script for each part

#### Part-I

Answer all Questions. Any relevant data may be assumed.  $\sigma_z$  and  $\sigma_z$  Turner's curves and Pasquill stability charts may be allowed. Notations have their usual meanings.

- a) Give one unique example of a problem/activity which is to be solved with help of an air pollution model.
  - b) Define plume.
  - c) With a sketch show NNW wind

2X3=6

- a) Why is mechanical turbulence ignored in development of Gaussian Air Pollution Model (GAPM)?'
  - b) State the differences between instantaneous and time-averaged plume.
  - Describe the significance of the point (0, 0, -H) in development of GAPM
  - d) Correlate 'conservation of mass' assumption and 'formation of secondary air pollutant'.
  - Mention the most important force causing plume rise and write about the reason of its generation.
  - f) With a sketch show why  $\sigma_z$  is missing in the expression of GAPM when there is an elevated inversion.
  - g) What is the significance of 'flat terrain' assumption?

2x7=14

Ref No: EX/CE/PE/B/T/422F/2022

#### **Bachelor of Civil Engineering Examination 2022**

(4th Yr 2nd Sem)

#### Solids and Gaseous Waste Management

Time: 4 hour

Full Marks: 70

(35 marks for Part 1 & 35 marks for Part 2)

Use separate answer script for each part

a) The general Gaussian expression is as follows:

 $C_{(x,y,z;H)} = Q/(2\pi \sigma_y \sigma_z U) \left[ \exp \left\{ -y^2/2 \sigma_y^2 \right\} \right] \left[ \exp \left\{ -(H-Z)^2/2 \sigma_z^2 \right\} + \exp \left\{ -(H+Z)^2/2 \sigma_z^2 \right\} \right]$ Now find expressions for following modifications, x< xg, and elevated source (i) receptor at ground level and (ii) receptor at plume center line

- b) It is estimated that 80 g/sec of SO<sub>2</sub> is being emitted from a petroleum refinery from an effective height of 60 meter. In an overcast condition, the wind speed was 5m/sec.
  - (i) What is the GL concentration directly downwind from the refinery at a distance of 500 meter?
  - (ii) What is the concentration at C(500,50,0;60)? Comment on the results.

4+6=10

Or

A proposed source is to emit 80 g/sec of SO<sub>2</sub> from a stack of 50 m high with a diameter of 1.5 m. The effluent gases are emitted at a test temperature of 400 K with an exit velocity 12 m/sec. Plot on log-log paper a graph of maximum ground level concentration as a function of wind speed for C stability class. Determine the critical wind speed. The atmospheric pressure is 970 mb and the ambient temperature is 22°C. Following expression may be needed:

 $\Delta h = [v_s d/u][1.5 + 2.68 \times 10^{-3} p (1-T_a/T_s)d]$ , notations have their usual meanings.

10

Ref No: EX/CE/PE/B/T/422F/2022

## **Bachelor of Civil Engineering Examination 2022**

(4th Yr 2nd Sem)

### Solids and Gaseous Waste Management

Time: 4 hour

Full Marks: 70

(35 marks for Part 1 & 35 marks for Part 2)

Use separate answer script for each part

- a) Define background concentration
  - b) What type waste minimization is application of pollution models for impact prediction in an EIA study?
  - c) Why is CO2 not considered as a Criteria Air Pollutant (CAP)?
  - d) Name two organic CAP which are included in Indian NAAQS.
  - e) What is 2.5 in the notation PM<sub>2.5</sub>?

5

## B.E.C.E. 4<sup>th</sup> Year EXAMINATION, 2022 (2<sup>nd</sup> Semester) SUBJECT: Solid and Gaseous Waste Management

Time: Four hours

Full Marks 70

| No. of<br>Questions |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Use a separate Answer-Script for each part  Part II(35 Marks for This Part)                                                           | Marks |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------|
|                     | Answer all the                                                                                                                                                                                                                                                                                                                                                                                                                                             | he questions. Assume any data if not provided. All the drawings should be in<br>ne abbreviations are commonly used.                   |       |
| Q1.                 | State true or false with proper justification:                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |       |
|                     | I. There is no difference between the hierarchy of integrated solid waste management system stated in SWM rule 2016 and MSW management and handling rule 2000.                                                                                                                                                                                                                                                                                             |                                                                                                                                       |       |
|                     | II. Weight and volume analysis is superior to use than material balance analysis for quantification of MSW                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mination of recovery is the best method to determine the performance of a mel screen                                                  |       |
|                     | IV. Acidi                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fication is followed by hydrolysis for anaerobic digestion                                                                            |       |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | distance of disposal site from collection points is less than the breakeven ace then it is uneconomic to construct a transfer station |       |
| Q2. (a)             | Because of a difference of opinion among municipal collection members and management you are appointed as a consultant to evaluate collection operation of your municipality. The basic question is the amount of time spent on off-route activities by the collectors. The collectors say that it is less than 15% and management says more. You are given the following information:  (i) A hauled container system, without container exchange is used. |                                                                                                                                       |       |
|                     | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The average time spent from the garage to the 1st container is 20 min                                                                 |       |
|                     | (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The average pick up time per container is 6 min                                                                                       |       |
|                     | (iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The average time to drive between container is 6 min                                                                                  |       |
|                     | (v)                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The average time required to empty the container at the disposal site is 6 min                                                        |       |
|                     | (vi)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The average round trip distance to the disposal site is 10km/trip and the haul constants are 0.004 h/trip and 0.02 h/km               |       |
|                     | (vii)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The average time required to redeposit a container after it has been emptied is 6 min                                                 |       |
| - E= 3m             | (viii)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The average time spent from last container to the garage is 15 min                                                                    |       |

# B.E.C.E. 4<sup>th</sup> Year EXAMINATION, 2022 (2<sup>nd</sup> Semester) SUBJECT: Solid and Gaseous Waste Management

Tim Fown hours

Full Marks 70

| No. of    | Use a separate Answer-Script for each part Part II(35 Marks for This Part)                                                                                                                                                                                                                                                                                                                                                                                                                                   | Marks |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| Questions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |  |
|           | (ix) The number of container emptied per day is 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |  |
|           | Depending on the information decide truth is on whose side?                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |
| (b)       | Write two important factors which you will have to consider whenever you will design onsite storage system.                                                                                                                                                                                                                                                                                                                                                                                                  |       |  |
| Q3.a)     | With a neat sketch deduce the critical speed of a trommel screen. If the rotating speed of a trommel screen exceeds critical speed what will be the consequence and if the rotating speed is less than the critical speed what will happen?                                                                                                                                                                                                                                                                  |       |  |
| ь)        | As per SWM Rule 2016, which types of solid waste you will recommend to dispose in landfill? A leachate collected from a landfill contains high concentration of high BOD and CoD along with high concentrations of heavy metals and nutrients-properly justifying write from which phase the leachate may be collected. How will you calculate the pollution potential of leachate?                                                                                                                          | 2+2+1 |  |
| Q4.a)     | Write two advantages of biochemical process over thermochemical process for waste stabilistion.                                                                                                                                                                                                                                                                                                                                                                                                              | 2     |  |
| b)        | Determine the area required for a windrow composting plant for a town generating 150 tons of waste per day. The specific density of the waste is 450 kg/m³. The time taken for complete composting is 21 days for 3 turning cycles@ 7 days per interval. The windrow width is 3m and height is 1.5m. Space between two windrows is 1.0m. There will be a road of 7.5m in each side. Adopt horizontal turning and turning allowance is 10%. Draw a neat labelled sketch of plan of the windrow compost plant. | 5+3   |  |