B.E. CHEMICAL ENGINEERING FOURTH YEAR SECOND SEMESTER – 2022 SUBJECT: HIGH POLYMER TECHNOLOGY

FM-70 Time-4 hrs

Q1 and Q2 must be answered. Attempt any two from the rest.

- 1. (a) United Nigeria Textile Ltd is making nylon 6,6 from hexamethylenediamine and adipic acid. One batch is made on every 8-h shift. In each batch equimolar reactants are used and conversion is usually 98.0%. At the end of the run the bulk product is extruded and chopped into pellets. (10)
- i. Calculate the number-average molecular weight.
- ii. The afternoon shift operator dumped in too much adipic acid. From his records you calculate that the mole ratio was 2% excess adipic acid. If the batch went to the usual conversion, what was its number-average molecular weight?
- iii. The night shift operator weighed things correctly but fell asleep and let the reaction run too long -99% conversion. What will be the M_n of this batch?
- (b) The data for the bulk polymerization of styrene at 60°C with benzoyl peroxide as initiator are [M] = 8.35×10^3 mol/m³ [I] = 4.0 mol/m³ K_p²/k_d = 1.2×10^{-6} m³/mol-s
- If the initial rate of polymerization of styrene is 0.026 mol/m^3 -s and the spontaneous decomposition of benzoyl peroxide in styrene is $2.8 \times 10^{-6} \text{ s}^{-1}$, what is the efficiency of the initiator? (6)
- (c) The energies of activation for the polymerization of styrene with di-tertiary-butyl peroxide as initiator are: $E_d = 33.5 \text{ kcal/mol}$; $E_p = 7.0 \text{ kcal/mol}$; $E_t = 3.0 \text{ kcal/mol}$

Calculate the relative (i) rates of propagation and (ii) degree of polymerization (X_{η}) if the polymerization temperature is changed from 50°C to 60°C. (6)

where
$$E = E_{\mu} - \frac{E_t}{2} + \frac{E_d}{2}$$
.

- (d) Consider a polyesterification reaction.
- i. Suppose 1.0 mol each of dicarboxylic acid and glycol is used. What is the degree of polymerization when the extent of reaction is 0.5, 0.99, and 1.0?
- **ii.** Suppose 101 mol glycol is reached with 100 mol of the dicarboxylic acid. What is the maximum degree of polymerization?
- iii. Suppose the dicarboxylic acid contains 2 mol% monoacid impurity. What is the maximum degree of polymerization? (8)

- 2. Write short notes on (any Four): Emulsion polymerization; Blow Molding; Viscoelastic model; Chain Transfer Reaction, Metathesis Polymerization (20)
- 3. (a) Show the formation of possible branch points/3D network structure via considering the reaction between ethylene diamine and 1,2 epoxy propane.
- (b) Explain all the stages of glass-rubber transition behaviour. (5+5)
- 4. Write all the steps of injection molding operation of plastic fabrication (with schematics) **Or** Discuss the working principle of Gel permeation Chromatography (with schematics). (10)
- 5. Explain the observations: $(2 \times 5 = 10)$
- i. Atactic polystyrene can be oriented but does not crystallize; rubber on the other hand, bothcrystallizes and becomes oriented when it is stretched.
- ii. Poly(vinyl alcohol) is made by the hydrolysis of poly(vinyl acetate). At room temperature, pure poly(vinyl) acetate), i.e., at 0% hydrolysis, is insoluble in water. However, as the extent of hydrolysis is increased, the polymers become more water soluble up to 87% hydrolysis, after which further hydrolysis decreases water solubility.
- iii. Toluene and xylene have approximately the same cohesive energy density (CED), but xylene is a more convenient solvent for polyethylene.
- iv. α-Methylstyrene polymerizes much less readily than styrene.
- v. Glass transition temperature is 2nd order.