B.E. CHEMICAL ENGINEERING 4th YEAR 2nd SEMESTER EXAMINATION 2022 BIOENERGETICS & BIOPROCESS ENGINEERING

Time: 4 hours Full Marks: 70

Answer all questions

- 1. a) What are the different models for specific growth rate prediction using unstructured non-segregated model?
 - b) What is the Hanes-Woolf plot?
 - c) What do you mean by saturation constant in Monod equation for cellular system?
 - d) What is an enzyme entrapment?
 - e) What do you mean by microencapsulation?
 - f) What is the cross-linking of enzyme?
 - g) What do you mean by uncompetitive inhibitors?
 - h) What is an allostery binding?
 - i) What is the Damkohler number?
 - j) What is a grid count for determination of cell number density?

1x10=10

- 2. a) Describe briefly with the help of a neat sketch the various section of cell growth curve.
 - b) In his (Monod) thesis which was published Monod was proposed equation with his name. As experimental support for this equation from his presented results from 4 batch reactor run on the growth of a pure bacteria culture in a lactose solution. One of his runs produced:

Time(hr)	0	0.54	0.90	1.23	1.58	1.95	2.33	2.70
C _A (mg.L ⁻¹)	147	125	104	70	38	18	3	1
C _C (mg.L ⁻¹)	15.5	23	30	38.8	48.5	68.3	61.3	62.5

Fit the Monod equation to this data.

10+10=20

- 3. a) Derive the rate equation for a homogeneous enzyme-catalyzed reaction using the rapid equilibrium assumption.
 - b) The following data have been obtained from an enzyme catalyzed reaction using enzyme concentration ($[E_0] = 0.00875 \text{ g/I}$).

14(10)1 ([20]					
Substrate concentration, [s](g/l)	20	10	6.7	5.0	4.0
Rate of reaction, y[g/(I.min)]	0.67	0.51	0.41	0.31	0.29

Estimate using Hanes-Woolf plot: 1) Forward reaction velocity (V_m) , 2) Michaelis-Menten constant (K_m) , and 3) Rate constant (k_2) . 5+10=15

- 4. a) Derive unstructured logistic model equation for batch growth of cells.
 - b) E-coli lives and grows on manitol (Carbon-source) with the following kinetics.

$$r_c = \frac{1.2 \, C_A C_C}{2 + C_A}$$
g cell. m⁻³. hr⁻¹ with Y_{C_c/C_A} = 0.1 g cell / g manitol.

It is required to produce 1 kg cell/day in a batch fermenting. Start with 1 kg/m 3 and 0.1 g cell/m 3 and continue fermentation until substrate becomes 10 g/m 3 . The time of filling, empty and cleaning may be taken 0.23 hr. Find the volume of the fermential needed. 5+5=10

- 5. a) Briefly describe the non-competitive inhibition kinetics.
 - b) Explain the different methods of enzyme immobilization?
 - c) Explain electrical cell quantification?

5+5+5=15