Ex/BS/CHE/MTH/T/122/2022

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2022

(1st Year, 2nd Semester)

MATHEMATICS II

Time: Three hours Full Marks: 100

(50 Marks for each Part)

(Use separate answer script for each Part)

(Unexplained Symbols/Notations have their usual meanings)

Special credit will be given for precise answer

PART – I (50 Marks)

Answer any *Five* questions. $10 \times 5 = 50$

- 1. a) Give an example (with proper explanation) of a bounded sequence which is not convergent.
 - b) Check if the sequence $x_n = 1 \frac{1}{n}$ is monotone increasing or decreasing or oscillatory and and hence discuss its convergence.
 - e) Apply sandwich theorem to show that

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{(n+k)^{2}} = 0.$$

d) Using Cauchy's General Principle of Convergence show that the sequences $(x_n)_{n\geq 1}$ can not converge,

where
$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
.

[Turn over

[7]

- 2. a) Determine the limits of the double integral $\iint_R f(x,y) dx dy$ where R is the region bounded by the straight lines y = x and 3x + 4y = 12 and the X-axis considering
 - i) x as the first variable
 - ii) y as the first variable.
 - b) Using double integral find the area of the region R as mentioned above. 1+1+2
 - c) Change the order of integration of the integral $\int_0^{\frac{12}{7}} \int_0^x f(x,y) dx dy + \int_{\frac{12}{7}}^4 \int_0^{\frac{12-3x}{4}} f(x,y) dx dy$ 2
 - d) Evaluate $\iint_R (x+y)^2 dxdy$ where R is the parallelogram in the xy-plane with vertices (1, 0), (3, 1), (2, 2), (0, 1) using the transformation u = x + y and v = x 2y.
- 3. a) Why are the following integrals improper? When do they converge (no proof is required)? What are their names when they converge?
 - i) $\int_0^\infty e^{-x} x^{n-1} dx$, *n* is a real number.
 - ii) $\int_0^1 x^{m-1} (1-x)^{n-1} dx$, m, n are real numbers. 2+2

- Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.
- b) Obtain a half-range cosine series for

$$f(x) = \begin{cases} x, & 0 \le x \le \frac{l}{2} \\ l - x, & \frac{l}{2} \le x \le l \end{cases}$$
 6+4

7. a) If Laplace transform of f(t) in $L[f(t)] = \overline{f}(s)$, then prove that $L[e^{at}f(t)] = \overline{f}(s-a)$.

Hence or otherwise find the Laplace transform of i) $e^{2t} \cos^2 t$, ii) $\sqrt{t} e^{3t}$.

b) Find the inverse Laplace transform of $\frac{s}{s^4 + 4a^4}$.

- 3. a) Evaluate $\int_{1-i}^{2+i} (2x+iy+1)dz$ along the two paths
 - i) $x = t + 1, y = 2t^2 1$
 - ii) the straight line joining 1-i and 2+i.
 - b) If f(z) is a regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$ 6+4
- 4. a) State and prove Lawrent's theorem.
 - b) Expand $\frac{1}{z(z^2-3z+2)}$ for the regions
 - i) 0 < |z| < 1 ii) 1 < |z| < 2 iii) |z| > 2 5+5
- 5. a) Evaluate $\int_{c}^{c} \frac{z-3}{z^2+2z+5} dz$ where c is the circle
 - i) |z| = 1 ii) |z+1-i| = 2 iii) |z+1+i| = 2
 - b) Apply the calculus of residues to evaluate

$$\int_{0}^{2\pi} \frac{\cos 2\theta d\theta}{1 - 2a\cos\theta + a^2}, |a| < 1$$
5+5

6. a) Find the Fourier series expansion for f(x), if

$$f(x) = \begin{cases} -\pi, & -\pi \le x < 0 \\ x, & 0 \le x \le \pi \end{cases}$$

- b) If the series $\sum_{n=1}^{\infty} x_n$ converges then prove that $\lim_{n\to\infty} x_n = 0$. By using this result show that the series
 - $\sum_{n=1}^{\infty} x_n \text{ is divergent, where } x_n = \frac{n}{n+1}.$
- c) Define geometric series and discuss its convergence.
- 4. a) Write the triple integral that represents the volume of the sphere $x^2 + y^2 + z^2 = 16$ and evaluate it changing to spherical coordinates.
 - b) Changing to cylindrical coordinates evaluate $\iiint_W \left(z^2x^2 + z^2y^2\right) dx dy dz, \text{ where } W \text{ is the cylindrical}$ region determined by $x^2 + y^2 \le 1, -1 \le z \le 1$.
- 5. a) State Leibniz's rule and Generalized Leibniz's rule (no proof is required) related with differentiation under the sign of integration.
 - b) Discuss the convergence of the improper integrals $\int_{a}^{b} (b-x)^{-p} dx \text{ and } \int_{a}^{b} (x-a)^{-p} dx.$
 - C) Write the relation between Beta function and Gamma function and use it to evaluate $\Gamma\left(\frac{1}{2}\right)$. 3

[Turn over

6. a) Find the radius of convergence (R) of the following power series and check the behaviour at R,

$$\sum_{n=0}^{\infty} (n+1)x^n \ . \tag{5}$$

- b) What is *p*-series? When does it converge (no proof is required)?
- c) What is limit comparison theorem related with infinite series of nonnegative terms? Using this test the convergence of the series $\sum_{n=1}^{\infty} \frac{2n^2 + n + 2}{5n^3 + 3n}$.
- 7. a) Write the trigonometric form of Beta function. 2
 - b) Reduce $\iint_R [xy(1-x-y)]^{\frac{1}{2}} dxdy$ in terms of Beta function, where *R* is the region enclosed by the lines x = 0, y = 0 and x + y = 1 in the positive quadrant.

6

c) State 1st Form and 2nd Form of the Fundamental theorem of integral calculus.

PART - II (50 Marks)

Answer any *Five* questions. $10 \times 5 = 50$

All questions carry equal marks.

- 1. a) State the necessary and sufficient conditions for the derivative of the function f(z) to exist for all values of z(=x+iy) in a region R. Prove only the necessary part.
 - b) Prove that the function f(z) defined by

$$f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2} \quad (z \neq 0), f(0) = 0$$

is continuous and Cauchy-Riemann equations are satisfied at the origin, yet f'(0) does not exist.

4+6

- 2. a) State and prove Cauchy's theorem and extend it to a multiply connected region.
 - b) If $u v = (x y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function of z(= x + iy), find f(z) in terms of z.