Ex/BS/CHE/MTH/T/122/2022
Bachelor of Engineering in Chemical Engineering
Examination, 2022
(1st Year, 2nd Semester)
Mathematics II
Time : Three hours
Full Marks : 100
(50 Marks for each Part)
(Use separate answer script for each Part)
(Unexplained Symbols/Notations have their usual meanings)
Special credit will be given for precise answer

PART - I (50 Marks)

Answer any Five questions.
$10 \times 5=50$

1. a) Give an example (with proper explanation) of a bounded sequence which is not convergent.
b) Check if the sequence $x_{n}=1-\frac{1}{n}$ is monotone increasing or decreasing or oscillatory and and hence discuss its convergence.
c) Apply sandwich theorem to show that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{(n+k)^{2}}=0$.
d) Using Cauchy's General Principle of Convergence show that the sequences $\left(x_{n}\right)_{n \geq 1}$ can not converge, where $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$.
2. a) Determine the limits of the double integral $\iint_{R} f(x, y) d x d y$ where R is the region bounded by the straight lines $y=x$ and $3 x+4 y=12$ and the X-axis considering
i) x as the first variable
ii) y as the first variable.
b) Using double integral find the area of the region R as mentioned above.
$1+1+2$
c) Change the order of integration of the integral $\int_{0}^{\frac{12}{7}} \int_{0}^{x} f(x, y) d x d y+\int_{\frac{12}{7}}^{4} \int_{0}^{\frac{12-3 x}{4}} f(x, y) d x d y . \quad 2$
d) Evaluate $\iint_{R}(x+y)^{2} d x d y$ where R is the parallelogram in the $x y$-plane with vertices $(1,0)$, $(3,1),(2,2),(0,1)$ using the transformation $u=x+y$ and $v=x-2 y$.
3. a) Why are the following integrals improper? When do they converge (no proof is required)? What are their names when they converge?
i) $\quad \int_{0}^{\infty} e^{-x} x^{n-1} d x, n$ is a real number.
ii) $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, m, n$ are real numbers. $2+2$

Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .=\frac{\pi^{2}}{8}$.
b) Obtain a half-range cosine series for

$$
f(x)=\left\{\begin{array}{cc}
x, & 0 \leq x \leq \frac{l}{2} \\
l-x, & \frac{l}{2} \leq x \leq l
\end{array}\right.
$$

7. a) If Laplace transform of $f(t)$ in $L[f(t)]=\bar{f}(s)$, then prove that $L\left[e^{a t} f(t)\right]=\bar{f}(s-a)$.

Hence or otherwise find the Laplace transform of i) $e^{2 t} \cos ^{2} t, \quad$ ii) $\sqrt{t} e^{3 t}$.
b) Find the inverse Laplace transform of $\frac{s}{s^{4}+4 a^{4}}$.
3. a) Evaluate $\int_{1-i}^{2+i}(2 x+i y+1) d z$ along the two paths
i) $x=t+1, y=2 t^{2}-1$
ii) the straight line joining $1-i$ and $2+i$.
b) If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$. $6+4$
4. a) State and prove Lawrent's theorem.
b) Expand $\frac{1}{z\left(z^{2}-3 z+2\right)}$ for the regions
i) $0<|z|<1$
ii) $1<|z|<2$
iii) $|z|>2$
$5+5$
5. a) Evaluate $\int_{c} \frac{z-3}{z^{2}+2 z+5} d z$ where c is the circle
i) $|z|=1$
ii) $|z+1-i|=2$
iii) $|z+1+i|=2$
b) Apply the calculus of residues to evaluate

$$
\int_{0}^{2 \pi} \frac{\cos 2 \theta d \theta}{1-2 a \cos \theta+a^{2}},|a|<1
$$

6. a) Find the Fourier series expansion for $f(x)$, if

$$
f(x)=\left\{\begin{array}{cc}
-\pi, & -\pi \leq x<0 \\
x, & 0 \leq x \leq \pi
\end{array}\right.
$$

b) If the series $\sum_{n=1}^{\infty} x_{n}$ converges then prove that $\lim _{n \rightarrow \infty} x_{n}=0$. By using this result show that the series $\sum_{n=1}^{\infty} x_{n}$ is divergent, where $x_{n}=\frac{n}{n+1}$.
c) Define geometric series and discuss its convergence.
4. a) Write the triple integral that represents the volume of the sphere $x^{2}+y^{2}+z^{2}=16$ and evaluate it changing to spherical coordinates.
b) Changing to cylindrical coordinates evaluate $\iiint_{W}\left(z^{2} x^{2}+z^{2} y^{2}\right) d x d y d z$, where W is the cylindrical region determined by $x^{2}+y^{2} \leq 1,-1 \leq z \leq 1 . \quad 5$
5. a) State Leibniz's rule and Generalized Leibniz's rule (no proof is required) related with differentiation under the sign of integration.
b) Discuss the convergence of the improper integrals $\int_{a}^{b}(b-x)^{-p} d x$ and $\int_{a}^{b}(x-a)^{-p} d x$. 5
c) Write the relation between Beta function and Gamma function and use it to evaluate $\Gamma\left(\frac{1}{2}\right)$.

3
6. a) Find the radius of convergence (R) of the following power series and check the behaviour at R, $\sum_{n=0}^{\infty}(n+1) x^{n}$. 5
b) What is p-series? When does it converge (no proof is required)? 2
c) What is limit comparison theorem related with infinite series of nonnegative terms? Using this test the convergence of the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+n+2}{5 n^{3}+3 n}$.
7. a) Write the trigonometric form of Beta function. 2
b) Reduce $\iint_{R}[x y(1-x-y)]^{\frac{1}{2}} d x d y$ in terms of Beta function, where R is the region enclosed by the lines $x=0, y=0$ and $x+y=1$ in the positive quadrant.
c) State 1 st Form and 2 nd Form of the Fundamental theorem of integral calculus. 2

PART - II (50 Marks)

Answer any Five questions. $\quad 10 \times 5=50$

All questions carry equal marks.

1. a) State the necessary and sufficient conditions for the derivative of the function $f(z)$ to exist for all values of $z(=x+i y)$ in a region R . Prove only the necessary part.
b) Prove that the function $f(z)$ defined by

$$
f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0), f(0)=0
$$

is continuous and Cauchy-Riemann equations are satisfied at the origin, yet $f^{\prime}(0)$ does not exist.
2. a) State and prove Cauchy's theorem and extend it to a multiply connected region.
b) If $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$ and $f(z)=u+i v$ is an analytic function of $z(=x+i y)$, find $f(z)$ in terms of z.

