BACHELOR OF ARCHITECTURE EXAMINATION, 2022

(1st Year, 2nd Semester)

MATHEMATICS II

Time : Three hours

Full Marks: 100

(50 Marks for each Part)

Use Separate Answer Scripts for each Part. Part - I (50 Marks) Answer any five questions.

1.(a) Define symetric and skew-symetric matrix. Show that a square matrix of order n can be expressed uniquely as a sum of a symetric matrix and a skew-symetric matrix. 2+3

(b) Define nilpotent and idempotent matrix. If A is a nilpotent matrix of order n and I_n is the identity matrix of order n then show that $I_n - A$ is an invertible matrix. Give an example of an idempotent matrix other than zero and identity matrix. 2+2+1

2.(a) What do you mean by consistent and inconsistent system of linear equations? If the system of linear equations x = cy + bz, y = az + cx and z = bx + ay have a nonzero solution then show that $a^2 + b^2 + c^2 + 2abc = 1$.

(b) If
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{pmatrix}$ then show that $AB = 6I_3$.
tilize this result to solve the following system of linear equations :

Utilize this result to solve the following system of linear equations : 2x + y + z = 5, x - y = 0 and 2x + y - z = 1. 2+3

3.(a) If a square matrix A is invertible then show that A is a nonsingular matrix. Is the sum of two singular matrices always a singular matrix? Justify. Show that the product of a singular matrix and a nonsingular matrix of the same order is a singular matrix. 2+2+1

(b) Show that the value of the determinant of an orthogonal matrix is either +1 or -1. Let A and B be two orthogonal matrices of the same order and detA + detB = 0. Show that A + B is a singular matrix. 2+3

4.(a) What is the length of the subtangent and subnormal of a curve y = f(x) at any point? Prove that for the parabola $y^2 = 4ax$, the subnormal is constant at any point and the subtangent varies as abscissa of the point of contact. 1+4=5

(b) If the two curves $ax^2 + by^2 = 1$ and $a'x^2 + b'y^2 = 1$ cut orthogonally, then prove that 1/b - 1/b' = 1/a - 1/a'.

5.(a) What is the formula for the radius of curvature of a curve y = f(x) in Cartesian co-ordinate system? Find the radius of curvature at any point of the curve $x = a(\theta + sin\theta)$, $y = a(1 - cos\theta)$.

(b) What is the maximum number of asymptotes of an algebraic curve of *nth* degree? Find the equation of the oblique asymptote of the curve $y = xe^{1/x^2}$. 1+4=5

[Turn over

[2]

6.(a) If the line $x\cos\alpha + y\sin\alpha = p$ touches the curve $(x/a)^{n/n-1} + (y/b)^{n/n-1} = 1$, then prove that $(a\cos\alpha)^n + (b\sin\alpha)^n = p^n$.

(b) If the normal to the curve $x^{2/3} + y^{2/3} = a^{2/3}$ makes an angle ϕ with the X-axis, then show that its equation is $y\cos\phi - x\sin\phi = a\cos 2\phi$.

7.(a) Find the radius of curvature of the curve y = acosh(x/a) at any point.

(b) Find the points on the parabola $y^2 = 8x$ at which the radius of curvature is 125/16. 5

Part – II

Answer any five questions.

- 8. a) Find the angle between the lines whose direction cosines are proportional to 1, 2, 1 and 2, -3, 6.
 - b) A, B, C are three points on the axis of *x*, *y* and *z* respectively at distances *a*, *b*, *c* from the origin O. Find the co-ordinates of the point which is equidistant from A, B, C and O.
- 9. a) Find the general equation of a plane through a point (α , β , γ).
 - b) Find the equation of the plane through the point (1, 2, 3) and parallel to the plane 4x + 5y 3z = 7.
- 10. a) Show that the line given by the equations 3x 4y + z + 1 = 0, x 2y + z + 2 = 0 is equally inclined to the axes.
 - b) Find in symmetrical form the equations of the line of intersection of the planes 2x-y-1=0 and 2y-z+1=0. 4+6
- 11. Prove that the lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$

are coplanar and find the equation of the plane containing them.

12. Find the magnitude and the equation of the line of shortest distance between the lines

$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{5}.$$
 10

- 13. a) Find the equation of a sphere which passes through the points (0, 0, 0), (a, 0, 0), (0, b, 0) and (0, 0, c).
 - b) Show that the general equation of the cone of 2nd degree which passes through the coordinate axes is of the form fyz + gzx + hxy = 0. 4+6
- 14. Prove that the circles

$$x^{2} + y^{2} + z^{2} - 2x + 3y + 4z - 5 = 0, \quad 5y + 6z + 1 = 0$$

and

$$x^{2} + y^{2} + z^{2} - 3x - 4y + 5z - 6 = 0, \quad x + 2y - 7z = 0$$

lie on the same sphere and find its equation.

10

10

 $\mathbf{5}$