Ex/SC/MATH/PG/4.3/A2.1/2022
ii) $\quad \Lambda^{n}(V)$ is a free K-module of rank 1 and
iii) for a linear operator T on V, there is a unique $c \in K$ such that $L\left(T v_{1}, T v_{2}, \ldots \ldots, T v_{n}\right)=c L\left(v_{1}, v_{2}, \ldots \ldots, v_{n}\right)$ for all $L \in \Lambda^{n}(V)$. $5+2+3$

M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)
Advanced Algebra - II
Paper - 4.3 (A 2.1)
Time : Two hours
Full Marks : 50
Unexplained Symbols / Notations have their usual meanings.
Students are advised to quote the relevant result clearly whenever it is used in any argument.

The figures in the margin indicate full marks.
Answer any five questions.
$10 \times 5=50$

1. i) Characterize the primitive rings in the class of commutative rings.
ii) No \mathbb{Z}-module can be faithful and irreducible Justify.
iii) If M is a simple left R-module than prove that $R / A n n_{R}(M)$ is primitive ring.
$5+2+3$
2. i) Give an example of a primitive ring which is not simple. Answer with proper reasons.
ii) Suppose V is a vector space over a division ring D and R is a dense ring of linear transformations of V. Prove that R is left Artinian if and only if $\operatorname{dim} V$ is finite, in which case $R=\operatorname{End}_{D}(V)$. 5+5
3. i) Define radical property of a ring.
ii) List (no proof is required) the results regarding the Jacobson radical of a ring and other relevant results and use them to explain that left quasi regularity is a radical property.
iii) The homomorphic image and every ideal of a semisimple ring are semisimple ring are semisimple - Justify.

$$
3+4+(2+1)
$$

4. i) Let G be the cyclic group of order 3 with a as a generator. Let $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}$ be the 2 -dimensional representations of G over \mathbb{C} given by $\rho_{1} a=\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right), \quad \rho_{2} a=\left(\begin{array}{cc}\omega & 0 \\ 0 & \omega^{-1}\end{array}\right), \quad \rho_{3} a=\left(\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right)$, $\rho_{4} a=\left(\begin{array}{cc}1 & 0 \\ \omega^{-1} & \omega\end{array}\right)$, where ω is a complex cube root of unity. Find the characters ψ_{i} of the representations $\rho_{i}, i=1,2,3,4$. Hence determine which of the ρ_{i} 's are equivalent.
ii) Find the regular representation of S_{3}. $5+5$
5. i) The following is a 4-dimensional real representation of the Quaterninon group

$$
Q_{8}=<a, b: a^{4}=b^{4}=1, a^{2}=b^{2}, b a=a b^{-1}>
$$

$$
a \mapsto\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), b \mapsto\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

Determine the corresponding $\mathbb{R} Q_{8}$-module.
ii) The permutation matrix $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0\end{array}\right)$ cannot be the matrix of the regular representation of a group. - Justiry.
iii) The number (up to isomorphism) of irreducible $\mathbb{C Z}_{16}$-modules is 16 . - Justify.
iv) Let $V=s p\left(v_{1}, v_{2}, v_{3}\right)$ be the permutation module for $S_{3}=G$ over a field F. Then $U=s p\left(v_{1}+v_{2}+v_{3}\right)$ is an $F G$-submodule of V. - Justfy. $\quad 5+2+2+1$
6. Let K be a commutative ring with identity and V be a unitary K-module. For any positive integer r, let $M^{r}(V)$ denote the set of all multilinear functions on V^{r} i.e., the set of all r-linear forms on V and $\Lambda^{r}(V)$ denote the set of all alternating r-linear forms on V. Prove that if V is a free K-module of rank n then.
i) $\quad M^{r}(V)$ is a free K-module of $\operatorname{rank} n^{r}$;

