Ex/SC/MATH/PG/4.3/A2.1/2022

[4]

- ii) $\Lambda^n(V)$ is a free *K*-module of rank 1 and
- iii) for a linear operator *T* on *V*, there is a unique $c \in K$ such that $L(Tv_1.Tv_2..., Tv_n) = cL(v_1, v_2, ..., v_n)$ for all $L \in \Lambda^n(V)$. 5+2+3

M. Sc. MATHEMATICS EXAMINATION, 2022

(2nd Year, 2nd Semester)

Advanced Algebra - II

$P_{APER} - 4.3 (A 2.1)$

Time : Two hours

Full Marks : 50

Unexplained Symbols / Notations have their usual meanings.

Students are advised to quote the relevant result clearly whenever it is used in any argument.

The figures in the margin indicate full marks.

Answer *any five* questions.

10×5=50

- 1. i) Characterize the primitive rings in the class of commutative rings.
 - ii) No \mathbb{Z} -module can be faithful and irreducible Justify.
 - iii) If *M* is a simple left *R*-module than prove that $R / Ann_R(M)$ is primitive ring. 5+2+3
- 2. i) Give an example of a primitive ring which is not simple. Answer with proper reasons.
 - ii) Suppose V is a vector space over a division ring D and R is a dense ring of linear transformations of V. Prove that R is left Artinian if and only if dimV is finite, in which case $R = \text{End}_D(V)$. 5+5
- 3. i) Define radical property of a ring.

[Turn over

- ii) List (no proof is required) the results regarding the Jacobson radical of a ring and other relevant results and use them to explain that left quasi regularity is a radical property.
- iii) The homomorphic image and every ideal of a semisimple ring are semisimple ring are semisimple Justify.
- 4. i) Let G be the cyclic group of order 3 with a as a generator. Let ρ_1 , ρ_2 , ρ_3 , ρ_4 be the 2-dimensional representations of G over \mathbb{C} given by

$$\rho_1 a = \begin{pmatrix} \omega & 0 \\ 0 & \omega \end{pmatrix}, \quad \rho_2 a = \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}, \quad \rho_3 a = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix},$$

 $\rho_4 a = \begin{pmatrix} 1 & 0 \\ \omega^{-1} & \omega \end{pmatrix}$, where ω is a complex cube root of unity. Find the characters Ψ_i of the representations

 ρ_i , *i* = 1, 2, 3, 4. Hence determine which of the ρ_i 's are equivalent.

- ii) Find the regular representation of S_3 . 5+5
- 5. i) The following is a 4-dimensional real representation of the Quaterninon group

$$Q_8 = \langle a, b : a^4 = b^4 = 1, a^2 = b^2, ba = ab^{-1} \rangle$$

$$a \mapsto \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, b \mapsto \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

Determine the corresponding $\mathbb{R}Q_8$ -module.
ii) The permutation matrix $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ cannot be

the matrix of the regular representation of a group. — Justiry.

- iii) The number (up to isomorphism) of irreducible \mathbb{CZ}_{16} -modules is 16. Justify.
- iv) Let $V = sp(v_1, v_2, v_3)$ be the permutation module for $S_3 = G$ over a field *F*. Then $U = sp(v_1 + v_2 + v_3)$ is an *FG*-submodule of *V*. — Justfy. 5+2+2+1
- 6. Let *K* be a commutative ring with identity and *V* be a unitary *K*-module. For any positive integer *r*, let $M^r(V)$ denote the set of all multilinear functions on V^r i.e., the set of all *r*-linear forms on *V* and $\Lambda^r(V)$ denote the set of all alternating *r*-linear forms on *V*. Prove that if *V* is a free *K*-module of rank *n* then.
 - i) $M^r(V)$ is a free *K*-module of rank n^r ;

[Turn over