Ex/SC/MATH/PG/4.4/B-2.32/2022

M. Sc. MATHEMATICS EXAMINATION, 2022

(2nd Year, 2nd Semester)

PROBABILITY AND STOCHASTIC PROCESSES II

PAPER - 4.4 (B-2.32)

Time : 2 hours

Full Marks : 50

Answer any five questions.

Each question carries Ten marks.

Symbols/notations have usual meanings.

1. Consider the Birth and Death chain on the state space $\{0,$

1, 2,} defined by $p_x = \frac{x+2}{2x+2}$, $q_x = \frac{x}{2x+2}$, $\forall x \in \{0, 1, 2,\}$

Find whether the chain is positive recurrent, null recurrent or transient.

2. Check if the Markov chain on the state space {0, 1, 2} which has the transition matrix

 $P = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 0.4 & 0.4 & 0.2 \\ 0.3 & 0.4 & 0.3 \\ 2 & 0.2 & 0.4 & 0.4 \end{bmatrix}$

has a stationary distribution. If it has, check whether the stationary distribution is unique and then find it.

3. Let X_n , $n \ge 0$ be the Ehrenfest chain on the state space $\{0, 1, ..., d\}$.

[Turn over

[2]

- i) Show that $\sum_{y \in \varphi} yP(x, y) = Ax + B$, $\forall x \in \varphi$, for some constant A and B.
- ii) Using (i), find $E_x(X_n)$.
- 4. Consider the Markov Chain on $S = \{0, 1, 2, 3, 4, 5\}$ which has the transition matrix

		0	1	2	3	4	5
<i>P</i> =	0	0	1	0	0	0	0]
	1	1	0	0	0	0	0
	2	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0
	3	0	0	0	$\frac{1}{2}$	0	$\frac{1}{2}$
	4	0	1	0	0	0	0
	5	0	0	0	$\frac{2}{3}$	0	$\frac{1}{3}$

Find all the recurrent and transient classes.

- 5. A square matrix P is called doubly stochastic
 - if a) P is a non-negative matrix (entrywise)
 - and b) Each row sum and each column sum of the matrix P is unity.

If the transition matrix of a Marthov Chain with *d* states is doubly stochastic, find a stationary distribution of this Markov Chain. Is it unique?

6. Let $\{X_n\}$ be the queuing chain.

- a) Show that if f(0) = 0 or f(0) + f(1) = 1, then $\{X_n\}$ is irreducible.
- b) If f(0) > 0 AND f(0) + f(1) < 1, show that $\{X_n\}$ is irreducible too. Here *f* is the pmf of no of customers arriving during service time.