M. Sc. Mathematics Examination, 2022
(2nd Year, 2nd Semester)

Introduction to Cryptography

Paper - 4.4 (B-2.27)
Time : Two hours
Full Marks : 50
(Symbols have usual meanings, if not mentioned otherwise)
Attempt Q. 1 and any four from the rest.

1. a) Explain the uses of the one-way function for implementing passwords, signatures, and cryptosystems.
b) Explain with an example: Secret sharing.
c) Distinguish between cracking problem and promise problem in a cryptosystem?
$5+3+2=10$
2. a) Describe the encryption and decryption methods in the RSA cryptosystem.
b) What do you mean by Hash function in cryptosystems? Describe a signature system using hash function and $R S A$ cryptosystem. $\quad 5+(1+4)=10$
3. a) Using the big- O notation, find an upper bound in terms of B for the input length of the Travelling Salesrep problem if the number of cities is at most B and the distance between any two cities is also at most B.
b) Explain how to use an algorithm for the Integer [Turn over

Factorization decision problem to solve the Integer Factorization search problem.

$$
3+7=10
$$

4. a) Consider the decision problem P :

Input : A list of cities and distances between any two cities, and an integer k.

Question : Do all tours that pass through all of the cities have length more than k ?
Is the problem P likely to be in $N P$? Explain.
b) Suppose that P_{1} is the problem

INPUT: Two integers.
QUESTION: Are they equal?
Suppose that P_{2} is the problem
INPUT: Two equations $a x+b y=0$ and $c x+d y=0$, where a, b, c, d are integers.
QUESTION: Do these equations have any common solution (x, y) other than $(0,0)$?

Show that P_{2} reduces to P_{1} by constructing a reduction of instances of one problem to instances of the other.
$4+6=10$
5. a) If $P \in B P P$, then for any constant $\in>0$ give an algorithm whose answers have a probability greater $1-\epsilon$ of being correct.
b) co- $R P$ denotes the set of decision problems that satisfy the definition of $R P$ with "yes" and "no" reversed. Show that the Primality problem:

Input : A positive odd integer N.
Question : Is N a prime number?
is in co- $R P$.
c) Explain why $B P P \supset R P \bigcup$ co- $R P$. $4+3+3=10$
6. Describe Hidden Monomial Cryptosystem along with the encryption and decryption schemes.
7. Consider a special case of the Polly Cracker with a graph $G=(V, E)$ as the public key, and a valid 3-Coloring of G as its private key. If $B=B(G)=B_{1} \cup B_{2} \cup B_{3}$ denotes the basis of polynomials in the variables $\left\{t_{v, i}: v \in V, 1 \leq i \leq 3\right\}$ where
$B_{1}=\left\{t_{v, 1}+t_{v, 2}+t_{v, 3}-1: v \in V\right\} ;$
$B_{2}=\left\{t_{v, i} t_{v, j} \quad: v \in V, 1 \leq i<j \leq 3\right\} ;$
$B_{3}=\left\{t_{u, i} t_{v, i} \quad: u v \in E, 1 \leq i \leq 3\right\}$.
a) Then construct a one-one correspondence between the private keys and points at which B vanishes.
b) Show that $t^{2}-t$ belongs to the Poly Cracker's ideal J for each variable t. $5+5=10$

