6. If $\mathrm{F}(\mathrm{s})$ and $\mathrm{G}(\mathrm{s})$ are the Mellin transform of the functions $f(x)$ and $g(x)$, then prove that

$$
\begin{equation*}
M^{-1}[F(s) G(s)]=\int_{0}^{\infty} f\left(\frac{x}{t}\right) g(t) \frac{d t}{t} \tag{5}
\end{equation*}
$$

7. a) If $\mathrm{F}(\mathrm{z})$ is Z -transform of a sequence $\{f(n)\}_{-\infty}^{\infty}$, then prove the following:

If $f(n)=0$ for $n<0$, then $\lim _{|z| \rightarrow \infty} F(z)=f(0)$.
b) Prove that $Z[n f(n)]=-z \frac{d F(z)}{d z}$.

M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)
Integral Equation and Integral Transform

$$
\text { Paper - } 4.2
$$

Time : Two hours
Full Marks : 50
Use a separate answer script for each Part. Symbols and notations have their usual meanings.

Part - I (25 Marks)

Answer Q. No. 1 and any two from the rest.

1. Define degenerate kernel of an integral equation. 1
2. a) If f is a continuous function on $[a, b]$ and $k(x, t)(\neq 0)$ is a continuous function on $R=\{(x, t) ; a \leq x, t \leq b\}$ and $\phi_{0}(x)$ is any function continuous on $[a, b]$ and for $x \in[a, b]$, $\phi_{n}(x)=f(x)+\lambda \int_{a}^{x} k(x . t) \phi_{n-1}(t) d t \quad(n=1,2,3, \ldots)$, then show that the sequence $\left\{\phi_{n}(x)\right\}$ converges uniquely to the unique continuous solution of the integral equation $u(x)=f(x)+\lambda \int_{a}^{x} k(x, t) u(t) d t$, for any finite value of λ.
b) Convert the differential equation $\phi^{\prime \prime}(x)=F(x, \phi(x)), \quad 0<x<1 \quad$ with $\quad \phi(0)=\phi_{0}$, $\phi(1)=\phi_{1}$ to an integral equation. $8+4$
3. a) Using Hilbert-Schmidt theorem, to solve the following integral equation

$$
\phi(x)=1+\lambda \int_{0}^{\pi} \cos (x+t) \phi(t) d t
$$

b) Show that the eigen functions of a symmetric kernel corresponding to different eigen values are orthogonal. $7+5$
4. a) Define Fredholm's first minor $D(x, y ; \lambda)$ and discuss its convergence.
b) Solve the integral equation

$$
\phi(x)=\cos x+(x-2)+\int_{0}^{x}(t-x) \phi(t) d t
$$

c) If $k(x, t)$ is a continuous on $R=\{(x, t) ; a \leq x, t \leq b\}$, then show that
$\int_{a}^{b} \cdot . \int_{a}^{b} D\left(\begin{array}{lll}x_{1} & x_{2} & \ldots \\ x_{p} \\ x_{1} & x_{2} & .\end{array} x_{p} \lambda\right) d x_{1} d x_{2} \ldots d_{x p}=(-\lambda)^{p} D^{(p)}(\lambda)$

$$
3 \frac{1}{2}+3 \frac{1}{2}+5
$$

Part - II
 (Integral Transform)

(Marks : 25)
Answer any Five questions.

1. Derive Fourier Transform from Fourier series.

5
2. Solve $t \frac{d^{2} f}{d t^{2}}-\frac{d f}{d t}-t f(t)=0$ with $f(0)=0$.

Given that $L^{-1}\left[\frac{1}{\left(p^{2}-1\right)^{\frac{3}{2}}}\right]=t I_{1}(t)$.
3. a) Does Fourier transform of the function $f(x)=1$, $-\infty<x<\infty$ exist? Justify your answer.
b) If $\mathrm{F}(\mathrm{s})$ and $\mathrm{G}(\mathrm{s})$ are the Fourier transforms of the functions $f(x)$ and $g(x)$ then prove that $\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x=\int_{-\infty}^{\infty} F(s) \overline{G(s)} d s . \quad 2+3=5$
4. If $F(p), G(p)$ are Laplace transforms of two functions defined on $[0, \infty]$, then prove that the inverse Laplace transform of the product $F(p) G(p)$ is the Laplace convolution integral $f(t)$ and $g(t)$. Hence find the Laplace inverse of $\frac{p}{\left(p^{2}+a^{2}\right)^{2}}$.
5. Write down Hankel transform of order zero of a function $\mathrm{f}(\mathrm{r})$ together with its inverse transform. Find Hankel transform of order zero of the function $F(r)=e^{-a r^{2}}$, $a>0$.
[Turn over

