[2]

- 6. What is a *matching* in a graph? State and prove Hall's Theorem for matching in a bipartite graph.
- 7. Define a *perfect matching*. Prove that every *k*-regular bipartite graph has a perfect matching.

Ex/SC/MATH/PG/4.5/B 2.19/2022

M. Sc. MATHEMATICS EXAMINATION, 2022

(2nd Year, 2nd Semester) GRAPH THEORY II (THEORY) PAPER – 4.5 (B 2.19)

Time : $1\frac{1}{2}$ hours Answer *any five* questions.

5×6

Full Marks : 30

- 1. Define a *planar graph*. Let G be a simple bipartite planar graph with n vertices and e edges. Show that $e \le 2n-4$. Determine all r, s such that $K_{r,s}$ is planar.
- 2. Define a *maximal planar graph*. Let G be a simple graph with n vertices. Prove that G is a maximal planar graph if and only if e = 3n 6.
- 3. What is a *Kuratowski subgraph*? If a graph G = (V, E) has no Kuratowski subgraph, then show that $G \cdot e$ has no Kuratowski subgraph for any $e \in E$, where $G \cdot e$ denotes the graph obtained from *G* by contracting the edge *e*.
- 4. Show that the Petersen graph is not planar. Find the crossing number of the Petersen graph.
- 5. Define a *flow function* of a (single source, single sink) transport network. Find a maximum flow for the following network : $v_1 = 6 \quad v_4$

