## M. Sc. Mathematics Examination, 2022

(2nd Year, 2nd Semester)

## ADVANCED FUNCTIONAL ANALYSIS

## PAPER - 4.1

Time: Two hours Full Marks: 50

Symbols and notations have their usual meanings.

Answer **Q. No. 1** and *any three* questions from the rest.

- 1. a) Is the real number space  $\mathbb{R}$  with cofinite topology a topological vector space? Answer with reasons.
  - b) Give an example to show that the sum of two closed subsets of a topological vector space *X* need not be closed.
- 2. a) Let X be a topological vector space. Let K and C be compact and closed subsets of X respectively with  $K \cap C = \phi$ . Show that there is a nbd V of  $\theta$  such that  $(K+V) \cap (C+V) = \phi$ .
  - b) Prove that every convex nbd of  $\theta$  in a topological vector space X contains a balanced convex nbd of  $\theta$ .

17 1

c) If V is nbd of  $\theta$  in a topological vector space X and

$$0 < r_1 < r_2 < \dots, r_n \to \infty$$
 as  $n \to \infty$  then  $X = \bigcup_{n=1}^{\infty} r_n V$ .

6

- 3. a) Let  $\Lambda$  be a linear functional on a topological vector space X and assume that  $\Lambda x \neq 0$  for some  $x \in X$ . Then prove that following are equivalent.
  - i)  $\Lambda$  is continuous.
  - ii) The null space  $N(\Lambda)$  is closed.
  - iii)  $N(\Lambda)$  is not dense in X.
  - iv)  $\Lambda$  is bounded in some nbd V of  $\theta$ .
  - b) Prove that every locally compact subspace *Y* of a topological vector space *X* with the induced topology from *X* is a closed subspace of *X*.
- 4. a) Define a set of first category with a suitable example.
  - b) Let X, Y be two topological vector spaces,  $\Gamma$  is a collection of continuous linear mappings from X to Y and B is the set of all  $x \in X$  whose orbits  $\Gamma(x)$  are bounded in Y. If B is of second category in X then prove that B = X and  $\Gamma$  is equicontinuous.
  - c) State and prove Baire's Theorem for a locally compact Hausdorff space.
- 5. a) Prove that every locally compact topological vector space is of finite dimension.

- b) Let M be a subspace of a real topological vector space X,
  - i)  $p: X \to R$  satisfies  $p(x+y) \le p(x) + p(y)$  and p(tx) = tp(x) for  $x, y \in X$  and  $t \ge 0$ .
  - ii)  $f: M \to R$  is linear and  $f(x) \le p(x)$  on M.

Then show that there exists a linear functional  $\Lambda: X \to R$  such that  $\Lambda(x) = f(x)$  for  $x \in M$  and  $-p(x) \le \Lambda(x) \le p(x)$  for all  $x \in X$ .

- 6. a) If f is a continuous linear functional on a subspace M of a locally convex topological vector space X, then prove that there exists  $\Lambda \in X^*$  such that  $\Lambda = f$  on M.
  - b) Suppose that X is a topological vector space and  $X_1$  is a separating vector space of linear functionals on X. Then prove that the  $X_1$ -topology  $\tau_1$  makes X into a locally convex space whose dual space is  $X_1$ .