- b) Draw a schematic line diagram of a spectrofluorometer and explain every part. Why are two monochromators placed perpendicularly?
- c) Design a molecule for FRET and mention its advantages.
- 6. a) How is X-ray fluorescence useful for element detection? 2
 - b) "Although Cr(III) is paramagentic, [Cr(NH₃)₆]³⁺ is eligible for photo-assisted aquation reaction." Explain.

0r

7. The fluorescence lifetime of a molecule in a solution is 5×10^{-9} s. The sum of all non-radiative rate constants (Σk_{nr}) for the decay of excited state is 1.2×10^5 s⁻¹.

What is the value of the fluorescence Quantum Yield of the molecule? 4

- 8. a) What happens when a solution of $K_2C_2O_4$ is added to a solution of $[Ru(bpy)_3]^{3+}$ obtained by the electrochemical oxidation route in acetonitrile? Write chemical reaction and explain. $2\frac{1}{2}$
 - b) Explain the role of Chlorophyll in the water oxidation process. $2\frac{1}{2}$

M. Sc. Chemistry Examination, 2022

(4th Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER – XV-I

Time : Two hours

Full Marks : 50

(25 marks for each unit)

Use a separate answer script for each Unit.

UNIT: I-4151

1. What is the role of carbonic anhydrase in the mammalian system? Draw the core unit of carbonic anhydrase B present in humans. Using the diagram mark or mention the portion that is the "apo enzyme"? Co^{2+} carbonic anhydrase B shows usual catalytic activity as the native enzyme. How do you think this was established? Why then did nature not select Co^{2+} over the metal ion it selected? $1\frac{1}{2}+1\frac{1}{2}+1\frac{1}{2}+1+1$

2. Answer *any two* questions:

 $3\frac{1}{2} \times 2$

- a) Compare and contrast the mechanism of action of *cis*-Platin and vanadocene dichloride as DNA targeting agents? $3\frac{1}{2}$
- b) With at least two examples, highlight alkyl group transfer reactions on to a substrate with Vitamin B_{12} as co-enzyme. What is the mechanism for any one of them? $1\frac{1}{2}+2$

- c) Mention the essential criteria to be kept in mind in designing a chelating agent that may be used as a drug. With two examples show how chelating agents have so far been used in biology. $1\frac{1}{2}+2$
- 3. a) Draw the active site structure of ascorbic acid oxidase. Mention different types of Cu centers present in it.3
 - b) Mention the role of superoxide dismutase, catalase and peroxidase. What type of metal centers is present in them? $3\frac{1}{2}$
 - c) Draw the structure of 8Fe-8S ferredoxin. Mention the role of ceruloplasmin. 2+1
 - d) Draw the active site structure of cytochrome c oxidase and mention magnetic, EPR properties of different metal centers present. $1\frac{1}{2}+1\frac{1}{2}$

<u>UNIT: I-4152</u>

- 4. Answer *any five* questions :
 - a) Phenol shows higher acidity at excited state while 2hydroxybenzaldehyde does not with reference to its ground state. Explain.

 5×2

- b) What happens upon irradiation of light to a mixture of methylene blue and Mohr's salt in dilute sulfuric acid? Explain your response.
- c) $T_1 + \Delta \rightarrow S_1; S_1 \rightarrow S_0 + hv$

Account on the feasibility of such reaction and explain giving an example.

- d) Irradiation of a hexane solution of 4-N, N'-Dimethylbenzonitrile (DMBN) shows emission at
 < 400 nm while tetrahydrofuran solution of DMBN shows broad high intense longer wavelength (>550 nm) emission band. Explain this observation.
- e) Account for the quenching mechanism at different concentration of Quencher [Q] added to a solution of flurophore. Also determine Φ_F^0 / Φ_F^Q (where Φ_F^0 refers to absence of Quencher and Φ_F^Q refers to presence of Quencher).
- f) Discuss the effect of the concentration of pyrene on the nature and energy of fluorescence spectrum in methanol.
- g) Account on the effect of metal ions (M^{n+}) on the fluorescence process of a fluorogenic ligand. Consider M^{n+} to be a transition metal ion.
- h) "Photodecomposition is sometimes observed at a lower energy than that of the chemical dissociation energy." Explain with quantum mechanical reasons.
- 5. Write notes on any *two* of the following : 3×2
 - a) Use of fluorescence technique for quality control of food products.