Ex/P-XIV-I/2022

M. Sc. Chemistry Examination, 2022

(4th Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER – XIV-I

Time : Two hours

Full Marks : 50

(25 marks for each unit)

Use a separate answer script for each Unit.

<u>UNIT: I-4141</u>

1. Justify the following statements:

5×3

- a) Diamagnetism originating from the spinning motion of the electron and nucleus is negligibly small compared to the orbital motions of the electrons.
- b) Temperature dependent molar magnetic susceptibility data for paramagnetic systems with weak antiferro- and ferromagnetic interactions help to determine Curie and Weiss Constants.
- c) The magnetic moment of K₂[OsCl₆] increases from 1.44 B.M. to 1.94 B.M. when it is diluted with the isomorphous diamagnetic substances K₂[PtCl₆].
- d) For the low spin octahedral complexes of Mn(III), Os(IV) and Ru(IV), μ_{obs} (at 300 K) follows the sequence: Mn(III) (3.5 B.M.) > Ru(IV) (2.65 B.M.) > Os(IV) (1.50 B.M.).
- e) $[Cr(CH_3COO)_2.H_2O]_2$ is diamagnetic.

[Turn over

- 2. Answer the following questions:
 - a) What do you mean by Lande Interval rule? Illustrate with Tb^{3+} ($\lambda = 202 \text{ cm}^{-1}$) system by considering only ground and first excited state. 1+2
 - b) Discuss briefly magnetic properties of NiO.

3

- c) Calculate μ_{eff} for $[CoCl_4]^{2-}$ where 10 Dq = 3100 cm⁻¹ ¹ and $\lambda = 172$ cm⁻¹.
- d) Calculate χ_{dia} for pyridine [Given atom contribution in 10⁻⁶ order in emu/mol, C(ring)=-6.24, H=-2.93, N (ring)=-4.61 and constitutive contribution in 10⁻⁶ order in emu/mol for pyridine = 0.5]. 2

<u>UNIT: I-4142</u>

Answer all the questions

- 3. a) Explain the different radiative and non-radiative processes in the light of the Jablonski diagram when a molecule is excited by a photon.
 - b) What do you mean by Light Emission Sensitizer (LES)? Show schematically how LES functions. What are the essential criteria of an ideal LES? 3
 - c) What do you mean by zero-zero spectroscopic energy (E_{0-0})? How can E_{0-0} value of chemical species be estimated? $1\frac{1}{2}$

- d) What happens if the photo-excited $*[Ru(bpy)_3]^{2+}$
- complex is treated with $[Cr(CN)_6]^{3-}$ and $Cr(bpy)_3]^{3+}$? 2
- e) What do you mean by chemiluminecence? How does it differ from photoluminescence?2
- f) [Ru(bpy)₃](PF₆)₂ is photochemically inert in water whereas [Ru(bpy)₃](Cl)₂ is photochemically labile in dichloromethane at room temperature. Suggest a probable reason of this experimental finding and predict the final product that can be obtained from [Ru(bpy)₃](Cl)₂ in dicholromethane. 2
- 4. a) What are the essential conditions for inner sphere electron transfer reactions? Reduction of $[Co^{III}(Cl) (NH_3)_5]^{2+}$ by Cr^{2+}_{aq} is much faster than reduction of $[Co^{III}(NH_3)_6]^{3+}$ although the thermodynamic driving forces appear to be similar for both reactions. Critically discuss. 2+4
 - b) For a common oxidant, if V^{2+}_{aq} reacts faster than Cr^{2+}_{aq} then we can conclude the occurrence of OSET process. Justify with at least one example. 4
 - c) For the self-exchange rate of the couple $MnO_4^{-/}$ MnO_4^{2-} it is observed that the following cations (M^+) increase the rate in the order: $Cs^+ \gg K^+ \approx Na^+ > Li^+$. Explain. $2\frac{1}{2}$