M. Sc. Chemistry Examination, 2022

(4th Semester)

ANALYTICAL CHEMISTRY SPECIAL

PAPER - XV-A

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answer script for each Unit.

UNIT: A-4151

1. Answer *any five* questions :

 5×2

- a) Phenol shows higher acidity at excited state while 2-hydroxybenzaldehyde does not with reference to its ground state. Explain.
- b) What happens upon irradiation of light to a mixture of methylene blue and Mohr's salt in dilute sulfuric acid? Explain your response.
- c) $T_1 + \Delta \rightarrow S_1$; $S_1 \rightarrow S_0 + hv$

Account on the feasibility of such reaction and explain giving an example.

d) Irradiation of a hexane solution of 4-N, N'-Dimethylbenzonitrile (DMBN) shows emission at <400 nm while tetrahydrofuran solution of DMBN shows broad high intense longer wavelength (>550 nm) emission band. Explain this observation.

- e) Account for the quenching mechanism at different concentration of Quencher [Q] added to a solution of flurophore. Also determine Φ_F^0/Φ_F^Q (where Φ_F^0 refers to absence of Quencher and Φ_F^Q refers to presence of Quencher).
- f) Discuss the effect of the concentration of pyrene on the nature and energy of fluorescence spectrum in methanol.
- g) Account on the effect of metal ions (M^{n+}) on the fluorescence process of a fluorogenic ligand. Consider M^{n+} to be a transition metal ion.
- h) "Photodecomposition is sometimes observed at a lower energy than that of the chemical dissociation energy." Explain with quantum mechanical reasons.
- 2. Write notes on any *two* of the following: 3×2
 - a) Use of fluorescence technique for quality control of food products.
 - b) Draw a schematic line diagram of a spectrofluorometer and explain every part. Why are two monochromators placed perpendicularly?
 - c) Drsign a molecule for FRET and mention its advantages.
- 3. a) How is X-ray fluorescence useful for element detection?

- m/e = 30 is about ten times more intense than the peak at m/e = 31 peak. Predict the appropriate mode of fragmentation with chemical reasoning.
- e) Assign the experimentally observed peaks at m/z = 575.78 in the ESI mass spectrum of the following complex in acetonitrile. Is it possible to predict the charge of the fractions by looking into its isotopic distribution pattern? (Given: atomic weight of Ru is 101.07). $3\frac{1}{2}$

$$\begin{bmatrix} \vdots \\ \vdots \\ N \end{bmatrix} (CIO_4)_2$$

c) Discuss the imporance of "dosimetry" in a study involving ionizing radiation. With a suitable graphical representation discuss "Fricke dosimetry".

4

- d) Explain radiometric titrations *either* when the substance to be titrated is radiolabelled *or*, when the indicator used is radiolabelled.
- 8. a) Deduce a relation between m/e of a positively charged particle of mass m and charge e with the strength of the electric field V and magnetic field H, which can be used to make all the positively charged particles traverse the same semicircular path of radius r.
 - b) What do you mean by "gas phase sources" and "desorption sources" with regard to molecular mass spectrometry? Discuss with examples the relative merits and demerits of the said ion sources.
 - c) Describe the different processes with proper reasoning that occur when a hypothetical molecule B-C-D-E is bombarded with a highly energetic electron beam.
 - d) Fragmentation of OHCH₂CH₂NH₂⁺ can occur to produce CH₂OH and CH₂NH₂⁺ or CH₂NH₂ and CH₂OH⁺. Experimental results show that the peak at

c) "Although Cr(III) is paramagentic, [Cr(NH₃)₆]³⁺ is eligible for photo-assisted aquation reaction." Explain.

Or

4. The fluorescence lifetime of a molecule in a solution is 5×10^{-9} s. The sum of all non-radiative rate constants (Σk_{nr}) for the decay of excited state is 1.2×10^5 s⁻¹.

What is the value of the fluorescence Quantum Yield of the molecule.

- 5. a) What happens when a solution of $K_2C_2O_4$ is added to a solution of $[Ru(bpy)_3]^{3+}$ obtained by the electrochemical oxidation route in acetonitrile? Write chemical reaction and explain. $2\frac{1}{2}$
 - b) Explain the role of Chlorophyll in the water oxidation process. $2\frac{1}{2}$

UNIT: A-4152

- 6. Describe the constitution of a gas ionization detector and briefly explain how it works. $4\frac{1}{2}$
- 7. Answer any two questions:
 - a) Discuss the working of a typical inorganic scintillator [NaI (T1)].
 - b) Describe the principle behind "Neutron Activation Analysis". How is the amount of an unknown element determined by this technique?

[Turn over